TW202345257A - Parameter optimization method, program, recording medium and substrate processing apparatus - Google Patents

Parameter optimization method, program, recording medium and substrate processing apparatus Download PDF

Info

Publication number
TW202345257A
TW202345257A TW111144700A TW111144700A TW202345257A TW 202345257 A TW202345257 A TW 202345257A TW 111144700 A TW111144700 A TW 111144700A TW 111144700 A TW111144700 A TW 111144700A TW 202345257 A TW202345257 A TW 202345257A
Authority
TW
Taiwan
Prior art keywords
parameter
discharge
pressure
optimization
nozzle
Prior art date
Application number
TW111144700A
Other languages
Chinese (zh)
Inventor
仲村武瑠
安陪裕滋
Original Assignee
日商斯庫林集團股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商斯庫林集團股份有限公司 filed Critical 日商斯庫林集團股份有限公司
Publication of TW202345257A publication Critical patent/TW202345257A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Ink Jet (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

The present invention addresses the problem of providing a technique capable of appropriately and efficiently implementing parameter optimization in an apparatus that discharges a processing liquid. A coating device (1) is provided with: a discharge control unit (910) for controlling the discharge of a coating liquid from a nozzle (71) on the basis of a plurality of parameters including a first parameter and a second parameter; a discharge characteristic measurement unit (911) that measures discharge characteristics when the nozzle (71) discharges the coating liquid; a first optimization unit (915) that optimizes the first parameter by global search on the basis of the discharge characteristics; and a second optimization unit (917) that optimizes the second parameter by a local search on the basis of the discharge characteristics. The first parameters include parameters V1-V4, T1-T9 corresponding to a rising period during which the discharge speed of the coating liquid from the nozzle 71 is increased to a stable discharge speed. The second parameter includes a parameter V5 corresponding to a stable discharge period in which the discharge speed is maintained at a stable discharge speed.

Description

參數最佳化方法、程式、記錄媒體及基板處理裝置Parameter optimization method, program, recording medium and substrate processing device

本說明書中所揭示之主題係關於一種參數最佳化方法、程式、記錄媒體及基板處理裝置。The subject matter disclosed in this specification relates to a parameter optimization method, program, recording medium and substrate processing device.

如專利文獻1所示,在將自噴嘴吐出之處理液塗佈於基板之情形下,賦予給處理液之吐出壓力對塗佈於基板之處理液的厚度有很大影響。因此,在專利文獻1中,謀求與吐出壓力相關聯之參數的最佳化。As shown in Patent Document 1, when a processing liquid discharged from a nozzle is applied to a substrate, the discharge pressure given to the processing liquid greatly affects the thickness of the processing liquid applied to the substrate. Therefore, in Patent Document 1, optimization of parameters related to discharge pressure is sought.

具體而言,專利文獻1之最佳化方法具有:模擬吐出步驟,其向基板以外吐出處理液;吐出特性量測步驟,其量測模擬吐出步驟中之處理液的吐出特性;狀態量導出步驟,其導出自量測出之吐出特性的目標特性偏離之狀態量;及學習步驟,其對伴隨參數之變更的狀態量變化進行機器學習,從而構築學習模型。並且,狀態量超過既定之容許範圍的期間,在基於學習模型而變更參數後,反復執行模擬吐出步驟、吐出特性量測步驟、狀態量導出步驟及學習步驟。當狀態量處於容許範圍時,最後變更之參數被設定為在處理液供給步驟中吐出處理液時之參數。 [先前技術文獻] [專利文獻] Specifically, the optimization method of Patent Document 1 includes: a simulated discharge step, which discharges the processing liquid outside the substrate; a discharge characteristic measurement step, which measures the discharge characteristics of the processing liquid in the simulated discharge step; and a state quantity derivation step. , which derives the state quantity that deviates from the target characteristic of the measured discharge characteristics; and the learning step, which performs machine learning on changes in the state quantity accompanying changes in parameters, thereby constructing a learning model. In addition, while the state quantity exceeds the predetermined allowable range, after changing the parameters based on the learning model, the simulated discharge step, the discharge characteristic measurement step, the state quantity derivation step, and the learning step are repeatedly executed. When the state quantity is within the allowable range, the last changed parameter is set to the parameter when the processing liquid is discharged in the processing liquid supply step. [Prior technical literature] [Patent Document]

[專利文獻1]日本專利特開2020-040046號公報[Patent Document 1] Japanese Patent Application Publication No. 2020-040046

(發明所欲解決之問題)(The problem that the invention wants to solve)

根據專利文獻1之最佳化方法,藉由活用機器學習可將參數之調整作業自動化,故可削減技術者之勞力。但是,機器學習模型之學習一般需要大量學習資料或反復試行多次。因此,與僅藉由單純地將參數最佳化作業自動化,而由具有知識及經驗之技術者實施參數調整作業之情形相比較,存在有最佳化所需之時間或伴隨模擬吐出之處理液的消耗量增多之虞。According to the optimization method of Patent Document 1, the parameter adjustment operation can be automated by utilizing machine learning, so the labor of technicians can be reduced. However, the learning of machine learning models generally requires a large amount of learning materials or repeated trials many times. Therefore, compared with the situation where the parameter optimization operation is simply automated and the parameter adjustment operation is performed by technicians with knowledge and experience, there is the time required for optimization or the processing liquid accompanying the simulated discharge. There is a risk of increased consumption.

本發明之目的在於:提供一種在吐出處理液之裝置中,可適當且高效地實施參數最佳化之技術。 (解決問題之技術手段) An object of the present invention is to provide a technology that can appropriately and efficiently implement parameter optimization in a device that discharges a treatment liquid. (Technical means to solve problems)

為解決上述問題,第1態樣係一種參數最佳化方法,其在將自噴嘴吐出之處理液供給至基板之基板處理裝置中,將用於控制前述處理液之吐出的參數最佳化;該參數最佳化方法包含有:a) 第1最佳化步驟,其藉由大區域搜索而將第1參數最佳化;及b) 第2最佳化步驟,其藉由局部搜索而將第2參數最佳化;前述第1參數包含與將來自前述噴嘴之前述處理液的吐出速度提高至定常吐出速度之上升期間對應的參數,前述第2參數包含與將前述吐出速度維持在前述定常吐出速度之定常吐出期間對應的參數。In order to solve the above problem, a first aspect is a parameter optimization method that optimizes parameters for controlling the discharge of the processing liquid discharged from a nozzle in a substrate processing apparatus that supplies the processing liquid discharged from a nozzle; The parameter optimization method includes: a) a first optimization step, which optimizes the first parameter through a large area search; and b) a second optimization step, which optimizes the first parameter through a local search. Second parameter optimization; the first parameter includes a parameter corresponding to a rising period in which the discharge speed of the treatment liquid from the nozzle is increased to a constant discharge speed, and the second parameter includes a parameter related to maintaining the discharge speed at the constant speed. Parameters corresponding to the constant discharge period of the discharge speed.

第2態樣係第1態樣之參數最佳化方法,其中,前述步驟b)在前述步驟a)之後執行。The second aspect is the parameter optimization method of the first aspect, wherein the aforementioned step b) is performed after the aforementioned step a).

第3態樣係第1態樣之參數最佳化方法,其中,前述第1最佳化步驟包含:藉由貝氏最佳化而將前述第1參數最佳化之步驟。A third aspect is a parameter optimization method of the first aspect, wherein the first optimization step includes a step of optimizing the first parameter through Bayesian optimization.

第4態樣係第1態樣至第3態樣中任一態樣之參數最佳化方法,其中,前述參數係對向前述噴嘴給送前述處理液之泵的動作加以控制之控制量。A fourth aspect is a parameter optimization method according to any one of the first to third aspects, wherein the parameter is a control amount that controls an operation of a pump that supplies the processing liquid to the nozzle.

第5態樣係第1態樣至第4態樣中任一態樣之參數最佳化方法,其中,前述步驟a)包含:基於自前述噴嘴吐出處理液時之吐出特性的特徵量導出之成本值,而將前述第1參數最佳化之步驟。A fifth aspect is a parameter optimization method according to any one of the first aspect to the fourth aspect, wherein the aforementioned step a) includes: deriving based on the characteristic amount of the discharge characteristics when the treatment liquid is discharged from the aforementioned nozzle. Cost value, and the step of optimizing the first parameter mentioned above.

第6態樣係第1態樣至第5態樣中任一態樣之參數最佳化方法,其中,前述步驟b)包含:基於前述定常吐出期間之開始時之吐出速度、與前述定常吐出期間之結束時之吐出速度的比,將前述第2參數最佳化之步驟。The sixth aspect is a parameter optimization method of any one of the first to fifth aspects, wherein the aforementioned step b) includes: based on the discharging speed at the beginning of the aforementioned steady discharging period, and the aforementioned steady discharging The ratio of the discharge speed at the end of the period is the step of optimizing the aforementioned second parameter.

第7態樣係一種用於使電腦執行參數最佳化的程式,前述參數係用於控制來自噴嘴之處理液的吐出;該程式使前述電腦執行:a) 第1最佳化步驟,其藉由大區域搜索而將第1參數最佳化;及b) 第2最佳化步驟,其藉由局部搜索而將第2參數最佳化;前述第1參數包含與來自前述噴嘴之前述處理液的吐出速度提高至定常吐出速度之上升期間對應的參數,前述第2參數包含與前述吐出速度維持在前述定常吐出速度之定常吐出期間對應的參數。The seventh aspect is a program for causing the computer to optimize parameters for controlling the discharge of the treatment liquid from the nozzle; the program causes the computer to execute: a) the first optimization step, by Optimize the first parameter by a large area search; and b) a second optimization step, which optimizes the second parameter by a local search; the aforementioned first parameter includes the aforementioned treatment liquid from the aforementioned nozzle The second parameters include parameters corresponding to the steady discharge period during which the discharge speed is maintained at the steady discharge speed.

第8態樣係一種電腦可讀取之記錄媒體,其記錄第7態樣之程式。The eighth aspect is a computer-readable recording medium that records the program of the seventh aspect.

第9態樣係一種基板處理裝置,該基板處理裝置係將自噴嘴吐出之處理液供給至基板者;其具備:吐出控制部,其基於包含第1參數及第2參數之複數個參數而控制來自前述噴嘴之前述處理液的吐出;吐出特性量測部,其量測前述噴嘴吐出前述處理液時之吐出特性;第1最佳化部,其基於前述吐出特性,藉由大區域搜索而將前述第1參數最佳化;及第2最佳化部,其基於前述吐出特性,藉由局部搜索而將前述第2參數最佳化;前述第1參數包含與將來自前述噴嘴之前述處理液的吐出速度提高至定常吐出速度之上升期間對應的參數,前述第2參數包含與將前述吐出速度維持在前述定常吐出速度之定常吐出期間對應的參數。 (對照先前技術之功效) A ninth aspect is a substrate processing apparatus that supplies a processing liquid discharged from a nozzle to a substrate, and includes a discharge control unit that controls based on a plurality of parameters including a first parameter and a second parameter. Discharge of the processing liquid from the nozzle; a discharge characteristic measurement unit that measures the discharge characteristics when the nozzle discharges the processing liquid; and a first optimization unit that performs a large-area search based on the discharge characteristics. The aforementioned first parameter optimization; and a second optimization unit, which optimizes the aforementioned second parameter through local search based on the aforementioned discharge characteristics; the aforementioned first parameter includes the aforementioned treatment liquid from the aforementioned nozzle The second parameter includes a parameter corresponding to a steady discharge period during which the discharge speed is maintained at the steady discharge speed. (Compare the effectiveness of previous technologies)

根據第1態樣至第6態樣之參數最佳化方法,藉由局部搜索,將與最佳化較為容易之定常吐出速度對應的參數最佳化,故較藉由大區域搜索來將全部參數最佳化之情形,可減輕運算量。因此,可適當且高效地進行與處理液之吐出對應之參數的最佳化。According to the parameter optimization method of the first to sixth aspects, the local search is used to optimize the parameters corresponding to the steady discharge speed, which is easier to optimize. Therefore, it is better to use the large-area search to optimize all parameters. In the case of parameter optimization, the amount of calculation can be reduced. Therefore, parameters corresponding to the discharge of the treatment liquid can be appropriately and efficiently optimized.

根據第2態樣之參數最佳化方法,基於被最佳化之第1參數,可將第2參數最佳化。According to the parameter optimization method of the second aspect, the second parameter can be optimized based on the optimized first parameter.

根據第3態樣之參數最佳化方法,藉由貝氏最佳化,可將第1參數最佳化。According to the parameter optimization method of the third aspect, the first parameter can be optimized through Bayesian optimization.

根據第5態樣之參數最佳化方法,基於成本值,可將第1參數最佳化。According to the parameter optimization method of the fifth aspect, the first parameter can be optimized based on the cost value.

根據第6態樣之參數最佳化方法,基於定常吐出期間之開始時及結束時之吐出速度的比,可將第2參數最佳化,故可以使定常吐出期間之吐出速度保持在定常吐出速度之方式將第2參數最佳化。According to the parameter optimization method of the sixth aspect, the second parameter can be optimized based on the ratio of the discharge speed at the beginning and end of the steady discharge period, so that the discharge speed during the steady discharge period can be maintained at the steady discharge The speed method optimizes the second parameter.

以下,參照附圖,針對本發明之實施形態進行說明。此外,該實施形態所記載之構成要素僅為例示,並非意指將本發明之範圍僅限定於該等構成要素。圖式中,為了容易理解,存在有根據需要而將各部分之尺寸或數量誇大或簡略化地加以圖示的情形。Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the components described in this embodiment are only examples, and the scope of the present invention is not intended to be limited to these components. In the drawings, in order to facilitate understanding, the size or number of each part may be exaggerated or simplified as necessary.

圖1係示意性地顯示實施形態的塗佈裝置1之整體構成的圖。塗佈裝置1係在基板S之上表面Sf將塗佈液加以塗佈的基板處理裝置。例如,基板S為液晶顯示裝置用之玻璃基板。此外,基板S亦可為半導體晶圓、光罩用玻璃基板、電漿顯示器用玻璃基板、磁碟・光碟用玻璃或陶瓷基板、有機EL用玻璃基板、太陽電池用玻璃基板或矽基板、其他可撓性基板及印刷基板等用於電子設備之各種處理用基板。塗佈裝置1例如為狹縫塗佈機。FIG. 1 is a diagram schematically showing the overall structure of the coating device 1 according to the embodiment. The coating device 1 is a substrate processing device that applies a coating liquid to the upper surface Sf of the substrate S. For example, the substrate S is a glass substrate for a liquid crystal display device. In addition, the substrate S may also be a semiconductor wafer, a glass substrate for a photomask, a glass substrate for a plasma display, a glass or ceramic substrate for a magnetic disk or an optical disk, a glass substrate for an organic EL, a glass substrate or a silicon substrate for a solar cell, or others. Flexible substrates, printed circuit boards, etc. are used in various processing substrates for electronic equipment. The coating device 1 is, for example, a slit coater.

