TW201900444A - Bicycle hub assembly - Google Patents

Bicycle hub assembly Download PDF

Info

Publication number
TW201900444A
TW201900444A TW107116082A TW107116082A TW201900444A TW 201900444 A TW201900444 A TW 201900444A TW 107116082 A TW107116082 A TW 107116082A TW 107116082 A TW107116082 A TW 107116082A TW 201900444 A TW201900444 A TW 201900444A
Authority
TW
Taiwan
Prior art keywords
external spline
hub assembly
sprocket
bicycle hub
bicycle
Prior art date
Application number
TW107116082A
Other languages
Chinese (zh)
Other versions
TWI697417B (en
Inventor
藤田寬司
腰山和喜
中西崇
Original Assignee
日商島野股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/608,915 external-priority patent/US11059541B2/en
Priority claimed from US15/608,924 external-priority patent/US11332213B2/en
Application filed by 日商島野股份有限公司 filed Critical 日商島野股份有限公司
Publication of TW201900444A publication Critical patent/TW201900444A/en
Application granted granted Critical
Publication of TWI697417B publication Critical patent/TWI697417B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/30Chain-wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0015Hubs for driven wheels
    • B60B27/0021Hubs for driven wheels characterised by torque transmission means from drive axle
    • B60B27/0026Hubs for driven wheels characterised by torque transmission means from drive axle of the radial type, e.g. splined key
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/02Hubs adapted to be rotatably arranged on axle
    • B60B27/023Hubs adapted to be rotatably arranged on axle specially adapted for bicycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/02Hubs adapted to be rotatably arranged on axle
    • B60B27/04Hubs adapted to be rotatably arranged on axle housing driving means, e.g. sprockets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/02Hubs adapted to be rotatably arranged on axle
    • B60B27/04Hubs adapted to be rotatably arranged on axle housing driving means, e.g. sprockets
    • B60B27/047Hubs adapted to be rotatably arranged on axle housing driving means, e.g. sprockets comprising a freewheel mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M9/00Transmissions characterised by use of an endless chain, belt, or the like
    • B62M9/04Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio
    • B62M9/06Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like
    • B62M9/10Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving different-sized wheels, e.g. rear sprocket chain wheels selectively engaged by the chain, belt, or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Gears, Cams (AREA)
  • Automatic Cycles, And Cycles In General (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
  • Steering Devices For Bicycles And Motorcycles (AREA)

Abstract

A bicycle hub assembly comprises a sprocket support body. The sprocket support body includes at least ten external spline teeth configured to engage with a bicycle rear sprocket assembly. Each of the at least ten external spline teeth has an external-spline driving surface and an external-spline non-driving surface.

Description

自行車輪轂總成Bicycle wheel assembly

本發明係關於一種自行車輪轂總成。The invention relates to a bicycle hub assembly.

騎車正變成更日益流行的消遣形式以及交通方式。此外,騎車已變成業餘及專業人員兩者之非常流行的競技運動。不論自行車是用於消遣、交通抑或是用於競賽,自行車行業正不斷地改良自行車之各種組件。已經充分重新設計之一個自行車組件為輪轂總成。Bicycling is becoming a more popular pastime and mode of transportation. In addition, cycling has become a very popular competitive sport for both amateurs and professionals. Whether the bicycle is used for recreation, transportation or competition, the bicycle industry is constantly improving the various components of the bicycle. One bicycle component that has been fully redesigned is the wheel hub assembly.

