TW202348954A - Optical detecting system and operating method thereof - Google Patents
Optical detecting system and operating method thereof Download PDFInfo
- Publication number
- TW202348954A TW202348954A TW111122521A TW111122521A TW202348954A TW 202348954 A TW202348954 A TW 202348954A TW 111122521 A TW111122521 A TW 111122521A TW 111122521 A TW111122521 A TW 111122521A TW 202348954 A TW202348954 A TW 202348954A
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- under test
- polarized light
- component
- linear polarizer
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 67
- 238000011017 operating method Methods 0.000 title claims description 8
- 230000010287 polarization Effects 0.000 claims abstract description 107
- 238000010521 absorption reaction Methods 0.000 claims abstract description 17
- 238000012360 testing method Methods 0.000 claims description 111
- 238000001514 detection method Methods 0.000 claims description 83
- 238000000034 method Methods 0.000 claims description 8
- 238000005259 measurement Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 238000007689 inspection Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 230000008033 biological extinction Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000013499 data model Methods 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 241000272194 Ciconiiformes Species 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/02—Testing optical properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/02—Testing optical properties
- G01M11/0242—Testing optical properties by measuring geometrical properties or aberrations
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Geometry (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
Description
本揭露係關於一種光學檢測系統以及一種光學檢測系統的操作方法。The present disclosure relates to an optical detection system and an operating method of the optical detection system.
一般而言,虛擬實境(Virtual reality,VR)產品中的光學組件主要以線偏光片以及四分之一波片組成,並藉由檢測設備判斷線偏光片的線偏振方向性與四分之一波片的圓偏振方向性是否產生偏移。然而,現有的檢測設備其檢測過程需要輸入四分之一波片以及線偏光片的材料相關參數,例如厚度、折射率以及消光係數等,增加了整體作業時間以及操作複雜度。Generally speaking, the optical components in virtual reality (VR) products are mainly composed of linear polarizers and quarter-wave plates. The linear polarization directionality and quarter-wave plate of the linear polarizers are judged by testing equipment. Whether the circular polarization directivity of a wave plate is shifted. However, the inspection process of existing inspection equipment requires the input of material-related parameters of quarter-wave plates and linear polarizers, such as thickness, refractive index, and extinction coefficient, which increases the overall operation time and operational complexity.
本揭露之一技術態樣為一種光學檢測系統。One technical aspect of the present disclosure is an optical detection system.
根據本揭露一實施方式,一種光學檢測系統配置以檢測具有第一線偏振片及四分之一波片的待測元件。光學檢測系統包括:光源、偏光調整組件以及檢測單元。光源具有出光面且配置以發射光線。偏光調整組件朝向光源的出光面。偏光調整組件配置以將光線轉換為線性偏振光。第一線偏振片位於偏光調整組件與四分之一波片之間。待測元件配置以將線性偏振光轉換為圓偏振光。檢測單元位於待測元件背對偏光調整組件的一側。檢測單元配置以根據圓偏振光計算待測元件的第一線偏振片的吸收軸與待測元件的四分之一波片的快軸之間的相差角度。According to an embodiment of the present disclosure, an optical detection system is configured to detect a device under test having a first linear polarizer and a quarter-wave plate. The optical detection system includes: light source, polarization adjustment component and detection unit. The light source has a light exit surface and is configured to emit light. The polarization adjustment component faces the light exit surface of the light source. The polarization adjustment component is configured to convert light into linearly polarized light. The first linear polarizer is located between the polarization adjustment component and the quarter wave plate. The element under test is configured to convert linearly polarized light into circularly polarized light. The detection unit is located on the side of the component under test facing away from the polarization adjustment component. The detection unit is configured to calculate a phase difference angle between the absorption axis of the first linear polarizer of the component under test and the fast axis of the quarter-wave plate of the component under test based on the circularly polarized light.
在本揭露一實施方式中,上述偏光調整組件包括消偏器。消偏器位於光源與待測元件的第一線偏振片之間。消偏器配置以將光線轉換為非偏振光。In an embodiment of the present disclosure, the above-mentioned polarization adjustment component includes a depolarizer. The depolarizer is located between the light source and the first linear polarizer of the component under test. Depolarizers are configured to convert light into unpolarized light.
在本揭露一實施方式中,上述偏光調整組件更包括第二線偏振片。第二線偏振片位於消偏器與待測元件的第一線偏振片之間。第二線偏振片配置以將非偏振光轉換為線性偏振光。In an embodiment of the present disclosure, the above-mentioned polarization adjustment component further includes a second linear polarizing plate. The second linear polarizer is located between the depolarizer and the first linear polarizer of the device under test. The second linear polarizer is configured to convert unpolarized light into linearly polarized light.
