TW202346904A - Antireflection film and image display device - Google Patents

Antireflection film and image display device Download PDF

Info

Publication number
TW202346904A
TW202346904A TW112114720A TW112114720A TW202346904A TW 202346904 A TW202346904 A TW 202346904A TW 112114720 A TW112114720 A TW 112114720A TW 112114720 A TW112114720 A TW 112114720A TW 202346904 A TW202346904 A TW 202346904A
Authority
TW
Taiwan
Prior art keywords
layer
film
refractive index
reflective
hard coat
Prior art date
Application number
TW112114720A
Other languages
Chinese (zh)
Inventor
渡邊聖彦
宮本幸大
角田豊
Original Assignee
日商日東電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日東電工股份有限公司 filed Critical 日商日東電工股份有限公司
Publication of TW202346904A publication Critical patent/TW202346904A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Abstract

An antireflection film (101) is provided with: a hard coat film (1) which comprises a hard coat layer (11) on one main surface of a transparent film substrate (10); and an antireflection layer (5) and an antifouling layer (7) which are provided, in order, on the hard coat layer. The antireflection layer contains at least one layer each of a high-refractive index layer and a low-refractive index layer, and the low-refractive index layer (54) contacts the antifouling layer. The low-refractive index layer is a thin-film having silicon oxide as a principal component thereof, and the film thickness of the low-refractive index layer which contacts the antifouling layer is greater than 85nm. The arithmetic mean height Sa 2 of the antifouling layer is greater than 3.0nm.

Description

抗反射膜及圖像顯示裝置Anti-reflective film and image display device

本發明係關於一種於硬塗膜之硬塗層上具備抗反射層之抗反射膜。進而,本發明係關於一種具備該抗反射膜之圖像顯示裝置。The present invention relates to an anti-reflective film having an anti-reflective layer on the hard coat layer of the hard coat film. Furthermore, the present invention relates to an image display device provided with the anti-reflection film.

為了防止因外界光之反射導致畫質下降,提高對比度等,於液晶顯示器或有機EL(Electroluminescence,電致發光)顯示器等圖像顯示裝置之視認側表面使用抗反射膜。抗反射膜中,於透明膜上具備由折射率不同之複數層薄膜之積層體所構成之抗反射層。In order to prevent image quality degradation due to reflection of external light and improve contrast, anti-reflective films are used on the viewing side surfaces of image display devices such as liquid crystal displays and organic EL (Electroluminescence) displays. The anti-reflective film has an anti-reflective layer composed of a laminate of a plurality of thin films with different refractive indexes on a transparent film.

例如,專利文獻1中揭示了一種抗反射膜,其於硬塗膜上具備SiO底塗層,且於該SiO底塗層上具備由作為高折射率層之氧化鈮(Nb 2O 5)層與作為低折射率層之氧化矽(SiO 2)層之交替積層體所構成之抗反射層。 [先前技術文獻] [專利文獻] For example, Patent Document 1 discloses an antireflection film that has an SiO undercoat layer on a hard coat film and a niobium oxide (Nb 2 O 5 ) layer as a high refractive index layer on the SiO undercoat layer. An anti-reflective layer composed of alternating layers of silicon oxide (SiO 2 ) layers as low refractive index layers. [Prior art documents] [Patent documents]

[專利文獻1]日本專利特開2009-47876號公報[Patent Document 1] Japanese Patent Application Laid-Open No. 2009-47876

[發明所欲解決之問題][Problem to be solved by the invention]

近年來,具備使用了樹脂膜等可彎折基板(可撓性基板)之有機EL面板的可彎折圖像顯示裝置(可摺疊顯示器)已實用化。作為可摺疊顯示器之覆蓋窗,使用於可撓性之膜基板上設置有抗反射層之抗反射膜。In recent years, bendable image display devices (foldable displays) including an organic EL panel using a bendable substrate (flexible substrate) such as a resin film have been put into practical use. As the cover window of the foldable display, an anti-reflective film provided with an anti-reflective layer on a flexible film substrate is used.

一般而言,可摺疊顯示器係以摺疊狀態保管。在摺疊狀態下,摺疊部位(彎曲部位)之內側被賦予壓縮應力,而外側被賦予拉伸應力。若以顯示器以顯示面為內側進行摺疊,則抗反射膜變為以抗反射層形成面為內側摺疊之狀態。若在此種狀態下加熱至高溫,則抗反射層上有時會產生細微之龜裂,成為顯示器之視認性下降之原因。Generally speaking, foldable displays are stored in a folded state. In the folded state, compressive stress is given to the inside of the folded portion (bent portion), and tensile stress is given to the outside. If the display is folded with the display surface as the inner side, the anti-reflective film will be folded with the anti-reflective layer forming surface as the inner side. If it is heated to a high temperature in this state, fine cracks may occur in the anti-reflective layer, which may cause a decrease in visibility of the display.

鑒於上述情況,本發明之目的在於提供一種即便在摺疊狀態(彎曲狀態)下加熱至高溫,抗反射層上亦不易產生龜裂,耐彎曲性優異之抗反射膜。 [解決問題之技術手段] In view of the above, an object of the present invention is to provide an anti-reflective film that is less likely to produce cracks on the anti-reflective layer and has excellent bending resistance even when heated to a high temperature in a folded state (bent state). [Technical means to solve problems]

抗反射膜具備於透明膜基材之一主面上具備硬塗層之硬塗膜、設置於硬塗層上之抗反射層、及設置於抗反射層上之防污層。防污層之算術平均高度Sa 2大於3.0 nm。 The anti-reflective film includes a hard coat film with a hard coat layer on one of the main surfaces of the transparent film base material, an anti-reflective layer provided on the hard coat layer, and an anti-fouling layer provided on the anti-reflective layer. The arithmetic mean height Sa 2 of the antifouling layer is greater than 3.0 nm.

抗反射層包含至少1層高折射率層及至少1層低折射率層,低折射率層與上述防污層相接。抗反射層亦可包含2層以上之高折射率層,且亦可包含2層以上之低折射率層。抗反射層較佳為複數層高折射率層與複數層低折射率層之交替積層體。The anti-reflective layer includes at least one high refractive index layer and at least one low refractive index layer, and the low refractive index layer is connected to the antifouling layer. The anti-reflective layer may also include two or more layers of high refractive index, and may also include two or more layers of low refractive index. The anti-reflection layer is preferably an alternating stack of a plurality of high refractive index layers and a plurality of low refractive index layers.

抗反射層之低折射率層係以氧化矽作為主成分之薄膜,與防污層相接之上述低折射率層之膜厚大於85 nm。在剖面觀察圖像中,與防污層相接之上述低折射率層可具有沿著膜厚方向之稀疏部分。The low refractive index layer of the anti-reflective layer is a thin film with silicon oxide as the main component. The film thickness of the low refractive index layer connected to the antifouling layer is greater than 85 nm. In a cross-sectional image, the low refractive index layer in contact with the antifouling layer may have sparse portions along the film thickness direction.

抗反射層之高折射率層較佳為以氧化鈮作為主成分之薄膜。氧化鈮薄膜之膜厚可為40 nm以下。The high refractive index layer of the anti-reflection layer is preferably a thin film containing niobium oxide as its main component. The film thickness of the niobium oxide film can be less than 40 nm.

硬塗層除了包含黏合劑樹脂以外,亦可包含平均一次粒徑為10~100 nm之微粒。硬塗層之算術平均高度較佳為4.5 nm以上。於硬塗層與抗反射層之間亦可設置有包含無機氧化物之底塗層。 [發明之效果] In addition to the binder resin, the hard coat layer may also contain particles with an average primary particle size of 10 to 100 nm. The arithmetic mean height of the hard coat layer is preferably 4.5 nm or more. A primer layer containing an inorganic oxide may also be provided between the hard coat layer and the anti-reflective layer. [Effects of the invention]

本發明之抗反射膜不僅防污層之耐磨耗性優異,並且即便在以抗反射層形成面為內側彎曲之狀態下進行加熱,抗反射層上亦不易產生龜裂,亦可較好地用於可摺疊顯示器。The anti-reflective film of the present invention not only has excellent abrasion resistance of the anti-fouling layer, but also is less likely to produce cracks on the anti-reflective layer even if it is heated with the anti-reflective layer forming surface being bent inward, and can also provide better for foldable displays.

圖1係表示本發明之一實施方式之抗反射膜之積層結構例之剖視圖。抗反射膜101中,於硬塗膜1之硬塗層11上具備抗反射層5。硬塗膜1中,於透明膜基材10之一主面上具備硬塗層11。抗反射層5係折射率不同之2層以上之薄膜之積層體,包含至少1層高折射率層及至少1層低折射率層。於硬塗層11與抗反射層5之間亦可設置有底塗層3。於抗反射層5上設置有防污層7。FIG. 1 is a cross-sectional view showing an example of a laminated structure of an antireflection film according to an embodiment of the present invention. The anti-reflective film 101 includes the anti-reflective layer 5 on the hard coat layer 11 of the hard coat film 1 . The hard coat film 1 is provided with the hard coat layer 11 on one main surface of the transparent film base material 10 . The anti-reflective layer 5 is a laminate of two or more thin films with different refractive indexes, including at least one high refractive index layer and at least one low refractive index layer. A primer layer 3 may also be provided between the hard coating layer 11 and the anti-reflective layer 5 . An antifouling layer 7 is provided on the anti-reflective layer 5 .

[硬塗膜] 硬塗膜1中,於透明膜基材10之一主面上具備硬塗層11。藉由於抗反射層5形成面側設置硬塗層11,從而可提高抗反射膜之表面硬度或耐擦傷性等機械特性。 [Hard coat film] The hard coat film 1 is provided with the hard coat layer 11 on one main surface of the transparent film base material 10 . By providing the hard coating layer 11 on the surface side of the anti-reflective layer 5, the mechanical properties such as surface hardness and scratch resistance of the anti-reflective film can be improved.

<透明膜基材> 透明膜基材10之可見光透過率較佳為80%以上,更佳為90%以上。作為構成透明膜基材10之樹脂材料,例如較佳為透明性、機械強度、及熱穩定性優異之樹脂材料。作為樹脂材料之具體例,可例舉:三乙醯纖維素等纖維素系樹脂、聚酯系樹脂、聚醚碸系樹脂、聚碸系樹脂、聚碳酸酯系樹脂、聚醯胺系樹脂、聚醯亞胺系樹脂、聚烯烴系樹脂、(甲基)丙烯酸系樹脂、環狀聚烯烴系樹脂(降𦯉烯系樹脂)、聚芳酯系樹脂、聚苯乙烯系樹脂、聚乙烯醇系樹脂、及其等之混合物。 <Transparent film substrate> The visible light transmittance of the transparent film base material 10 is preferably above 80%, more preferably above 90%. As the resin material constituting the transparent film base material 10, for example, a resin material excellent in transparency, mechanical strength, and thermal stability is preferred. Specific examples of the resin material include cellulose-based resins such as triacetyl cellulose, polyester-based resins, polyether-based resins, polyurethane-based resins, polycarbonate-based resins, and polyamide-based resins. Polyimide resin, polyolefin resin, (meth)acrylic resin, cyclic polyolefin resin (norvinyl resin), polyarylate resin, polystyrene resin, polyvinyl alcohol resin Resins, and mixtures thereof.

透明膜基材之厚度並無特別限定,基於強度或操作性等作業性、薄層性等觀點而言,較佳為5~300 μm左右,更佳為10~250 μm,進而較佳為20~200 μm。The thickness of the transparent film base material is not particularly limited, but from the viewpoint of workability such as strength, operability, and thin-layer properties, it is preferably about 5 to 300 μm, more preferably 10 to 250 μm, and still more preferably 20 ~200 μm.

<硬塗層> 藉由於透明膜基材10之主面上設置硬塗層11,從而形成硬塗膜1。硬塗層係硬化樹脂層,其係藉由將包含硬化性樹脂之組合物塗佈於透明膜基材上,並使樹脂成分硬化而形成。硬塗層除了包含硬化樹脂以外,亦可包含微粒子。 <Hard coat> The hard coat film 1 is formed by providing the hard coat layer 11 on the main surface of the transparent film base material 10 . The hard coat layer is a hardened resin layer formed by coating a composition containing a curable resin on a transparent film base material and hardening the resin component. The hard coat layer may contain fine particles in addition to the hardened resin.