根據本發明之第一態樣,一種自行車輪轂總成包含一鏈輪支撐主體。該鏈輪支撐主體包括經結構設計以與一自行車後鏈輪總成嚙合之至少十個外部花鍵齒。該至少十個外部花鍵齒中之每一者具有一外部花鍵傳動表面及一外部花鍵非傳動表面。 在根據第一態樣之自行車輪轂總成之情況下,相比於包括九個或更少外部花鍵齒之鏈輪支撐主體,至少十個外部花鍵齒減少施加至至少十個外部花鍵齒中之每一者的旋轉力。此改良鏈輪支撐主體之耐久性及/或改良挑選鏈輪支撐主體之材料的自由度而不降低鏈輪支撐主體之耐久性。 根據本發明之第二態樣,如第一態樣之自行車輪轂總成經結構設計以使得該至少十個外部花鍵齒之一總數目等於或大於20。 在根據第二態樣之自行車輪轂總成之情況下,相比於包括九個或更少外部花鍵齒之鏈輪支撐主體,至少二十個外部花鍵齒進一步減少施加至至少二十個外部花鍵齒中之每一者的旋轉力。此進一步改良鏈輪支撐主體之耐久性及/或改良挑選鏈輪支撐主體之材料的自由度而不降低鏈輪支撐主體之耐久性。 根據本發明之第三態樣,如第二態樣之自行車輪轂總成經結構設計以使得該至少十個外部花鍵齒之該總數目等於或大於25。 在根據第三態樣之自行車輪轂總成之情況下,相比於包括九個或更少外部花鍵齒之鏈輪支撐主體,至少二十五個外部花鍵齒進一步減少施加至至少二十五個外部花鍵齒中之每一者的旋轉力。此進一步改良鏈輪支撐主體之耐久性及/或改良挑選鏈輪支撐主體之材料的自由度而不降低鏈輪支撐主體之耐久性。 根據本發明之第四態樣,如第一態樣至第三態樣中任一項之自行車輪轂總成經結構設計以使得該至少十個外部花鍵齒具有一第一外部周節角及不同於該第一外部周節角之一第二外部周節角。 在根據第四態樣之自行車輪轂總成之情況下,第一外部周節角與第二外部周節角之間的差異幫助使用者將自行車後鏈輪總成正確地安裝至鏈輪支撐主體,尤其是關於自行車後鏈輪總成之每一鏈輪之圓周位置。 根據本發明之第五態樣,如第一態樣至第四態樣中任一項之自行車輪轂總成經結構設計以使得該至少十個外部花鍵齒中之至少一者具有不同於該至少十個外部花鍵齒中之另一者之一第二花鍵形狀的一第一花鍵形狀。 在根據第五態樣之自行車輪轂總成之情況下,第一花鍵形狀與第二花鍵形狀之間的差異幫助使用者將自行車後鏈輪總成正確地安裝至鏈輪支撐主體,尤其是關於自行車後鏈輪總成之每一鏈輪之圓周位置。 根據本發明之第六態樣,如第一態樣至第五態樣中任一項之自行車輪轂總成經結構設計以使得該至少十個外部花鍵齒中之至少一者具有不同於該至少十個外部花鍵齒中之另一者之一第二花鍵大小的一第一花鍵大小。 在根據第六態樣之自行車輪轂總成之情況下,第一花鍵大小與第二花鍵大小之間的差異幫助使用者將自行車後鏈輪總成正確地安裝至鏈輪支撐主體,尤其是關於自行車後鏈輪總成之每一鏈輪之圓周位置。 根據本發明之第七態樣,如第一態樣至第六態樣中任一項之自行車輪轂總成經結構設計以使得該至少十個外部花鍵齒各自具有圓周最大寬度。該等圓周最大寬度之一總和等於或大於55 mm。 在根據第七態樣之自行車輪轂總成之情況下,有可能改良至少十個外部花鍵齒在剪切方向上之強度。 根據本發明之第八態樣,如第七態樣之自行車輪轂總成經結構設計以使得該等圓周最大寬度之該總和等於或大於60 mm。 在根據第八態樣之自行車輪轂總成之情況下,有可能進一步改良至少十個外部花鍵齒在剪切方向上之強度。 根據本發明之第九態樣,如第八態樣之自行車輪轂總成經結構設計以使得該等圓周最大寬度之該總和等於或大於65 mm。 在根據第九態樣之自行車輪轂總成之情況下,有可能進一步改良至少十個外部花鍵齒在剪切方向上之強度。 根據本發明之第十態樣,一種自行車輪轂總成包含一鏈輪支撐主體。該鏈輪支撐主體包括經結構設計以與一自行車後鏈輪總成嚙合之複數個外部花鍵齒。該複數個外部花鍵齒中之至少兩個外部花鍵齒相對於該自行車輪轂總成之一旋轉中心軸線以一第一外部周節角沿圓周配置。該第一外部周節角在10度至20度之範圍內。 在根據第十態樣之自行車輪轂總成之情況下,相比於具有大於第一外部周節角之外部周節角的鏈輪支撐主體,第一外部周節角減少施加至至少兩個外部花鍵齒中之每一者的旋轉力。此改良鏈輪支撐主體之耐久性及/或改良挑選鏈輪支撐主體之材料的自由度而不降低鏈輪支撐主體之耐久性。 根據本發明之第十一態樣,如第十態樣之自行車輪轂總成經結構設計以使得該第一外部周節角在12度至15度之範圍內。 在根據第十一態樣之自行車輪轂總成之情況下,相比於具有大於第一外部周節角之外部周節角的鏈輪支撐主體,第一外部周節角進一步減少施加至至少兩個外部花鍵齒中之每一者的旋轉力。此進一步改良鏈輪支撐主體之耐久性及/或改良挑選鏈輪支撐主體之材料的自由度而不降低鏈輪支撐主體之耐久性。 根據本發明之第十二態樣,如第十一態樣之自行車輪轂總成經結構設計以使得該第一外部周節角在13度至14度之範圍內。 在根據第十二態樣之自行車輪轂總成之情況下,相比於具有大於第一外部周節角之外部周節角的鏈輪支撐主體,第一外部周節角進一步減少施加至至少兩個外部花鍵齒中之每一者的旋轉力。此進一步改良鏈輪支撐主體之耐久性及/或改良挑選鏈輪支撐主體之材料的自由度而不降低鏈輪支撐主體之耐久性。 根據本發明之第十三態樣,如第十態樣至第十二態樣中任一項之自行車輪轂總成經結構設計以使得該複數個外部花鍵齒中之至少兩個外部花鍵齒相對於該自行車輪轂總成之該旋轉中心軸線以一第二外部周節角沿圓周配置。該第二外部周節角不同於該第一外部周節角。 在根據第十三態樣之自行車輪轂總成之情況下,第一外部周節角與第二外部周節角之間的差異幫助使用者將自行車後鏈輪總成正確地安裝至鏈輪支撐主體,尤其是關於自行車後鏈輪總成之每一鏈輪之圓周位置。 根據本發明之第十四態樣,一種自行車輪轂總成包含一鏈輪支撐主體。該鏈輪支撐主體包括經結構設計以與一自行車後鏈輪總成嚙合之至少一個外部花鍵齒。該至少一個外部花鍵齒具有等於或小於30 mm之一外部花鍵大徑。 在根據第十四態樣之自行車輪轂總成之情況下,外部花鍵大徑使得自行車輪轂總成能夠將包括具有十個或更少鏈輪齒之鏈輪的自行車後鏈輪總成安裝至自行車輪轂總成。此加寬了安裝至自行車輪轂總成之自行車後鏈輪總成的齒輪範圍。 根據本發明之第十五態樣,如第十四態樣之自行車輪轂總成進一步包含一制動轉子支撐主體,該制動轉子支撐主體包括經結構設計以與一自行車制動轉子嚙合之至少一個額外外部花鍵齒。該至少一個額外外部花鍵齒具有大於該外部花鍵大徑之一額外外部花鍵大徑。 在根據第十五態樣之自行車輪轂總成之情況下,制動轉子支撐主體藉由加寬安裝至自行車輪轂總成之自行車後鏈輪總成的齒輪範圍來改良制動效能。 根據本發明之第十六態樣,如第十四態樣或第十五態樣之自行車輪轂總成經結構設計以使得該外部花鍵大徑等於或大於25 mm。 在根據第十六態樣之自行車輪轂總成之情況下,有可能在使得自行車輪轂總成能夠將包括具有十個或更少鏈輪齒之鏈輪的自行車後鏈輪總成安裝至自行車輪轂總成之情況下確保鏈輪支撐主體之強度。 根據本發明之第十七態樣,如第十六態樣之自行車後輪轂總成經結構設計以使得該外部花鍵大徑等於或大於29 mm。 在根據第十七態樣之自行車輪轂總成之情況下,有可能在使得自行車輪轂總成能夠將包括具有十個或更少鏈輪齒之鏈輪的自行車後鏈輪總成安裝至自行車輪轂總成之情況下確保鏈輪支撐主體之強度。 根據本發明之第十八態樣,如第十四態樣至第十七態樣中任一項之自行車輪轂總成經結構設計以使得該至少一個外部花鍵齒具有一外部花鍵小徑,該外部花鍵小徑等於或小於28 mm。 在根據第十八態樣之自行車輪轂總成之情況下,外部花鍵小徑可增大至少一個外部花鍵齒之傳動表面之徑向長度。此改良鏈輪支撐主體之強度。 根據本發明之第十九態樣,如第十八態樣之自行車輪轂總成經結構設計以使得該外部花鍵小徑等於或大於25 mm。 在根據第十九態樣之自行車輪轂總成之情況下,有可能在加寬安裝至自行車輪轂總成之自行車後鏈輪總成之齒輪範圍的情況下確定地確保鏈輪支撐主體之強度。 根據本發明之第二十態樣,如第十九態樣之自行車輪轂總成經結構設計以使得該外部花鍵小徑等於或大於27 mm。 在根據第二十態樣之自行車輪轂總成之情況下,有可能在加寬安裝至自行車輪轂總成之自行車後鏈輪總成之齒輪範圍的情況下確定地確保鏈輪支撐主體之強度。 根據本發明之第二十一態樣,如第十四態樣至第二十態樣中任一項之自行車輪轂總成經結構設計以使得該至少一個外部花鍵齒包括複數個外部花鍵齒,該複數個外部花鍵齒包括用以在踩踏期間接收來自該自行車後鏈輪總成之一傳動旋轉力的複數個外部花鍵傳動表面。該複數個外部花鍵傳動表面各自包括一徑向最外邊緣、一徑向最內邊緣及自該徑向最外邊緣至該徑向最內邊緣界定之一徑向長度。該複數個外部花鍵傳動表面之該等徑向長度之一總和等於或大於7 mm。 在根據第二十一態樣之自行車輪轂總成之情況下,有可能增大複數個外部花鍵傳動表面之徑向長度。此改良鏈輪支撐主體之強度。 根據本發明之第二十二態樣,如第二十一態樣之自行車輪轂總成經結構設計以使得該等徑向長度之該總和等於或大於10 mm。 在根據第二十二態樣之自行車輪轂總成之情況下,有可能進一步增大複數個外部花鍵傳動表面之徑向長度。此進一步改良鏈輪支撐主體之強度。 根據本發明之第二十三態樣,如第二十二態樣之自行車輪轂總成經結構設計以使得該等徑向長度之該總和等於或大於15 mm。 在根據第二十三態樣之自行車輪轂總成之情況下,有可能進一步增大複數個外部花鍵傳動表面之徑向長度。此進一步改良鏈輪支撐主體之強度。 根據本發明之第二十四態樣,如第十四態樣至第二十三態樣中任一項之自行車輪轂總成經結構設計以使得該鏈輪支撐主體包括一較大直徑部分,該較大直徑部分具有大於該外部花鍵大徑之一外徑。 在根據第二十四態樣之自行車輪轂總成之情況下,有可能改良自行車輪轂總成之內部結構之設計自由度。舉例而言,諸如單向聯軸結構之傳動結構可容納於鏈輪支撐主體之此較大直徑部分之內部空腔內。 根據本發明之第二十五態樣,如第二十四態樣之自行車輪轂總成經結構設計以使得該外徑在32 mm至40 mm之範圍內。 在根據第二十五態樣之自行車輪轂總成之情況下,有可能進一步改良自行車輪轂總成之內部結構之設計自由度。舉例而言,有可能易於將諸如單向聯軸結構之傳動結構安置於此較大直徑部分之內部空腔中。 根據本發明之第二十六態樣,如第二十四態樣之自行車輪轂總成進一步包含一輪轂軸,該輪轂軸包括用以接觸一自行車框架之一軸向接觸表面。該鏈輪支撐主體圍繞一旋轉中心軸線可旋轉地安裝於該輪轂軸上。一第一軸向長度係相對於該旋轉中心軸線在一軸向方向上自該軸向接觸表面至該較大直徑部分界定。該第一軸向長度在35 mm至41 mm之範圍內。 在根據第二十六態樣之自行車輪轂總成之情況下,有可能確保至少一個外部花鍵齒之軸向長度。 根據本發明之第二十七態樣,如第二十六態樣之自行車輪轂總成經結構設計以使得該第一軸向長度等於或大於39 mm。 在根據第二十七態樣之自行車輪轂總成之情況下,有可能進一步確保至少一個外部花鍵齒之徑向長度。 根據本發明之第二十八態樣,如第二十六態樣之自行車輪轂總成經結構設計以使得該第一軸向長度在35 mm至37 mm之範圍內。 在根據第二十八態樣之自行車輪轂總成之情況下,有可能進一步確保至少一個外部花鍵齒之軸向長度。 根據本發明之第二十九態樣,如第二十六態樣之自行車輪轂總成經結構設計以使得該較大直徑部分具有在該軸向方向上離該軸向接觸表面最遠的一軸向端。一第二軸向長度係在該軸向方向上自該軸向接觸表面至該軸向端界定。該第二軸向長度在38 mm至47 mm之範圍內。 在根據第二十九態樣之自行車輪轂總成之情況下,有可能確保至少一個外部花鍵齒之軸向長度,同時改良自行車輪轂總成之內部結構之設計自由度。 根據本發明之第三十態樣,如第二十九態樣之自行車輪轂總成經結構設計以使得該第二軸向長度在44 mm至45 mm之範圍內。 在根據第三十態樣之自行車輪轂總成之情況下,有可能進一步確保至少一個外部花鍵齒之軸向長度,同時改良自行車輪轂總成之內部結構之設計自由度。 根據本發明之第三十一態樣,如第二十九態樣之自行車輪轂總成經結構設計以使得該第二軸向長度在40 mm至41 mm之範圍內。 在根據第三十一態樣之自行車輪轂總成之情況下,有可能進一步確保至少一個外部花鍵齒之軸向長度,同時改良自行車輪轂總成之內部結構之設計自由度。 根據本發明之第三十二態樣,如第二十四態樣至第三十一態樣中任一項之自行車輪轂總成經結構設計以使得該較大直徑部分之一軸向長度在3 mm至6 mm之範圍內。 在根據第三十二態樣之自行車輪轂總成之情況下,有可能進一步改良自行車輪轂總成之內部結構之設計自由度。舉例而言,諸如單向聯軸結構之傳動結構可容納於鏈輪支撐主體之此較大直徑部分之內部空腔內。 根據本發明之第三十三態樣,一種自行車輪轂總成包含一鏈輪支撐主體。該鏈輪支撐主體包括經結構設計以與一自行車後鏈輪總成嚙合之至少九個外部花鍵齒。該至少九個外部花鍵齒中之至少一者相對於一圓周齒尖中心線具有一不對稱形狀。該至少九個外部花鍵齒中之該至少一者包含一外部花鍵傳動表面及一外部花鍵非傳動表面。該外部花鍵傳動表面具有界定於該外部花鍵傳動表面與一第一徑向線之間的一第一外部花鍵表面角,該第一徑向線自該自行車輪轂總成之一旋轉中心軸線延伸至該外部花鍵傳動表面之一徑向最外邊緣。該外部花鍵非傳動表面具有界定於該外部花鍵非傳動表面與一第二徑向線之間的一第二外部花鍵表面角,該第二徑向線自該自行車輪轂總成之該旋轉中心軸線延伸至該外部花鍵非傳動表面之一徑向最外邊緣。該第二外部花鍵表面角不同於該第一外部花鍵表面角。 在根據第三十三態樣之自行車輪轂總成之情況下,有可能減輕鏈輪支撐主體之重量,同時確保鏈輪支撐主體之外部花鍵齒之強度。 根據本發明之第三十四態樣,如第第三十三態樣之自行車輪轂總成經結構設計以使得該第一外部花鍵表面角小於該第二外部花鍵表面角。 在根據第三十四態樣之自行車輪轂總成之情況下,有可能有效地減輕鏈輪支撐主體之重量,同時確保鏈輪支撐主體之外部花鍵齒之強度。 根據本發明之第三十五態樣,如第三十三態樣或第三十四態樣之自行車輪轂總成經結構設計以使得該第一外部花鍵表面角在0度至10度之範圍內。 在根據第三十五態樣之自行車輪轂總成之情況下,第一外部花鍵表面角確保外部花鍵傳動表面之強度。 根據本發明之第三十六態樣,如第三十三態樣至第三十五態樣中任一項之自行車輪轂總成經結構設計以使得該第二外部花鍵表面角在0度至60度之範圍內。 在根據第三十六態樣之自行車輪轂總成之情況下,第二外部花鍵表面角減輕鏈輪支撐主體之外部花鍵齒之重量。 根據本發明之第三十七態樣,如第三十三態樣至第三十六態樣中任一項之自行車輪轂總成經結構設計以使得該至少十個外部花鍵齒具有一第一外部周節角及不同於該第一外部周節角之一第二外部周節角。 在根據第三十七態樣之自行車輪轂總成之情況下,第一外部周節角與第二外部周節角之間的差異幫助使用者將自行車後鏈輪總成正確地安裝至鏈輪支撐主體,尤其是關於自行車後鏈輪總成之每一鏈輪之圓周位置。According to a first aspect of the present invention, a bicycle hub assembly includes a sprocket support body. The sprocket support body includes at least ten external spline teeth that are structurally designed to mesh with a bicycle rear sprocket assembly. Each of the at least ten external spline teeth has an external spline drive surface and an external spline non-drive surface. In the case of the bicycle hub assembly according to the first aspect, at least ten external spline teeth are reduced to at least ten external splines compared to a sprocket support body including nine or fewer external spline teeth. The rotational force of each of the teeth. This improves the durability of the sprocket support body and / or improves the freedom of selecting the material of the sprocket support body without reducing the durability of the sprocket support body. According to a second aspect of the present invention, the bicycle hub assembly as in the first aspect is structurally designed so that the total number of one of the at least ten external spline teeth is equal to or greater than 20. In the case of the bicycle hub assembly according to the second aspect, at least twenty external spline teeth are further reduced to at least twenty compared to a sprocket support body including nine or fewer external spline teeth. Rotating force of each of the external spline teeth. This further improves the durability of the sprocket support body and / or improves the freedom of selecting the material of the sprocket support body without reducing the durability of the sprocket support body. According to a third aspect of the present invention, the bicycle hub assembly of the second aspect is structurally designed so that the total number of the at least ten external spline teeth is equal to or greater than 25. In the case of the bicycle hub assembly according to the third aspect, at least twenty-five external spline teeth are further reduced to at least twenty compared to a sprocket support body including nine or less external spline teeth Rotating force of each of the five outer spline teeth. This further improves the durability of the sprocket support body and / or improves the freedom of selecting the material of the sprocket support body without reducing the durability of the sprocket support body. According to the fourth aspect of the present invention, the bicycle hub assembly of any one of the first aspect to the third aspect is structured so that the at least ten external spline teeth have a first external peripheral angle and A second outer perimeter angle different from one of the first outer perimeter angles. In the case of the bicycle hub assembly according to the fourth aspect, the difference between the first outer perimeter angle and the second outer perimeter angle helps the user to properly mount the bicycle rear sprocket assembly to the sprocket support body , Especially regarding the circumferential position of each sprocket in a bicycle rear sprocket assembly. According to a fifth aspect of the present invention, the bicycle hub assembly as in any one of the first aspect to the fourth aspect is structured so that at least one of the at least ten external spline teeth has a different shape from the One of the at least ten outer spline teeth is a first spline shape with a second spline shape. In the case of the bicycle hub assembly according to the fifth aspect, the difference between the first spline shape and the second spline shape helps the user to correctly install the bicycle rear sprocket assembly to the sprocket support body, especially It is about the circumferential position of each sprocket of the bicycle rear sprocket assembly. According to a sixth aspect of the present invention, the bicycle hub assembly as in any one of the first aspect to the fifth aspect is structured so that at least one of the at least ten external spline teeth has a different shape from the One of the at least ten outer spline teeth is a second spline size a first spline size. In the case of the bicycle hub assembly according to the sixth aspect, the difference between the size of the first spline and the size of the second spline helps the user to correctly install the bicycle rear sprocket assembly to the sprocket support body, especially It is about the circumferential position of each sprocket of the bicycle rear sprocket assembly. According to a seventh aspect of the present invention, the bicycle hub assembly of any one of the first aspect to the sixth aspect is structured so that the at least ten outer spline teeth each have a maximum circumferential width. The sum of one of the maximum widths of these circles is equal to or greater than 55 mm. In the case of the bicycle hub assembly according to the seventh aspect, it is possible to improve the strength in the shear direction of at least ten external spline teeth. According to an eighth aspect of the present invention, the bicycle hub assembly according to the seventh aspect is structurally designed so that the sum of the maximum widths of the circumferences is equal to or greater than 60 mm. In the case of the bicycle hub assembly according to the eighth aspect, it is possible to further improve the strength in the shear direction of at least ten external spline teeth. According to a ninth aspect of the present invention, the bicycle hub assembly according to the eighth aspect is structured so that the sum of the maximum widths of the circumferences is equal to or greater than 65 mm. In the case of the bicycle hub assembly according to the ninth aspect, it is possible to further improve the strength in the shear direction of at least ten external spline teeth. According to a tenth aspect of the present invention, a bicycle hub assembly includes a sprocket support body. The sprocket support body includes a plurality of external spline teeth that are structurally designed to mesh with a bicycle rear sprocket assembly. At least two external spline teeth of the plurality of external spline teeth are circumferentially arranged at a first external pitch angle with respect to a rotation center axis of the bicycle hub assembly. The first outer perimeter angle is in a range of 10 degrees to 20 degrees. In the case of the bicycle hub assembly according to the tenth aspect, the first external peripheral angle is reduced to be applied to at least two external portions compared to a sprocket support body having an external peripheral angle greater than the first external peripheral angle. Rotating force of each of the spline teeth. This improves the durability of the sprocket support body and / or improves the freedom of selecting the material of the sprocket support body without reducing the durability of the sprocket support body. According to the eleventh aspect of the present invention, the bicycle hub assembly according to the tenth aspect is structurally designed so that the first outer peripheral angle is in a range of 12 degrees to 15 degrees. In the case of the bicycle hub assembly according to the eleventh aspect, the first external peripheral angle is further reduced to at least two compared to a sprocket support body having an external peripheral angle greater than the first external peripheral angle. The rotational force of each of the two external spline teeth. This further improves the durability of the sprocket support body and / or improves the freedom of selecting the material of the sprocket support body without reducing the durability of the sprocket support body. According to a twelfth aspect of the present invention, the bicycle hub assembly according to the eleventh aspect is structurally designed so that the first outer peripheral angle is in a range of 13 degrees to 14 degrees. In the case of the bicycle hub assembly according to the twelfth aspect, the first outer peripheral angle is further reduced to at least two compared to a sprocket support body having an outer peripheral angle greater than the first outer peripheral angle. The rotational force of each of the two external spline teeth. This further improves the durability of the sprocket support body and / or improves the freedom of selecting the material of the sprocket support body without reducing the durability of the sprocket support body. According to a thirteenth aspect of the present invention, the bicycle hub assembly according to any one of the tenth aspect to the twelfth aspect is structurally designed so that at least two external splines of the plurality of external spline teeth The teeth are arranged circumferentially at a second outer perimeter angle with respect to the rotation center axis of the bicycle hub assembly. The second outer perimeter angle is different from the first outer perimeter angle. In the case of the bicycle hub assembly according to the thirteenth aspect, the difference between the first outer perimeter angle and the second outer perimeter angle helps the user to properly mount the bicycle rear sprocket assembly to the sprocket support The main body, especially regarding the circumferential position of each sprocket of the bicycle rear sprocket assembly. According to a fourteenth aspect of the present invention, a bicycle hub assembly includes a sprocket support body. The sprocket support body includes at least one external spline tooth structured to mesh with a bicycle rear sprocket assembly. The at least one external spline tooth has an external spline major diameter equal to or less than 30 mm. In the case of the bicycle hub assembly according to the fourteenth aspect, the large external spline diameter enables the bicycle hub assembly to mount a bicycle rear sprocket assembly including a sprocket having ten or less sprocket teeth to Bicycle wheel assembly. This widens the gear range of the bicycle rear sprocket assembly mounted to the bicycle hub assembly. According to a fifteenth aspect of the present invention, the bicycle hub assembly according to the fourteenth aspect further includes a brake rotor supporting body including at least one additional exterior structured to be engaged with a bicycle brake rotor. Spline teeth. The at least one additional external spline tooth has an additional external spline diameter that is larger than one of the external spline diameters. In the case of the bicycle hub assembly according to the fifteenth aspect, the brake rotor supporting body improves the braking performance by widening the gear range of the bicycle rear sprocket assembly mounted to the bicycle hub assembly. According to a sixteenth aspect of the present invention, the bicycle hub assembly such as the fourteenth aspect or the fifteenth aspect is structured so that the large diameter of the external spline is equal to or greater than 25 mm. In the case of the bicycle hub assembly according to the sixteenth aspect, it is possible to enable the bicycle hub assembly to mount a bicycle rear sprocket assembly including a sprocket having ten or less sprocket teeth to the bicycle hub. In the case of the assembly, ensure the strength of the sprocket support body. According to a seventeenth aspect of the present invention, the bicycle rear hub assembly according to the sixteenth aspect is structurally designed so that the large diameter of the external spline is equal to or greater than 29 mm. In the case of the bicycle hub assembly according to the seventeenth aspect, it is possible to enable the bicycle hub assembly to mount a bicycle rear sprocket assembly including a sprocket having ten or less sprocket teeth to the bicycle hub. In the case of the assembly, ensure the strength of the sprocket support body. According to the eighteenth aspect of the present invention, the bicycle hub assembly according to any one of the fourteenth aspect to the seventeenth aspect is structured so that the at least one external spline tooth has an external spline path , The external spline diameter is equal to or less than 28 mm. In the case of the bicycle hub assembly according to the eighteenth aspect, the external spline diameter can increase the radial length of the transmission surface of at least one external spline tooth. This improves the strength of the sprocket support body. According to a nineteenth aspect of the present invention, the bicycle hub assembly according to the eighteenth aspect is structurally designed so that the outer spline diameter is equal to or greater than 25 mm. In the case of the bicycle hub assembly according to the nineteenth aspect, it is possible to surely ensure the strength of the sprocket support body while widening the gear range of the bicycle rear sprocket assembly mounted to the bicycle hub assembly. According to the twentieth aspect of the present invention, the bicycle hub assembly according to the nineteenth aspect is structurally designed so that the outer spline diameter is equal to or greater than 27 mm. In the case of the bicycle hub assembly according to the twentieth aspect, it is possible to surely ensure the strength of the sprocket support body while widening the gear range of the bicycle rear sprocket assembly mounted to the bicycle hub assembly. According to the twenty-first aspect of the present invention, the bicycle hub assembly according to any one of the fourteenth aspect to the twentieth aspect is structurally designed so that the at least one external spline tooth includes a plurality of external splines Teeth, the plurality of external spline teeth include a plurality of external spline drive surfaces for receiving a driving rotational force from one of the bicycle rear sprocket assemblies during pedaling. Each of the plurality of external spline transmission surfaces includes a radially outermost edge, a radially innermost edge, and a radial length defined from the radially outermost edge to the radially innermost edge. The sum of one of the radial lengths of the plurality of external spline drive surfaces is equal to or greater than 7 mm. In the case of the bicycle hub assembly according to the twenty-first aspect, it is possible to increase the radial length of the plurality of external spline drive surfaces. This improves the strength of the sprocket support body. According to the twenty-second aspect of the present invention, the bicycle hub assembly according to the twenty-first aspect is structured so that the total of the radial lengths is equal to or greater than 10 mm. In the case of the bicycle hub assembly according to the twenty-second aspect, it is possible to further increase the radial length of the plurality of external spline drive surfaces. This further improves the strength of the sprocket support body. According to the twenty-third aspect of the present invention, the bicycle hub assembly as in the twenty-second aspect is structured so that the total of the radial lengths is equal to or greater than 15 mm. In the case of the bicycle hub assembly according to the twenty-third aspect, it is possible to further increase the radial length of the plurality of external spline drive surfaces. This further improves the strength of the sprocket support body. According to a twenty-fourth aspect of the present invention, the bicycle hub assembly according to any one of the fourteenth aspect to the twenty-third aspect is structurally designed so that the sprocket support body includes a larger diameter portion, The larger diameter portion has an outer diameter larger than one of the larger diameters of the outer splines. In the case of the bicycle hub assembly according to the twenty-fourth aspect, it is possible to improve the design freedom of the internal structure of the bicycle hub assembly. For example, a transmission structure such as a one-way coupling structure can be housed within the internal cavity of this larger diameter portion of the sprocket support body. According to a twenty-fifth aspect of the present invention, the bicycle hub assembly according to the twenty-fourth aspect is structurally designed so that the outer diameter is in a range of 32 mm to 40 mm. In the case of the bicycle hub assembly according to the twenty-fifth aspect, it is possible to further improve the design freedom of the internal structure of the bicycle hub assembly. For example, it may be easy to place a transmission structure such as a unidirectional coupling structure in the internal cavity of this larger diameter portion. According to a twenty-sixth aspect of the present invention, the bicycle hub assembly according to the twenty-fourth aspect further includes a hub shaft including an axial contact surface for contacting a bicycle frame. The sprocket support body is rotatably mounted on the hub shaft about a rotation center axis. A first axial length is defined from the axial contact surface to the larger diameter portion in an axial direction relative to the rotation center axis. The first axial length is in the range of 35 mm to 41 mm. In the case of the bicycle hub assembly according to the twenty-sixth aspect, it is possible to secure the axial length of at least one outer spline tooth. According to the twenty-seventh aspect of the present invention, the bicycle hub assembly according to the twenty-sixth aspect is structured so that the first axial length is equal to or greater than 39 mm. In the case of the bicycle hub assembly according to the twenty-seventh aspect, it is possible to further ensure the radial length of at least one outer spline tooth. According to the twenty-eighth aspect of the present invention, the bicycle hub assembly according to the twenty-sixth aspect is structured so that the first axial length is in a range of 35 mm to 37 mm. In the case of the bicycle hub assembly according to the twenty-eighth aspect, it is possible to further secure the axial length of at least one outer spline tooth. According to the twenty-ninth aspect of the present invention, the bicycle hub assembly according to the twenty-sixth aspect is structured so that the larger diameter portion has a distance farthest from the axial contact surface in the axial direction. Axial end. A second axial length is defined in the axial direction from the axial contact surface to the axial end. The second axial length is in the range of 38 mm to 47 mm. In the case of the bicycle hub assembly according to the twenty-ninth aspect, it is possible to ensure the axial length of at least one external spline tooth, while improving the design freedom of the internal structure of the bicycle hub assembly. According to the thirtieth aspect of the present invention, the bicycle hub assembly according to the twenty-ninth aspect is structurally designed so that the second axial length is in a range of 44 mm to 45 mm. In the case of the bicycle hub assembly according to the thirtieth aspect, it is possible to further ensure the axial length of at least one external spline tooth, while improving the design freedom of the internal structure of the bicycle hub assembly. According to the thirty-first aspect of the present invention, the bicycle hub assembly according to the twenty-ninth aspect is structurally designed so that the second axial length is in a range of 40 mm to 41 mm. In the case of the bicycle hub assembly according to the thirty-first aspect, it is possible to further ensure the axial length of at least one external spline tooth, while improving the design freedom of the internal structure of the bicycle hub assembly. According to the thirty-second aspect of the present invention, the bicycle hub assembly according to any one of the twenty-fourth aspect to the thirty-first aspect is structured so that an axial length of one of the larger diameter portions is between Within the range of 3 mm to 6 mm. In the case of the bicycle hub assembly according to the thirty-second aspect, it is possible to further improve the design freedom of the internal structure of the bicycle hub assembly. For example, a transmission structure such as a one-way coupling structure can be housed within the internal cavity of this larger diameter portion of the sprocket support body. According to a thirty-third aspect of the present invention, a bicycle hub assembly includes a sprocket support body. The sprocket support body includes at least nine external spline teeth that are structurally designed to mesh with a bicycle rear sprocket assembly. At least one of the at least nine external spline teeth has an asymmetric shape with respect to a circumferential tooth tip centerline. The at least one of the at least nine external spline teeth includes an external spline drive surface and an external spline non-drive surface. The external spline transmission surface has a first external spline surface angle defined between the external spline transmission surface and a first radial line, the first radial line is from a center of rotation of the bicycle hub assembly The axis extends to one of the radially outermost edges of the outer spline drive surface. The external spline non-driving surface has a second external spline surface angle defined between the external spline non-driving surface and a second radial line, the second radial line is from the bicycle hub assembly. The rotation center axis extends to a radially outermost edge of one of the outer spline non-drive surfaces. The second external spline surface angle is different from the first external spline surface angle. In the case of the bicycle hub assembly according to the thirty-third aspect, it is possible to reduce the weight of the sprocket support body while ensuring the strength of the external spline teeth of the sprocket support body. According to the thirty-fourth aspect of the present invention, the bicycle hub assembly according to the thirty-third aspect is structurally designed so that the first external spline surface angle is smaller than the second external spline surface angle. In the case of the bicycle hub assembly according to the thirty-fourth aspect, it is possible to effectively reduce the weight of the sprocket support body while ensuring the strength of the external spline teeth of the sprocket support body. According to the thirty-fifth aspect of the present invention, the bicycle hub assembly such as the thirty-third aspect or the thirty-fourth aspect is structured so that the surface angle of the first external spline is between 0 degrees and 10 degrees. Within range. In the case of the bicycle hub assembly according to the thirty-fifth aspect, the first external spline surface angle ensures the strength of the external spline transmission surface. According to the thirty-sixth aspect of the present invention, the bicycle hub assembly according to any one of the thirty-third aspect to the thirty-fifth aspect is structured so that the surface angle of the second external spline is at 0 degrees To 60 degrees. In the case of the bicycle hub assembly according to the thirty-sixth aspect, the second external spline surface angle reduces the weight of the external spline teeth of the sprocket support body. According to the thirty-seventh aspect of the present invention, the bicycle hub assembly according to any one of the thirty-third aspect to the thirty-sixth aspect is structured so that the at least ten external spline teeth have a first An external perimeter angle and a second external perimeter angle different from the first external perimeter angle. In the case of the bicycle hub assembly according to the thirty-seventh aspect, the difference between the first outer perimeter angle and the second outer perimeter angle helps the user to properly mount the bicycle rear sprocket assembly to the sprocket The support body, especially with regard to the circumferential position of each sprocket of a bicycle rear sprocket assembly.