圖1中,為說明塗佈裝置1之各要素的配置關係,定義有XYZ座標系。基板S之搬送方向為「X方向」。在X方向上,基板S行進之方向(向搬送方向之下游的一側)為+X方向,其相反方向(向搬送方向之上游的一側)為-X方向。又,與X方向正交之方向為Y方向,與X方向及Y方向正交之方向為Z方向。在以下之說明中,將Z方向作為鉛直方向,將X方向及Y方向作為水平方向。在Z方向上,將+Z方向作為上方向,將-Z方向作為下方向。In FIG. 1 , an XYZ coordinate system is defined in order to explain the arrangement relationship of each element of the coating device 1 . The conveyance direction of the substrate S is the "X direction". In the X direction, the direction in which the substrate S travels (the downstream side in the conveyance direction) is the +X direction, and the opposite direction (the upstream side in the conveyance direction) is the -X direction. In addition, the direction orthogonal to the X direction is the Y direction, and the direction orthogonal to the X direction and the Y direction is the Z direction. In the following description, the Z direction is regarded as the vertical direction, and the X direction and the Y direction are regarded as the horizontal direction. In the Z direction, the +Z direction is regarded as the upward direction, and the -Z direction is regarded as the downward direction.

塗佈裝置1向+X方向依次具備輸入輸送機100、輸入移載部2、浮起平台部3、輸出移載部4、及輸出輸送機110。輸入輸送機100、輸入移載部2、浮起平台部3、輸出移載部4、及輸出輸送機110形成基板S通過之搬送路徑。又,塗佈裝置1進一步具備基板搬送部5、塗佈機構7、塗佈液供給機構8、及控制單元9。The coating device 1 includes an input conveyor 100, an input transfer part 2, a floating platform part 3, an output transfer part 4, and an output conveyor 110 in order in the +X direction. The input conveyor 100, the input transfer unit 2, the floating platform unit 3, the output transfer unit 4, and the output conveyor 110 form a transfer path through which the substrate S passes. In addition, the coating device 1 further includes a substrate transport unit 5 , a coating mechanism 7 , a coating liquid supply mechanism 8 , and a control unit 9 .

基板S自上游側被搬送至輸入輸送機100。輸入輸送機100具備滾輪輸送機101與旋轉驅動機構102。旋轉驅動機構102使滾輪輸送機101之各滾輪旋轉。藉由滾輪輸送機101之各滾輪的旋轉,基板S係以水平姿勢向下游(+X方向)被搬送。「水平姿勢」係指基板S之主面(面積最大之面)相對水平面(XY平面)平行之狀態。The substrate S is conveyed to the input conveyor 100 from the upstream side. The input conveyor 100 includes a roller conveyor 101 and a rotation drive mechanism 102 . The rotation drive mechanism 102 rotates each roller of the roller conveyor 101 . By the rotation of each roller of the roller conveyor 101, the substrate S is conveyed downstream (+X direction) in a horizontal posture. "Horizontal posture" refers to the state in which the main surface (the surface with the largest area) of the substrate S is parallel to the horizontal plane (XY plane).

輸入移載部2具備滾輪輸送機21與旋轉・升降驅動機構22。旋轉・升降驅動機構22使滾輪輸送機21之各滾輪旋轉,且使滾輪輸送機21升降。藉由滾輪輸送機21之旋轉,基板S係以水平姿勢向下游(+X方向)被搬送。又,藉由滾輪輸送機21之升降,使基板S在Z方向之位置變更。基板S自輸入輸送機100經由輸入移載部2向浮起平台部3移載。The input transfer unit 2 includes a roller conveyor 21 and a rotation and lifting drive mechanism 22 . The rotation/lifting drive mechanism 22 rotates each roller of the roller conveyor 21 and raises and lowers the roller conveyor 21 . By the rotation of the roller conveyor 21, the substrate S is conveyed downstream (+X direction) in a horizontal attitude. Furthermore, the position of the substrate S in the Z direction is changed by the lifting and lowering of the roller conveyor 21 . The substrate S is transferred from the input conveyor 100 to the floating platform part 3 via the input transfer part 2 .

如圖1所示,浮起平台部3為大致平板狀。浮起平台部3沿X方向被分割為3部分。浮起平台部3向+X方向依次具備入口浮起平台31、塗佈平台32、及出口浮起平台33。入口浮起平台31之上表面、塗佈平台32之上表面、及出口浮起平台33之上表面在同一平面上。浮起平台部3進一步具備升降銷驅動機構34、浮起控制機構35、及升降驅動機構36。升降銷驅動機構34使配置於入口浮起平台31之幾個升降銷升降。浮起控制機構35將用於使基板S浮起之壓縮空氣供給至入口浮起平台31、塗佈平台32、及出口浮起平台33。升降驅動機構36使出口浮起平台33升降。As shown in FIG. 1 , the floating platform portion 3 has a substantially flat plate shape. The floating platform portion 3 is divided into three parts along the X direction. The floating platform part 3 includes an entrance floating platform 31, a coating platform 32, and an exit floating platform 33 in order in the +X direction. The upper surface of the inlet floating platform 31, the upper surface of the coating platform 32, and the upper surface of the outlet floating platform 33 are on the same plane. The floating platform part 3 further includes a lifting pin driving mechanism 34 , a floating control mechanism 35 , and a lifting driving mechanism 36 . The lifting pin driving mechanism 34 raises and lowers several lifting pins arranged on the entrance floating platform 31 . The floating control mechanism 35 supplies compressed air for floating the substrate S to the inlet floating platform 31 , the coating platform 32 , and the outlet floating platform 33 . The lifting drive mechanism 36 raises and lowers the outlet floating platform 33 .

在入口浮起平台31之上表面及出口浮起平台33之上表面,矩陣狀地配置有噴出自浮起控制機構35供給之壓縮空氣的多數個噴出孔。當壓縮空氣自各噴出孔噴出時,基板S相對於浮起平台部3向上方浮起。於是,基板S之下表面Sb一邊自浮起平台部3之上表面分離,一邊以水平姿勢被支撐。基板S浮起之狀態中,基板S之下表面Sb與浮起平台部3之上表面之間的距離(浮起量)例如為10 μm以上且500 μm以下。On the upper surface of the inlet floating platform 31 and the upper surface of the outlet floating platform 33, a plurality of ejection holes for ejecting the compressed air supplied from the floating control mechanism 35 are arranged in a matrix. When the compressed air is ejected from each ejection hole, the substrate S floats upward with respect to the floating platform portion 3 . Then, the lower surface Sb of the substrate S is supported in a horizontal posture while being separated from the upper surface of the floating platform portion 3 . In the state where the substrate S is floated, the distance (lifting amount) between the lower surface Sb of the substrate S and the upper surface of the floating platform portion 3 is, for example, 10 μm or more and 500 μm or less.

在塗佈平台32之上表面,噴出自浮起控制機構35供給之壓縮空氣的噴出孔與抽吸氣體之抽吸孔係在X方向及Y方向上交互配置。浮起控制機構35控制來自噴出孔之壓縮空氣的噴出量與來自抽吸孔之空氣的抽吸量。由此,精密地控制基板S相對於塗佈平台32之浮起量,以使通過塗佈平台32上方之基板S的上表面Sf在Z方向之位置成為規定值。此外,基板S相對於塗佈平台32之浮起量係由控制單元9基於後述之感測器61或感測器62的檢測結果而計算。又,基板S相對於塗佈平台32之浮起量係以藉由控制氣流而可高精度地調整為較佳。On the upper surface of the coating platform 32, ejection holes for ejecting compressed air supplied from the floating control mechanism 35 and suction holes for sucking gas are alternately arranged in the X direction and the Y direction. The floating control mechanism 35 controls the ejection amount of compressed air from the ejection hole and the suction amount of air from the suction hole. Thereby, the floating amount of the substrate S with respect to the coating platform 32 is precisely controlled so that the position of the upper surface Sf of the substrate S passing above the coating platform 32 in the Z direction becomes a predetermined value. In addition, the floating amount of the substrate S relative to the coating platform 32 is calculated by the control unit 9 based on the detection result of the sensor 61 or the sensor 62 described later. In addition, it is preferable that the floating amount of the substrate S relative to the coating platform 32 can be adjusted with high accuracy by controlling the air flow.

搬入至浮起平台部3之基板S被賦予自滾輪輸送機21向+X方向之推進力,並被搬送至入口浮起平台31上。入口浮起平台31、塗佈平台32及出口浮起平台33以浮起狀態支撐基板S。作為浮起平台部3,亦可採用例如日本專利第5346643號所記載之構成。The substrate S carried into the floating platform part 3 is given a propulsive force in the +X direction from the roller conveyor 21, and is conveyed to the entrance floating platform 31. The inlet floating platform 31, the coating platform 32, and the outlet floating platform 33 support the substrate S in a floating state. As the floating platform portion 3, for example, the structure described in Japanese Patent No. 5346643 can be adopted.

基板搬送部5配置於浮起平台部3之下方。基板搬送部5具備卡盤機構51與吸附・移行控制機構52。卡盤機構51具備設置於吸附構件之吸附墊(省略圖示)。卡盤機構51藉由使吸附墊抵接於基板S之下表面Sb的周緣部,而自下側支撐基板S。吸附・移行控制機構52藉由對吸附墊賦予負壓,將基板S吸附於吸附墊。又,吸附・移行控制機構52使基板搬送部5在X方向上往返移行。The substrate transfer unit 5 is arranged below the floating platform unit 3 . The substrate transfer unit 5 includes a chuck mechanism 51 and an adsorption/transfer control mechanism 52 . The chuck mechanism 51 includes an adsorption pad (not shown) provided on the adsorption member. The chuck mechanism 51 supports the substrate S from the lower side by bringing the suction pad into contact with the peripheral edge portion of the lower surface Sb of the substrate S. The adsorption/movement control mechanism 52 adsorbs the substrate S to the adsorption pad by applying negative pressure to the adsorption pad. Furthermore, the adsorption/transfer control mechanism 52 reciprocates the substrate transport unit 5 in the X direction.

卡盤機構51在基板S之下表面Sb位於較浮起平台部3之上表面更高的位置之狀態下保持基板S。基板S在由卡盤機構51保持周緣部之狀態下,藉由自浮起平台部3賦予之浮力來維持水平姿勢。The chuck mechanism 51 holds the substrate S in a state where the lower surface Sb of the substrate S is located at a higher position than the upper surface of the floating platform portion 3 . The substrate S maintains its horizontal posture by the buoyancy force imparted from the floating platform portion 3 while the peripheral portion is held by the chuck mechanism 51 .

如圖1所示,塗佈裝置1具備板厚測定用之感測器61。感測器61配置於滾輪輸送機21之附近。感測器61檢測卡盤機構51所保持之基板S的上表面Sf在Z方向之位置。又,藉由未保持基板S之狀態的卡盤(省略圖示)位於感測器61之正下方,感測器61可檢測吸附構件之上表面即吸附面在鉛直方向Z之位置。As shown in FIG. 1 , the coating device 1 is provided with a sensor 61 for plate thickness measurement. The sensor 61 is arranged near the roller conveyor 21 . The sensor 61 detects the position of the upper surface Sf of the substrate S held by the chuck mechanism 51 in the Z direction. In addition, since the chuck (not shown) that does not hold the substrate S is located directly below the sensor 61, the sensor 61 can detect the position of the upper surface of the adsorption member, that is, the adsorption surface, in the vertical direction Z.

卡盤機構51一邊保持搬入至浮起平台部3之基板S,一邊向+X方向移動。由此,基板S自入口浮起平台31之上方經由塗佈平台32之上方,向出口浮起平台33之上方被搬送。並且,基板S自出口浮起平台33向輸出移載部4移動。The chuck mechanism 51 moves in the +X direction while holding the substrate S loaded into the floating platform portion 3 . Thereby, the substrate S is conveyed from above the entrance floating platform 31 to above the exit floating platform 33 via the upper side of the coating platform 32 . Then, the substrate S moves from the outlet floating platform 33 to the output transfer unit 4 .

輸出移載部4使基板S自出口浮起平台33之上方位置向輸出輸送機110移動。輸出移載部4具備滾輪輸送機41與旋轉・升降驅動機構42。旋轉・升降驅動機構42使滾輪輸送機41進行旋轉驅動,且使滾輪輸送機41沿Z方向升降。藉由滾輪輸送機41之各滾輪旋轉,基板S向+X方向移動。又,藉由滾輪輸送機41進行升降,基板S向Z方向位移。The output transfer unit 4 moves the substrate S from a position above the outlet floating platform 33 toward the output conveyor 110 . The output transfer unit 4 includes a roller conveyor 41 and a rotation/lifting drive mechanism 42 . The rotation/lifting drive mechanism 42 drives the roller conveyor 41 to rotate and raises and lowers the roller conveyor 41 in the Z direction. As each roller of the roller conveyor 41 rotates, the substrate S moves in the +X direction. Furthermore, as the roller conveyor 41 moves up and down, the substrate S is displaced in the Z direction.

輸出輸送機110具備滾輪輸送機111與旋轉驅動機構112。輸出輸送機110藉由滾輪輸送機111之各滾輪的旋轉,將基板S向+X方向搬送,而使基板S向塗佈裝置1外移出。此外,輸入輸送機100及輸出輸送機110為塗佈裝置1之一部分。但是,輸入輸送機100及輸出輸送機110亦可組裝於與塗佈裝置1不同之裝置。The output conveyor 110 includes a roller conveyor 111 and a rotation drive mechanism 112 . The output conveyor 110 conveys the substrate S in the +X direction by the rotation of each roller of the roller conveyor 111, and moves the substrate S out of the coating device 1. In addition, the input conveyor 100 and the output conveyor 110 are part of the coating device 1 . However, the input conveyor 100 and the output conveyor 110 may be installed in a device different from the coating device 1 .

塗佈機構7在基板S之上表面Sf塗佈上塗佈液。塗佈機構7配置於基板S之搬送路徑的上方。塗佈機構7具有噴嘴71。噴嘴71係下表面具有狹縫狀吐出口之狹縫噴嘴。噴嘴71連接於定位機構(未圖示)。定位機構使噴嘴71在塗佈平台32上方之塗佈位置(圖1中,以實線表示之位置)與後述之維護位置之間移動。塗佈液供給機構8連接於噴嘴71。塗佈液供給機構8藉由向噴嘴71供給塗佈液,自配置於噴嘴71之下表面的吐出口吐出塗佈液。The coating mechanism 7 applies the coating liquid on the upper surface Sf of the substrate S. The coating mechanism 7 is arranged above the conveyance path of the substrate S. The coating mechanism 7 has a nozzle 71 . The nozzle 71 is a slit nozzle having a slit-shaped discharge port on the lower surface. The nozzle 71 is connected to a positioning mechanism (not shown). The positioning mechanism moves the nozzle 71 between the coating position above the coating platform 32 (the position indicated by the solid line in FIG. 1 ) and the maintenance position described below. The coating liquid supply mechanism 8 is connected to the nozzle 71 . The coating liquid supply mechanism 8 supplies the coating liquid to the nozzle 71 and discharges the coating liquid from the discharge port arranged on the lower surface of the nozzle 71 .

