TW202347035A - 用於判定半導體製造程序中之至少一控制參數之校正之方法 - Google Patents

用於判定半導體製造程序中之至少一控制參數之校正之方法 Download PDF

Info

Publication number
TW202347035A
TW202347035A TW111125239A TW111125239A TW202347035A TW 202347035 A TW202347035 A TW 202347035A TW 111125239 A TW111125239 A TW 111125239A TW 111125239 A TW111125239 A TW 111125239A TW 202347035 A TW202347035 A TW 202347035A
Authority
TW
Taiwan
Prior art keywords
data
correction
weights
measures
metrology
Prior art date
Application number
TW111125239A
Other languages
English (en)
Inventor
羅伊 渥克曼
薩拉希 羅伊
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202347035A publication Critical patent/TW202347035A/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70525Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

本發明描述一種用於判定至少一個控制參數之一校正之方法及相關聯電腦程式以及裝置,該至少一個控制參數用於控制一半導體製造程序以便在一基板上製造半導體器件。該方法包含:獲得與該半導體製造程序或其至少部分相關之度量衡資料;獲得與該半導體製造程序或其至少部分相關之相關聯資料,該相關聯資料提供用於解譯該度量衡資料之資訊;以及基於該度量衡資料及該相關聯資料判定該校正,其中該判定使得經判定校正取決於應基於該度量衡資料之該解譯校正該度量衡資料中之一趨勢及/或事件之一程度。

