TW202344073A - Acoustic output device - Google Patents

Acoustic output device Download PDF

Info

Publication number
TW202344073A
TW202344073A TW112112684A TW112112684A TW202344073A TW 202344073 A TW202344073 A TW 202344073A TW 112112684 A TW112112684 A TW 112112684A TW 112112684 A TW112112684 A TW 112112684A TW 202344073 A TW202344073 A TW 202344073A
Authority
TW
Taiwan
Prior art keywords
piezoelectric element
output device
acoustic output
vibration
beam structure
Prior art date
Application number
TW112112684A
Other languages
Chinese (zh)
Inventor
朱光遠
張磊
齊心
王慶依
Original Assignee
大陸商深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商深圳市韶音科技有限公司 filed Critical 大陸商深圳市韶音科技有限公司
Publication of TW202344073A publication Critical patent/TW202344073A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

Embodiments in description of the present disclosure provides an acoustic output device including a vibrating element with a beam structure extending along a length direction; a piezoelectric element configured to generate deformation in response to an electrical signal, the deformation driving the vibration element to vibrate, the piezoelectric element being attached to a first position of the beam structure, and size of the attachment area along the length direction being not exceed 80% of size of the beam structure along the length direction; a mass element connected to a second position of the beam structure, the first position and the second position being spaced apart in the length direction, and the vibration of the vibration element driving the mass element to vibrate in a direction perpendicular to the length direction. Sensitivity of the acoustic output device in the low frequency range is improved through the vibration of thevibration elements and the mass element, and a relatively flat vibration response curve in the range from low frequency to high frequency is obtained, thereby improving sound quality of the acoustic output device.

Description

一種聲學輸出裝置 an acoustic output device

本說明書涉及聲學技術領域,特別涉及一種聲學輸出裝置。 This specification relates to the field of acoustic technology, and in particular to an acoustic output device.

壓電式的聲學輸出裝置是利用壓電材料的逆壓電效應產生振動向外輻射聲波,與傳動電動式揚聲器相比,具有機電換能效率高、能耗低、體積小、集成度高等優勢。在當今器件小型化和集成化的趨勢下,壓電式的聲學輸出裝置具有極其廣闊的前景與未來。但是,壓電式的聲學輸出裝置存在有低頻回應較差等問題,從而導致其在低頻(例如,50Hz-2000Hz)範圍內靈敏度較低的問題。 Piezoelectric acoustic output devices use the inverse piezoelectric effect of piezoelectric materials to generate vibrations and radiate sound waves outward. Compared with transmission electric speakers, they have the advantages of high electromechanical energy conversion efficiency, low energy consumption, small size, and high integration. . Under the current trend of device miniaturization and integration, piezoelectric acoustic output devices have extremely broad prospects and future. However, piezoelectric acoustic output devices have problems such as poor low-frequency response, resulting in low sensitivity in the low-frequency range (for example, 50Hz-2000Hz).

因此,希望提供一種聲學輸出裝置,以提升壓電式聲學輸出裝置的低頻回應,從而提升聲學輸出裝置在低頻範圍內的靈敏度。 Therefore, it is desired to provide an acoustic output device to improve the low-frequency response of the piezoelectric acoustic output device, thereby improving the sensitivity of the acoustic output device in the low-frequency range.

本說明書實施例提供一種聲學輸出裝置,包括:振動元件,該振動元件具有沿著長度方向延伸的梁結構;壓電元件,用於回應電信號而發生形變,該形變帶動該振動元件振動,其中,該壓電元件貼附於該梁結構的第一位置,並且貼附區域沿著該長度方向的尺寸不超過該梁結構沿著該長度方向尺寸的80%;以及質量元件,該質量元件連接於該梁結構的第二位置,其中,該第一位置與該第二位置在該長度方向上間隔分佈,該振動元件的振動帶動該質量元件在垂直於該長度方向的方向上振動。 Embodiments of this specification provide an acoustic output device, including: a vibrating element having a beam structure extending along the length direction; a piezoelectric element used to deform in response to an electrical signal, and the deformation drives the vibrating element to vibrate, wherein , the piezoelectric element is attached to the first position of the beam structure, and the size of the attachment area along the length direction does not exceed 80% of the size of the beam structure along the length direction; and a mass element, the mass element is connected In the second position of the beam structure, where the first position and the second position are spaced apart in the length direction, the vibration of the vibration element drives the mass element to vibrate in a direction perpendicular to the length direction.

100,1700,1900,200,300,400,700,900:聲學輸出裝置 100,1700,1900,200,300,400,700,900: Acoustic output device

1011,1032,1112,1132,1212,1232,1312,1332,1412,1432,1512,1532,1612,1632,1811,1821,2021:諧振峰 1011,1032,1112,1132,1212,1232,1312,1332,1412,1432,1512,1532,1612,1632,1811,1821,2021: resonance peak

1012,1031,1111,1131,1211,1231,1311,1331,1411,1431,1511,1531,1611,1631,2013,2161:諧振谷 1012,1031,1111,1131,1211,1231,1311,1331,1411,1431,1511,1531,1611,1631,2013,2161: Resonance Valley

110:振動元件 110:Vibration element

111:固定端 111: Fixed end

111’,112:自由端 111’,112: Free end

120:壓電元件 120: Piezoelectric element

121,122:壓電片 121,122: Piezoelectric film

130:質量元件 130:Quality component

140:第二壓電元件 140: Second piezoelectric element

150:第二質量元件 150: Second mass element

160:第二振動元件 160: Second vibration element

170:第三壓電元件 170: The third piezoelectric element

180:第三振動元件 180: The third vibration element

190:第四壓電元件 190: The fourth piezoelectric element

2012,2032:第二諧振峰 2012, 2032: Second resonance peak

210:殼體結構 210: Shell structure

220:固定結構 220: Fixed structure

621,811,821,831,2011,2031:第一諧振峰 621,811,821,831,2011,2031: first resonance peak

AA’,BB’:箭頭 AA’,BB’: arrow

C,M,N,O,P,Q,R,X,Y,Z:虛線圈 C,M,N,O,P,Q,R,X,Y,Z: dotted circle

d31,d33:工作模式 d31,d33: working mode

L31,L32,L33,L34,L35,L36,L51,L52,L53,L54,L61,L62,L63,L81,L82,L83,L101,L102,L103,L111,L112,L113,L121,L122,L123,L131,L132,L133,L141,L142,L143,L151,L152,L153,L161,L162,L163,L181,L182,L201,L202,L203,L211,L212,L213,L214,L215,L216,L221,L222,L223,L224,L225:曲線 L31,L32,L33,L34,L35,L36,L51,L52,L53,L54,L61,L62,L63,L81,L82,L83,L101,L102,L103,L111,L112,L113,L121,L122,L123, L131,L132,L133,L141,L142,L143,L151,L152,L153,L161,L162,L163,L181,L182,L201,L202,L203,L211,L212,L213,L214,L215,L216,L221,L2 22, L223, L224, L225: Curve

x:長度 x: length

y:寬度 y:width

z:厚度 z:Thickness

圖1是根據本說明書一些實施例所示的聲學輸出裝置的結構框圖; Figure 1 is a structural block diagram of an acoustic output device according to some embodiments of this specification;

圖2A是根據本說明書一些實施例所示的聲學輸出裝置的結構示意圖; Figure 2A is a schematic structural diagram of an acoustic output device according to some embodiments of this specification;

圖2B是圖2A所示的聲學輸出裝置沿垂直於振動元件長度方向的方向上的截面圖; Figure 2B is a cross-sectional view of the acoustic output device shown in Figure 2A along a direction perpendicular to the length direction of the vibrating element;

圖3A是根據本說明書一些實施例所示的聲學輸出裝置的結構示意圖; Figure 3A is a schematic structural diagram of an acoustic output device according to some embodiments of this specification;

圖3B是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖; Figure 3B is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification;

圖4是根據本說明書一些實施例所示的聲學輸出裝置的結構示意圖; Figure 4 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification;

圖5是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖; Figure 5 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification;

圖6是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖; Figure 6 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification;

圖7是根據本說明書一些實施例所示的聲學輸出裝置的結構示意圖; Figure 7 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification;

圖8是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖; Figure 8 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification;

圖9是根據本說明書一些實施例所示的聲學輸出裝置的結構示意圖; Figure 9 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification;

圖10是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖; Figure 10 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification;

圖11是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖; Figure 11 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification;

圖12是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖; Figure 12 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification;

圖13是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖; Figure 13 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification;

圖14是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖; Figure 14 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification;

圖15是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖; Figure 15 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification;

圖16是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖; Figure 16 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification;

圖17是根據本說明書一些實施例所示的聲學輸出裝置的結構示意圖; Figure 17 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification;

圖18是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖; Figure 18 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification;

圖19是根據本說明書一些實施例所示的聲學輸出裝置的結構示意圖; Figure 19 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification;

圖20是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖; Figure 20 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification;

圖21是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖; Figure 21 is a frequency response curve diagram of an acoustic output device according to some embodiments of this specification;

圖22是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖。 Figure 22 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.

為了更清楚地說明本說明書實施例的技術方案,下面將對實施例描述中所需要使用的圖式作簡單的介紹。顯而易見地,下面描述中的圖式僅僅是本說明書的一些示例或實施例,對於本領域的普通技術人員來講,在不付出進步性勞動的前提下,還可以根據這些 圖式將本說明書應用於其它類似情景。除非從語言環境中顯而易見或另做說明,圖中相同標號代表相同結構或操作。 In order to explain the technical solutions of the embodiments of this specification more clearly, the drawings needed to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some examples or embodiments of this specification. For those of ordinary skill in the art, without making any progress, they can also make drawings based on these examples. The diagram applies this instruction to other similar situations. Unless obvious from the locale or otherwise stated, the same reference numbers in the figures represent the same structure or operation.

本說明書實施例提供的聲學輸出裝置可以利用逆壓電效應透過壓電元件產生振動而輸出聲音。通常,壓電元件可以採用d33與d31兩種工作模式。在d33工作模式下,壓電元件的形變方向(也可以稱為位移輸出方向)與電學方向(也可以稱為極化方向)相同,其諧振頻率較高且輸出振幅小,低頻回應較差。在d31工作模式下,壓電元件的形變方向與電學方向垂直。在d31工作模式下,雖然透過增長壓電元件的長度可以提供頻率足夠低的低頻峰,輸出振幅也顯著增加,但在這種情況下,壓電元件在可聽域內(例如,20Hz-20kHz)存在較多的振動模態,表現為頻響曲線峰谷較多,因此聲學輸出裝置(或壓電式揚聲器)的音質仍然較差。 The acoustic output device provided by the embodiments of this specification can utilize the inverse piezoelectric effect to generate vibration through the piezoelectric element to output sound. Generally, piezoelectric elements can adopt two working modes: d33 and d31. In the d33 working mode, the deformation direction of the piezoelectric element (also called the displacement output direction) is the same as the electrical direction (also called the polarization direction). Its resonant frequency is high, the output amplitude is small, and the low-frequency response is poor. In the d31 working mode, the deformation direction of the piezoelectric element is perpendicular to the electrical direction. In the d31 operating mode, although increasing the length of the piezoelectric element can provide a low-frequency peak with a sufficiently low frequency, the output amplitude is also significantly increased, but in this case, the piezoelectric element is in the audible range (for example, 20Hz-20kHz ) There are more vibration modes, which are manifested as more peaks and valleys in the frequency response curve, so the sound quality of the acoustic output device (or piezoelectric speaker) is still poor.

為解決壓電式揚聲器的低頻回應差以及可聽域內模態較多的問題,本說明書實施例提供的聲學輸出裝置可以包括振動元件、壓電元件以及質量元件。其中,振動元件具有沿著長度方向延伸的梁結構。壓電元件可以回應與電信號而發生形變,該形變可以帶動振動元件振動。壓電元件貼附於梁結構的第一位置,並且貼附區域沿梁結構的長度方向的尺寸不超過梁結構沿其長度方向的尺寸的80%。質量元件可以連接於梁結構的第二位置。第一位置和第二位置在梁結構的長度方向上間隔分佈,壓電元件的振動可以帶動質量元件垂直於梁結構的長度方向上振動。振動元件和質量元件的振動能夠使得聲學輸出裝置的頻響曲線在低頻段(例如,50Hz~2000Hz)內具有第一諧振峰,從而使得聲學輸出裝置在低頻段內的靈敏度有所提升。另外,振動元件和質量元件的振動在高頻段(例如,2000Hz~20000Hz)內具有第二諧振峰,且第一諧振峰和第二諧振峰之間具有至少一個諧振谷,該第一諧振峰或第二諧振峰與該至少一個諧振谷之間的幅值差小於 80dB,從而獲得從低頻到高頻範圍內較為平坦的振動回應曲線,進而提升聲學輸出裝置的音質。 In order to solve the problems of poor low-frequency response of piezoelectric speakers and multiple modes in the audible range, the acoustic output device provided by embodiments of this specification may include a vibrating element, a piezoelectric element, and a mass element. Wherein, the vibrating element has a beam structure extending along the length direction. The piezoelectric element can deform in response to an electrical signal, and the deformation can drive the vibrating element to vibrate. The piezoelectric element is attached to the first position of the beam structure, and the size of the attachment area along the length direction of the beam structure does not exceed 80% of the size of the beam structure along the length direction. The mass element may be connected to the beam structure at a second location. The first position and the second position are spaced apart in the length direction of the beam structure, and the vibration of the piezoelectric element can drive the mass element to vibrate perpendicular to the length direction of the beam structure. The vibration of the vibrating element and the mass element can cause the frequency response curve of the acoustic output device to have a first resonance peak in the low frequency band (for example, 50Hz~2000Hz), thereby improving the sensitivity of the acoustic output device in the low frequency band. In addition, the vibration of the vibration element and the mass element has a second resonance peak in a high frequency band (for example, 2000Hz~20000Hz), and there is at least one resonance valley between the first resonance peak and the second resonance peak, and the first resonance peak or the second resonance peak The amplitude difference between the two resonance peaks and the at least one resonance valley is less than 80dB, thereby obtaining a relatively flat vibration response curve from low frequency to high frequency, thereby improving the sound quality of the acoustic output device.

本說明書實施例提供的聲學輸出裝置透過壓電元件貼附在具有梁結構的振動元件上,利用具有一定長度的梁結構提供的彈性和質量元件提供的質量組成的彈性質量系統來輸出振動,使得聲學輸出裝置的頻響曲線在低頻段內具有諧振峰,從而有效地提升聲學輸出裝置在低頻段內的靈敏度。在一些實施例中,本說明書實施例提供的聲學輸出裝置還能進一步減少在人耳可聽域記憶體在的振動模態,例如,使頻響曲線沒有或具有較少的諧振谷,或者減少諧振峰與諧振谷之間的幅值差,使得聲學輸出裝置在可聽域內的頻響曲線較為平坦,保證聲學輸出裝置能夠具有較好的音質。 The acoustic output device provided in the embodiment of this specification is attached to the vibrating element with a beam structure through a piezoelectric element, and uses an elastic mass system composed of the elasticity provided by the beam structure with a certain length and the mass provided by the mass element to output vibration, so that The frequency response curve of the acoustic output device has a resonance peak in the low frequency band, thereby effectively improving the sensitivity of the acoustic output device in the low frequency band. In some embodiments, the acoustic output device provided by the embodiments of this specification can further reduce the vibration mode of the memory in the audible range of the human ear, for example, make the frequency response curve have no or fewer resonance valleys, or reduce The amplitude difference between the resonance peak and the resonance valley makes the frequency response curve of the acoustic output device relatively flat in the audible range, ensuring that the acoustic output device can have better sound quality.

下面將結合圖式對本說明書實施例提供的聲學輸出裝置進行詳細說明。 The acoustic output device provided by the embodiment of this specification will be described in detail below with reference to the drawings.

圖1是根據本說明書一些實施例所示的聲學輸出裝置的結構框圖。在一些實施例中,聲學輸出裝置100可以為骨傳導聲學輸出裝置、氣導聲學輸出裝置或骨氣導結合的聲學輸出裝置。在一些實施例中,聲學輸出裝置100可以包括音響、耳機、眼鏡、助聽器、增強現實(Augmented Reality,AR)設備、虛擬實境(Virtual Reality,VR)設備等或具有音訊播放功能的其他設備(如手機、電腦等)。在一些實施例中,聲學輸出裝置100可以包括振動元件110、壓電元件120以及質量元件130。 Figure 1 is a structural block diagram of an acoustic output device according to some embodiments of this specification. In some embodiments, the acoustic output device 100 may be a bone conduction acoustic output device, an air conduction acoustic output device, or a bone-air conduction combined acoustic output device. In some embodiments, the acoustic output device 100 may include speakers, headphones, glasses, hearing aids, augmented reality (AR) devices, virtual reality (VR) devices, etc. or other devices with audio playback functions ( Such as mobile phones, computers, etc.). In some embodiments, the acoustic output device 100 may include a vibrating element 110 , a piezoelectric element 120 , and a mass element 130 .

振動元件110能夠基於壓電元件120的形變而產生振動,使得聲學輸出裝置100能夠透過質量元件130輸出振動。例如,壓電元件120可以回應於電信號而發生形變,壓電元件120的形變可以帶動振動元件110沿著壓電元件120的極化方向發生振動,進而帶動質量元件130沿著壓電元件120的極化方向振動。在一些實施例中,質量元件130的振動方向與振動元件110的長度方向垂直。在一 些實施例中,振動元件110可以是具有沿著長度方向延伸的梁結構,壓電元件120可以貼附於梁結構的第一位置,質量元件130可以連接於梁結構的第二位置。其中,第一位置和第二位置在振動元件110(或稱為梁結構)的長度方向間隔分佈。例如,第一位置和第二位置可以分別位於梁結構的長度方向的兩端。又例如,第一位置可以位於梁結構的長度方向的中心,第二位置可以位於梁結構長度方向的任意一端。再例如,第一位置和第二位置可以分別位於梁結構長度方向的任意兩個位置,且第一位置和第二位置之間存在有預設間距。 The vibration element 110 can generate vibration based on the deformation of the piezoelectric element 120 , so that the acoustic output device 100 can output vibration through the mass element 130 . For example, the piezoelectric element 120 can deform in response to an electrical signal. The deformation of the piezoelectric element 120 can drive the vibrating element 110 to vibrate along the polarization direction of the piezoelectric element 120, thereby driving the mass element 130 along the piezoelectric element 120. vibration in the polarization direction. In some embodiments, the vibration direction of the mass element 130 is perpendicular to the length direction of the vibration element 110 . In a In some embodiments, the vibration element 110 may have a beam structure extending along the length direction, the piezoelectric element 120 may be attached to a first position of the beam structure, and the mass element 130 may be connected to a second position of the beam structure. The first position and the second position are spaced apart in the length direction of the vibrating element 110 (or the beam structure). For example, the first position and the second position may be respectively located at both ends of the length direction of the beam structure. For another example, the first position may be located at the center of the beam structure in the length direction, and the second position may be located at any end of the beam structure in the length direction. For another example, the first position and the second position may be located at any two positions in the length direction of the beam structure, and there is a preset distance between the first position and the second position.