在本揭露一實施方式中,上述光學檢測系統更包括縮束鏡。縮束鏡位於待測元件與檢測單元之間。In an embodiment of the present disclosure, the above-mentioned optical detection system further includes a condenser. The condenser is located between the component under test and the detection unit.
在本揭露一實施方式中,上述四分之一波片的中心波長相同於光線的波長。In an embodiment of the present disclosure, the center wavelength of the quarter-wave plate is the same as the wavelength of the light.
在本揭露一實施方式中,上述光源為雷射光源。In an embodiment of the present disclosure, the above-mentioned light source is a laser light source.
本揭露之一技術態樣為一種光學檢測系統的操作方法。One technical aspect of the present disclosure is an operating method of an optical detection system.
根據本揭露一實施方式,一種光學檢測系統的操作方法包括:藉由光源發射光線至偏光調整組件;藉由偏光調整組件將光線轉換為線性偏振光並發射至待測元件,其中待測元件具有第一線偏振片以及四分之一波片,第一線偏振片位於偏光調整組件與四分之一波片之間;藉由待測元件將線性偏振光轉換為圓偏振光並發射至檢測單元;以及根據圓偏振光計算待測元件的第一線偏振片的吸收軸與待測元件的四分之一波片的快軸之間的相差角度。According to an embodiment of the present disclosure, an operating method of an optical detection system includes: emitting light to a polarization adjustment component through a light source; converting the light into linearly polarized light through the polarization adjustment component and transmitting it to a component under test, wherein the component under test has The first linear polarizer and the quarter-wave plate. The first linear polarizer is located between the polarization adjustment component and the quarter-wave plate; the component under test converts linearly polarized light into circularly polarized light and transmits it to the detection unit; and calculate the phase difference angle between the absorption axis of the first linear polarizer of the component under test and the fast axis of the quarter-wave plate of the component under test based on the circularly polarized light.
在本揭露一實施方式中,上述根據圓偏振光計算相差角度更包括:旋轉待測元件以獲得待測元件的光強度與旋光強度;以及根據光強度與旋光強度計算待測元件的最大橢圓偏振率。In an embodiment of the present disclosure, the above-mentioned calculation of the phase difference angle based on circularly polarized light further includes: rotating the component under test to obtain the light intensity and optical rotation intensity of the component under test; and calculating the maximum elliptical polarization of the component under test based on the light intensity and optical rotation intensity. Rate.
在本揭露一實施方式中,上述藉由偏光調整組件將光線轉換為線性偏振光並發射至待測元件更包括:藉由偏光調整組件的消偏器將光線轉換為非偏振光並發射至偏光調整組件的第二線偏振片;以及藉由偏光調整組件的第二線偏振片將偏振光轉換為線性偏振光並發射至待測元件。In an embodiment of the present disclosure, the above-mentioned conversion of light into linearly polarized light through the polarization adjustment component and emitting it to the device under test further includes: converting the light into unpolarized light through the depolarizer of the polarization adjustment component and emitting it to the polarized light. The second linear polarizer of the adjustment component; and the second linear polarizer of the polarization adjustment component converts the polarized light into linearly polarized light and transmits it to the device under test.
在本揭露一實施方式中,上述根據圓偏振光計算相差角度更包括:旋轉第二線偏振片以獲得待測元件的光強度與旋光強度;以及根據光強度與旋光強度計算待測元件的最大橢圓偏振率。In an embodiment of the present disclosure, the above-mentioned calculation of the phase difference angle based on circularly polarized light further includes: rotating the second linear polarizer to obtain the light intensity and optical rotation intensity of the component under test; and calculating the maximum maximum value of the component under test based on the light intensity and optical rotation intensity. Elliptical polarization ratio.
在本揭露一實施方式中,上述藉由待測元件將線性偏振光轉換為圓偏振光並發射至檢測單元更包括:藉由縮束鏡將經過待測元件的圓偏振光之光斑直徑縮小至0.1mm與5mm之間並發射至檢測單元。In an embodiment of the present disclosure, the above step of converting linearly polarized light into circularly polarized light through the device under test and transmitting it to the detection unit further includes: using a condenser to reduce the spot diameter of the circularly polarized light passing through the device under test to Between 0.1mm and 5mm and launched to the detection unit.