Description

用於判定半導體製造程序中之至少一控制參數之校正之方法
本發明係關於半導體製造程序,詳言之係關於半導體製造程序中之檢測或度量衡之方法。
微影裝置為經建構以將所要之圖案施加至基板上之機器。微影裝置可用於例如積體電路(IC)之製造中。微影裝置可例如將圖案化器件(例如遮罩)處之圖案(通常亦稱為「設計佈局」或「設計」)投影至設置於基板(例如晶圓)上的輻射敏感材料(抗蝕劑)層上。
為了將圖案投影於基板上,微影裝置可使用電磁輻射。此輻射之波長判定可形成於基板上之特徵的最小大小。當前在使用中之典型波長為365 nm (i線)、248 nm、193 nm及13.5 nm。相較於使用例如具有193 nm之波長之輻射的微影裝置,使用具有介於4 nm至20 nm之範圍內之波長(例如6.7 nm或13.5 nm)之極紫外線(EUV)輻射的微影裝置可用以在基板上形成較小特徵。
低k 1微影可用於處理尺寸小於微影裝置之經典解析度極限的特徵。在此程序中,可將解析度公式表達為CD = k 1×λ/NA,其中λ為所採用輻射之波長,NA為微影裝置中之投影光學器件之數值孔徑,CD為「臨界尺寸」(通常為經印刷之最小特徵大小,但在此情況下為半間距)且k 1為經驗解析度因數。一般而言,k 1愈小,則在基板上再生類似於由電路設計者規劃之形狀及尺寸以便達成特定電功能性及效能的圖案變得愈困難。為了克服此等困難,可將複雜微調步驟應用於微影投影裝置及/或設計佈局。此等步驟包括例如但不限於NA之最佳化、定製照明方案、使用相移圖案化器件、諸如設計佈局中之光學近接校正(OPC,有時亦被稱作「光學及程序校正」)之設計佈局的各種最佳化,或通常經定義為「解析度增強技術」(RET)之其他方法。或者,用於控制微影裝置之穩定性之嚴格控制迴路可用以改良在低k 1下之圖案之再生。
此等嚴格控制迴路通常係基於使用度量衡工具而獲得之度量衡資料,該度量衡工具量測經施加圖案或表示經施加圖案之度量衡目標的特性。一般而言,度量衡工具係基於圖案及/或目標之位置及/或尺寸的光學量測。本質上假定此等光學量測表示製造積體電路之程序之品質。
可自先前曝光晶圓之度量衡資料判定IC製造程序之程序校正(術語晶圓及基板在整個本發明中可互換及/或同義地使用),以便最小化隨後曝光晶圓之度量衡資料中之任何誤差。然而,有時可難以解譯度量衡資料,亦即,度量衡資料未必始終表示最佳校正。
本發明人之一目標為解決目前先進技術之所提及缺點。
在本發明之第一態樣中,提供一種判定至少一個控制參數之校正之方法,該至少一個控制參數用於控制半導體製造程序之至少部分以便在基板上製造半導體器件,該方法包含:獲得與該半導體製造程序或其至少部分相關之度量衡資料;獲得與該半導體製造程序或其至少部分相關之相關聯資料,該相關聯資料提供用於解譯度量衡資料之資訊;基於使用該相關聯資料解譯該度量衡資料而對該度量衡資料進行時間濾波;以及基於該時間濾波度量衡資料及該相關聯資料判定該校正,其中該判定使得經判定校正取決於應基於該度量衡資料之該解譯校正該度量衡資料中之趨勢及/或事件的程度。
亦揭示一種電腦程式及可用於執行第一態樣之方法之各種裝置。
在本發明文件中,術語「輻射」及「光束」用以涵蓋所有類型之電磁輻射,包括紫外線輻射(例如具有365奈米、248奈米、193奈米、157奈米或126奈米之波長)及極紫外線(EUV輻射,例如具有在約5奈米至100奈米之範圍內之波長)。
如本文中所採用之術語「倍縮光罩」、「遮罩」或「圖案化器件」可廣泛地解譯為係指可用以向入射輻射光束賦予圖案化橫截面之通用圖案化器件,該圖案化橫截面對應於待在基板之目標部分中產生之圖案。在此內容脈絡中,亦可使用術語「光閥」。除經典遮罩(透射或反射;二元、相移、混合式等)以外,其他此類圖案化器件之實例包括: -可程式化鏡面陣列。關於此類鏡面陣列之更多資訊在美國專利第5,296,891號及第5,523,193號中給出,該等美國專利以引用之方式併入本文中。 -可程式化LCD陣列。在以引用方式併入本文中之美國專利第5,229,872號中給出此類構造之一實例。
圖1示意性地描繪微影裝置LA。該微影裝置LA包括:照明系統(亦被稱作照明器) IL,其經組態以調節輻射光束B (例如UV輻射、DUV輻射或EUV輻射);支撐結構(例如遮罩台) MT,其經建構以支撐圖案化器件(例如遮罩) MA且連接至經組態以根據某些參數來準確地定位該圖案化器件MA之第一定位器PM;基板台(例如晶圓台) WT,其經建構以固持基板(例如抗蝕劑塗佈晶圓) W且連接至經組態以根據某些參數來準確地定位該基板之第二定位器PW;以及投影系統(例如折射投影透鏡系統) PS,其經組態以將由圖案化器件MA賦予至輻射光束B之圖案投影至基板W之目標部分C (例如包含一或多個晶粒)上。
在操作中,照明器IL例如經由光束遞送系統BD自輻射源SO接收輻射光束。照明系統IL可包括用於導向、塑形或控制輻射的各種類型之光學組件,諸如,折射、反射、磁性、電磁、靜電或其他類型之光學組件,或其任何組合。照明器IL可用以調節輻射束B,以在圖案化器件MA之平面處在其橫截面中具有所要空間及角強度分佈。
本文中所使用之術語「投影系統」PS應被廣泛地解譯為涵蓋適於所使用之曝光輻射或適於諸如浸潤液體之使用或真空之使用之其他因素的各種類型之投影系統,包括折射、反射、反射折射、合成、磁性、電磁及靜電光學系統,或其任何組合。可認為本文中對術語「投影透鏡」之任何使用與更一般之術語「投影系統」PS同義。
微影裝置可屬於如下類型:其中基板之至少一部分可由具有相對較高折射率之液體(例如水)覆蓋,以便填充投影系統與基板之間的空間-此亦被稱作浸潤微影。關於浸潤技術之更多資訊在美國專利第6,952,253號及PCT公開案第WO99-49504號中給出,該美國專利及該PCT公開案以引用之方式併入本文中。
微影裝置LA亦可屬於具有兩個(雙載物台)或多於兩個基板台WT及例如兩個或多於兩個支撐結構MT (未展示)之類型。在此等「多載物台」機器中,可並行地使用額外台/結構,或可對一或多個台進行預備步驟,同時一或多個其他台用於將圖案化器件MA之設計佈局曝光至基板W上。
在操作中,輻射光束B入射於固持於支撐結構(例如,遮罩台MT)上之圖案化器件(例如遮罩MA)上且由該圖案化器件MA圖案化。在已橫穿遮罩MA的情況下,輻射光束B傳遞通過投影系統PS,該投影系統PS將該光束聚焦至基板W之目標部分C上。藉助於第二定位器PW及位置感測器IF (例如,干涉量測器件、線性編碼器、2D編碼器或電容式感測器),可準確地移動該基板台WT,例如以便將不同目標部分C定位於輻射光束B之路徑中。類似地,第一定位器PM且有可能另一位置感測器(其未在圖1中明確地描繪)可用以相對於輻射光束B之路徑準確地定位遮罩MA。可使用遮罩對準標記M1、M2及基板對準標記P1、P2來對準遮罩MA及基板W。雖然如所說明之基板對準標記佔據專用目標部分,但該等基板對準標記可位於目標部分之間的空間中(此等基板對準標記被稱為切割道對準標記)。
如圖2中所展示,微影裝置LA可形成微影單元LC,有時亦被稱作微影單元(lithocell)或(微影(litho))叢集之部分,該微影單元常常亦包括用以對基板W執行曝光前程序及曝光後程序之裝置。習知地,此等包括沈積抗蝕劑層之旋塗器SC、顯影經曝光之抗蝕劑的顯影器DE、例如用於調節基板W之溫度(例如用於調節抗蝕劑層中之溶劑)的冷卻板CH及烘烤板BK。基板處置器或機器人RO自輸入/輸出埠I/O1、I/O2拾取基板W、在不同程序裝置之間移動基板W且將基板W遞送至微影裝置LA之裝載匣LB。微影單元中常常亦統稱為塗佈顯影系統之器件通常處於塗佈顯影系統控制單元TCU之控制下,該塗佈顯影系統控制單元自身可藉由監督控制系統SCS控制,該監督控制系統亦可例如經由微影控制單元LACU控制微影裝置LA。
為了正確且一致地曝光由微影裝置LA曝光之基板W,需要檢測基板以量測經圖案化結構之屬性,諸如後續層之間的疊對誤差、線厚度、臨界尺寸(CD)等等。出於此目的,可在微影單元LC中包括檢測工具(未展示)。若偵測到誤差,則可對後續基板之曝光或對待對基板W執行之其他處理步驟進行例如調整,在同一批量或批次之其他基板W仍待曝光或處理之前進行檢測的情況下尤其如此。
亦可被稱作度量衡裝置之檢測裝置用以判定基板W之屬性,且詳言之,判定不同基板W之屬性如何變化或與同一基板W之不同層相關聯之屬性在層與層間如何變化。檢測裝置可替代地經建構以識別基板W上之缺陷,且可例如為微影單元LC之一部分,或可整合至微影裝置LA中,或可甚至為單機器件。檢測裝置可量測潛影(在曝光之後在抗蝕劑層中之影像)上之屬性,或半潛影(在曝光後烘烤步驟PEB之後在抗蝕劑層中之影像)上之屬性,或經顯影抗蝕劑影像(其中抗蝕劑之曝光部分或未曝光部分已被移除)上之屬性,或甚至經蝕刻影像(在諸如蝕刻之圖案轉印步驟之後)上之屬性。