在一些實施例中,壓電元件120可以直接透過膠接的方式貼附於振動元件110的第一位置。在一些實施例中,壓電元件120可以透過卡接、扣接等方式連接於振動元件110的第一位置。在一些實施例中,壓電元件120可以透過物理沉積或化學沉積的方式附著於振動元件110的第一位置。在一些實施例中,質量元件130可以透過膠接、卡接、焊接、螺紋連接等方式連接於振動元件110的第二位置。 In some embodiments, the piezoelectric element 120 can be directly attached to the first position of the vibration element 110 through adhesive bonding. In some embodiments, the piezoelectric element 120 can be connected to the first position of the vibrating element 110 through snapping, buckling, etc. methods. In some embodiments, the piezoelectric element 120 can be attached to the first position of the vibrating element 110 through physical deposition or chemical deposition. In some embodiments, the mass element 130 can be connected to the second position of the vibration element 110 through gluing, snapping, welding, threaded connection, etc.

在一些實施例中,可以透過調整壓電元件120與梁結構的第一位置的貼附區域(即壓電元件120與振動元件110的實際接觸面)沿梁結構的長度方向的尺寸,來使得聲學輸出裝置100的頻響曲線在人耳可聽域內的平直曲線的範圍增大,從而可以有效提高聲學輸出裝置100的音質。在一些實施例中,為了保證聲學輸出裝置100的音質,減少聲學輸出裝置100在人耳可聽域內的高階模態(或振動模態),增大聲學輸出裝置100的頻響曲線中的平直曲線範圍,可以透過減小壓電元件120與梁結構的第一位置的貼附區域沿梁結構的長度方向的尺寸來實現。在一些實施例中,為了保證聲學輸出裝置100在低頻段的諧振峰能夠具有較高的峰值,從而提高保證聲學輸出裝置100在低頻段的靈敏度,壓電元件120的梁狀結構的長度不能太短。在一些實施例中,壓電元件120與梁結構的第一位置的貼附區域沿梁結構的長度方向的尺寸可以在3mm-30mm範圍內。在一些實施例 中,壓電元件120與梁結構的第一位置的貼附區域沿梁結構的長度方向的尺寸可以在5mm-20mm範圍內。 In some embodiments, the size of the attachment area of the piezoelectric element 120 and the first position of the beam structure (ie, the actual contact surface between the piezoelectric element 120 and the vibration element 110 ) along the length direction of the beam structure can be adjusted so that The range of the flat curve of the frequency response curve of the acoustic output device 100 in the audible range of the human ear is increased, thereby effectively improving the sound quality of the acoustic output device 100 . In some embodiments, in order to ensure the sound quality of the acoustic output device 100, the high-order modes (or vibration modes) of the acoustic output device 100 in the audible range of the human ear are reduced, and the frequency response curve of the acoustic output device 100 is increased. The flat curve range can be achieved by reducing the size of the attachment area of the piezoelectric element 120 and the first position of the beam structure along the length direction of the beam structure. In some embodiments, in order to ensure that the resonance peak of the acoustic output device 100 in the low frequency band can have a higher peak, thereby improving the sensitivity of the acoustic output device 100 in the low frequency band, the length of the beam-like structure of the piezoelectric element 120 cannot be too long. short. In some embodiments, the size of the attachment area of the piezoelectric element 120 and the first position of the beam structure along the length direction of the beam structure may be in the range of 3 mm to 30 mm. In some embodiments , the size of the attachment area of the piezoelectric element 120 and the first position of the beam structure along the length direction of the beam structure may be in the range of 5 mm to 20 mm.

在一些實施例中,可以透過調整壓電元件120的貼附區域沿梁結構的長度方向的尺寸來調整聲學輸出裝置100在低頻段產生的諧振峰對應的諧振頻率和幅值,以適應更多的場景並有利於提高聲學輸出裝置100在低頻段內的靈敏度。為了保證聲學輸出裝置100在較低的頻段內能夠產生諧振峰(即第一諧振峰),從而達到提升聲學輸出裝置在低頻段的靈敏度的目的,在一些實施例中,壓電元件120與梁結構的第一位置的貼附區域沿梁結構的長度方向的尺寸可以不超過梁結構沿長度方向尺寸的80%。在一些實施例中,壓電元件120與梁結構的第一位置的貼附區域沿梁結構的長度方向的尺寸可以不超過梁結構沿長度方向尺寸的60%。在一些實施例中,隨著壓電元件120沿梁結構的長度方向的尺寸減少,其輸出力可能隨之降低,從而導致聲學輸出裝置100在低頻段產生的諧振峰的峰值減小。為了保證聲學輸出裝置100在低頻段的諧振峰能夠具有較高的峰值,從而在該頻段內的靈敏度有所提升,在一些實施例中,壓電元件120的貼附區域沿梁結構的長度方向的尺寸可以大於梁結構沿長度方向尺寸的10%。在一些實施例中,壓電元件120的貼附區域沿梁結構的長度方向的尺寸可以大於梁結構沿長度方向尺寸的30%。 In some embodiments, the resonant frequency and amplitude corresponding to the resonant peak generated by the acoustic output device 100 in the low frequency band can be adjusted by adjusting the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure to adapt to more scene and is beneficial to improving the sensitivity of the acoustic output device 100 in the low frequency band. In order to ensure that the acoustic output device 100 can generate a resonance peak (i.e., the first resonance peak) in a lower frequency band, thereby improving the sensitivity of the acoustic output device in the low frequency band, in some embodiments, the piezoelectric element 120 and the beam The size of the attachment area of the first position of the structure along the length direction of the beam structure may not exceed 80% of the size along the length direction of the beam structure. In some embodiments, the size of the attachment area of the piezoelectric element 120 and the first position of the beam structure along the length direction of the beam structure may not exceed 60% of the size along the length direction of the beam structure. In some embodiments, as the size of the piezoelectric element 120 decreases along the length direction of the beam structure, its output force may decrease accordingly, resulting in a decrease in the peak value of the resonance peak generated by the acoustic output device 100 in the low frequency band. In order to ensure that the resonant peak of the acoustic output device 100 in the low frequency band has a higher peak, thereby improving the sensitivity in this frequency band, in some embodiments, the attachment area of the piezoelectric element 120 is along the length direction of the beam structure. The size can be greater than 10% of the lengthwise size of the beam structure. In some embodiments, the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure may be greater than 30% of the size along the length direction of the beam structure.

在一些實施例中,還可以透過在聲學輸出裝置100中的一個或多個元件上附加阻尼,以增大聲學輸出裝置100的阻尼係數,從而使得聲學輸出裝置100的頻響曲線在人耳可聽域內更加平滑(例如,圖6所示的曲線L63),以提高聲學輸出裝置100的音質。例如,可以使用具有阻尼效果的材料(例如,矽膠、橡膠、泡棉等)來製備振動元件110。又例如,可以在壓電元件120上塗覆阻尼材料。再例如,可以在振動元件110和/或質量元件130上填充阻尼材料或電磁阻尼。 In some embodiments, the damping coefficient of the acoustic output device 100 can also be increased by adding damping to one or more elements in the acoustic output device 100, so that the frequency response curve of the acoustic output device 100 can be heard by the human ear. The listening range is smoother (eg, curve L63 shown in FIG. 6 ) to improve the sound quality of the acoustic output device 100 . For example, the vibration element 110 can be prepared using materials with damping effects (eg, silicone, rubber, foam, etc.). As another example, a damping material may be coated on the piezoelectric element 120 . For another example, the vibration element 110 and/or the mass element 130 can be filled with damping material or electromagnetic damping.

在一些實施例中,振動元件110還可以為片狀、杆狀結構等。在一些實施例中,振動元件110的材料可以為具有傳輸振動能力的材料。例如,振動元件110的材料可以為矽膠、泡棉、塑膠、橡膠、金屬等,或其任意組合。在一些實施例中,振動元件110可以是具有良好彈性(即易發生彈性形變)的元器件。例如,振動元件110可以包括彈簧(例如,空氣彈簧、機械彈簧、電磁彈簧等)、傳振片、彈片、基板等,或其任意組合。 In some embodiments, the vibration element 110 may also be a sheet-shaped, rod-shaped structure, etc. In some embodiments, the material of the vibration element 110 may be a material that has the ability to transmit vibration. For example, the material of the vibration element 110 can be silicone, foam, plastic, rubber, metal, etc., or any combination thereof. In some embodiments, the vibration element 110 may be a component with good elasticity (that is, easy to undergo elastic deformation). For example, the vibration element 110 may include a spring (such as an air spring, a mechanical spring, an electromagnetic spring, etc.), a vibration transmitting piece, an elastic piece, a substrate, etc., or any combination thereof.

壓電元件120可以是能利用逆壓電效應將電能轉換為機械能的電能轉換設備。在一些實施例中,壓電元件120可以由壓電陶瓷、壓電石英、壓電晶體、壓電聚合物等具有壓電效應(逆壓電效應)的材料組成。在一些實施例中,壓電元件120可以為片狀、環狀、棱型、長方體型、柱型、球型等形狀,或其任意組合,也可以為其他不規則形狀。在一些實施例中,壓電元件120可以是具有沿其長度方向的梁結構或片狀結構以及塊狀結構等。在一些實施例中,壓電元件120與振動元件110可以是具有相同寬度的梁結構。在一些實施例中,壓電元件110可以是一個整體結構,壓電元件120位於振動元件110的一側,當壓電元件120沿壓電元件120的極化方向發生形變時,能夠帶動振動元件110進行相同方向上的振動,即壓電元件120可以為d33工作模式。在一些實施例中,壓電元件120可以包括兩層壓電片,兩層壓電片分別貼附在振動元件的相對兩側。當壓電元件120沿垂直於壓電元件120的極化方向發生形變時,振動元件110可以根據兩層壓電片的形變產生沿壓電元件120的極化方向的振動,即壓電元件120可以為d31工作模式。更多關於壓電元件120的描述可以參見圖2A、2B及其描述。 The piezoelectric element 120 may be an electrical energy conversion device capable of converting electrical energy into mechanical energy using the inverse piezoelectric effect. In some embodiments, the piezoelectric element 120 may be composed of materials with piezoelectric effect (inverse piezoelectric effect) such as piezoelectric ceramics, piezoelectric quartz, piezoelectric crystals, and piezoelectric polymers. In some embodiments, the piezoelectric element 120 can be in the shape of a sheet, annular, prismatic, rectangular, columnar, spherical, etc., or any combination thereof, or can be in other irregular shapes. In some embodiments, the piezoelectric element 120 may have a beam structure, a sheet structure, a block structure, etc. along its length direction. In some embodiments, the piezoelectric element 120 and the vibration element 110 may be beam structures with the same width. In some embodiments, the piezoelectric element 110 can be an integral structure, and the piezoelectric element 120 is located on one side of the vibrating element 110. When the piezoelectric element 120 deforms along the polarization direction of the piezoelectric element 120, it can drive the vibrating element. 110 vibrates in the same direction, that is, the piezoelectric element 120 can operate in the d33 mode. In some embodiments, the piezoelectric element 120 may include two layers of piezoelectric sheets, and the two layers of piezoelectric sheets are respectively attached to opposite sides of the vibrating element. When the piezoelectric element 120 deforms along the polarization direction perpendicular to the piezoelectric element 120 , the vibration element 110 can generate vibration along the polarization direction of the piezoelectric element 120 according to the deformation of the two layers of piezoelectric sheets, that is, the piezoelectric element 120 Can work in d31 mode. More description of the piezoelectric element 120 can be found in FIGS. 2A and 2B and their description.

質量元件130可以為具有一定質量的質量塊。在一些實施例中,質量元件130可以包括振動板、振膜等,以使聲學輸出裝置100能夠透過質量元件130輸出振動。在一些實施例中,質量元件 130的材質可以包括但不限於金屬(例如,銅、鐵、鎂、鋁、鎢等)、合金(鋁合金、鈦合金、鎢合金等)、高分子材料(例如,聚四氟乙烯、矽橡膠等)等材質。 The mass element 130 may be a mass block with a certain mass. In some embodiments, the mass element 130 may include a vibration plate, a diaphragm, etc., so that the acoustic output device 100 can output vibration through the mass element 130 . In some embodiments, the mass element The material of 130 may include but is not limited to metals (for example, copper, iron, magnesium, aluminum, tungsten, etc.), alloys (aluminum alloy, titanium alloy, tungsten alloy, etc.), polymer materials (for example, polytetrafluoroethylene, silicone rubber) etc.) and other materials.

壓電元件120可以在驅動電壓(或電信號)的作用下發生形變。該形變可以帶動振動元件110振動,從而帶動質量元件130振動。在一些實施例中,振動元件110與質量元件130可以諧振產生第一諧振峰(例如,圖6所示的第一諧振峰621),從而使得聲學輸出裝置100在低頻段內的靈敏度有所提升。 The piezoelectric element 120 can deform under the action of a driving voltage (or electrical signal). This deformation can drive the vibration element 110 to vibrate, thereby driving the mass element 130 to vibrate. In some embodiments, the vibrating element 110 and the mass element 130 can resonate to generate a first resonance peak (for example, the first resonance peak 621 shown in FIG. 6 ), thereby improving the sensitivity of the acoustic output device 100 in the low frequency band. .

在一些實施例中,振動元件110和質量元件130諧振所產生的第一諧振峰對應的諧振頻率可以根據公式(1)確定: In some embodiments, the resonant frequency corresponding to the first resonance peak generated by the resonance of the vibrating element 110 and the mass element 130 can be determined according to formula (1):

Figure 112112684-A0101-12-0009-1
Figure 112112684-A0101-12-0009-1

其中,f 0表示諧振頻率,k表示振動元件110的彈性係數,m表示質量元件130的質量。 Among them, f 0 represents the resonant frequency, k represents the elastic coefficient of the vibration element 110 , and m represents the mass of the mass element 130 .

在一些實施例中,根據公式(1)可知,可以透過調整質量元件130的質量和/或振動元件110的彈性係數來調整第一諧振峰對應的諧振頻率的頻率範圍。在一些實施例中,第一諧振峰的頻率範圍可以為50Hz-2000Hz。在一些實施例中,第一諧振峰的頻率範圍可以為150Hz-500Hz。 In some embodiments, according to formula (1), the frequency range of the resonant frequency corresponding to the first resonance peak can be adjusted by adjusting the mass of the mass element 130 and/or the elastic coefficient of the vibration element 110 . In some embodiments, the frequency range of the first resonance peak may be 50 Hz-2000 Hz. In some embodiments, the frequency range of the first resonance peak may be 150 Hz-500 Hz.

在一些實施例中,振動元件110與質量元件130的振動可以具有第二諧振峰(例如,圖6所示的第二諧振峰622)。在一些實施例中,該第二諧振峰可以由振動元件110與質量元件130的諧振(例如,與產生第一諧振峰的諧振相比更高階的諧振)產生。在一些實施例中,第二諧振峰的頻率與第一諧振峰的頻率之比可以大於5。例如,第一諧振峰的頻率可以在50Hz-200Hz之間,第二諧振峰的頻率可以在500Hz-2000Hz之間。再例如,第一諧振峰的頻率可以在100Hz-500Hz之間,第二諧振峰的頻率可以在500Hz-5000Hz之間。 在一些實施例中,在第一諧振峰和第二諧振峰之間,振動元件110與質量元件130的振動可以產生至少一個諧振谷。在一些實施例中,第一諧振峰或第二諧振峰與該至少一個諧振谷之間的幅值差可以小於預設閾值。例如,第一諧振峰或第二諧振峰與該至少一個諧振谷之間的幅值差可以小於200dB。再例如,第一諧振峰或第二諧振峰與該至少一個諧振谷之間的幅值差可以小於80dB。再例如,第一諧振峰或第二諧振峰與該至少一個諧振谷之間的幅值差可以小於50dB。在一些實施例中,第一諧振峰或第二諧振峰與該至少一個諧振谷之間的幅值差小於預設閾值,可以獲得第一諧振峰或第二諧振峰之間較為平坦的頻響曲線,從而提升聲學輸出裝置100的音質。在一些實施例中,第二諧振峰的頻率與第一諧振峰的頻率之比大於5,可以增大聲學輸出裝置100的頻響曲線中第一諧振峰與第二諧振峰之間的平直曲線範圍,從而提升聲學輸出裝置100的音質。 In some embodiments, the vibrations of the vibration element 110 and the mass element 130 may have a second resonance peak (eg, the second resonance peak 622 shown in FIG. 6 ). In some embodiments, the second resonance peak may be generated by resonance of the vibrating element 110 with the mass element 130 (eg, a higher order resonance than the resonance that generated the first resonance peak). In some embodiments, the ratio of the frequency of the second resonance peak to the frequency of the first resonance peak may be greater than 5. For example, the frequency of the first resonance peak may be between 50Hz and 200Hz, and the frequency of the second resonance peak may be between 500Hz and 2000Hz. For another example, the frequency of the first resonance peak may be between 100Hz and 500Hz, and the frequency of the second resonance peak may be between 500Hz and 5000Hz. In some embodiments, the vibration of the vibration element 110 and the mass element 130 may generate at least one resonance valley between the first resonance peak and the second resonance peak. In some embodiments, the amplitude difference between the first resonance peak or the second resonance peak and the at least one resonance valley may be less than a preset threshold. For example, the amplitude difference between the first resonance peak or the second resonance peak and the at least one resonance valley may be less than 200 dB. For another example, the amplitude difference between the first resonance peak or the second resonance peak and the at least one resonance valley may be less than 80 dB. For another example, the amplitude difference between the first resonance peak or the second resonance peak and the at least one resonance valley may be less than 50 dB. In some embodiments, the amplitude difference between the first resonant peak or the second resonant peak and the at least one resonant valley is less than a preset threshold, and a relatively flat frequency response curve between the first resonant peak or the second resonant peak can be obtained. , thereby improving the sound quality of the acoustic output device 100. In some embodiments, the ratio of the frequency of the second resonance peak to the frequency of the first resonance peak is greater than 5, which can increase the flat curve between the first resonance peak and the second resonance peak in the frequency response curve of the acoustic output device 100 range, thereby improving the sound quality of the acoustic output device 100.