在本揭露上述實施方式中,光學檢測系統的檢測單元可根據通過待測元件的圓偏振光計算待測元件的第一線偏振片的吸收軸與待測元件的四分之一波片的快軸之間的相差角度。當相差角度趨近於0時,光學檢測系統可判定待測元件的第一線偏振片的吸收軸(亦即線偏振方向)以及四分之一波片的快軸(亦即圓偏振方向)並無產生偏移,可確保每一經由光學檢測系統檢測的待測元件皆具有相同品質表現。此外,光學檢測系統的檢測單元在檢測待測元件時,並不需要輸入待測元件的材料相關參數(例如厚度、折射率以及消光係數),可節省光學檢測系統進行檢測的時間並降低整體操作複雜度。In the above-mentioned embodiments of the present disclosure, the detection unit of the optical detection system can calculate the absorption axis of the first linear polarizer of the component under test and the fast speed of the quarter-wave plate of the component under test based on the circularly polarized light passing through the component under test. The angle of difference between the axes. When the phase difference angle approaches 0, the optical detection system can determine the absorption axis (i.e., linear polarization direction) of the first linear polarizer of the component under test and the fast axis (i.e., circular polarization direction) of the quarter-wave plate. There is no offset, ensuring that every component under test inspected by the optical inspection system has the same quality performance. In addition, when the detection unit of the optical detection system detects the component to be tested, it does not need to input the material-related parameters of the component to be tested (such as thickness, refractive index, and extinction coefficient), which can save the inspection time of the optical detection system and reduce the overall operation. complexity.
以下揭示之實施方式內容提供了用於實施所提供的標的之不同特徵的許多不同實施方式,或實例。下文描述了元件和佈置之特定實例以簡化本案。當然,該等實例僅為實例且並不意欲作為限制。此外,本案可在各個實例中重複元件符號及/或字母。此重複係用於簡便和清晰的目的,且其本身不指定所論述的各個實施方式及/或配置之間的關係。The following disclosure of embodiments provides many different implementations, or examples, for implementing various features of the provided subject matter. Specific examples of components and arrangements are described below to simplify the present application. Of course, these examples are examples only and are not intended to be limiting. Additionally, reference symbols and/or letters may be repeated in each instance. This repetition is for simplicity and clarity and does not by itself specify a relationship between the various embodiments and/or configurations discussed.
諸如「在……下方」、「在……之下」、「下部」、「在……之上」、「上部」等等空間相對術語可在本文中為了便於描述之目的而使用,以描述如附圖中所示之一個元件或特徵與另一元件或特徵之關係。空間相對術語意欲涵蓋除了附圖中所示的定向之外的在使用或操作方法中的裝置的不同定向。裝置可經其他方式定向(旋轉90度或以其他定向)並且本文所使用的空間相對描述詞可同樣相應地解釋。Spatially relative terms such as “below,” “below,” “lower,” “above,” “upper,” and the like may be used herein for convenience of description, to describe The relationship of one element or feature to another element or feature is illustrated in the drawings. Spatially relative terms are intended to encompass different orientations of the device in use or methods of operation in addition to the orientation illustrated in the figures. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
第1圖繪示根據本揭露一實施方式之光學檢測系統100運作時的示意圖。光學檢測系統100配置以檢測具有第一線偏振片210以及四分之一波片220的待測元件200。舉例來說,待測元件200可為虛擬實境(VR)眼鏡的鏡片,但並不以此為限。光學檢測系統100包括光源110、偏光調整組件120以及檢測單元130。光學檢測系統100的光源110具有出光面112且配置以發射光線L。在一些實施方式中,光源110係可為雷射光之光源110,雷射光源110可發射波長為532nm之綠光雷射光且功率可為20mW。此外,待測元件200的四分之一波片220的中心波長相同於光線L的波長。舉例來說,當待測元件200的表面為平面時,待測元件200的四分之一波片220的中心波長與光線L的波長可為532nm,但並不此為限。Figure 1 is a schematic diagram of the operation of the
此外,光學檢測系統100的偏光調整組件120朝向光源110的出光面112。偏光調整組件120包括消偏器122與第二線偏振片124。偏光調整組件120的消偏器122位於光源110與第二線偏振片124之間。偏光調整組件120的第二線偏振片124位於消偏器122與待測元件200的第一線偏振片210之間。待測元件200的第一線偏振片210位於偏光調整組件120的第二線偏振片124與待測元件200的四分之一波片220之間。第二線偏振片124與待測元件200皆可位於轉動系統上而可旋轉。在一些實施方式中,檢測單元130位於待測元件200背對偏光調整組件120的一側。也就是說,檢測單元130與偏光調整組件120位於待測元件200的相對兩側,並且待測元件200的第一線偏振片210較四分之一波片220靠近偏光調整組件120,待測元件200的四分之一波片220較第一線偏振片210靠近檢測單元130。In addition, the
在一些實施方式中,待測元件200可包括基板230。待測元件200的第一線偏振片210與四分之一波片220貼合於基板230的相對兩側,並且基板230的材質可包括玻璃及聚合物材料。光學檢測系統100的檢測單元130可包括具有預設電路佈局或內建應用程式的處理器或晶片。檢測單元130可計算經過待測元件200所接收之光強度、圓偏振方向以及光旋轉強度,以達到對待測元件200進行光學對位檢測的效果。舉例來說,光學檢測系統100可檢測待測元件200是否具有合適的偏光方向及角度。當使用者穿戴虛擬實境眼鏡觀看立體影像時,可減少發生穿透軸傾斜或是串擾(Cross talk)等現象。In some embodiments, the device under
應理解到,已敘述的元件連接關係與功效將不重覆贅述,合先敘明。在以下敘述中,將說明光學檢測系統的操作方法。It should be understood that the connection relationships and functions of the components that have been described will not be repeated and will be explained first. In the following description, the operation method of the optical detection system will be explained.