(硬化性樹脂) 作為硬塗層11之硬化性樹脂(黏合劑樹脂),較佳為使用熱硬化性樹脂、光硬化性樹脂、電子束硬化性樹脂等硬化性樹脂。作為硬化性樹脂之種類,可例舉:聚酯系、丙烯酸系、胺基甲酸酯系、丙烯酸胺基甲酸酯系、醯胺系、矽酮系、矽酸鹽系、環氧系、三聚氰胺系、氧雜環丁烷系、丙烯酸胺基甲酸酯系等。該等之中,出於硬度較高,能夠進行光硬化之考量,較佳為丙烯酸系樹脂、丙烯酸胺基甲酸酯系樹脂、及環氧系樹脂,該等之中,較佳為丙烯酸胺基甲酸酯系樹脂。 (hardening resin) As the curable resin (binder resin) of the hard coat layer 11, curable resins such as thermosetting resin, photocurable resin, and electron beam curable resin are preferably used. Examples of types of curable resin include: polyester, acrylic, urethane, acrylic urethane, amide, silicone, silicate, epoxy, Melamine series, oxetane series, acrylic urethane series, etc. Among them, in view of their high hardness and ability to be photocured, acrylic resins, acrylic urethane resins, and epoxy resins are preferred. Among these, acrylic amine is preferred. Formate based resin.

光硬化性樹脂組合物包含具有2個以上之光聚合性(較佳為紫外線聚合性)官能基之多官能化合物。多官能化合物可為單體,亦可為低聚物。作為光聚合性多官能化合物,較佳為使用1分子中具有2個以上之(甲基)丙烯醯基之化合物。The photocurable resin composition contains a polyfunctional compound having two or more photopolymerizable (preferably ultraviolet polymerizable) functional groups. Multifunctional compounds can be monomers or oligomers. As the photopolymerizable polyfunctional compound, it is preferable to use a compound having two or more (meth)acrylyl groups per molecule.

作為1分子中具有2個以上之(甲基)丙烯醯基之多官能化合物之具體例,可例舉:三環癸烷二甲醇二丙烯酸酯、季戊四醇二(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、三羥甲基丙烷三丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、二羥甲基丙烷四丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、1,6-己二醇(甲基)丙烯酸酯、1,9-壬二醇二丙烯酸酯、1,10-癸二醇(甲基)丙烯酸酯、聚乙二醇二(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸酯、二丙二醇二丙烯酸酯、異三聚氰酸三(甲基)丙烯酸酯、乙氧化甘油三丙烯酸酯、乙氧化季戊四醇四丙烯酸酯及其等之低聚物或預聚物等。再者,於本說明書中,「(甲基)丙烯酸」係丙烯酸及/或甲基丙烯酸之含義。Specific examples of polyfunctional compounds having two or more (meth)acrylyl groups per molecule include tricyclodecane dimethanol diacrylate, pentaerythritol di(meth)acrylate, and pentaerythritol tris(meth)acrylate. Methacrylate, trimethylolpropane triacrylate, pentaerythritol tetra(meth)acrylate, dimethylolpropane tetraacrylate, dipentaerythritol hexa(meth)acrylate, 1,6-hexanediol (Meth)acrylate, 1,9-nonanediol diacrylate, 1,10-decanediol (meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate ) acrylate, dipropylene glycol diacrylate, isocyanuric acid tri(meth)acrylate, ethoxylated glycerol triacrylate, ethoxylated pentaerythritol tetraacrylate and their oligomers or prepolymers, etc. In addition, in this specification, "(meth)acrylic acid" means acrylic acid and/or methacrylic acid.

1分子中具有2個以上之(甲基)丙烯醯基之多官能化合物亦可具有羥基。藉由使用含羥基之多官能化合物,從而使得透明膜基材與硬塗層之密接性存在變高之傾向。作為1分子中具有羥基及2個以上之(甲基)丙烯醯基之化合物,可例舉:季戊四醇三(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯等。A polyfunctional compound having two or more (meth)acrylyl groups in one molecule may have a hydroxyl group. By using a hydroxyl-containing polyfunctional compound, the adhesiveness between the transparent film base material and the hard coat layer tends to become higher. Examples of compounds having a hydroxyl group and two or more (meth)acrylyl groups in one molecule include pentaerythritol tri(meth)acrylate, dipentaerythritol penta(meth)acrylate, and the like.

丙烯酸胺基甲酸酯樹脂包含胺基甲酸酯(甲基)丙烯酸酯之單體或低聚物作為多官能化合物。胺基甲酸酯(甲基)丙烯酸酯所具有之(甲基)丙烯醯基之數量較佳為3個以上,更佳為4~15個,進而較佳為6~12個。胺基甲酸酯(甲基)丙烯酸酯低聚物之分子量例如為3000以下,較佳為500~2500,更佳為800~2000。胺基甲酸酯(甲基)丙烯酸酯例如係藉由使由(甲基)丙烯酸或(甲基)丙烯酸酯與多元醇所獲得之(甲基)丙烯酸羥基酯與二異氰酸酯進行反應而獲得。Acrylic urethane resin contains monomers or oligomers of urethane (meth)acrylate as polyfunctional compounds. The number of (meth)acrylyl groups that the urethane (meth)acrylate has is preferably 3 or more, more preferably 4 to 15, and still more preferably 6 to 12. The molecular weight of the urethane (meth)acrylate oligomer is, for example, 3000 or less, preferably 500 to 2500, more preferably 800 to 2000. Urethane (meth)acrylate is obtained, for example, by reacting (meth)acrylic acid hydroxyester obtained from (meth)acrylic acid or (meth)acrylic acid ester and polyol and diisocyanate.

硬塗層形成用組合物中之多官能化合物之含量相對於樹脂成分(藉由硬化形成黏合劑樹脂之單體、低聚物及預聚物)之合計100重量份而言,較佳為50重量份以上,更佳為60重量份以上,進而較佳為70重量份以上。若多官能單體之含量為上述範圍內,則硬塗層之硬度存在變高之傾向。The content of the polyfunctional compound in the hard coat layer forming composition is preferably 50 parts by weight based on 100 parts by weight of the resin component (monomers, oligomers and prepolymers that form the binder resin by hardening) in total. Parts by weight or more are more preferably 60 parts by weight or more, further preferably 70 parts by weight or more. If the content of the polyfunctional monomer is within the above range, the hardness of the hard coat layer tends to increase.

(微粒子) 藉由硬塗層11包含微粒子,從而於表面形成細微之凹凸,使得抗反射層之密接性或耐彎曲性存在變高之傾向。 (fine particles) Since the hard coat layer 11 contains fine particles, fine unevenness is formed on the surface, thereby tending to increase the adhesion or bending resistance of the anti-reflective layer.

作為微粒子,可無特別限制地使用:二氧化矽、氧化鋁、二氧化鈦、氧化鋯、氧化鈣、氧化錫、氧化銦、氧化鎘、氧化銻等無機氧化物微粒子;玻璃微粒子;包含聚甲基丙烯酸甲酯、聚苯乙烯、聚胺基甲酸酯、丙烯酸-苯乙烯共聚物、苯并胍胺、三聚氰胺、聚碳酸酯等透明聚合物之交聯或未交聯之有機系微粒子。As the fine particles, there can be used without particular limitation: inorganic oxide fine particles such as silicon dioxide, aluminum oxide, titanium dioxide, zirconium oxide, calcium oxide, tin oxide, indium oxide, cadmium oxide, antimony oxide; glass fine particles; including polymethacrylic acid Cross-linked or uncross-linked organic microparticles of transparent polymers such as methyl ester, polystyrene, polyurethane, acrylic-styrene copolymer, benzoguanamine, melamine, and polycarbonate.

微粒子之平均粒徑(平均一次粒徑)較佳為10 nm~10 μm左右。平均一次粒徑係利用庫爾特計數法進行測定而獲得之重量平均粒徑。微粒子根據粒徑可大致分為:具有0.5 μm~10 μm左右之次微米或微米級別之粒徑之微粒子(以下,有時記載為「微粒子」)、具有10 nm~100 nm左右之粒徑之微粒子(以下,有時記載為「奈米粒子」)、及具有介於微粒子與奈米粒子之間之粒徑之微粒子。The average particle size (average primary particle size) of the fine particles is preferably about 10 nm to 10 μm. The average primary particle size is a weight average particle size measured by the Coulter counting method. Microparticles can be roughly classified according to their particle size: microparticles with a particle size of about 0.5 μm to 10 μm, submicron or micron level (hereinafter, sometimes referred to as "microparticles"), and microparticles with a particle size of about 10 nm to 100 nm. Microparticles (hereinafter, may be described as "nanoparticles"), and microparticles having a particle size between microparticles and nanoparticles.

藉由硬塗層11包含奈米粒子,從而於表面形成細微之凹凸,使得硬塗層11與底塗層3及抗反射層5之密接性存在變高之傾向。作為奈米粒子,較佳為無機微粒子,尤佳為無機氧化物微粒子。其中,出於折射率較低,可減小與黏合劑樹脂之折射率差之考量,較佳為二氧化矽粒子。Since the hard coat layer 11 contains nanoparticles, fine unevenness is formed on the surface, so that the adhesion between the hard coat layer 11 and the undercoat layer 3 and the anti-reflective layer 5 tends to become higher. As nanoparticles, inorganic fine particles are preferred, and inorganic oxide fine particles are particularly preferred. Among them, silicon dioxide particles are preferred because the refractive index is lower and the difference in refractive index with the binder resin can be reduced.

基於在硬塗層11之表面形成與抗反射層之密接性優異之凹凸形狀之觀點而言,奈米粒子之平均一次粒徑較佳為20~80 nm,更佳為25~70 nm,進而較佳為30~60 nm。From the viewpoint of forming an uneven shape on the surface of the hard coat layer 11 with excellent adhesion to the anti-reflective layer, the average primary particle diameter of the nanoparticles is preferably 20 to 80 nm, more preferably 25 to 70 nm, and further Preferably it is 30~60 nm.

硬塗層11中之奈米粒子之含量相對於黏合劑樹脂100重量份而言,可為1~150重量份左右。基於在硬塗層11之表面形成與抗反射層之密接性優異之表面形狀之觀點而言,硬塗層11中之奈米粒子之含量相對於黏合劑樹脂100重量份而言,較佳為20~100重量份,更佳為25~90重量份,進而較佳為30~80重量份。The content of nanoparticles in the hard coat layer 11 can be about 1 to 150 parts by weight relative to 100 parts by weight of the binder resin. From the viewpoint of forming a surface shape with excellent adhesion to the anti-reflective layer on the surface of the hard coat layer 11, the content of the nanoparticles in the hard coat layer 11 is preferably 20 to 100 parts by weight, more preferably 25 to 90 parts by weight, still more preferably 30 to 80 parts by weight.

(硬塗層之形成) 硬塗層形成用組合物包含上述黏合劑樹脂成分,視需要包含能夠使黏合劑樹脂成分溶解之溶劑。如上所述,硬塗層形成用組合物亦可包含微粒子。於黏合劑樹脂成分係光硬化型樹脂之情形時,組合物中較佳為包含光聚合起始劑。硬塗層形成用組合物除了包含上述成分以外,還可包含添加劑,如:調平劑、觸變劑、抗靜電劑、抗黏連劑、分散劑、分散穩定劑、抗氧化劑、紫外線吸收劑、消泡劑、增黏劑、界面活性劑、潤滑劑等。 (Formation of hard coating) The composition for forming a hard coat layer contains the above-mentioned binder resin component, and optionally contains a solvent capable of dissolving the binder resin component. As described above, the composition for forming a hard coat layer may contain fine particles. When the binder resin component is a photocurable resin, the composition preferably contains a photopolymerization initiator. In addition to the above-mentioned components, the composition for forming a hard coat layer may also contain additives such as: leveling agents, thixotropic agents, antistatic agents, anti-blocking agents, dispersants, dispersion stabilizers, antioxidants, and ultraviolet absorbers. , defoamer, tackifier, surfactant, lubricant, etc.