在一些實施例中,可以透過調節振動元件110(梁結構)的長度來調節振動元件120的彈性係數,以此達到調整第一諧振峰對應的諧振頻率的頻率範圍。例如,梁結構的長度越大,其彈性係數就越小,在質量元件130的質量一定的情況下,第一諧振峰對應的諧振頻率就越低。但是,如果梁結構的長度過大,會不利於聲學輸出裝置100的小型化設計。為了保證聲學輸出裝置100在低頻段內能夠產生第一諧振峰,從而在該頻段內的靈敏度有所提升,同時實現器件小型化,在一些實施例中,梁結構的長度可以小於20mm。在一些實施例中,梁結構的長度可以小於50mm。 In some embodiments, the elastic coefficient of the vibration element 120 can be adjusted by adjusting the length of the vibration element 110 (beam structure), thereby adjusting the frequency range of the resonant frequency corresponding to the first resonance peak. For example, the greater the length of the beam structure, the smaller its elastic coefficient. When the mass of the mass element 130 is constant, the resonant frequency corresponding to the first resonance peak is lower. However, if the length of the beam structure is too large, it will be detrimental to the miniaturization design of the acoustic output device 100 . In order to ensure that the acoustic output device 100 can generate the first resonance peak in the low frequency band, thereby improving the sensitivity in this frequency band and miniaturizing the device, in some embodiments, the length of the beam structure may be less than 20 mm. In some embodiments, the length of the beam structure may be less than 50 mm.

在一些實施例中,可以透過調整質量元件130的質量來調整第一諧振峰對應的諧振頻率的頻率範圍。例如,在梁結構的長度一定的情況下,質量元件130的質量越大,第一諧振峰對應的諧振頻率就越小。但是,如果質量元件130的質量過大,會不利於聲學輸出裝置100的小型化設計。為了保證聲學輸出裝置100在低頻段內能 夠產生第一諧振峰,從而在該頻段內的靈敏度有所提升,同時實現器件小型化,在一些實施例中,質量元件130的質量可以小於8g。 In some embodiments, the frequency range of the resonant frequency corresponding to the first resonant peak can be adjusted by adjusting the mass of the mass element 130 . For example, when the length of the beam structure is constant, the greater the mass of the mass element 130, the smaller the resonant frequency corresponding to the first resonant peak. However, if the mass of the mass element 130 is too large, it will be detrimental to the miniaturization design of the acoustic output device 100 . In order to ensure that the acoustic output device 100 can The first resonance peak can be generated, thereby improving the sensitivity in this frequency band and miniaturizing the device. In some embodiments, the mass of the mass element 130 can be less than 8g.

在一些實施例中,振動元件110(聲學輸出裝置100)的振動可以透過質量元件130以骨傳導的方式傳遞給使用者。作為示例性說明,振動元件110的振動透過質量元件130傳遞至使用者面部的骨骼和/或肌肉,最終傳遞到使用者的耳部。又例如,質量元件130也可以不與人體直接接觸,振動元件110的振動可以透過質量元件130傳遞至聲學輸出裝置的外殼,再由外殼傳遞至使用者面部骨骼和/或肌肉,最終傳遞到使用者的耳部。在一些實施例中,振動元件110的振動也可以透過質量元件130以氣傳導的方式傳遞給使用者。示例性地,質量元件130可以直接帶動其周圍的空氣振動,從而透過空氣傳遞至使用者耳部。又例如,質量元件130可以進一步地與振膜相連,質量元件130的振動可以傳遞至振膜,再由振膜帶動空氣振動,從而透過空氣傳遞至使用者耳部。 In some embodiments, the vibration of the vibration element 110 (acoustic output device 100) can be transmitted to the user through the mass element 130 in a bone conduction manner. As an example, the vibration of the vibrating element 110 is transmitted through the mass element 130 to the bones and/or muscles of the user's face, and finally to the user's ears. For another example, the mass element 130 may not be in direct contact with the human body. The vibration of the vibration element 110 can be transmitted to the shell of the acoustic output device through the mass element 130, and then transmitted from the shell to the user's facial bones and/or muscles, and finally transmitted to the user. the person’s ears. In some embodiments, the vibration of the vibration element 110 can also be transmitted to the user through the mass element 130 in an air conduction manner. For example, the mass element 130 can directly drive the air around it to vibrate, thereby transmitting the vibration to the user's ear through the air. For another example, the mass element 130 can be further connected to the diaphragm, and the vibration of the mass element 130 can be transmitted to the diaphragm, and then the diaphragm drives the air to vibrate, thereby transmitting it to the user's ear through the air.

在一些實施例中,聲學輸出裝置100還可以包括第二壓電元件140。第二壓電元件140可以與壓電元件120(或稱為第一壓電元件120)具有相似結構、材質等。第二壓電元件140貼附於梁結構的第三位置,壓電元件120和第二壓電元件140可以在振動元件的長度方向上間隔設置,且壓電元件120和第二壓電元件140輸入的電信號相同,這樣可以看作是壓電元件120和第二壓電元件140串聯。在一些實施例中,壓電元件120和第二壓電元件140可以處於d31工作模式下,壓電元件120和第二壓電元件140的形變方向可以與振動元件110的振動方向垂直。例如,壓電元件120和第二壓電元件140沿著與極化方向垂直的方向發生往復形變,帶動振動元件110沿極化方向振動。在一些實施例中,梁結構可以包括固定端和自由端(即振動元件110為懸臂梁結構),其中,固定端可以固定於聲學輸出裝置100的其他部件(例如,殼體內壁上),自由端可以與質量元 件130連接。在一些實施例中,透過調整壓電元件120和第二壓電元件140在梁結構的長度方向上的間距,可以減少或消除振動元件110與質量元件130在振動時產生的高階模態。例如,振動元件110與質量元件130在壓電元件120的驅動下進行的振動在中高頻段內(例如,500Hz-2000Hz)所產生的諧振峰(或諧振谷)能夠與振動元件110與質量元件130在第二壓電元件140的驅動下進行的振動在中高頻段內(例如,500Hz-2000Hz)所產生的諧振谷(或諧振峰)進行合併,從而可以消除聲學輸出裝置100在中高頻段內的高階模態,使得頻響曲線更加平滑,保證聲學輸出裝置100的音質能夠有所提升。在一些實施例中,能夠進行合併的諧振谷以及諧振峰,可以是指具有相近或相同的頻率的諧振谷和諧振峰。更多關於聲學輸出裝置100的第二壓電元件140的描述可以參見圖9及其相關描述,在此不再贅述。 In some embodiments, the acoustic output device 100 may also include a second piezoelectric element 140 . The second piezoelectric element 140 may have a similar structure, material, etc. as the piezoelectric element 120 (or referred to as the first piezoelectric element 120). The second piezoelectric element 140 is attached to the third position of the beam structure. The piezoelectric element 120 and the second piezoelectric element 140 can be spaced apart in the length direction of the vibrating element, and the piezoelectric element 120 and the second piezoelectric element 140 The input electrical signals are the same, so the piezoelectric element 120 and the second piezoelectric element 140 can be regarded as being connected in series. In some embodiments, the piezoelectric element 120 and the second piezoelectric element 140 may be in the d31 working mode, and the deformation direction of the piezoelectric element 120 and the second piezoelectric element 140 may be perpendicular to the vibration direction of the vibration element 110 . For example, the piezoelectric element 120 and the second piezoelectric element 140 undergo reciprocating deformation along a direction perpendicular to the polarization direction, driving the vibration element 110 to vibrate along the polarization direction. In some embodiments, the beam structure may include a fixed end and a free end (that is, the vibrating element 110 is a cantilever beam structure), wherein the fixed end may be fixed to other components of the acoustic output device 100 (for example, on the inner wall of the housing), and the free end may End can be compared with mass element Piece 130 connection. In some embodiments, by adjusting the spacing between the piezoelectric element 120 and the second piezoelectric element 140 in the length direction of the beam structure, higher-order modes generated when the vibrating element 110 and the mass element 130 vibrate can be reduced or eliminated. For example, the resonance peak (or resonance valley) generated by the vibration of the vibrating element 110 and the mass element 130 driven by the piezoelectric element 120 in the mid-to-high frequency range (for example, 500Hz-2000Hz) can be consistent with the vibration of the vibrating element 110 and the mass element. 130 The vibrations driven by the second piezoelectric element 140 merge with the resonance valleys (or resonance peaks) generated in the mid-to-high frequency band (for example, 500Hz-2000Hz), thereby eliminating the vibration of the acoustic output device 100 in the mid- to high-frequency band. The high-order modes in the frequency response curve make the frequency response curve smoother, ensuring that the sound quality of the acoustic output device 100 can be improved. In some embodiments, the resonance valleys and resonance peaks that can be merged may refer to resonance valleys and resonance peaks with similar or identical frequencies. For more description about the second piezoelectric element 140 of the acoustic output device 100, please refer to FIG. 9 and its related descriptions, which will not be described again here.

在一些實施例中,聲學輸出裝置100還可以包括第二質量元件150。其中,在振動元件110的長度方向上,質量元件130(又稱為第一質量元件130)與第二質量元件150可以分別位於壓電元件120的兩側。在一些實施例中,透過使第二質量元件150的質量大於質量元件130,可以使得梁結構趨向於第二質量元件150的一側固定(即相當於上文該的固定端),從而解決梁結構的固定端在聲學輸出裝置100(例如,殼體)內難以找到固定邊界、不好固定的問題。在一些實施例中,透過調整第二質量元件150的質量和質量元件130的質量之間的比值,可以實現對第一諧振峰對應的諧振頻率的調整。更多關於聲學輸出裝置100還包括第二質量元件150的描述可以參見圖7及其相關描述,在此不再贅述。 In some embodiments, the acoustic output device 100 may also include a second mass element 150 . Among them, in the length direction of the vibration element 110, the mass element 130 (also called the first mass element 130) and the second mass element 150 can be located on both sides of the piezoelectric element 120 respectively. In some embodiments, by making the second mass element 150 have a greater mass than the mass element 130 , the beam structure can be fixed toward one side of the second mass element 150 (that is, equivalent to the fixed end above), thereby solving the problem that the beam The fixed end of the structure is difficult to find a fixed boundary within the acoustic output device 100 (for example, a housing) and is not easily fixed. In some embodiments, by adjusting the ratio between the mass of the second mass element 150 and the mass of the mass element 130 , the resonant frequency corresponding to the first resonant peak can be adjusted. For more description about the acoustic output device 100 also including the second mass element 150, please refer to FIG. 7 and its related description, which will not be described again here.

在一些實施例中,壓電元件120可以處在d33的工作模式下,壓電元件120的形變方向可以與振動元件110的振動方向平行。例如,當壓電元件120沿壓電元件120的極化方向發生形變時, 該形變可以帶動振動元件110也沿著極化方向振動。在一些實施例中,壓電元件120沿振動方向的一端固定(例如,固定於聲學輸出裝置100的其他部件上,例如,殼體),另一端在第一位置與梁結構連接(例如,貼附在梁結構上)。在一些實施例中,透過調整壓電元件120在梁結構上的位置,例如,調整第一位置到梁結構固定端的距離與梁結構的長度之間的比值,可以調整聲學輸出裝置100在低頻段內的諧振峰對應的諧振頻率,以使得聲學輸出裝置100可以在不同頻段內的靈敏度都能提升,以適用更多的使用場景。更多關於聲學輸出裝置100中壓電元件120的形變方向與振動元件110的振動方向平行的描述可以參考圖4及其相關描述,在此不再贅述。 In some embodiments, the piezoelectric element 120 may be in the working mode of d33, and the deformation direction of the piezoelectric element 120 may be parallel to the vibration direction of the vibrating element 110 . For example, when the piezoelectric element 120 deforms along the polarization direction of the piezoelectric element 120, This deformation can drive the vibrating element 110 to also vibrate along the polarization direction. In some embodiments, one end of the piezoelectric element 120 along the vibration direction is fixed (for example, fixed on other components of the acoustic output device 100, such as the housing), and the other end is connected to the beam structure at the first position (for example, attached to the beam structure). attached to the beam structure). In some embodiments, by adjusting the position of the piezoelectric element 120 on the beam structure, for example, adjusting the ratio between the distance from the first position to the fixed end of the beam structure and the length of the beam structure, the acoustic output device 100 can be adjusted in the low frequency band. The resonance frequency corresponding to the resonance peak in the acoustic output device 100 can be improved in different frequency bands to be suitable for more usage scenarios. For more description about the deformation direction of the piezoelectric element 120 in the acoustic output device 100 being parallel to the vibration direction of the vibrating element 110, please refer to FIG. 4 and its related description, which will not be described again here.

在一些實施例中,聲學輸出裝置100還可以包括第二振動元件160,振動元件110(又稱為第一振動元件110)與第二振動元件160在質量元件130的兩側對稱設置。其中,振動元件110與第二振動元件160遠離質量元件130的一端各自固定設置。在一些實施例中,聲學輸出裝置100還可以包括與第二振動元件160連接的第三壓電元件170,其中,第三壓電元件170與壓電元件120在質量元件130的兩側對稱設置,這樣可以看作是第三壓電元件170與壓電元件120並聯。透過該設置,可以減少或消除聲學輸出裝置100的頻響曲線在人耳可聽域內的諧振谷,保證聲學輸出裝置100的頻響曲線較為平滑,具有較好的音質。更多關於聲學輸出裝置還包括第二振動元件160以及第三壓電元件170的描述可以參見圖17及其相關描述,在此不再贅述。 In some embodiments, the acoustic output device 100 may further include a second vibration element 160 , and the vibration element 110 (also referred to as the first vibration element 110 ) and the second vibration element 160 are symmetrically arranged on both sides of the mass element 130 . Among them, the vibration element 110 and the second vibration element 160 are respectively fixedly arranged at one end away from the mass element 130 . In some embodiments, the acoustic output device 100 may further include a third piezoelectric element 170 connected to the second vibration element 160 , wherein the third piezoelectric element 170 and the piezoelectric element 120 are symmetrically arranged on both sides of the mass element 130 , this can be regarded as the third piezoelectric element 170 and the piezoelectric element 120 being connected in parallel. Through this setting, the resonance valley of the frequency response curve of the acoustic output device 100 in the audible range of the human ear can be reduced or eliminated, ensuring that the frequency response curve of the acoustic output device 100 is smoother and has better sound quality. For more description about the acoustic output device also including the second vibration element 160 and the third piezoelectric element 170, please refer to FIG. 17 and its related description, which will not be described again here.

在一些實施例中,聲學輸出裝置100可以包括第三振動元件180,第三振動元件180與質量元件130連接。在一些實施例中,第三振動元件180的長度與振動元件110的長度之比可以大於0.7,並且第三振動元件180的振動方向與振動元件110的振動方向平行。在一些實施例中,聲學輸出裝置100還可以包括第四壓電元件 190,第四壓電元件190與第三振動元件180連接。其中,第四壓電元件190處於d31工作模式下,第四壓電元件190的形變方向與第三振動元件180的振動方向垂直。由此,可以使得第三振動元件180與質量元件130的振動所產生的在低頻段的諧振峰可以補充振動元件110與質量元件110的振動所產生的諧振谷,從而使得聲學輸出裝置100的頻響曲線更加平滑,音質更好,並且第三振動元件180可以增加質量元件130在低頻段內的振動幅度,從而提高聲學輸出裝置100在低頻段內的靈敏度。更多關於聲學輸出裝置包括第三振動元件180以及第四壓電元件190的描述可以參見圖19及其相關描述,在此不再贅述。 In some embodiments, the acoustic output device 100 may include a third vibration element 180 connected to the mass element 130 . In some embodiments, the ratio of the length of the third vibration element 180 to the length of the vibration element 110 may be greater than 0.7, and the vibration direction of the third vibration element 180 is parallel to the vibration direction of the vibration element 110 . In some embodiments, the acoustic output device 100 may further include a fourth piezoelectric element 190. The fourth piezoelectric element 190 is connected to the third vibration element 180. Wherein, the fourth piezoelectric element 190 is in the d31 working mode, and the deformation direction of the fourth piezoelectric element 190 is perpendicular to the vibration direction of the third vibration element 180 . Therefore, the resonance peak in the low frequency band generated by the vibration of the third vibration element 180 and the mass element 130 can supplement the resonance valley generated by the vibration of the vibration element 110 and the mass element 110 , thereby making the frequency of the acoustic output device 100 higher. The sound curve is smoother and the sound quality is better, and the third vibration element 180 can increase the vibration amplitude of the mass element 130 in the low frequency band, thereby improving the sensitivity of the acoustic output device 100 in the low frequency band. For more description about the acoustic output device including the third vibration element 180 and the fourth piezoelectric element 190, please refer to FIG. 19 and its related description, which will not be described again here.