通常微影裝置LA中之圖案化程序為在處理中之最重要步驟中的一者,其需要基板W上之結構之尺寸標定及置放之高準確度。為確保此高準確度,三個系統可經組合於所謂之「整體」控制環境中,如圖3中所示意性地描繪。此等系統中之一者係微影裝置LA,其(實際上)連接至度量衡工具MT (第二系統)且連接至電腦系統CL (第三系統)。此「整體」環境之關鍵在於最佳化此等三個系統之間的協作以增強總體程序窗且提供嚴格控制迴路,從而確保由微影裝置LA執行之圖案化保持在程序窗內。程序窗界定一系列程序參數(例如劑量、焦點、疊對),在該等程序參數內,特定製造程序產生經界定結果(例如功能性半導體器件)-通常在該經界定結果內,允許微影程序或圖案化程序中之程序參數變化。
電腦系統CL可使用待圖案化之設計佈局(之一部分)以預測使用哪些解析度增強技術且執行計算微影模擬及計算,以判定哪些遮罩佈局及微影裝置設定達成圖案化程序之最大總體程序窗(在圖3中由第一標度SC1中之雙白色箭頭描繪)。通常,解析度增強技術經配置以匹配微影裝置LA之圖案化可能性。電腦系統CL亦可用於偵測在程序窗內何處微影裝置LA目前正操作(例如,使用來自度量衡工具MT之輸入),以便預測由於例如次佳處理而是否可存在缺陷(在圖3中由第二標度SC2中之指向「0」的箭頭描繪)。
度量衡工具MT可將輸入提供至電腦系統CL以實現準確模擬及預測,且可將回饋提供至微影裝置LA以識別例如微影裝置LA之校準狀態中的可能漂移(在圖3中由第三標度SC3中之多個箭頭描繪)。
微影裝置LA經組態以將圖案準確地再生至基板上。所施加之特徵之位置及尺寸需要在某些容許度內。位置誤差可由於疊對誤差(常常被稱作「疊對」)而出現。疊對為相對於第二曝光期間之第二特徵在第一曝光期間置放第一特徵時的誤差。微影裝置藉由在圖案化之前將各晶圓與參考件準確地對準而最小化疊對誤差。此係藉由使用對準感測器量測基板上之對準標記之位置完成。可在以引用方式併入本文中之美國專利申請公開案第US20100214550號中找到關於對準工序之更多資訊。舉例而言,圖案尺寸標定(例如CD)誤差可在基板相對於微影裝置之焦平面並未正確地定位時出現。此等焦點位置誤差可與基板表面之非平整度相關聯。微影裝置藉由在圖案化之前使用位階感測器量測基板表面構形而使此等焦點位置誤差最小化。在後續圖案化期間施加基板高度校正以確保圖案化器件至基板上之正確成像(聚焦)。可在以引用方式併入本文中的美國專利申請公開案第US20070085991號中找到關於位階感測器系統之更多資訊。
除微影裝置LA及度量衡裝置MT以外,在IC生產期間亦可使用其他處理裝置。蝕刻站(未展示)在圖案曝光至抗蝕劑中之後處理基板。蝕刻站將圖案自抗蝕劑轉印至抗蝕劑層下方之一或多個層中。通常,蝕刻係基於施加電漿介質。局部蝕刻特性可例如使用基板之溫度控制或使用電壓控制環導向電漿介質來控制。可在以引用方式併入本文中之國際專利申請公開案第WO2011081645號及美國專利申請公開案第US 20060016561號中找到關於蝕刻控制之更多資訊。
在IC之製造期間,極為重要的係使用處理裝置(諸如微影裝置或蝕刻站)處理基板的程序條件保持穩定以使得特徵之屬性保持在某些控制限度內。程序之穩定性對於IC之功能性部分之特徵(亦即產品特徵)尤其重要。為了保證穩定處理,程序控制能力需要就位。程序控制涉及監測處理資料及用於程序校正之構件之實施,例如基於處理資料之特性控制處理裝置。程序控制可基於藉由度量衡裝置MT進行之週期性量測,常常被稱作「進階程序控制」(亦進一步被稱作APC)。可在以引用方式併入本文中之美國專利申請公開案第US20120008127號中找到關於APC之更多資訊。典型APC實施涉及對基板上之度量衡特徵之週期性量測,從而監測及校正與一或多個處理裝置相關聯之漂移。度量衡特徵反映了對產品特徵之程序變化之回應。
在US20120008127中,參考初級參考基板校準微影裝置。使用無需與經校準微影裝置相同之裝置,獲得初級參考基板之裝置特定指紋(fingerprint)。使用相同設置,接著獲得次級參考基板之裝置特定指紋。自次級參考基板之裝置特定指紋減去初級參考基板之裝置特定指紋以獲得並儲存次級參考基板之裝置獨立指紋。次級參考基板及所儲存裝置獨立指紋隨後替代初級參考基板一起用作待校準之微影裝置之校準之參考。可在較少使用昂貴初級參考基板且較少中斷正常生產之情況下執行微影工具之叢集之初始設置。初始設置可與裝置之正在進行的監測及重新校準整合。
術語指紋可指經量測信號之主要(系統性)貢獻因素(「潛在因素」),且詳言之係指與晶圓上之效能影響有關或與先前處理步驟有關的貢獻因素。此指紋可指基板(柵格)圖案(例如,來自對準、位階量測、疊對、焦點、CD)、場圖案(例如,來自場內對準、位階量測、疊對、焦點、CD)、基板區帶圖案(例如,晶圓量測之最外半徑)或甚至與晶圓曝光相關之掃描儀量測中之圖案(例如,來自倍縮光罩對準量測、溫度/壓力/伺服剖面等之批次間加熱訊跡)。指紋可包含於指紋合集內,且可在其中經均勻或非均勻地編碼。
因而,APC識別諸如疊對之效能參數中之可校正變化,且將一組校正應用於一批次(批量)晶圓。在判定此等校正時,考量來自先前批次之校正以免過度校正量測中之雜訊。為了藉由先前批次進行之當前校正之適當平滑化,所考量之校正之歷史可匹配於當前批次之內容脈絡。就此而言,「內容脈絡」涵蓋識別出現於相同總工業程序內之變體之任何參數。層ID、層類型、產品ID、產品類型、倍縮光罩ID等等皆為內容脈絡參數,其可在成品效能中導致不同指紋。除了可用於大容量製造(high-volume manufacturing;HVM)設施中之個別掃描儀以外,用於塗佈、蝕刻及半導體製造中所涉及之其他步驟中之各者之個別工具亦可在不同批次之間或在不同晶圓之間變化。此等工具中之各者可將特定誤差「指紋」強加於產品上。在半導體製造之領域之外,類似情形可出現在任何工業程序中。
為確保適於特定內容脈絡之準確回饋控制,產品單元之不同批次(批量)可在APC演算法中被視為分離「執行緒」。內容脈絡資料可用以將各產品單元指派至正確執行緒。在製造工場通常藉由相同程序步驟生產大容量的僅幾個類型之產品之情況下,不同內容脈絡之數目可相對較小,且各執行緒中產品單元之數目將足夠允許雜訊之平滑化。具有共同內容脈絡之所有批次可經指派至其自身執行緒以最佳化回饋校正及最終效能。在鑄造廠在極小生產運作時間內生產許多不同類型之產品之情況下,內容脈絡可較常改變,且具有完全相同內容脈絡資料之批次之數目可相當小。僅使用內容脈絡資料以將批次指派至不同APC「執行緒」可接著產生大量執行緒,每執行緒具有小數目個批次。回饋控制之複雜性提高,且改良用於低容量產品之效能之能力降低。將不同批次組合成相同執行緒而不充分考量其不同內容脈絡亦將造成效能之損失。
圖4之(a)示意性地說明由APC系統250實施之一種類型之控制方法的操作。自儲存器252接收歷史效能資料PDAT,該歷史效能資料已由度量衡裝置240或其他構件自已由微影裝置200及微影單元之相關聯裝置處理的晶圓220獲得。回饋控制器300分析在用於最近批次之效能資料中所表示的效能參數,且計算經饋入至微影裝置200之程序校正PC。此等程序校正經添加至自微影裝置之對準感測器及其他感測器導出之晶圓特定校正,以針對各新批次之處理獲得經組合校正。
圖4之(b)示意性地說明由已知APC系統250實施之另一類型之控制方法的操作。如可看出,該回饋控制方法之一般形式與圖4之(a)所展示之回饋控制方法相同,但在此實例中,與歷史晶圓相關之內容脈絡資料及與當前晶圓相關之內容脈絡資料CTX係用於提供對效能資料PDAT之更有選擇性的使用。特定言之,雖然在較早實例中,在單一串流302及經修改方法中組合用於所有歷史晶圓之效能資料,但來自儲存器256之內容脈絡資料係用於將用於各歷史批次之效能資料指派至若干執行緒304中之一者。此等執行緒由回饋控制器300在平行回饋迴路中有效地處理,從而產生多個程序校正306,各程序校正基於執行緒304中之一者中之晶圓的歷史效能資料。接著,當接收新批次以供處理時,其個別內容脈絡資料CTX可用以選擇執行緒中之哪一者向當前晶圓提供適當內容脈絡資料306。