藉由將硬塗層形成用組合物塗佈於透明膜基材上,並視需要進行溶劑之去除及樹脂之硬化,從而形成硬塗層。作為硬塗層形成用組合物之塗佈方法,可採用任意合適之方法,如:棒式塗佈法、輥塗法、凹版塗佈法、桿式塗佈法、孔縫式塗佈法、淋幕式塗佈法、噴注式塗佈法、缺角輪塗佈法等。塗佈後之加熱溫度只要根據硬塗層形成用組合物之組成等,設定為合適之溫度即可,例如為50℃~150℃左右。於黏合劑樹脂成分係光硬化性樹脂之情形時,藉由照射紫外線等活性能量線來進行光硬化。照射光之累計光量較佳為100~500 mJ/cm 2左右。 The hard coat layer is formed by applying the composition for forming a hard coat layer on a transparent film base material and removing the solvent and hardening the resin if necessary. As a coating method of the composition for forming a hard coat layer, any suitable method can be used, such as: rod coating method, roller coating method, gravure coating method, rod coating method, slot coating method, Shower curtain coating method, spray coating method, notch wheel coating method, etc. The heating temperature after coating may be set to an appropriate temperature according to the composition of the hard coat layer forming composition, for example, about 50°C to 150°C. When the binder resin component is a photocurable resin, photocuring is performed by irradiating active energy rays such as ultraviolet rays. The cumulative amount of irradiation light is preferably about 100 to 500 mJ/cm 2 .

硬塗層11之厚度並無特別限定,基於實現較高之硬度並且將表面形狀控制得較合適之觀點而言,較佳為1~10 μm左右,更佳為2~9 μm,進而較佳為3~8 μm。The thickness of the hard coat layer 11 is not particularly limited. From the viewpoint of achieving higher hardness and controlling the surface shape more appropriately, it is preferably about 1 to 10 μm, more preferably 2 to 9 μm, and still more preferably is 3~8 μm.

(硬塗層之表面處理) 於在硬塗層11上形成抗反射層5之前,亦可對硬塗層11進行表面處理。作為表面處理,可例舉:電暈處理、電漿處理、火焰處理、臭氧處理、輝光處理、鹼處理、酸處理、利用偶合劑之處理等表面改質處理。亦可進行真空電漿處理作為表面處理。藉由真空電漿處理,亦可調整硬塗層之表面粗糙度。例如,於硬塗層11除了包含黏合劑樹脂成分(樹脂硬化物)以外,亦包含無機微粒子之情形時,藉由真空電漿處理容易對硬塗層表面之樹脂成分選擇性地蝕刻,無機粒子幾乎不被蝕刻而得以殘留,因此有硬塗層表面及其附近之無機氧化物粒子之存在比率變高,硬塗層表面之算術平均高度Sa 1變大之傾向。 (Surface treatment of hard coat layer) Before forming the anti-reflection layer 5 on the hard coat layer 11, the hard coat layer 11 may also be surface treated. Examples of the surface treatment include surface modification treatments such as corona treatment, plasma treatment, flame treatment, ozone treatment, glow treatment, alkali treatment, acid treatment, and treatment using a coupling agent. Vacuum plasma treatment can also be performed as a surface treatment. Through vacuum plasma treatment, the surface roughness of the hard coating can also be adjusted. For example, when the hard coat layer 11 contains inorganic fine particles in addition to the binder resin component (resin hardened material), it is easy to selectively etch the resin component on the surface of the hard coat layer by vacuum plasma treatment, and the inorganic particles Since they are hardly etched and remain, the presence ratio of inorganic oxide particles on and near the hard coat surface tends to increase, and the arithmetic mean height Sa 1 of the hard coat surface tends to increase.

作為真空電漿處理中之環境氣體,較佳為氦氣、氖氣、氬氣、氪氣、氙氣、氡氣等惰性氣體,其中較佳為氬氣。真空電漿處理中之有效功率密度較佳為0.01 W・min/m・cm 2以上,更佳為0.03 W・min/m・cm 2以上,進而較佳為0.05 W・min/m・cm 2以上,亦可為0.07 W・min/m・cm 2以上、或0.1 W・min/m・cm 2以上。所謂有效功率密度,係將電漿輸出之功率密度(W/cm 2)除以搬送速度(m/min)所得之值。有效功率密度越大,則硬塗層表面之算術平均高度Sa 1越大,隨之,有形成於硬塗層上之抗反射層之密接性及耐彎曲性變高之傾向。 As the ambient gas in vacuum plasma treatment, inert gases such as helium, neon, argon, krypton, xenon, and radon are preferred, among which argon is preferred. The effective power density in vacuum plasma treatment is preferably 0.01 W・min/m・cm 2 or more, more preferably 0.03 W・min/m・cm 2 or more, and further preferably 0.05 W・min/m・cm 2 Above, it can also be 0.07 W・min/m・cm 2 or more, or 0.1 W・min/m・cm 2 or more. The effective power density is a value obtained by dividing the power density of the plasma output (W/cm 2 ) by the transport speed (m/min). The greater the effective power density, the greater the arithmetic mean height Sa 1 of the hard coat surface, and accordingly, the adhesion and bending resistance of the antireflection layer formed on the hard coat tend to become higher.

另一方面,若有效功率密度過高,則黏合劑樹脂會被過度地蝕刻,有時會招致硬塗層表面之凹凸之粗大化、或因微粒子之脫落所導致之密接性之下降。因此,有效功率密度較佳為0.6 W・min/m・cm 2以下,亦可為0.43 W・min/m・cm 2以下、或0.22 W・min/m・cm 2以下。 On the other hand, if the effective power density is too high, the binder resin will be excessively etched, which may cause roughening of the surface of the hard coat layer or a decrease in adhesion due to detachment of fine particles. Therefore, the effective power density is preferably 0.6 W·min/m·cm 2 or less, and may also be 0.43 W·min/m·cm 2 or less, or 0.22 W·min/m·cm 2 or less.

(硬塗層之表面形狀) 如上所述,藉由硬塗層11包含微粒子(奈米粒子),從而於表面形成細微之凹凸。又,藉由對包含微粒子之硬塗層實施電漿處理等表面處理,從而有凹凸變大,算術平均高度Sa 1變大之傾向。算術平均高度Sa係根據使用原子力顯微鏡(AFM)獲得之1 μm見方之觀察圖像,依據ISO 25178算出。 (Surface shape of hard coat layer) As described above, the hard coat layer 11 contains fine particles (nanoparticles), thereby forming fine unevenness on the surface. In addition, when the hard coat layer containing fine particles is subjected to surface treatment such as plasma treatment, the unevenness becomes larger and the arithmetic mean height Sa 1 tends to become larger. The arithmetic mean height Sa is calculated in accordance with ISO 25178 based on an observation image of 1 μm square obtained using an atomic force microscope (AFM).

硬塗層11之表面之算術平均高度Sa 1較佳為3.5 nm以上,更佳為4.0 nm以上,進而較佳為4.5 nm以上,亦可為5.0 nm以上、5.3 nm以上、或5.5 nm以上。存在硬塗層11之算術平均高度Sa 1越大,則抗反射層之密接性越高之傾向。又,於作為抗反射層5之成膜基底之硬塗層之算術平均高度Sa 1較大之情形時,在使抗反射層5濺鍍成膜時,容易呈柱狀生長,耐彎曲性存在變高之傾向。 The arithmetic mean height Sa 1 of the surface of the hard coat layer 11 is preferably 3.5 nm or more, more preferably 4.0 nm or more, further preferably 4.5 nm or more, and may be 5.0 nm or more, 5.3 nm or more, or 5.5 nm or more. There is a tendency that the greater the arithmetic mean height Sa 1 of the hard coat layer 11 is, the higher the adhesion of the anti-reflection layer will be. In addition, when the arithmetic mean height Sa 1 of the hard coat layer serving as the film-forming base of the anti-reflective layer 5 is large, columnar growth is likely to occur when the anti-reflective layer 5 is sputtered to form a film, and the bending resistance remains. Tendency to get high.

另一方面,若硬塗層之表面凹凸變得粗大,則有時無法實現充分之密接性。因此,硬塗層表面之算術平均高度Sa 1較佳為10 nm以下,更佳為8.0 nm以下,進而較佳為7.5 nm以下,亦可為7.0 nm以下、或6.5 nm以下。 On the other hand, if the surface irregularities of the hard coat layer become coarse, sufficient adhesion may not be achieved. Therefore, the arithmetic mean height Sa 1 of the hard coat surface is preferably 10 nm or less, more preferably 8.0 nm or less, and further preferably 7.5 nm or less, and may be 7.0 nm or less, or 6.5 nm or less.

[抗反射膜] 藉由於硬塗膜1之硬塗層11上,視需要隔著底塗層3形成抗反射層5,並於抗反射層5上設置防污層7,從而形成抗反射膜。 [Anti-reflective film] An anti-reflective film is formed by forming an anti-reflective layer 5 on the hard coat layer 11 of the hard coat film 1 via the primer layer 3 if necessary, and providing an anti-fouling layer 7 on the anti-reflective layer 5 .

<底塗層> 硬塗膜1之硬塗層11與抗反射層5之間較佳為設置有底塗層3。作為底塗層3之材料,可例舉:矽、鎳、鉻、錫、金、銀、鉑、鋅、鈦、銦、鎢、鋁、鋯、鈀等金屬;該等金屬之合金;該等金屬之氧化物、氟化物、硫化物或氮化物等。其中,底塗層之材料較佳為無機氧化物,特佳為氧化矽或氧化銦。構成底塗層3之無機氧化物亦可為氧化銦錫(ITO)等複合氧化物。 <Undercoat> A primer layer 3 is preferably provided between the hard coating layer 11 and the anti-reflective layer 5 of the hard coating film 1 . Examples of materials for the primer layer 3 include: silicon, nickel, chromium, tin, gold, silver, platinum, zinc, titanium, indium, tungsten, aluminum, zirconium, palladium and other metals; alloys of these metals; Metal oxides, fluorides, sulfides or nitrides, etc. Among them, the material of the undercoat layer is preferably an inorganic oxide, and particularly preferably silicon oxide or indium oxide. The inorganic oxide constituting the undercoat layer 3 may also be a composite oxide such as indium tin oxide (ITO).

底塗層3之膜厚例如為1~20 nm左右,較佳為3~15 nm。若底塗層之膜厚為上述範圍內,則可同時具備與硬塗層11之密接性、及較高之透光性。The film thickness of the undercoat layer 3 is, for example, about 1 to 20 nm, preferably 3 to 15 nm. If the film thickness of the undercoat layer is within the above range, it can have both adhesion to the hard coat layer 11 and high light transmittance.

<抗反射層> 抗反射層5係折射率不同之複數層薄膜之積層體,其包含至少1層高折射率層與至少1層低折射率層。一般而言,抗反射層係以使入射光與反射光之相反之相位彼此抵消之方式來調整薄膜之光學膜厚(折射率與膜厚之乘積)。藉由折射率不同之複數層薄膜之多層積層體,可在可見光之寬頻帶之波長範圍內減小反射率。 <Anti-reflection layer> The anti-reflective layer 5 is a laminate of multiple thin films with different refractive indexes, and includes at least one high refractive index layer and at least one low refractive index layer. Generally speaking, the anti-reflection layer adjusts the optical film thickness (the product of the refractive index and the film thickness) of the film in such a way that the opposite phases of the incident light and the reflected light cancel each other. By using a multi-layer laminate of multiple layers of films with different refractive indexes, the reflectivity can be reduced within a broad wavelength range of visible light.

圖1所示之抗反射膜101中,抗反射層5自硬塗膜1側依序具備高折射率層51、低折射率層52、高折射率層53、及低折射率層54之4層,作為抗反射層5之最外層(距離硬塗膜1最遠之層)之低折射率層54與防污層7相接。In the anti-reflective film 101 shown in FIG. 1 , the anti-reflective layer 5 has a high refractive index layer 51 , a low refractive index layer 52 , a high refractive index layer 53 , and four of the low refractive index layers 54 in order from the hard coating film 1 side. layer, the low refractive index layer 54 as the outermost layer of the anti-reflection layer 5 (the layer farthest from the hard coat film 1) is in contact with the anti-fouling layer 7.

抗反射層並不限定於4層結構,亦可為2層結構、3層結構、5層結構、或6層以上之積層結構,與防污層7相接之最外層54係低折射率層。藉由使最外層為低折射率層,從而減少與防污層7之界面處之反射。抗反射層5較佳為2層以上之高折射率層與2層以上之低折射率層之交替積層體。The anti-reflection layer is not limited to a 4-layer structure, and can also be a 2-layer structure, a 3-layer structure, a 5-layer structure, or a laminated structure of 6 or more layers. The outermost layer 54 connected to the antifouling layer 7 is a low refractive index layer. . By making the outermost layer a low refractive index layer, reflection at the interface with the antifouling layer 7 is reduced. The anti-reflection layer 5 is preferably an alternating stack of two or more high refractive index layers and two or more low refractive index layers.