現將參看附圖描述實施例,其中相似參考數字指定在各種圖式中之對應或相同元件。 首先參考圖1,根據一實施例之自行車傳動系統10包含自行車輪轂總成12及自行車後鏈輪總成14。自行車輪轂總成12緊固至自行車框架BF。自行車後鏈輪總成14安裝於自行車輪轂總成12上。自行車制動轉子16安裝於自行車輪轂總成12上。 自行車傳動系統10進一步包含曲柄總成18及自行車鏈條20。曲柄總成18包括曲柄軸22、右曲柄臂24、左曲柄臂26及前鏈輪27。右曲柄臂24及左曲柄臂26緊固至曲柄軸22。前鏈輪27緊固至曲柄軸22及右曲柄臂24中之至少一者。自行車鏈條20與前鏈輪27及自行車後鏈輪總成14嚙合以將踩踏力自前鏈輪27傳輸至自行車後鏈輪總成14。曲柄總成18包括前鏈輪27作為所說明實施例中之單一鏈輪。然而,曲柄總成18可包括複數個前鏈輪。自行車後鏈輪總成14為後鏈輪總成。然而,自行車後鏈輪總成14之結構可應用於前鏈輪。 在本申請案中,以下方向性術語「前」、「後」、「向前」、「向後」、「左」、「右」、「橫向」、「向上」及「向下」以及任何其他類似方向性術語係指基於坐在自行車之車座(未展示)上且面向把手(未展示)的使用者(例如,騎乘者)而判定之彼等方向。因此,此等術語在用以描述自行車傳動系統10、自行車輪轂總成12或自行車後鏈輪總成14時,應關於配備有如在水平表面上在直立騎乘位置中所使用之自行車傳動系統10、自行車輪轂總成12或自行車後鏈輪總成14的自行車而加以解譯。 如圖2及圖3中所見,自行車輪轂總成12及自行車後鏈輪總成14具有旋轉中心軸線A1。自行車後鏈輪總成14相對於自行車框架BF (圖1)圍繞旋轉中心軸線A1由自行車輪轂總成12可旋轉地支撐。自行車後鏈輪總成14經結構設計以與自行車鏈條20嚙合,從而在踩踏期間在自行車鏈條20與自行車後鏈輪總成14之間傳輸傳動旋轉力F1。在踩踏期間,自行車後鏈輪總成14在傳動旋轉方向D11上圍繞旋轉中心軸線A1旋轉。傳動旋轉方向D11係沿自行車輪轂總成12或自行車後鏈輪總成14之圓周方向D1界定。反向旋轉方向D12為傳動旋轉方向D11之相反方向,且係沿圓周方向D1界定。 如圖2中所見,自行車輪轂總成12包含鏈輪支撐主體28。自行車後鏈輪總成14安裝於鏈輪支撐主體28上以在鏈輪支撐主體28與自行車後鏈輪總成14之間傳輸傳動旋轉力F1。自行車輪轂總成12進一步包含輪轂軸30。鏈輪支撐主體28圍繞旋轉中心軸線A1可旋轉地安裝於輪轂軸30上。自行車輪轂總成12包含鎖環32。鎖環32緊固至鏈輪支撐主體28以在平行於旋轉中心軸線A1之軸向方向D2上相對於鏈輪支撐主體28固持自行車後鏈輪總成14。 如圖4中所見,自行車輪轂總成12藉由車輪緊固結構WS緊固至自行車框架BF。輪轂軸30具有通孔30A。車輪緊固結構WS之緊固桿WS1延伸穿過輪轂軸30之通孔30A。輪轂軸30包括第一軸端30B及第二軸端30C。輪轂軸30沿旋轉中心軸線A1在第一軸端30B與第二軸端30C之間延伸。第一軸端30B設置於自行車框架BF之第一框架BF1之第一凹槽BF11中。第二軸端30C設置於自行車框架BF之第二框架BF2之第二凹槽BF21中。輪轂軸30藉由車輪緊固結構WS固持於第一框架BF1與第二框架BF2之間。車輪緊固結構WS包括在所申請之自行車中已知的結構。因此,出於簡潔起見,此處將不作詳細描述。 如圖4及圖5中所見,自行車輪轂總成12進一步包含制動轉子支撐主體34。制動轉子支撐主體34圍繞旋轉中心軸線A1可旋轉地安裝於輪轂軸30上。制動轉子支撐主體34耦接至自行車制動轉子16 (圖1)以將制動旋轉力自自行車制動轉子16傳輸至制動轉子支撐主體34。 如圖5中所見,自行車輪轂總成12進一步包含輪轂主體36。輪轂主體36圍繞旋轉中心軸線A1可旋轉地安裝於輪轂軸30上。在此實施例中,鏈輪支撐主體28為來自輪轂主體36之單獨構件。制動轉子支撐主體34與輪轂主體36一體地設置為單件式整體構件。然而,鏈輪支撐主體28可與輪轂主體36一體地設置。制動轉子支撐主體34可為來自輪轂主體36之單獨構件。 輪轂主體36包括第一凸緣36A及第二凸緣36B。第一輪輻(未展示)耦接至第一凸緣36A。第二輪輻(未展示)耦接至第二凸緣36B。第二凸緣36B在軸向方向D2上與第一凸緣36A間隔開。第一凸緣36A在軸向方向D2上設置於鏈輪支撐主體28與第二凸緣36B之間。第二凸緣36B在軸向方向D2上設置於第一凸緣36A與制動轉子支撐主體34之間。 鎖環32包括外部帶螺紋部分32A。鏈輪支撐主體28包括內部帶螺紋部分28A。在鎖環32緊固至鏈輪支撐主體28之狀態中,外部帶螺紋部分32A與內部帶螺紋部分28A螺紋嚙合。 如圖6中所見,自行車輪轂總成12進一步包含棘輪結構38。鏈輪支撐主體28藉由棘輪結構38可操作地耦接至輪轂主體36。棘輪結構38經結構設計以將鏈輪支撐主體28耦接至輪轂主體36,從而在踩踏期間使鏈輪支撐主體28連同輪轂主體36在傳動旋轉方向D11 (圖5)上旋轉。棘輪結構38經結構設計以允許鏈輪支撐主體28在惰轉期間在反向旋轉方向D12 (圖5)上相對於輪轂主體36旋轉。因此,棘輪結構38可解釋為單向聯軸結構38。棘輪結構38包括自行車領域中已知的結構。因此,出於簡潔起見,此處將不作詳細描述。 自行車輪轂總成12包括第一軸承39A及第二軸承39B。第一軸承39A及第二軸承39B設置於鏈輪支撐主體28與輪轂軸30之間以圍繞旋轉中心軸線A1相對於輪轂軸30可旋轉地支撐鏈輪支撐主體28。 在此實施例中,鏈輪支撐主體28、制動轉子支撐主體34及輪轂主體36中之每一者由諸如鋁、鐵或鈦之金屬材料製成。然而,鏈輪支撐主體28、制動轉子支撐主體34及輪轂主體36中之至少一者可由非金屬材料製成。 如圖7及圖8中所見,鏈輪支撐主體28包括經結構設計以與自行車後鏈輪總成14 (圖6)嚙合之至少一個外部花鍵齒40。鏈輪支撐主體28包括經結構設計以與自行車後鏈輪總成14 (圖6)嚙合之複數個外部花鍵齒40。亦即,至少一個外部花鍵齒40包括複數個外部花鍵齒40。鏈輪支撐主體28包括經結構設計以與自行車後鏈輪總成14 (圖6)嚙合之至少九個外部花鍵齒40。鏈輪支撐主體28包括經結構設計以與自行車後鏈輪總成14 (圖6)嚙合之至少十個外部花鍵齒40。 鏈輪支撐主體28包括具有管狀形狀之基座支撐件41。基座支撐件41沿旋轉中心軸線A1延伸。外部花鍵齒40自基座支撐件41徑向向外延伸。鏈輪支撐主體28包括較大直徑部分42、凸緣44及複數個螺旋外部花鍵齒46。較大直徑部分42及凸緣44自基座支撐件41徑向向外延伸。較大直徑部分42在軸向方向D2上設置於複數個外部花鍵齒40與凸緣44之間。較大直徑部分42及凸緣44在軸向方向D2上設置於複數個外部花鍵齒40與複數個螺旋外部花鍵齒46之間。如圖6中所見,自行車後鏈輪總成14在軸向方向D2上固持於較大直徑部分42與鎖環32之鎖定凸緣32B之間。較大直徑部分42可具有內部空腔,使得諸如單向聯軸結構之傳動結構可容納於內部空腔內。根據需要,可自自行車輪轂總成12省略較大直徑部分42。 如圖9中所見,至少十個外部花鍵齒40之總數目等於或大於20。至少十個外部花鍵齒40之總數目等於或大於25。在此實施例中,至少十個外部花鍵齒40之總數目為26。然而,外部花鍵齒40之總數目不限於此實施例及以上範圍。 至少十個外部花鍵齒40具有第一外部周節角PA11及第二外部周節角PA12。複數個外部花鍵齒40中之至少兩個外部花鍵齒相對於自行車輪轂總成12之旋轉中心軸線A1以第一外部周節角PA11沿圓周配置。複數個外部花鍵齒40中之至少兩個外部花鍵齒相對於自行車輪轂總成12之旋轉中心軸線A1以第二外部周節角PA12沿圓周配置。在此實施例中,第二外部周節角PA12不同於第一外部周節角PA11。然而,第二外部周節角PA12可實質上等於第一外部周節角PA11。 在此實施例中,外部花鍵齒40係在圓周方向D1上以第一外部周節角PA11配置。外部花鍵齒40中之兩個外部花鍵齒係在圓周方向D1上以第二外部周節角PA12配置。然而,外部花鍵齒40中之至少兩個外部花鍵齒可在圓周方向D1上以另一外部周節角配置。 第一外部周節角PA11在10度至20度之範圍內。第一外部周節角PA11在12度至15度之範圍內。第一外部周節角PA11在13度至14度之範圍內。在此實施例中,第一外部周節角PA11為13.3度。然而,第一外部周節角PA11不限於此實施例及以上範圍。 第二部周節角PA12在5度至30度之範圍內。在此實施例中,第二外部周節角PA12為26度。然而,第二外部周節角PA12不限於此實施例及以上範圍。 外部花鍵齒40具有實質上彼此相同的形狀。外部花鍵齒40具有實質上彼此相同的花鍵大小。當沿旋轉中心軸線A1檢視時,外部花鍵齒40具有實質上彼此相同的輪廓。然而,如圖10中所見,至少十個外部花鍵齒40中之至少一者可具有不同於至少十個外部花鍵齒40中之另一者之第二花鍵形狀的第一花鍵形狀。至少十個外部花鍵齒40中之至少一者可具有不同於至少十個外部花鍵齒40中之另一者之第二花鍵大小的第一花鍵大小。當沿旋轉中心軸線A1檢視時,至少十個外部花鍵齒40中之至少一者可具有不同於至少十個外部花鍵齒40中之另一者之輪廓的輪廓。在圖10中,外部花鍵齒40中之一者具有不同於外部花鍵齒40中之其他齒之花鍵形狀的花鍵形狀。外部花鍵齒40中之一者具有不同於外部花鍵齒40中之其他齒之花鍵大小的花鍵大小。當沿旋轉中心軸線A1檢視時,外部花鍵齒40中之一者具有不同於外部花鍵齒40中之其他齒之輪廓的輪廓。 如圖11中所見,至少十個外部花鍵齒40中之每一者具有外部花鍵傳動表面48及外部花鍵非傳動表面50。複數個外部花鍵齒40包括用以在踩踏期間接收來自自行車後鏈輪總成14 (圖6)之傳動旋轉力F1的複數個外部花鍵傳動表面48。複數個外部花鍵齒40包括複數個外部花鍵非傳動表面50。外部花鍵傳動表面48可與自行車後鏈輪總成14接觸以在踩踏期間接收來自自行車後鏈輪總成14 (圖6)之傳動旋轉力F1。外部花鍵傳動表面48面向反向旋轉方向D12。外部花鍵非傳動表面50在圓周方向D1上設置於外部花鍵傳動表面48之反向側上。外部花鍵非傳動表面50面向傳動旋轉方向D11,從而在踩踏期間不接收來自自行車後鏈輪總成14之傳動旋轉力F1。 至少十個外部花鍵齒40分別具有圓周最大寬度MW1。外部花鍵齒40分別具有圓周最大寬度MW1。圓周最大寬度MW1定義為接收施加至外部花鍵齒40之推力F2的最大寬度。圓周最大寬度MW1定義為基於外部花鍵傳動表面48之直線距離。 複數個外部花鍵傳動表面48各自包括徑向最外邊緣48A及徑向最內邊緣48B。外部花鍵傳動表面48自徑向最外邊緣48A延伸至徑向最內邊緣48B。第一參考圓RC11界定於徑向最內邊緣48B上且以旋轉中心軸線A1為中心。第一參考圓RC11與外部花鍵非傳動表面50相交在參考點50R。圓周最大寬度MW1在圓周方向D1上自徑向最內邊緣48B直線延伸至參考點50R。 複數個外部花鍵非傳動表面50各自包括徑向最外邊緣50A及徑向最內邊緣50B。外部花鍵非傳動表面50自徑向最外邊緣50A延伸至徑向最內邊緣50B。參考點50R設置於徑向最外邊緣50A與徑向最內邊緣50B之間。然而,參考點50R可與徑向最內邊緣50B重合。 圓周最大寬度MW1之總和等於或大於55 mm。圓周最大寬度MW1之總和等於或大於60 mm。圓周最大寬度MW1之總和等於或大於65 mm。在此實施例中,圓周最大寬度MW1之總和為68 mm。然而,圓周最大寬度MW1之總和不限於此實施例及以上範圍。 如圖12中所見,至少一個外部花鍵齒40具有外部花鍵大徑DM11。外部花鍵大徑DM11等於或大於25 mm。外部花鍵大徑DM11等於或大於29 mm。外部花鍵大徑DM11等於或小於30 mm。在此實施例中,外部花鍵大徑DM11為29.6 mm。然而,外部花鍵大徑DM11不限於此實施例及以上範圍。 至少一個外部花鍵齒40具有外部花鍵小徑DM12。至少一個外部花鍵齒40具有外部花鍵齒根圓RC12,外部花鍵齒根圓RC12具有外部花鍵小徑DM12。然而,外部花鍵齒根圓RC12可具有不同於外部花鍵小徑DM12之另一直徑。外部花鍵小徑DM12等於或小於28 mm。外部花鍵小徑DM12等於或大於25 mm。外部花鍵小徑DM12等於或大於27 mm。在此實施例中,外部花鍵小徑DM12為27.2 mm。然而,外部花鍵小徑DM12不限於此實施例及以上範圍。 較大直徑部分42具有大於外部花鍵大徑DM11之外徑DM13。外徑DM13在32 mm至40 mm之範圍內。在此實施例中,外徑DM13為35 mm。然而,外徑DM13不限於此實施例。 如圖11中所見,複數個外部花鍵傳動表面48各自包括自徑向最外邊緣48A至徑向最內邊緣48B界定之徑向長度RL11。複數個外部花鍵傳動表面48之徑向長度RL11之總和等於或大於7 mm。徑向長度RL11之總和等於或大於10 mm。徑向長度RL11之總和等於或大於15 mm。在此實施例中,徑向長度RL11之總和為19.5 mm。然而,徑向長度RL11之總和不限於此實施例。 複數個外部花鍵齒40具有額外徑向長度RL12。額外徑向長度RL12分別自外部花鍵齒根圓RC12至複數個外部花鍵齒40之徑向最外端40A界定。額外徑向長度RL12之總和等於或大於12 mm。在此實施例中,額外徑向長度RL12之總和為31.85 mm。然而,額外徑向長度RL12之總和不限於此實施例。 至少九個外部花鍵齒40中之至少一者相對於圓周齒尖中心線CL1具有不對稱形狀。圓周齒尖中心線CL1為連接旋轉中心軸線A1與外部花鍵齒40之徑向最外端40A之圓周中心點CP1的線。然而,外部花鍵齒40中之至少一者可相對於圓周齒尖中心線CL1具有對稱形狀。至少九個外部花鍵齒40中之至少一者包含外部花鍵傳動表面48及外部花鍵非傳動表面50。 外部花鍵傳動表面48具有第一外部花鍵表面角AG11。第一外部花鍵表面角AG11界定於外部花鍵傳動表面48與第一徑向線L11之間。第一徑向線L11自自行車輪轂總成12之旋轉中心軸線A1延伸至外部花鍵傳動表面48之徑向最外邊緣48A。第一外部周節角PA11或第二外部周節角PA12界定於鄰近第一徑向線L11 (參見例如圖9)之間。 外部花鍵非傳動表面50具有第二外部花鍵表面角AG12。第二外部花鍵表面角AG12界定於外部花鍵非傳動表面50與第二徑向線L12之間。第二徑向線L12自自行車輪轂總成12之旋轉中心軸線A1延伸至外部花鍵非傳動表面50之徑向最外邊緣50A。 在此實施例中,第二外部花鍵表面角AG12不同於第一外部花鍵表面角AG11。第一外部花鍵表面角AG11小於第二外部花鍵表面角AG12。然而,第一外部花鍵表面角AG11可等於或大於第二外部花鍵表面角AG12。 第一外部花鍵表面角AG11在0度至10度之範圍內。第二外部花鍵表面角AG12在0度至60度之範圍內。在此實施例中,第一外部花鍵表面角AG11為5度。第二外部花鍵表面角AG12為45度。然而,第一外部花鍵表面角AG11及第二外部花鍵表面角AG12不限於此實施例及以上範圍。 如圖13及圖14中所見,制動轉子支撐主體34包括經結構設計以與自行車制動轉子16 (圖4)嚙合之至少一個額外外部花鍵齒52。在此實施例中,制動轉子支撐主體34包括額外基座支撐件54及複數個額外外部花鍵齒52。額外基座支撐件54具有管狀形狀,且沿旋轉中心軸線A1自輪轂主體36延伸。額外外部花鍵齒52自額外基座支撐件54徑向向外延伸。額外外部花鍵齒52之總數目為52。然而,額外外部花鍵齒52之總數目不限於此實施例。 如圖14中所見,至少一個額外外部花鍵齒52具有額外外部花鍵大徑DM14。如圖15中所見,額外外部花鍵大徑DM14大於外部花鍵大徑DM11。額外外部花鍵大徑DM14實質上等於較大直徑部分42之外徑DM13。然而,額外外部花鍵大徑DM14可等於或小於外部花鍵大徑DM11。額外外部花鍵大徑DM14可不同於較大直徑部分42之外徑DM13。 如圖16中所見,輪轂軸30包括用以接觸自行車框架BF之軸向接觸表面30B1。在此實施例中,軸向接觸表面30B1可與自行車框架BF之第一框架BF1接觸。第一框架BF1包括框架接觸表面BF12。在自行車輪轂總成12藉由車輪緊固結構WS緊固至自行車框架BF之狀態中,軸向接觸表面30B1與框架接觸表面BF12接觸。 第一軸向長度AL11係相對於旋轉中心軸線A1在軸向方向D2上自軸向接觸表面30B1至較大直徑部分42界定。第一軸向長度AL11在35 mm至41 mm之範圍內。第一軸向長度AL11可等於或大於39 mm。第一軸向長度AL11亦可在35 mm至37 mm之範圍內。在此實施例中,第一軸向長度AL11為36.2 mm。然而,第一軸向長度AL11不限於此實施例及以上範圍。 較大直徑部分42具有在軸向方向D2上離軸向接觸表面30B1最遠的軸向端42A。第二軸向長度AL12係在軸向方向D2上自軸向接觸表面30B1至軸向端42A界定。第二軸向長度AL12在38 mm至47 mm之範圍內。第二軸向長度AL12可在44 mm至45 mm之範圍內。第二軸向長度AL12亦可在40 mm至41 mm之範圍內。在此實施例中,第二軸向長度AL12為40.75 mm。然而,第二軸向長度AL12不限於此實施例及以上範圍。 較大直徑部分42之軸向長度AL13在3 mm至6 mm之範圍內。在此實施例中,軸向長度AL13為4.55 mm。然而,軸向長度AL13不限於此實施例及以上範圍。 如圖17中所見,自行車後鏈輪總成14包含至少一個鏈輪。至少一個鏈輪包括最小鏈輪SP1及最大鏈輪SP12。最小鏈輪SP1亦可被稱作鏈輪SP1。最大鏈輪SP12亦可被稱作鏈輪SP12。在此實施例中,至少一個鏈輪進一步包括鏈輪SP2至SP11。鏈輪SP1對應於高速齒輪。鏈輪SP12對應於低速齒輪。自行車後鏈輪總成14之鏈輪之總數目不限於此實施例。 最小鏈輪SP1包括至少一個鏈輪齒SP1B。最小鏈輪SP1之至少一個鏈輪齒SP1B之總數目等於或小於10。在此實施例中,最小鏈輪SP1之至少一個鏈輪齒SP1B之總數目為10。然而,最小鏈輪SP1之至少一個鏈輪齒SP1B之總數目不限於此實施例及以上範圍。 最大鏈輪SP12包括至少一個鏈輪齒SP12B。最大鏈輪SP12之至少一個鏈輪齒SP12B之總數目等於或大於46。最大鏈輪SP12之至少一個鏈輪齒SP12B之總數目等於或大於50。在此實施例中,最大鏈輪SP12之至少一個鏈輪齒SP12B之總數目為51。然而,最大鏈輪SP12之至少一個鏈輪齒SP12B之總數目不限於此實施例及以上範圍。 鏈輪SP2包括至少一個鏈輪齒SP2B。鏈輪SP3包括至少一個鏈輪齒SP3B。鏈輪SP4包括至少一個鏈輪齒SP4B。鏈輪SP5包括至少一個鏈輪齒SP5B。鏈輪SP6包括至少一個鏈輪齒SP6B。鏈輪SP7包括至少一個鏈輪齒SP7B。鏈輪SP8包括至少一個鏈輪齒SP8B。鏈輪SP9包括至少一個鏈輪齒SP9B。鏈輪SP10包括至少一個鏈輪齒SP10B。鏈輪SP11包括至少一個鏈輪齒SP11B。 至少一個鏈輪齒SP2B之總數目為12。至少一個鏈輪齒SP3B之總數目為14。至少一個鏈輪齒SP4B之總數目為16。至少一個鏈輪齒SP5B之總數目為18。至少一個鏈輪齒SP6B之總數目為21。至少一個鏈輪齒SP7B之總數目為24。至少一個鏈輪齒SP8B之總數目為28。至少一個鏈輪齒SP9B之總數目為33。至少一個鏈輪齒SP10B之總數目為39。至少一個鏈輪齒SP11B之總數目為45。鏈輪SP2至SP11中之每一者之鏈輪齒的總數目不限於此實施例。 如圖18中所見,鏈輪SP1至SP12為彼此分開的構件。然而,鏈輪SP1至SP12中之至少一者可至少部分地與鏈輪SP1至SP12中之另一者一體地提供。自行車後鏈輪總成14包含鏈輪支撐件56、複數個間隔件58、第一環59A及第二環59B。在所說明之實施例中,鏈輪SP1至SP12附接至鏈輪支撐件56。 如圖19中所見,鏈輪SP1包括鏈輪主體SP1A及複數個鏈輪齒SP1B。複數個鏈輪齒SP1B自鏈輪主體SP1A徑向向外延伸。鏈輪SP2包括鏈輪主體SP2A及複數個鏈輪齒SP2B。複數個鏈輪齒SP2B自鏈輪主體SP2A徑向向外延伸。鏈輪SP3包括鏈輪主體SP3A及複數個鏈輪齒SP3B。複數個鏈輪齒SP3B自鏈輪主體SP3A徑向向外延伸。鏈輪SP4包括鏈輪主體SP4A及複數個鏈輪齒SP4B。複數個鏈輪齒SP4B自鏈輪主體SP4A徑向向外延伸。鏈輪SP5包括鏈輪主體SP5A及複數個鏈輪齒SP5B。複數個鏈輪齒SP5B自鏈輪主體SP5A徑向向外延伸。第一環59A設置於鏈輪SP3與鏈輪SP4之間。第二環59B設置於鏈輪SP4與鏈輪SP5之間。 如圖20中所見,鏈輪SP6包括鏈輪主體SP6A及複數個鏈輪齒SP6B。複數個鏈輪齒SP6B自鏈輪主體SP6A徑向向外延伸。鏈輪SP7包括鏈輪主體SP7A及複數個鏈輪齒SP7B。複數個鏈輪齒SP7B自鏈輪主體SP7A徑向向外延伸。鏈輪SP8包括鏈輪主體SP8A及複數個鏈輪齒SP8B。複數個鏈輪齒SP8B自鏈輪主體SP8A徑向向外延伸。 如圖21中所見,鏈輪SP9包括鏈輪主體SP9A及複數個鏈輪齒SP9B。複數個鏈輪齒SP9B自鏈輪主體SP9A徑向向外延伸。鏈輪SP10包括鏈輪主體SP10A及複數個鏈輪齒SP10B。複數個鏈輪齒SP10B自鏈輪主體SP10A徑向向外延伸。鏈輪SP11包括鏈輪主體SP11A及複數個鏈輪齒SP11B。複數個鏈輪齒SP11B自鏈輪主體SP11A徑向向外延伸。鏈輪SP12包括鏈輪主體SP12A及複數個鏈輪齒SP12B。複數個鏈輪齒SP12B自鏈輪主體SP12A徑向向外延伸。 如圖22中所見,鏈輪支撐件56包括輪轂嚙合部分60及複數個支撐臂62。複數個支撐臂62自輪轂嚙合部分60徑向向外延伸。支撐臂62包括第一附接部分62A至第八附接部分62H。複數個間隔件58包括複數個第一間隔件58A、複數個第二間隔件58B、複數個第三間隔件58C、複數個第四間隔件58D、複數個第五間隔件58E、複數個第六間隔件58F及複數個第七間隔件58G。 如圖23中所見,第一間隔件58A設置於鏈輪SP5與鏈輪SP6之間。第二間隔件58B設置於鏈輪SP6與鏈輪SP7之間。第三間隔件58C設置於鏈輪SP7與鏈輪SP8之間。第四間隔件58D設置於鏈輪SP8與鏈輪SP9之間。第五間隔件58E設置於鏈輪SP9與鏈輪SP10之間。第六間隔件58F設置於鏈輪SP10與鏈輪SP11之間。第七間隔件58G設置於鏈輪SP11與鏈輪SP12之間。 鏈輪SP6及第一間隔件58A藉由諸如黏附劑之黏合結構附接至第一附接部分62A。鏈輪SP7及第二間隔件58B藉由諸如黏附劑之黏合結構附接至第二附接部分62B。鏈輪SP8及第三間隔件58C藉由諸如黏附劑之黏合結構附接至第三附接部分62C。鏈輪SP9及第四間隔件58D藉由諸如黏附劑之黏合結構附接至第四附接部分62D。鏈輪SP10及第五間隔件58E藉由諸如黏附劑之黏合結構附接至第五附接部分62E。鏈輪SP11及第六間隔件58F藉由諸如黏附劑之黏合結構附接至第六附接部分62F。鏈輪SP12及第七間隔件58G藉由諸如黏附劑之黏合結構附接至第七附接部分62G。鏈輪SP5及第二環59B藉由諸如黏附劑之黏合結構附接至第八附接部分62H。輪轂嚙合部分60、鏈輪SP1至SP4、第一環59A及第二環59B在軸向方向D2上固持於較大直徑部分42與鎖環32之鎖定凸緣32B之間。 在此實施例中,鏈輪SP1至SP12中之每一者由諸如鋁、鐵或鈦之金屬材料製成。鏈輪支撐件56、第一間隔件58A至第七間隔件58G、第一環59A及第二環59B中之每一者由諸如樹脂材料之非金屬材料製成。然而,鏈輪SP1至SP12中之至少一者可至少部分地由非金屬材料製成。鏈輪支撐件56、第一間隔件58A至第七間隔件58G、第一環59A及第二環59B中之至少一者可至少部分地由諸如鋁、鐵或鈦之金屬材料製成。 至少一個鏈輪包括經結構設計以與自行車輪轂總成12嚙合之至少一個內部花鍵齒。如圖24及圖25中所見,至少一個鏈輪包括經結構設計以與自行車輪轂總成12嚙合之至少十個內部花鍵齒。至少一個內部花鍵齒包括複數個內部花鍵齒。因此,至少一個鏈輪包括經結構設計以與自行車輪轂總成12嚙合之複數個內部花鍵齒。在此實施例中,鏈輪SP1包括經結構設計以與自行車輪轂總成12嚙合之至少十個內部花鍵齒64。在此實施例中,鏈輪SP1包括經結構設計以與自行車輪轂總成12之鏈輪支撐主體28之外部花鍵齒40嚙合的內部花鍵齒64。鏈輪主體SP1A具有環狀形狀。內部花鍵齒64自鏈輪主體SP1A徑向向內延伸。 如圖26中所見,至少十個內部花鍵齒64之總數目等於或大於20。至少十個內部花鍵齒64之總數目等於或大於25。在此實施例中,內部花鍵齒64之總數目為26。然而,內部花鍵齒64之總數目不限於此實施例及以上範圍。 至少十個內部花鍵齒64具有第一內部周節角PA21及第二內部周節角PA22。複數個內部花鍵齒64中之至少兩個內部花鍵齒相對於自行車後鏈輪總成14之旋轉中心軸線A1以第一內部周節角PA21沿圓周配置。複數個內部花鍵齒64中之至少兩個內部花鍵齒相對於旋轉中心軸線A1以第二內部周節角PA22沿圓周配置。在此實施例中,第二內部周節角PA22不同於第一內部周節角PA21。然而,第二內部周節角PA22可實質上等於第一內部周節角PA21。 在此實施例中,內部花鍵齒64係在圓周方向D1上以第一內部周節角PA21沿圓周配置。內部花鍵齒64中之兩個內部花鍵齒係在圓周方向D1上以第二內部周節角PA22配置。然而,內部花鍵齒64中之至少兩個內部花鍵齒可在圓周方向D1上以另一內部周節角配置。 第一內部周節角PA21在10度至20度之範圍內。第一內部周節角PA21在12度至15度之範圍內。第一內部周節角PA21在13度至14度之範圍內。在此實施例中,第一內部周節角PA21為13.3度。然而,第一內部周節角PA21不限於此實施例及以上範圍。 第二內部周節角PA22在5度至30度之範圍內。在此實施例中,第二內部周節角PA22為26度。然而,第二內部周節角PA22不限於此實施例及以上範圍。 至少十個內部花鍵齒64中之至少一者具有不同於至少十個內部花鍵齒64中之另一者之第二花鍵形狀的第一花鍵形狀。至少十個內部花鍵齒64中之至少一者具有不同於至少十個內部花鍵齒64中之另一者之第二花鍵大小的第一花鍵大小。至少十個內部花鍵齒64中之至少一者具有不同於至少十個內部花鍵齒64中之另一者之橫截面形狀的橫截面形狀。然而,如圖27中所見,內部花鍵齒64可具有彼此相同的形狀。內部花鍵齒64可具有彼此相同的大小。內部花鍵齒64可具有彼此相同的橫截面形狀。 如圖28中所見,至少一個內部花鍵齒64包含內部花鍵傳動表面66及內部花鍵非傳動表面68。至少一個內部花鍵齒64包括複數個內部花鍵齒64。複數個內部花鍵齒64包括用以在踩踏期間接收來自自行車輪轂總成12 (圖6)之傳動旋轉力F1的複數個內部花鍵傳動表面66。複數個內部花鍵齒64包括複數個內部花鍵非傳動表面68。內部花鍵傳動表面66可與鏈輪支撐主體28接觸以在踩踏期間將傳動旋轉力F1自鏈輪SP1傳輸至鏈輪支撐主體28。內部花鍵傳動表面66面向傳動旋轉方向D11。內部花鍵非傳動表面68在圓周方向D1上設置於內部花鍵傳動表面66之反向側上。內部花鍵非傳動表面68面向反向旋轉方向D12,從而在踩踏期間不將傳動旋轉力F1自鏈輪SP1傳輸至鏈輪支撐主體28。 至少十個內部花鍵齒64分別具有圓周最大寬度MW2。內部花鍵齒64分別具有圓周最大寬度MW2。圓周最大寬度MW2定義為接收施加至內部花鍵齒64之推力F3的最大寬度。圓周最大寬度MW2定義為基於內部花鍵傳動表面66之直線距離。 內部花鍵傳動表面66包括徑向最外邊緣66A及徑向最內邊緣66B。內部花鍵傳動表面66自徑向最外邊緣66A延伸至徑向最內邊緣66B。第二參考圓RC21界定於徑向最外邊緣66A上且以旋轉中心軸線A1為中心。第二參考圓RC21與內部花鍵非傳動表面68相交在參考點68R。圓周最大寬度MW2在圓周方向D1上自徑向最內邊緣66B直線延伸至參考點68R。 內部花鍵非傳動表面68包括徑向最外邊緣68A及徑向最內邊緣68B。內部花鍵非傳動表面68自徑向最外邊緣68A延伸至徑向最內邊緣68B。參考點68R設置於徑向最外邊緣68A與徑向最內邊緣68B之間。 圓周最大寬度MW2之總和等於或大於40 mm。圓周最大寬度MW2之總和等於或大於45 mm。圓周最大寬度MW2之總和等於或大於50 mm。在此實施例中,圓周最大寬度MW2之總和為50.8 mm。然而,圓周最大寬度MW2之總和不限於此實施例。 如圖29中所見,至少一個內部花鍵齒64具有內部花鍵小徑DM21。至少一個內部花鍵齒64具有內部花鍵齒根圓RC22,內部花鍵齒根圓RC22具有內部花鍵小徑DM21。然而,內部花鍵齒根圓RC22可具有不同於內部花鍵小徑DM21之另一直徑。內部花鍵小徑DM21等於或小於30 mm。內部花鍵小徑DM21等於或大於25 mm。內部花鍵小徑DM21等於或大於29 mm。在此實施例中,內部花鍵小徑DM21為29.8 mm。然而,內部花鍵小徑DM21不限於此實施例及以上範圍。 至少一個內部花鍵齒64具有等於或小於28 mm之內部花鍵大徑DM22。內部花鍵大徑DM22等於或大於25 mm。內部花鍵大徑DM22等於或大於27 mm。在此實施例中,內部花鍵大徑DM22為27.7 mm。然而,內部花鍵大徑DM22不限於此實施例及以上範圍。 如圖28中所見,複數個內部花鍵傳動表面66包括徑向最外邊緣66A及徑向最內邊緣66B。複數個內部花鍵傳動表面66各自包括自徑向最外邊緣66A至徑向最內邊緣66B界定之徑向長度RL21。複數個內部花鍵傳動表面66之徑向長度RL21之總和等於或大於7 mm。徑向長度RL21之總和等於或大於10 mm。徑向長度RL21之總和等於或大於15 mm。在此實施例中,徑向長度RL21之總和為19.5 mm。然而,徑向長度RL21之總和不限於此實施例及以上範圍。 複數個內部花鍵齒64具有額外徑向長度RL22。額外徑向長度RL22分別自內部花鍵齒根圓RC22至複數個內部花鍵齒64之徑向最內端64A界定。額外徑向長度RL22之總和等於或大於12 mm。在此實施例中,額外徑向長度RL22之總和為27.95 mm。然而,額外徑向長度RL22之總和不限於此實施例及以上範圍。 內部花鍵齒64中之至少一者相對於圓周齒尖中心線CL2具有不對稱形狀。圓周齒尖中心線CL2為連接旋轉中心軸線A1及內部花鍵齒64之徑向最內端64A之圓周中心點CP2的線。然而,內部花鍵齒64中之至少一者可相對於圓周齒尖中心線CL2具有對稱形狀。內部花鍵齒64中之至少一者包含內部花鍵傳動表面66及內部花鍵非傳動表面68。 內部花鍵傳動表面66具有第一內部花鍵表面角AG21。第一內部花鍵表面角AG21界定於內部花鍵傳動表面66與第一徑向線L21之間。第一徑向線L21自自行車後鏈輪總成14之旋轉中心軸線A1延伸至內部花鍵傳動表面66之徑向最外邊緣66A。第一內部周節角PA21或第二內部周節角PA22界定於相鄰第一徑向線L21 (參見例如圖26)之間。 內部花鍵非傳動表面68具有第二內部花鍵表面角AG22。第二內部花鍵表面角AG22界定於內部花鍵非傳動表面68與第二徑向線L22之間。第二徑向線L22自自行車後鏈輪總成14之旋轉中心軸線A1延伸至內部花鍵非傳動表面68之徑向最外邊緣68A。 在此實施例中,第二內部花鍵表面角AG22不同於第一內部花鍵表面角AG21。第一內部花鍵表面角AG21小於第二內部花鍵表面角AG22。然而第一內部花鍵表面角AG21可等於或大於第二內部花鍵表面角AG22。 第一內部花鍵表面角AG21在0度至10度之範圍內。第二內部花鍵表面角AG22在0度至60度之範圍內。在此實施例中,第一內部花鍵表面角AG21為5度。第二內部花鍵表面角AG22為45度。然而,第一內部花鍵表面角AG21及第二內部花鍵表面角AG22不限於此實施例及以上範圍。 如圖30中所見,內部花鍵齒64與外部花鍵齒40嚙合以將傳動旋轉力F1自鏈輪SP1傳輸至鏈輪支撐主體28。內部花鍵傳動表面66可與外部花鍵傳動表面48接觸以將傳動旋轉力F1自鏈輪SP1傳輸至鏈輪支撐主體28。在內部花鍵傳動表面66與外部花鍵傳動表面48接觸之狀態中,內部花鍵非傳動表面68與外部花鍵非傳動表面50間隔開。 如圖31中所見,鏈輪SP2包括複數個內部花鍵齒70。鏈輪SP3包括複數個內部花鍵齒72。鏈輪SP4包括複數個內部花鍵齒74。第一環59A包括複數個內部花鍵齒76。如圖32中所見,鏈輪支撐件56之輪轂嚙合部分60包括複數個內部花鍵齒78。複數個內部花鍵齒70具有與複數個內部花鍵齒64之結構實質上相同的結構。複數個內部花鍵齒72具有與複數個內部花鍵齒64之結構實質上相同的結構。複數個內部花鍵齒74具有與複數個內部花鍵齒64之結構實質上相同的結構。複數個內部花鍵齒76具有與複數個內部花鍵齒64之結構實質上相同的結構。複數個內部花鍵齒78具有與複數個內部花鍵齒64之結構實質上相同的結構。因此,出於簡潔起見,此處將不作詳細描述。 如本文中所使用之術語「包含」及其派生詞意欲為指定所陳述特徵、元件、組件、群組、整數及/或步驟之存在但不排除其他未陳述特徵、元件、組件、群組、整數及/或步驟之存在的開放術語。此概念亦適用於類似含義之詞語,例如術語「具有」、「包括」及其派生詞。 術語「構件」、「區段」、「部分」、「部件」、「元件」、「主體」及「結構」當以單數形式使用時可具有單一部件或複數個部件之雙重含義。 諸如本申請案中敍述的「第一」及「第二」之序數數目僅為標識符,而不具有任何其他含義,例如特定次序及類似者。此外,例如,術語「第一元件」自身不暗示「第二元件」之存在,且術語「第二元件」自身不暗示「第一元件」之存在。 如本文中所使用之術語「對」可涵蓋除其中成對元件具有彼此相同的形狀或結構之組態外之其中成對元件具有彼此不同的形狀或結構之組態。 因此,術語「一」、「一或多個」及「至少一個」在本文中可互換地使用。 最後,如本文中所使用之諸如「實質上」、「大約」及「大致」之程度術語意謂所修飾之術語之合理量之偏差以使得最終結果並無顯著改變。本申請案中所描述之所有數值可被理解為包括諸如「實質上」、「大約」及「大致」之術語。 顯然,鑒於以上教示,本發明之眾多修改及變化係可能的。因此應理解,在所附申請專利範圍之範疇內,可以不同於如本文中特定描述之方式的其他方式實踐本發明。