存在用於(回饋)控制資料(例如疊對指紋或EPE指紋)之時間處理及/或濾波之多種替代方法。此類方法包括使用移動平均值處理方法;例如加權移動平均值或指數加權移動平均值EWMA。其他方法包括機器學習模型,諸如神經網路(NN)。舉例而言,進階NN濾波方法可經訓練以基於歷史控制參數資料學習對時間行為之適當回應且例如在APC控制迴路中提供對下一批次之(回饋)校正預測。
此等現有方法之缺點在於:時間處理器(例如,NN或EWMA濾波器)僅基於控制參數之行為進行「學習」,如可自曝光結構之度量衡資料所判定。度量衡資料中之量測參數值(例如,疊對、邊緣置放誤差、臨界尺寸、焦點)隨此等控制參數之行為隨時間推移之改變而變化(亦即,針對同一控制輸入量測不同輸出)。控制參數可為IC製造中使用之掃描儀或其他工具(例如,蝕刻腔室、沈積腔室、接合工具等)之任何輸入參數,其控制製造程序(例如,曝光程序、蝕刻程序、沈積程序、接合程序等)。因此,輸出程序之控制,更特定言之經曝光及/或經蝕刻結構之形成、組態及/或定位取決於此等控制參數。因而,可控制此等控制參數以在回饋迴路中校正或補償度量衡資料中之任何量測誤差以校正未來晶圓/批次或作為前饋校正以校正當前晶圓/批次。注意,在此內容脈絡中之「學習」包括移動平均值實例中之平均化,因為移動平均值輸出有效地「學習」(在鬆散意義上)以藉由平均化資料對經輸入資料作出回應(其輸出回應基於先前少數輸入隨時間推移而改變)。
上文所描述之APC控制迴路具有以下主要任務:監測指示控制參數行為之漂移的度量衡資料中之漂移及判定對控制參數之適當校正以解決此漂移並將經量測度量衡參數值維持於規格內(亦即,某一可接受容許度或「程序窗」內),IC器件可預期在該規格內以良好機率起作用。
然而,並非應校正(或遵循)度量衡資料中之所有漂移,僅應校正(或遵循)由控制參數行為漂移(真實漂移)產生之產品特徵之實際參數中之漂移。可引起度量衡資料中之漂移之其他來源,例如度量衡工具漂移或未在產品結構中複製之度量衡目標缺陷(例如,由疊對目標變形引入之指紋)(由於其較大大小,度量衡目標可在經成像及/或經量測時表現得不同於產品結構)。此等漂移並非「真實的」,亦即其實際上並非指示影響產品結構品質之曝光(或其他處理)程序中之漂移。當然,已漂移且不太準確地進行量測,從而產生不合規格度量衡參數值之度量衡工具並不意謂晶圓上之產品不合規格;因此,此度量衡工具漂移應被APC迴路忽略。並且,對準標記變形可誘發漂移,該漂移可由APC迴路捕捉、不應遵循該漂移。
除了(例如,相對穩定)漂移以外,度量衡資料可指示程序中之「跳躍」或「步驟」,例如指示控制行為之較突然改變的量測參數值之突然相對較大改變。如同漂移,此類跳躍可指示應遵循及校正之某物或替代地應忽略之某物。指示應遵循之某物的跳躍之特定實例係在掃描儀之校準狀態經改變時。舉例而言,此可表現為放大率之跳躍。此狀態改變應併入於經更新回饋控制中,因為改變係永久性的。相比之下,掃描儀透鏡可經受透鏡「不確定原因非再現問題(hiccup)」或暫態透鏡跳躍,其自身亦可表現為放大率之跳躍。然而,此種透鏡不確定原因非再現問題為一次性偏差且回饋控制不應遵循此偏差,因為此問題將不存在於下一批次中。
APC控制器無法知曉應對哪些漂移及/或跳躍起作用及哪些應僅基於度量衡資料而忽略,因為此等不同類型之漂移及跳躍在度量衡資料內不可區分;亦即,透鏡不確定原因非再現問題及校準狀態跳躍在度量衡資料中將看起來相同。更特定言之,用作時間濾波器之神經網路可經訓練以學習如何對某些趨勢或事件(例如,漂移及/或跳躍)作出回應。然而,在無此等效應之基本原因之任何知識之情況下,基於神經網路之控制系統無法確定適當地作出回應(例如,遵循、忽略或部分地遵循/部分地忽略(例如,根據適當非二進位加權))。
圖5為與用於多個晶圓批次之程序之曝光、度量衡及APC控制相關的IC製造程序(例如,之部分)之流程圖。實例經縮寫且可取決於特定程序而包括蝕刻步驟、沈積步驟、晶圓接合步驟等。時間t展示為自左向右行進。批次N-1之曝光EXP N-1經執行且接著經量測MET N-1。執行模型化步驟MOD N-1以使模型與度量衡資料擬合,例如使得可更高效地描述度量衡資料。在APC控制器內,判定經濾波指紋FP (亦即,基於模型化度量衡資料及來自至少先前批次之指紋FP N-2,以及在NN用作時間濾波器時有可能之額外資料(例如,來自其他批次))。基於此指紋,判定用於下一批次(批次N)之程序校正PC N。雖然度量衡、模型化、指紋及校正判定步驟展示為同時進行,但其當然無法在字面上進行此等步驟,僅有效地在所展示流程之內容脈絡內進行。在此之後,使用經判定校正PC N執行批次N之曝光EXP N。然而,在此曝光時,發生干擾事件DE,其例如可表現為度量衡資料MET N之跳躍。流程之剩餘部分與批次N-1相同,但灰色箭頭指示此流程及模型化資料MOD N、下一批次之指紋及校正PC N+1將受干擾事件DE影響。
圖6說明控制參數可如何根據控制策略遵循資料,取決於跳躍或干擾事件係真事件抑或假/一次性事件。各標繪圖為取決於控制參數相對於時間(或批次),控制參數值PV或度量衡參數值(例如,疊對)之標繪圖。在各標繪圖中,直至批次N之各點表示該批次之值。批次N之點(表示為白色圓圈)指示跳躍(圖6之(a)及圖6之(b)中之正跳躍及圖6之(c)及圖6之(d)中之負跳躍)。除此之外,各批次由兩個點表示:第一點(黑色),其表示在跳躍為真事件時預期將看到之物;及第二點(灰色),其表示在跳躍為假/一次性事件時預期將看到之物。線表示控制信號校正,如可由APC迴路基於度量衡點所判定。同樣,在批次N之後,存在兩條線,遵循黑點之黑線及遵循灰點之灰線。控制信號校正(線)與對應控制參數點之間的距離指示控制效能;該線與對應點愈接近,校正及控制效能愈佳。
圖6之(a)展示正跳躍及基於EWMA之控制。EWMA在遵循真實跳躍時為緩慢的。不確定原因非再現問題(在此一個實例中)實際上有助於控制,因為其減小控制延遲(用於批次N+1之灰線相較於在無跳躍發生之情況下更接近於參數值)。圖6之(b)展示正跳躍及基於NN之控制。NN較佳遵循校正,且較佳遵循真實跳躍,從而假定其已經訓練以進行此操作。這亦將不確定原因非再現問題誤認為真實跳躍,此意謂在不確定原因非再現問題情況下,批次N+1可較佳不合規格地曝光。此亦可取決於如何訓練NN為另一方式;亦即,若其經訓練以忽略跳躍且假定其為不確定原因非再現問題或在其間某處(例如,當其已關於這兩者經訓練且可以中間校正回應時)。圖6之(c)及圖6之(d)分別展示圖6之(a)及圖6之(b)之等效標繪圖,具有負跳躍。比較圖6之(c)與圖6之(a),現在顯而易見,負不確定原因非再現問題(假跳躍)在此實例中顯著損害對多個未來批次之控制。
為了解決所引起之問題,提出時間資料處理器自先前曝光晶圓接收除度量衡資料之外的相關聯資料,該相關聯資料包含關於與一或多個控制參數相關之效應及/或事件之時間行為的資訊。
就此而言,相關聯資料可包含不取決於或不直接取決於使用本文中所揭示之方法校正/控制控制參數的資料。舉例而言,相關聯資料可包含並非直接自先前曝光/處理晶圓量測之資料。然而,相關聯資料可包括取決於校正控制參數之資料及/或直接自先前曝光/處理晶圓量測之資料(例如,不同類型之度量衡資料)。在任一情況下,在本發明之內容脈絡中,相關聯資料與度量衡資料之不同之處在於其僅用於解譯度量衡資料且未經主動校正;亦即,經判定校正未經判定或最佳化以用於校正相關聯資料(但當然,其可發生以校正/改良此資料,例如其中相關聯資料包含不同類型之度量衡資料)。
因而,本文中揭示一種用於判定至少一個控制參數之校正之方法,該至少一個控制參數用於控制半導體製造程序以便製造基板。該方法包含:獲得與該半導體製造程序或其至少部分相關之度量衡資料;獲得與該半導體製造程序或其至少部分相關之相關聯資料,該相關聯資料提供用於解譯度量衡資料之資訊;以及基於該度量衡資料及該相關聯資料判定該校正,其中該相關聯資料用於解譯該度量衡資料。
所提出方法與為已知概念之「重工決策者」之間的一個差異在於相關聯資料控制器在執行曝光或其他製造步驟之前進行干預,而重工決策者在曝光或其他製造步驟之後採取行動。
以此方式,至少一個控制參數耦接至該相關聯資料使得用於處理度量衡資料之時間資料處理器亦自自身未經控制(例如,不直接取決於控制參數)之相關聯資料接收作為輸入,但提供關於如何解譯及/或對度量衡資料作出回應之資訊。
當時間資料處理器以機器學習模型,諸如神經網路、因果卷積濾波器或長短期模型(LSTM)體現時,機器學習模型可使用度量衡資料及相關聯資料訓練及/或更新使得機器學習模型學習如何基於相關聯資料解譯度量衡資料。