低折射率層52、54係以氧化矽作為主成分之薄膜。由於氧化矽之折射率較低,且硬度較高,因此藉由使抗反射層5之最外層54為氧化矽,從而能夠獲得不僅抗反射性優異,並且耐擦傷性較高之抗反射膜。低折射率層亦可包含除了氧化矽以外之氧化物,但氧化矽之含量為90重量%以上,較佳為99重量%以上。低折射率層之折射率為1.6以下,較佳為1.5以下。The low refractive index layers 52 and 54 are thin films mainly composed of silicon oxide. Since silicon oxide has a low refractive index and high hardness, by making the outermost layer 54 of the anti-reflective layer 5 silicon oxide, an anti-reflective film that not only has excellent anti-reflective properties but also has high scratch resistance can be obtained. The low refractive index layer may also contain oxides other than silicon oxide, but the content of silicon oxide is 90% by weight or more, preferably 99% by weight or more. The refractive index of the low refractive index layer is 1.6 or less, preferably 1.5 or less.

與防污層7相接之低折射率層54之膜厚大於85 nm。藉由使作為抗反射層5之最外層之低折射率層54為具有大於85 nm之膜厚之氧化矽層,從而有抗反射層5之表面硬度變高,形成於其上之防污層7之耐磨耗性變高之傾向。The film thickness of the low refractive index layer 54 connected to the antifouling layer 7 is greater than 85 nm. By making the low refractive index layer 54, which is the outermost layer of the anti-reflective layer 5, a silicon oxide layer with a film thickness greater than 85 nm, the surface hardness of the anti-reflective layer 5 is increased, and the antifouling layer formed thereon is increased. 7. The wear resistance tends to become higher.

低折射率層54之膜厚較佳為87 nm以上,更佳為90 nm以上,亦可為92 nm以上、94 nm以上、或95 nm以上。存在作為抗反射層5之最外層之低折射率層54之膜厚越大,則防污層7之耐磨耗性越優異之傾向。另一方面,若低折射率層54之膜厚過大,則成為產生龜裂之原因,或者有時較難進行抗反射性特性優異之低反射率之光學設計。因此,低折射率層54之膜厚較佳為200 nm以下,更佳為150 nm以下,亦可為130 nm以下、120 nm以下、115 nm以下、110 nm以下、或105 nm以下。The film thickness of the low refractive index layer 54 is preferably 87 nm or more, more preferably 90 nm or more, and may also be 92 nm or more, 94 nm or more, or 95 nm or more. There is a tendency that the greater the film thickness of the low refractive index layer 54 that is the outermost layer of the antireflection layer 5, the more excellent the abrasion resistance of the antifouling layer 7 will be. On the other hand, if the film thickness of the low refractive index layer 54 is too large, it may cause cracks, or it may be difficult to achieve low reflectivity optical design with excellent antireflective properties. Therefore, the film thickness of the low refractive index layer 54 is preferably 200 nm or less, more preferably 150 nm or less, and may also be 130 nm or less, 120 nm or less, 115 nm or less, 110 nm or less, or 105 nm or less.

高折射率層51、53之折射率為2.0以上,較佳為2.2以上。作為高折射率層之材料,可例舉:氧化鈦、氧化鈮、氧化鋯等。該等之中,出於折射率較高,且藉由使其與氧化矽之低折射率層積層而能夠有效率地減小反射率之考量,較佳為氧化鈮。高折射率層51、53之氧化鈮之含量較佳為90重量%以上,更佳為99重量%以上。The refractive index of the high refractive index layers 51 and 53 is 2.0 or more, preferably 2.2 or more. Examples of materials for the high refractive index layer include titanium oxide, niobium oxide, and zirconium oxide. Among them, niobium oxide is preferred because the refractive index is high and the reflectivity can be effectively reduced by laminating it with a low refractive index layer of silicon oxide. The content of niobium oxide in the high refractive index layers 51 and 53 is preferably 90% by weight or more, more preferably 99% by weight or more.

於高折射率層係氧化鈮薄膜之情形時,其膜厚較佳為40 nm以下。於抗反射層包含複數層氧化鈮薄膜51、53之情形時,較佳為至少配置為距離硬塗層最遠之作為高折射率層53之氧化鈮薄膜之膜厚為40 nm以下,特佳為所有氧化鈮薄膜之膜厚均為40 nm以下。藉由氧化鈮薄膜之膜厚較小,從而使得抗反射膜之耐彎曲性存在變高之傾向。氧化鈮薄膜之膜厚更佳為35 nm以下,亦可為32 nm以下、或30 nm以下。When the high refractive index layer is a niobium oxide thin film, the film thickness is preferably 40 nm or less. When the anti-reflection layer includes a plurality of layers of niobium oxide films 51 and 53, it is preferable that the thickness of the niobium oxide film as the high refractive index layer 53, which is at least the farthest away from the hard coat layer, is 40 nm or less, particularly preferably. The film thickness of all niobium oxide films is below 40 nm. Due to the smaller film thickness of the niobium oxide film, the anti-reflective film tends to have higher bending resistance. The film thickness of the niobium oxide film is preferably 35 nm or less, 32 nm or less, or 30 nm or less.

氧化鈮薄膜之膜密度較佳為4.47 g/cm 3以下,更佳為4.40 g/cm 3以下,亦可為4.35 g/cm 3以下、或4.33 g/cm 3以下。藉由氧化鈮薄膜之膜密度較小,從而使得抗反射膜之耐彎曲性存在變高之傾向。於抗反射層包含複數層氧化鈮薄膜之情形時,較佳為至少配置為距離硬塗層11最遠之氧化鈮薄膜、即與作為最外層之低折射率層54相接之作為高折射率層53之氧化鈮薄膜之膜密度為上述範圍內。特佳為所有複數層氧化鈮薄膜51、53之膜密度均為上述範圍內。 The film density of the niobium oxide thin film is preferably 4.47 g/cm 3 or less, more preferably 4.40 g/cm 3 or less, and may also be 4.35 g/cm 3 or less, or 4.33 g/cm 3 or less. Due to the smaller film density of the niobium oxide film, the anti-reflective film tends to have higher bending resistance. When the anti-reflection layer includes a plurality of layers of niobium oxide films, it is preferable to arrange at least the niobium oxide film farthest from the hard coat layer 11, that is, as the high refractive index layer in contact with the low refractive index layer 54 as the outermost layer. The film density of the niobium oxide thin film of layer 53 is within the above range. Particularly preferably, the film densities of all the plurality of niobium oxide films 51 and 53 are within the above range.

氧化鈮薄膜之膜密度通常為4.0 g/cm 3以上,亦可為4.1 g/cm 3以上、或4.2 g/cm 3以上。膜密度係利用拉塞福逆散射(RBS)法進行測定而獲得之值,使用根據剖面觀察所求出之膜厚而算出密度。 The film density of the niobium oxide thin film is usually 4.0 g/cm 3 or more, and may be 4.1 g/cm 3 or more, or 4.2 g/cm 3 or more. The film density is a value measured by the Rutherford backscattering (RBS) method, and the density is calculated using the film thickness determined from cross-sectional observation.

於一實施方式中,抗反射層5係自硬塗膜1側起,第1層為作為高折射率層51之氧化鈮薄膜、第2層為作為低折射率層52之氧化矽薄膜、第3層為作為高折射率層53之氧化鈮薄膜、及第4層為作為低折射率層54之氧化矽薄膜的合計4層之交替積層體。於另一實施方式中,抗反射層係包含3層作為高折射率層之氧化鈮薄膜與3層作為低折射率層之氧化矽薄膜之合計6層之交替積層體。In one embodiment, the anti-reflection layer 5 is formed from the hard coating film 1 side, the first layer is a niobium oxide film as the high refractive index layer 51, the second layer is a silicon oxide film as the low refractive index layer 52, and the second layer is a silicon oxide film as the low refractive index layer 52. A total of four layers are alternately laminated, including three layers of a niobium oxide thin film as the high refractive index layer 53 and a fourth layer of a silicon oxide thin film as the low refractive index layer 54 . In another embodiment, the anti-reflection layer includes a total of six alternating laminates of three layers of niobium oxide films as high refractive index layers and three layers of silicon oxide films as low refractive index layers.

於抗反射層5係由2層高折射率層51、53及2層低折射率層52、54所構成之合計4層之交替積層體之情形時,可例舉如下之結構,即,自硬塗膜1側依序具備膜厚10~20 nm之氧化鈮薄膜51、膜厚35~45 nm之氧化矽薄膜52、膜厚25~35 nm之氧化鈮薄膜53、及膜厚90~105 nm之氧化矽薄膜54。When the anti-reflection layer 5 is an alternating laminated body of a total of four layers consisting of two high refractive index layers 51 and 53 and two low refractive index layers 52 and 54, the following structure can be exemplified, that is, since One side of the hard coating film has a niobium oxide film 51 with a film thickness of 10 to 20 nm, a silicon oxide film 52 with a film thickness of 35 to 45 nm, a niobium oxide film 53 with a film thickness of 25 to 35 nm, and a film thickness of 90 to 105 nm. nm silicon oxide film 54.

(底塗層及抗反射層之成膜) 構成底塗層3及抗反射層5之薄膜之成膜方法並無特別限定,可為濕式塗佈法、乾式塗佈法之任一種。出於可形成膜厚均勻之薄膜之考量,較佳為真空蒸鍍、CVD(Chemical vapor deposition,化學氣相沈積)、濺鍍、電子束蒸鍍等乾式塗佈法。該等之中,出於容易形成膜厚之均勻性優異,且緻密之膜之考慮,較佳為濺鍍法。 (Formation of base coat and anti-reflective layer) The film forming method of the thin film constituting the undercoat layer 3 and the anti-reflective layer 5 is not particularly limited, and may be either a wet coating method or a dry coating method. In order to form a thin film with uniform film thickness, dry coating methods such as vacuum evaporation, CVD (Chemical vapor deposition), sputtering, and electron beam evaporation are preferred. Among these, the sputtering method is preferred because it is easy to form a dense film with excellent uniformity in film thickness.

濺鍍法中,可藉由卷對卷方式,一面使長條之硬塗膜在一個方向(長邊方向)上搬送,一面連續地成膜出薄膜,因此可提高抗反射膜之生產性。為了提高抗反射膜之生產性,較佳為構成抗反射層5之所有薄膜均利用濺鍍法進行成膜。In the sputtering method, a thin film can be continuously formed while conveying a long hard coat film in one direction (longitudinal direction) in a roll-to-roll method, thereby improving the productivity of the anti-reflective film. In order to improve the productivity of the anti-reflective film, it is preferable that all the thin films constituting the anti-reflective layer 5 are formed by sputtering.

濺鍍法中,一面向腔室內導入氬氣等惰性氣體、及視需要之氧氣等反應性氣體,一面進行成膜。利用濺鍍法之氧化物層之成膜可藉由使用氧化物靶之方法、及使用金屬靶之反應性濺鍍之任一種來實施。為了使金屬氧化物以較高之速率成膜,較佳為使用金屬靶之反應性濺鍍。In the sputtering method, film formation is performed while introducing an inert gas such as argon gas and, if necessary, a reactive gas such as oxygen gas into a chamber. The film formation of the oxide layer by the sputtering method can be carried out by either a method using an oxide target or reactive sputtering using a metal target. In order to form a metal oxide film at a higher rate, reactive sputtering using a metal target is preferred.

於利用濺鍍法等乾式製程來形成薄膜之情形時,成膜基底之形狀會對膜之生長樣式產生影響。於硬塗層11具有表面凹凸,Sa 1較大之情形時,會促進膜之柱狀生長,因此沿著膜厚方向容易形成膜密度較低之「稀疏」區域,膜密度存在變小之傾向。 When a dry process such as sputtering is used to form a thin film, the shape of the film-forming substrate will affect the growth pattern of the film. When the hard coat layer 11 has surface irregularities and Sa 1 is large, the columnar growth of the film will be promoted. Therefore, a "sparse" region with a low film density will be easily formed along the film thickness direction, and the film density will tend to become smaller. .