Embodiments will now be described with reference to the drawings, in which like reference numerals designate corresponding or identical elements in the various drawings. Referring first to FIG. 1, a bicycle transmission system 10 according to an embodiment includes a bicycle hub assembly 12 and a bicycle rear sprocket assembly 14. The bicycle hub assembly 12 is fastened to the bicycle frame BF. The bicycle rear sprocket assembly 14 is mounted on the bicycle hub assembly 12. The bicycle brake rotor 16 is mounted on the bicycle hub assembly 12. The bicycle transmission system 10 further includes a crank assembly 18 and a bicycle chain 20. The crank assembly 18 includes a crank shaft 22, a right crank arm 24, a left crank arm 26, and a front sprocket 27. The right crank arm 24 and the left crank arm 26 are fastened to the crank shaft 22. The front sprocket 27 is fastened to at least one of the crank shaft 22 and the right crank arm 24. The bicycle chain 20 meshes with the front sprocket 27 and the bicycle rear sprocket assembly 14 to transmit the pedaling force from the front sprocket 27 to the bicycle rear sprocket assembly 14. The crank assembly 18 includes a front sprocket 27 as a single sprocket in the illustrated embodiment. However, the crank assembly 18 may include a plurality of front sprockets. The bicycle rear sprocket assembly 14 is a rear sprocket assembly. However, the structure of the bicycle rear sprocket assembly 14 can be applied to the front sprocket. In this application, the following directional terms "front", "back", "forward", "backward", "left", "right", "horizontal", "upward" and "downward" and any other Similar directional terms refer to the directions determined based on a user (eg, a rider) sitting on a bicycle seat (not shown) and facing a handle (not shown). Therefore, these terms, when used to describe the bicycle drive system 10, the bicycle hub assembly 12 or the bicycle rear sprocket assembly 14, should be related to the bicycle drive system 10 equipped as used in an upright riding position on a horizontal surface , Bicycle hub assembly 12 or bicycle rear sprocket assembly 14 to interpret. As seen in FIGS. 2 and 3, the bicycle hub assembly 12 and the bicycle rear sprocket assembly 14 have a rotation center axis A1. The bicycle rear sprocket assembly 14 is rotatably supported by the bicycle hub assembly 12 about a rotation center axis A1 with respect to the bicycle frame BF (FIG. 1). The bicycle rear sprocket assembly 14 is structurally designed to mesh with the bicycle chain 20 to transmit a transmission rotational force F1 between the bicycle chain 20 and the bicycle rear sprocket assembly 14 during pedaling. During pedaling, the bicycle rear sprocket assembly 14 rotates around the rotation center axis A1 in the transmission rotation direction D11. The transmission rotation direction D11 is defined along the circumferential direction D1 of the bicycle hub assembly 12 or the bicycle rear sprocket assembly 14. The reverse rotation direction D12 is the opposite direction of the transmission rotation direction D11, and is defined along the circumferential direction D1. As seen in FIG. 2, the bicycle hub assembly 12 includes a sprocket support body 28. The bicycle rear sprocket assembly 14 is mounted on the sprocket support body 28 to transmit a transmission rotational force F1 between the sprocket support body 28 and the bicycle rear sprocket assembly 14. The bicycle hub assembly 12 further includes a hub shaft 30. The sprocket support body 28 is rotatably mounted on the hub shaft 30 about a rotation center axis A1. The bicycle hub assembly 12 includes a lock ring 32. The lock ring 32 is fastened to the sprocket support body 28 to hold the bicycle rear sprocket assembly 14 relative to the sprocket support body 28 in an axial direction D2 parallel to the rotation center axis A1. As seen in FIG. 4, the bicycle hub assembly 12 is fastened to the bicycle frame BF by a wheel fastening structure WS. The hub shaft 30 has a through hole 30A. The fastening rod WS1 of the wheel fastening structure WS extends through the through hole 30A of the hub shaft 30. The hub shaft 30 includes a first shaft end 30B and a second shaft end 30C. The hub shaft 30 extends between the first shaft end 30B and the second shaft end 30C along the rotation center axis A1. The first shaft end 30B is disposed in the first groove BF11 of the first frame BF1 of the bicycle frame BF. The second shaft end 30C is disposed in the second groove BF21 of the second frame BF2 of the bicycle frame BF. The hub shaft 30 is held between the first frame BF1 and the second frame BF2 by a wheel fastening structure WS. The wheel fastening structure WS includes a structure known in the applied bicycle. Therefore, for brevity, it will not be described in detail here. As seen in FIGS. 4 and 5, the bicycle hub assembly 12 further includes a brake rotor support body 34. The brake rotor support body 34 is rotatably mounted on the hub shaft 30 about a rotation center axis A1. The brake rotor support body 34 is coupled to the bicycle brake rotor 16 (FIG. 1) to transmit a braking rotational force from the bicycle brake rotor 16 to the brake rotor support body 34. As seen in FIG. 5, the bicycle hub assembly 12 further includes a hub body 36. The hub body 36 is rotatably mounted on the hub shaft 30 about a rotation center axis A1. In this embodiment, the sprocket support body 28 is a separate member from the hub body 36. The brake rotor support body 34 is integrally provided with the hub body 36 as a one-piece integral member. However, the sprocket support body 28 may be provided integrally with the hub body 36. The brake rotor support body 34 may be a separate member from the hub body 36. The hub body 36 includes a first flange 36A and a second flange 36B. A first spoke (not shown) is coupled to the first flange 36A. A second spoke (not shown) is coupled to the second flange 36B. The second flange 36B is spaced from the first flange 36A in the axial direction D2. The first flange 36A is provided between the sprocket support body 28 and the second flange 36B in the axial direction D2. The second flange 36B is provided between the first flange 36A and the brake rotor support body 34 in the axial direction D2. The lock ring 32 includes an externally threaded portion 32A. The sprocket support body 28 includes an internally threaded portion 28A. In a state where the lock ring 32 is fastened to the sprocket support body 28, the externally threaded portion 32A is in threaded engagement with the internally threaded portion 28A. As seen in FIG. 6, the bicycle hub assembly 12 further includes a ratchet structure 38. The sprocket support body 28 is operatively coupled to the hub body 36 by a ratchet structure 38. The ratchet structure 38 is structurally designed to couple the sprocket support body 28 to the hub body 36 so that the sprocket support body 28 together with the hub body 36 is rotated in the transmission rotation direction D11 (FIG. 5) during stepping. The ratchet structure 38 is structurally designed to allow the sprocket support body 28 to rotate relative to the hub body 36 in the reverse rotation direction D12 (FIG. 5) during idle rotation. Therefore, the ratchet structure 38 can be interpreted as a unidirectional coupling structure 38. The ratchet structure 38 includes a structure known in the bicycle field. Therefore, for brevity, it will not be described in detail here. The bicycle hub assembly 12 includes a first bearing 39A and a second bearing 39B. The first bearing 39A and the second bearing 39B are provided between the sprocket support body 28 and the hub shaft 30 to rotatably support the sprocket support body 28 relative to the hub shaft 30 about a rotation center axis A1. In this embodiment, each of the sprocket support body 28, the brake rotor support body 34, and the hub body 36 is made of a metal material such as aluminum, iron, or titanium. However, at least one of the sprocket support body 28, the brake rotor support body 34, and the hub body 36 may be made of a non-metal material. As seen in FIGS. 7 and 8, the sprocket support body 28 includes at least one external spline tooth 40 that is structurally designed to engage the bicycle rear sprocket assembly 14 (FIG. 6). The sprocket support body 28 includes a plurality of external spline teeth 40 that are structurally designed to mesh with the bicycle rear sprocket assembly 14 (FIG. 6). That is, at least one external spline tooth 40 includes a plurality of external spline teeth 40. The sprocket support body 28 includes at least nine external spline teeth 40 that are structurally designed to mesh with the bicycle rear sprocket assembly 14 (FIG. 6). The sprocket support body 28 includes at least ten external spline teeth 40 that are structurally designed to engage the bicycle rear sprocket assembly 14 (FIG. 6). The sprocket support body 28 includes a base support 41 having a tubular shape. The base support 41 extends along the rotation center axis A1. The outer spline teeth 40 extend radially outward from the base support 41. The sprocket support body 28 includes a larger diameter portion 42, a flange 44, and a plurality of spiral outer spline teeth 46. The larger diameter portion 42 and the flange 44 extend radially outward from the base support 41. The larger-diameter portion 42 is provided between the plurality of outer spline teeth 40 and the flange 44 in the axial direction D2. The larger-diameter portion 42 and the flange 44 are provided between the plurality of external spline teeth 40 and the plurality of spiral external spline teeth 46 in the axial direction D2. As seen in FIG. 6, the bicycle rear sprocket assembly 14 is held between the larger-diameter portion 42 and the lock flange 32B of the lock ring 32 in the axial direction D2. The larger diameter portion 42 may have an internal cavity such that a transmission structure such as a one-way coupling structure may be received within the internal cavity. As needed, the larger diameter portion 42 may be omitted from the bicycle hub assembly 12. As seen in FIG. 9, the total number of at least ten external spline teeth 40 is equal to or greater than 20. The total number of at least ten external spline teeth 40 is equal to or greater than 25. In this embodiment, the total number of at least ten external spline teeth 40 is 26. However, the total number of external spline teeth 40 is not limited to this embodiment and the above range. At least ten outer spline teeth 40 have a first outer peripheral angle PA11 and a second outer peripheral angle PA12. At least two outer spline teeth of the plurality of outer spline teeth 40 are arranged circumferentially at a first outer pitch angle PA11 with respect to the rotation center axis A1 of the bicycle hub assembly 12. At least two outer spline teeth of the plurality of outer spline teeth 40 are arranged circumferentially at a second outer pitch angle PA12 with respect to the rotation center axis A1 of the bicycle hub assembly 12. In this embodiment, the second outer perimeter angle PA12 is different from the first outer perimeter angle PA11. However, the second outer perimeter angle PA12 may be substantially equal to the first outer perimeter angle PA11. In this embodiment, the external spline teeth 40 are arranged at a first external pitch angle PA11 in the circumferential direction D1. Two of the outer spline teeth 40 are arranged at a second outer peripheral angle PA12 in the circumferential direction D1. However, at least two outer spline teeth of the outer spline teeth 40 may be arranged at another outer pitch angle in the circumferential direction D1. The first outer perimeter angle PA11 is in a range of 10 degrees to 20 degrees. The first outer perimeter angle PA11 is in a range of 12 degrees to 15 degrees. The first outer perimeter angle PA11 is in a range of 13 degrees to 14 degrees. In this embodiment, the first outer perimeter angle PA11 is 13.3 degrees. However, the first outer perimeter angle PA11 is not limited to this embodiment and above. The second section angle PA12 is in the range of 5 to 30 degrees. In this embodiment, the second outer perimeter angle PA12 is 26 degrees. However, the second outer perimeter angle PA12 is not limited to this embodiment and above. The outer spline teeth 40 have substantially the same shape as each other. The outer spline teeth 40 have spline sizes that are substantially the same as each other. When viewed along the rotation center axis A1, the outer spline teeth 40 have substantially the same contours as each other. However, as seen in FIG. 10, at least one of the at least ten external spline teeth 40 may have a first spline shape that is different from a second spline shape of the other of the at least ten external spline teeth 40 . At least one of the at least ten outer spline teeth 40 may have a first spline size that is different from a second spline size of the other one of the at least ten outer spline teeth 40. When viewed along the rotation center axis A1, at least one of the at least ten outer spline teeth 40 may have a profile different from that of the other of the at least ten outer spline teeth 40. In FIG. 10, one of the external spline teeth 40 has a spline shape different from that of the other teeth of the external spline teeth 40. One of the external spline teeth 40 has a spline size different from the spline size of the other teeth in the external spline teeth 40. When viewed along the rotation center axis A1, one of the external spline teeth 40 has a profile different from that of the other teeth in the external spline teeth 40. As seen in FIG. 11, each of the at least ten external spline teeth 40 has an external spline drive surface 48 and an external spline non-drive surface 50. The plurality of external spline teeth 40 include a plurality of external spline transmission surfaces 48 for receiving a transmission rotational force F1 from the bicycle rear sprocket assembly 14 (FIG. 6) during pedaling. The plurality of external spline teeth 40 include a plurality of external spline non-drive surfaces 50. The external spline drive surface 48 may be in contact with the bicycle rear sprocket assembly 14 to receive a transmission rotational force F1 from the bicycle rear sprocket assembly 14 (FIG. 6) during pedaling. The external spline drive surface 48 faces the reverse rotation direction D12. The external spline non-drive surface 50 is provided on the opposite side of the external spline drive surface 48 in the circumferential direction D1. The outer spline non-transmission surface 50 faces the transmission rotation direction D11, so that it does not receive the transmission rotation force F1 from the bicycle rear sprocket assembly 14 during pedaling. At least ten outer spline teeth 40 each have a maximum circumferential width MW1. The outer spline teeth 40 each have a maximum circumferential width MW1. The maximum circumferential width MW1 is defined as the maximum width that receives the thrust F2 applied to the external spline teeth 40. The maximum circumferential width MW1 is defined as the linear distance based on the external spline drive surface 48. The plurality of outer spline drive surfaces 48 each include a radially outermost edge 48A and a radially innermost edge 48B. The outer spline drive surface 48 extends from the radially outermost edge 48A to the radially innermost edge 48B. The first reference circle RC11 is defined on the radially innermost edge 48B and is centered on the rotation center axis A1. The first reference circle RC11 intersects the external spline non-drive surface 50 at a reference point 50R. The maximum circumferential width MW1 extends straight from the radially innermost edge 48B in the circumferential direction D1 to the reference point 50R. The plurality of external spline non-drive surfaces 50 each include a radially outermost edge 50A and a radially innermost edge 50B. The outer spline non-drive surface 50 extends from the radially outermost edge 50A to the radially innermost edge 50B. The reference point 50R is disposed between the radially outermost edge 50A and the radially innermost edge 50B. However, the reference point 50R may coincide with the radially innermost edge 50B. The sum of the maximum circumferential width MW1 is equal to or greater than 55 mm. The sum of the maximum circumferential width MW1 is equal to or greater than 60 mm. The sum of the maximum circumferential width MW1 is equal to or greater than 65 mm. In this embodiment, the sum of the maximum circumferential widths MW1 is 68 mm. However, the sum of the maximum circumferential width MW1 is not limited to this embodiment and the above range. As seen in Figure 12, at least one outer spline tooth 40 has an outer spline large diameter DM11. The external spline major diameter DM11 is equal to or greater than 25 mm. The external spline major diameter DM11 is equal to or greater than 29 mm. The external spline major diameter DM11 is 30 mm or less. In this embodiment, the large diameter DM11 of the external spline is 29.6 mm. However, the external spline large diameter DM11 is not limited to this embodiment and above. At least one outer spline tooth 40 has an outer spline small diameter DM12. At least one external spline tooth 40 has an external spline tooth root circle RC12, and the external spline tooth root circle RC12 has an external spline small diameter DM12. However, the