對於時間資料處理器包含加權移動平均值判定(例如,EWMA)之基於物理性質的模型或實施例,時間資料處理器可包含用以處理相關聯資料及實施校正與如何解譯度量衡資料之基礎相依性的額外邏輯。舉例而言,在加權移動平均值的情況下,額外邏輯可包含控制常式,其解譯相關聯資料且基於相關聯資料改變移動平均值之加權參數。
圖7為圖5之等效流程圖,但併有所揭示之概念。許多步驟與圖5相同且將不再描述。主要差異為收集相關聯資料AD之相關聯資料收集器ADC。在此實例中,其已收集與干擾事件DE相關(且指示該干擾事件)之相關聯資料AD。基於相關聯資料AD,APC控制器可在判定對下一批次之校正PC N+1時較佳解譯度量衡資料MET N。
圖8之(a)至(d)分別展示圖6之(a)至(d)之等效標繪圖,但其中已經實施由圖7描述之方法。在各情況下,虛線(在干擾事件/批次N之後)為圖6之等效標繪圖之控制信號校正,展示作為對照。在各情況下,顯而易見,尤其對於批次N+1,控制經改良。
相關聯資料可包含可作出關於度量衡資料中之事件/趨勢之原因之推斷的任何資料。舉例而言,此類相關聯資料可包含以下各者中之一或多者:對準資料、位階量測資料、工具使用方式資料(例如,工具已經連續使用多長時間或由於校準及/或維護動作等)、掃描儀曝光資料(例如,透鏡控制參數資料)、校準/維護報告/日誌、工具記錄資料、標記或目標變形資料、其他類型之度量衡資料(例如,臨界尺寸資料、蝕刻後疊對資料)、先前層(對照)資料(先前層處發生之效應/事件及應用於先前層之校正將同樣對當前層校正具有影響;舉例而言,有可能當前層中可必須遵循先前層中之跳躍)。在適當時,許多此等實例可係關於製造程序中使用之任何工具或相關聯度量衡工具。
使用工具使用方式資料之特定實例,可展示漂移取決於某一工具使用時長(例如,蝕刻器已經蝕刻或晶圓台已經在使用中多長時間)。漂移通常將隨時間推移展示相同行為;例如通常有可能自工具使用方式資料時間預測漂移(例如,藉由外插)且因而度量衡資料中類似於此經預測漂移之任何觀測到漂移可假定為待遵循真實漂移。舉例而言,每腔室之累積蝕刻器時間可與其他相關聯資料,例如蝕刻設置及內部蝕刻器校正組合使用,以判定腔室漂移之量值。
應注意,可判定校正不僅用於掃描儀,而且(另外或替代地)用於製造程序之其他處理工具(例如蝕刻器、沈積工具、拋光工具、晶圓接合工具)。因而,校正可藉由單一工具(例如,掃描儀、蝕刻器、沈積工具、拋光工具、接合工具)實施或(例如,共同最佳化)校正可跨越兩個或多於兩個工具分裂(例如,疊對或邊緣置放誤差校正可經由對掃描儀及蝕刻器兩者之共同最佳化校正實施)。
使用先前給定之特定實例中之一些,可例如自追蹤機器行為之機器行為資料識別透鏡不確定原因非再現問題。舉例而言,此類機器行為資料可包含透鏡控制參數。舉例而言,藉由將相關聯資料饋入至控制迴路中,時間處理器(例如,NN)可學習哪些機器行為資料值指示不確定原因非再現問題並相應地解譯度量衡資料。
校準或維護動作之改變可識別自相關聯校準報告或維護報告。任何校準或維護動作將產生識別所應用改變之校準報告。使用校準報告,系統可學習其對控制之影響及如何相應地解譯度量衡資料。
相對於漂移,在不存在假/一次性跳躍及假漂移的情況下,可預期當前使用之回饋機構(當前APC迴路)較佳遵循該漂移,因為此為APC之主要功能。為了在存在假/一次性跳躍及假漂移的情況下解譯度量衡資料,實例相關聯資料可包含(例如)來自用於量測度量衡資料之離線度量衡工具之離線度量衡工具報告資料或度量衡工具使用方式資料或可判定度量衡工具之準確度之改變的任何資料。舉例而言,此類度量衡工具報告資料可包含一或多個量測關鍵效能指示符(KPI),諸如蝕刻後度量衡資料。此類相關聯資料或其組合可用於識別假度量衡誘發之漂移或移位。
在另一實例中,對準資料中之不同對準通道可以產生可用作相關聯資料之標記變形資料,因而標記變形可能看起來如同度量衡資料中之程序漂移(亦即,其包含假(度量衡)漂移)。
應注意,度量衡資料可描述空間行為(例如,藉由空間表示或指紋FP,諸如疊對指紋所描述)。
圖7及圖8係關於回應為後驗(亦即,只有在另一度量衡步驟之後,系統才會知曉事件或趨勢是否真實)之實例。更特定言之,干擾事件僅在批次N之前或期間發生,但必須在批次N之曝光及顯影之後量測其效應MET N,使得無法實施適當校正直至批次N+1。此可導致批次N不合規格且需要明確不合需要的重工。
圖9及圖10係關於第二實施例,其中回饋控制與前饋元件組合。圖10之(a)至(d)分別展示圖8之(a)至(d)之等效標繪圖,但其中已經實施由圖9描述之方法。圖9為圖5及圖7之等效流程圖。許多步驟/元件與圖5及圖7相同且將不再描述。
在此實施例中,差異在於在批次N之曝光EXP N之前,干擾事件DE稍早發生。由此,適當相關聯資料AD可由APC控制器用以判定用於批次N之曝光EXP N之校正PC N。應注意,在經由批次N之度量衡步驟MET N量測干擾事件之效應之前判定此校正。因而,此實施例包含預測性元素,其中自相關聯資料預測干擾事件DE之效應且判定步驟處判定之校正PC N同樣校正此經預測效應,若其實際上為應遵循之事件;該方法如前所述仍使用相關聯資料以解譯該事件。
此預測性元素亦可實施於一批次內,使得經預測效應可校正批次之剩餘晶圓或晶圓之剩餘場,例如若分別在批次處理或晶圓曝光期間發生事件或自相關聯資料偵測到事件。
使用NN或其他機器學習實例,系統可已學習某些事件,例如校準狀態之改變將如何影響控制行為且因此可基於在可適用批次之曝光之前的經預測影響及事件之解譯來識別所需校正。此意謂對於某一批次之校正將必須即時進行,使得可考慮任何最後一刻效應。此可甚至在批次串流期間、在晶圓曝光之間或在晶圓曝光期間、在場曝光之間。在此實施例中可瞭解(不同於先前實施例),現在可僅針對當前批次適當地校正解譯為真實但一次性事件(例如,透鏡不確定原因非再現問題)而非假事件之事件(例如,APC迴路可將校正解譯為一次性校正,使得接著針對在當前批次之後的批次之校正忽略該事件)。
應瞭解,用於本文中所描述之方法中之度量衡資料可包含合成度量衡資料(替代地或與自一或多個實體晶圓量測之非合成度量衡資料組合),例如經由模擬半導體製造程序之一或多個步驟之計算微影技術獲得。
所提出方法可改良控制準確度,校準狀態之改變之影響及所謂的「c-時間」或機器閒置時間。由於對關鍵層之可能影響,通常會減少計劃用於維護之機器之使用。
可擴展本文中所揭示之概念以跨越具有一定重疊之程序執行緒強加共用學習;例如相同掃描儀上執行之不同執行緒可彼此學習,從而加快學習程序。舉例而言,若來自掃描儀之度量衡資料在一個執行緒中展示跳躍/事件,則此學習可作為相關聯資料共用;例如,來自此執行緒之度量衡資料可用作相關聯資料以解譯用於另一執行緒之度量衡資料。
當發生效應與參數效應之間的關係不可直接預測時將看到以下主要益處;亦即,其需要訓練且因此將得益於考慮所有相關聯資料之機器學習(例如,NN)實施。另一益處係在具有相關聯資料及度量衡量測值(例如疊對)兩者之機器學習模型中,可自該等量測值模型化其他參數。這將加強某些效應之行為之任何學習。舉例而言,若在參數之某一組合中看到該效應,則其更易於識別根本原因。
藉助於使用相關聯資料之度量衡資料解譯可適用的特定實例係在晶圓台修復之後。在晶圓台修復之後,當產品上疊對重設至良好晶圓台條件時,始終存在指紋之漂移。可觀測到頂部層中之漂移,而底部層可能已經藉由良好晶圓台曝光且因此未看到任何指紋改變(或反之亦然)。例如來自位階量測之輸入至APC迴路之額外資料可使APC控制器意識到這一點。另外,由於掃描儀中存在對標記變形敏感之額外量測值,因此其亦可用於控制迴路中以使其意識到「假」校正。