如圖2所示,在剖面觀察圖像中,作為抗反射層5之最外層之低折射率層(氧化矽薄膜)54中有時觀察到沿著膜厚方向之膜密度較低之「稀疏」部分(圖2之向下三角(▼)所表示之部分)。於觀察到此類「稀疏」部分之情形時,抗反射膜之耐彎曲性存在變得優異之傾向。As shown in FIG. 2, in the cross-sectional observation image, in the low refractive index layer (silicon oxide film) 54 as the outermost layer of the anti-reflection layer 5, "sparse" with a low film density along the film thickness direction may be observed. ” part (the part indicated by the downward triangle (▼) in Figure 2). When such "sparse" portions are observed, the antireflection film tends to have excellent bending resistance.

基於耐彎曲性之觀點而言,低折射率層54較佳為具有更多之稀疏部分。在剖面觀察圖像之寬度方向(與膜厚方向正交之方向)之1 μm之區域內,低折射率層54之稀疏部分之數量較佳為2根以上,亦可為3根以上、或4根以上。有無稀疏部分係基於倍率為10萬倍之穿透式電子顯微鏡(TEM)圖像來進行判定。於200 nm×200 nm之區域對TEM圖像進行二值化處理,當沿著膜厚方向確認到條紋狀之區域時,判定該區域為稀疏部分。From the viewpoint of bending resistance, the low refractive index layer 54 preferably has more sparse portions. In an area of 1 μm in the width direction of the cross-sectional image (the direction orthogonal to the film thickness direction), the number of sparse portions of the low refractive index layer 54 is preferably 2 or more, and may be 3 or more, or 4 or more. The presence or absence of sparse parts is determined based on a transmission electron microscope (TEM) image with a magnification of 100,000 times. The TEM image was binarized in an area of 200 nm × 200 nm. When a stripe-like area was confirmed along the film thickness direction, it was determined that the area was a sparse part.

稀疏部分多自凹凸之凹部沿著膜厚方向延伸,於硬塗層11及抗反射層5之表面凹凸較大之情形時,於低折射率層54容易形成稀疏部分。抗反射層5之表面之算術平均高度Sa較佳為大於3.0 nm,更佳為3.3 nm以上,進而較佳為3.5 nm以上,亦可為3.7 nm以上、3.9 nm以上、或4.0 nm以上。抗反射層5之算術平均高度Sa亦可為10 nm以下、8 nm以下、6 nm以下、5.5 nm以下、或5 nm以下。The sparse portions mostly extend from the concave portions of the concavities and convexities along the film thickness direction. When the surface concavities and convexities of the hard coating layer 11 and the anti-reflection layer 5 are large, the sparse portions are easily formed in the low refractive index layer 54 . The arithmetic mean height Sa of the surface of the anti-reflection layer 5 is preferably greater than 3.0 nm, more preferably greater than 3.3 nm, further preferably greater than 3.5 nm, and may also be greater than 3.7 nm, greater than 3.9 nm, or greater than 4.0 nm. The arithmetic mean height Sa of the anti-reflection layer 5 may also be below 10 nm, below 8 nm, below 6 nm, below 5.5 nm, or below 5 nm.

於利用濺鍍法等乾式製程來形成薄膜之情形時,除作為成膜基底之硬塗層11之表面形狀以外,濺鍍成膜條件亦會對抗反射層之膜生長樣式產生影響。例如,於濺鍍成膜時之放電電壓較小之情形時,濺鍍粒子之動能較小,於基板表面之擴散得到抑制,因此會促進柱狀生長,容易形成稀疏部分。又,若成膜時之壓力較高,則濺鍍粒子之平均自由行程變小,濺鍍粒子之指向性下降而變得容易擴散,因此膜密度存在變小之傾向。When a dry process such as sputtering is used to form a thin film, in addition to the surface shape of the hard coat layer 11 as the film-forming base, the sputtering film-forming conditions will also affect the film growth pattern of the anti-reflective layer. For example, when the discharge voltage during sputtering film formation is small, the kinetic energy of the sputtered particles is small and the diffusion on the substrate surface is suppressed. Therefore, columnar growth is promoted and sparse parts are easily formed. In addition, if the pressure during film formation is high, the average free path of the sputtered particles becomes smaller, and the directivity of the sputtered particles decreases and becomes easier to diffuse, so the film density tends to become smaller.

為了形成具有稀疏部分之氧化矽薄膜,濺鍍成膜時之壓力較佳為0.4 Pa以上,亦可為0.45 Pa以上、或0.5 Pa以上。為了形成膜密度較小之氧化鈮薄膜,濺鍍成膜時之壓力較佳為0.5 Pa以上,亦可為0.55 Pa以上、或0.6 Pa以上。另一方面,於成膜壓力過高之情形時,成膜速率較低,生產性變差,因此成膜壓力較佳為1.5 Pa以下,亦可為1 Pa以下、或0.9 Pa以下。In order to form a silicon oxide thin film with sparse parts, the pressure during sputtering film formation is preferably 0.4 Pa or more, and may also be 0.45 Pa or more, or 0.5 Pa or more. In order to form a niobium oxide film with a smaller film density, the pressure during sputtering film formation is preferably 0.5 Pa or more, and may also be 0.55 Pa or more, or 0.6 Pa or more. On the other hand, when the film-forming pressure is too high, the film-forming rate is low and productivity becomes poor. Therefore, the film-forming pressure is preferably 1.5 Pa or less, 1 Pa or less, or 0.9 Pa or less.

<防污層> 抗反射膜中,於抗反射層5上具備防污層7作為最表面層(面塗層)。藉由於最表面設置防污層,從而不僅可降低來自外部環境之污染(指紋、手垢、灰塵等)之影響,並且容易去除附著於表面之污染物質。 <Antifouling layer> In the anti-reflection film, the anti-fouling layer 7 is provided on the anti-reflection layer 5 as the outermost layer (topcoat layer). By providing an anti-fouling layer on the outermost surface, it not only reduces the impact of pollution from the external environment (fingerprints, hand dirt, dust, etc.), but also easily removes pollutants attached to the surface.

為了維持抗反射層5之抗反射特性,防污層7與作為抗反射層5之最外層之低折射率層54之折射率差較佳為較小。防污層7之折射率較佳為1.6以下,更佳為1.55以下。In order to maintain the anti-reflective properties of the anti-reflective layer 5, the refractive index difference between the anti-fouling layer 7 and the low refractive index layer 54 as the outermost layer of the anti-reflective layer 5 is preferably small. The refractive index of the antifouling layer 7 is preferably 1.6 or less, more preferably 1.55 or less.

作為防污層7之材料,較佳為含氟化合物。含氟化合物不僅賦予防污性,並且還能夠有助於低折射率化。其中,出於撥水性優異,可發揮較高之防污性之考量,較佳為含有全氟聚醚骨架之氟系聚合物。基於提高防污性之觀點而言,特佳為具有能夠剛直地排列之主鏈結構之全氟聚醚。作為全氟聚醚之主鏈骨架之結構單元,較佳為碳數1~4之可具有支鏈之全氟環氧烷,例如可例舉:全氟環氧甲烷、(-CF 2O-)、全氟環氧乙烷(-CF 2CF 2O-)、全氟環氧丙烷(-CF 2CF 2CF 2O-)、全氟異環氧丙烷(-CF(CF 3)CF 2O-)等。 As the material of the antifouling layer 7, a fluorine-containing compound is preferred. The fluorine-containing compound not only imparts antifouling properties but also contributes to lowering the refractive index. Among them, fluorine-based polymers containing a perfluoropolyether skeleton are preferred because of their excellent water repellency and high antifouling properties. From the viewpoint of improving antifouling properties, perfluoropolyethers having a main chain structure that can be arranged rigidly are particularly preferred. As the structural unit of the main chain skeleton of the perfluoropolyether, perfluoroalkylene oxide with a carbon number of 1 to 4, which may have a branch chain, is exemplified by: perfluoroepoxymethane, (-CF 2 O- ), perfluoroethylene oxide (-CF 2 CF 2 O-), perfluoropropylene oxide (-CF 2 CF 2 CF 2 O-), perfluoroisopropylene oxide (-CF(CF 3 )CF 2 O-) etc.

防污層7可利用反向塗佈法、模嘴塗佈法、凹版塗佈法等濕式法、或CVD法等乾式法等來形成。防污層之膜厚通常為2~50 nm左右。存在防污層7之膜厚越大,則防污性越高之傾向。又,存在防污層7之膜厚越大,則越能抑制因磨耗所導致之防污特定之下降之傾向。防污層之膜厚較佳為5 nm以上,更佳為7 nm以上,進而較佳為8 nm以上。另一方面,基於在防污層之表面形成反映硬塗層表面之凹凸形狀之表面形狀,並賦予滑動性之觀點而言,防污層之膜厚較佳為30 nm以下,更佳為20 nm以下。The antifouling layer 7 can be formed by a wet method such as a reverse coating method, a die coating method, or a gravure coating method, or a dry method such as a CVD method. The film thickness of the antifouling layer is usually about 2 to 50 nm. There is a tendency that the larger the film thickness of the antifouling layer 7 is, the higher the antifouling property will be. In addition, the greater the film thickness of the antifouling layer 7, the more likely it is that the deterioration of the antifouling specificity due to wear can be suppressed. The film thickness of the antifouling layer is preferably 5 nm or more, more preferably 7 nm or more, and further preferably 8 nm or more. On the other hand, from the viewpoint of forming a surface shape that reflects the uneven shape of the hard coat surface on the surface of the antifouling layer and imparting sliding properties, the film thickness of the antifouling layer is preferably 30 nm or less, and more preferably 20 nm. nm or less.

如上所述,防污層7之表面之算術平均高度Sa 2大於3.0 nm。防污層7之算術平均高度Sa 2較佳為3.3 nm以上,更佳為3.5 nm以上,亦可為3.7 nm以上、3.9 nm以上、或4.0 nm以上。存在防污層7之算術平均高度Sa 2越大,則抗反射膜之耐彎曲性越高之傾向。 As mentioned above, the arithmetic mean height Sa 2 of the surface of the antifouling layer 7 is greater than 3.0 nm. The arithmetic mean height Sa 2 of the antifouling layer 7 is preferably 3.3 nm or more, more preferably 3.5 nm or more, and may also be 3.7 nm or more, 3.9 nm or more, or 4.0 nm or more. There is a tendency that the greater the arithmetic mean height Sa 2 of the antifouling layer 7 is, the higher the bending resistance of the antireflection film will be.

由於防污層7之表面形狀反映硬塗層11及設置於其上之抗反射層5之表面形狀,因此有硬塗層11之算術平均高度Sa 1越大,則防污層7之算術平均高度Sa 2越大之傾向。防污層7之算術平均高度Sa 2亦可為10 nm以下、8 nm以下、7.5 nm以下、7 nm以下、6.5 nm以下、6 nm以下、5.5 nm以下、或5 nm以下。 Since the surface shape of the antifouling layer 7 reflects the surface shape of the hard coating layer 11 and the anti-reflective layer 5 disposed thereon, the greater the arithmetic mean height Sa 1 of the hard coating layer 11 , the greater the arithmetic mean height of the antifouling layer 7 The height Sa 2 tends to be larger. The arithmetic mean height Sa 2 of the antifouling layer 7 may also be 10 nm or less, 8 nm or less, 7.5 nm or less, 7 nm or less, 6.5 nm or less, 6 nm or less, 5.5 nm or less, or 5 nm or less.

抗反射層5及防污層7之表面形狀亦被抗反射層之膜生長樣式所左右。一般而言,藉由於硬塗層11上形成抗反射層5及防污層7,從而使得硬塗層11之表面凹凸得以緩和,因此防污層7之算術平均高度Sa 2存在小於硬塗層11之算術平均高度Sa 1之傾向,且於膜生長相同之情形時,滿足Sa 2<Sa 1之關係。若使抗反射層5成膜時,膜呈柱狀生長,則凹凸變大,因此有防污層7之算術平均高度Sa 2變大,硬塗層11之算術平均高度Sa 1與防污層7之算術平均高度Sa 2之差Sa 1-Sa 2變小之傾向。 The surface shapes of the anti-reflective layer 5 and the anti-fouling layer 7 are also affected by the film growth pattern of the anti-reflective layer. Generally speaking, by forming the anti-reflective layer 5 and the anti-fouling layer 7 on the hard coating layer 11, the surface unevenness of the hard coating layer 11 is relaxed, so the arithmetic mean height Sa 2 of the anti-fouling layer 7 is smaller than the hard coating layer 11. The arithmetic mean height of 11 tends to be Sa 1 , and when the film growth is the same, the relationship of Sa 2 < Sa 1 is satisfied. When the antireflection layer 5 is formed, the film grows in a columnar shape, and the unevenness becomes larger. Therefore, the arithmetic mean height Sa 2 of the antifouling layer 7 becomes larger, and the arithmetic mean height Sa 1 of the hard coat layer 11 is different from that of the antifouling layer. The difference Sa 1 - Sa 2 between the arithmetic mean height Sa 2 of 7 tends to become smaller.