external spline tooth root circle RC12 may have another diameter different from the external spline small diameter DM12. The external spline diameter DM12 is equal to or less than 28 mm. The external spline diameter DM12 is equal to or greater than 25 mm. The external spline diameter DM12 is equal to or greater than 27 mm. In this embodiment, the external spline small diameter DM12 is 27.2 mm. However, the external spline small diameter DM12 is not limited to this embodiment and above. The larger diameter portion 42 has an outer diameter DM13 that is larger than the outer spline large diameter DM11. The outer diameter DM13 is in the range of 32 mm to 40 mm. In this embodiment, the outer diameter DM13 is 35 mm. However, the outer diameter DM13 is not limited to this embodiment. As seen in FIG. 11, the plurality of external spline drive surfaces 48 each include a radial length RL11 defined from a radially outermost edge 48A to a radially innermost edge 48B. The sum of the radial lengths RL11 of the plurality of external spline drive surfaces 48 is equal to or greater than 7 mm. The total of the radial length RL11 is equal to or greater than 10 mm. The total of the radial length RL11 is equal to or greater than 15 mm. In this embodiment, the sum of the radial lengths RL11 is 19.5 mm. However, the sum of the radial lengths RL11 is not limited to this embodiment. The plurality of outer spline teeth 40 have an additional radial length RL12. The extra radial length RL12 is defined from the outer spline tooth root circle RC12 to the radially outermost end 40A of the plurality of outer spline teeth 40, respectively. The sum of the additional radial lengths RL12 is equal to or greater than 12 mm. In this embodiment, the sum of the additional radial lengths RL12 is 31.85 mm. However, the sum of the additional radial lengths RL12 is not limited to this embodiment. At least one of the at least nine outer spline teeth 40 has an asymmetric shape with respect to the circumferential tooth tip center line CL1. The circumferential tooth tip center line CL1 is a line connecting the rotation center axis A1 and the circumferential center point CP1 of the radially outermost end 40A of the external spline tooth 40. However, at least one of the outer spline teeth 40 may have a symmetrical shape with respect to the circumferential tooth tip center line CL1. At least one of the at least nine external spline teeth 40 includes an external spline drive surface 48 and an external spline non-drive surface 50. The external spline drive surface 48 has a first external spline surface angle AG11. The first external spline surface angle AG11 is defined between the external spline transmission surface 48 and the first radial line L11. The first radial line L11 extends from the rotation center axis A1 of the bicycle hub assembly 12 to the radially outermost edge 48A of the outer spline transmission surface 48. The first outer perimeter angle PA11 or the second outer perimeter angle PA12 is defined between adjacent first radial lines L11 (see, for example, FIG. 9). The external spline non-drive surface 50 has a second external spline surface angle AG12. The second external spline surface angle AG12 is defined between the external spline non-drive surface 50 and the second radial line L12. The second radial line L12 extends from the rotation center axis A1 of the bicycle hub assembly 12 to the radially outermost edge 50A of the outer spline non-transmission surface 50. In this embodiment, the second external spline surface angle AG12 is different from the first external spline surface angle AG11. The first external spline surface angle AG11 is smaller than the second external spline surface angle AG12. However, the first external spline surface angle AG11 may be equal to or larger than the second external spline surface angle AG12. The first external spline surface angle AG11 is in a range of 0 to 10 degrees. The second external spline surface angle AG12 is in the range of 0 to 60 degrees. In this embodiment, the first external spline surface angle AG11 is 5 degrees. The second external spline surface angle AG12 is 45 degrees. However, the first external spline surface angle AG11 and the second external spline surface angle AG12 are not limited to this embodiment and the above range. As seen in FIGS. 13 and 14, the brake rotor support body 34 includes at least one additional external spline tooth 52 that is structurally designed to mesh with the bicycle brake rotor 16 (FIG. 4). In this embodiment, the brake rotor support body 34 includes an additional base support 54 and a plurality of additional external spline teeth 52. The additional base support 54 has a tubular shape and extends from the hub body 36 along the rotation center axis A1. The additional outer spline teeth 52 extend radially outward from the additional base support 54. The total number of additional external spline teeth 52 is 52. However, the total number of additional external spline teeth 52 is not limited to this embodiment. As seen in Figure 14, at least one additional external spline tooth 52 has an additional external spline diameter DM14. As seen in FIG. 15, the additional external spline diameter DM14 is larger than the external spline diameter DM11. The additional outer spline large diameter DM14 is substantially equal to the outer diameter DM13 of the larger diameter portion 42. However, the additional external spline diameter DM14 may be equal to or smaller than the external spline diameter DM11. The additional outer spline large diameter DM14 may be different from the outer diameter DM13 of the larger diameter portion 42. As seen in FIG. 16, the hub shaft 30 includes an axial contact surface 30B1 to contact the bicycle frame BF. In this embodiment, the axial contact surface 30B1 may be in contact with the first frame BF1 of the bicycle frame BF. The first frame BF1 includes a frame contact surface BF12. In a state where the bicycle hub assembly 12 is fastened to the bicycle frame BF by the wheel fastening structure WS, the axial contact surface 30B1 is in contact with the frame contact surface BF12. The first axial length AL11 is defined from the axial contact surface 30B1 to the larger diameter portion 42 in the axial direction D2 with respect to the rotation center axis A1. The first axial length AL11 is in the range of 35 mm to 41 mm. The first axial length AL11 may be equal to or greater than 39 mm. The first axial length AL11 can also be in the range of 35 mm to 37 mm. In this embodiment, the first axial length AL11 is 36.2 mm. However, the first axial length AL11 is not limited to this embodiment and the above range. The larger-diameter portion 42 has an axial end 42A furthest from the axial contact surface 30B1 in the axial direction D2. The second axial length AL12 is defined in the axial direction D2 from the axial contact surface 30B1 to the axial end 42A. The second axial length AL12 is in the range of 38 mm to 47 mm. The second axial length AL12 can be in the range of 44 mm to 45 mm. The second axial length AL12 can also be in the range of 40 mm to 41 mm. In this embodiment, the second axial length AL12 is 40.75 mm. However, the second axial length AL12 is not limited to this embodiment and the above range. The axial length AL13 of the larger diameter portion 42 is in the range of 3 mm to 6 mm. In this embodiment, the axial length AL13 is 4.55 mm. However, the axial length AL13 is not limited to this embodiment and the above range. As seen in FIG. 17, the bicycle rear sprocket assembly 14 includes at least one sprocket. At least one sprocket includes a minimum sprocket SP1 and a maximum sprocket SP12. The smallest sprocket SP1 may also be referred to as a sprocket SP1. The largest sprocket SP12 can also be called a sprocket SP12. In this embodiment, at least one sprocket further includes sprocket SP2 to SP11. The sprocket SP1 corresponds to a high-speed gear. The sprocket SP12 corresponds to a low-speed gear. The total number of sprocket wheels of the bicycle rear sprocket assembly 14 is not limited to this embodiment. The smallest sprocket SP1 includes at least one sprocket tooth SP1B. The total number of at least one sprocket tooth SP1B of the smallest sprocket SP1 is equal to or less than ten. In this embodiment, the total number of at least one sprocket tooth SP1B of the smallest sprocket SP1 is ten. However, the total number of at least one sprocket tooth SP1B of the smallest sprocket SP1 is not limited to this embodiment and the above range. The largest sprocket SP12 includes at least one sprocket tooth SP12B. The total number of at least one sprocket tooth SP12B of the largest sprocket SP12 is equal to or greater than 46. The total number of at least one sprocket tooth SP12B of the largest sprocket SP12 is equal to or greater than 50. In this embodiment, the total number of at least one sprocket tooth SP12B of the largest sprocket SP12 is 51. However, the total number of at least one sprocket tooth SP12B of the largest sprocket SP12 is not limited to this embodiment and the above range. The sprocket SP2 includes at least one sprocket tooth SP2B. The sprocket SP3 includes at least one sprocket tooth SP3B. The sprocket SP4 includes at least one sprocket tooth SP4B. The sprocket SP5 includes at least one sprocket tooth SP5B. The sprocket SP6 includes at least one sprocket tooth SP6B. The sprocket SP7 includes at least one sprocket tooth SP7B. The sprocket SP8 includes at least one sprocket tooth SP8B. The sprocket SP9 includes at least one sprocket tooth SP9B. The sprocket SP10 includes at least one sprocket tooth SP10B. The sprocket SP11 includes at least one sprocket tooth SP11B. The total number of at least one sprocket tooth SP2B is twelve. The total number of at least one sprocket tooth SP3B is fourteen. The total number of at least one sprocket tooth SP4B is sixteen. The total number of at least one sprocket tooth SP5B is 18. The total number of at least one sprocket tooth SP6B is 21. The total number of at least one sprocket tooth SP7B is 24. The total number of at least one sprocket tooth SP8B is 28. The total number of at least one sprocket tooth SP9B is 33. The total number of at least one sprocket tooth SP10B is 39. The total number of at least one sprocket tooth SP11B is 45. The total number of sprocket teeth of each of the sprocket SP2 to SP11 is not limited to this embodiment. As seen in FIG. 18, the sprockets SP1 to SP12 are separate members. However, at least one of the sprockets SP1 to SP12 may be provided at least partially integrally with the other of the sprockets SP1 to SP12. The bicycle rear sprocket assembly 14 includes a sprocket support 56, a plurality of spacers 58, a first ring 59A, and a second ring 59B. In the illustrated embodiment, the sprockets SP1 to SP12 are attached to the sprocket support 56. As seen in FIG. 19, the sprocket SP1 includes a sprocket body SP1A and a plurality of sprocket teeth SP1B. A plurality of sprocket teeth SP1B extend radially outward from the sprocket body SP1A. The sprocket SP2 includes a sprocket body SP2A and a plurality of sprocket teeth SP2B. A plurality of sprocket teeth SP2B extend radially outward from the sprocket body SP2A. The sprocket SP3 includes a sprocket body SP3A and a plurality of sprocket teeth SP3B. A plurality of sprocket teeth SP3B extend radially outward from the sprocket body SP3A. The sprocket SP4 includes a sprocket body SP4A and a plurality of sprocket teeth SP4B. A plurality of sprocket teeth SP4B extend radially outward from the sprocket body SP4A. The sprocket SP5 includes a sprocket body SP5A and a plurality of sprocket teeth SP5B. A plurality of sprocket teeth SP5B extend radially outward from the sprocket body SP5A. The first ring 59A is provided between the sprocket SP3 and the sprocket SP4. The second ring 59B is provided between the sprocket SP4 and the sprocket SP5. As seen in FIG. 20, the sprocket SP6 includes a sprocket body SP6A and a plurality of sprocket teeth SP6B. A plurality of sprocket teeth SP6B extend radially outward from the sprocket body SP6A. The sprocket SP7 includes a sprocket body SP7A and a plurality of sprocket teeth SP7B. A plurality of sprocket teeth SP7B extend radially outward from the sprocket body SP7A. The sprocket SP8 includes a sprocket body SP8A and a plurality of sprocket teeth SP8B. A plurality of sprocket teeth SP8B extend radially outward from the sprocket body SP8A. As seen in FIG. 21, the sprocket SP9 includes a sprocket body SP9A and a plurality of sprocket teeth SP9B. A plurality of sprocket teeth SP9B extend radially outward from the sprocket body SP9A. The sprocket SP10 includes a sprocket body SP10A and a plurality of sprocket teeth SP10B. A plurality of sprocket teeth SP10B extend radially outward from the sprocket body SP10A. The sprocket SP11 includes a sprocket body SP11A and a plurality of sprocket teeth SP11B. A plurality of sprocket teeth SP11B extend radially outward from the sprocket body SP11A. The sprocket SP12 includes a sprocket body SP12A and a plurality of sprocket teeth SP12B. A plurality of sprocket teeth SP12B extend radially outward from the sprocket body SP12A. As seen in FIG. 22, the sprocket support 56 includes a hub engaging portion 60 and a plurality of support arms 62. A plurality of support arms 62 extend radially outward from the hub engaging portion 60. The support arm 62 includes first to eighth attachment portions 62A to 62H. The plurality of spacers 58 include a plurality of first spacers 58A, a plurality of second spacers 58B, a plurality of third spacers 58C, a plurality of fourth spacers 58D, a plurality of fifth spacers 58E, and a plurality of sixths. The spacer 58F and the plurality of seventh spacers 58G. As seen in FIG. 23, the first spacer 58A is disposed between the sprocket SP5 and the sprocket SP6. The second spacer 58B is provided between the sprocket SP6 and the sprocket SP7. The third spacer 58C is provided between the sprocket SP7 and the sprocket SP8. The fourth spacer 58D is provided between the sprocket SP8 and the sprocket SP9. The fifth spacer 58E is provided between the sprocket SP9 and the sprocket SP10. The sixth spacer 58F is provided between the sprocket SP10 and the sprocket SP11. The seventh spacer 58G is provided between the sprocket SP11 and the sprocket SP12. The sprocket SP6 and the first spacer 58A are attached to the first attachment portion 62A by an adhesive structure such as an adhesive. The sprocket SP7 and the second spacer 58B are attached to the second attachment portion 62B by an adhesive structure such as an adhesive. The sprocket SP8 and the third spacer 58C are attached to the third attachment portion 62C by an adhesive structure such as an adhesive. The sprocket SP9 and the fourth spacer 58D are attached to the fourth attachment portion 62D by an adhesive structure such as an adhesive. The sprocket SP10 and the fifth spacer 58E are attached to the fifth attachment portion 62E by an adhesive structure such as an adhesive. The sprocket SP11 and the sixth spacer 58F are attached to the sixth attachment portion 62F by an adhesive structure such as an adhesive. The sprocket SP12 and the seventh spacer 58G are attached to the seventh attachment portion 62G by an adhesive structure such as an adhesive. The sprocket SP5 and the second ring 59B are attached to the eighth attachment portion 62H by an adhesive structure such as an adhesive. The hub engaging portion 60, the sprockets SP1 to SP4, the first ring 59A, and the second ring 59B are held between the larger-diameter portion 42 and the locking flange 32B of the lock ring 32 in the axial direction D2. In this embodiment, each of the sprockets SP1 to SP12 is made of a metal material such as aluminum, iron, or titanium. Each of the sprocket support 56, the first to seventh spacers 58A to 58G, the first ring 59A, and the second ring 59B is made of a non-metal material such as a resin material. However, at