圖2係顯示塗佈液供給機構8之構成的圖。塗佈液供給機構8具備泵81、配管82、塗佈液補充單元83、配管84、開閉閥85、壓力計86、及驅動部87。泵81係用於向噴嘴71給送塗佈液之給送源,其藉由體積變化來給送塗佈液。泵81亦可採用例如日本專利特開平10-61558號公報所記載之波紋管式的泵。如圖2所示,泵81具有在徑向上彈性膨脹收縮自如之可撓性管811。可撓性管811之一端經由配管82而與塗佈液補充單元83連接。可撓性管811之另一端經由配管84而與噴嘴71連接。FIG. 2 is a diagram showing the structure of the coating liquid supply mechanism 8 . The coating liquid supply mechanism 8 includes a pump 81 , a pipe 82 , a coating liquid replenishing unit 83 , a pipe 84 , an on-off valve 85 , a pressure gauge 86 , and a drive unit 87 . The pump 81 is a supply source for supplying the coating liquid to the nozzle 71, and supplies the coating liquid by volume change. The pump 81 may be a bellows type pump described in Japanese Patent Application Laid-Open No. 10-61558, for example. As shown in FIG. 2 , the pump 81 has a flexible tube 811 that can elastically expand and contract in the radial direction. One end of the flexible tube 811 is connected to the coating liquid replenishing unit 83 via a pipe 82 . The other end of the flexible tube 811 is connected to the nozzle 71 via the pipe 84 .

泵81具有在軸向上彈性變形自如之波紋管812。波紋管812具有小型波紋管部813、大型波紋管部814、泵室815、及作動盤部816。泵室815配置於可撓性管811與波紋管812之間。在泵室815中封入有非壓縮性媒體。作動盤部816連接於驅動部87。The pump 81 has a bellows 812 that is elastically deformable in the axial direction. The bellows 812 has a small bellows part 813, a large bellows part 814, a pump chamber 815, and an actuator plate part 816. The pump chamber 815 is arranged between the flexible tube 811 and the bellows 812 . A non-compressible medium is enclosed in the pump chamber 815 . The operating plate part 816 is connected to the driving part 87 .

塗佈液補充單元83具有儲存塗佈液之儲存槽831。儲存槽831經由配管82而與泵81連接。在配管82中插入有開閉閥833。開閉閥833根據來自控制單元9之指令進行開閉。當開閉閥833打開時,可自儲存槽831向泵81之可撓性管811補給塗佈液。又,當開閉閥833關閉時,限制自儲存槽831向泵81之可撓性管811補充塗佈液。The coating liquid replenishing unit 83 has a storage tank 831 for storing coating liquid. The storage tank 831 is connected to the pump 81 via the pipe 82 . An on-off valve 833 is inserted into the pipe 82 . The opening and closing valve 833 opens and closes based on the command from the control unit 9 . When the on-off valve 833 is opened, the coating liquid can be supplied from the storage tank 831 to the flexible tube 811 of the pump 81 . Furthermore, when the on-off valve 833 is closed, replenishment of the coating liquid from the storage tank 831 to the flexible tube 811 of the pump 81 is restricted.

配管84連接於泵81之輸出側。開閉閥85插入配管84。開閉閥85根據來自控制單元9之指令進行開閉。開閉閥85藉由開閉而切換對噴嘴71之塗佈液的輸送與輸送停止。壓力計86配置於配管84。壓力計86檢測輸送至噴嘴71之塗佈液的壓力(吐出壓力),並將顯示檢測出之壓力值的信號輸出至控制單元9。The pipe 84 is connected to the output side of the pump 81 . The on-off valve 85 is inserted into the pipe 84 . The on-off valve 85 opens and closes based on the command from the control unit 9 . The on-off valve 85 switches between feeding and stopping the coating liquid to the nozzle 71 by opening and closing. The pressure gauge 86 is arranged in the pipe 84 . The pressure gauge 86 detects the pressure (discharge pressure) of the coating liquid sent to the nozzle 71 and outputs a signal indicating the detected pressure value to the control unit 9 .

圖3係顯示圖2所示之泵81之作動盤部816的移動模式的折線圖。圖3中,橫軸表示時刻,縱軸表示作動盤部816之移動速度。驅動部87根據來自控制單元9之指令,以圖3所示之移動模式(顯示作動盤部816之速度相對於時間經過的變化之模式)使作動盤部816沿軸向位移。藉由作動盤部816之位移,波紋管812之內側的容積發生變化。由此,可撓性管13沿徑向膨脹收縮而執行泵動作,自塗佈液補充單元83補給之塗佈液向噴嘴71給送。由於作動盤部816之移動模式與自噴嘴71吐出之塗佈液的吐出特性密切相關,故而根據移動模式可獲得如圖4所示之吐出特性(顯示吐出壓力之時間變化的壓力波形)。FIG. 3 is a line diagram showing the movement pattern of the actuating disk portion 816 of the pump 81 shown in FIG. 2 . In FIG. 3 , the horizontal axis represents time, and the vertical axis represents the moving speed of the actuating disk portion 816 . The driving part 87 displaces the actuating disk part 816 in the axial direction in the movement pattern shown in FIG. 3 (a pattern showing changes in the speed of the actuating disk part 816 with respect to the passage of time) in accordance with instructions from the control unit 9 . Through the displacement of the actuating disk portion 816, the volume inside the bellows 812 changes. Thereby, the flexible tube 13 expands and contracts in the radial direction to perform a pump operation, and the coating liquid supplied from the coating liquid supply unit 83 is supplied to the nozzle 71 . Since the movement pattern of the actuating disk portion 816 is closely related to the discharge characteristics of the coating liquid discharged from the nozzle 71, the discharge characteristics (pressure waveform showing the time change of the discharge pressure) as shown in FIG. 4 can be obtained according to the movement pattern.

圖4係顯示吐出特性的曲線圖。圖4(a)係顯示理想之吐出特性即目標特性的曲線圖。圖4(b)係實際測定之吐出特性的一例。圖4中,橫軸表示時刻,縱軸表示壓力值(或吐出速度)。Figure 4 is a graph showing discharge characteristics. FIG. 4(a) is a graph showing ideal discharge characteristics, that is, target characteristics. Figure 4(b) is an example of the discharge characteristics actually measured. In FIG. 4 , the horizontal axis represents time, and the vertical axis represents pressure value (or discharge speed).

在本實施形態中,藉由調整規定作動盤部816之移動的各種參數(加速時間、定常速度、定常速度時間、減速時間等),而適宜地進行使自噴嘴71吐出之塗佈液的吐出特性(具體而言,吐出速度(吐出壓力)之時間變化)與所期望之目標特性(圖4(a)所示之曲線圖)一致或近似之最佳化處理。針對該點,將於下文詳述。In this embodiment, by adjusting various parameters (acceleration time, constant speed, constant speed time, deceleration time, etc.) that regulate the movement of the actuating disk portion 816 , the coating liquid ejected from the nozzle 71 is appropriately ejected. Optimization processing in which the characteristics (specifically, the time change of the discharge speed (discharge pressure)) are consistent with or approximate the desired target characteristics (the graph shown in FIG. 4(a) ). This point will be discussed in detail below.

如圖1及圖2所示,在自塗佈液供給機構8供給塗佈液之噴嘴71配置有感測器62。感測器62非接觸地偵測基板S在Z方向之高度。感測器62與控制單元9電性連接。控制單元9基於感測器62之檢測結果,測定浮起之基板S與塗佈平台32之上表面之間的距離(分開距離)。並且,控制單元9基於測定之分開距離,藉由定位機構來調整噴嘴71之塗佈位置。此外,作為感測器62,可應用光學式感測器或超音波感測器。As shown in FIGS. 1 and 2 , a sensor 62 is disposed in the nozzle 71 that supplies the coating liquid from the coating liquid supply mechanism 8 . The sensor 62 detects the height of the substrate S in the Z direction in a non-contact manner. The sensor 62 is electrically connected to the control unit 9 . The control unit 9 measures the distance (separation distance) between the floating substrate S and the upper surface of the coating platform 32 based on the detection result of the sensor 62 . Furthermore, the control unit 9 adjusts the coating position of the nozzle 71 through the positioning mechanism based on the measured separation distance. In addition, as the sensor 62, an optical sensor or an ultrasonic sensor can be applied.

塗佈機構7具備噴嘴洗淨待機單元72。噴嘴洗淨待機單元72對配置於維護位置之噴嘴71進行既定之維護。噴嘴洗淨待機單元72具有輥721、洗淨部722、及輥槽723。噴嘴洗淨待機單元72藉由對噴嘴71進行洗淨及積液之形成,將噴嘴71之吐出口調整為適於塗佈處理之狀態。又,塗佈裝置1中,為了評估對塗佈液施加之吐出壓力,在噴嘴71配置於維護位置之狀態下,執行自噴嘴71吐出塗佈液之模擬吐出。The coating mechanism 7 is equipped with a nozzle cleaning standby unit 72 . The nozzle cleaning standby unit 72 performs predetermined maintenance on the nozzle 71 arranged at the maintenance position. The nozzle cleaning standby unit 72 has a roller 721, a cleaning part 722, and a roller tank 723. The nozzle cleaning standby unit 72 adjusts the discharge port of the nozzle 71 to a state suitable for coating processing by cleaning the nozzle 71 and forming liquid accumulation. In addition, in the coating device 1 , in order to evaluate the discharge pressure applied to the coating liquid, a simulated discharge of the coating liquid from the nozzle 71 is performed with the nozzle 71 disposed in the maintenance position.

圖5係顯示控制單元9之構成例的方塊圖。控制單元9控制塗佈裝置1之各要素的動作。控制單元9為電腦,其具備運算部91、儲存部93、及使用者介面95。運算部91係由CPU(Central Processing Unit,中央處理單元)或GPU(Graphics Processing Unit,圖形處理單元)等構成的處理器。儲存部93係由RAM(Random Access Memory,隨機存取記憶體)等一次性之儲存裝置、及HDD(Hard Disk Drive,硬碟機)及SSD(Solid State Drive,固態硬碟)等非一次性之輔助儲存裝置所構成。FIG. 5 is a block diagram showing an example of the structure of the control unit 9. The control unit 9 controls the operation of each element of the coating device 1 . The control unit 9 is a computer and includes a computing unit 91 , a storage unit 93 , and a user interface 95 . The computing unit 91 is a processor composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), or the like. The storage unit 93 is composed of disposable storage devices such as RAM (Random Access Memory) and non-disposable storage devices such as HDD (Hard Disk Drive) and SSD (Solid State Drive). consists of auxiliary storage devices.

使用者介面95具有向使用者顯示資訊之顯示器、受理使用者之輸入操作的輸入裝置。作為控制單元9,可使用例如桌上型、膝上型或平板型之電腦。The user interface 95 has a display that displays information to the user and an input device that accepts the user's input operations. As the control unit 9, a desktop, laptop or tablet computer can be used, for example.

儲存部93儲存程式931。程式931由記錄媒體M提供。即,記錄媒體M係由電腦即控制單元9而可讀取地記錄著程式931。記錄媒體M例如為USB(Universal Serial Bus,通用序列匯流排)記憶體、DVD(Digital Versatile Disc,數位多功能光碟)等光碟、磁碟等。The storage unit 93 stores the program 931. The program 931 is provided by the recording medium M. That is, the recording medium M records the program 931 in a readable manner by the control unit 9 which is a computer. The recording medium M is, for example, a USB (Universal Serial Bus) memory, a DVD (Digital Versatile Disc) and other optical disks, magnetic disks, etc.

運算部91藉由執行程式931,而作為吐出控制部910、吐出特性量測部911、成本值導出部913、第1最佳化部915、及第2最佳化部917發揮功能。By executing the program 931, the calculation unit 91 functions as the discharge control unit 910, the discharge characteristic measurement unit 911, the cost value derivation unit 913, the first optimization unit 915, and the second optimization unit 917.

吐出控制部910基於預先設定之參數,對於向噴嘴71給送塗佈液之泵81的動作(給送動作)進行控制。The discharge control unit 910 controls the operation (feeding operation) of the pump 81 that supplies the coating liquid to the nozzle 71 based on preset parameters.

吐出特性量測部911量測吐出特性。具體而言,吐出特性量測部911基於模擬吐出中自壓力計86輸出之吐出壓力(塗佈液之壓力值),量測壓力波形。即,吐出特性量測部911週期性地取得壓力計86以既定之抽樣週期測定之吐出壓力。由此,在自噴嘴71吐出塗佈液之期間取得對塗佈液賦予之吐出壓力,作為吐出壓力測定資料而儲存於儲存部93。吐出壓力測定資料係表示時刻與在該時刻測定之吐出壓力的資料。The discharge characteristic measuring unit 911 measures the discharge characteristics. Specifically, the discharge characteristic measuring unit 911 measures the pressure waveform based on the discharge pressure (the pressure value of the coating liquid) output from the pressure gauge 86 during simulated discharge. That is, the discharge characteristic measurement unit 911 periodically obtains the discharge pressure measured by the pressure gauge 86 at a predetermined sampling cycle. Thereby, the discharge pressure given to the coating liquid is acquired while the coating liquid is discharged from the nozzle 71, and is stored in the storage unit 93 as discharge pressure measurement data. The discharge pressure measurement data is data showing the time and the discharge pressure measured at that time.

成本值導出部913基於既定之成本函數,從藉由吐出特性量測部911所量測之吐出特性(壓力波形)導出成本值。在第1最佳化部915進行最佳化運算時使用成本值。第1最佳化部915藉由大區域搜索法對參數進行最佳化。在本例中,大區域搜索所進行之最佳化為,進行貝氏最佳化。此外,大區域搜索法並非限定於貝氏最佳化,亦可採用基因演算法。第2最佳化部917藉由局部搜索法對參數進行最佳化。針對藉由局部搜索之最佳化,將於下文敘述。The cost value derivation unit 913 derives a cost value from the discharge characteristics (pressure waveform) measured by the discharge characteristics measurement unit 911 based on a predetermined cost function. The cost value is used when the first optimization unit 915 performs optimization calculations. The first optimization unit 915 optimizes parameters using a large area search method. In this example, the optimization performed by the large area search is Bayesian optimization. In addition, the large area search method is not limited to Bayesian optimization, and genetic algorithms can also be used. The second optimization unit 917 optimizes the parameters using the local search method. Optimization by local search will be described below.