在以下經編號條項之清單中揭示另外實施例: 1.     一種判定至少一個控制參數之校正之方法,該至少一個控制參數用於控制半導體製造程序之至少部分以便在基板上製造半導體器件,該方法包含:獲得與該半導體製造程序或其至少部分相關之度量衡資料;獲得與該半導體製造程序或其至少部分相關之相關聯資料,該相關聯資料提供用於解譯度量衡資料之資訊;以及基於該度量衡資料及該相關聯資料判定該校正,其中該相關聯資料用於解譯該度量衡資料。 2.     如條項1之方法,其中判定步驟使得經判定校正取決於應基於該度量衡資料之該解譯校正該度量衡資料中之趨勢及/或事件之程度。 3.     如條項1或2之方法,其中判定步驟包含判定應忽略抑或校正該度量衡資料中之趨勢及/或事件。 4.     如前述條項中任一項之方法,其中判定步驟進一步包含取決於該度量衡資料之該解譯判定用於該度量衡資料之非二進位加權。 5.     如前述條項中任一項之方法,其中該度量衡資料包含疊對資料、焦點資料、臨界尺寸資料及邊緣置放誤差資料中之一或多者。 6.     如前述條項中任一項之方法,其中判定校正之步驟包含以下步驟:模型化該度量衡資料及判定經模型化度量衡資料之空間表示,該校正基於該經模型化度量衡資料之空間表示而判定。 7.     如前述條項中任一項之方法,其包含對該度量衡資料進行時間濾波;且其中該相關聯資料用於解譯該度量衡資料作為該時間濾波步驟之部分。 8.     如條項7之方法,其中該時間濾波步驟包含將加權移動平均值應用於該度量衡資料。 9.     如條項8之方法,其包含處理該相關聯資料以解譯該度量衡資料;及基於該處理改變該加權移動平均值之加權。 10.    如條項7之方法,其中該時間濾波步驟係使用經訓練機器學習模型執行。 11.    如條項10之方法,其中該機器學習模型為神經網路、因果卷積濾波器或長短期模型。 12.    如條項10或11之方法,其包含基於該相關聯資料訓練該機器學習模型以解譯該度量衡資料。 13.    如前述條項中任一項之方法,其中判定該校正以應用於基板之一或多個後續批次。 14.    如條項1至12中任一項之方法,其中判定該校正以作為前饋校正應用於當前批次及/或當前晶圓。 15.    如條項14之方法,其中判定該校正以在該當前批次及/或當前晶圓之處理之前應用。 16.    如條項14之方法,其中判定該校正以在該當前批次及/或當前晶圓之處理期間應用。 17.    如條項14、15或16之方法,其包含使用該相關聯資料以預測該相關聯資料中指示之趨勢及/或事件對該至少一個控制參數之行為的影響。 18.    如前述條項中任一項之方法,其中該至少一個控制參數係關於以下各者中之一或多者之控制參數:該基板上之該半導體製造程序之曝光步驟、蝕刻步驟、沈積步驟、拋光步驟、度量衡步驟或接合步驟。 19.    如前述條項中任一項之方法,其中該相關聯資料包含僅用以該度量衡資料之資料且在該判定步驟中未經主動校正。 20.    如前述條項中任一項之方法,其中該相關聯資料包含以下各者中之一或多者:對準資料、位階量測資料、工具使用方式資料、微影曝光資料、透鏡控制參數資料、校準/維護報告/日誌、工具記錄資料、標記或目標變形資料、與該度量衡資料不同類型及/或與不同程序執行緒相關之額外度量衡資料、先前層控制及/或度量衡資料、該相關聯資料與該半導體製造程序中使用之一或多個工具及/或該半導體製造程序之程序相關。 21.    如前述條項中任一項之方法,其中該度量衡資料係關於一或多個先前基板之度量衡,該一或多個先前基板先前已經受該半導體製造程序或其至少部分。 22.    如條項21之方法,其中該相關聯資料係關於該一或多個先前基板及/或該等先前基板上使用之工具或程序。 23.    如條項21或22之方法,其進一步包含量測該一或多個先前基板以獲得該度量衡資料。 24.    如前述條項中任一項之方法,其中該度量衡資料包含來自該半導體製造程序或其至少部分之模擬之合成度量衡資料。 25.    一種電腦程式,其包含可用於在執行於合適裝置上時執行如條項1至20中任一項之方法的程式指令。 26.    一種非暫時性電腦程式載體,其包含如條項25之電腦程式。 27.    一種處理系統,其包含處理器及包含如條項25之電腦程式的儲存器件。 28.    一種微影裝置配置,其包含:微影曝光裝置;及如條項27之處理系統。 29.    一種微影單元,其包含:如條項28之微影裝置配置;及包含如條項27之處理系統且進一步可用於執行如條項20之方法之度量衡器件。 30.    一種判定至少一個控制參數之校正之方法,該至少一個控制參數用於控制半導體製造程序之至少部分以便在基板上製造半導體器件,該方法包含:獲得與該半導體製造程序或其至少部分相關之度量衡資料;獲得與該半導體製造程序或其至少部分相關之相關聯資料,該相關聯資料提供用於解譯度量衡資料之資訊;基於使用該相關聯資料解譯該度量衡資料而對該度量衡資料進行時間濾波;以及基於該時間濾波度量衡資料及該相關聯資料判定該校正,其中該判定使得經判定校正取決於應基於該度量衡資料之該解譯校正該度量衡資料中之趨勢及/或事件的程度。
儘管可在本文中特定地參考在IC製造中微影裝置之使用,但應理解,本文中所描述之微影裝置可具有其他應用。可能的其他應用包括製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、平板顯示器、液晶顯示器(LCD)、薄膜磁頭等。
儘管可在本文中特定地參考在微影裝置之內容脈絡中的本發明之實施例,但本發明之實施例可用於其他裝置。本發明之實施例可形成遮罩檢測裝置、度量衡裝置或量測或處理諸如晶圓(或其他基板)或遮罩(或其他圖案化器件)之物件之任何裝置的部分。此等裝置可一般被稱作微影工具。此微影工具可使用真空條件或周圍(非真空)條件。
儘管上文可已經特定地參考在光學微影之內容脈絡中對本發明之實施例的使用,但應瞭解,本發明在內容脈絡允許之情況下不限於光學微影且可用於其他應用(例如,壓印微影)中。
雖然上文已描述本發明之特定實施例,但將瞭解,可以與所描述之方式不同的其他方式來實踐本發明。上文描述意欲為說明性而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡述之申請專利範圍之範疇的情況下對所描述之本發明進行修改。
200:微影裝置 220:晶圓 240:度量衡裝置 250:APC系統 252:儲存器 256:儲存器 300:回饋控制器 302:單一串流 304:執行緒 306:程序校正/內容脈絡資料 AD:相關聯資料 ADC:相關聯資料收集器 APC:進階程序控制 B:輻射光束 BD:光束遞送系統 BK:烘烤板 C:目標部分 CH:冷卻板 CL:電腦系統 CTX:內容脈絡資料 DE:顯影器/干擾事件 EXP N-1,EXP N,EXP N+1:曝光 FP,FP N-2,FP N-1,FP N:指紋 IF:位置感測器 IL:照明系統/照明器 I/O1:輸入/輸出埠 I/O2:輸入/輸出埠 LA:微影裝置 LACU:微影控制單元 LB:裝載匣 LC:微影單元 MA:圖案化器件 MET N-1,MET N:度量衡資料/度量衡步驟 MOD N-1,MOD N,MOD B:模型化步驟/模型化資料 MT:支撐結構/度量衡工具 M1:遮罩對準標記 M2:遮罩對準標記 PC,PC N,PC N+1:程序校正 PDAT:效能資料 PM:第一定位器 PS:投影系統 PW:第二定位器 P1:基板對準標記 P2:基板對準標記 RO:機器人 SC:旋塗器 SC1:第一標度 SC2:第二標度 SC3:第三標度 SCS:監督控制系統 SO:輻射源 TCU:塗佈顯影系統控制單元 W:基板 WT:基板台
現在將參考隨附示意性圖式而僅藉助於實例來描述本發明之實施例,在該等圖式中: 圖1描繪微影裝置之示意圖綜述; 圖2描繪微影單元之示意性綜述; 圖3描繪整體微影之示意性表示,其表示最佳化半導體製造之三種關鍵技術之間的協作;且 圖4 (包括圖4之(a)至(b))示意性地說明製造設施中應用之兩種已知回饋控制方法。 圖5為根據已知方法之IC製造方法之部分之簡化示意性流程圖; 圖6為針對以下中之各者的控制參數值PV (或取決於控制參數之度量衡參數值)相對於時間t之標繪圖:(a)正跳躍/事件及指數加權移動平均(Exponentially Weighted Moving Average;EWMA)時間濾波方法;(b)正跳躍/事件及基於神經網路(NN)之時間濾波方法;(c)負跳躍/事件及EWMA時間濾波方法;以及(d)負跳躍/事件及基於NN之時間濾波方法; 圖7為根據本發明之第一實施例的IC製造方法之部分之簡化示意性流程圖; 圖8 (包括圖8之(a)至(d))展示對於由圖7說明之方法的圖6之等效標繪圖; 圖9為根據本發明之第二實施例的IC製造方法之部分之簡化示意性流程圖;且 圖10 (包括圖10之(a)至(d))展示對於由圖9說明之方法的圖6及圖8之等效標繪圖。
AD:相關聯資料
ADC:相關聯資料收集器
APC:進階程序控制
DE:干擾事件
EXP N-1,EXP N,EXP N+1:曝光
FP,FP N-2,FP N-1,FP N:指紋
MET N-1,MET N:度量衡資料/度量衡步驟
MOD N-1,MOD B:模型化步驟/模型化資料
PC N,PC N+1:程序校正