least one of the sprockets SP1 to SP12 may be made at least partially of a non-metal material. At least one of the sprocket support 56, the first to seventh spacers 58A to 58G, the first ring 59A, and the second ring 59B may be made at least partially of a metal material such as aluminum, iron, or titanium. The at least one sprocket includes at least one internal spline tooth configured to mesh with the bicycle hub assembly 12. As seen in FIGS. 24 and 25, at least one sprocket includes at least ten internal spline teeth that are structurally designed to mesh with the bicycle hub assembly 12. At least one internal spline tooth includes a plurality of internal spline teeth. Thus, at least one sprocket includes a plurality of internal spline teeth that are structurally designed to mesh with the bicycle hub assembly 12. In this embodiment, the sprocket SP1 includes at least ten internal spline teeth 64 that are structurally designed to mesh with the bicycle hub assembly 12. In this embodiment, the sprocket SP1 includes an internal spline tooth 64 that is structured to mesh with the external spline tooth 40 of the sprocket support body 28 of the bicycle hub assembly 12. The sprocket body SP1A has a ring shape. The internal spline teeth 64 extend radially inward from the sprocket body SP1A. As seen in FIG. 26, the total number of at least ten internal spline teeth 64 is equal to or greater than 20. The total number of at least ten internal spline teeth 64 is equal to or greater than 25. In this embodiment, the total number of internal spline teeth 64 is 26. However, the total number of internal spline teeth 64 is not limited to this embodiment and the above range. At least ten internal spline teeth 64 have a first internal peripheral angle PA21 and a second internal peripheral angle PA22. At least two of the plurality of internal spline teeth 64 are arranged circumferentially with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14 at the first internal pitch angle PA21. At least two of the plurality of internal spline teeth 64 are arranged circumferentially at a second internal peripheral angle PA22 with respect to the rotation center axis A1. In this embodiment, the second internal perimeter angle PA22 is different from the first internal perimeter angle PA21. However, the second internal perimeter angle PA22 may be substantially equal to the first internal perimeter angle PA21. In this embodiment, the internal spline teeth 64 are arranged circumferentially at the first internal pitch angle PA21 in the circumferential direction D1. Two of the internal spline teeth 64 are arranged at the second internal peripheral angle PA22 in the circumferential direction D1. However, at least two of the internal spline teeth 64 may be arranged at another internal peripheral angle in the circumferential direction D1. The first internal perimeter angle PA21 is in a range of 10 to 20 degrees. The first internal perimeter angle PA21 is in a range of 12 degrees to 15 degrees. The first internal perimeter angle PA21 is in a range of 13 degrees to 14 degrees. In this embodiment, the first internal perimeter angle PA21 is 13.3 degrees. However, the first internal perimeter angle PA21 is not limited to this embodiment and above. The second inner perimeter angle PA22 is in a range of 5 to 30 degrees. In this embodiment, the second inner perimeter angle PA22 is 26 degrees. However, the second internal perimeter angle PA22 is not limited to this embodiment and the above range. At least one of the at least ten internal spline teeth 64 has a first spline shape that is different from a second spline shape of the other one of the at least ten internal spline teeth 64. At least one of the at least ten internal spline teeth 64 has a first spline size that is different from a second spline size of the other one of the at least ten internal spline teeth 64. At least one of the at least ten internal spline teeth 64 has a cross-sectional shape that is different from the cross-sectional shape of the other one of the at least ten internal spline teeth 64. However, as seen in FIG. 27, the internal spline teeth 64 may have the same shape as each other. The internal spline teeth 64 may have the same size as each other. The internal spline teeth 64 may have the same cross-sectional shape as each other. As seen in FIG. 28, at least one internal spline tooth 64 includes an internal spline drive surface 66 and an internal spline non-drive surface 68. At least one internal spline tooth 64 includes a plurality of internal spline teeth 64. The plurality of internal spline teeth 64 include a plurality of internal spline transmission surfaces 66 to receive a transmission rotational force F1 from the bicycle hub assembly 12 (FIG. 6) during pedaling. The plurality of internal spline teeth 64 include a plurality of internal spline non-drive surfaces 68. The internal spline transmission surface 66 may be in contact with the sprocket support body 28 to transmit a transmission rotational force F1 from the sprocket SP1 to the sprocket support body 28 during stepping. The internal spline drive surface 66 faces the drive rotation direction D11. The internal spline non-drive surface 68 is provided on the opposite side of the internal spline drive surface 66 in the circumferential direction D1. The internal spline non-transmission surface 68 faces the reverse rotation direction D12, so that the transmission rotational force F1 is not transmitted from the sprocket SP1 to the sprocket support body 28 during stepping. At least ten internal spline teeth 64 each have a maximum circumferential width MW2. The internal spline teeth 64 each have a maximum circumferential width MW2. The maximum circumferential width MW2 is defined as the maximum width that receives the thrust force F3 applied to the internal spline teeth 64. The maximum circumferential width MW2 is defined as the linear distance based on the internal spline drive surface 66. The internal spline drive surface 66 includes a radially outermost edge 66A and a radially innermost edge 66B. The internal spline drive surface 66 extends from the radially outermost edge 66A to the radially innermost edge 66B. The second reference circle RC21 is defined on the radially outermost edge 66A and is centered on the rotation center axis A1. The second reference circle RC21 intersects the internal spline non-drive surface 68 at a reference point 68R. The maximum circumferential width MW2 extends straight from the radially innermost edge 66B to the reference point 68R in the circumferential direction D1. The internal splined non-drive surface 68 includes a radially outermost edge 68A and a radially innermost edge 68B. The internal splined non-drive surface 68 extends from the radially outermost edge 68A to the radially innermost edge 68B. The reference point 68R is provided between the radially outermost edge 68A and the radially innermost edge 68B. The sum of the maximum circumferential width MW2 is equal to or greater than 40 mm. The sum of the maximum circumferential width MW2 is equal to or greater than 45 mm. The sum of the maximum circumferential width MW2 is equal to or greater than 50 mm. In this embodiment, the sum of the maximum circumferential widths MW2 is 50.8 mm. However, the total of the maximum circumferential width MW2 is not limited to this embodiment. As seen in FIG. 29, at least one internal spline tooth 64 has an internal spline small diameter DM21. At least one internal spline tooth 64 has an internal spline tooth root circle RC22, and the internal spline tooth root circle RC22 has an internal spline small diameter DM21. However, the internal spline tooth root circle RC22 may have another diameter different from the internal spline small diameter DM21. The internal spline diameter DM21 is equal to or less than 30 mm. The internal spline diameter DM21 is equal to or greater than 25 mm. The internal spline diameter DM21 is equal to or greater than 29 mm. In this embodiment, the internal spline minor diameter DM21 is 29.8 mm. However, the internal spline small diameter DM21 is not limited to this embodiment and above. At least one internal spline tooth 64 has an internal spline large diameter DM22 equal to or less than 28 mm. The internal spline major diameter DM22 is equal to or greater than 25 mm. The internal spline major diameter DM22 is equal to or greater than 27 mm. In this embodiment, the internal spline large diameter DM22 is 27.7 mm. However, the internal spline large diameter DM22 is not limited to this embodiment and above. As seen in FIG. 28, the plurality of internal spline drive surfaces 66 include a radially outermost edge 66A and a radially innermost edge 66B. Each of the plurality of internal spline drive surfaces 66 includes a radial length RL21 defined from a radially outermost edge 66A to a radially innermost edge 66B. The sum of the radial lengths RL21 of the plurality of internal spline drive surfaces 66 is equal to or greater than 7 mm. The total of the radial length RL21 is equal to or greater than 10 mm. The total of the radial length RL21 is equal to or greater than 15 mm. In this embodiment, the total of the radial length RL21 is 19.5 mm. However, the total of the radial length RL21 is not limited to this embodiment and the above range. The plurality of internal spline teeth 64 have an additional radial length RL22. The extra radial length RL22 is defined from the inner spline tooth root circle RC22 to the radially innermost end 64A of the plurality of inner spline teeth 64, respectively. The sum of the additional radial lengths RL22 is equal to or greater than 12 mm. In this embodiment, the sum of the additional radial lengths RL22 is 27.95 mm. However, the sum of the additional radial lengths RL22 is not limited to this embodiment and the above range. At least one of the internal spline teeth 64 has an asymmetric shape with respect to the circumferential tooth tip center line CL2. The circumferential tooth tip center line CL2 is a line connecting the rotation center axis A1 and the circumferential center point CP2 of the radially innermost end 64A of the internal spline tooth 64. However, at least one of the internal spline teeth 64 may have a symmetrical shape with respect to the circumferential tooth tip center line CL2. At least one of the internal spline teeth 64 includes an internal spline drive surface 66 and an internal spline non-drive surface 68. The internal spline drive surface 66 has a first internal spline surface angle AG21. The first internal spline surface angle AG21 is defined between the internal spline transmission surface 66 and the first radial line L21. The first radial line L21 extends from the rotation center axis A1 of the bicycle rear sprocket assembly 14 to the radially outermost edge 66A of the internal spline transmission surface 66. The first inner perimeter angle PA21 or the second inner perimeter angle PA22 is defined between adjacent first radial lines L21 (see, for example, FIG. 26). The internal spline non-drive surface 68 has a second internal spline surface angle AG22. The second internal spline surface angle AG22 is defined between the internal spline non-drive surface 68 and the second radial line L22. The second radial line L22 extends from the rotation center axis A1 of the bicycle rear sprocket assembly 14 to the radially outermost edge 68A of the internal spline non-transmission surface 68. In this embodiment, the second internal spline surface angle AG22 is different from the first internal spline surface angle AG21. The first internal spline surface angle AG21 is smaller than the second internal spline surface angle AG22. However, the first internal spline surface angle AG21 may be equal to or larger than the second internal spline surface angle AG22. The first internal spline surface angle AG21 is in a range of 0 to 10 degrees. The second internal spline surface angle AG22 is in a range of 0 to 60 degrees. In this embodiment, the first internal spline surface angle AG21 is 5 degrees. The second internal spline surface angle AG22 is 45 degrees. However, the first internal spline surface angle AG21 and the second internal spline surface angle AG22 are not limited to this embodiment and the above range. As seen in FIG. 30, the internal spline teeth 64 mesh with the external spline teeth 40 to transmit the transmission rotational force F1 from the sprocket SP1 to the sprocket support body 28. The internal spline transmission surface 66 may be in contact with the external spline transmission surface 48 to transmit a transmission rotational force F1 from the sprocket SP1 to the sprocket support body 28. In a state where the internal spline drive surface 66 is in contact with the external spline drive surface 48, the internal spline non-drive surface 68 is spaced from the external spline non-drive surface 50. As seen in FIG. 31, the sprocket SP2 includes a plurality of internal spline teeth 70. The sprocket SP3 includes a plurality of internal spline teeth 72. The sprocket SP4 includes a plurality of internal spline teeth 74. The first ring 59A includes a plurality of internal spline teeth 76. As seen in FIG. 32, the hub engaging portion 60 of the sprocket support 56 includes a plurality of internal spline teeth 78. The plurality of internal spline teeth 70 have substantially the same structure as the structure of the plurality of internal spline teeth 64. The plurality of internal spline teeth 72 have substantially the same structure as the structure of the plurality of internal spline teeth 64. The plurality of internal spline teeth 74 have substantially the same structure as the structure of the plurality of internal spline teeth 64. The plurality of internal spline teeth 76 have substantially the same structure as the structure of the plurality of internal spline teeth 64. The plurality of internal spline teeth 78 have substantially the same structure as the structure of the plurality of internal spline teeth 64. Therefore, for brevity, it will not be described in detail here. The term "comprising" and its derivatives, as used herein, are intended to specify the existence of stated features, elements, components, groups, integers, and / or steps but do not exclude other unstated features, components, components, groups, groups, Open term for the presence of integers and / or steps. This concept also applies to words of similar meaning, such as the terms "having", "including" and their derivatives. The terms "component", "section", "section", "component", "component", "body" and "structure" when used in the singular can have the dual meaning of a single component or a plurality of components. Ordinal numbers such as "first" and "second" described in this application are merely identifiers and have no other meaning, such as a specific order and the like. Further, for example, the term "first element" itself does not imply the existence of a "second element", and the term "second element" itself does not imply the existence of a "first element". The term "pair" as used herein may encompass configurations in which the paired elements have different shapes or structures from each other, except for configurations in which the paired elements have the same shape or structure as each other. Thus, the terms "a", "one or more", and "at least one" are used interchangeably herein. Finally, terms of degree such as "substantially", "approximately" and "approximately" as used herein mean a reasonable amount of deviation of the modified term such that the end result has not changed significantly. All numerical values described in this application can be understood to include terms such as "substantially", "about" and "approximately". Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It should therefore be understood that the invention may be practiced in other ways than that specifically described herein within the scope of the appended patent applications.