Sa 1-Sa 2較佳為2.2 nm以下,更佳為2.0 nm以下,亦可為1.8 nm以下、或1.6 nm以下。存在Sa 1-Sa 2越小,則抗反射膜之耐彎曲性越優異之傾向。認為其原因在於,作為抗反射層5之最外層之低折射率層54呈柱狀生長,容易形成稀疏部分。 Sa 1 - Sa 2 is preferably 2.2 nm or less, more preferably 2.0 nm or less, and may be 1.8 nm or less, or 1.6 nm or less. There is a tendency that the smaller Sa 1 - Sa 2 is, the better the bending resistance of the anti-reflective film will be. The reason is considered to be that the low refractive index layer 54 as the outermost layer of the anti-reflection layer 5 grows in a columnar shape and tends to form sparse portions.

基於抗反射膜之耐彎曲性之觀點而言,Sa 1-Sa 2之下限並無特別限定,Sa 1-Sa 2亦可為負值。但,於Sa 1-Sa 2過小(Sa 2較大)之情形時,有防污層之耐磨耗性下降之情況,因此Sa 1-Sa 2較佳為-0.4 nm以上,更佳為0 nm以上,亦可為0.3 nm以上、0.5 nm以上、0.7 nm以上、0.9 nm以上、或1.0 nm以上。 From the viewpoint of the bending resistance of the anti-reflective film, the lower limit of Sa 1 - Sa 2 is not particularly limited, and Sa 1 - Sa 2 may also be a negative value. However, when Sa 1 - Sa 2 is too small (Sa 2 is large), the abrasion resistance of the antifouling layer may decrease. Therefore, Sa 1 - Sa 2 is preferably -0.4 nm or more, more preferably 0. nm or more, and may also be 0.3 nm or more, 0.5 nm or more, 0.7 nm or more, 0.9 nm or more, or 1.0 nm or more.

[抗反射膜之耐彎曲性] 若將抗反射膜在以抗反射層形成面側為內側彎曲之狀態下進行加熱,則抗反射層上有時產生龜裂。本發明中,藉由使作為抗反射層5之最外層之低折射率層54之膜厚大於85 nm,且防污層7之算術平均高度Sa 2大於3 nm,從而不僅耐擦傷性優異,並且抗反射層具有優異之耐彎曲性,抑制龜裂之產生。 [Bending resistance of anti-reflective film] If the anti-reflective film is heated in a state of being bent with the anti-reflective layer forming surface facing inward, cracks may occur in the anti-reflective layer. In the present invention, by making the film thickness of the low refractive index layer 54 as the outermost layer of the anti-reflection layer 5 larger than 85 nm, and the arithmetic mean height Sa 2 of the antifouling layer 7 being larger than 3 nm, not only the scratch resistance is excellent, but also the scratch resistance is excellent. In addition, the anti-reflective layer has excellent bending resistance and inhibits the occurrence of cracks.

若將抗反射膜以抗反射層形成面側為內側進行彎曲,則抗反射層上產生壓縮方向上之應變。若在此種狀態下進行加熱,則膜基材發生熱膨脹,於抗反射層之硬塗層側之面產生拉伸方向上之應變(欲使膜拉伸之力),於防污層側之面產生壓縮方向上之更加大之應變,因此認為會產生龜裂。If the anti-reflective film is bent with the anti-reflective layer forming surface facing inside, strain in the compression direction will occur on the anti-reflective layer. If heated in this state, the film base material will thermally expand, causing strain in the tensile direction (the force that makes the film stretch) on the hard coat side of the anti-reflective layer, and on the anti-fouling layer side. The surface produces greater strain in the compression direction, so cracks are thought to occur.

如上所述,藉由使硬塗層11之算術平均高度Sa 1較大,從而當於其上形成抗反射層5時,會促進膜之柱狀生長,容易形成稀疏部分。即便在以抗反射層形成面為內側彎曲之狀態下產生較大之壓縮應變,由於膜之稀疏部分具有緩和應變之作用,因此認為會抑制龜裂之產生。 As described above, by making the arithmetic mean height Sa 1 of the hard coat layer 11 larger, when the anti-reflection layer 5 is formed thereon, the columnar growth of the film will be promoted, and sparse portions will easily be formed. Even if a large compressive strain occurs in a state where the surface where the anti-reflective layer is formed is bent inward, the sparse portion of the film has the effect of relaxing the strain, so it is thought that the occurrence of cracks will be suppressed.

抗反射層5雖然表面凹凸較大,且具有稀疏部分,但由於作為最外層之低折射率層54之膜厚較大,因此表面硬度較高,耐擦傷性優異。因此,於抗反射層5之低折射率層54上相接地設置之防污層7之耐磨耗性優異,因滑動摩擦所產生之磨耗較少,持續長時間保持較高之防污性。Although the surface of the anti-reflective layer 5 has large unevenness and sparse parts, the low refractive index layer 54 as the outermost layer has a large film thickness, so the surface hardness is high and the scratch resistance is excellent. Therefore, the antifouling layer 7 disposed in contact with the low refractive index layer 54 of the antireflection layer 5 has excellent wear resistance. It suffers less wear due to sliding friction and maintains high antifouling properties for a long time. .

又,藉由使作為抗反射層5之最外層之低折射率層(氧化矽薄膜)54之膜厚較大,從而能夠以其正下方之高折射率層(氧化鈮薄膜)之膜厚較小之光學設計來實現低反射率,此亦能夠有助於提高抗反射層之耐彎曲性。In addition, by making the thickness of the low refractive index layer (silicon oxide film) 54 as the outermost layer of the anti-reflection layer 5 larger, the thickness of the high refractive index layer (niobium oxide thin film) directly below it can be made thicker. Small optical design to achieve low reflectivity can also help improve the bending resistance of the anti-reflective layer.

一般而言,使作為高折射率層之氧化鈮薄膜與作為低折射率層之氧化矽薄膜交替積層而成之抗反射膜中,作為用於減小反射率之光學設計,採用設置於抗反射層之最外層之正下方之氧化鈮薄膜之膜厚較大之結構。但是,膜厚較大之氧化鈮薄膜為高密度,容易因彎曲時之應變而產生龜裂。Generally speaking, in an anti-reflection film in which a niobium oxide film as a high refractive index layer and a silicon oxide film as a low refractive index layer are alternately laminated, an anti-reflection film is used as an optical design for reducing reflectivity. A structure in which the film thickness of the niobium oxide film directly below the outermost layer is relatively large. However, the thicker niobium oxide film has a high density and is prone to cracking due to strain during bending.

對此,於作為抗反射層之最外層之低折射率層54之膜厚大於85 nm之情形時,即便其正下方之高折射率層53之膜厚為40 nm以下,亦可實現低反射率。該光學設計中,由於作為高折射率層53之氧化鈮薄膜之膜厚較小,因此起因於氧化鈮薄膜之彎曲時之龜裂之產生得到抑制。In this regard, when the film thickness of the low refractive index layer 54 as the outermost layer of the anti-reflection layer is greater than 85 nm, low reflection can be achieved even if the film thickness of the high refractive index layer 53 directly below it is 40 nm or less. Rate. In this optical design, since the film thickness of the niobium oxide film as the high refractive index layer 53 is small, the occurrence of cracks caused by bending of the niobium oxide film is suppressed.

[抗反射膜之使用形態] 抗反射膜例如配置於液晶顯示器或有機EL顯示器等圖像顯示裝置之表面來使用。例如,藉由將抗反射膜配置於包含液晶單元或有機EL單元等圖像顯示媒體之面板之視認側表面,從而能夠減少外界光之反射,提高圖像顯示裝置之視認性。 [How to use anti-reflective film] The anti-reflection film is placed on the surface of an image display device such as a liquid crystal display or an organic EL display and is used. For example, by arranging an anti-reflection film on the viewing side surface of a panel containing an image display medium such as a liquid crystal unit or an organic EL unit, reflection of external light can be reduced and the visibility of the image display device can be improved.

由於本發明之抗反射膜具備防污層,故可降低與外部之接觸所導致之污染之影響,並且由於防污層之耐磨耗性優異,故亦可較好地用於與外部之接觸或滑動較多之移動用途之圖像顯示裝置。又,由於本發明之抗反射膜之耐彎曲性優異,即便在以抗反射層形成面側為內側彎曲之狀態下保持,彎曲部位處之抗反射層上亦不易產生龜裂,因此亦可較好地用於可摺疊顯示器。 [實施例] Since the anti-reflective film of the present invention has an anti-fouling layer, it can reduce the impact of pollution caused by contact with the outside, and because the anti-fouling layer has excellent abrasion resistance, it can also be better used in contact with the outside. Or an image display device for mobile use with a lot of sliding. In addition, since the anti-reflective film of the present invention has excellent bending resistance, even if it is kept in a bent state with the anti-reflective layer forming surface facing the inside, cracks will not easily occur on the anti-reflective layer at the bent portion, so it can also be used more efficiently. Good for foldable displays. [Example]

以下,舉出實施例,對本發明更加詳細地進行說明,但本發明並不限定於以下之具體例。The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following specific examples.

[硬塗膜之製作] 於紫外線硬化性丙烯酸系樹脂組合物(DIC製造、商品名「GRANDIC PC-1070」)中,以相對於樹脂成分100重量份,二氧化矽粒子之含量變為40重量份之方式,添加有機矽溶膠(日產化學公司製造之「MEK-ST-L」、二氧化矽粒子之平均一次粒徑:50 nm、二氧化矽粒子之粒徑分佈:30 nm~130 nm、固形物成分30重量%)並加以混合,從而製備硬塗層形成用組合物。 [Production of hard coating film] To the ultraviolet curable acrylic resin composition (manufactured by DIC, trade name "GRANDIC PC-1070"), organic silicon is added so that the content of silicon dioxide particles becomes 40 parts by weight relative to 100 parts by weight of the resin component. Sol ("MEK-ST-L" manufactured by Nissan Chemical Co., Ltd., average primary particle size of silica particles: 50 nm, particle size distribution of silica particles: 30 nm to 130 nm, solid content 30% by weight) and mixed to prepare a composition for forming a hard coat layer.

將上述組合物以乾燥後之厚度變為4 μm之方式塗佈於厚度80 μm之三乙醯纖維素膜(富士膠片製造之「Fujitac」)之單面上,並於80℃下乾燥3分鐘。其後,使用高壓水銀燈,照射累計光量200 mJ/cm 2之紫外線使塗佈層硬化,從而形成硬塗層。 The above composition was applied to one side of a triacetyl cellulose film ("Fujitac" manufactured by Fujifilm) with a thickness of 80 μm so that the thickness after drying became 4 μm, and dried at 80°C for 3 minutes. . Thereafter, a high-pressure mercury lamp was used to irradiate ultraviolet rays with a cumulative light intensity of 200 mJ/cm 2 to harden the coating layer, thereby forming a hard coating layer.

[實施例1] (硬塗層之表面處理) 於0.5 Pa之真空環境下,一面搬送硬塗膜,一面以有效功率密度0.14 W・min/m・cm 2對硬塗層之表面實施氬電漿處理。氬電漿處理後之硬塗層之算術平均高度Sa 1為5.7 nm。 [Example 1] (Surface treatment of hard coat layer) In a vacuum environment of 0.5 Pa, while transporting the hard coat film, argon electrolysis was performed on the surface of the hard coat layer at an effective power density of 0.14 W·min/m·cm 2 Pulp treatment. The arithmetic mean height Sa 1 of the hard coating after argon plasma treatment is 5.7 nm.