第2圖繪示根據本揭露一實施方式之光學檢測系統的操作方法的流程圖。光學檢測系統的操作方法包括下列步驟。首先在步驟S1中,藉由光源發射光線至偏光調整組件。接著在步驟S2中,藉由偏光調整組件將光線轉換為線性偏振光並發射至待測元件,其中待測元件具有第一線偏振片以及四分之一波片,第一線偏振片位於偏光調整組件與四分之一波片之間。之後在步驟S3中,藉由待測元件將線性偏振光轉換為圓偏振光並發射至檢測單元。接著在步驟S4中,根據圓偏振光計算待測元件的第一線偏振片的吸收軸與待測元件的四分之一波片的快軸之間的相差角度。在以下敘述中,將詳細說明上述各步驟。FIG. 2 illustrates a flowchart of an operating method of an optical detection system according to an embodiment of the present disclosure. The operating method of the optical detection system includes the following steps. First, in step S1, the light source is used to emit light to the polarization adjustment component. Then in step S2, the light is converted into linearly polarized light by the polarization adjustment component and emitted to the device under test, where the device under test has a first linear polarizer and a quarter-wave plate, and the first linear polarizer is located at the polarization between the adjustment component and the quarter-wave plate. Then, in step S3, the linearly polarized light is converted into circularly polarized light by the element under test and emitted to the detection unit. Next, in step S4, the phase difference angle between the absorption axis of the first linear polarizer of the component under test and the fast axis of the quarter-wave plate of the component under test is calculated based on the circularly polarized light. In the following description, each of the above steps will be explained in detail.
同時參照第1圖與第3圖,首先,可藉由光源110發射光線L至偏光調整組件120。舉例來說,光源110可為雷射光之光源110,且光源110可發射波長為532nm之綠光雷射光至偏光調整組件120的消偏器122。在一些實施方式中,偏光調整組件120的消偏器122可將接收到的光線L轉換為非偏振光P1,並將非偏振光P1發射至偏光調整組件120的第二線偏振片124。偏光調整組件120的第二線偏振片124可將接收到的非偏振光P1轉換為線性偏振光P2,並將線性偏振光P2發射至待測元件200。Referring to FIGS. 1 and 3 simultaneously, first, the
在一些實施方式中,待測元件200具有第一線偏振片210、四分之一波片220以及位於第一線偏振片210與四分之一波片220之間的基板230。舉例來說,待測元件200可為虛擬實境(VR)眼鏡的鏡片,但並不以此為限。在一些實施方式中,待測元件200的四分之一波片220的中心波長相同於光線L的波長。舉例來說,待測元件200的四分之一波片220的中心波長與光線L的波長可為532nm,但並不此為限。待測元件200可將接收到的線性偏振光P2轉換為圓偏振光P3,並將圓偏振光P3發射至檢測單元130的收光面132。In some embodiments, the device under
在一些實施方式中,檢測單元130可包括具有預設電路佈局或內建應用程式的處理器或晶片。檢測單元130可根據圓偏振光P3計算待測元件200的橢圓偏振率(Ellipticity)。詳細來說,可藉由轉動系統旋轉偏光調整組件120的第二線偏振片124或藉由轉動系統旋轉承載待測元件200的載台(圖未示)以獲得待測元件200各處的光強度與旋光強度,並且檢測單元130可根據待測元件200的光強度與旋光強度計算待測元件200的最大橢圓偏振率。舉例來說,檢測單元130可在第二線偏振片124或承載待測元件200的載台每旋轉10度時,便進行一次光強度與旋光強度的測量,並且檢測單元130可使用史托克斯向量(Stokes vector)計算待測元件200的橢圓偏振率。橢圓偏振率的數學式可為