10‧‧‧自行車傳動系統10‧‧‧ Bicycle Transmission System

12‧‧‧自行車輪轂總成12‧‧‧ Bicycle wheel assembly

14‧‧‧自行車後鏈輪總成14‧‧‧ Bicycle rear sprocket assembly

16‧‧‧自行車制動轉子16‧‧‧ Bicycle brake rotor

18‧‧‧曲柄總成18‧‧‧ crank assembly

20‧‧‧自行車鏈條20‧‧‧ Bicycle chain

22‧‧‧曲柄軸22‧‧‧ crank shaft

24‧‧‧右曲柄臂24‧‧‧Right crank arm

26‧‧‧左曲柄臂26‧‧‧Left crank arm

27‧‧‧前鏈輪27‧‧‧ front sprocket

28‧‧‧鏈輪支撐主體28‧‧‧Sprocket support body

28A‧‧‧內部帶螺紋部分28A‧‧‧Internal threaded part

30‧‧‧輪轂軸30‧‧‧ hub axle

30A‧‧‧通孔30A‧‧‧through hole

30B‧‧‧第一軸端30B‧‧‧First shaft end

30B1‧‧‧軸向接觸表面30B1‧‧‧ axial contact surface

30C‧‧‧第二軸端30C‧‧‧Second shaft end

32‧‧‧鎖環32‧‧‧ lock ring

32A‧‧‧外部帶螺紋部分32A‧‧‧External threaded part

32B‧‧‧鎖定凸緣32B‧‧‧Locking flange

34‧‧‧制動轉子支撐主體34‧‧‧brake rotor support body

36‧‧‧輪轂主體36‧‧‧Wheel body

36A‧‧‧第一凸緣36A‧‧‧First flange

36B‧‧‧第二凸緣36B‧‧‧Second flange

38‧‧‧棘輪結構/單向聯軸結構38‧‧‧ Ratchet structure / one-way coupling structure

39A‧‧‧第一軸承39A‧‧‧First bearing

39B‧‧‧第二軸承39B‧‧‧Second bearing

40‧‧‧外部花鍵齒40‧‧‧ external spline teeth

40A‧‧‧徑向最外端40A‧‧‧ Radial outermost

41‧‧‧基座支撐件41‧‧‧ base support

42‧‧‧較大直徑部分42‧‧‧large diameter part

42A‧‧‧軸向端42A‧‧‧ axial end

44‧‧‧凸緣44‧‧‧ flange

46‧‧‧螺旋外部花鍵齒46‧‧‧ Spiral external spline teeth

48‧‧‧外部花鍵傳動表面48‧‧‧ external spline drive surface

48A‧‧‧徑向最外邊緣48A‧‧‧Radial outermost edge

48B‧‧‧徑向最內邊緣48B‧‧‧ Radial innermost edge

50‧‧‧外部花鍵非傳動表面50‧‧‧ external spline non-drive surface

50A‧‧‧徑向最外邊緣50A‧‧‧Radial outermost edge

50B‧‧‧徑向最內邊緣50B‧‧‧ Radial innermost edge

50R‧‧‧參考點50R‧‧‧Reference point

52‧‧‧額外外部花鍵齒52‧‧‧ Extra external spline teeth

54‧‧‧額外基座支撐件54‧‧‧ Extra base support

56‧‧‧鏈輪支撐件56‧‧‧Sprocket support

58‧‧‧間隔件/鏈輪支撐件58‧‧‧spacer / sprocket support

58A‧‧‧第一間隔件58A‧‧‧First spacer

58B‧‧‧第二間隔件58B‧‧‧Second spacer

58C‧‧‧第三間隔件58C‧‧‧The third spacer

58D‧‧‧第四間隔件58D‧‧‧Fourth spacer

58E‧‧‧第五間隔件58E‧‧‧Fifth spacer

58F‧‧‧第六間隔件58F‧‧‧ Sixth spacer

58G‧‧‧第七間隔件58G‧‧‧Seventh spacer

59A‧‧‧第一環59A‧‧‧First Ring

59B‧‧‧第二環59B‧‧‧Second Ring

60‧‧‧輪轂嚙合部分60‧‧‧Wheel meshing part

62‧‧‧支撐臂62‧‧‧ support arm

62A‧‧‧第一附接部分62A‧‧‧First Attachment

62B‧‧‧第二附接部分62B‧‧‧Second Attachment

62C‧‧‧第三附接部分62C‧‧‧ Third Attachment

62D‧‧‧第四附接部分62D‧‧‧Fourth Attachment

62E‧‧‧第五附接部分62E‧‧‧Fifth Attachment

62F‧‧‧第六附接部分62F‧‧‧ Sixth Attachment

62G‧‧‧第七附接部分62G‧‧‧Seventh Attachment

62H‧‧‧第八附接部分62H‧‧‧Eighth Attachment

64‧‧‧內部花鍵齒64‧‧‧ Internal spline teeth

64A‧‧‧徑向最內端64A‧‧‧ Radial innermost

66‧‧‧內部花鍵傳動表面66‧‧‧ Internal spline drive surface

66A‧‧‧徑向最外邊緣66A‧‧‧Radial outermost edge

66B‧‧‧徑向最內邊緣66B‧‧‧ Radial innermost edge

68‧‧‧內部花鍵非傳動表面68‧‧‧ Internal spline non-drive surface

68A‧‧‧徑向最外邊緣68A‧‧‧Radial outermost edge

68B‧‧‧徑向最內邊緣68B‧‧‧ Radial innermost edge

68R‧‧‧參考點68R‧‧‧Reference point

70‧‧‧內部花鍵齒70‧‧‧ Internal spline teeth

72‧‧‧內部花鍵齒72‧‧‧ Internal spline teeth

74‧‧‧內部花鍵齒74‧‧‧ Internal spline teeth

76‧‧‧內部花鍵齒76‧‧‧ Internal spline teeth

78‧‧‧內部花鍵齒78‧‧‧ Internal spline teeth

A1‧‧‧旋轉中心軸線A1‧‧‧rotation center axis

AG11‧‧‧第一外部花鍵表面角AG11‧‧‧First external spline surface angle

AG12‧‧‧第二外部花鍵表面角AG12‧‧‧Second external spline surface angle

AG21‧‧‧第一內部花鍵表面角AG21‧‧‧First spline surface angle

AG22‧‧‧第二內部花鍵表面角AG22‧‧‧Second internal spline surface angle

AL11‧‧‧第一軸向長度AL11‧‧‧First axial length

AL12‧‧‧第二軸向長度AL12‧‧‧Second axial length

AL13‧‧‧軸向長度AL13‧‧‧Axial length

BF‧‧‧自行車框架BF‧‧‧Bicycle frame

BF1‧‧‧第一框架BF1‧‧‧First Frame

BF2‧‧‧第二框架BF2‧‧‧Second Framework

BF11‧‧‧第一凹槽BF11‧‧‧First groove

BF12‧‧‧框架接觸表面BF12‧‧‧Frame contact surface

BF21‧‧‧第二凹槽BF21‧‧‧Second groove

CL1‧‧‧圓周齒尖中心線CL1‧‧‧Circular tooth tip centerline

CL2‧‧‧圓周齒尖中心線CL2‧‧‧Circular tooth tip centerline

CP1‧‧‧圓周中心點CP1‧‧‧circle center point

CP2‧‧‧圓周中心點CP2‧‧‧circle center point

D1‧‧‧圓周方向D1‧‧‧ circumferential direction

D2‧‧‧軸向方向D2‧‧‧ axial direction

D11‧‧‧傳動旋轉方向D11‧‧‧Drive rotation direction

D12‧‧‧反向旋轉方向D12‧‧‧Reverse rotation direction

DM11‧‧‧外部花鍵大徑DM11‧‧‧External spline diameter

DM12‧‧‧外部花鍵小徑DM12‧‧‧External Spline Trail

DM13‧‧‧外徑DM13‧‧‧ Outside diameter

DM14‧‧‧額外外部花鍵大徑DM14‧‧‧Extra external spline diameter

F1‧‧‧傳動旋轉力F1‧‧‧Drive rotation force

F2‧‧‧推力F2‧‧‧thrust

F3‧‧‧推力F3‧‧‧thrust

IV-IV‧‧‧線IV-IV‧‧‧line

L11‧‧‧第一徑向線L11‧‧‧The first radial line

L12‧‧‧第二徑向線L12‧‧‧Second radial line

L21‧‧‧第一徑向線L21‧‧‧First radial line

L22‧‧‧第二徑向線L22‧‧‧ Second radial line

MW1‧‧‧圓周最大寬度MW1‧‧‧Circumference maximum width

MW2‧‧‧圓周最大寬度MW2‧‧‧Circumference maximum width

PA11‧‧‧第一外部周節角PA11‧‧‧First external week angle

PA12‧‧‧第二外部周節角PA12‧‧‧Second Outer Corner

PA21‧‧‧第一內部周節角PA21‧‧‧First internal week angle

PA22‧‧‧第二內部周節角PA22‧‧‧Second Internal Week Angle

RC11‧‧‧第一參考圓RC11‧‧‧First reference circle

RC12‧‧‧外部花鍵齒根圓RC12‧‧‧External spline tooth root circle

RC21‧‧‧第二參考圓RC21‧‧‧Second Reference Circle

RC22‧‧‧內部花鍵齒根圓RC22‧‧‧Internal spline tooth root circle

RL11‧‧‧徑向長度RL11‧‧‧Radial length

RL12‧‧‧額外徑向長度RL12‧‧‧Extra radial length

RL21‧‧‧徑向長度RL21‧‧‧Radial length

RL22‧‧‧額外徑向長度RL22‧‧‧Extra radial length

SP1‧‧‧鏈輪SP1‧‧‧Sprocket

SP1A‧‧‧鏈輪主體SP1A‧‧‧Sprocket body

SP1B‧‧‧鏈輪齒SP1B‧‧‧Sprocket teeth

SP2‧‧‧鏈輪SP2‧‧‧Sprocket

SP2A‧‧‧鏈輪主體SP2A‧‧‧Sprocket body

SP2B‧‧‧鏈輪齒SP2B‧‧‧Sprocket Teeth

SP3‧‧‧鏈輪SP3‧‧‧Sprocket

SP3A‧‧‧鏈輪主體SP3A‧‧‧Sprocket body

SP3B‧‧‧鏈輪齒SP3B‧‧‧Sprocket Teeth

SP4‧‧‧鏈輪SP4‧‧‧Sprocket

SP4A‧‧‧鏈輪主體SP4A‧‧‧Sprocket body

SP4B‧‧‧鏈輪齒SP4B‧‧‧Sprocket teeth

SP5‧‧‧鏈輪SP5‧‧‧Sprocket

SP5A‧‧‧鏈輪主體SP5A‧‧‧Sprocket body

SP5B‧‧‧鏈輪齒SP5B‧‧‧Sprocket Teeth

SP6‧‧‧鏈輪SP6‧‧‧Sprocket

SP6A‧‧‧鏈輪主體SP6A‧‧‧Sprocket body

SP6B‧‧‧鏈輪齒SP6B‧‧‧Sprocket teeth

SP7‧‧‧鏈輪SP7‧‧‧Sprocket

SP7A‧‧‧鏈輪主體SP7A‧‧‧Sprocket body

SP7B‧‧‧鏈輪齒SP7B‧‧‧Sprocket teeth

SP8‧‧‧鏈輪SP8‧‧‧Sprocket

SP8A‧‧‧鏈輪主體SP8A‧‧‧Sprocket body

SP8B‧‧‧鏈輪齒SP8B‧‧‧Sprocket teeth

SP9‧‧‧鏈輪SP9‧‧‧Sprocket

SP9A‧‧‧鏈輪主體SP9A‧‧‧Sprocket body

SP9B‧‧‧鏈輪齒SP9B‧‧‧Sprocket teeth

SP10‧‧‧鏈輪SP10‧‧‧Sprocket

SP10A‧‧‧鏈輪主體SP10A‧‧‧Sprocket body

SP10B‧‧‧鏈輪齒SP10B‧‧‧Sprocket teeth

SP11‧‧‧鏈輪SP11‧‧‧Sprocket

SP11A‧‧‧鏈輪主體SP11A‧‧‧Sprocket body

SP11B‧‧‧鏈輪齒SP11B‧‧‧Sprocket teeth

SP12‧‧‧鏈輪SP12‧‧‧Sprocket

SP12A‧‧‧鏈輪主體SP12A‧‧‧Sprocket body

SP12B‧‧‧鏈輪齒SP12B‧‧‧Sprocket teeth

WS‧‧‧車輪緊固結構WS‧‧‧Wheel fastening structure

WS1‧‧‧緊固桿WS1‧‧‧Fastening lever

XVI-XVI‧‧‧線XVI-XVI‧‧‧line

XXIII-XXIII‧‧‧線XXIII-XXIII‧‧‧line

當結合附圖考慮時,參考以下詳細描述,本發明之更完整評價及其許多伴隨優點將易於獲得,同樣變得更好理解,其中: 圖1為根據一實施例之自行車傳動系統的示意圖。 圖2為圖1中所說明之自行車傳動系統的分解透視圖。 圖3為圖2中所說明之自行車傳動系統的另一透視圖。 圖4為沿圖2之線IV-IV截取之自行車傳動系統的橫截面圖。 圖5為圖2中所說明之自行車傳動系統之自行車輪轂總成的分解透視圖。 圖6為圖4中所說明之自行車傳動系統的放大橫截面圖。 圖7為圖2中所說明之自行車傳動系統之自行車輪轂總成之鏈輪支撐主體的透視圖。 圖8為圖2中所說明之自行車傳動系統之自行車輪轂總成之鏈輪支撐主體的另一透視圖。 圖9為圖7中所說明之鏈輪支撐主體的側視圖。 圖10為根據修改之自行車輪轂總成之鏈輪支撐主體的側視圖。 圖11為圖7中所說明之鏈輪支撐主體的放大橫截面圖。 圖12為圖7中所說明之鏈輪支撐主體的橫截面圖。 圖13為圖2中所說明之自行車傳動系統之自行車輪轂總成的透視圖。 圖14為圖2中所說明之自行車傳動系統之自行車輪轂總成的側視圖。 圖15為圖2中所說明之自行車傳動系統之自行車輪轂總成的後視圖。 圖16為沿圖5之線XVI-XVI截取之自行車輪轂總成的橫截面圖。 圖17為圖2中所說明之自行車傳動系統之自行車後鏈輪總成的側視圖。 圖18為圖17中所說明之自行車後鏈輪總成的分解透視圖。 圖19為圖17中所說明之自行車後鏈輪總成的部分分解透視圖。 圖20為圖17中所說明之自行車後鏈輪總成的另一部分分解透視圖。 圖21為圖17中所說明之自行車後鏈輪總成的另一部分分解透視圖。 圖22為圖17中所說明之自行車後鏈輪總成的另一部分分解透視圖。 圖23為沿圖17之線XXIII-XXIII截取之自行車後鏈輪總成的透視橫截面圖。 圖24為圖17中所說明之自行車後鏈輪總成之最小鏈輪的透視圖。 圖25為圖17中所說明之自行車後鏈輪總成之最小鏈輪的另一透視圖。 圖26為圖17中所說明之自行車後鏈輪總成之最小鏈輪的側視圖。 圖27為根據修改之最小鏈輪的側視圖。 圖28為圖24中所說明之最小鏈輪的放大截面視圖。 圖29為圖24中所說明之最小鏈輪的橫截面圖。 圖30為圖2中所說明之自行車傳動系統之鏈輪支撐主體及最小鏈輪的橫截面圖。 圖31為圖17中所說明之自行車後鏈輪總成的部分分解透視圖。 圖32為圖17中所說明之自行車後鏈輪總成之鏈輪支撐件的透視圖。When considered in conjunction with the drawings, with reference to the following detailed description, a more complete evaluation of the present invention and many of its accompanying advantages will be readily available and also better understood, where: FIG. 1 is a schematic diagram of a bicycle transmission system according to an embodiment. FIG. 2 is an exploded perspective view of the bicycle transmission system illustrated in FIG. 1. FIG. FIG. 3 is another perspective view of the bicycle transmission system illustrated in FIG. 2. 4 is a cross-sectional view of the bicycle transmission system taken along line IV-IV of FIG. 2. FIG. 5 is an exploded perspective view of a bicycle hub assembly of the bicycle transmission system illustrated in FIG. 2. FIG. 6 is an enlarged cross-sectional view of the bicycle transmission system illustrated in FIG. 4. 7 is a perspective view of a sprocket support body of a bicycle hub assembly of the bicycle transmission system illustrated in FIG. 2. 8 is another perspective view of a sprocket support body of a bicycle hub assembly of the bicycle transmission system illustrated in FIG. 2. FIG. 9 is a side view of the sprocket support body illustrated in FIG. 7. FIG. 10 is a side view of a sprocket support body of a bicycle hub assembly according to a modification. FIG. 11 is an enlarged cross-sectional view of the sprocket support body illustrated in FIG. 7. FIG. 12 is a cross-sectional view of the sprocket support body illustrated in FIG. 7. FIG. 13 is a perspective view of a bicycle hub assembly of the bicycle transmission system illustrated in FIG. 2. 14 is a side view of a bicycle hub assembly of the bicycle transmission system illustrated in FIG. 2. FIG. 15 is a rear view of the bicycle hub assembly of the bicycle transmission system illustrated in FIG. 2. FIG. 16 is a cross-sectional view of the bicycle hub assembly taken along the line XVI-XVI of FIG. 5. 17 is a side view of a bicycle rear sprocket assembly of the bicycle transmission system illustrated in FIG. 2. FIG. 18 is an exploded perspective view of the bicycle rear sprocket assembly illustrated in FIG. 17. FIG. 19 is a partially exploded perspective view of the bicycle rear sprocket assembly illustrated in FIG. 17. 20 is an exploded perspective view of another portion of the bicycle rear sprocket assembly illustrated in FIG. 17. 21 is an exploded perspective view of another part of the bicycle rear sprocket assembly illustrated in FIG. 17. 22 is an exploded perspective view of another portion of the bicycle rear sprocket assembly illustrated in FIG. 17. FIG. 23 is a perspective cross-sectional view of the bicycle rear sprocket assembly taken along the line XXIII-XXIII of FIG. 17. FIG. 24 is a perspective view of the smallest sprocket of the bicycle rear sprocket assembly illustrated in FIG. 17. 25 is another perspective view of the smallest sprocket of the bicycle rear sprocket assembly illustrated in FIG. 17. FIG. 26 is a side view of the smallest sprocket of the bicycle rear sprocket assembly illustrated in FIG. 17. Figure 27 is a side view of the smallest sprocket according to the modification. FIG. 28 is an enlarged cross-sectional view of the smallest sprocket illustrated in FIG. 24. FIG. 29 is a cross-sectional view of the smallest sprocket illustrated in FIG. 24. FIG. 30 is a cross-sectional view of the sprocket support body and the smallest sprocket of the bicycle transmission system illustrated in FIG. 2. FIG. 31 is a partially exploded perspective view of the bicycle rear sprocket assembly illustrated in FIG. 17. 32 is a perspective view of a sprocket support of the bicycle rear sprocket assembly illustrated in FIG. 17.

Claims (37)