(底塗層之形成) 將電漿處理後之硬塗膜導入至卷對卷方式之濺鍍成膜裝置中,使槽內減壓至1×10 -4Pa後,一面使膜移動,一面以壓力變為0.5 Pa之方式,導入體積比為98:2之氬氣與氧氣,並於電源:MFAC(Medium Frequency Alternating Current,中頻交流電)、投入電力:6 kW之條件下,利用濺鍍法形成膜厚2 nm之ITO底塗層。為了形成ITO底塗層,使用以90:10之重量比含有氧化銦與氧化錫之燒結靶作為靶材料。 (Formation of undercoat layer) The plasma-treated hard coating film is introduced into a roll-to-roll sputtering film-forming device. After the pressure in the tank is reduced to 1×10 -4 Pa, the film is moved while By changing the pressure to 0.5 Pa, introduce argon and oxygen with a volume ratio of 98:2, and use sputtering under the conditions of power source: MFAC (Medium Frequency Alternating Current, medium frequency alternating current) and input power: 6 kW. Method to form an ITO primer with a film thickness of 2 nm. In order to form the ITO undercoat layer, a sintered target containing indium oxide and tin oxide in a weight ratio of 90:10 was used as a target material.

(抗反射層之形成) 在形成ITO底塗層後,繼而藉由反應性濺鍍依序成膜出第1層:16 nm之Nb 2O 5層(折射率:2.32)、第2層:40 nm之SiO 2層(折射率:1.46)、第3層:31 nm之Nb 2O 5層、及第4層:100 nm之SiO 2層,從而形成抗反射層。為了成膜出Nb 2O 5層(第1層及第3層),使用Nb靶,以壓力變為0.6 Pa之方式,導入體積比為90:10之氬氣與氧氣,並於投入電力:30 kW之條件下實施濺鍍。為了成膜出SiO 2層(第2層及第4層),使用Si靶,以壓力變為0.5 Pa之方式,導入體積比為70:30之氬氣與氧氣,並於投入電力:20 kW之條件下實施濺鍍。 (Formation of anti-reflective layer) After forming the ITO primer layer, the first layer: 16 nm Nb 2 O 5 layer (refractive index: 2.32) and the second layer: The 40 nm SiO 2 layer (refractive index: 1.46), the 3rd layer: 31 nm Nb 2 O 5 layer, and the 4th layer: 100 nm SiO 2 layer form an anti-reflective layer. In order to form Nb 2 O 5 layers (layer 1 and layer 3), use an Nb target, introduce argon gas and oxygen gas with a volume ratio of 90:10 at a pressure of 0.6 Pa, and add electricity: Sputtering was performed under the conditions of 30 kW. In order to form SiO 2 layers (the 2nd layer and the 4th layer), a Si target is used, and argon gas and oxygen gas are introduced with a volume ratio of 70:30 at a pressure of 0.5 Pa, and electricity is input: 20 kW Sputtering is carried out under the conditions.

(防污層之形成) 將氟系防污塗覆劑(信越化學工業製造之「SHIN-ETSU SUBELYNKY1903-1」)乾燥並固化,以此作為蒸鍍源,於加熱溫度260℃下,利用真空蒸鍍法,於抗反射層上形成膜厚7 nm之防污層。 (Formation of antifouling layer) The fluorine-based antifouling coating agent ("SHIN-ETSU SUBELYNKY1903-1" manufactured by Shin-Etsu Chemical Industry Co., Ltd.) is dried and solidified. This is used as a vapor deposition source. At a heating temperature of 260°C, a vacuum evaporation method is used to achieve anti-reflection An antifouling layer with a thickness of 7 nm is formed on the layer.

[比較例1] 變更電漿處理時之放電電力,使有效功率密度為0.007 W・min/m・cm 2。氬電漿處理後之硬塗層之算術平均高度Sa 1為5.0 nm。除此以外,與實施例1同樣地進行抗反射層之形成、及防污層之形成,從而製作抗反射膜。 [Comparative Example 1] The discharge power during plasma treatment was changed so that the effective power density was 0.007 W·min/m·cm 2 . The arithmetic mean height Sa 1 of the hard coating after argon plasma treatment is 5.0 nm. Except for this, the antireflection layer and the antifouling layer were formed in the same manner as in Example 1, thereby producing an antireflection film.

[比較例2] 抗反射層之形成中,如表1所示般變更各層之膜厚。除此以外,與實施例1同樣地進行硬塗層之電漿處理、抗反射層之形成、及防污層之形成,從而製作抗反射膜。 [Comparative example 2] In the formation of the antireflection layer, the film thickness of each layer was changed as shown in Table 1. Except for this, the plasma treatment of the hard coat layer, the formation of the anti-reflection layer, and the formation of the anti-fouling layer were carried out in the same manner as in Example 1, thereby producing an anti-reflection film.

[評價] <表面形狀> 使用原子力顯微鏡(AFM),根據下述條件測定硬塗層及抗反射膜(防污層)之表面形狀,並依據ISO 25178測定算術平均表面高度Sa。 裝置:Bruker製造之Dimemsion3100、控制器:NanoscopeV 測定模式:輕敲模式 懸臂:Si單晶 測定視野:1 μm×1 μm [evaluation] <Surface shape> Using an atomic force microscope (AFM), the surface shape of the hard coating and anti-reflective film (antifouling layer) was measured according to the following conditions, and the arithmetic mean surface height Sa was measured according to ISO 25178. Device: Dimemsion3100 manufactured by Bruker, Controller: NanoscopeV Measurement mode: tapping mode Cantilever: Si single crystal Measurement field of view: 1 μm × 1 μm

<剖面觀察> 藉由聚焦離子束加工裝置(日立高新技術製造之「FB2200」),對抗反射膜進行加工來製作剖面觀察用試樣,藉由場發射型穿透式電子顯微鏡(日本電子製造之「JEM-2800」),以倍率10萬倍進行觀察。在所獲得之剖面圖像中,對以抗反射層之凹凸之凹部為中心之200 nm×200 nm之區域,藉由圖像處理軟體「Image-J」進行二值化處理,而獲得二值圖像,在該二值圖像中,當沿著膜厚方向確認到條紋狀之區域時,判定該區域為稀疏部分。 <Cross-section observation> The antireflective film was processed using a focused ion beam processing device (“FB2200” manufactured by Hitachi High-Technologies) to prepare a sample for cross-sectional observation, and a field emission transmission electron microscope (“JEM-2800” manufactured by JEOL Ltd. "), observe at a magnification of 100,000 times. In the obtained cross-sectional image, a 200 nm × 200 nm area centered on the concave and convex portion of the anti-reflection layer was binarized using the image processing software "Image-J" to obtain a binary value In this binary image, when a stripe-like area is confirmed along the film thickness direction, it is determined that the area is a sparse part.

圖2中示出了實施例1之抗反射膜之剖面圖像,圖3中示出了比較例1之抗反射膜之剖面圖像。圖2中,在寬度1 μm之區域內確認到3個稀疏部分(圖中之向下三角(▼)所表示之部分)。另一方面,圖3中未確認到稀疏部分。FIG. 2 shows a cross-sectional image of the anti-reflective film of Example 1, and FIG. 3 shows a cross-sectional image of the anti-reflective film of Comparative Example 1. In Figure 2, three sparse parts (parts indicated by downward triangles (▼) in the figure) are confirmed in an area with a width of 1 μm. On the other hand, the sparse part is not confirmed in Fig. 3 .

<耐彎曲試驗> 將抗反射膜切成寬度10 mm×長度100 mm之尺寸,使其以抗反射層側之面為內側之方式彎曲180°,並如圖4所示,以彎曲半徑固定為D/2之方式,將長度方向之兩端貼合於厚度D之間隔件。於100℃之烘箱內,對該試樣進行30分鐘加熱後將其取出,藉由目視來確認彎曲部分有無龜裂(抗反射層之白濁)。於間隔件之厚度D為10.4 mm、9.2 mm、7.8 mm、5.2 mm(彎曲半徑D/2為5.2 mm、4.6 mm、3.9 mm、2.6 mm)之情形時進行評價,將未產生龜裂之彎曲半徑之最小值作為耐彎曲半徑。 <Bending resistance test> Cut the anti-reflective film into a size of 10 mm width × 100 mm length, and bend it 180° with the anti-reflective layer side facing the inside, and fix the bending radius to D/2 as shown in Figure 4. , fit the two ends in the length direction to the spacer of thickness D. Heat the sample in an oven at 100°C for 30 minutes and then take it out. Check visually whether there are cracks in the curved portion (white turbidity of the anti-reflective layer). The evaluation was conducted when the thickness D of the spacer was 10.4 mm, 9.2 mm, 7.8 mm, or 5.2 mm (the bending radius D/2 was 5.2 mm, 4.6 mm, 3.9 mm, or 2.6 mm), and the bend without cracks was The minimum value of the radius is used as the bending resistance radius.

<耐磨耗性> 將約2 μL之水滴加於防污層之表面,自滴加起1秒後,使用接觸角測定裝置(協和界面化學公司製造之「DMo-701」),測定防污層之表面與液滴端部之切線所成之角度(水接觸角之初始值)。其後,擦拭表面之水滴。 <Abrasion resistance> About 2 μL of water was dropped onto the surface of the antifouling layer. One second after the addition, a contact angle measuring device ("DMo-701" manufactured by Kyowa Interface Chemical Co., Ltd.) was used to measure the surface of the antifouling layer and the droplets. The angle formed by the tangent line of the end (initial value of water contact angle). Afterwards, wipe away the water droplets on the surface.

將鋼絲絨(日本STEELWOOL製造之「Bonstar #0000」)安裝於擦傷試驗機之直徑11 mm之圓柱形狀之金屬夾具中,使其以負載1.0 kg、速度100 mm/秒在防污層之表面往返滑動1000次後,再次測定水接觸角(滑動後之水接觸角)。將滑動後之水接觸角相對於初始之水接觸角之比率(水接觸角之保持率)作為耐磨耗性之指標。Steel wool ("Bonstar #0000" manufactured by Japan STEELWOOL) was installed in a cylindrical metal fixture with a diameter of 11 mm in the scratch testing machine, and was allowed to reciprocate on the surface of the antifouling layer with a load of 1.0 kg and a speed of 100 mm/second. After sliding 1000 times, the water contact angle (water contact angle after sliding) was measured again. The ratio of the water contact angle after sliding to the initial water contact angle (water contact angle retention rate) is used as an index of wear resistance.

將實施例及比較例之硬塗層之電漿處理之有效功率密度、及電漿處理後之算術平均高度Sa 1、構成抗反射層之各層之膜厚、以及抗反射膜之評價結果(防污層表面之算術平均高度Sa 2、剖面觀察中之SiO 2層之稀疏部分之有無、耐擦傷性(水接觸角之保持率)、及耐彎曲半徑)示於表1中。 The effective power density of the plasma treatment of the hard coatings of the Examples and Comparative Examples, the arithmetic mean height Sa 1 after the plasma treatment, the film thickness of each layer constituting the anti-reflection layer, and the evaluation results of the anti-reflection film (anti-reflection film) The arithmetic mean height Sa 2 of the stain layer surface, the presence or absence of sparse parts of the SiO 2 layer in cross-sectional observation, scratch resistance (retention rate of water contact angle), and bending resistance radius) are shown in Table 1.

[表1]    實施例1 比較例1 比較例2 硬塗層 電漿處理(W・min/m・cm 2) 0.14 0.007 0.14 Sa 1(nm) 5.7 5.0 5.7 抗反射層厚度(nm) 第1層:Nb 2O 5 16 16 16 第2層:SiO 2 40 40 19 第3層:Nb 2O 5 32 32 105 第4層:SiO 2 101 101 83 抗反射膜 Sa 2(nm) 4.3 2.7 6.2 SiO 2稀疏部分 耐磨耗性 87% 85% 51% 耐彎曲半徑(mm) 2.6 5.2 52 [Table 1] Example 1 Comparative example 1 Comparative example 2 hard coat Plasma treatment (W・min/m・cm 2 ) 0.14 0.007 0.14 Sa 1 (nm) 5.7 5.0 5.7 Anti-reflection layer thickness (nm) Layer 1: Nb 2 O 5 16 16 16 Layer 2: SiO 2 40 40 19 Layer 3: Nb 2 O 5 32 32 105 Layer 4: SiO 2 101 101 83 Anti-reflective film Sa 2 (nm) 4.3 2.7 6.2 SiO 2 sparse part have without have Wear resistance 87% 85% 51% Bending radius (mm) 2.6 5.2 52

在抗反射層之最外層之氧化矽薄膜之膜厚為101 nm,防污層之算術平均高度Sa 2為4.3 nm之實施例1中,耐彎曲半徑較小,為2.6 mm,且防污層具有較高之耐磨耗性。另一方面,在Sa 2較小之比較例1中,於最外層之氧化矽薄膜未確認到稀疏部分,相較於實施例1而言,耐彎曲性較差。 In Example 1, where the thickness of the outermost silicon oxide film of the anti-reflective layer is 101 nm and the arithmetic mean height Sa 2 of the anti-fouling layer is 4.3 nm, the bending resistance radius is small, 2.6 mm, and the anti-fouling layer Has high wear resistance. On the other hand, in Comparative Example 1 in which Sa 2 is smaller, no sparse portions were observed in the outermost silicon oxide film, and the bending resistance was poorer than in Example 1.