,其中I、Q、U及V為史托克斯向量的四個參數。
In some embodiments, the
在計算得到待測元件200的最大橢圓偏振率後,檢測單元130可將最大橢圓偏振率之數值轉換為待測元件200的第一線偏振片210的吸收軸(見第3圖)與待測元件200的四分之一波片220的快軸(見第3圖)之間的相差角度。舉例來說,方位角與四分之一波片220的快軸所夾的角度a減去方位角與第一線偏振片210的吸收軸所夾的角度b(負數)後,再減去理論數值(即135度),即可得到相差角度。After calculating the maximum elliptical polarization rate of the component under
具體而言,當相差角度趨近於0時,光學檢測系統100可判定待測元件200的第一線偏振片210的吸收軸(亦即線偏振方向)以及四分之一波片220的快軸(亦即圓偏振方向)並無產生偏移,可確保每一經由光學檢測系統100檢測的待測元件200皆具有相同品質表現。此外,光學檢測系統100的檢測單元130在檢測待測元件200時,並不需要輸入待測元件200的材料相關參數(例如厚度、折射率以及消光係數),可節省光學檢測系統100進行檢測的時間並降低整體操作複雜度。Specifically, when the phase difference angle approaches 0, the
第4A圖至第7圖繪示根據本揭露不同實施方式之相差角度與橢圓偏振率的關係圖。請參照第1圖、第4A圖以及第4B圖,當待測元件200的表面為平面時,光線L的參考波長以及四分之一波片220的中心波長可為532nm。在第4A圖與第4B圖中,水平軸為相差角度的數值(度數),垂直軸為橢圓偏振率的數值(最大為1)。菱形符號為參考波長532nm的實驗數值。由菱形符號所組成的量測線段410以及實驗線段420可得知當橢圓偏振率(Ellipticity)越大時,則相差角度越小,代表待測元件200的第一線偏振片210的吸收軸(亦即線偏振方向)以及四分之一波片220的快軸(亦即圓偏振方向)對準得越準確。舉例來說,可藉由數學模擬軟體(例如LightTools)得到實驗線段420。在真實的量測線段410以及實驗數據模型的實驗線段420中,橢圓偏振率皆與相差角度呈現負相關的特性,也就是橢圓偏振率越大則相差角度的絕對值越小。此外,可藉由量測線段410計算R平方(R squared)。R平方也可稱為判定係數(Coefficient of determination)。當R平方越趨近1時,模型的解釋力越高,並且只要R平方大於0.75即具有模型解釋力。在本實施方式中,真實的量測線段410的R平方可為0.78。Figures 4A to 7 illustrate the relationship between phase difference angle and elliptical polarization rate according to different embodiments of the present disclosure. Please refer to Figure 1, Figure 4A and Figure 4B. When the surface of the component under
請參照第1圖、第5A圖、第5B圖以及第5C圖,當待測元件200的表面為曲面時,光線L的參考波長以及四分之一波片220的中心波長可為589nm。在第5圖中,水平軸為相差角度的數值,垂直軸為橢圓偏振率的數值。根據量測線段510以及實驗線段520可得知當橢圓偏振率(Ellipticity)越大時,則相差角度越小,代表待測元件200的第一線偏振片210的吸收軸(亦即線偏振方向)以及四分之一波片220的快軸(亦即圓偏振方向)未產生偏移。舉例來說,可藉由數學模擬軟體(例如Zemax)得到實驗線段520。在真實的量測線段510以及實驗數據模型的實驗線段520中,橢圓偏振率皆與相差角度呈現負相關的特性,也就是橢圓偏振率越大則相差角度的絕對值越小。此外,在本實施方式中,真實的量測線段410的R平方可為0.94。第5C圖繪示即使量測線段510以及實驗線段520具有些微數據差異,但量測線段510以及實驗線段520的橢圓偏振率與相差角度依然呈現負相關的特性。Please refer to Figure 1, Figure 5A, Figure 5B and Figure 5C. When the surface of the component under
第6A圖的實驗線段610繪示相差角度在1度至1.5度與橢圓偏振率之間的數值變化。第6B圖的實驗線段620繪示相差角度在1.6度至5度與橢圓偏振率之間的數值變化。請參照第1圖、第6A圖以及第6B圖,當待測元件200的表面為曲面時,光線L的參考波長以及四分之一波片220的中心波長可約為587.6nm。舉例來說,可藉由數學模擬軟體(例如Zemax)得到實驗線段610以及實驗線段620。在第6A圖與第6B圖中,水平軸為相差角度的數值,垂直軸為橢圓偏振率的數值。當相差角度約為1度時,則具有最大的橢圓偏振率(Ellipticity),即橢圓偏振率約為0.966。當相差角度約為5度時,則具有較小的橢圓偏振率(Ellipticity),即橢圓偏振率約為0.84。第6A圖與第6B圖的橢圓偏振率皆與相差角度呈現負相關的特性,也就是橢圓偏振率越大則相差角度的絕對值越小。