塗佈裝置1中,為了將自噴嘴71吐出之塗佈液以均勻之膜厚塗佈於基板S之上表面Sf,故而調整自噴嘴71吐出時之塗佈液的吐出速度即吐出特性係屬重要。例如,藉由以如圖4(a)所示之目標特性自噴嘴71吐出塗佈液,可提高膜厚之均勻性。因此,為了使吐出特性接近目標特性,與吐出特性密切關聯之參數的最佳化係屬重要。在本實施形態中,如圖3所示,將規定作動盤部816之移動的以下16個泵控制用之設定值作為最佳化對象之參數。 ・定常速度V1 ・加速時間T1:自停止狀態加速至定常速度V1之時間 ・定常速度時間T2:持續定常速度V1之時間 ・定常速度V2 ・加速時間T3:自定常速度V1减速至定常速度V2之時間 ・定常速度時間T4:持續定常速度V2之時間 ・定常速度V3 ・加速時間T5:自定常速度V2加速至定常速度V3之時間 ・定常速度時間T6:持續定常速度V3之時間 ・定常速度V4 ・加速時間T7:自定常速度V3减速至定常速度V4之時間 ・定常速度時間T8:持續定常速度V4之時間 ・定常速度V5 ・加速時間T9:自定常速度V4加速至定常速度V5之時間 ・定常速度時間T10:持續定常速度V5之時間 ・減速時間T11:自定常速度V5減速至停止狀態之時間 In the coating device 1, in order to apply the coating liquid discharged from the nozzle 71 to the upper surface Sf of the substrate S with a uniform film thickness, the discharge speed, that is, the discharge characteristics of the coating liquid when it is discharged from the nozzle 71 is adjusted. important. For example, by discharging the coating liquid from the nozzle 71 with the target characteristics as shown in FIG. 4(a) , the uniformity of the film thickness can be improved. Therefore, in order to bring the discharge characteristics close to the target characteristics, it is important to optimize parameters closely related to the discharge characteristics. In this embodiment, as shown in FIG. 3 , the following 16 set values for pump control that regulate the movement of the actuating plate portion 816 are used as parameters to be optimized. ・Steady speed V1 ・Acceleration time T1: The time to accelerate from the stop state to the constant speed V1 ・Steady speed time T2: the time to maintain constant speed V1 ・Steady speed V2 ・Acceleration time T3: the time to decelerate from the constant speed V1 to the constant speed V2 ・Steady speed time T4: the time to maintain constant speed V2 ・Constant speed V3 ・Acceleration time T5: The time to accelerate from the constant speed V2 to the constant speed V3 ・Steady speed time T6: the time to continue the steady speed V3 ・Constant speed V4 ・Acceleration time T7: The time to decelerate from the constant speed V3 to the constant speed V4 ・Steady speed time T8: The time to continue the steady speed V4 ・Constant speed V5 ・Acceleration time T9: The time to accelerate from the constant speed V4 to the constant speed V5 ・Steady speed time T10: the time to maintain constant speed V5 ・Deceleration time T11: The time to decelerate from the constant speed V5 to the stop state

上述參數相當於用於控制向噴嘴71給送塗佈液之泵81的動作(給送動作)之控制量。此外,參數之種類及個數並未特別限制,只要為控制泵81之給送動作的控制量,則可任意地進行設定。The above parameters correspond to control quantities for controlling the operation (feeding operation) of the pump 81 that supplies the coating liquid to the nozzle 71 . In addition, the type and number of parameters are not particularly limited, and can be set arbitrarily as long as they are control variables for controlling the feeding operation of the pump 81 .

例如,上述參數之調整可根據塗佈處理之種類來變更配方。又,亦存在有基於使用者經由輸入裝置之輸入指示,來進行參數之調整的情形。針對上述16個參數中之V5,大多可藉由以定常速度V4之值為中心而稍微變更來進行調整。因此,V5之最佳化的難易程度相對較低。另一方面,對於V5以外之參數(V1~V4、T1~T11),由於需要一邊就每個塗佈液來進行反復試驗一邊掌握吐出特性,同時進行調整,故而最佳化之難易程度相對較高。For example, the above parameters can be adjusted to change the formula according to the type of coating treatment. In addition, there are also cases where parameters are adjusted based on the user's input instructions through the input device. For V5 among the above 16 parameters, most can be adjusted by slightly changing the value of the constant speed V4 as the center. Therefore, V5 is relatively easy to optimize. On the other hand, for parameters other than V5 (V1 to V4, T1 to T11), since it is necessary to grasp the discharge characteristics and make adjustments through repeated tests for each coating liquid, optimization is relatively difficult. high.

因此,在本實施形態中,V5以外之參數(第1參數)之最佳化係應用可廣泛且大區域地搜索之貝氏最佳化。另一方面,V5(第2參數)之最佳化係,於上述貝氏最佳化之調整後,應用後述之局部搜索方法。Therefore, in this embodiment, the optimization of the parameters other than V5 (the first parameter) is based on Bayesian optimization that can search widely and in a large area. On the other hand, the optimization of V5 (second parameter) applies the local search method described below after the above-mentioned adjustment of Bayesian optimization.

圖6係顯示塗佈裝置1中執行之參數最佳化處理的流程圖。當參數最佳化處理開始時,首先,執行噴嘴移動步驟S1。在噴嘴移動步驟S1中,噴嘴71移動至上述維護位置。塗佈裝置1中,藉由噴嘴移動步驟S1而可執行模擬吐出。FIG. 6 is a flowchart showing parameter optimization processing performed in the coating device 1 . When the parameter optimization process starts, first, the nozzle moving step S1 is performed. In the nozzle moving step S1, the nozzle 71 is moved to the above-mentioned maintenance position. In the coating device 1, simulated discharge can be executed by the nozzle movement step S1.

當噴嘴移動步驟S1完成後,執行第1最佳化步驟S2。在第1最佳化步驟S2中,藉由第1最佳化部915,將V5以外之參數(V1~V4、T1~T11)最佳化。此外,第1最佳化步驟S2中,參數V5被固定在既定值。而後,第1最佳化步驟S2之後,進行第2最佳化步驟S3。在第2最佳化步驟S3中,將V5最佳化。After the nozzle moving step S1 is completed, the first optimization step S2 is performed. In the first optimization step S2, the first optimization unit 915 optimizes parameters other than V5 (V1 to V4, T1 to T11). In addition, in the first optimization step S2, the parameter V5 is fixed at a predetermined value. Then, after the first optimization step S2, the second optimization step S3 is performed. In the second optimization step S3, V5 is optimized.

如圖3所示,作動盤部816之移動速度維持在V5之區間,與圖4(b)所示之「定常吐出期間」對應。「定常吐出期間」係來自噴嘴71之塗佈液的吐出速度(吐出壓力)維持在大致一定之速度(定常吐出速度)之區間。即,將V5最佳化之第2最佳化步驟S3相當於將與定常吐出期間對應之參數最佳化的步驟。As shown in FIG. 3 , the moving speed of the actuating disk portion 816 is maintained in the interval of V5, which corresponds to the “steady discharge period” shown in FIG. 4(b) . The "steady discharge period" is a period in which the discharge speed (discharge pressure) of the coating liquid from the nozzle 71 is maintained at a substantially constant speed (steady discharge speed). That is, the second optimization step S3 of optimizing V5 corresponds to a step of optimizing parameters corresponding to the constant discharge period.

又,V5以外之參數中,V1~V4及T1~T9係與圖4(b)所示之「上升期間」對應的參數。「上升期間」為吐出速度自零提高至定常吐出速度之區間。將參數V1~V4、T1~T9最佳化之第1最佳化步驟S2相當於將與上升期間對應之參數最佳化的步驟。In addition, among the parameters other than V5, V1 to V4 and T1 to T9 are parameters corresponding to the "rising period" shown in Fig. 4(b). The "rising period" is the period during which the discharge speed increases from zero to a constant discharge speed. The first optimization step S2 of optimizing the parameters V1 to V4 and T1 to T9 corresponds to a step of optimizing the parameters corresponding to the rising period.

<第1最佳化(由大區域搜索所進行之最佳化)> 圖7係顯示圖6所示之第1最佳化步驟S2之細節的流程圖。如圖7所示,在第1最佳化步驟S2中,首先,設定上述16個參數(步驟S21)。參數之初始值為由亂數生成之值,或使用者指定之值。步驟S21之後,吐出特性量測部911量測吐出特性即壓力波形(步驟S22)。步驟S22之後,成本值導出部913基於量測之壓力波形導出成本值(步驟S23)。 <First optimization (optimization by large area search)> FIG. 7 is a flowchart showing details of the first optimization step S2 shown in FIG. 6 . As shown in FIG. 7 , in the first optimization step S2, first, the above-mentioned 16 parameters are set (step S21). The initial value of the parameter is a value generated from a random number, or a value specified by the user. After step S21, the discharge characteristic measuring unit 911 measures the pressure waveform which is the discharge characteristic (step S22). After step S22, the cost value derivation unit 913 derives a cost value based on the measured pressure waveform (step S23).

成本值係以數值表示壓力波形之評估結果者。如後述般,成本值導出部913基於將壓力波形作為輸入、成本值作為輸出之成本函數而導出成本值。在本實施形態中,以壓力波形(圖4(b))與作為目標之壓力波形(圖4(a))愈相異,則成本值愈大之方式設定成本函數。The cost value represents the evaluation result of the pressure waveform as a numerical value. As will be described later, the cost value derivation unit 913 derives a cost value based on a cost function using a pressure waveform as an input and a cost value as an output. In this embodiment, the cost function is set so that the greater the difference between the pressure waveform (Fig. 4(b)) and the target pressure waveform (Fig. 4(a)), the greater the cost value.

步驟S23之後,判定成本值是否未滿既定之臨限值(步驟S24)。於判定成本值在既定臨限值以上之情形下(步驟S24中為No),第1最佳化部915基於當前設定之參數與由步驟S23導出之成本值,取得下一次之搜索點(即,新的參數)(步驟S25)。並且,步驟S25之後,再次執行步驟S21。由此,藉由基於下一次之搜索點即新的參數進行模擬吐出,而再次執行壓力波形之量測(步驟S22)。After step S23, it is determined whether the cost value is less than a predetermined threshold value (step S24). When it is determined that the cost value is above the predetermined threshold value (No in step S24), the first optimization unit 915 obtains the next search point (i.e., based on the currently set parameters and the cost value derived in step S23). , new parameters) (step S25). And, after step S25, step S21 is executed again. Thus, the pressure waveform is measured again by performing simulation output based on the next search point, that is, the new parameters (step S22).

另一方面,步驟S24中,在判定成本值未滿既定臨限值之情形下(步驟S24中為Yes),第1最佳化部915將參數作為最佳化者,而結束第1最佳化步驟S2。On the other hand, in step S24, when it is determined that the cost value is less than the predetermined threshold value (Yes in step S24), the first optimization unit 915 sets the parameter as the optimizer and ends the first optimization process. to step S2.

<第2最佳化步驟(局部搜索所進行之最佳化)> 圖8係顯示圖6所示之第2最佳化步驟S3之細節的流程圖。當第2最佳化步驟S3開始時,首先,第2最佳化部917自藉由第1最佳化步驟S2而使參數被最佳化之壓力波形,計算特徵量Fv(步驟S31)。針對計算特徵量Fv之順序,參照圖9進行說明。 <Second Optimization Step (Optimization by Local Search)> FIG. 8 is a flowchart showing details of the second optimization step S3 shown in FIG. 6 . When the second optimization step S3 starts, first, the second optimization unit 917 calculates the feature amount Fv from the pressure waveform whose parameters are optimized in the first optimization step S2 (step S31). The procedure for calculating the feature value Fv will be described with reference to FIG. 9 .

圖9係顯示藉由第1最佳化步驟S2而使參數被最佳化後之壓力波形的圖。為了計算特徵量Fv,第2最佳化部917擷取壓力波形中之定常吐出期間的資料。並且,第2最佳化部917針對定常吐出期間之資料進行線性回歸。藉由該線性回歸,可取得如圖9所示之回歸直線L1。並且,第2最佳化部917基於回歸直線L1,分別取得定常吐出期間之開始時刻的壓力Ps、及定常吐出期間之結束時刻的壓力Pe。進而,第2最佳化部917計算壓力Ps相對於壓力Pe之比值(=Ps/Pe)作為特徵量Fv。壓力Ps與定常吐出期間之開始時的吐出速度對應。壓力Pe與定常吐出期間之結束時的吐出速度對應。FIG. 9 is a diagram showing the pressure waveform after the parameters are optimized in the first optimization step S2. In order to calculate the feature value Fv, the second optimization unit 917 acquires data during the steady discharge period in the pressure waveform. Furthermore, the second optimization unit 917 performs linear regression on the data during the constant discharge period. Through this linear regression, the regression straight line L1 shown in Figure 9 can be obtained. Furthermore, the second optimization unit 917 obtains the pressure Ps at the start time of the constant discharge period and the pressure Pe at the end time of the constant discharge period based on the regression line L1. Furthermore, the second optimization unit 917 calculates the ratio of the pressure Ps to the pressure Pe (=Ps/Pe) as the feature amount Fv. The pressure Ps corresponds to the discharge speed at the beginning of the steady discharge period. The pressure Pe corresponds to the discharge speed at the end of the steady discharge period.

返回圖8,步驟S31之後,第2最佳化部917更新V5(步驟S32)。具體而言,第2最佳化部917將當前之V5乘以特徵量Fv而得到之值作為新的V5。Returning to FIG. 8 , after step S31, the second optimization unit 917 updates V5 (step S32). Specifically, the second optimization unit 917 multiplies the current V5 by the feature amount Fv as a new V5.

步驟S32之後,進行模擬吐出,且吐出特性量測部911量測壓力波形(步驟S33)。並且,第2最佳化部917計算藉由步驟S33而取得之壓力波形的特徵量Fv(步驟S34)。步驟S34係以與步驟S31同樣之順序進行。After step S32, simulated discharge is performed, and the discharge characteristic measuring unit 911 measures the pressure waveform (step S33). Then, the second optimization unit 917 calculates the feature amount Fv of the pressure waveform obtained in step S33 (step S34). Step S34 is performed in the same sequence as step S31.

步驟S34之後,第2最佳化部917判定特徵量Fv是否在±α之範圍內(步驟S35)。此處,「α」為任意設定之小數。如上述般,定常吐出期間係將塗佈液以一定速度吐出之區間,故開始時之壓力Ps與結束時之壓力Pe本應一致。因此,步驟S35中,藉由判定特徵量Fv是否在1±α之範圍內來判定當前之V5是否適當。After step S34, the second optimization unit 917 determines whether the feature value Fv is within the range of ±α (step S35). Here, "α" is an arbitrarily set decimal. As mentioned above, the steady discharge period is a period in which the coating liquid is discharged at a certain speed, so the pressure Ps at the beginning and the pressure Pe at the end should be consistent. Therefore, in step S35, it is determined whether the current V5 is appropriate by determining whether the feature value Fv is within the range of 1±α.

步驟S35中,於判定特徵量Fv在1±α之範圍內之情形下(步驟S35中為Yes),第2最佳化部917將V5作為最佳化者,結束第2最佳化步驟S3。另一方面,步驟S35中,於判定特徵量Fv在1±α之範圍外之情形下(步驟S35中為No),第2最佳化部917對步驟S31及步驟S34中取得之特徵量Fv執行線性回歸(步驟S36)。In step S35, when it is determined that the feature value Fv is within the range of 1±α (Yes in step S35), the second optimization unit 917 selects V5 as the optimizer and ends the second optimization step S3. . On the other hand, in step S35, when it is determined that the feature value Fv is outside the range of 1±α (No in step S35), the second optimization unit 917 Linear regression is performed (step S36).

圖10係顯示對特徵量Fv進行線性回歸之結果的圖。圖10中,橫軸表示V5,縱軸表示特徵量Fv。圖10所示之複數個(3個)點表示步驟S31或步驟S34中取得之特徵量Fv。如圖10所示,藉由對特徵量Fv執行線性回歸,可取得回歸直線L2。FIG. 10 is a graph showing the results of linear regression on the feature quantity Fv. In FIG. 10 , the horizontal axis represents V5 and the vertical axis represents the feature amount Fv. The plurality of points (three) shown in FIG. 10 represent the feature value Fv obtained in step S31 or step S34. As shown in FIG. 10 , by performing linear regression on the feature quantity Fv, the regression straight line L2 can be obtained.