比較例1中,硬塗層之算術平均高度Sa 1與防污層之算術平均高度Sa 2之差Sa 1-Sa 2為2.3 nm,與之相對,實施例1中,Sa 1-Sa 2為1.4 nm。實施例1中,硬塗層之電漿處理時之有效功率密度較高,硬塗層上形成有更大之表面凹凸,因此Sa 1較大,會促進濺鍍成膜於硬塗層上之抗反射層之柱狀生長,容易於膜中形成稀疏之部分,認為耐彎曲性提高。 In Comparative Example 1, the difference Sa 1 - Sa 2 between the arithmetic mean height Sa 1 of the hard coat layer and the arithmetic mean height Sa 2 of the antifouling layer is 2.3 nm. In contrast, in Example 1, Sa 1 - Sa 2 is 1.4nm. In Example 1, the effective power density during plasma treatment of the hard coat layer is higher, and larger surface irregularities are formed on the hard coat layer. Therefore, Sa 1 is larger, which will promote the sputtering film formation on the hard coat layer. The columnar growth of the anti-reflective layer easily forms sparse parts in the film, which is thought to improve the bending resistance.

比較例2中,相較於實施例1而言,耐磨耗性變差。認為其原因在於,抗反射層之最外層之氧化矽薄膜之膜厚較小,硬度較低。In Comparative Example 2, compared with Example 1, the wear resistance deteriorated. The reason is believed to be that the outermost silicon oxide film of the anti-reflective layer has a smaller film thickness and lower hardness.

比較例2中,與實施例1同樣地在氧化矽薄膜形成稀疏部分,儘管防污層之算術平均高度Sa 2較大,但相較於實施例1而言,耐彎曲半徑較大,耐彎曲性變差。推定除了氧化矽薄膜之膜質以外,形成於氧化矽薄膜之正下方之氧化鈮薄膜之膜厚之大小亦會對耐彎曲性產生影響。 In Comparative Example 2, a sparse portion is formed in the silicon oxide film in the same manner as in Example 1. Although the arithmetic mean height Sa 2 of the antifouling layer is larger, compared with Example 1, the bending resistance radius is larger and the bending resistance is larger. Sexual deterioration. It is estimated that in addition to the film quality of the silicon oxide film, the film thickness of the niobium oxide film formed directly under the silicon oxide film also affects the bending resistance.

如上所述,實施例1之抗反射膜相較於比較例1、2之抗反射膜而言,耐彎曲半徑較小,耐彎曲性優異。又,可知實施例1之抗反射膜之耐磨耗性亦優異,能夠較好地用作配置於可摺疊裝置之最表面之抗反射膜。As described above, the anti-reflective film of Example 1 has a smaller bending resistance radius and excellent bending resistance compared to the anti-reflective films of Comparative Examples 1 and 2. Furthermore, it was found that the anti-reflective film of Example 1 also has excellent abrasion resistance and can be suitably used as an anti-reflective film disposed on the outermost surface of a foldable device.

1:硬塗膜 3:底塗層 5:抗反射層 7:防污層 10:透明膜基材 11:硬塗層 51:高折射率層(氧化鈮層) 52:低折射率層(氧化矽層) 53:高折射率層(氧化鈮層) 54:低折射率層(氧化矽層) 101:抗反射膜 D:厚度 D/2:彎曲半徑 1: Hard coating film 3: Base coat 5:Anti-reflective layer 7: Antifouling layer 10:Transparent film substrate 11:Hard coating 51: High refractive index layer (niobium oxide layer) 52: Low refractive index layer (silicon oxide layer) 53: High refractive index layer (niobium oxide layer) 54: Low refractive index layer (silicon oxide layer) 101:Anti-reflective film D:Thickness D/2: bending radius

圖1係表示抗反射膜之積層形態之剖視圖。 圖2係實施例之抗反射膜之剖面觀察圖像。 圖3係比較例之抗反射膜之剖面觀察圖像。 圖4係表示用於耐彎曲性試驗之試樣之結構之剖視圖。 FIG. 1 is a cross-sectional view showing the lamination form of the anti-reflection film. Figure 2 is a cross-sectional observation image of the anti-reflection film of the embodiment. Figure 3 is a cross-sectional observation image of the anti-reflection film of the comparative example. Fig. 4 is a cross-sectional view showing the structure of a specimen used for a bending resistance test.

1:硬塗膜 1: Hard coating film

3:底塗層 3: Base coat

5:抗反射層 5:Anti-reflective layer

7:防污層 7: Antifouling layer

10:透明膜基材 10:Transparent film substrate

11:硬塗層 11:Hard coating

51:高折射率層(氧化鈮層) 51: High refractive index layer (niobium oxide layer)

52:低折射率層(氧化矽層) 52: Low refractive index layer (silicon oxide layer)

53:高折射率層(氧化鈮層) 53: High refractive index layer (niobium oxide layer)

54:低折射率層(氧化矽層) 54: Low refractive index layer (silicon oxide layer)

101:抗反射膜 101:Anti-reflective film

Claims (10)

一種抗反射膜, 其具備: 於透明膜基材之一主面上具備硬塗層之硬塗膜、 設置於上述硬塗膜之硬塗層上之抗反射層、及 設置於上述抗反射層上之防污層,且 上述抗反射層包含至少1層高折射率層及至少1層低折射率層,低折射率層與上述防污層相接, 上述低折射率層係以氧化矽作為主成分之薄膜, 與上述防污層相接之上述低折射率層之膜厚大於85 nm, 上述防污層之算術平均高度Sa 2大於3.0 nm。 An anti-reflective film comprising: a hard coat film having a hard coat layer on one of the main surfaces of a transparent film substrate; an anti-reflective layer provided on the hard coat layer of the hard coat film; and an anti-reflective layer provided on the hard coat layer. The anti-fouling layer on the anti-fouling layer, and the anti-reflective layer includes at least one high refractive index layer and at least one low refractive index layer. The low refractive index layer is connected to the anti-fouling layer. The low refractive index layer is made of silicon oxide. As for the main component of the film, the film thickness of the low refractive index layer connected to the antifouling layer is greater than 85 nm, and the arithmetic mean height Sa 2 of the antifouling layer is greater than 3.0 nm. 如請求項1之抗反射膜,其中在剖面觀察圖像中,與上述防污層相接之上述低折射率層具有沿著膜厚方向之稀疏部分。The anti-reflection film of claim 1, wherein in a cross-sectional image, the low refractive index layer connected to the antifouling layer has sparse portions along the film thickness direction. 如請求項1或2之抗反射膜,其中上述抗反射層包含2層以上之上述低折射率層及2層以上之上述高折射率層。The anti-reflective film of claim 1 or 2, wherein the anti-reflective layer includes two or more layers of the above-mentioned low refractive index layer and two or more layers of the above-mentioned high refractive index layer. 如請求項1或2之抗反射膜,其中上述高折射率層係以氧化鈮作為主成分之薄膜。The anti-reflective film of claim 1 or 2, wherein the high refractive index layer is a thin film containing niobium oxide as its main component. 如請求項4之抗反射膜,其中上述高折射率層之膜厚均為40 nm以下。Such as the anti-reflection film of claim 4, wherein the film thickness of the above-mentioned high refractive index layer is 40 nm or less. 如請求項1或2之抗反射膜,其中於上述硬塗層與上述抗反射層之間具備包含無機氧化物之底塗層。The anti-reflective film of claim 1 or 2, wherein a primer layer containing an inorganic oxide is provided between the hard coat layer and the anti-reflective layer. 如請求項1或2之抗反射膜,其中上述硬塗層包含黏合劑樹脂及平均一次粒徑為10~100 nm之微粒子。The anti-reflective film of claim 1 or 2, wherein the hard coating layer includes a binder resin and microparticles with an average primary particle size of 10 to 100 nm. 如請求項1或2之抗反射膜,其中上述硬塗層之算術平均高度Sa 1為4.5 nm以上。 The anti-reflective film of claim 1 or 2, wherein the arithmetic mean height Sa 1 of the above-mentioned hard coating layer is 4.5 nm or more. 如請求項1或2之抗反射膜,其中上述硬塗層之算術平均高度Sa 1與上述防污層之算術平均高度Sa 2之差Sa 1-Sa 2為2.2 nm以下。 The anti-reflective film of claim 1 or 2, wherein the difference Sa 1 - Sa 2 between the arithmetic mean height Sa 1 of the above-mentioned hard coating layer and the arithmetic mean height Sa 2 of the above-mentioned antifouling layer is 2.2 nm or less. 一種圖像顯示裝置,其係於圖像顯示媒體之視認側表面配置有如請求項1至9中任一項之抗反射膜者。An image display device in which the anti-reflective film according to any one of claims 1 to 9 is arranged on the viewing side surface of an image display medium.
TW112114720A 2022-04-28 2023-04-20 Antireflection film and image display device TW202346904A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-074698 2022-04-28
JP2022074698A JP2023163654A (en) 2022-04-28 2022-04-28 Antireflection film and image display device

Publications (1)

Publication Number Publication Date
TW202346904A true TW202346904A (en) 2023-12-01

Family

ID=88518494

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112114720A TW202346904A (en) 2022-04-28 2023-04-20 Antireflection film and image display device

Country Status (3)

Country Link
JP (1) JP2023163654A (en)
TW (1) TW202346904A (en)
WO (1) WO2023210368A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7185101B2 (en) * 2020-07-13 2022-12-06 日東電工株式会社 Optical film with antifouling layer
JP7130893B2 (en) * 2020-07-13 2022-09-05 日東電工株式会社 Optical film with antifouling layer
JP7041769B1 (en) * 2021-03-25 2022-03-24 デクセリアルズ株式会社 Optical laminates, articles and image display devices
JP2022189597A (en) * 2021-06-11 2022-12-22 日東電工株式会社 Hard coat film, optical member, and image display device

Also Published As

Publication number Publication date
WO2023210368A1 (en) 2023-11-02
JP2023163654A (en) 2023-11-10

Similar Documents

Publication Publication Date Title
KR101524580B1 (en) Transparent conductive film, touch panel, and display device
KR101235451B1 (en) Method of producing optical film and anti-reflection film, optical film, anti-reflection film, polarizing plate and image display device comprising same
EP2583821A1 (en) Laminated film, manufacturing method for same, and electronic device
WO2021106797A1 (en) Antireflection film and image display device
JP2005234554A (en) Antireflection film, polarizing plate and image display apparatus
JP2010277059A (en) Antireflection film and polarizing plate including the same
TW200533951A (en) Process for the production of antireflective film, antireflective film, polarizing plate, and image display device
JPWO2007114364A1 (en) OPTICAL LAMINATE AND METHOD FOR PRODUCING OPTICAL LAMINATE
JP2006126808A (en) Optical laminate
JP2013254183A (en) Antireflection film, manufacturing method thereof, polarizer, and image display device
TW202200385A (en) Optical laminate, article and method for manufacturing optical laminate
TW202136054A (en) Antireflection film, method for producing same, and image display device
JP2005070435A (en) Manufacturing method for antidazzle antireflection coating
KR101263967B1 (en) Optical laminated body
TW202141071A (en) Method for manufacturing optical laminate
TW202346904A (en) Antireflection film and image display device
TWI383894B (en) Optical laminate
EP4063921B1 (en) Optical laminate, article, and image display apparatus
JP7455777B2 (en) Optical laminates and image display devices
TW202346103A (en) Antireflective film, method for producing same, and image display device
JP7130893B2 (en) Optical film with antifouling layer
JP5907243B2 (en) Hard coat film for touch panel and touch panel
WO2023171567A1 (en) Optical laminate, article, and image display device
WO2023210436A1 (en) Antireflection film and method for producing same, and image display device
JP2023133067A (en) Optical laminate, article and picture display unit