此外,在本實施方式中,實驗線段610以及實驗線段620的R平方可為0.999。The experimental line segment 610 in Figure 6A shows the numerical change of the phase difference angle between 1 degree and 1.5 degrees and the elliptical polarization rate. The experimental line segment 620 in Figure 6B shows the numerical change of the phase difference angle between 1.6 degrees and 5 degrees and the elliptical polarization rate. Please refer to Figure 1, Figure 6A and Figure 6B. When the surface of the component under
第7圖的理想線段710繪示光源110無雷射光斑時待測元件200的橢圓偏振率與相差角度的數值變化。第7圖的量測線段720繪示光源110的雷射光斑為3公釐(mm)時待測元件200的橢圓偏振率與相差角度的數值變化。第7圖的量測線段730繪示光源110的雷射光斑為5公釐(mm)時待測元件200的橢圓偏振率與相差角度的數值變化。請參照第1圖以及第7圖,水平軸為相差角度的數值,垂直軸為橢圓偏振率的數值。光源110的雷射光斑為3公釐(mm)可對應表達光線L從光軸偏移了1.5mm,光源110的雷射光斑為5mm可對應表達光線L從光軸偏移了2.5mm。對於曲面的待測元件200來說,理想線段710與具有雷射光斑的量測線段720以及量測線段730的數值具有些微差異,但橢圓偏振率與相差角度仍然呈現負相關的特性,也就是橢圓偏振率越大則相差角度的絕對值越小。The ideal line segment 710 in Figure 7 illustrates the numerical changes in the elliptical polarization rate and phase difference angle of the device under
第8A圖繪示根據本揭露一實施方式之角度與光強度的關係圖。第8B圖繪示根據本揭露一實施方式之角度與橢圓偏振率的關係圖。第8A圖的水平軸為相差角度的數值,垂直軸為光強度的數值。第8B圖的水平軸為相差角度的數值,垂直軸為橢圓偏振率的數值。在一些實施方式中,橢圓偏振率的數學式可為
,其中I、Q、U及V為史托克斯向量的四個參數。舉例來說,量測線段810的角度在130度與140度之間時,待測元件200具有最大光強度,即具有最大的I參數及V參數。在待測元件200具有最大的光強度(即具有最大的I參數及V參數)時,量測線段820具有待測元件200最大的橢圓偏振率,即橢圓偏振率約為0.99。也就是說,待測元件200的I參數及V參數將影響待測元件200的橢圓偏振率的數值。
Figure 8A is a diagram illustrating the relationship between angle and light intensity according to an embodiment of the present disclosure. Figure 8B is a diagram illustrating the relationship between angle and elliptical polarization rate according to an embodiment of the present disclosure. The horizontal axis of Figure 8A is the value of the phase difference angle, and the vertical axis is the value of the light intensity. The horizontal axis of Figure 8B is the value of the phase difference angle, and the vertical axis is the value of the elliptical polarization rate. In some embodiments, the mathematical formula for the elliptical polarization rate can be , where I, Q, U and V are the four parameters of the Stokes vector. For example, when the angle of the measurement line segment 810 is between 130 degrees and 140 degrees, the component under
在以下敘述中,將說明其他形式的光學檢測系統。In the following description, other forms of optical detection systems will be described.