在一些實施例中,聲學輸出裝置100還可以包括殼體結構210。殼體結構210可以被配置為承載聲學輸出裝置100的其他部件(例如,振動元件110、第二振動元件160、第三振動元件180、壓電元件120、第二壓電元件140、第三壓電元件170、第四壓電元件190、質量元件130、第二質量元件150等,或其組合)。在一些實施例中,殼體結構210可以是內部中空的封閉式或半封閉式結構,且聲學輸出裝置100的其他部件位於殼體結構內或上。在一些實施例中,殼體結構的形狀可以為長方體、圓柱體、圓臺等規則或不規則形狀的立體結構。當使用者佩戴聲學輸出裝置100時,殼體結構可以位於靠近使用者耳朵附近的位置。例如,殼體結構可以位於使用者耳廓的周側(例如,前側或後側)。又例如,殼體結構可以位於使用者耳朵上但不堵塞或覆蓋使用者的耳道。在一些實施例中,聲學輸出裝置100可以為骨導耳機,殼體結構的至少一側可以與使用者的皮膚接觸。骨導耳機中聲學驅動器元件(例如,壓電元件120、振動元件110和質量元件130的組合)將音訊信號轉換為機械振動,該機械振動可以透過殼體結構以及使用者的骨骼傳遞至使用者的聽覺神經。在一些實施例中,聲學輸出裝置100可以為氣導耳機,殼體結構的至少一側可以 與使用者的皮膚接觸或不接觸。殼體結構的側壁上包括至少一個導聲孔,氣導耳機中的聲學驅動器元件將音訊信號轉換為氣導聲音,該氣導聲音可以透過導聲孔向使用者耳朵的方向進行輻射。 In some embodiments, the acoustic output device 100 may also include a housing structure 210 . The housing structure 210 may be configured to carry other components of the acoustic output device 100 (eg, the vibrating element 110, the second vibrating element 160, the third vibrating element 180, the piezoelectric element 120, the second piezoelectric element 140, the third piezoelectric element electrical element 170, fourth piezoelectric element 190, mass element 130, second mass element 150, etc., or combinations thereof). In some embodiments, the housing structure 210 may be a closed or semi-enclosed structure with a hollow interior, and other components of the acoustic output device 100 are located within or on the housing structure. In some embodiments, the shape of the housing structure may be a regular or irregular three-dimensional structure such as a cuboid, a cylinder, a truncated cone, or the like. When the user wears the acoustic output device 100, the housing structure may be positioned close to the user's ears. For example, the housing structure may be located peripherally (eg, front or back) of the user's auricle. As another example, the housing structure may be positioned over the user's ear without blocking or covering the user's ear canal. In some embodiments, the acoustic output device 100 may be a bone conduction earphone, and at least one side of the housing structure may be in contact with the user's skin. The acoustic driver element (for example, the combination of the piezoelectric element 120, the vibration element 110 and the mass element 130) in the bone conduction earphone converts the audio signal into mechanical vibration, which can be transmitted to the user through the shell structure and the user's bones. of the auditory nerve. In some embodiments, the acoustic output device 100 may be an air conduction earphone, and at least one side of the housing structure may With or without contact with the user's skin. The side wall of the housing structure includes at least one sound guide hole. The acoustic driver element in the air conduction earphone converts the audio signal into air conduction sound. The air conduction sound can be radiated in the direction of the user's ear through the sound guide hole.

在一些實施例中,聲學輸出裝置100可以包括固定結構220。固定結構220可以被配置為將聲學輸出裝置100架設在使用者耳朵附近。在一些實施例中,固定結構220可以與聲學輸出裝置100的殼體結構210物理連接(例如,膠接、卡接、螺紋連接等)。在一些實施例中,聲學輸出裝置100的殼體結構210可以為固定結構220的一部分。在一些實施例中,固定結構220可以包括耳掛、後掛、彈性帶、眼鏡腿等,使得聲學輸出裝置100可以更穩固地架設在使用者耳朵附近位置,防止使用者在使用時發生掉落。例如,固定結構220可以為耳掛,耳掛可以被配置為圍繞耳部區域佩戴。在一些實施例中,耳掛可以是連續的鉤狀物,並可以被彈性地拉伸以佩戴在使用者的耳部,同時耳掛還可以對使用者的耳廓施加壓力,使得聲學輸出裝置100牢固地固定在使用者的耳部或頭部的特定位置上。在一些實施例中,耳掛可以是不連續的帶狀物。例如,耳掛可以包括剛性部分和柔性部分。剛性部分可以由剛性材料(例如,塑膠或金屬)製成,剛性部分可以與聲學輸出裝置100的殼體結構210透過物理連接(例如,卡接、螺紋連接等)的方式進行固定。柔性部分可以由彈性材料(例如,布料、複合材料或/和氯丁橡膠)製成。又例如,固定結構220可以為頸帶,被配置為圍繞頸/肩區域佩戴。再例如,固定結構220可以為眼鏡腿,其作為眼鏡的一部分,被架設在使用者耳部。 In some embodiments, acoustic output device 100 may include fixed structure 220 . The securing structure 220 may be configured to mount the acoustic output device 100 near the user's ears. In some embodiments, the fixing structure 220 may be physically connected to the housing structure 210 of the acoustic output device 100 (eg, glued, clipped, threaded, etc.). In some embodiments, the housing structure 210 of the acoustic output device 100 may be part of the fixed structure 220 . In some embodiments, the fixing structure 220 may include ear hooks, back hooks, elastic bands, spectacle legs, etc., so that the acoustic output device 100 can be more firmly installed near the user's ears to prevent the user from falling during use. . For example, the securing structure 220 may be an earhook, which may be configured to be worn around the ear region. In some embodiments, the earhook can be a continuous hook and can be elastically stretched to be worn on the user's ear. At the same time, the earhook can also exert pressure on the user's auricle, so that the acoustic output device 100 is firmly fixed at a specific position on the user's ears or head. In some embodiments, the ear loops may be discontinuous straps. For example, an earhook may include a rigid portion and a flexible portion. The rigid part may be made of rigid material (eg, plastic or metal), and the rigid part may be fixed with the housing structure 210 of the acoustic output device 100 through physical connection (eg, snap connection, threaded connection, etc.). The flexible portion may be made of elastic material (eg, cloth, composite, or/and neoprene). As another example, the securing structure 220 may be a neck strap configured to be worn around the neck/shoulder area. For another example, the fixing structure 220 may be a spectacle leg, which is a part of the spectacles and is mounted on the user's ears.

應當注意的是,以上關於圖1的描述僅僅是出於說明的目的而提供的,並不旨在限制本說明書的範圍。對於本領域的普通技術人員來說,根據本說明書的指導可以做出多種變化和修改。例如,在一些實施例中,聲學輸出裝置100還可以包括一個或多個部件(例如,信號收發器、交互模組、電池等)。在一些實施例中,聲學輸出裝 置100中的一個或多個部件可以被其他能實現類似功能的元件替代。例如,聲學輸出裝置100可以不包括固定結構220,殼體結構210或其一部分可以為具有人體耳朵適配形狀(例如圓環形、橢圓形、多邊形(規則或不規則)、U型、V型、半圓形)的殼體結構,以便殼體結構可以掛靠在使用者的耳朵附近。這些變化和修改不會背離本說明書的範圍。 It should be noted that the above description with respect to FIG. 1 is provided for illustrative purposes only and is not intended to limit the scope of this specification. For those of ordinary skill in the art, various changes and modifications can be made based on the guidance of this specification. For example, in some embodiments, the acoustic output device 100 may further include one or more components (eg, a signal transceiver, an interactive module, a battery, etc.). In some embodiments, the acoustic output device One or more components of device 100 may be replaced by other components that perform similar functions. For example, the acoustic output device 100 may not include the fixed structure 220, and the housing structure 210 or a part thereof may have a human ear-adaptive shape (such as a circular ring, an ellipse, a polygon (regular or irregular), a U-shape, a V-shape , semicircular) shell structure so that the shell structure can be hung near the user's ears. Such changes and modifications would not depart from the scope of this specification.

圖2A是根據本說明書一些實施例所示的聲學輸出裝置的結構示意圖。 FIG. 2A is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.

如圖2A所示,聲學輸出裝置200可以包括振動元件110、壓電元件120以及質量元件130。振動元件110具有沿長度方向(即X方向)的梁結構。壓電元件120可以貼附於梁結構的第一位置,質量元件130可以連接於梁結構的自由端112(即第二位置),第一位置和第二位置在梁結構的長度方向間隔分佈。在一些實施例中,第一位置可以位於梁結構長度方向上的任意位置。例如,第一位置可以位於梁結構的長度方向的中心。再例如,壓電元件120可以沿著梁結構的長度方向覆蓋梁結構,即第一位置可以為覆蓋梁結構。在一些實施例中,壓電元件120與梁結構的實際接觸面可以稱為壓電元件120的貼附區域。在一些實施例中,可以透過調整壓電元件120的貼附區域沿梁結構的長度方向的尺寸來調整聲學輸出裝置200低頻段產生的諧振峰對應的諧振頻率和幅值,以適應更多的場景並有利於提高聲學輸出裝置200在低頻段內的靈敏度。關於調整壓電元件120的貼附區域尺寸的更多描述可以參見圖3A、3B及其相關描述,在此不再贅述。 As shown in FIG. 2A , the acoustic output device 200 may include a vibration element 110 , a piezoelectric element 120 and a mass element 130 . The vibration element 110 has a beam structure along the length direction (ie, X direction). The piezoelectric element 120 can be attached to the first position of the beam structure, and the mass element 130 can be connected to the free end 112 of the beam structure (ie, the second position). The first position and the second position are spaced apart in the length direction of the beam structure. In some embodiments, the first position may be located anywhere along the length of the beam structure. For example, the first location may be located in the center of the length of the beam structure. For another example, the piezoelectric element 120 may cover the beam structure along the length direction of the beam structure, that is, the first position may cover the beam structure. In some embodiments, the actual contact surface of the piezoelectric element 120 with the beam structure may be referred to as the attachment area of the piezoelectric element 120 . In some embodiments, the resonant frequency and amplitude corresponding to the resonant peak generated by the low-frequency band of the acoustic output device 200 can be adjusted by adjusting the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure to adapt to more The scene is beneficial to improving the sensitivity of the acoustic output device 200 in the low frequency band. For more description on adjusting the size of the attachment area of the piezoelectric element 120, please refer to FIGS. 3A and 3B and their related descriptions, which will not be described again here.

在一些實施例中,振動元件110可以具有懸臂梁結構,該懸臂梁結構具有固定端111和自由端112。固定端111可以固定於聲學輸出裝置100的其他部件(例如,殼體內壁上),自由端112可以與質量元件130連接以輸出振動。壓電元件120可以帶動振動元件 110和質量元件130在沿著壓電元件120的極化方向(即Z方向)振動,使得振動元件110與質量元件130在低頻段(例如,50Hz-2000Hz)內產生第一諧振峰(或可以稱為低頻峰),從而可以提高聲學輸出裝置200在低頻段內的靈敏度。 In some embodiments, the vibrating element 110 may have a cantilever beam structure having a fixed end 111 and a free end 112 . The fixed end 111 can be fixed on other components of the acoustic output device 100 (for example, on the inner wall of the housing), and the free end 112 can be connected with the mass element 130 to output vibration. The piezoelectric element 120 can drive the vibrating element 110 and the mass element 130 vibrate along the polarization direction of the piezoelectric element 120 (ie, the Z direction), so that the vibration element 110 and the mass element 130 generate a first resonance peak (or can (called a low-frequency peak), thereby improving the sensitivity of the acoustic output device 200 in the low-frequency band.

在一些實施例中,如圖2A所示,梁結構(或懸臂梁)可以為長方體結構。該長方體結構可以具有沿X方向的長度、沿Y方向的寬度以及沿Z方向的厚度。需要說明的是,圖2A中所示的長方體梁結構僅用來示例性說明,並無意於限制本說明書的保護範圍。對於本領域的普通技術人員來說,根據本說明書的指導可以做出多種變化和修改。在一些實施例中,可以對梁結構或其至少一部分的結構、尺寸、材料參數進行調整。例如,本說明書中的梁結構可以不限於上述的長方體結構,還可以為其他形狀,例如,梁結構沿長度方向(即X方向)的截面形狀可以為三角形、半圓形、菱形、五邊形、六邊形等規則或不規則形狀。再例如,梁結構上不同位置處的寬度和/或厚度可以相同或不同。再例如,梁結構上不同位置處的形狀可以相同或不同。 In some embodiments, as shown in FIG. 2A , the beam structure (or cantilever beam) may be a cuboid structure. The cuboid structure may have a length along the X direction, a width along the Y direction, and a thickness along the Z direction. It should be noted that the rectangular parallelepiped beam structure shown in FIG. 2A is only used for illustrative purposes and is not intended to limit the scope of protection of this specification. For those of ordinary skill in the art, various changes and modifications can be made based on the guidance of this specification. In some embodiments, the structure, dimensions, and material parameters of the beam structure or at least a portion thereof may be adjusted. For example, the beam structure in this specification may not be limited to the above-mentioned rectangular parallelepiped structure, but may also be of other shapes. For example, the cross-sectional shape of the beam structure along the length direction (i.e., the X direction) may be a triangle, a semicircle, a rhombus, or a pentagon. , hexagon and other regular or irregular shapes. As another example, the width and/or thickness at different locations on the beam structure may be the same or different. As another example, the shapes at different locations on the beam structure can be the same or different.

圖2B是圖2A所示的聲學輸出裝置沿垂直於振動元件的長度方向的方向(即Y方向)上的截面圖。 FIG. 2B is a cross-sectional view of the acoustic output device shown in FIG. 2A along a direction perpendicular to the length direction of the vibrating element (ie, Y direction).

在一些實施例中,聲學輸出裝置200中的壓電元件120的形變方向可以與振動元件110的長度方向平行,從而帶動振動元件110產生沿壓電元件120的極化方向的振動,即振動元件110的振動方向可以與壓電元件120的極化方向平行。具體地,如圖2B所示,壓電元件120可以包括兩個壓電片(即壓電片121和壓電片122)。壓電片121和壓電片122可以分別貼附振動元件110(的第一位置)相反的兩側,壓電片121和壓電片122的極化方向垂直於貼附面。其中,振動元件110可以回應於壓電片121和壓電片122的形變發生沿垂直於貼附面的振動。 In some embodiments, the deformation direction of the piezoelectric element 120 in the acoustic output device 200 can be parallel to the length direction of the vibrating element 110, thereby driving the vibrating element 110 to generate vibration along the polarization direction of the piezoelectric element 120, that is, the vibrating element The vibration direction of piezoelectric element 110 may be parallel to the polarization direction of piezoelectric element 120 . Specifically, as shown in FIG. 2B , the piezoelectric element 120 may include two piezoelectric sheets (ie, a piezoelectric sheet 121 and a piezoelectric sheet 122 ). The piezoelectric sheet 121 and the piezoelectric sheet 122 can be respectively attached to opposite sides of the vibrating element 110 (the first position), and the polarization directions of the piezoelectric sheet 121 and the piezoelectric sheet 122 are perpendicular to the attachment surface. The vibration element 110 can vibrate perpendicular to the attachment surface in response to the deformation of the piezoelectric sheet 121 and the piezoelectric sheet 122 .

在一些實施例中,壓電片121和壓電片122可以為被配置為提供壓電效應和/或逆壓電效應的元件。在一些實施例中,壓電片可以覆蓋於振動元件110的一個或多個表面,並在驅動電壓的作用下發生形變帶動振動元件110發生翹曲,從而實現壓電元件120輸出振動。例如,沿壓電元件120的極化方向(如圖箭頭BB’所示),壓電片121和壓電片122分別貼附在振動元件110的相反兩側,振動元件110可以根據壓電片121和壓電片122沿壓電元件120長度方向(如圖箭頭AA’所示)的伸縮而產生振動。具體地,位於振動元件110一側的壓電片(例如,壓電片121)可以沿其長度方向收縮,位於振動元件120一側的壓電片(例如,壓電片122)可以沿其長度方向伸長,從而帶動振動元件110沿垂直於其表面的方向(即厚度方向BB’)翹曲以產生振動。在一些實施例中,壓電片121和/或122的材質可以包括壓電陶瓷、壓電石英、壓電晶體、壓電聚合物等,或其任意組合。 In some embodiments, piezoelectric sheet 121 and piezoelectric sheet 122 may be elements configured to provide a piezoelectric effect and/or an inverse piezoelectric effect. In some embodiments, the piezoelectric sheet can cover one or more surfaces of the vibrating element 110 and deform under the action of the driving voltage to drive the vibrating element 110 to warp, thereby realizing the piezoelectric element 120 to output vibration. For example, along the polarization direction of the piezoelectric element 120 (as shown by arrow BB' in the figure), the piezoelectric sheet 121 and the piezoelectric sheet 122 are respectively attached to opposite sides of the vibrating element 110. The vibrating element 110 can be configured according to the piezoelectric sheet. The expansion and contraction of the piezoelectric element 121 and the piezoelectric piece 122 along the length direction of the piezoelectric element 120 (as shown by the arrow AA' in the figure) generates vibration. Specifically, the piezoelectric sheet (eg, piezoelectric sheet 121) located on one side of the vibrating element 110 can shrink along its length direction, and the piezoelectric sheet (eg, piezoelectric sheet 122) located on one side of the vibrating element 120 can shrink along its length. The vibration element 110 is elongated in the direction, thereby driving the vibration element 110 to warp in the direction perpendicular to its surface (ie, the thickness direction BB') to generate vibration. In some embodiments, the material of the piezoelectric sheets 121 and/or 122 may include piezoelectric ceramics, piezoelectric quartz, piezoelectric crystals, piezoelectric polymers, etc., or any combination thereof.

需要說明的是,圖2B中所示的壓電元件120僅用來示例性說明,並無意於限制本說明書的保護範圍。在一些實施例中,壓電元件120中壓電片的數量可以不限於圖2B所示的兩個。例如,壓電元件120可以包括一個壓電片,該壓電片貼附在振動元件110(的第一位置)的一側並可以在驅動電壓的作用下發生形變,從而帶動振動元件110發生翹曲,實現壓電元件120輸出振動。 It should be noted that the piezoelectric element 120 shown in FIG. 2B is only used for illustrative purposes and is not intended to limit the scope of protection of this specification. In some embodiments, the number of piezoelectric sheets in the piezoelectric element 120 may not be limited to the two shown in FIG. 2B. For example, the piezoelectric element 120 may include a piezoelectric piece, which is attached to one side of the vibrating element 110 (the first position) and can deform under the action of the driving voltage, thereby driving the vibrating element 110 to warp. to achieve the piezoelectric element 120 to output vibration.