Claims (15)

  1. 一種判定至少一個控制參數之一校正之方法,該至少一個控制參數用於控制一半導體製造程序之至少部分以便在一基板上製造半導體器件,該方法包含: 獲得與該半導體製造程序或其至少部分相關之度量衡資料; 獲得與該半導體製造程序或其至少部分相關之相關聯資料,該相關聯資料提供用於解譯該度量衡資料之資訊; 基於使用該相關聯資料解譯該度量衡資料而對該度量衡資料進行時間濾波;以及 基於該時間濾波度量衡資料及該相關聯資料判定該校正,其中該判定使得經判定校正取決於應基於該度量衡資料之該解譯校正該度量衡資料中之一趨勢及/或事件之一程度。
  2. 如請求項1之方法,其中判定步驟包含判定應忽略抑或校正該度量衡資料中之一趨勢及/或事件。
  3. 如請求項1之方法,其中該判定步驟包含取決於該度量衡資料之該解譯判定用於該度量衡資料之一非二進位加權。
  4. 如請求項1之方法,其中該度量衡資料包含疊對資料、焦點資料、臨界尺寸資料及邊緣置放誤差資料中之一或多者。
  5. 如請求項1之方法,其中判定一校正之步驟包含:該度量衡資料之模型化及判定經模型化度量衡資料之一空間表示,該校正係基於該經模型化度量衡資料之該空間表示而判定。
  6. 如請求項1之方法,其中該時間濾波步驟包含將一加權移動平均值應用於該度量衡資料。
  7. 如請求項1之方法,其中該時間濾波步驟係使用一經訓練機器學習模型執行,該經訓練機器學習模型例如以下各者中之一者:一神經網路、一因果卷積濾波器或一長短期模型。
  8. 如請求項1之方法,其中判定該校正以應用於基板之一或多個後續批次。
  9. 如請求項1之方法,其中該至少一個控制參數係關於以下各者中之一或多者之一控制參數:該基板上之該半導體製造程序之一曝光步驟、一蝕刻步驟、一沈積步驟、一拋光步驟、一度量衡步驟或一接合步驟。
  10. 如請求項1之方法,其中該相關聯資料包含以下各者中之一或多者:對準資料、位階量測資料、工具使用方式資料、微影曝光資料、透鏡控制參數資料、校準/維護報告/日誌、工具記錄資料、標記或目標變形資料、與該度量衡資料屬於一不同類型及/或與一不同程序執行緒相關之額外度量衡資料、先前層控制及/或度量衡資料、該相關聯資料與該半導體製造程序中使用之一或多個工具及/或該半導體製造程序之程序相關。
  11. 如請求項1之方法,其中判定該校正以作為一前饋校正應用於一當前批次及/或一當前晶圓。
  12. 如請求項11之方法,其中判定該校正以在該當前批次及/或當前晶圓之處理之前應用。
  13. 如請求項11之方法,其進一步包含使用該相關聯資料以預測該相關聯資料中指示之一趨勢及/或事件對該至少一個控制參數之行為之影響。
  14. 一種包含程式指令之電腦程式,該等程式指令可用於在執行於一合適裝置上時執行如請求項1之方法。
  15. 一種非暫時性電腦程式載體,其包含如請求項14之電腦程式。
TW111125239A 2021-07-12 2022-07-06 用於判定半導體製造程序中之至少一控制參數之校正之方法 TW202347035A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21185145.6 2021-07-12
EP21185145.6A EP4120019A1 (en) 2021-07-12 2021-07-12 Method of determining a correction for at least one control parameter in a semiconductor manufacturing process