第9圖繪示根據本揭露另一實施方式之光學檢測系統100a運作時的示意圖。與第1圖所示之實施方式不同地方在於,光學檢測系統100a還進一步包括縮束鏡140。縮束鏡140位於待測元件200與檢測單元130之間。當圓偏振光P3經過表面為曲面的待測元件200後可能會放大光斑直徑,可藉由縮束鏡140將經過待測元件200的圓偏振光P3之光斑直徑縮小至0.1mm與5mm之間,使得縮小後的圓偏振光P3之雷射光斑可完整地被檢測單元130接收。Figure 9 is a schematic diagram illustrating the operation of the
綜上所述,光學檢測系統的檢測單元可根據通過待測元件的圓偏振光計算待測元件的第一線偏振片的吸收軸與待測元件的四分之一波片的快軸之間的相差角度。當相差角度趨近於0時,光學檢測系統可判定待測元件的第一線偏振片的吸收軸(亦即線偏振方向)以及四分之一波片的快軸(亦即圓偏振方向)並無產生偏移,可確保每一經由光學檢測系統檢測的待測元件皆具有相同品質表現。此外,光學檢測系統的檢測單元在檢測待測元件時,並不需要輸入待測元件的材料相關參數(例如厚度、折射率以及消光係數),可節省光學檢測系統進行檢測的時間並降低整體操作複雜度。To sum up, the detection unit of the optical detection system can calculate the relationship between the absorption axis of the first linear polarizer of the component under test and the fast axis of the quarter-wave plate of the component under test based on the circularly polarized light passing through the component under test. phase difference angle. When the phase difference angle approaches 0, the optical detection system can determine the absorption axis (i.e., linear polarization direction) of the first linear polarizer of the component under test and the fast axis (i.e., circular polarization direction) of the quarter-wave plate. There is no offset, ensuring that every component under test inspected by the optical inspection system has the same quality performance. In addition, when the detection unit of the optical detection system detects the component to be tested, it does not need to input the material-related parameters of the component to be tested (such as thickness, refractive index, and extinction coefficient), which can save the inspection time of the optical detection system and reduce the overall operation. complexity.
前述概述了幾個實施方式的特徵,使得本領域技術人員可以更好地理解本揭露的態樣。本領域技術人員應當理解,他們可以容易地將本揭露用作設計或修改其他過程和結構的基礎,以實現與本文介紹的實施方式相同的目的和/或實現相同的優點。本領域技術人員還應該認識到,這樣的等效構造不脫離本揭露的精神和範圍,並且在不脫離本揭露的精神和範圍的情況下,它們可以在這裡進行各種改變,替換和變更。The foregoing outlines features of several embodiments so that those skilled in the art may better understand aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also recognize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they can be variously changed, substituted, and altered herein without departing from the spirit and scope of the present disclosure.
100:光學檢測系統
100a:光學檢測系統
110:光源
112:出光面
120:偏光調整組件
122:消偏器
124:第二線偏振片
130:檢測單元
132:收光面
140:縮束鏡
200:待測元件
210:第一線偏振片
220:四分之一波片
230:基板
410:量測線段
420:實驗線段
510:量測線段
520:實驗線段
610:實驗線段
620:實驗線段
710:理想線段
720:量測線段
730:量測線段
810:量測線段
820:量測線段
a:角度
b:角度
L:光線
P1:非偏振光
P2:線性偏振光
P3:圓偏振光
S1:步驟
S2:步驟
S3:步驟
S4:步驟
100:
當結合隨附諸圖閱讀時,得自以下詳細描述最佳地理解本揭露之一實施方式。應強調,根據工業上之標準實務,各種特徵並未按比例繪製且僅用於說明目的。事實上,為了論述清楚,可任意地增大或減小各種特徵之尺寸。 第1圖繪示根據本揭露一實施方式之光學檢測系統運作時的示意圖。 第2圖繪示根據本揭露一實施方式之光學檢測系統的操作方法的流程圖。 第3圖繪示根據本揭露一實施方式之快軸與吸收軸的關係圖。 第4A圖至第7圖繪示根據本揭露不同實施方式之相差角度與橢圓偏振率的關係圖。 第8A圖繪示根據本揭露一實施方式之角度與光強度的關係圖。 第8B圖繪示根據本揭露一實施方式之角度與橢圓偏振率的關係圖。 第9圖繪示根據本揭露另一實施方式之光學檢測系統運作時的示意圖。 One embodiment of the present disclosure is best understood from the following detailed description when read in conjunction with the accompanying drawings. It is emphasized that, in accordance with standard industry practice, various features are not drawn to scale and are for illustrative purposes only. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion. Figure 1 is a schematic diagram illustrating the operation of an optical detection system according to an embodiment of the present disclosure. FIG. 2 illustrates a flowchart of an operating method of an optical detection system according to an embodiment of the present disclosure. Figure 3 is a diagram illustrating the relationship between the fast axis and the absorption axis according to an embodiment of the present disclosure. Figures 4A to 7 illustrate the relationship between phase difference angle and elliptical polarization rate according to different embodiments of the present disclosure. Figure 8A is a diagram illustrating the relationship between angle and light intensity according to an embodiment of the present disclosure. Figure 8B is a diagram illustrating the relationship between angle and elliptical polarization rate according to an embodiment of the present disclosure. Figure 9 is a schematic diagram illustrating the operation of an optical detection system according to another embodiment of the present disclosure.