在一些實施例中,可以透過調整壓電元件120的貼附區域沿梁結構的長度方向的尺寸來調整聲學輸出裝置在低頻段產生的諧振峰對應的諧振頻率和幅值,以適應更多的場景並有利於提高聲學輸出裝置在低頻段內的靈敏度。僅作為示例,圖3A是根據本說明書一些實施例所示的聲學輸出裝置的結構意圖。如圖3A所示,在聲學輸出裝置300中,壓電元件120從固定端111開始,沿著梁結構的長度方向覆蓋(貼附於)梁結構(即振動元件110)的至少一部分。 在一些實施例中,壓電元件120的貼附區域沿梁結構的長度方向的尺寸與梁結構的長度之間的比值可以影響梁結構的彈性。例如,當梁結構貼附有壓電元件120的部分(簡稱為覆蓋部分)沿長度方向(即X方向)的截面高度大於未貼附有壓電元件120的部分(簡稱為未覆蓋部分)沿長度方向的截面高度時,則覆蓋部分的抗彎模量大於未覆蓋部分的抗彎模量,即覆蓋部分比未覆蓋部分彈性係數更高,表現為更不易彎曲。在一些實施例中,隨著壓電元件120的貼附區域沿梁結構的長度方向的尺寸與梁結構的長度之間的比值的增加,梁結構整體的彈性係數增加,從而使得聲學輸出裝置300的頻響曲線中的低頻峰對應的諧振頻率也有所增加。 In some embodiments, the resonant frequency and amplitude corresponding to the resonant peak generated by the acoustic output device in the low frequency band can be adjusted by adjusting the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure to accommodate more scene and is conducive to improving the sensitivity of the acoustic output device in the low frequency band. By way of example only, FIG. 3A is a structural diagram of an acoustic output device according to some embodiments of the present specification. As shown in FIG. 3A , in the acoustic output device 300 , the piezoelectric element 120 starts from the fixed end 111 and covers (attaches to) at least a part of the beam structure (ie, the vibrating element 110 ) along the length direction of the beam structure. In some embodiments, the ratio between the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure and the length of the beam structure may affect the elasticity of the beam structure. For example, when the cross-sectional height of the portion of the beam structure to which the piezoelectric element 120 is attached (referred to as the covered portion) along the length direction (i.e., the X direction) is greater than that of the portion to which the piezoelectric element 120 is not attached (referred to as the uncovered portion), When the cross-section height in the length direction is higher, the flexural modulus of the covered part is greater than that of the uncovered part, that is, the covered part has a higher elastic coefficient than the uncovered part, making it less likely to bend. In some embodiments, as the ratio between the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure and the length of the beam structure increases, the elastic coefficient of the entire beam structure increases, so that the acoustic output device 300 The resonant frequency corresponding to the low-frequency peak in the frequency response curve also increases.

圖3B是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖。如圖3B所示,曲線L31為聲學輸出裝置300的壓電元件120的貼附區域沿梁結構的長度方向的尺寸與梁結構的長度之間的比值(圖3B中用per表示)為0.2時的頻響曲線。曲線L32為聲學輸出裝置300的壓電元件120的貼附區域沿梁結構的長度方向的尺寸與梁結構的長度之間的比值為0.4時的頻響曲線。曲線L33為聲學輸出裝置300的壓電元件120的貼附區域沿梁結構的長度方向的尺寸與梁結構的長度之間的比值為0.6時的頻響曲線。曲線L34為聲學輸出裝置300的壓電元件120的貼附區域沿梁結構的長度方向的尺寸與梁結構的長度之間的比值為0.8時的頻響曲線。曲線L35為聲學輸出裝置300的壓電元件120的貼附區域沿梁結構的長度方向的尺寸與梁結構的長度之間的比值為0.9時的頻響曲線。曲線L36為聲學輸出裝置300的壓電元件120的貼附區域沿梁結構的長度方向的尺寸與梁結構的長度之間的比值為1時的頻響曲線。其中,虛線圈C內的諧振峰為壓電元件120的貼附區域沿梁結構的長度方向的尺寸與梁結構的長度之間具有不同比值時聲學輸出裝置300在低頻段內產生的第一諧振峰。 Figure 3B is a frequency response graph of an acoustic output device according to some embodiments of the present specification. As shown in FIG. 3B , curve L31 is when the ratio between the size of the attachment area of the piezoelectric element 120 of the acoustic output device 300 along the length direction of the beam structure and the length of the beam structure (represented by per in FIG. 3B ) is 0.2. frequency response curve. Curve L32 is a frequency response curve when the ratio between the size of the attachment area of the piezoelectric element 120 of the acoustic output device 300 along the length direction of the beam structure and the length of the beam structure is 0.4. Curve L33 is a frequency response curve when the ratio between the size of the attachment area of the piezoelectric element 120 of the acoustic output device 300 along the length direction of the beam structure and the length of the beam structure is 0.6. Curve L34 is a frequency response curve when the ratio between the size of the attachment area of the piezoelectric element 120 of the acoustic output device 300 along the length direction of the beam structure and the length of the beam structure is 0.8. Curve L35 is a frequency response curve when the ratio between the size of the attachment area of the piezoelectric element 120 of the acoustic output device 300 along the length direction of the beam structure and the length of the beam structure is 0.9. Curve L36 is a frequency response curve when the ratio between the size of the attachment area of the piezoelectric element 120 of the acoustic output device 300 along the length direction of the beam structure and the length of the beam structure is 1. The resonance peak in the dotted circle C is the first resonance generated by the acoustic output device 300 in the low frequency band when the size of the attachment area of the piezoelectric element 120 along the length of the beam structure has different ratios to the length of the beam structure. peak.

從圖3B中可以看出,隨著壓電元件120的貼附區域沿梁結構的長度方向的尺寸與梁結構的長度之間的比值的增加,聲學輸出裝置(例如,聲學輸出裝置300)在低頻段內的第一諧振峰對應的諧振頻率逐漸增加(例如,曲線L31-L36中第一諧振峰對應的諧振頻率逐漸增加)。當壓電元件120的貼附區域沿梁結構的長度方向的尺寸與梁結構的長度之間的比值達到90%時,曲線L35中第一諧振峰對應的諧振頻率與曲線L36中第一諧振峰對應的諧振頻率幾乎相同,而當壓電元件120的貼附區域沿梁結構的長度方向的尺寸與梁結構的長度之間的比值在80%及以下時,曲線L34、曲線L33、曲線L32、曲線L31中第一諧振峰對應的諧振頻率會隨比值的減小而降低。為了保證聲學輸出裝置(例如,聲學輸出裝置300)在較低的頻段內能夠產生諧振峰(即第一諧振峰),從而達到提升聲學輸出裝置在低頻段的靈敏度的目的,在一些實施例中,壓電元件120的貼附區域沿梁結構的長度方向的尺寸可以不超過梁結構沿長度方向尺寸的80%。在一些實施例中,壓電元件120的貼附區域沿梁結構的長度方向的尺寸可以不超過梁結構沿長度方向尺寸的60%。 It can be seen from FIG. 3B that as the ratio between the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure and the length of the beam structure increases, the acoustic output device (eg, the acoustic output device 300 ) The resonant frequency corresponding to the first resonant peak in the low frequency band gradually increases (for example, the resonant frequency corresponding to the first resonant peak in the curve L31-L36 gradually increases). When the ratio between the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure and the length of the beam structure reaches 90%, the resonant frequency corresponding to the first resonant peak in the curve L35 is the same as the first resonant peak in the curve L36 The corresponding resonant frequencies are almost the same, and when the ratio between the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure and the length of the beam structure is 80% or less, curve L34, curve L33, curve L32, The resonance frequency corresponding to the first resonance peak in curve L31 will decrease as the ratio decreases. In order to ensure that the acoustic output device (for example, the acoustic output device 300) can generate a resonance peak (i.e., the first resonance peak) in a lower frequency band, thereby achieving the purpose of improving the sensitivity of the acoustic output device in the low frequency band, in some embodiments , the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure may not exceed 80% of the size along the length direction of the beam structure. In some embodiments, the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure may not exceed 60% of the size along the length direction of the beam structure.

除此之外,從圖3B中也可以看出,隨著壓電元件120的貼附區域沿梁結構的長度方向的尺寸與梁結構的長度之間的比值減小,曲線L36-L31中第一諧振峰對應的峰值降低,這是由於壓電元件120沿梁結構的長度方向的尺寸減少,導致其輸出力也隨之降低,從而導致諧振峰的峰值也在減小。為了保證聲學輸出裝置在低頻段的諧振峰能夠具有較高的峰值,從而在該頻段內的靈敏度有所提升,在一些實施例中,壓電元件120的貼附區域沿梁結構的長度方向的尺寸可以大於梁結構沿長度方向尺寸的10%。在一些實施例中,壓電元件120的貼附區域沿梁結構的長度方向的尺寸可以大於梁結構沿長度方向尺寸的30%。 In addition, it can also be seen from FIG. 3B that as the ratio between the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure and the length of the beam structure decreases, the third curve in the curve L36-L31 The peak value corresponding to a resonance peak decreases. This is because the size of the piezoelectric element 120 along the length direction of the beam structure decreases, resulting in a decrease in its output force, resulting in a decrease in the peak value of the resonance peak. In order to ensure that the resonance peak of the acoustic output device in the low frequency band can have a higher peak, thereby improving the sensitivity in this frequency band, in some embodiments, the attachment area of the piezoelectric element 120 is along the length direction of the beam structure. The dimensions may be greater than 10% of the length of the beam structure. In some embodiments, the size of the attachment area of the piezoelectric element 120 along the length direction of the beam structure may be greater than 30% of the size along the length direction of the beam structure.

圖4是根據本說明書一些實施例所示的聲學輸出裝置的結構示意圖。 Figure 4 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.

如圖4所示,聲學輸出裝置400與聲學輸出裝置200具有相似的結構,區別在於聲學輸出裝置400中的壓電元件120與聲學輸出裝置200中的壓電元件110的設置方式以及工作模式不同。在聲學輸出裝置400中,壓電元件120處於d33的工作模式下,壓電元件120的形變方向可以與振動元件110的振動方向平行。具體地,在聲學輸出裝置400中,壓電元件120貼附於振動元件110沿振動元件110的振動方向上的一側。進一步地,壓電元件120沿極化方向的一端固定,另一端在第一位置與梁結構連接(貼附)。透過這樣設置,當壓電元件120沿著其極化方向發生形變時,可以帶動振動元件110進行同方向振動。在一些實施例中,壓電元件120可以具有疊堆式結構。作為示例性說明,壓電元件120可以包括多層壓電片,多層壓電片可以沿壓電片的極化方向堆疊成為壓電元件120。 As shown in FIG. 4 , the acoustic output device 400 and the acoustic output device 200 have similar structures. The difference lies in the arrangement and working mode of the piezoelectric element 120 in the acoustic output device 400 and the piezoelectric element 110 in the acoustic output device 200 . . In the acoustic output device 400 , when the piezoelectric element 120 is in the working mode of d33, the deformation direction of the piezoelectric element 120 may be parallel to the vibration direction of the vibrating element 110 . Specifically, in the acoustic output device 400 , the piezoelectric element 120 is attached to one side of the vibrating element 110 along the vibration direction of the vibrating element 110 . Further, one end of the piezoelectric element 120 is fixed along the polarization direction, and the other end is connected (attached) to the beam structure at the first position. Through this arrangement, when the piezoelectric element 120 is deformed along its polarization direction, the vibrating element 110 can be driven to vibrate in the same direction. In some embodiments, the piezoelectric element 120 may have a stacked structure. As an exemplary illustration, the piezoelectric element 120 may include multiple layers of piezoelectric sheets, and the multiple layers of piezoelectric sheets may be stacked along the polarization direction of the piezoelectric sheets to form the piezoelectric element 120 .

在一些實施例中,在沿著梁結構的長度方向上,固定端111與壓電元件120(或第一位置)之間的距離不同,聲學輸出裝置400的頻響曲線在低頻段內的諧振峰對應的諧振頻率不同。這裡的第一位置可以指壓電元件120靠近固定端111的邊緣所在位置。因此,可以透過調整固定端111與壓電元件120之間在梁結構長度方向上的間距,來改變聲學輸出裝置400的頻響曲線在低頻段內的諧振峰對應的諧振頻率,從而有利於聲學輸出裝置在不同頻段內的靈敏度提升,以適用更多場景。下面將結合聲學輸出裝置的頻響曲線進行詳細說明。 In some embodiments, the distance between the fixed end 111 and the piezoelectric element 120 (or the first position) is different along the length direction of the beam structure, and the frequency response curve of the acoustic output device 400 resonates in the low frequency band. The resonance frequencies corresponding to the peaks are different. The first position here may refer to the position of the edge of the piezoelectric element 120 close to the fixed end 111 . Therefore, by adjusting the distance between the fixed end 111 and the piezoelectric element 120 in the length direction of the beam structure, the resonant frequency corresponding to the resonance peak in the low frequency band of the frequency response curve of the acoustic output device 400 can be changed, thereby benefiting the acoustics. The sensitivity of the output device in different frequency bands has been improved to suit more scenarios. A detailed description will be given below in conjunction with the frequency response curve of the acoustic output device.

圖5是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖。 Figure 5 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.

在圖5中,曲線L51為聲學輸出裝置400的固定端111與壓電元件120之間的距離與梁結構的長度的比值(圖5中用p表示)為0.2時的頻響曲線。曲線L52為聲學輸出裝置400的固定端 111與壓電元件120之間的距離與梁結構的長度的比值為0.4時的頻響曲線。曲線L53為聲學輸出裝置400的固定端111與壓電元件120之間的距離與梁結構的長度的比值為0.6時的頻響曲線。曲線L54為聲學輸出裝置400的固定端111與壓電元件120之間與梁結構的長度的比值為0.8時的頻響曲線。其中,虛線圈Y內的諧振峰為聲學輸出裝置400在低頻段內產生的第一諧振峰。 In FIG. 5 , curve L51 is a frequency response curve when the ratio of the distance between the fixed end 111 of the acoustic output device 400 and the piezoelectric element 120 to the length of the beam structure (represented by p in FIG. 5 ) is 0.2. Curve L52 is the fixed end of the acoustic output device 400 The frequency response curve when the ratio of the distance between 111 and the piezoelectric element 120 to the length of the beam structure is 0.4. Curve L53 is a frequency response curve when the ratio of the distance between the fixed end 111 of the acoustic output device 400 and the piezoelectric element 120 to the length of the beam structure is 0.6. Curve L54 is a frequency response curve when the ratio between the fixed end 111 of the acoustic output device 400 and the piezoelectric element 120 and the length of the beam structure is 0.8. The resonance peak in the dotted circle Y is the first resonance peak generated by the acoustic output device 400 in the low frequency band.

從圖5中可以看出,當聲學輸出裝置(例如,聲學輸出裝置400)中的壓電元件與固定端之間的距離增大時,聲學輸出裝置在低頻段內的諧振峰對應的諧振頻率也在增加(例如,曲線L51、曲線L52、曲線L53和曲線L54中諧振峰對應的諧振頻率逐漸增加)。為了保證聲學輸出裝置(例如,聲學輸出裝置400)在低頻段內能夠產生第一諧振峰,從而在該頻段內的靈敏度有所提升,在一些實施例中,第一位置與固定端的距離與梁結構的長度之間的比值可以小於0.6。在一些實施例中,第一位置與固定端的距離可以與梁結構的長度之間的比值可以小於0.4。 It can be seen from Figure 5 that when the distance between the piezoelectric element in the acoustic output device (for example, the acoustic output device 400) and the fixed end increases, the resonant frequency corresponding to the resonance peak of the acoustic output device in the low frequency band It is also increasing (for example, the resonant frequency corresponding to the resonant peak in curve L51, curve L52, curve L53 and curve L54 gradually increases). In order to ensure that the acoustic output device (for example, the acoustic output device 400) can generate the first resonance peak in the low frequency band, thereby improving the sensitivity in this frequency band, in some embodiments, the distance between the first position and the fixed end is equal to the distance between the first position and the fixed end of the beam. The ratio between the lengths of structures can be less than 0.6. In some embodiments, the ratio between the distance between the first position and the fixed end and the length of the beam structure may be less than 0.4.

圖6是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖。 Figure 6 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.

如圖6所示,曲線L61為聲學輸出裝置(例如,聲學輸出裝置400)的阻尼係數(圖6中用eta表示)為0、聲學輸出裝置的固定端(例如,固定端111)與壓電元件120之間的距離與梁結構的長度的比值(圖6中用p表示)為0.2、且壓電元件120處於d33工作模式下時聲學輸出裝置的頻響曲線。曲線L62為聲學輸出裝置(例如,聲學輸出裝置200)阻尼係數為0、聲學輸出裝置的固定端與壓電元件120之間的距離與梁結構的長度的比值為0.2、壓電元件120處於d31工作模式下且壓電元件120的寬度為2mm時聲學輸出裝置的頻響曲線。曲線L63為聲學輸出裝置(例如,聲學輸出裝置200)阻尼係數為1、聲學輸出裝置的固定端與壓電元件120之間的 距離與梁結構的長度的比值為0.2、壓電元件120處於d31工作模式下且壓電元件120的寬度為2mm時聲學輸出裝置的頻響曲線。在一些實施例中,壓電元件120的寬度可以與梁結構的寬度相同。虛線圈X中的第一諧振峰(或稱為低頻峰)可以由振動元件110和質量元件130諧振產生。該第一諧振峰有利於提高聲學輸出裝置200在低頻段內的靈敏度。 As shown in FIG. 6 , curve L61 is when the damping coefficient (expressed by eta in FIG. 6 ) of the acoustic output device (for example, the acoustic output device 400 ) is 0, the fixed end of the acoustic output device (for example, the fixed end 111 ) and the piezoelectric The frequency response curve of the acoustic output device when the ratio of the distance between the elements 120 to the length of the beam structure (represented by p in FIG. 6 ) is 0.2 and the piezoelectric element 120 is in the d33 operating mode. Curve L62 is when the damping coefficient of the acoustic output device (eg, the acoustic output device 200 ) is 0, the ratio of the distance between the fixed end of the acoustic output device and the piezoelectric element 120 to the length of the beam structure is 0.2, and the piezoelectric element 120 is at d31 Frequency response curve of the acoustic output device in working mode and when the width of the piezoelectric element 120 is 2 mm. Curve L63 is the relationship between the fixed end of the acoustic output device (eg, the acoustic output device 200 ) and the damping coefficient 1, and the piezoelectric element 120 . The frequency response curve of the acoustic output device when the ratio of the distance to the length of the beam structure is 0.2, the piezoelectric element 120 is in the d31 operating mode, and the width of the piezoelectric element 120 is 2 mm. In some embodiments, the width of piezoelectric element 120 may be the same as the width of the beam structure. The first resonance peak (or low frequency peak) in the dotted circle X may be generated by the resonance of the vibration element 110 and the mass element 130 . This first resonance peak is beneficial to improving the sensitivity of the acoustic output device 200 in the low frequency band.