返回圖8,步驟S36之後,第2最佳化部917更新V5(步驟S37)。具體而言,第2最佳化部917基於由步驟S36取得之回歸直線L2,計算Fv為1之V5的值(=V5')。並且,第2最佳化部917將V5更新為計算出之值。並且,基於更新之V5,再次執行步驟S33。如此,在第2最佳化步驟S3中,反復執行步驟S33至步驟S37,直至特徵量Fv在1±α之範圍內。Returning to FIG. 8 , after step S36, the second optimization unit 917 updates V5 (step S37). Specifically, the second optimization unit 917 calculates the value of V5 (=V5′) where Fv is 1 based on the regression line L2 obtained in step S36. Then, the second optimization unit 917 updates V5 to the calculated value. And, based on the updated V5, step S33 is executed again. In this way, in the second optimization step S3, steps S33 to S37 are repeatedly executed until the feature value Fv is within the range of 1±α.

如上所述,塗佈裝置1中,關於塗佈液之吐出的全部參數之中,對於最佳化較為容易之參數V5,應用由局部搜索所進行之最佳化。由此,與對全部參數應用貝氏最佳化等由大區域搜索所進行之最佳化的情形相比較,可減輕運算量。因此,在吐出塗佈液之塗佈裝置1中,可適當且高效地實施參數最佳化。又,由於可減少模擬吐出之試行次數,故而可抑制塗佈液之消耗量。As described above, among all the parameters related to the discharge of the coating liquid in the coating device 1 , optimization by local search is applied to the parameter V5 which is relatively easy to optimize. This makes it possible to reduce the amount of calculation compared to the case where optimization by a large area search, such as Bayesian optimization, is applied to all parameters. Therefore, parameter optimization can be performed appropriately and efficiently in the coating device 1 that discharges the coating liquid. In addition, since the number of simulated discharge trials can be reduced, the consumption of coating fluid can be suppressed.

此外,參數V5以外之參數亦可應用由局部搜索所進行之最佳化。In addition, optimization by local search can also be applied to parameters other than parameter V5.

<成本值之計算方法> 其次,針對第1最佳化步驟S2中用於最佳化之成本值的計算方法進行說明。藉由就每一個既定之評估項目自壓力波形計算出特徵量,並將各特徵量Fv1~Fv10相加,而求出成本值。以下,針對各評估項目之特徵量Fv1~Fv10進行說明。 <Calculation method of cost value> Next, a method of calculating the cost value used for optimization in the first optimization step S2 will be described. The cost value is obtained by calculating characteristic quantities from the pressure waveform for each given evaluation item and adding the characteristic quantities Fv1 to Fv10. The following describes the characteristic quantities Fv1 to Fv10 of each evaluation item.

圖11係用於說明壓力波形之各期間的圖。圖11中,橫軸表示時刻,縱軸表示吐出壓力。此外,圖11以後之各圖中亦然,橫軸表示時刻,縱軸表示吐出壓力。FIG. 11 is a diagram for explaining each period of the pressure waveform. In FIG. 11 , the horizontal axis represents time and the vertical axis represents discharge pressure. In addition, similarly to each of the subsequent figures in Fig. 11 , the horizontal axis represents time and the vertical axis represents discharge pressure.

如圖11所示,開始自噴嘴71吐出塗佈液之時刻ta的吐出壓力、及結束自噴嘴71吐出塗佈液之時刻te的吐出壓力為初始壓力Pi。但是,吐出之開始時及結束時各自之壓力未必始終與初始壓力Pi一致。As shown in FIG. 11 , the discharge pressure at the time ta when the coating liquid is discharged from the nozzle 71 and the discharge pressure at the time te when the coating liquid is finished being discharged from the nozzle 71 are the initial pressure Pi. However, the pressures at the beginning and end of discharging may not always be consistent with the initial pressure Pi.

如圖11所示,吐出期間Tt分為上升期間Ta、過渡期間Tb、定常期間Tc、及下降期間Td。上升期間Ta為自塗佈液供給機構8開始從噴嘴71吐出塗佈液之時刻ta(即,塗佈液供給機構8開始作動盤部816之移動的時刻ta),至吐出壓力達到目標壓力Pt之時刻tb的期間。即,當在時刻ta開始自噴嘴71吐出塗佈液時,在自時刻ta至時刻tb之間,吐出壓力自初始壓力Pi增加至目標壓力Pt。As shown in FIG. 11 , the discharge period Tt is divided into a rising period Ta, a transition period Tb, a steady period Tc, and a falling period Td. The rising period Ta is from the time ta when the coating liquid supply mechanism 8 starts discharging the coating liquid from the nozzle 71 (that is, the time ta when the coating liquid supply mechanism 8 starts moving the disk part 816) until the discharge pressure reaches the target pressure Pt. The period of time tb. That is, when the coating liquid starts to be discharged from the nozzle 71 at time ta, the discharge pressure increases from the initial pressure Pi to the target pressure Pt between time ta and time tb.

過渡期間Tb為自時刻tb至經過既定之振動衰減期間之時刻tc的期間。該振動衰減期間為吐出壓力之時間變化穩定所需的期間,例如,其藉由使用者對使用者介面95之輸入操作而預先設定,並儲存於儲存部93。The transition period Tb is a period from time tb to time tc when a predetermined vibration attenuation period has passed. The vibration attenuation period is a period required for the time change of the discharge pressure to stabilize. For example, it is preset by the user's input operation on the user interface 95 and is stored in the storage unit 93 .

定常期間Tc為自時刻tc至塗佈液供給機構8開始減小吐出壓力之時刻td(即,塗佈液供給機構8開始自作動盤部816之目標速度減速的時刻td)的期間。即,自時刻tc至時刻td之間,塗佈液供給機構8以等速(上述V5)使作動盤部816移動,在時刻td開始作動盤部816之減速。此外,在定常期間Tc,吐出壓力基本上穩定在目標壓力Pt。但是,即使在定常期間Tc,吐出壓力之時間變化亦包含微小之振動。因此,在定常期間Tc,吐出壓力較目標壓力Pt更大或更小。The steady period Tc is a period from time tc to time td when the coating liquid supply mechanism 8 starts reducing the discharge pressure (ie, time td when the coating liquid supply mechanism 8 starts decelerating from the target speed of the actuating plate portion 816 ). That is, from time tc to time td, the coating liquid supply mechanism 8 moves the actuating disk portion 816 at a constant speed (V5 mentioned above), and starts decelerating the actuating disk portion 816 at time td. In addition, during the steady period Tc, the discharge pressure is basically stabilized at the target pressure Pt. However, even in the steady period Tc, the time change of the discharge pressure includes minute vibrations. Therefore, during the steady period Tc, the discharge pressure is larger or smaller than the target pressure Pt.

過渡期間Tb與定常期間Tc構成定壓期間Tbc。即,定壓期間Tbc為自時刻tb至時刻td之間的期間。The transition period Tb and the steady period Tc constitute a constant voltage period Tbc. That is, the constant pressure period Tbc is a period from time tb to time td.

下降期間Td為自時刻td至塗佈液供給機構8結束自噴嘴71吐出塗佈液之時刻te(即,塗佈液供給機構8使作動盤部816停止的時刻te)的期間。即,吐出壓力在時刻td至時刻te之間減小至初始壓力Pi,在時刻te,停止自噴嘴71吐出塗佈液。The descending period Td is a period from time td to time te when the coating liquid supply mechanism 8 ends discharging the coating liquid from the nozzle 71 (that is, time te when the coating liquid supply mechanism 8 stops the actuating plate portion 816). That is, the discharge pressure decreases to the initial pressure Pi between time td and time te, and at time te, the discharge of the coating liquid from the nozzle 71 is stopped.

圖12係示意性地顯示成本值導出部913對壓力波形執行之運算的一例的圖。如圖12所示,成本值導出部913藉由將壓力波形進行時間微分,計算壓力波形之1次微分D1。進而,成本值導出部913藉由將吐出壓力之時間變化的1次微分D1以時間進行微分,而計算吐出壓力之時間變化的2次微分D2。又,成本值導出部913基於以下各公式,計算平均絕對誤差MAE及均方根誤差RMSE。 MEA(α、β)=(1/n)・(∑|α-β|) RMSE(α、β)=((1/n)・(∑(α-β)2))1/2 n為資料數。 FIG. 12 is a diagram schematically showing an example of the operation performed by the cost value derivation unit 913 on the pressure waveform. As shown in FIG. 12 , the cost value derivation unit 913 calculates the first differential D1 of the pressure waveform by temporally differentiating the pressure waveform. Furthermore, the cost value derivation unit 913 differentiates the first differential D1 of the time change of the discharge pressure with time to calculate the second derivative D2 of the time change of the discharge pressure. Furthermore, the cost value derivation unit 913 calculates the mean absolute error MAE and the root mean square error RMSE based on the following formulas. MEA(α,β)=(1/n)・(∑|α-β|) RMSE(α,β)=((1/n)・(∑(α-β)2))1/2 n is the number of data.

圖13係用於說明基於特徵量Fv1評估吐出壓力之時間變化的評估項目的圖。在圖13所示之評估項目中,基於具有與定常期間Tc中之吐出壓力的平均值(即,定常壓力Pm)和初始壓力Pi之差相當之振幅的梯形波形、及實際之壓力波形的誤差(理想梯形絕對誤差),來評估壓力波形。FIG. 13 is a diagram for explaining an evaluation item for evaluating the time change of the discharge pressure based on the characteristic amount Fv1. In the evaluation items shown in FIG. 13 , errors based on the trapezoidal waveform having an amplitude corresponding to the difference between the average discharge pressure in the steady period Tc (that is, the steady pressure Pm) and the initial pressure Pi and the actual pressure waveform (ideal trapezoidal absolute error) to evaluate the pressure waveform.

具體而言,上升期間Ta之中,對既定的下側基準壓力、及較該下側基準壓力更大之既定的上側基準壓力之間中之吐出壓力的時間變化執行線性回歸分析,計算上升回歸直線Lr_R。在時刻t11至時刻t12之間,該上升回歸直線Lr_R自初始壓力Pi線性地增加至定常壓力Pm。Specifically, during the rise period Ta, a linear regression analysis is performed on the time change of the discharge pressure between a predetermined lower reference pressure and a predetermined upper reference pressure greater than the lower reference pressure, and the rise regression is calculated. Straight line Lr_R. Between time t11 and time t12, the rising regression line Lr_R linearly increases from the initial pressure Pi to the steady pressure Pm.

同樣地,下降期間Td之中,對上側基準壓力與下側基準壓力之間中之吐出壓力的時間變化執行線性回歸分析,計算下降回歸直線Lr_F。在時刻t13至時刻t14之間,該下降回歸直線Lr_F自定常壓力Pm線性地減小至初始壓力Pi。Similarly, during the decrease period Td, linear regression analysis is performed on the time change of the discharge pressure between the upper reference pressure and the lower reference pressure, and the decrease regression straight line Lr_F is calculated. Between time t13 and time t14, the descending regression line Lr_F linearly decreases from the steady pressure Pm to the initial pressure Pi.

此外,下側基準壓力及上側基準壓力較初始壓力Pi更大且較目標壓力Pt更小,例如,該等係由使用者對使用者介面95的輸入操作而設定,並儲存於儲存部93。例如,下側基準壓力可為將初始壓力Pi及目標壓力Pt之差的絕對值之20%的壓力加入至初始壓力Pi而得之壓力。又,上側基準壓力可為將初始壓力Pi及目標壓力Pt之差的絕對值之80%的壓力加入至初始壓力Pi而得之壓力。In addition, the lower reference pressure and the upper reference pressure are larger than the initial pressure Pi and smaller than the target pressure Pt. For example, they are set by the user's input operation on the user interface 95 and are stored in the storage unit 93 . For example, the lower reference pressure may be a pressure obtained by adding 20% of the absolute value of the difference between the initial pressure Pi and the target pressure Pt to the initial pressure Pi. In addition, the upper reference pressure may be a pressure obtained by adding 80% of the absolute value of the difference between the initial pressure Pi and the target pressure Pt to the initial pressure Pi.

又,對自時刻ta至時刻t11之區間,設定開始時近似直線Lr_s。該開始時近似直線Lr_s係表示初始壓力Pi之斜率為零的直線。即,開始時近似直線Lr_s係連接開始自噴嘴71吐出塗佈液之吐出開始時間點(時刻ta),至上升回歸直線Lr_R之開始時間點的直線。此外,根據回歸直線之狀態(斜率),亦存在時刻t11較時刻ta更往前,時刻t12較時刻tb更往後之情形。如此,t11<ta之情形下,省略開始時近似直線Lr_s。Furthermore, for the interval from time ta to time t11, a starting approximate straight line Lr_s is set. The initial approximate straight line Lr_s is a straight line representing the initial pressure Pi with a slope of zero. That is, the initial approximate straight line Lr_s is a straight line connecting the discharge start time point (time ta) when the coating liquid is discharged from the nozzle 71 to the start time point of the rising regression straight line Lr_R. In addition, depending on the state (slope) of the regression line, time t11 may be further forward than time ta, and time t12 may be later than time tb. In this way, in the case of t11<ta, the approximate straight line Lr_s at the beginning is omitted.

又,對自時刻t14至時刻te之區間,設定結束時近似直線Lr_e。該結束時近似直線Lr_e係表示初始壓力Pi之斜率為零的直線。即,結束時近似直線Lr_e係連接自下降回歸直線Lr_F之結束時間點至停止自噴嘴71吐出塗佈液之吐出結束時間點(時刻te)的直線。此外,te<t14之情形下,省略結束時近似直線Lr_e。Furthermore, for the interval from time t14 to time te, the end approximation straight line Lr_e is set. The end-time approximate straight line Lr_e is a straight line indicating that the slope of the initial pressure Pi is zero. That is, the end approximation straight line Lr_e is a straight line connecting the end time point of the descending regression line Lr_F to the end time point (time te) of stopping the discharge of the coating liquid from the nozzle 71 . In addition, in the case of te<t14, the end approximation straight line Lr_e is omitted.

進而,對自時刻t12至時刻t13之區間,設定定常直線Lr_m。該定常直線Lr_m係表示定常壓力Pm之斜率為零的直線。即,定常直線Lr_m係表示定常壓力Pm之直線,其係連接上升回歸直線Lr_R之結束時間點(時刻t12)與下降回歸直線Lr_F之開始時間點(時刻t13)。Furthermore, a constant straight line Lr_m is set for the interval from time t12 to time t13. This steady straight line Lr_m is a straight line with a slope of zero indicating the steady pressure Pm. That is, the steady straight line Lr_m is a straight line representing the steady pressure Pm, and connects the end time point (time t12) of the rising regression straight line Lr_R and the starting time point (time t13) of the falling regression straight line Lr_F.