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in order of storage institution, date and number) without Overseas storage information (please note in order of storage country, institution, date, and number) without
100:光學檢測系統 100: Optical detection system
110:光源 110:Light source
112:出光面 112: Shiny surface
120:偏光調整組件 120:Polarization adjustment component
122:消偏器 122:Depolarizer
124:第二線偏振片 124: Second linear polarizer
130:檢測單元 130:Detection unit
132:收光面 132: Glossy surface
200:待測元件 200: component under test
210:第一線偏振片 210: The first linear polarizer
220:四分之一波片 220: Quarter wave plate
230:基板 230:Substrate
L:光線 L:Light
P1:非偏振光 P1: unpolarized light
P2:線性偏振光 P2: Linearly polarized light
P3:圓偏振光 P3: Circularly polarized light
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210653794.6A CN115031928A (en) | 2022-06-10 | 2022-06-10 | Optical detection system and method of operation thereof |
CN202210653794.6 | 2022-06-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI808798B TWI808798B (en) | 2023-07-11 |
TW202348954A true TW202348954A (en) | 2023-12-16 |
Family
ID=83123936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111122521A TWI808798B (en) | 2022-06-10 | 2022-06-16 | Optical detecting system and operating method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115031928A (en) |
TW (1) | TWI808798B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116296291A (en) * | 2023-03-21 | 2023-06-23 | 业成科技(成都)有限公司 | Automatic optical included angle measuring system |
CN117782525B (en) * | 2023-11-22 | 2024-10-25 | 珠海广浩捷科技股份有限公司 | VR lens QWP film and linear polarizer positioning test machine and positioning method |
CN118347707B (en) * | 2024-06-17 | 2024-09-06 | 浙江怡钛积科技有限公司 | Method for measuring and evaluating polaroid under oblique incidence and application thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114035338B (en) * | 2021-11-23 | 2024-05-07 | 四川中科朗星光电科技有限公司 | Device for generating mixed-order Poincare light beam |
-
2022
- 2022-06-10 CN CN202210653794.6A patent/CN115031928A/en active Pending
- 2022-06-16 TW TW111122521A patent/TWI808798B/en active
Also Published As
Publication number | Publication date |
---|---|
CN115031928A (en) | 2022-09-09 |
TWI808798B (en) | 2023-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW202348954A (en) | Optical detecting system and operating method thereof | |
WO2015101352A1 (en) | Optical polarisation modulation and detection apparatus and detection method | |
WO2020215199A1 (en) | Surface defect detection system and method | |
JP4921090B2 (en) | Optical anisotropy parameter measuring method and measuring apparatus | |
TWI295369B (en) | Inspection method and device for deformation of lens | |
JP4663529B2 (en) | Optical anisotropy parameter measuring method and measuring apparatus | |
US6215549B1 (en) | Apparatus for measuring optical characteristics | |
JP2006243311A (en) | Analysis method and analysis apparatus for optical characteristic of optical medium, and production monitor method | |
Negara et al. | Imaging ellipsometry for curved surfaces | |
CN114812889A (en) | Large-caliber optical element stress detection device and detection method thereof | |
CN106501279A (en) | A kind of low sub-surface damage detection method of firmly crisp optical material | |
CN212622224U (en) | Normal incidence formula transmitted light phase information representation light path system | |
TWI482958B (en) | Detecting apparatus and detecting method | |
CN212932371U (en) | Reflected light phase information characterization device | |
CN106154593B (en) | Anisotropy measurement system, anisotropy measurement method and calibration method thereof | |
JP2007286011A (en) | Device and method for measuring optical characteristics | |
TWI854639B (en) | Measuring device and method for multilayer film | |
JP4728830B2 (en) | Optical anisotropy parameter measuring method and measuring apparatus | |
JP2007155480A (en) | Surface measurement apparatus | |
JP2009058464A (en) | Method and apparatus for measuring optical axis | |
KR102517637B1 (en) | Polarization analysis apparatus and method for lens quality inspection, and polarization analysis system using the same | |
US20240369354A1 (en) | Multilayer film measuring device and multilayer film measuring method | |
KR102045442B1 (en) | Ellipsometer | |
CN212622220U (en) | Normal incidence formula reverberation phase information representation light path system | |
TWI814412B (en) | Multi-directional inspection system for mura detection and the method thereof |