結合圖6所示,在一些實施例中,振動元件110和質量元件120可以在50Hz-2000Hz範圍內產生第一諧振峰。在一些實施例中,振動元件110和質量元件120可以在200Hz-2000Hz範圍內產生第一諧振峰。在一些實施例中,振動元件110和質量元件120可以在500Hz-1000Hz範圍內產生第一諧振峰。 As shown in FIG. 6 , in some embodiments, the vibration element 110 and the mass element 120 can generate a first resonance peak in the range of 50Hz-2000Hz. In some embodiments, the vibration element 110 and the mass element 120 may generate a first resonance peak in the range of 200Hz-2000Hz. In some embodiments, the vibration element 110 and the mass element 120 may generate a first resonance peak in the range of 500Hz-1000Hz.

結合曲線L61和曲線L62可知,相較於壓電元件120處於d33工作模式,當壓電元件120處於d31工作模式下時,聲學輸出裝置能夠在低頻段內產生峰值較高的第一諧振峰。由此,在一些實施例中,透過使壓電元件120處於d31工作模式下能夠使聲學輸出裝置在低頻段內的靈敏度有著較好的提升。 Combining curve L61 and curve L62, it can be seen that when the piezoelectric element 120 is in the d31 working mode, the acoustic output device can generate a first resonance peak with a higher peak value in the low frequency band than when the piezoelectric element 120 is in the d33 working mode. Therefore, in some embodiments, by placing the piezoelectric element 120 in the d31 operating mode, the sensitivity of the acoustic output device in the low frequency band can be improved.

在一些實施例中,可以在聲學輸出裝置中加入阻尼結構,以增加聲學輸出裝置的阻尼係數,使得聲學輸出裝置的振動回應曲線相對平滑,從而進一步提升聲學輸出裝置的音質。例如,可以使用阻尼材料(例如,丁腈)製成振動元件110。再例如,可以向振動元件110中加入阻尼材料,例如阻尼塗料塗覆於振動元件110表面或滲透入振動元件110內部。結合曲線L62和曲線L63可知,L63相對於L62更為平滑,但曲線L61的第一諧振峰的峰值明顯小於L63的第一諧振峰峰值。由此,在一些實施例中,透過適當增加聲學輸出裝置的阻尼係數,能夠使得其頻響曲線較為平坦,使其具有較好的音質。然而,當聲學輸出裝置的阻尼係數過大時,則會引起聲學輸出裝置在低頻段內的第一諧振峰峰值下降,而導致聲學輸出裝置在低頻段的靈 敏度降低。為了保證聲學輸出裝置具有較好的音質,且在低頻段內具有較好的靈敏度,在一些實施例中,聲學輸出裝置的阻尼係數可以為0-1。在一些實施例中,聲學輸出裝置的阻尼係數可以為0.2-0.5。 In some embodiments, a damping structure can be added to the acoustic output device to increase the damping coefficient of the acoustic output device so that the vibration response curve of the acoustic output device is relatively smooth, thereby further improving the sound quality of the acoustic output device. For example, the vibrating element 110 may be made using a damping material (eg, nitrile). For another example, a damping material can be added to the vibrating element 110 , for example, damping paint is coated on the surface of the vibrating element 110 or penetrates into the interior of the vibrating element 110 . Combining curve L62 and curve L63, it can be seen that L63 is smoother than L62, but the peak value of the first resonance peak of curve L61 is significantly smaller than the peak value of the first resonance peak of L63. Therefore, in some embodiments, by appropriately increasing the damping coefficient of the acoustic output device, its frequency response curve can be made flatter, allowing it to have better sound quality. However, when the damping coefficient of the acoustic output device is too large, it will cause the first resonance peak of the acoustic output device in the low frequency band to decrease, resulting in the sensitivity of the acoustic output device in the low frequency band. Sensitivity is reduced. In order to ensure that the acoustic output device has good sound quality and good sensitivity in the low frequency band, in some embodiments, the damping coefficient of the acoustic output device may be 0-1. In some embodiments, the acoustic output device may have a damping coefficient of 0.2-0.5.

圖7是根據本說明書一些實施例所示的聲學輸出裝置的結構示意圖。 Figure 7 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.

如圖7所示,聲學輸出裝置700的結構可以看作是在聲學輸出裝置200結構的基礎上進行了變化。具體地,聲學輸出裝置700與聲學輸出裝置200的區別在於:聲學輸出裝置200中的固定端111在聲學輸出裝置700設置為自由端111',另外,聲學輸出裝置700還可以包括第二質量元件150。其中,在振動元件110的長度方向上,質量元件130和第二質量元件150可以分別位於壓電元件120的兩側。作為示例性說明,質量元件130和第二質量元件150可以分別連接於梁結構長度方向的兩端,例如,第二質量元件150與自由端111'連接,質量元件130與自由端112連接。 As shown in FIG. 7 , the structure of the acoustic output device 700 can be regarded as a change based on the structure of the acoustic output device 200 . Specifically, the difference between the acoustic output device 700 and the acoustic output device 200 is that the fixed end 111 in the acoustic output device 200 is set as a free end 111' in the acoustic output device 700. In addition, the acoustic output device 700 may also include a second mass element. 150. Wherein, in the length direction of the vibration element 110, the mass element 130 and the second mass element 150 may be located on both sides of the piezoelectric element 120 respectively. As an example, the mass element 130 and the second mass element 150 can be connected to both ends of the beam structure in the length direction, for example, the second mass element 150 is connected to the free end 111', and the mass element 130 is connected to the free end 112.

在一些實施例中,質量元件130和第二質量元件150的質量可以相同或不同。如圖1該,可以透過調整質量元件130的質量來調整第一諧振峰對應的諧振頻率的頻率範圍。在梁結構的長度一定的情況下,質量元件130的質量越大,第一諧振峰對應的諧振頻率就越小。在一些實施例中,為了在較低的頻率範圍獲得第一諧振峰,從而使得聲學輸出裝置100在低頻段內的靈敏度有所提升,質量元件130的質量可以小於5g。在一些實施例中,為了在較低的頻率範圍獲得第一諧振峰,從而使得聲學輸出裝置100在低頻段內的靈敏度有所提升,質量元件130的質量可以小於8g。在一些實施例中,為了在較低的頻率範圍獲得第一諧振峰,從而使得聲學輸出裝置100在低頻段內的靈敏度有所提升,質量元件130的質量可以小於10g。 In some embodiments, the masses of mass element 130 and second mass element 150 may be the same or different. As shown in FIG. 1 , the frequency range of the resonant frequency corresponding to the first resonant peak can be adjusted by adjusting the mass of the mass element 130 . When the length of the beam structure is constant, the greater the mass of the mass element 130, the smaller the resonant frequency corresponding to the first resonant peak. In some embodiments, in order to obtain the first resonance peak in a lower frequency range, thereby improving the sensitivity of the acoustic output device 100 in the low frequency band, the mass of the mass element 130 may be less than 5g. In some embodiments, in order to obtain the first resonance peak in a lower frequency range, thereby improving the sensitivity of the acoustic output device 100 in the low frequency band, the mass of the mass element 130 may be less than 8g. In some embodiments, in order to obtain the first resonance peak in a lower frequency range, thereby improving the sensitivity of the acoustic output device 100 in the low frequency band, the mass of the mass element 130 may be less than 10 g.

圖8是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖。 8 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.

在圖8中,曲線L81為聲學輸出裝置700的第二質量元件150的質量遠小於質量元件130的質量(可近似看成第二質量元件150的質量與質量元件130的質量的比值(圖8中用np表示)為0)時的頻響曲線。曲線L82為聲學輸出裝置700的第二質量元件150的質量與質量元件130的質量的比值為2時的頻響曲線。曲線L83為聲學輸出裝置700的第二質量元件150的質量與質量元件130的比值為100時的頻響曲線。 In FIG. 8 , curve L81 indicates that the mass of the second mass element 150 of the acoustic output device 700 is much smaller than the mass of the mass element 130 (which can be approximately regarded as the ratio of the mass of the second mass element 150 to the mass of the mass element 130 ( FIG. 8 np is used to represent the frequency response curve when ) is 0). Curve L82 is a frequency response curve when the ratio of the mass of the second mass element 150 to the mass of the mass element 130 of the acoustic output device 700 is 2. Curve L83 is a frequency response curve when the ratio of the mass of the second mass element 150 to the mass element 130 of the acoustic output device 700 is 100.

從圖8中可以看出,隨著第二質量元件150的質量與質量元件130的質量的比值增大,曲線L81上的第一諧振峰811、曲線L82上的第一諧振峰821以及曲線L83上的第一諧振峰831分別對應的諧振頻率在逐漸減小。作為示例性說明,如圖8所示,第一諧振峰811對應的諧振頻率在350Hz左右,第一諧振峰821對應的諧振頻率在250Hz左右,第一諧振峰831對應的諧振頻率在75Hz左右。由此,在一些實施例中,為了保證聲學輸出裝置700在更低頻段內產生第一諧振峰,第二質量元件150的質量可以大於質量元件130的質量。進一步地,透過調整第二質量元件150的質量與質量元件130的質量間的比值,可以使得聲學輸出裝置700的諧振峰對應的諧振頻率發生變化。具體地,第二質量元件150的質量與質量元件130的質量間的比值越大,聲學輸出裝置700的諧振峰對應的諧振頻率越小。在一些實施例中,為了保證聲學輸出裝置700在低頻段內產生第一諧振峰,第二質量元件150的質量與質量元件130的質量間的比值可以在0-5範圍內。在一些實施例中,為了保證聲學輸出裝置700在低頻段內產生第一諧振峰,第二質量元件150的質量與質量元件130的質量間的比值可以在0-10範圍內。在一些實施例中,為了保證聲學輸出裝置700在低頻段內產生第一諧振峰,第二質量元件150的質量與質量元件130的質量間的比值可以在0-50範圍內。 It can be seen from FIG. 8 that as the ratio of the mass of the second mass element 150 to the mass of the mass element 130 increases, the first resonance peak 811 on the curve L81, the first resonance peak 821 on the curve L82 and the curve L83 The resonant frequencies corresponding to the first resonant peaks 831 are gradually decreasing. As an example, as shown in FIG. 8 , the resonant frequency corresponding to the first resonant peak 811 is about 350 Hz, the resonant frequency corresponding to the first resonant peak 821 is about 250 Hz, and the resonant frequency corresponding to the first resonant peak 831 is about 75 Hz. Therefore, in some embodiments, in order to ensure that the acoustic output device 700 generates the first resonance peak in a lower frequency band, the mass of the second mass element 150 may be greater than the mass of the mass element 130 . Furthermore, by adjusting the ratio between the mass of the second mass element 150 and the mass of the mass element 130, the resonant frequency corresponding to the resonant peak of the acoustic output device 700 can be changed. Specifically, the greater the ratio between the mass of the second mass element 150 and the mass of the mass element 130 , the smaller the resonant frequency corresponding to the resonant peak of the acoustic output device 700 is. In some embodiments, in order to ensure that the acoustic output device 700 generates the first resonance peak in the low frequency band, the ratio between the mass of the second mass element 150 and the mass of the mass element 130 may be in the range of 0-5. In some embodiments, in order to ensure that the acoustic output device 700 generates the first resonance peak in the low frequency band, the ratio between the mass of the second mass element 150 and the mass of the mass element 130 may be in the range of 0-10. In some embodiments, in order to ensure that the acoustic output device 700 generates the first resonance peak in the low frequency band, the ratio between the mass of the second mass element 150 and the mass of the mass element 130 may be in the range of 0-50.

在一些實施例中,在聲學輸出裝置700中,當第二質量元件150的質量遠大於質量元件130的質量(例如,第二質量元件150的質量與質量元件130間的比值大於或等於100)時,振動元件110(梁結構)可以趨向於第二質量元件150的一端固定,梁結構連接第二質量元件150的一端可以看作是固定端,此時聲學輸出裝置700可以等效於聲學輸出裝置200。透過這樣設置,第二質量元件150可以作為梁結構的固定邊界(固定端),從而可以解決梁結構的固定端在聲學輸出裝置(例如,殼體結構內)不好找固定邊界以進行固定的問題。 In some embodiments, in the acoustic output device 700, when the mass of the second mass element 150 is much greater than the mass of the mass element 130 (for example, the ratio between the mass of the second mass element 150 and the mass element 130 is greater than or equal to 100) When , the vibration element 110 (beam structure) can be fixed toward one end of the second mass element 150 , and the end of the beam structure connected to the second mass element 150 can be regarded as a fixed end. At this time, the acoustic output device 700 can be equivalent to an acoustic output Device 200. Through this arrangement, the second mass element 150 can be used as a fixed boundary (fixed end) of the beam structure, thereby solving the problem that it is difficult to find a fixed boundary for fixing the fixed end of the beam structure in the acoustic output device (for example, within the shell structure). problem.

在一些實施例中,在聲學輸出裝置700中,當第二質量元件150的質量遠大於質量元件130的質量時,聲學輸出裝置700可以等效於聲學輸出裝置200。因此,根據聲學輸出裝置200的相關描述可得,為了保證聲學輸出裝置700在低頻段內能夠產生第一諧振峰,第二質量元件150與壓電元件120間的距離與梁結構的長度之間的比值可以小於0.8。在一些實施例中,第二質量元件150與壓電元件120間的距離與梁結構的長度之間的比值可以小於0.4。 In some embodiments, in the acoustic output device 700 , when the mass of the second mass element 150 is much greater than the mass of the mass element 130 , the acoustic output device 700 may be equivalent to the acoustic output device 200 . Therefore, according to the relevant description of the acoustic output device 200, in order to ensure that the acoustic output device 700 can generate the first resonance peak in the low frequency band, the distance between the second mass element 150 and the piezoelectric element 120 and the length of the beam structure must be The ratio can be less than 0.8. In some embodiments, the ratio between the distance between the second mass element 150 and the piezoelectric element 120 and the length of the beam structure may be less than 0.4.

圖9是根據本說明書一些實施例所示的聲學輸出裝置的結構示意圖。 Figure 9 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.

如圖9所示,聲學輸出裝置900的結構可以看作是在聲學輸出裝置200結構的基礎上進行了變化。具體地,聲學輸出裝置900與聲學輸出裝置200的區別在於:聲學輸出裝置900還可以包括第二壓電元件140。第二壓電元件140可以貼附於梁結構的第三位置,其中,壓電元件120和第二壓電元件140可以在振動元件110(或稱為梁結構)的長度方向上間隔設置。 As shown in FIG. 9 , the structure of the acoustic output device 900 can be regarded as a change based on the structure of the acoustic output device 200 . Specifically, the difference between the acoustic output device 900 and the acoustic output device 200 is that the acoustic output device 900 may further include a second piezoelectric element 140 . The second piezoelectric element 140 may be attached to the third position of the beam structure, wherein the piezoelectric element 120 and the second piezoelectric element 140 may be spaced apart in the length direction of the vibrating element 110 (or referred to as the beam structure).

在一些實施例中,第二壓電元件140和壓電元件120可以具有相同或相似的結構、材質等。在一些實施例中,壓電元件120和第二壓電元件140在振動元件110(或稱為梁結構)的長度方向上 間隔設置,且壓電元件120和第二壓電元件140輸入的電信號可以相同,這樣可以看作是壓電元件120和第二壓電元件140串聯。在一些實施例中,第二壓電元件140和壓電元件120可以處於d31工作模式下,壓電元件120和第二壓電元件140的形變方向可以與振動元件110的振動方向垂直。 In some embodiments, the second piezoelectric element 140 and the piezoelectric element 120 may have the same or similar structure, material, etc. In some embodiments, the piezoelectric element 120 and the second piezoelectric element 140 are in the length direction of the vibrating element 110 (or referred to as the beam structure). They are arranged at intervals, and the electrical signals input to the piezoelectric element 120 and the second piezoelectric element 140 can be the same, so that the piezoelectric element 120 and the second piezoelectric element 140 can be regarded as being connected in series. In some embodiments, the second piezoelectric element 140 and the piezoelectric element 120 may be in the d31 working mode, and the deformation direction of the piezoelectric element 120 and the second piezoelectric element 140 may be perpendicular to the vibration direction of the vibration element 110 .

在一些實施例中,在振動元件110的振動方向上,壓電元件120和第二壓電元件140可以位於梁結構的同一側。例如,如圖9所示,壓電元件120和第二壓電元件140可以分別貼附於梁結構的第一位置和第三位置並位於梁結構的同一側。在一些實施例中,在振動元件110的振動方向上,壓電元件120和第二壓電元件140可以位於梁結構相反的兩側。例如,壓電元件120和第二壓電元件140可以分別貼附於梁結構的第一位置和第三位置並位於梁結構相反的兩側。 In some embodiments, the piezoelectric element 120 and the second piezoelectric element 140 may be located on the same side of the beam structure in the vibration direction of the vibration element 110 . For example, as shown in FIG. 9 , the piezoelectric element 120 and the second piezoelectric element 140 can be respectively attached to the first position and the third position of the beam structure and located on the same side of the beam structure. In some embodiments, the piezoelectric element 120 and the second piezoelectric element 140 may be located on opposite sides of the beam structure in the vibration direction of the vibration element 110 . For example, the piezoelectric element 120 and the second piezoelectric element 140 can be attached to the first and third positions of the beam structure respectively and located on opposite sides of the beam structure.

需要說明的是,圖9中所示的壓電元件的數量僅用來示例性說明,並無意於限制本說明書的保護範圍。在一些實施例中,聲學輸出裝置900還可以包括兩個以上的壓電元件,例如,3個、4個、5個等。其中,兩個以上的壓電元件可以在梁結構的長度方向間隔設置。在一些實施例中,兩個以上壓電元件中的相鄰兩個壓電元件在梁結構的長度方向上的距離可以相同或不同。在一些實施例中,如圖9所示,壓電元件120和第二壓電元件140可以位於質量元件130的同一側。在一些實施例中,壓電元件120和第二壓電元件140還可以分別位於質量元件130的兩側。例如,在梁結構的長度方向上,壓電元件120、質量元件130以及第二壓電元件140依次佈置。 It should be noted that the number of piezoelectric elements shown in FIG. 9 is only for illustrative purposes and is not intended to limit the scope of protection of this specification. In some embodiments, the acoustic output device 900 may also include more than two piezoelectric elements, for example, 3, 4, 5, etc. Wherein, two or more piezoelectric elements can be arranged at intervals in the length direction of the beam structure. In some embodiments, the distance between two adjacent piezoelectric elements among the two or more piezoelectric elements in the length direction of the beam structure may be the same or different. In some embodiments, as shown in FIG. 9 , piezoelectric element 120 and second piezoelectric element 140 may be located on the same side of mass element 130 . In some embodiments, the piezoelectric element 120 and the second piezoelectric element 140 can also be located on both sides of the mass element 130 respectively. For example, in the length direction of the beam structure, the piezoelectric element 120, the mass element 130 and the second piezoelectric element 140 are arranged in sequence.