Publications (1)

Publication Number Publication Date
TW202347035A true TW202347035A (zh) 2023-12-01

Family

ID=77021066

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111125239A TW202347035A (zh) 2021-07-12 2022-07-06 用於判定半導體製造程序中之至少一控制參數之校正之方法

Country Status (5)

Country Link
EP (1) EP4120019A1 (zh)
KR (1) KR20240031313A (zh)
CN (1) CN117616340A (zh)
TW (1) TW202347035A (zh)
WO (1) WO2023285066A1 (zh)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523193A (en) 1988-05-31 1996-06-04 Texas Instruments Incorporated Method and apparatus for patterning and imaging member
US5296891A (en) 1990-05-02 1994-03-22 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Illumination device
US5229872A (en) 1992-01-21 1993-07-20 Hughes Aircraft Company Exposure device including an electrically aligned electronic mask for micropatterning
AU2747999A (en) 1998-03-26 1999-10-18 Nikon Corporation Projection exposure method and system
JP3977324B2 (ja) 2002-11-12 2007-09-19 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置
KR100610010B1 (ko) 2004-07-20 2006-08-08 삼성전자주식회사 반도체 식각 장치
US7239371B2 (en) 2005-10-18 2007-07-03 International Business Machines Corporation Density-aware dynamic leveling in scanning exposure systems
NL1036351A1 (nl) 2007-12-31 2009-07-01 Asml Netherlands Bv Alignment system and alignment marks for use therewith cross-reference to related applications.
WO2011081645A2 (en) 2009-12-15 2011-07-07 Lam Research Corporation Adjusting substrate temperature to improve cd uniformity
US9177219B2 (en) 2010-07-09 2015-11-03 Asml Netherlands B.V. Method of calibrating a lithographic apparatus, device manufacturing method and associated data processing apparatus and computer program product
US11175591B2 (en) * 2016-05-12 2021-11-16 Asml Netherlands B.V. Method of obtaining measurements, apparatus for performing a process step, and metrology apparatus
CN115220311A (zh) * 2017-05-05 2022-10-21 Asml荷兰有限公司 用于预测器件制造工艺的良率的方法
CN113711128B (zh) * 2019-04-16 2024-05-14 Asml荷兰有限公司 用于确定针对光刻设备的校正的方法

Also Published As

Publication number Publication date
WO2023285066A1 (en) 2023-01-19
CN117616340A (zh) 2024-02-27
EP4120019A1 (en) 2023-01-18
KR20240031313A (ko) 2024-03-07

Similar Documents

Publication Publication Date Title
US11714357B2 (en) Method to predict yield of a device manufacturing process
EP3807720B1 (en) Method for configuring a semiconductor manufacturing process, a lithographic apparatus and an associated computer program product
TWI761724B (zh) 判定半導體製程事件之根本原因及監控半導體製程的方法
TW202038017A (zh) 用以控制製程之方法及相關設備
US20220236647A1 (en) Method for controlling a semiconductor manufacturing process
US11809088B2 (en) Method for controlling a lithographic apparatus
US11294294B2 (en) Alignment mark positioning in a lithographic process
TW202347035A (zh) 用於判定半導體製造程序中之至少一控制參數之校正之方法
TWI791321B (zh) 用於組態採樣架構產生模型之方法及電腦程式
EP3961518A1 (en) Method and apparatus for concept drift mitigation
TWI777678B (zh) 概念漂移減輕之方法及設備
EP3848757A1 (en) Method for controlling a lithographic apparatus
NL2024657A (en) Method for controlling a lithographic apparatus
TW202036167A (zh) 用以根據來自處理站之個別貢獻來特徵化後處理資料的方法