如上所述,成本值導出部913計算由以時間序列排列之開始時近似直線Lr_s、上升回歸直線Lr_R、定常直線Lr_m、下降回歸直線Lr_F及結束時近似直線Lr_e所構成的近似波形WF1。並且,自時刻ta至時刻te之吐出期間Tt整體中,成本值導出部913計算壓力波形之壓力值與近似波形WF1之間的平均絕對誤差MAE(理想梯形絕對誤差)作為特徵量Fv1。成本值導出部913將計算之特徵量Fv1儲存於儲存部93。As described above, the cost value derivation unit 913 calculates the approximate waveform WF1 composed of the start approximate straight line Lr_s, the rising regression straight line Lr_R, the steady straight line Lr_m, the falling regression straight line Lr_F, and the ending approximate straight line Lr_e arranged in time series. Then, during the entire discharge period Tt from time ta to time te, the cost value derivation unit 913 calculates the mean absolute error MAE (ideal trapezoidal absolute error) between the pressure value of the pressure waveform and the approximate waveform WF1 as the feature amount Fv1. The cost value derivation unit 913 stores the calculated feature amount Fv1 in the storage unit 93 .

根據基於特徵量Fv1之評估,吐出期間Tt整體中之吐出壓力的時間變化自理想形狀(即,梯形形狀)大幅偏離之情形下,可對該吐出壓力賦予較大的分數(即,否定之評估)。According to the evaluation based on the characteristic amount Fv1, when the time change of the discharge pressure in the entire discharge period Tt greatly deviates from the ideal shape (i.e., trapezoidal shape), a large score (i.e., negative evaluation) can be given to the discharge pressure ).

圖14係用於說明基於特徵量Fv2評估吐出壓力之時間變化的評估項目的圖。在圖14之評估項目中,評估吐出壓力之上升的平滑度。具體而言,在上升期間Ta,對下側基準壓力P2_l與較該下側基準壓力P2_l更大之上側基準壓力P2_u之間的吐出壓力之時間變化執行曲線回歸分析,計算上升回歸曲線Nr。該曲線回歸分析係藉由二次曲線執行。FIG. 14 is a diagram for explaining an evaluation item for evaluating the time change of the discharge pressure based on the characteristic amount Fv2. In the evaluation item of Fig. 14, the smoothness of the increase in discharge pressure is evaluated. Specifically, during the rising period Ta, curve regression analysis is performed on the time change in the discharge pressure between the lower reference pressure P2_l and the upper reference pressure P2_u which is greater than the lower reference pressure P2_l, and the rising regression curve Nr is calculated. The curve regression analysis is performed using a quadratic curve.

下側基準壓力P2_l設定為初始壓力Pi。又,上側基準壓力P2_u係較下側基準壓力P2_l更大且較目標壓力Pt更小之壓力。上側基準壓力P2_u係例如藉由使用者對使用者介面95之輸入操作而設定,並儲存於儲存部93。上側基準壓力P2_u可為將初始壓力Pi及目標壓力Pt之差的絕對值之20%之壓力加入於初始壓力Pi而得的壓力。在時刻t21至時刻t22之間,該上升回歸曲線Nr自下側基準壓力P2_l(初始壓力Pi)增加至上側基準壓力P2_u。此外,時刻t21與時刻ta一致,時刻t22係較時刻ta更往後且較時刻tb更往前之時刻。The lower reference pressure P2_l is set as the initial pressure Pi. In addition, the upper reference pressure P2_u is a pressure greater than the lower reference pressure P2_l and smaller than the target pressure Pt. The upper reference pressure P2_u is set, for example, by the user's input operation on the user interface 95, and is stored in the storage unit 93. The upper reference pressure P2_u may be a pressure obtained by adding 20% of the absolute value of the difference between the initial pressure Pi and the target pressure Pt to the initial pressure Pi. Between time t21 and time t22, the rising regression curve Nr increases from the lower reference pressure P2_l (initial pressure Pi) to the upper reference pressure P2_u. In addition, time t21 coincides with time ta, and time t22 is a time later than time ta and earlier than time tb.

成本值導出部913計算由上升回歸曲線Nr構成之波形WF2。並且,成本值導出部913在自時刻t21至時刻t22之上升初期期間Ta_s,計算出測定之壓力波形的壓力值與波形WF2之間的均方根誤差RMSE而作為特徵量Fv2。並且,成本值導出部913將計算之特徵量Fv2儲存於儲存部93。The cost value derivation unit 913 calculates the waveform WF2 composed of the rising regression curve Nr. Then, the cost value derivation unit 913 calculates the root mean square error RMSE between the pressure value of the measured pressure waveform and the waveform WF2 as the feature amount Fv2 during the initial rise period Ta_s from time t21 to time t22. Furthermore, the cost value derivation unit 913 stores the calculated feature amount Fv2 in the storage unit 93 .

根據基於特徵量Fv2之評估,受來自噴嘴71之塗佈液在吐出開始前之狀態的影響,吐出開始後瞬間之吐出壓力發生異常的情形下,可對該吐出壓力賦予較大的分數(即,否定之評估)。此外,可用於曲線回歸分析之曲線不限於二次曲線,亦可為指數函數等其他曲線。Based on the evaluation based on the characteristic amount Fv2, when the discharge pressure immediately after the start of discharge is abnormal due to the influence of the state of the coating liquid from the nozzle 71 before the start of discharge, a larger score can be given to the discharge pressure (i.e., , negative evaluation). In addition, the curves that can be used for curve regression analysis are not limited to quadratic curves, but can also be other curves such as exponential functions.

圖15係用於說明基於特徵量Fv3評估吐出壓力之時間變化的評估項目的圖。在圖15之評估項目中,評估上升期間Ta是否收斂於一定期間內。具體而言,成本值導出部913計算吐出壓力自初始壓力Pi向目標壓力Pt增大所需之時刻ta至時刻tb的上升期間Ta之長度(=tb-ta)作為特徵量Fv3。並且,成本值導出部913將計算之特徵量Fv3儲存於儲存部93。FIG. 15 is a diagram for explaining an evaluation item for evaluating the time change of the discharge pressure based on the characteristic amount Fv3. In the evaluation item in Figure 15, it is evaluated whether the rising period Ta converges within a certain period. Specifically, the cost value derivation unit 913 calculates the length of the rising period Ta (=tb-ta) from time ta to time tb required for the discharge pressure to increase from the initial pressure Pi to the target pressure Pt as the feature amount Fv3. Furthermore, the cost value derivation unit 913 stores the calculated feature amount Fv3 in the storage unit 93 .

根據基於特徵量Fv3之評估,可對達到目標壓力Pt之上升期間較既定之一定期間更短或更長的吐出壓力賦予較大的分數(即,否定之評估)。Based on the evaluation based on the characteristic amount Fv3, a larger score (ie, a negative evaluation) can be given to the discharge pressure in which the rising period to reach the target pressure Pt is shorter or longer than a predetermined certain period.

圖16係用於說明根據特徵量Fv4的圖。圖16(A)係用於說明基於特徵量Fv4評估吐出壓力之時間變化的評估項目的圖。圖16(B)係顯示藉由基於特徵量Fv4之評估而判斷為不適當之吐出壓力的時間變化例的圖。在圖16(A)之評估項目中,評估吐出壓力之上升中有無異常。FIG. 16 is a diagram for explaining the feature value Fv4. FIG. 16(A) is a diagram illustrating evaluation items for evaluating the time change of the discharge pressure based on the characteristic amount Fv4. FIG. 16(B) is a diagram showing an example of time change of the discharge pressure determined to be inappropriate by evaluation based on the characteristic amount Fv4. In the evaluation item shown in Figure 16(A), it is evaluated whether there is any abnormality in the increase in discharge pressure.

具體而言,成本值導出部913針對自時刻ta至時刻tb之上升期間Ta,計算吐出壓力之時間變化的1次微分D1,求出1次微分波形WF4。並且,成本值導出部913求出在上升期間Ta,1次微分波形WF4與既定之臨限值Th4交叉的次數作為特徵量Fv4。在圖16(A)之例中,1次微分波形WF4與臨限值Th4(例如,0.002)分別在時刻t41及時刻t42交叉,交叉次數(特徵量Fv4)為2次。成本值導出部913將計算之特徵量Fv4儲存於儲存部93。Specifically, the cost value derivation unit 913 calculates the first differential D1 of the time change of the discharge pressure for the rising period Ta from time ta to time tb, and obtains the first differential waveform WF4. Furthermore, the cost value derivation unit 913 determines the number of times the primary differential waveform WF4 crosses the predetermined threshold value Th4 during the rising period Ta as the feature amount Fv4. In the example of FIG. 16(A) , the first-order differential waveform WF4 intersects with the threshold value Th4 (for example, 0.002) at time t41 and time t42 respectively, and the number of intersections (feature amount Fv4) is two. The cost value derivation unit 913 stores the calculated feature amount Fv4 in the storage unit 93 .

根據基於特徵量Fv4之評估,上升期間Ta之吐出壓力的時間變化產生階段之情形下(例如,圖16(B)),可對該吐出壓力賦予較大的分數(即,否定之評估)。According to the evaluation based on the characteristic amount Fv4, when the time change of the discharge pressure during the rising period Ta occurs in a stage (for example, FIG. 16(B) ), a large score can be given to the discharge pressure (that is, a negative evaluation).

圖17係用於說明特徵量Fv5之圖。圖17(A)係用於說明基於特徵量Fv5評估吐出壓力之時間變化的評估項目的圖。圖17(B)係顯示藉由基於特徵量Fv5之評估而判斷為不適當之吐出壓力的時間變化例的圖。在圖17(A)之評估項目中,評估吐出壓力之上升中有無異常。FIG. 17 is a diagram for explaining the feature amount Fv5. FIG. 17(A) is a diagram illustrating evaluation items for evaluating temporal changes in discharge pressure based on the characteristic amount Fv5. FIG. 17(B) is a diagram showing an example of time change of the discharge pressure determined to be inappropriate by evaluation based on the characteristic amount Fv5. In the evaluation item shown in Figure 17(A), it is evaluated whether there is any abnormality in the increase in discharge pressure.

具體而言,成本值導出部913針對自時刻ta至時刻tb之上升期間Ta,計算吐出壓力之時間變化之2次微分D2,求出2次微分波形WF5。並且,成本值導出部913求出在上升期間Ta,2次微分波形WF5之絕對值與既定之臨限值Th5交叉之次數作為特徵量Fv5。在圖17(A)之例中,2次微分波形WF5之絕對值與臨限值Th5(例如,0.0002)在時刻t51、t52、t53及t54之各者交叉,交叉次數(特徵量Fv5)為4次。成本值導出部913將計算之特徵量Fv5儲存於儲存部93。Specifically, the cost value derivation unit 913 calculates the second differential D2 of the time change of the discharge pressure for the rising period Ta from time ta to time tb, and obtains the second differential waveform WF5. Furthermore, the cost value derivation unit 913 determines the number of times the absolute value of the secondary differential waveform WF5 crosses the predetermined threshold value Th5 during the rising period Ta as the characteristic amount Fv5. In the example of FIG. 17(A) , the absolute value of the second-order differential waveform WF5 intersects with the threshold value Th5 (for example, 0.0002) at each of times t51, t52, t53, and t54, and the number of intersections (feature amount Fv5) is 4 times. The cost value derivation unit 913 stores the calculated feature amount Fv5 in the storage unit 93 .

根據基於特徵量Fv5之評估,上升期間Ta之吐出壓力的時間變化產生階段之情形下(例如,如圖17(B)所示),可對該吐出壓力賦予較大的分數(即,否定之評估)。Based on the evaluation based on the characteristic amount Fv5, when the time change of the discharge pressure during the rising period Ta generates a stage (for example, as shown in Fig. 17(B)), a large score can be given to the discharge pressure (that is, a negative evaluate).

圖18係用於說明基於特徵量Fv6評估吐出壓力之時間變化的評估項目的圖。在圖18之評估項目中,評估吐出壓力之上升在後半段是否失速。具體而言,成本值導出部913針對自時刻ta至時刻tb之上升期間Ta,計算吐出壓力之時間變化的2次微分D2,求出2次微分波形WF6。FIG. 18 is a diagram for explaining an evaluation item for evaluating the time change of the discharge pressure based on the characteristic amount Fv6. In the evaluation item in Figure 18, it is evaluated whether the increase in discharge pressure stalls in the second half. Specifically, the cost value derivation unit 913 calculates the second differential D2 of the time change of the discharge pressure for the rising period Ta from time ta to time tb, and obtains the second differential waveform WF6.

並且,成本值導出部913分別求出在上升期間Ta,2次微分波形WF6較既定之正臨限值(Th5)更大之時間T_1st、及2次微分波形WF6較既定之負臨限值(-Th5)更小之時間T_2nd。於此,正臨限值與負臨限值具有相同之絕對值(Th5),但具有相異之符號。該正臨限值及負臨限值之絕對值(Th5)與在上述特徵量Fv5之評估中使用的臨限值Th5相等。並且,成本值導出部913求出該等時間之比(=T_1st/T_2nd)作為特徵量Fv6。進而,成本值導出部913基於下式,變換特徵量Fv6。 Fv6=|1-Fv6| 成本值導出部913將變換之特徵量Fv6儲存於儲存部93。 In addition, the cost value derivation unit 913 respectively obtains the time T_1st when the secondary differential waveform WF6 is larger than the predetermined positive threshold value (Th5) during the rising period Ta, and the time when the secondary differential waveform WF6 is larger than the predetermined negative threshold value (Th5). -Th5) smaller time T_2nd. Here, the positive threshold value and the negative threshold value have the same absolute value (Th5), but have different signs. The absolute value (Th5) of the positive threshold value and the negative threshold value is equal to the threshold value Th5 used in the evaluation of the above-mentioned feature quantity Fv5. Then, the cost value derivation unit 913 obtains the ratio of these times (=T_1st/T_2nd) as the feature amount Fv6. Furthermore, the cost value derivation unit 913 converts the feature value Fv6 based on the following equation. Fv6=|1-Fv6| The cost value derivation unit 913 stores the converted feature amount Fv6 in the storage unit 93 .

作為塗佈液之塗佈對象的基板S之搬送速度係在加速期間之後半段不失速地達到目標速度。因此,對塗佈液賦予之吐出壓力亦在上升期間Ta中不失速地達到目標壓力Pt,而為較佳。根據基於特徵量Fv6之評估,上升期間Ta之吐出壓力失速的情形下,可對該吐出壓力賦予較大的分數(即,否定之評估)。The conveyance speed of the substrate S to be coated with the coating liquid reaches the target speed without stalling in the second half of the acceleration period. Therefore, it is preferable that the discharge pressure applied to the coating liquid reaches the target pressure Pt without stalling during the rising period Ta. According to the evaluation based on the characteristic amount Fv6, when the discharge pressure Ta stalls during the rising period, a large score can be given to the discharge pressure (that is, a negative evaluation).