下面將結合聲學輸出裝置900的頻率曲線圖對聲學輸出裝置900進行詳細說明。 The acoustic output device 900 will be described in detail below with reference to the frequency curve diagram of the acoustic output device 900 .

圖10是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖。 Figure 10 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.

圖10示出了當聲學輸出裝置900的梁結構長度為50mm、壓電元件120和第二壓電元件140的長度(即壓電元件120與梁結構的貼附區域沿梁結構長度方向上的尺寸)均為5mm、壓電元件120或第二壓電元件140距離固定端4mm(圖中用p1表示)時,壓電元件120與第二壓電元件140之間沿梁結構的長度方向上具有不同距離(圖中用p12表示)時聲學輸出裝置900的不同頻響曲線。壓電元件120與第二壓電元件140之間沿梁結構的長度方向上的距離可以指壓電元件120的中心點(例如,形心)與第二壓電元件140的中心點之間的距離。其中,曲線L101、曲線L102以及曲線L103分別為壓電元件120與第二壓電元件140沿梁結構的長度方向上的距離為14mm、18mm以及22mm時聲學輸出裝置900的頻響曲線。虛線圈Z表示振動元件110與質量元件130在低頻段(例如,50Hz-2000Hz)內產生的第一諧振峰。在一些實施例中,壓電元件120與第二壓電元件140沿梁結構的長度方向上的距離可以指壓電元件120與第二壓電元件140在梁結構的長度方向上的間隔區域的長度。 FIG. 10 shows that when the length of the beam structure of the acoustic output device 900 is 50 mm, the length of the piezoelectric element 120 and the second piezoelectric element 140 (that is, the attachment area of the piezoelectric element 120 and the beam structure along the length direction of the beam structure) size) are both 5mm, and the piezoelectric element 120 or the second piezoelectric element 140 is 4mm away from the fixed end (indicated by p1 in the figure), the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure Different frequency response curves of the acoustic output device 900 with different distances (indicated by p12 in the figure). The distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure may refer to the distance between the center point (eg, centroid) of the piezoelectric element 120 and the center point of the second piezoelectric element 140 distance. Among them, curve L101, curve L102 and curve L103 are the frequency response curves of the acoustic output device 900 when the distances between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure are 14 mm, 18 mm and 22 mm respectively. The dotted circle Z represents the first resonance peak generated by the vibrating element 110 and the mass element 130 in the low frequency band (for example, 50 Hz-2000 Hz). In some embodiments, the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure may refer to the separation area between the piezoelectric element 120 and the second piezoelectric element 140 in the length direction of the beam structure. length.

從圖10中可以看出,當聲學輸出裝置900的梁結構長度為50mm、壓電元件120和第二壓電元件140的長度均為5mm、壓電元件120或第二壓電元件140距離固定端4mm,並且壓電元件120與第二壓電元件140沿梁結構長度方向上的距離為18mm時,聲學輸出裝置900的頻響曲線(即曲線L102)在中高頻段(例如,200Hz-2000Hz)內的曲線較為平滑,具體表現為曲線L102在中高頻段內具有較小或沒有諧振峰和/或諧振谷,而當壓電元件120與第二壓電元件140沿梁結構長度方向上的距離為14mm或22mm時,聲學輸出裝置900的頻響曲線(即曲線L101或L103)在中高頻段內具有諧振峰和/或諧振谷。作為示例性說明,如圖10所示,曲線L101在200Hz-2000Hz內具有諧振峰1011和諧振谷1012,曲線L103在200Hz-2000Hz內具有諧振谷1031和諧振峰1032。由此,透過合理設計 壓電元件120與第二壓電元件140沿梁結構長度方向上的距離(例如,18mm),可以使得聲學輸出裝置900在中高頻段內的產生的諧振谷和諧振峰(例如,諧振峰1011和諧振谷1012、諧振谷1031和諧振峰1032)進行合併(或稱為抵消),從而使得聲學輸出裝置900的頻響曲線(例如,曲線L102)較為平坦,從而保證聲學輸出裝置900具有較好的音質。 It can be seen from Figure 10 that when the length of the beam structure of the acoustic output device 900 is 50 mm, the lengths of the piezoelectric element 120 and the second piezoelectric element 140 are both 5 mm, and the distance between the piezoelectric element 120 or the second piezoelectric element 140 is fixed When the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is 18mm, the frequency response curve (ie, curve L102) of the acoustic output device 900 is in the mid-to-high frequency range (for example, 200Hz-2000Hz ) is relatively smooth. Specifically, the curve L102 has small or no resonance peaks and/or resonance valleys in the mid-to-high frequency range. When the piezoelectric element 120 and the second piezoelectric element 140 are aligned along the length direction of the beam structure, When the distance is 14 mm or 22 mm, the frequency response curve of the acoustic output device 900 (ie, the curve L101 or L103) has a resonance peak and/or a resonance valley in the mid-to-high frequency range. As an exemplary illustration, as shown in Figure 10, the curve L101 has a resonance peak 1011 and a resonance valley 1012 within 200 Hz-2000 Hz, and the curve L103 has a resonance valley 1031 and a resonance peak 1032 within 200 Hz-2000 Hz. Therefore, through reasonable design The distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure (for example, 18 mm) can cause the resonance valley and resonance peak (for example, the resonance peak 1011) generated by the acoustic output device 900 in the mid-to-high frequency band. and the resonance valley 1012, the resonance valley 1031 and the resonance peak 1032) are combined (or called offset), so that the frequency response curve (for example, the curve L102) of the acoustic output device 900 is relatively flat, thereby ensuring that the acoustic output device 900 has better sound quality.

圖11是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖。 Figure 11 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.

圖11示出了當聲學輸出裝置900的梁結構長度為50mm、壓電元件120和第二壓電元件140的長度均為5mm、壓電元件120或第二壓電元件140距離固定端5mm時,壓電元件120與第二壓電元件140之間沿梁結構的長度方向上具有不同距離時聲學輸出裝置900的不同頻響曲線。其中,曲線L111、曲線L112以及曲線L113分別為壓電元件120與第二壓電元件140沿梁結構的長度方向上的距離為12mm、14mm以及18mm時聲學輸出裝置900的頻響曲線。虛線圈M表示振動元件110與質量元件130在低頻段(例如,50Hz-2000Hz)內產生的第一諧振峰。 Figure 11 shows that when the length of the beam structure of the acoustic output device 900 is 50mm, the lengths of the piezoelectric element 120 and the second piezoelectric element 140 are both 5mm, and the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end is 5mm. , different frequency response curves of the acoustic output device 900 when there are different distances between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure. Among them, curve L111, curve L112 and curve L113 are the frequency response curves of the acoustic output device 900 when the distances between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure are 12 mm, 14 mm and 18 mm respectively. The dotted circle M represents the first resonance peak generated by the vibrating element 110 and the mass element 130 in the low frequency band (for example, 50 Hz-2000 Hz).

從圖11中可以看出,當聲學輸出裝置900的梁結構長度為50mm、壓電元件120和第二壓電元件140的長度為5mm、壓電元件120或第二壓電元件140距離固定端5mm,並且壓電元件120與第二壓電元件140沿梁結構長度方向上的距離為14mm時,聲學輸出裝置900的頻響曲線(即曲線L112)在中高頻段(例如,200Hz-2000Hz)內的曲線較為平滑,具體表現為曲線L112在中高頻段內具有較小或沒有諧振峰和/或諧振谷,而當壓電元件120與第二壓電元件140沿梁結構長度方向上的距離為10mm或18mm時,聲學輸出裝置900的頻響曲線(即曲線L111或L113)在中高頻段內具有諧振峰和/或諧振谷。作為示例性說明,如圖11所示,曲線L111在200 Hz-2000Hz內具有諧振谷1111和諧振峰1112,曲線L113在200Hz-2000Hz內具有諧振谷1131和諧振峰1132。由此可以得出,透過合理設計壓電元件120與第二壓電元件140沿梁結構長度方向上的距離(例如,14mm),可以使得聲學輸出裝置900在中高頻段內的產生的諧振谷和諧振峰(例如,諧振谷1111和諧振峰1112、諧振谷1131和諧振峰1132)進行合併(或稱為抵消),從而使得聲學輸出裝置900的頻響曲線(例如,曲線L112)較為平坦,從而保證聲學輸出裝置900具有較好的音質。 It can be seen from FIG. 11 that when the length of the beam structure of the acoustic output device 900 is 50 mm, the length of the piezoelectric element 120 and the second piezoelectric element 140 is 5 mm, and the piezoelectric element 120 or the second piezoelectric element 140 is distant from the fixed end 5mm, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is 14mm, the frequency response curve (ie, curve L112) of the acoustic output device 900 is in the mid-to-high frequency range (for example, 200Hz-2000Hz) The curve in When the length is 10 mm or 18 mm, the frequency response curve of the acoustic output device 900 (ie, the curve L111 or L113) has a resonance peak and/or a resonance valley in the mid-to-high frequency range. As an illustration, as shown in Figure 11, curve L111 at 200 There is a resonance valley 1111 and a resonance peak 1112 within Hz-2000Hz, and the curve L113 has a resonance valley 1131 and a resonance peak 1132 within 200Hz-2000Hz. It can be concluded that by rationally designing the distance (for example, 14 mm) between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure, the resonance valley generated by the acoustic output device 900 in the mid-to-high frequency range can be achieved. and the resonance peaks (for example, the resonance valley 1111 and the resonance peak 1112, the resonance valley 1131 and the resonance peak 1132) are merged (or called canceled), so that the frequency response curve (for example, the curve L112) of the acoustic output device 900 is relatively flat, This ensures that the acoustic output device 900 has better sound quality.

圖12是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖。 Figure 12 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.

圖12示出了當聲學輸出裝置900的梁結構長度為50mm、壓電元件120和第二壓電元件140的長度均為5mm、壓電元件120或第二壓電元件140距離固定端6mm時,壓電元件120與第二壓電元件140之間沿梁結構的長度方向上具有不同距離時所對應的聲學輸出裝置900的不同頻響曲線。其中,曲線L121、曲線L122以及曲線L123分別為壓電元件120與第二壓電元件140沿梁結構的長度方向上的距離為10mm、12mm以及14mm時聲學輸出裝置900的頻響曲線。虛線圈N表示振動元件110與質量元件130在低頻段(例如,50Hz-2000Hz)內產生的第一諧振峰。 Figure 12 shows that when the length of the beam structure of the acoustic output device 900 is 50mm, the lengths of the piezoelectric element 120 and the second piezoelectric element 140 are both 5mm, and the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end is 6mm. , corresponding to different frequency response curves of the acoustic output device 900 when there are different distances between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure. Among them, curve L121, curve L122 and curve L123 are the frequency response curves of the acoustic output device 900 when the distances between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure are 10 mm, 12 mm and 14 mm respectively. The dotted circle N represents the first resonance peak generated by the vibrating element 110 and the mass element 130 in the low frequency band (for example, 50 Hz-2000 Hz).

從圖12中可以看出,當聲學輸出裝置900的梁結構長度為50mm、壓電元件120和第二壓電元件140的長度為5mm、壓電元件120或第二壓電元件140距離固定端6mm,並且壓電元件120與第二壓電元件140沿梁結構長度方向上的距離為12mm時,聲學輸出裝置900的頻響曲線(即曲線L122)在中高頻段(例如,200Hz-2000Hz)內的曲線較為平滑,具體表現為曲線L122在中高頻段內具有較小或沒有諧振峰和/或諧振谷,而當壓電元件120與第二壓電元件140沿梁結構長度方向上的距離為10mm或14mm時,聲學輸出 裝置900的頻響曲線(即曲線L121或L123)在中高頻段內具有諧振峰和/或諧振谷。作為示例性說明,如圖12所示,曲線L121在200Hz-2000Hz內具有諧振谷1211和諧振峰1212,曲線L123在200Hz-2000Hz內具有諧振谷1231和諧振峰1232。由此可以得出,透過合理設計壓電元件120與第二壓電元件140沿梁結構長度方向上的距離(例如,12mm),可以使得聲學輸出裝置900在中高頻段內的產生的諧振谷和諧振峰(例如,諧振谷1211和諧振峰1212、諧振谷1231和諧振峰1232)進行合併(或稱為抵消),從而使得聲學輸出裝置900的頻響曲線(例如,曲線L122)較為平坦,從而保證聲學輸出裝置900具有較好的音質。 It can be seen from FIG. 12 that when the length of the beam structure of the acoustic output device 900 is 50 mm, the length of the piezoelectric element 120 and the second piezoelectric element 140 is 5 mm, and the piezoelectric element 120 or the second piezoelectric element 140 is distant from the fixed end 6mm, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is 12mm, the frequency response curve (ie, curve L122) of the acoustic output device 900 is in the mid-to-high frequency range (for example, 200Hz-2000Hz) The curve in When 10mm or 14mm, the acoustic output The frequency response curve of the device 900 (ie, curve L121 or L123) has a resonance peak and/or a resonance valley in the mid-to-high frequency range. As an exemplary explanation, as shown in Figure 12, the curve L121 has a resonance valley 1211 and a resonance peak 1212 within 200 Hz-2000 Hz, and the curve L123 has a resonance valley 1231 and a resonance peak 1232 within 200 Hz-2000 Hz. It can be concluded that by rationally designing the distance (for example, 12 mm) between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure, the resonance valley generated by the acoustic output device 900 in the mid-to-high frequency range can be achieved. and the resonance peaks (for example, the resonance valley 1211 and the resonance peak 1212, the resonance valley 1231 and the resonance peak 1232) are merged (or called canceled), so that the frequency response curve (for example, the curve L122) of the acoustic output device 900 is relatively flat, This ensures that the acoustic output device 900 has better sound quality.

結合圖10-12,當梁結構的長度、壓電元件120和第二壓電元件140的長度不變時,隨著壓電元件120或第二壓電元件140與固定端111的距離增加(例如,圖10-12依次為4mm、5mm、6mm),合併諧振峰和諧振谷所對應的壓電元件120與第二壓電元件140沿梁結構長度方向上的距離逐漸減小(例如,圖10-12依次為18mm、14mm、12mm)。由此,在一些實施例中,可以基於不同的壓電元件120或第二壓電元件140與固定端111的距離來調整壓電元件120與第二壓電元件140沿梁結構長度方向上的距離。僅作為示例,當壓電元件120或第二壓電元件140與固定端111的距離增加時,可以適當減小壓電元件120與第二壓電元件140沿梁結構長度方向上的距離,從而將諧振峰和諧振谷進行合併,使得聲學輸出裝置900的頻響曲線較為平坦,提升聲學輸出裝置900的音質。例如,壓電元件120或第二壓電元件140與固定端111的距離與梁結構的長度之間的比值大於0.05,壓電元件120與第二壓電元件140沿梁結構長度方向上的距離與梁結構的長度之間的比值可以小於0.5。再例如,壓電元件120或第二壓電元件140與固定端111的距離與梁結構的長度之間的比值大於0.1,壓電元件120與第二壓電元件140沿梁結構長度方 向上的距離與梁結構的長度之間的比值可以小於0.3。再例如,壓電元件120或第二壓電元件140與固定端111的距離與梁結構的長度之間的比值大於0.12,壓電元件120與第二壓電元件140沿梁結構長度方向上的距離與梁結構的長度之間的比值可以小於0.25。 10-12, when the length of the beam structure, the length of the piezoelectric element 120 and the second piezoelectric element 140 remains unchanged, as the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end 111 increases ( For example, Figures 10-12 are 4mm, 5mm, and 6mm respectively), the distance between the piezoelectric element 120 and the second piezoelectric element 140 corresponding to the combined resonance peak and resonance valley gradually decreases along the length direction of the beam structure (for example, Figure 10-12 are 18mm, 14mm, 12mm in order). Therefore, in some embodiments, the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end 111 can be adjusted based on the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure. distance. For example only, when the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end 111 increases, the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure can be appropriately reduced, so that Merging the resonance peaks and resonance valleys makes the frequency response curve of the acoustic output device 900 relatively flat, thereby improving the sound quality of the acoustic output device 900 . For example, the ratio between the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end 111 and the length of the beam structure is greater than 0.05, and the distance between the piezoelectric element 120 or the second piezoelectric element 140 along the length direction of the beam structure The ratio to the length of the beam structure can be less than 0.5. For another example, the ratio between the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end 111 and the length of the beam structure is greater than 0.1. The piezoelectric element 120 and the second piezoelectric element 140 are arranged along the length of the beam structure. The ratio between the upward distance and the length of the beam structure can be less than 0.3. For another example, the ratio between the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end 111 and the length of the beam structure is greater than 0.12. The distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is greater than 0.12. The ratio between the distance and the length of the beam structure can be less than 0.25.

圖13是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖。 Figure 13 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.

圖13示出了當聲學輸出裝置900的梁結構長度(圖中用lb表示)為37.5mm、壓電元件120和第二壓電元件140的長度均為5mm、壓電元件120或第二壓電元件140距離固定端4mm時,壓電元件120與第二壓電元件140之間沿梁結構的長度方向上具有不同距離時所對應的聲學輸出裝置900的不同頻響曲線。其中,曲線L131、曲線L132以及曲線L133分別為壓電元件120與第二壓電元件140沿梁結構的長度方向上的距離為8mm時聲學輸出裝置900的頻響曲線。虛線圈O內為振動元件110與質量元件130在低頻段(例如,50Hz-2000Hz)內產生的第一諧振峰。 Figure 13 shows that when the length of the beam structure of the acoustic output device 900 (indicated by lb in the figure) is 37.5mm, the lengths of the piezoelectric element 120 and the second piezoelectric element 140 are both 5mm, the piezoelectric element 120 or the second piezoelectric element 140 When the electrical element 140 is 4 mm away from the fixed end, there are different frequency response curves of the acoustic output device 900 corresponding to different distances between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure. The curve L131, the curve L132, and the curve L133 are respectively the frequency response curves of the acoustic output device 900 when the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is 8 mm. The dotted circle O is the first resonance peak generated by the vibrating element 110 and the mass element 130 in the low frequency band (for example, 50 Hz-2000 Hz).