一種自行車輪轂總成,其包含: 一鏈輪支撐主體,其包括經結構設計以與一自行車後鏈輪總成嚙合之至少十個外部花鍵齒,該至少十個外部花鍵齒中之每一者具有一外部花鍵傳動表面及一外部花鍵非傳動表面。A bicycle hub assembly includes: a sprocket support body including at least ten external spline teeth that are structurally designed to mesh with a bicycle rear sprocket assembly, each of the at least ten external spline teeth One has an external spline drive surface and an external spline non-drive surface. 如請求項1之自行車輪轂總成,其中 該至少十個外部花鍵齒之一總數目等於或大於20。As in the bicycle hub assembly of claim 1, wherein the total number of one of the at least ten external spline teeth is equal to or greater than 20. 如請求項2之自行車輪轂總成,其中 該至少十個外部花鍵齒之該總數目等於或大於25。As in the bicycle hub assembly of claim 2, wherein the total number of the at least ten external spline teeth is equal to or greater than 25. 如請求項1之自行車輪轂總成,其中 該至少十個外部花鍵齒具有一第一外部周節角及不同於該第一外部周節角之一第二外部周節角。The bicycle hub assembly of claim 1, wherein the at least ten external spline teeth have a first external peripheral angle and a second external peripheral angle different from the first external peripheral angle. 如請求項1之自行車輪轂總成,其中 該至少十個外部花鍵齒中之至少一者具有不同於該至少十個外部花鍵齒中之另一者之一第二花鍵形狀的一第一花鍵形狀。The bicycle hub assembly of claim 1, wherein at least one of the at least ten external spline teeth has a second spline shape different from one of the other of the at least ten external spline teeth. One spline shape. 如請求項1之自行車輪轂總成,其中 該至少十個外部花鍵齒中之至少一者具有不同於該至少十個外部花鍵齒中之另一者之一第二花鍵大小的一第一花鍵大小。As in the bicycle hub assembly of claim 1, wherein at least one of the at least ten external spline teeth has a second spline size different from one of the other of the at least ten external spline teeth. One spline size. 如請求項1之自行車輪轂總成,其中 該至少十個外部花鍵齒各自具有圓周最大寬度,且 該等圓周最大寬度之一總和等於或大於55 mm。As in the bicycle hub assembly of claim 1, wherein the at least ten outer spline teeth each have a maximum circumferential width, and a sum of one of the maximum circumferential widths is equal to or greater than 55 mm. 如請求項7之自行車輪轂總成,其中 該等圓周最大寬度之該總和等於或大於60 mm。If the bicycle hub assembly of claim 7, wherein the sum of the maximum circumferential widths is equal to or greater than 60 mm. 如請求項8之自行車輪轂總成,其中 該等圓周最大寬度之該總和等於或大於65 mm。If the bicycle hub assembly of claim 8, wherein the sum of the maximum widths of the circumferences is equal to or greater than 65 mm. 一種自行車輪轂總成,其包含: 一鏈輪支撐主體,其包括經結構設計以與一自行車後鏈輪總成嚙合之複數個外部花鍵齒,該複數個外部花鍵齒中之至少兩個外部花鍵齒相對於該自行車輪轂總成之一旋轉中心軸線以一第一外部周節角沿圓周配置,該第一外部周節角在10度至20度之範圍內。A bicycle hub assembly includes: a sprocket support body including a plurality of external spline teeth that are structurally designed to mesh with a bicycle rear sprocket assembly, and at least two of the plurality of external spline teeth The external spline teeth are arranged along the circumference with a first external peripheral angle with respect to a rotation center axis of the bicycle hub assembly, and the first external peripheral angle is in a range of 10 degrees to 20 degrees. 如請求項10之自行車輪轂總成,其中 該第一外部周節角在12度至15度之範圍內。The bicycle hub assembly of claim 10, wherein the first outer perimeter angle is in a range of 12 degrees to 15 degrees. 如請求項11之自行車輪轂總成,其中 該第一外部周節角在13度至14度之範圍內。The bicycle hub assembly of claim 11, wherein the first outer perimeter angle is in a range of 13 degrees to 14 degrees. 如請求項10之自行車輪轂總成,其中 該複數個外部花鍵齒中之至少兩個外部花鍵齒相對於該自行車輪轂總成之該旋轉中心軸線以一第二外部周節角沿圓周配置,且 該第二外部周節角不同於該第一外部周節角。For example, the bicycle hub assembly of claim 10, wherein at least two external spline teeth of the plurality of external spline teeth are arranged circumferentially at a second external pitch angle with respect to the rotation center axis of the bicycle hub assembly. And the second outer perimeter angle is different from the first outer perimeter angle. 一種自行車輪轂總成,其包含: 一鏈輪支撐主體,其包括經結構設計以與一自行車後鏈輪總成嚙合之至少一個外部花鍵齒,該至少一個外部花鍵齒具有等於或小於30 mm之一外部花鍵大徑。A bicycle hub assembly includes: a sprocket support body including at least one external spline tooth that is structurally designed to mesh with a bicycle rear sprocket assembly, the at least one external spline tooth having an equal or less than 30 One of the outer diameter of the spline is large. 如請求項14之自行車輪轂總成,其進一步包含: 一制動轉子支撐主體,其包括經結構設計以與一自行車制動轉子嚙合之至少一個額外外部花鍵齒,該至少一個額外外部花鍵齒具有大於該外部花鍵大徑之一額外外部花鍵大徑。The bicycle hub assembly of claim 14, further comprising: a brake rotor support body including at least one additional external spline tooth configured to mesh with a bicycle brake rotor, the at least one additional external spline tooth having An additional external spline diameter is greater than one of the external spline diameters. 如請求項14之自行車輪轂總成,其中 該外部花鍵大徑等於或大於25 mm。The bicycle hub assembly of claim 14, wherein the large diameter of the external spline is equal to or greater than 25 mm. 如請求項16之自行車輪轂總成,其中 該外部花鍵大徑等於或大於29 mm。The bicycle hub assembly of claim 16, wherein the large diameter of the external spline is equal to or greater than 29 mm. 如請求項14之自行車輪轂總成,其中 該至少一個外部花鍵齒具有一外部花鍵小徑,且 該外部花鍵小徑等於或小於28 mm。The bicycle hub assembly of claim 14, wherein the at least one external spline tooth has an external spline diameter, and the external spline diameter is equal to or less than 28 mm. 如請求項18之自行車輪轂總成,其中 該外部花鍵小徑等於或大於25 mm。The bicycle hub assembly of claim 18, wherein the external spline diameter is equal to or greater than 25 mm. 如請求項19之自行車輪轂總成,其中 該外部花鍵小徑等於或大於27 mm。The bicycle hub assembly of claim 19, wherein the external spline diameter is equal to or greater than 27 mm. 如請求項14之自行車輪轂總成,其中 該至少一個外部花鍵齒包括複數個外部花鍵齒,該複數個外部花鍵齒包括用以在踩踏期間接收來自該自行車後鏈輪總成之一傳動旋轉力的複數個外部花鍵傳動表面, 該複數個外部花鍵傳動表面各自包括 一徑向最外邊緣, 一徑向最內邊緣,及 一徑向長度,其係自該徑向最外邊緣至該徑向最內邊緣界定,且 該複數個外部花鍵傳動表面之該等徑向長度之一總和等於或大於7 mm。The bicycle hub assembly of claim 14, wherein the at least one external spline tooth includes a plurality of external spline teeth, the plurality of external spline teeth includes one of the rear sprockets for receiving from the bicycle during pedaling A plurality of external spline drive surfaces for transmitting rotational force, each of the plurality of external spline drive surfaces includes a radial outermost edge, a radial innermost edge, and a radial length from the radial outermost The edge is defined to the radially innermost edge, and the sum of one of the radial lengths of the plurality of outer spline drive surfaces is equal to or greater than 7 mm. 如請求項21之自行車輪轂總成,其中 該等徑向長度之該總和等於或大於10 mm。If the bicycle hub assembly of claim 21, wherein the sum of the radial lengths is equal to or greater than 10 mm. 如請求項22之自行車輪轂總成,其中 該等徑向長度之該總和等於或大於15 mm。If the bicycle hub assembly of claim 22, wherein the sum of the radial lengths is equal to or greater than 15 mm. 如請求項14之自行車輪轂總成,其中 該鏈輪支撐主體包括一較大直徑部分,該較大直徑部分具有大於該外部花鍵大徑之一外徑。The bicycle hub assembly of claim 14, wherein the sprocket support body includes a larger diameter portion having an outer diameter larger than one of the larger diameters of the outer splines. 如請求項24之自行車輪轂總成,其中 該外徑在32 mm至40 mm之範圍內。The bicycle hub assembly of claim 24, wherein the outer diameter is in the range of 32 mm to 40 mm. 如請求項24之自行車輪轂總成,其進一步包含: 一輪轂軸,其包括用以接觸一自行車框架之一軸向接觸表面,其中 該鏈輪支撐主體圍繞一旋轉中心軸線可旋轉地安裝於該輪轂軸上, 一第一軸向長度係相對於該旋轉中心軸線在一軸向方向上自該軸向接觸表面至該較大直徑部分界定,且 該第一軸向長度在35 mm至41 mm之範圍內。The bicycle hub assembly of claim 24, further comprising: a hub shaft including an axial contact surface for contacting a bicycle frame, wherein the sprocket support body is rotatably mounted on the rotation center axis On the hub shaft, a first axial length is defined from the axial contact surface to the larger diameter portion in an axial direction relative to the rotation center axis, and the first axial length is 35 mm to 41 mm Within range. 如請求項26之自行車輪轂總成,其中 該第一軸向長度等於或大於39 mm。The bicycle hub assembly of claim 26, wherein the first axial length is equal to or greater than 39 mm. 如請求項26之自行車輪轂總成,其中 該第一軸向長度在35 mm至37 mm之範圍內。The bicycle hub assembly of claim 26, wherein the first axial length is in a range of 35 mm to 37 mm. 如請求項26之自行車輪轂總成,其中 該較大直徑部分具有在該軸向方向上離該軸向接觸表面最遠的一軸向端, 一第二軸向長度係在該軸向方向上自該軸向接觸表面至該軸向端界定,且 該第二軸向長度在38 mm至47 mm之範圍內。The bicycle hub assembly of claim 26, wherein the larger diameter portion has an axial end furthest from the axial contact surface in the axial direction, and a second axial length is in the axial direction It is defined from the axial contact surface to the axial end, and the second axial length is in a range of 38 mm to 47 mm. 如請求項29之自行車輪轂總成,其中 該第二軸向長度在44 mm至45 mm之範圍內。The bicycle hub assembly of claim 29, wherein the second axial length is in a range of 44 mm to 45 mm. 如請求項29之自行車輪轂總成,其中 該第二軸向長度在40 mm至41 mm之範圍內。The bicycle hub assembly of claim 29, wherein the second axial length is in a range of 40 mm to 41 mm. 如請求項24之自行車輪轂總成,其中 該較大直徑部分之一軸向長度在3 mm至6 mm之範圍內。The bicycle hub assembly of claim 24, wherein an axial length of one of the larger diameter portions is in a range of 3 mm to 6 mm. 一種自行車輪轂總成,其包含: 一鏈輪支撐主體,其包括經結構設計以與一自行車後鏈輪總成嚙合之至少九個外部花鍵齒,該至少九個外部花鍵齒中之至少一者相對於一圓周齒尖中心線具有一不對稱形狀,該至少九個外部花鍵齒中之該至少一者包含: 一外部花鍵傳動表面,其具有界定於該外部花鍵傳動表面與一第一徑向線之間的一第一外部花鍵表面角,該第一徑向線自該自行車輪轂總成之一旋轉中心軸線延伸至該外部花鍵傳動表面之一徑向最外邊緣;及 一外部花鍵非傳動表面,其具有界定於該外部花鍵非傳動表面與一第二徑向線之間的一第二外部花鍵表面角,該第二徑向線自該自行車輪轂總成之該旋轉中心軸線延伸至該外部花鍵非傳動表面之一徑向最外邊緣,該第二外部花鍵表面角不同於該第一外部花鍵表面角。A bicycle hub assembly includes: a sprocket support body including at least nine external spline teeth that are structurally designed to mesh with a bicycle rear sprocket assembly, and at least nine of the at least nine external spline teeth One has an asymmetric shape with respect to a circumferential tooth tip centerline, and the at least one of the at least nine external spline teeth includes: an external spline drive surface having a surface defined by the external spline drive surface and A first external spline surface angle between a first radial line extending from a rotation center axis of the bicycle hub assembly to a radially outermost edge of the external spline transmission surface ; And an external spline non-driving surface having a second external spline surface angle defined between the external spline non-driving surface and a second radial line from the bicycle hub In general, the rotation center axis extends to a radially outermost edge of the non-transmission surface of the external spline, and the second external spline surface angle is different from the first external spline surface angle. 如請求項33之自行車輪轂總成,其中 該第一外部花鍵表面角小於該第二外部花鍵表面角。The bicycle hub assembly of claim 33, wherein the first external spline surface angle is smaller than the second external spline surface angle. 如請求項33之自行車輪轂總成,其中 該第一外部花鍵表面角在0度至10度之範圍內。The bicycle hub assembly of claim 33, wherein the first external spline surface angle is in a range of 0 to 10 degrees. 如請求項33之自行車輪轂總成,其中 該第二外部花鍵表面角在0度至60度之範圍內。The bicycle hub assembly of claim 33, wherein the second external spline surface angle is in a range of 0 to 60 degrees. 如請求項33之自行車輪轂總成,其中 該至少十個外部花鍵齒具有一第一外部周節角及不同於該第一外部周節角之一第二外部周節角。The bicycle hub assembly of claim 33, wherein the at least ten external spline teeth have a first external peripheral angle and a second external peripheral angle different from the first external peripheral angle.
TW107116082A 2017-05-30 2018-05-11 Bicycle hub assembly TWI697417B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US15/608,915 US11059541B2 (en) 2017-05-30 2017-05-30 Bicycle hub assembly
US15/608,924 2017-05-30
US15/608,915 2017-05-30
US15/608,924 US11332213B2 (en) 2017-05-30 2017-05-30 Bicycle rear sprocket assembly and bicycle drive train

Publications (2)

Publication Number Publication Date
TW201900444A true TW201900444A (en) 2019-01-01
TWI697417B TWI697417B (en) 2020-07-01

Family

ID=64279063

Family Applications (6)

Application Number Title Priority Date Filing Date
TW109118644A TWI823006B (en) 2017-05-30 2018-05-11 Bicycle hub assembly
TW107116082A TWI697417B (en) 2017-05-30 2018-05-11 Bicycle hub assembly
TW107116027A TWI707800B (en) 2017-05-30 2018-05-11 Bicycle rear sprocket assembly and bicycle drive train
TW112126226A TW202402562A (en) 2017-05-30 2018-05-11 Bicycle hub assembly
TW111140611A TW202327933A (en) 2017-05-30 2018-05-11 Bicycle rear sprocket assembly and bicycle drive train
TW109133516A TWI785388B (en) 2017-05-30 2018-05-11 Bicycle rear sprocket assembly and bicycle drive train

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW109118644A TWI823006B (en) 2017-05-30 2018-05-11 Bicycle hub assembly

Family Applications After (4)

Application Number Title Priority Date Filing Date
TW107116027A TWI707800B (en) 2017-05-30 2018-05-11 Bicycle rear sprocket assembly and bicycle drive train
TW112126226A TW202402562A (en) 2017-05-30 2018-05-11 Bicycle hub assembly
TW111140611A TW202327933A (en) 2017-05-30 2018-05-11 Bicycle rear sprocket assembly and bicycle drive train
TW109133516A TWI785388B (en) 2017-05-30 2018-05-11 Bicycle rear sprocket assembly and bicycle drive train

Country Status (4)

Country Link
JP (2) JP6642933B2 (en)
CN (5) CN108974234B (en)
DE (6) DE202018106134U1 (en)
TW (6) TWI823006B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11578761B2 (en) * 2019-03-22 2023-02-14 Shimano Inc. Bicycle sprocket arrangement
US11642913B2 (en) * 2019-03-22 2023-05-09 Shimano Inc. Sprocket support body and bicycle hub assembly
TWI839545B (en) * 2019-07-30 2024-04-21 義大利商坎帕克諾羅公司 Cogset and sub-assembly for bicycle rear wheel
IT201900020502A1 (en) * 2019-11-06 2021-05-06 Campagnolo Srl Sprocket carrier sub-assembly and sprocket set for a bicycle rear wheel, ring nut for this sub-assembly and method for fixing a sprocket set to a sprocket body
CN112178073B (en) * 2020-09-24 2022-03-04 温州市简系文具有限公司 Stable ratchet wheel device

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2382740A (en) * 1943-07-10 1945-08-14 Fred P Noffsinger Sprocket wheel
JPS5612083Y2 (en) * 1977-09-29 1981-03-19
DE8803900U1 (en) * 1987-03-27 1988-08-25 Blankenburg, Lothar, 1000 Berlin Sprocket set for derailleur gears for bicycles
JPH0187993U (en) * 1987-12-02 1989-06-09
EP0677669B1 (en) * 1994-03-17 1999-07-28 Matsui Universal Joint Manufacturing Company Driving shaft
US5772285A (en) * 1996-11-21 1998-06-30 Warn Industries, Inc. Hub and rotor combination
US5954604A (en) * 1996-11-21 1999-09-21 Shimano, Inc. Multiple sprocket assembly for a bicycle
JP3142247B2 (en) * 1997-05-08 2001-03-07 株式会社シマノ Interior gear hub for bicycle
US6264575B1 (en) * 1999-04-08 2001-07-24 Shimano, Inc. Freewheel for a bicycle
US6382381B1 (en) * 2000-09-06 2002-05-07 Shimano Inc. Bicycle hub assembly
US6523659B2 (en) * 2000-12-11 2003-02-25 Shimano Inc. Bicycle hub with tight connection ratchet and detachable freewheel
US6666786B2 (en) * 2000-12-29 2003-12-23 Shimano Inc. Chamfered sprocket assembly
US6923741B2 (en) * 2002-08-30 2005-08-02 Shimano Inc. Top sprocket for a rear sprocket assembly and rear sprocket assembly for a bicycle
US6866604B2 (en) * 2003-01-17 2005-03-15 Shimano, Inc. Multiple level sprocket support for a bicycle
CN2769169Y (en) * 2003-01-20 2006-04-05 天津飞轮有限公司 Multi-tooth variable speed flywheel for bicycle
JP2005186763A (en) * 2003-12-25 2005-07-14 Shimano Inc Hub for bicycle
US20050209033A1 (en) * 2004-03-19 2005-09-22 Borgwarner Inc. Spline phased multiple sprocket
CN1282585C (en) * 2004-07-22 2006-11-01 罗明端 Foot controlled speed changing device for bicycle
US7846047B2 (en) * 2004-09-10 2010-12-07 Shimano, Inc. Bicycle sprocket having a thickened spline
US7854673B2 (en) * 2006-08-31 2010-12-21 Shimano Inc. Bicycle sprocket assembly having a reinforcement member coupled between sprockets
JP5349756B2 (en) * 2007-01-17 2013-11-20 Ntn株式会社 Constant velocity universal joint
WO2008088007A1 (en) * 2007-01-17 2008-07-24 Ntn Corporation Constant velocity universal joint
JP2008189254A (en) * 2007-02-07 2008-08-21 Shimano Inc Rear sprocket assembly for bicycle, and sprocket
DE102009010258B4 (en) * 2009-02-24 2015-07-30 Carbofibretec Gmbh Bicycle hub assembly with a hollow axle made of fiber composite material
TWM362767U (en) * 2009-03-16 2009-08-11 Joy Ind Co Ltd Structure of sleeve for wheel hub of bicycle
US20100260544A1 (en) * 2009-04-09 2010-10-14 Pi-Yun Chiang Combination of Bicycle Rear Wheel Hub and Sprocket Set
US8696503B2 (en) * 2011-03-01 2014-04-15 Shimano Inc. Bicycle sprocket assembly
TWI701186B (en) * 2011-07-13 2020-08-11 德商矢倫德國股份有限公司 Transmission seat device with small sprocket and multi-sprocket configuration for bicycle transmission
CN102556273B (en) * 2012-03-08 2013-06-12 中山新宝精密科技有限公司 Rear chain wheel component for bicycle
US8979387B2 (en) * 2012-09-11 2015-03-17 Shimano Inc. Bicycle hub assembly
NL2010969C2 (en) * 2013-06-14 2014-12-17 Robertus Cornelius Wilhelmus Hoek CHAIN WHEEL CARRIER FOR AN ACCELERATION SYSTEM OF A BIKE.
TWM466030U (en) * 2013-07-19 2013-11-21 Tokenproducts Inc Ratchet base
CN203413082U (en) * 2013-08-05 2014-01-29 台州富特传动机械有限公司 Double-spline shaft gear
US9669656B2 (en) * 2013-08-20 2017-06-06 Shimano (Singapore) Pte. Ltd. Bicycle freewheel
US9199509B2 (en) * 2014-01-21 2015-12-01 Shimano Inc. Bicycle hub
US9415835B2 (en) * 2014-01-24 2016-08-16 Shimano Inc. Rotatable annular bicycle component and bicycle rear sprocket
US9731550B2 (en) * 2014-05-02 2017-08-15 Shimano Inc. Bicycle hub assembly
US9334910B2 (en) * 2014-05-28 2016-05-10 Shimano Inc. Lock member for fixedly locking a disc brake rotor on a bicycle hub
TWM495993U (en) * 2014-07-25 2015-02-21 Vp Components Co Ltd Sprocket assembly and sprocket device using same
CN105314054A (en) * 2014-08-01 2016-02-10 鋐光实业股份有限公司 Chain wheel assembly and chain wheel device utilizing same
US9334014B2 (en) * 2014-09-01 2016-05-10 Shimano Inc. Bicycle sprocket and bicycle sprocket assembly
US9446815B2 (en) * 2014-09-19 2016-09-20 Vp Components Co., Ltd Chain wheel assembly and chain wheel device using it
EP3037336B1 (en) * 2014-12-23 2017-04-12 Campagnolo S.R.L. Sprocket assembly for a bicycle
US9649880B2 (en) * 2015-01-29 2017-05-16 Shimano Inc. Bicycle hub assembly
US9168976B1 (en) * 2015-03-17 2015-10-27 Praxis Works LLC Cassette and bicycle wheel assembly
US9511819B1 (en) * 2015-05-25 2016-12-06 Shimano Inc. Bicycle rear sprocket assembly
US9951762B2 (en) * 2015-07-16 2018-04-24 Bendix Commercial Vehicle Systems Llc Compressor with crankshaft and insert
US10562588B2 (en) * 2015-09-01 2020-02-18 The Hive Global, Inc Bicycle cassette with locking connection
US9707801B2 (en) * 2015-10-01 2017-07-18 Shimano Inc. Bicycle hub assembly
CN205499241U (en) * 2015-12-17 2016-08-24 天心工业股份有限公司 Removable gear type dish group
CN205780387U (en) * 2016-06-02 2016-12-07 武汉市铁研汽车零件有限公司 A kind of automobile dipentodon sinicus key axle
DE102018111278A1 (en) * 2017-05-30 2018-12-06 Shimano Inc. BIKE HUB ARRANGEMENT

Also Published As

Publication number Publication date
CN108974234B (en) 2021-01-08
DE102018008578A1 (en) 2019-01-17
JP6845184B2 (en) 2021-03-17
CN114572337B (en) 2023-10-13
DE202018106134U1 (en) 2018-11-12
TWI785388B (en) 2022-12-01
TWI823006B (en) 2023-11-21
TWI707800B (en) 2020-10-21
DE102018008591A1 (en) 2019-01-17
CN108974233B (en) 2021-01-05
TW202402562A (en) 2024-01-16
CN112722146B (en) 2022-05-10
CN112722145A (en) 2021-04-30
JP2018203239A (en) 2018-12-27
TW202116575A (en) 2021-05-01
CN114572337A (en) 2022-06-03
CN112722146A (en) 2021-04-30
JP6642933B2 (en) 2020-02-12
JP2018203237A (en) 2018-12-27
TW202327933A (en) 2023-07-16
CN108974233A (en) 2018-12-11
DE102018111272A1 (en) 2018-12-06
TW201900492A (en) 2019-01-01
CN108974234A (en) 2018-12-11
TW202116617A (en) 2021-05-01
DE202018106135U1 (en) 2018-11-08
TWI697417B (en) 2020-07-01
CN112722145B (en) 2022-10-25
DE102018111273A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
TW201900444A (en) Bicycle hub assembly
US11059541B2 (en) Bicycle hub assembly
TWI785386B (en) Bicycle rear sprocket assembly
TWI765107B (en) Bicycle rear sprocket assembly
TWI752255B (en) Bicycle rear sprocket adapter
TWI791156B (en) Bicycle hub assembly