圖19係用於說明基於特徵量Fv7評估吐出壓力之時間變化的評估項目的圖。在圖19之評估項目中,評估上升結束時之吐出壓力之時間變化的銳利度。具體而言,在上升期間Ta,對下側基準壓力P7_l與較該下側基準壓力P7_l更大之上側基準壓力P7_u之間之吐出壓力的時間變化執行直線回歸分析,計算上升回歸直線Lr。此處,下側基準壓力P7_l為將初始壓力Pi及目標壓力Pt之差的絕對值之80%的壓力加入於初始壓力Pi而得之壓力,上側基準壓力P7_u為將初始壓力Pi及目標壓力Pt之差的絕對值之90%之壓力加入於初始壓力Pi而得之壓力,吐出壓力在時刻t71至時刻t72之間,自下側基準壓力P7_l向上側基準壓力P7_u增大。FIG. 19 is a diagram for explaining an evaluation item for evaluating the time change of the discharge pressure based on the characteristic amount Fv7. In the evaluation item of Figure 19, the sharpness of the time change of the discharge pressure at the end of the rise is evaluated. Specifically, during the rising period Ta, linear regression analysis is performed on the time change in the discharge pressure between the lower reference pressure P7_l and the upper reference pressure P7_u which is greater than the lower reference pressure P7_l, and the rising regression straight line Lr is calculated. Here, the lower reference pressure P7_l is a pressure obtained by adding 80% of the absolute value of the difference between the initial pressure Pi and the target pressure Pt to the initial pressure Pi, and the upper reference pressure P7_u is a pressure obtained by adding the initial pressure Pi and the target pressure Pt The discharge pressure increases from the lower reference pressure P7_l to the upper reference pressure P7_u between time t71 and time t72, which is a pressure obtained by adding 90% of the absolute value of the difference to the initial pressure Pi.

該上升終期回歸直線Lr伴隨時間經過而增大,在時刻t73達到定常壓力Pm(定常期間Tc之吐出壓力的平均值)。如此,對自時刻t71至時刻t73之區間,設定上升終期回歸直線Lr。進而,成本值導出部913在時刻t73至時刻tb之間設定表示定常壓力Pm之斜率為零的延伸直線Lm。如上所述,時刻tb係吐出壓力達到目標壓力Pt之時刻,相當於上升期間Ta之結束時刻。即,該延伸直線Lm係以自上升終期回歸直線Lr之結束時間點延伸至上升期間Ta之結束時間點之方式設置。此外,tb<t73之情形下,省略延伸直線Lm。This rising terminal regression line Lr increases as time passes, and reaches the steady pressure Pm (the average value of the discharge pressure during the steady period Tc) at time t73. In this way, the rising end regression straight line Lr is set for the interval from time t71 to time t73. Furthermore, the cost value derivation unit 913 sets an extended straight line Lm with a slope of zero indicating the constant pressure Pm between time t73 and time tb. As mentioned above, time tb is the time when the discharge pressure reaches the target pressure Pt, and corresponds to the end time of the rising period Ta. That is, the extended straight line Lm is set so as to extend from the end time point of the rise terminal regression straight line Lr to the end time point of the rise period Ta. In addition, when tb<t73, the extended straight line Lm is omitted.

如上所述,計算由以時間序列排列之上升終期回歸直線Lr及延伸直線Lm所構成的近似波形WF7。並且,成本值導出部913計算,在吐出壓力為目標壓力Pt之90%的時刻t72至100%之時刻tb的上升終期期間Ta_e中,表示壓力波形之壓力值P_measure與近似波形WF7之間的差之值作為特徵量Fv7。具體而言,設定加權基準時間寬度Tw=t73-t72。並且,基於下式計算加權均方根誤差和。 Fv7=(∑(P_measure-WF7) 2×W) 1/2在時刻t≤t73+2×Tw之範圍內W=1 在時刻t≤t73+2×Tw之範圍內W=w w為大於1之加權係數,例如為10。 As described above, the approximate waveform WF7 composed of the ascending terminal regression straight line Lr and the extended straight line Lm arranged in time series is calculated. Furthermore, the cost value derivation unit 913 calculates the difference between the pressure value P_measure indicating the pressure waveform and the approximate waveform WF7 in the rising end period Ta_e between the time t72 when the discharge pressure is 90% of the target pressure Pt and the time tb when it is 100%. The value is used as the feature quantity Fv7. Specifically, the weighted reference time width Tw=t73-t72 is set. And, the weighted root mean square error sum is calculated based on the following equation. Fv7=(∑(P_measure-WF7) 2 ×W) 1/2 W=1 in the range of time t≤t73+2×Tw W=w in the range of time t≤t73+2×Tw w is greater than 1 Weighting factor, for example 10.

成本值導出部913將計算之特徵量Fv7儲存於儲存部93。根據基於特徵量Fv7之評估,吐出壓力之時間變化顯示上升之勢頭弱且帶有圓邊的波形之情形下,可對該吐出壓力賦予較大的分數(即,否定之評估)。The cost value derivation unit 913 stores the calculated feature amount Fv7 in the storage unit 93 . According to the evaluation based on the characteristic amount Fv7, when the time change of the discharge pressure shows a weak upward trend and a waveform with rounded edges, a large score can be given to the discharge pressure (that is, a negative evaluation).

圖20係用於說明基於特徵量Fv8評估吐出壓力之時間變化的評估項目的圖。在圖20之評估項目中,評估在吐出壓力之上升中發生之過衝的程度。具體而言,成本值導出部913求出,在吐出壓力達到最大值Pmax之時刻t81時,吐出壓力之2次微分D2的符號(正/負)。並且,成本值導出部913計算吐出壓力之2次微分D2的符號從在時刻t81之符號切換2次的時刻t82。並且,評估自時刻t81至時刻t82之初始振動期間Tb_s之吐出壓力的時間變化。FIG. 20 is a diagram illustrating an evaluation item for evaluating the time change of the discharge pressure based on the characteristic amount Fv8. In the evaluation item of Fig. 20, the degree of overshoot that occurs when the discharge pressure rises is evaluated. Specifically, the cost value derivation unit 913 obtains the sign (positive/negative) of the second derivative D2 of the discharge pressure at time t81 when the discharge pressure reaches the maximum value Pmax. Furthermore, the cost value derivation unit 913 calculates time t82 when the sign of the second order differential D2 of the discharge pressure switches twice from the sign at time t81. Furthermore, the time change of the discharge pressure in the initial vibration period Tb_s from time t81 to time t82 is evaluated.

具體而言,求出該初始振動期間Tb_s之吐出壓力的時間變化之最小值P8min,定常壓力Pm及壓力P8min中,較小之壓力被選為對象壓力Pg。並且,基於下式,計算最大壓力Pmax與對象壓力Pg之差,即特徵量Fv8。 Fv8=Pmax-Pg Specifically, the minimum value P8min of the time change of the discharge pressure during the initial vibration period Tb_s is found, and the smaller pressure among the steady pressure Pm and the pressure P8min is selected as the target pressure Pg. Then, based on the following equation, the difference between the maximum pressure Pmax and the target pressure Pg, that is, the characteristic amount Fv8 is calculated. Fv8=Pmax-Pg

成本值導出部913將計算之特徵量Fv8儲存於儲存部93。根據基於特徵量Fv8之評估,吐出壓力之時間變化顯示上升之勢頭強且較大的過衝之情形下,可對該吐出壓力賦予較大的分數(即,否定之評估)。The cost value derivation unit 913 stores the calculated feature amount Fv8 in the storage unit 93 . According to the evaluation based on the characteristic quantity Fv8, when the time change of the discharge pressure shows a strong upward trend and a large overshoot, a large score can be given to the discharge pressure (ie, a negative evaluation).

圖21係用於說明基於特徵量Fv9評估吐出壓力之時間變化的評估項目的圖。在圖21之評估項目中,評估過渡期間Tb之吐出壓力的時間變化之穩定度。具體而言,成本值導出部913針對過渡期間Tb之吐出壓力與定常期間Tc之吐出壓力的平均值即定常壓力Pm,基於下式,計算均方根誤差RMSE(P_measure,Pm)作為特徵量Fv9。 Fv9=RMSE(P_measure,Pm) FIG. 21 is a diagram for explaining an evaluation item for evaluating the time change of the discharge pressure based on the characteristic amount Fv9. In the evaluation item of Fig. 21, the stability of the time change of the discharge pressure Tb during the transition period is evaluated. Specifically, the cost value derivation unit 913 calculates the root mean square error RMSE (P_measure, Pm) as the feature amount Fv9 based on the following equation with respect to the steady pressure Pm, which is the average value of the discharge pressure in the transition period Tb and the discharge pressure in the steady period Tc. . Fv9=RMSE(P_measure,Pm)

成本值導出部913將計算之特徵量Fv9儲存於儲存部93。根據基於特徵量Fv9之評估,吐出壓力之時間變化顯示在過渡期間Tb進行振鈴之情形下,可對該吐出壓力賦予較大的分數(即,否定之評估)。The cost value derivation unit 913 stores the calculated feature amount Fv9 in the storage unit 93 . According to the evaluation based on the feature amount Fv9, if the time change of the discharge pressure shows ringing during the transition period Tb, a large score can be given to the discharge pressure (that is, a negative evaluation).

圖22係用於說明基於特徵量Fv10評估吐出壓力之時間變化的評估項目的圖。在圖22所示之評估項目中,評估定壓期間Tbc中之吐出壓力的時間變化之穩定度。具體而言,成本值導出部913求出在定壓期間Tbc,吐出壓力之最大值Pmax與最小值P10min。並且,成本值導出部913基於下式,計算定壓期間Tbc之最大壓力Pmax與最小壓力P10min之差,即特徵量Fv10。 Fv10=Pmax-P10min FIG. 22 is a diagram for explaining an evaluation item for evaluating the time change of the discharge pressure based on the characteristic amount Fv10. In the evaluation item shown in Fig. 22, the stability of the time change of the discharge pressure in Tbc during the constant pressure period is evaluated. Specifically, the cost value derivation unit 913 obtains the maximum value Pmax and the minimum value P10min of the discharge pressure during the constant pressure period Tbc. Furthermore, the cost value derivation unit 913 calculates the difference between the maximum pressure Pmax and the minimum pressure P10min during the constant pressure period Tbc, that is, the characteristic amount Fv10. Fv10=Pmax-P10min

成本值導出部913將計算之特徵量Fv10儲存於儲存部93。根據基於特徵量Fv10之評估,在對塗佈液之膜厚影響較大的定常期間Tc中,於吐出壓力之時間變化顯示較大的偏差之情形下,可對該吐出壓力賦予較大的分數(即,否定之評估)。The cost value derivation unit 913 stores the calculated feature amount Fv10 in the storage unit 93 . According to the evaluation based on the characteristic amount Fv10, in the case where the time change of the discharge pressure shows a large deviation in the steady period Tc which has a large influence on the film thickness of the coating liquid, a large score can be assigned to the discharge pressure. (i.e., negative evaluation).

成本值導出部913將特徵量Fv1~Fv10之和作為成本值導出。但是,成本值導出部913亦可對各特徵量Fv1~Fv10進行加權。即,成本值導出部913亦可導出特徵量Fv1~Fv10之加權和作為成本值。The cost value derivation unit 913 derives the sum of the feature quantities Fv1 to Fv10 as a cost value. However, the cost value derivation unit 913 may weight each of the feature quantities Fv1 to Fv10. That is, the cost value derivation unit 913 may derive the weighted sum of the feature quantities Fv1 to Fv10 as the cost value.

此外,上述特徵量Fv1~Fv10為例示。因此,其他特徵量亦可用於成本值之計算。又,特徵量Fv1~Fv10中之一部分亦可用於成本值之計算。In addition, the above-mentioned feature values Fv1 to Fv10 are examples. Therefore, other characteristic quantities can also be used in the calculation of cost values. In addition, part of the feature quantities Fv1 to Fv10 can also be used for calculation of the cost value.

雖然詳細地說明了該發明,但上述說明在所有情形下皆為例示,該發明並非限定於此。可理解為未例示之無數個變化例可在不脫離該發明之範圍而被推知。上述各實施形態及各變化例中說明之各構成只要不相互矛盾,則可適宜組合或省略。Although the invention has been described in detail, the above description is an illustration in every case and the invention is not limited thereto. It should be understood that numerous modifications that are not illustrated can be deduced without departing from the scope of the invention. The components described in the above embodiments and modifications may be appropriately combined or omitted as long as they do not conflict with each other.

1:塗佈裝置(基板處理裝置) 2:輸入移載部 3:浮起平台部 4:輸出移載部 5:基板搬送部 7:塗佈機構 8:塗佈液供給機構 9:控制單元 13、811:可撓性管 21、41、101、111:滾輪輸送機 22:旋轉・升降驅動機構 31:入口浮起平台 32:塗佈平台 33:出口浮起平台 34:升降銷驅動機構 35:浮起控制機構 36:升降驅動機構 42:旋轉・升降驅動機構 51:卡盤機構 52:吸附・移行控制機構 61、62:感測器 71:噴嘴 72:噴嘴洗淨待機單元 81:泵 82、84:配管 83:塗佈液補充單元 85、833:開閉閥 86:壓力計 87:驅動部 91:運算部 93:儲存部 95:使用者介面 100:輸入輸送機 102、112:旋轉驅動機構 110:輸出輸送機 721:輥 722:洗淨部 723:輥槽 812:波紋管 813:小型波紋管部 814:大型波紋管部 815:泵室 816:作動盤部 831:儲存槽 910:吐出控制部 911:吐出特性量測部 913:成本值導出部(成本值計算部) 915:第1最佳化部 917:第2最佳化部 931:程式 D1:1次微分 D2:2次微分 EL:有機 Fv、Fv1~Fv10:特徵量 L1、L2:回歸直線 Lm:延伸直線 Lr:上升回歸直線(上升終期回歸直線) Lr_e:結束時近似直線 Lr_F:下降回歸直線 Lr_m:定常直線 Lr_R:上升回歸直線 Lr_s:開始時近似直線 M:記錄媒體 Nr:上升回歸曲線 P2_l、P7_l:下側基準壓力 P2_u、P7_u:上側基準壓力 P8min、P10min:(壓力之)最小值 Pmax:(壓力之)最大值 Pe、Ps:壓力 Pi:初始壓力 Pm:定常壓力 Pt:目標壓力 S:基板 Sb:下表面 Sf:上表面 T1、T3、T5、T7、T9:加速時間 T2、T4、T6、T8、T10:定常速度時間 T11:減速時間 t11、t12、t13、t14、t21、t22、t41、t42、t51、t52、t53、t54、t71、t72、t73、t81、t82、ta、tb、tc、td、te:時刻 Ta:上升期間 Ta_e:上升終期期間 Ta_s:上升初期期間 Tb:過渡期間 Tbc:定壓期間 Tb_s:初始振動期間 Tc:定常期間 Td:下降期間 Th4、Th5:臨限值 Tt:吐出期間 Tw:加權基準時間寬度 T_1st、T_2nd:時間 V1、V2、V3、V4、V5:定常速度 V5':值 WF1、WF7:近似波形 WF2:波形 WF4:1次微分波形 WF5、WF6:2次微分波形 1: Coating device (substrate processing device) 2: Input transfer part 3: Floating platform part 4:Output transfer part 5:Substrate transport department 7: Coating mechanism 8: Coating liquid supply mechanism 9:Control unit 13. 811: Flexible tube 21, 41, 101, 111: Roller conveyor 22: Rotation and lifting drive mechanism 31: Entrance floating platform 32: Coating platform 33: Exit floating platform 34: Lift pin driving mechanism 35: Floating control mechanism 36:Lifting drive mechanism 42: Rotation and lifting drive mechanism 51:Chuck mechanism 52: Adsorption and migration control mechanism 61, 62: Sensor 71:Nozzle 72: Nozzle cleaning standby unit 81:Pump 82, 84: Piping 83: Coating fluid replenishment unit 85, 833: Open and close valve 86: Pressure gauge 87:Drive Department 91:Operation Department 93:Storage Department 95:User interface 100:Input conveyor 102, 112: Rotary drive mechanism 110:Output conveyor 721:Roller 722:Cleaning Department 723:Roller groove 812: Bellows 813:Small bellows department 814:Large corrugated pipe department 815:Pump room 816: Actuator plate 831:Storage tank 910: Discharge control unit 911: Discharge characteristics measurement department 913: Cost value derivation department (cost value calculation department) 915: 1st Optimization Department 917:Second Optimization Department 931:Program D1: 1st differential D2: 2nd derivative EL:organic Fv, Fv1~Fv10: feature amount L1, L2: Regression straight line Lm: extended straight line Lr: rising regression line (regression line at the end of rising period) Lr_e: Approximate straight line at the end Lr_F: Descending regression line Lr_m: steady straight line Lr_R: rising regression line Lr_s: approximate straight line at the beginning M: recording medium Nr: rising regression curve P2_l, P7_l: Lower side reference pressure P2_u, P7_u: Upper side reference pressure P8min, P10min: minimum value (of pressure) Pmax: (the maximum value of pressure) Pe, Ps: pressure Pi: initial pressure Pm: steady pressure Pt: target pressure S:Substrate Sb: lower surface Sf: upper surface T1, T3, T5, T7, T9: acceleration time T2, T4, T6, T8, T10: constant speed time T11: deceleration time t11, t12, t13, t14, t21, t22, t41, t42, t51, t52, t53, t54, t71, t72, t73, t81, t82, ta, tb, tc, td, te: time Ta: rising period Ta_e: During the final period of rising Ta_s: Early rising period Tb: transitional period Tbc: During constant pressure period Tb_s: initial vibration period Tc: steady period Td: falling period Th4, Th5: threshold value Tt: spitting period Tw: weighted base time width T_1st, T_2nd: time V1, V2, V3, V4, V5: steady speed V5':value WF1, WF7: Approximate waveform WF2: Waveform WF4: 1st differential waveform WF5, WF6: 2nd differential waveform

圖1係示意性地顯示實施形態的塗佈裝置之整體構成的圖。 圖2係顯示塗佈液供給機構之構成的圖。 圖3係顯示圖2所示之泵的作動盤部之移動模式的折線圖。 圖4(a)及(b)係顯示吐出特性的曲線圖。 圖5係顯示控制單元之構成例的方塊圖。 圖6係顯示塗佈裝置中所執行之參數最佳化處理的流程圖。 圖7係顯示圖6所示之第1最佳化步驟之細節的流程圖。 圖8係顯示圖6所示之第2最佳化步驟之細節的流程圖。 圖9係顯示藉由第1最佳化步驟而使參數被最佳化後之壓力波形的圖。 圖10係顯示對特徵量Fv進行線性回歸之結果的圖。 圖11係用於說明壓力波形之各期間的圖。 圖12係示意性地顯示成本值導出部對於壓力波形而執行之運算的一例的圖。 圖13係用於說明基於特徵量Fv1評估吐出壓力之時間變化的評估項目的圖。 圖14係用於說明基於特徵量Fv2評估吐出壓力之時間變化的評估項目的圖。 圖15係用於說明基於特徵量Fv3評估吐出壓力之時間變化的評估項目的圖。 圖16(A)及(B)係用於說明特徵量Fv4的圖。 圖17(A)及(B)係用於說明特徵量Fv5的圖。 圖18係用於說明基於特徵量Fv6評估吐出壓力之時間變化的評估項目的圖。 圖19係用於說明基於特徵量Fv7評估吐出壓力之時間變化的評估項目的圖。 圖20係用於說明基於特徵量Fv8評估吐出壓力之時間變化的評估項目的圖。 圖21係用於說明基於特徵量Fv9評估吐出壓力之時間變化的評估項目的圖。 圖22係用於說明基於特徵量Fv10評估吐出壓力之時間變化的評估項目的圖。 FIG. 1 is a diagram schematically showing the overall structure of the coating device according to the embodiment. FIG. 2 is a diagram showing the structure of the coating liquid supply mechanism. FIG. 3 is a line diagram showing the movement pattern of the actuating disk portion of the pump shown in FIG. 2 . Figures 4(a) and (b) are graphs showing discharge characteristics. FIG. 5 is a block diagram showing an example of the structure of the control unit. Figure 6 is a flowchart showing the parameter optimization process performed in the coating device. FIG. 7 is a flowchart showing details of the first optimization step shown in FIG. 6 . FIG. 8 is a flowchart showing details of the second optimization step shown in FIG. 6 . FIG. 9 is a diagram showing the pressure waveform after the parameters are optimized in the first optimization step. FIG. 10 is a graph showing the results of linear regression on the feature quantity Fv. FIG. 11 is a diagram for explaining each period of the pressure waveform. FIG. 12 is a diagram schematically showing an example of the operation performed by the cost value derivation unit on the pressure waveform. FIG. 13 is a diagram for explaining an evaluation item for evaluating the time change of the discharge pressure based on the characteristic amount Fv1. FIG. 14 is a diagram for explaining an evaluation item for evaluating the time change of the discharge pressure based on the characteristic amount Fv2. FIG. 15 is a diagram for explaining an evaluation item for evaluating the time change of the discharge pressure based on the characteristic amount Fv3. 16(A) and (B) are diagrams for explaining the feature amount Fv4. 17(A) and (B) are diagrams for explaining the feature amount Fv5. FIG. 18 is a diagram for explaining an evaluation item for evaluating the time change of the discharge pressure based on the characteristic amount Fv6. FIG. 19 is a diagram for explaining an evaluation item for evaluating the time change of the discharge pressure based on the characteristic amount Fv7. FIG. 20 is a diagram illustrating an evaluation item for evaluating the time change of the discharge pressure based on the characteristic amount Fv8. FIG. 21 is a diagram for explaining an evaluation item for evaluating the time change of the discharge pressure based on the characteristic amount Fv9. FIG. 22 is a diagram for explaining an evaluation item for evaluating the time change of the discharge pressure based on the characteristic amount Fv10.

1:塗佈裝置(基板處理裝置) 1: Coating device (substrate processing device)

9:控制單元 9:Control unit

81:泵 81:Pump

86:壓力計 86: Pressure gauge

91:運算部 91:Operation Department

93:儲存部 93:Storage Department

95:使用者介面 95:User interface

910:吐出控制部 910: Discharge control unit

911:吐出特性量測部 911: Discharge characteristics measurement department

913:成本值導出算部(成本值計算部) 913: Cost value calculation department (cost value calculation department)

915:第1最佳化部 915: 1st Optimization Department

917:第2最佳化部 917:Second Optimization Department

931:程式 931:Program

M:記錄媒體 M: recording medium

Claims (9)

一種參數最佳化方法,其係在將自噴嘴吐出之處理液供給至基板之基板處理裝置中,將用於控制前述處理液之吐出的參數最佳化者; 該參數最佳化方法包含有: a)第1最佳化步驟,其藉由大區域搜索而將第1參數最佳化;及 b)第2最佳化步驟,其藉由局部搜索而將第2參數最佳化; 前述第1參數包含與來自前述噴嘴之前述處理液的吐出速度提高至定常吐出速度之上升期間對應的參數, 前述第2參數包含與前述吐出速度維持在前述定常吐出速度之定常吐出期間對應的參數。 A parameter optimization method that optimizes parameters for controlling the discharge of the processing liquid in a substrate processing apparatus that supplies the processing liquid discharged from a nozzle to a substrate; This parameter optimization method includes: a) a first optimization step that optimizes the first parameter through a large area search; and b) a second optimization step, which optimizes the second parameter through local search; The first parameter includes a parameter corresponding to a rising period during which the discharge speed of the treatment liquid from the nozzle increases to a constant discharge speed, The second parameter includes a parameter corresponding to a constant discharge period in which the discharge speed is maintained at the constant discharge speed. 如請求項1之參數最佳化方法,其中, 前述步驟b)在前述步驟a)之後執行。 For example, the parameter optimization method of request item 1, where, The aforementioned step b) is performed after the aforementioned step a). 如請求項1之參數最佳化方法,其中, 前述第1最佳化步驟包含:藉由貝氏最佳化而將前述第1參數最佳化之步驟。 For example, the parameter optimization method of request item 1, where, The first optimization step includes a step of optimizing the first parameter through Bayesian optimization. 如請求項1至3中任一項之參數最佳化方法,其中, 前述參數係對向前述噴嘴給送前述處理液之泵的動作加以控制之控制量。 Such as requesting a parameter optimization method for any one of items 1 to 3, where, The aforementioned parameter is a control amount that controls the operation of the pump that supplies the aforementioned treatment liquid to the aforementioned nozzle. 如請求項1至3中任一項之參數最佳化方法,其中, 前述步驟a)包含:基於自前述噴嘴吐出前述處理液時之吐出特性的特徵量導出之成本值,而將前述第1參數最佳化之步驟。 Such as requesting a parameter optimization method for any one of items 1 to 3, where, The step a) includes the step of optimizing the first parameter based on a cost value derived from a characteristic amount of the discharge characteristics when the treatment liquid is discharged from the nozzle. 如請求項1至3中任一項之參數最佳化方法,其中, 前述步驟b)包含:基於前述定常吐出期間之開始時之吐出速度、與前述定常吐出期間之結束時之吐出速度的比,將前述第2參數最佳化之步驟。 Such as requesting a parameter optimization method for any one of items 1 to 3, where, The step b) includes the step of optimizing the second parameter based on the ratio of the discharge speed at the beginning of the steady discharge period and the discharge speed at the end of the steady discharge period. 一種用於使電腦執行參數最佳化的程式,前述參數係用於控制來自噴嘴之處理液的吐出; 該程式使前述電腦執行: a) 第1最佳化步驟,其藉由大區域搜索而將第1參數最佳化;及 b) 第2最佳化步驟,其藉由局部搜索而將第2參數最佳化; 前述第1參數包含與來自前述噴嘴之前述處理液的吐出速度提高至定常吐出速度之上升期間對應的參數, 前述第2參數包含與前述吐出速度維持在前述定常吐出速度之定常吐出期間對應的參數。 A program for optimizing computer execution parameters for controlling the discharge of treatment liquid from the nozzle; This program causes the aforementioned computer to execute: a) a first optimization step, which optimizes the first parameter through a large area search; and b) the second optimization step, which optimizes the second parameter through local search; The first parameter includes a parameter corresponding to a rising period during which the discharge speed of the treatment liquid from the nozzle increases to a constant discharge speed, The second parameter includes a parameter corresponding to a constant discharge period in which the discharge speed is maintained at the constant discharge speed. 一種可由電腦讀取之記錄媒體,其記錄有請求項7之程式。A computer-readable recording medium on which the program of claim 7 is recorded. 一種基板處理裝置,其係將自噴嘴吐出之處理液供給至基板者;其具備: 吐出控制部,其基於包含第1參數及第2參數之複數個參數而控制來自前述噴嘴之前述處理液的吐出; 吐出特性量測部,其量測前述噴嘴吐出前述處理液時之吐出特性; 第1最佳化部,其基於前述吐出特性,藉由大區域搜索而將前述第1參數最佳化;及 第2最佳化部,其基於前述吐出特性,藉由局部搜索而將前述第2參數最佳化; 前述第1參數包含與來自前述噴嘴之前述處理液的吐出速度提高至定常吐出速度之上升期間對應的參數, 前述第2參數包含與前述吐出速度維持在前述定常吐出速度之定常吐出期間對應的參數。 A substrate processing device that supplies processing liquid discharged from a nozzle to a substrate; it has: a discharge control unit that controls the discharge of the processing liquid from the nozzle based on a plurality of parameters including a first parameter and a second parameter; a discharge characteristic measuring unit that measures the discharge characteristics when the nozzle discharges the treatment liquid; a first optimization unit that optimizes the first parameter through a large area search based on the aforementioned discharge characteristics; and a second optimization unit that optimizes the aforementioned second parameter through local search based on the aforementioned discharge characteristics; The first parameter includes a parameter corresponding to a rising period during which the discharge speed of the treatment liquid from the nozzle increases to a constant discharge speed, The second parameter includes a parameter corresponding to a constant discharge period in which the discharge speed is maintained at the constant discharge speed.
TW111144700A 2022-01-25 2022-11-23 Parameter optimization method, program, recording medium and substrate processing apparatus TW202345257A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-009305 2022-01-25
JP2022009305A JP7480194B2 (en) 2022-01-25 2022-01-25 Parameter optimization method, program, recording medium and substrate processing apparatus

Publications (1)

Publication Number Publication Date
TW202345257A true TW202345257A (en) 2023-11-16

Family

ID=87329169

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111144700A TW202345257A (en) 2022-01-25 2022-11-23 Parameter optimization method, program, recording medium and substrate processing apparatus

Country Status (4)

Country Link
JP (1) JP7480194B2 (en)
KR (1) KR20230114699A (en)
CN (1) CN116504670A (en)
TW (1) TW202345257A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7111568B2 (en) 2018-09-13 2022-08-02 株式会社Screenホールディングス SUBSTRATE PROCESSING APPARATUS, SUBSTRATE PROCESSING METHOD, AND COMPUTER PROGRAM FOR SUBSTRATE PROCESSING

Also Published As

Publication number Publication date
KR20230114699A (en) 2023-08-01
CN116504670A (en) 2023-07-28
JP2023108274A (en) 2023-08-04
JP7480194B2 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
JP7111568B2 (en) SUBSTRATE PROCESSING APPARATUS, SUBSTRATE PROCESSING METHOD, AND COMPUTER PROGRAM FOR SUBSTRATE PROCESSING
CN112236379B (en) Non-contact supporting platform controlled by open loop
JP2008238144A (en) Apparatus and method for applying coating liquid
KR20210070214A (en) Simulation method, simulation apparatus, and computer program
TWI832505B (en) Discharge pressure evaluation method, discharge pressure evaluation program, recording medium and substrate processing apparatus
TW202345257A (en) Parameter optimization method, program, recording medium and substrate processing apparatus
JP2009034568A (en) Slit coating-type coating device and its controlling method
TWI827316B (en) Discharge pressure evaluation method, discharge pressure evaluation program, recording medium and substrate processing apparatus
CN101439329B (en) Coating device and substrate keeping method thereof
JP7454006B2 (en) Control parameter adjustment method, program and recording medium
JP7492993B2 (en) Control parameter adjustment method, program, and recording medium
TW202410973A (en) Control parameter adjustment method, program and recording medium
JP7492992B2 (en) Coating method, program and recording medium
JP2011005465A (en) Coating apparatus and coating method
JPH10192764A (en) Coating device
KR20240031879A (en) Adjusting method for pump control parameters, computer program, recording medium, discharge apparatus and coating apparatus
JP2023020136A (en) Cost function data generation method, cost function data generation program and cost function data generation device
JP2011101860A (en) Coating apparatus and coating method
JP2014161818A (en) Application device