從圖13中可以看出,當聲學輸出裝置900的梁結構長度為37.5mm、壓電元件120和第二壓電元件140的長度為5mm、壓電元件120或第二壓電元件140距離固定端4mm,並且壓電元件120與第二壓電元件140沿梁結構長度方向上的距離為9mm時,聲學輸出裝置900的頻響曲線(即曲線L132)在中高頻段(例如,200Hz-2000Hz)內的曲線較為平滑,具體表現為曲線L132在中高頻段內具有較小或沒有諧振峰和/或諧振谷,而當壓電元件120與第二壓電元件140沿梁結構長度方向上的距離為8mm或10mm時,聲學輸出裝置900的頻響曲線(即曲線L131或L133)在中高頻段內具有諧振峰和/或諧振谷。作為示例性說明,如圖13所示,曲線L131在200Hz-2000Hz內具有諧振谷1311和諧振峰1312,曲線L133在200Hz-2000Hz內具有諧振谷1331和諧振峰1332。由此可以得出,透過 合理設計壓電元件120與第二壓電元件140沿梁結構長度方向上的距離(例如,9mm),可以使得聲學輸出裝置900在中高頻段內的產生的諧振谷和諧振峰(例如,諧振谷1311和諧振峰1312、諧振谷1331和諧振峰1332)進行合併(或稱為抵消),從而使得聲學輸出裝置900的頻響曲線較為平坦,從而保證聲學輸出裝置900具有較好的音質。 It can be seen from Figure 13 that when the length of the beam structure of the acoustic output device 900 is 37.5mm, the length of the piezoelectric element 120 and the second piezoelectric element 140 is 5mm, and the distance between the piezoelectric element 120 or the second piezoelectric element 140 is fixed When the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is 9mm, the frequency response curve (ie, curve L132) of the acoustic output device 900 is in the mid-to-high frequency range (for example, 200Hz-2000Hz ) is relatively smooth. Specifically, the curve L132 has small or no resonance peaks and/or resonance valleys in the mid-to-high frequency range. When the piezoelectric element 120 and the second piezoelectric element 140 are aligned along the length of the beam structure, When the distance is 8 mm or 10 mm, the frequency response curve of the acoustic output device 900 (ie, the curve L131 or L133) has a resonance peak and/or a resonance valley in the mid-to-high frequency range. As an illustration, as shown in Figure 13, the curve L131 has a resonance valley 1311 and a resonance peak 1312 within 200 Hz-2000 Hz, and the curve L133 has a resonance valley 1331 and a resonance peak 1332 within 200 Hz-2000 Hz. From this it can be concluded that through Reasonable design of the distance (for example, 9 mm) between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure can make the resonance valley and resonance peak (for example, resonance) generated by the acoustic output device 900 in the mid-to-high frequency range. The valley 1311 and the resonance peak 1312, the resonance valley 1331 and the resonance peak 1332) are combined (or called offset), so that the frequency response curve of the acoustic output device 900 is relatively flat, thereby ensuring that the acoustic output device 900 has better sound quality.

圖14是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖。 Figure 14 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.

圖14示出了當聲學輸出裝置900的梁結構長度為37.5mm、壓電元件120和第二壓電元件140的長度均為5mm、壓電元件120或第二壓電元件140距離固定端5mm時,壓電元件120與第二壓電元件140之間沿梁結構的長度方向上具有不同距離時聲學輸出裝置900的不同頻響曲線。其中,曲線L141、曲線L142以及曲線L143分別為壓電元件120與第二壓電元件140沿梁結構的長度方向上的距離為5.6mm、6.2mm以及6.8mm時聲學輸出裝置900的頻響曲線。虛線圈P內為振動元件110與質量元件130在低頻段(例如,50Hz-2000Hz)內產生的第一諧振峰。 Figure 14 shows that when the length of the beam structure of the acoustic output device 900 is 37.5mm, the lengths of the piezoelectric element 120 and the second piezoelectric element 140 are both 5mm, and the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end is 5mm. When there are different distances between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure, the acoustic output device 900 has different frequency response curves. Among them, curve L141, curve L142 and curve L143 are the frequency response curves of the acoustic output device 900 when the distances between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure are 5.6mm, 6.2mm and 6.8mm respectively. . The dotted circle P is the first resonance peak generated by the vibrating element 110 and the mass element 130 in the low frequency band (for example, 50 Hz-2000 Hz).

從圖14中可以看出,當聲學輸出裝置900的梁結構長度為37.5mm、壓電元件120和第二壓電元件140的長度為5mm、壓電元件120或第二壓電元件140距離固定端5mm,並且壓電元件120與第二壓電元件140沿梁結構長度方向上的距離為6.2mm時,聲學輸出裝置900的頻響曲線(即曲線L142)在中高頻段(例如,200Hz-2000Hz)內的曲線較為平滑,具體表現為曲線L142在中高頻段內具有較小或沒有諧振峰和/或諧振谷,而當壓電元件120與第二壓電元件140沿梁結構長度方向上的距離為5.6mm或6.8mm時,聲學輸出裝置900的頻響曲線(即曲線L141或L143)在中高頻段內具有諧振峰和/或諧振谷。作為示例性說明,如圖14所示,曲線L141在200Hz-2000Hz內具有諧振谷1411和諧振峰1412,曲線L143在 200Hz-2000Hz內具有諧振谷1431和諧振峰1432。由此可以得出,透過合理設計壓電元件120與第二壓電元件140沿梁結構長度方向上的距離(例如,6.2mm),可以使得聲學輸出裝置900在中高頻段內的產生的諧振谷和諧振峰(例如,諧振谷1411和諧振峰1412、諧振谷1431和諧振峰1432)進行合併(或稱為抵消),從而使得聲學輸出裝置900的頻響曲線較為平坦,從而保證聲學輸出裝置900具有較好的音質。 It can be seen from Figure 14 that when the length of the beam structure of the acoustic output device 900 is 37.5mm, the length of the piezoelectric element 120 and the second piezoelectric element 140 is 5mm, and the distance between the piezoelectric element 120 or the second piezoelectric element 140 is fixed When the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is 6.2mm, the frequency response curve (ie, curve L142) of the acoustic output device 900 is in the mid-to-high frequency band (for example, 200Hz- 2000Hz) is relatively smooth, specifically as curve L142 has small or no resonance peaks and/or resonance valleys in the mid-to-high frequency range, while when the piezoelectric element 120 and the second piezoelectric element 140 move along the length direction of the beam structure When the distance is 5.6 mm or 6.8 mm, the frequency response curve of the acoustic output device 900 (ie, the curve L141 or L143) has a resonance peak and/or a resonance valley in the mid-to-high frequency band. As an illustration, as shown in Figure 14, curve L141 has a resonance valley 1411 and a resonance peak 1412 within 200Hz-2000Hz, and the curve L143 has There are resonance valleys 1431 and resonance peaks 1432 within 200Hz-2000Hz. It can be concluded that by rationally designing the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure (for example, 6.2 mm), the resonance generated by the acoustic output device 900 in the mid-to-high frequency range can be achieved. The valleys and resonance peaks (for example, the resonance valley 1411 and the resonance peak 1412, the resonance valley 1431 and the resonance peak 1432) are merged (or called offset), so that the frequency response curve of the acoustic output device 900 is relatively flat, thereby ensuring that the acoustic output device 900 has better sound quality.

結合圖13和14,當梁結構的長度、壓電元件120和第二壓電元件140的長度不變時,隨著壓電元件120或第二壓電元件140與固定端111的距離增加(例如,圖13和14依次為4mm、5mm),合併諧振峰和諧振谷所對應的壓電元件120與第二壓電元件140沿梁結構長度方向上的距離逐漸減小(例如,圖13和14依次為9mm、6.2mm)。由此,在一些實施例中,可以基於不同的壓電元件120或第二壓電元件140與固定端111的距離來調整壓電元件120與第二壓電元件140沿梁結構長度方向上的距離。僅作為示例,當壓電元件120或第二壓電元件140與固定端111的距離增加時,可以適當減小壓電元件120與第二壓電元件140沿梁結構長度方向上的距離,從而將諧振峰和諧振谷進行合併,使得聲學輸出裝置900的頻響曲線較為平坦,提升聲學輸出裝置900的音質。例如,壓電元件120或第二壓電元件140與固定端111的距離與梁結構的長度之間的比值大於0.1,壓電元件120與第二壓電元件140沿梁結構長度方向上的距離與梁結構的長度之間的比值可以小於0.25。再例如,壓電元件120或第二壓電元件140與固定端111的距離與梁結構的長度之間的比值大於0.13,壓電元件120與第二壓電元件140沿梁結構長度方向上的距離與梁結構的長度之間的比值可以小於0.2。 13 and 14, when the length of the beam structure, the length of the piezoelectric element 120 and the second piezoelectric element 140 remains unchanged, as the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end 111 increases ( For example, Figures 13 and 14 are 4mm and 5mm respectively), the distance between the piezoelectric element 120 and the second piezoelectric element 140 corresponding to the merged resonance peak and resonance valley gradually decreases along the length direction of the beam structure (for example, Figures 13 and 14 14 is 9mm, 6.2mm). Therefore, in some embodiments, the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end 111 can be adjusted based on the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure. distance. For example only, when the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end 111 increases, the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure can be appropriately reduced, so that Merging the resonance peaks and resonance valleys makes the frequency response curve of the acoustic output device 900 relatively flat, thereby improving the sound quality of the acoustic output device 900 . For example, the ratio between the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end 111 and the length of the beam structure is greater than 0.1, and the distance between the piezoelectric element 120 or the second piezoelectric element 140 along the length direction of the beam structure The ratio to the length of the beam structure can be less than 0.25. For another example, the ratio between the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end 111 and the length of the beam structure is greater than 0.13. The distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is greater than 0.13. The ratio between the distance and the length of the beam structure can be less than 0.2.

圖15是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖。 Figure 15 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.

圖15示出了當聲學輸出裝置900的梁結構長度為25mm、壓電元件120和第二壓電元件140的長度均為5mm、壓電元件120或第二壓電元件140距離固定端4mm時,壓電元件120與第二壓電元件140之間沿梁結構的長度方向上具有不同距離時所對應的聲學輸出裝置900的不同頻響曲線。其中,曲線L151、曲線L152以及曲線L153分別為壓電元件120與第二壓電元件140沿梁結構的長度方向上的距離為0.5mm、1.5mm以及2.5mm時聲學輸出裝置900的頻響曲線。虛線圈Q內為振動元件110與質量元件130在低頻段(例如,50Hz-2000Hz)內產生的第一諧振峰。 Figure 15 shows that when the length of the beam structure of the acoustic output device 900 is 25mm, the lengths of the piezoelectric element 120 and the second piezoelectric element 140 are both 5mm, and the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end is 4mm. , corresponding to different frequency response curves of the acoustic output device 900 when there are different distances between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure. Wherein, curve L151, curve L152 and curve L153 are respectively the frequency response curves of the acoustic output device 900 when the distances between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure are 0.5mm, 1.5mm and 2.5mm. . The dotted circle Q is the first resonance peak generated by the vibrating element 110 and the mass element 130 in the low frequency band (for example, 50 Hz-2000 Hz).

從圖15中可以看出,當聲學輸出裝置900的梁結構長度為25mm、壓電元件120和第二壓電元件140的長度為5mm、壓電元件120或第二壓電元件140距離固定端4mm,並且壓電元件120與第二壓電元件140沿梁結構長度方向上的距離為1.5mm時,聲學輸出裝置900的頻響曲線(即曲線L152)在中高頻段(例如,300Hz-3000Hz)內的曲線較為平滑,具體表現為曲線L152在中高頻段內具有較小或沒有諧振峰和/或諧振谷,而當壓電元件120與第二壓電元件140沿梁結構長度方向上的距離為0.5mm或2.5mm時,聲學輸出裝置900的頻響曲線(即曲線L151或L153)在中高頻段內具有諧振峰和/或諧振谷。作為示例性說明,如圖15所示,曲線L151在300Hz-3000Hz內具有諧振谷1511和諧振峰1512,曲線L153在300Hz-3000Hz內具有諧振谷1531和諧振峰1532。由此可以得出,透過合理設計壓電元件120與第二壓電元件140沿梁結構長度方向上的距離(例如,1.5mm),可以使得聲學輸出裝置900在中高頻段內的產生的諧振谷和諧振峰(例如,諧振谷1511和諧振峰1512、諧振谷1531和諧振峰1532)進行合併(或稱為抵消),從而使得聲學輸出裝置900的頻響曲線較為平坦,從而保證聲學輸出裝置900具有較好的音質。 It can be seen from FIG. 15 that when the length of the beam structure of the acoustic output device 900 is 25 mm, the length of the piezoelectric element 120 and the second piezoelectric element 140 is 5 mm, and the piezoelectric element 120 or the second piezoelectric element 140 is distant from the fixed end 4mm, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is 1.5mm, the frequency response curve (ie, curve L152) of the acoustic output device 900 is in the mid-to-high frequency range (for example, 300Hz-3000Hz ) is relatively smooth. Specifically, the curve L152 has small or no resonance peaks and/or resonance valleys in the mid-to-high frequency range. When the piezoelectric element 120 and the second piezoelectric element 140 are aligned along the length of the beam structure, When the distance is 0.5 mm or 2.5 mm, the frequency response curve of the acoustic output device 900 (ie, the curve L151 or L153) has a resonance peak and/or a resonance valley in the mid-to-high frequency range. As an illustration, as shown in FIG. 15 , curve L151 has a resonance valley 1511 and a resonance peak 1512 within 300Hz-3000Hz, and curve L153 has a resonance valley 1531 and a resonance peak 1532 within 300Hz-3000Hz. It can be concluded that by rationally designing the distance (for example, 1.5 mm) between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure, the resonance generated by the acoustic output device 900 in the mid-to-high frequency range can be achieved. The valleys and resonance peaks (for example, the resonance valley 1511 and the resonance peak 1512, the resonance valley 1531 and the resonance peak 1532) are merged (or called offset), so that the frequency response curve of the acoustic output device 900 is relatively flat, thereby ensuring that the acoustic output device 900 has better sound quality.

結合圖10、13和15,當壓電元件120和第二壓電元件140的長度、壓電元件120或第二壓電元件140與固定端111的距離不變時,隨著梁結構的長度減小(例如,圖10、13和15依次為50mm、37.5mm、25mm),合併諧振峰和諧振谷所對應的壓電元件120與第二壓電元件140沿梁結構長度方向上的距離逐漸減小(例如,圖10、13和15依次為18mm、9mm、1.5mm)。由此,在一些實施例中,可以基於不同的梁結構的長度來調整壓電元件120與第二壓電元件140沿梁結構長度方向上的距離。僅作為示例,梁結構的長度減小時,可以適當減小壓電元件120與第二壓電元件140沿梁結構長度方向上的距離,從而將諧振峰和諧振谷進行合併,使得聲學輸出裝置900的頻響曲線較為平坦,提升聲學輸出裝置900的音質。例如,壓電元件120與第二壓電元件140沿梁結構長度方向上的距離與梁結構的長度之間的比值可以小於0.6。再例如,壓電元件120與第二壓電元件140沿梁結構長度方向上的距離與梁結構的長度之間的比值可以小於0.4。再例如,壓電元件120與第二壓電元件140沿梁結構長度方向上的距離與梁結構的長度之間的比值可以小於0.2。再例如,壓電元件120與第二壓電元件140沿梁結構長度方向上的距離與梁結構的長度之間的比值可以小於0.1。 10, 13 and 15, when the lengths of the piezoelectric element 120 and the second piezoelectric element 140, and the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end 111 remain unchanged, as the length of the beam structure Reducing (for example, Figures 10, 13 and 15 are 50mm, 37.5mm, and 25mm respectively), the distance between the piezoelectric element 120 corresponding to the merged resonance peak and the resonance valley and the second piezoelectric element 140 along the length direction of the beam structure gradually increases. decrease (for example, Figures 10, 13, and 15 are 18mm, 9mm, and 1.5mm respectively). Therefore, in some embodiments, the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure can be adjusted based on the lengths of different beam structures. For example only, when the length of the beam structure is reduced, the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure can be appropriately reduced, thereby merging the resonant peaks and resonant valleys, so that the acoustic output device 900 The frequency response curve is relatively flat, which improves the sound quality of the acoustic output device 900 . For example, the ratio between the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure and the length of the beam structure may be less than 0.6. For another example, the ratio between the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure and the length of the beam structure may be less than 0.4. For another example, the ratio between the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure and the length of the beam structure may be less than 0.2. For another example, the ratio between the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure and the length of the beam structure may be less than 0.1.

圖16是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖。 Figure 16 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.

圖16示出了當聲學輸出裝置900的梁結構長度為50mm、壓電元件120和第二壓電元件140的長度(圖中用lp表示)均為25mm、壓電元件120或第二壓電元件140距離固定端4mm時,壓電元件120與第二壓電元件140之間沿梁結構的長度方向上具有不同距離時所對應的聲學輸出裝置900的不同頻響曲線。其中,曲線L161、曲線L162以及曲線L163分別為壓電元件120與第二壓電元件140沿梁結構的長度方向上的距離為-4mm、-2.5mm以及-1mm時 聲學輸出裝置900的頻響曲線。虛線圈R內為振動元件110與質量元件130在低頻段(例如,50Hz-2000Hz)內產生的第一諧振峰。壓電元件120與第二壓電元件140之間沿梁結構的長度方向上的距離可以指壓電元件120的中心點(例如,形心)與第二壓電元件140的中心點之間的距離。需要說明的是,壓電元件120與第二壓電元件140沿梁結構的長度方向上的距離為0時可以理解為壓電元件120的中心點與第二壓電元件140的中心點沿著梁結構振動方向的投影重合。壓電元件120與第二壓電元件140沿梁結構的長度方向上的距離為正數時可以理解為其中一個壓電元件(例如,第二壓電元件140)位置不變,另一壓電元件(例如,壓電元件120)沿梁結構的長度方向像質量元件130偏移時,壓電元件120與第二壓電元件140的中心點之間的距離。壓電元件120與第二壓電元件140沿梁結構的長度方向上的距離為負數時可以理解為其中一個壓電元件(例如,第二壓電元件140)位置不變,另一壓電元件(例如,壓電元件120)沿梁結構的長度方向像固定端111偏移時,壓電元件120與第二壓電元件140的中心點之間的距離。 Figure 16 shows that when the length of the beam structure of the acoustic output device 900 is 50mm, the lengths of the piezoelectric element 120 and the second piezoelectric element 140 (indicated by lp in the figure) are both 25mm, the piezoelectric element 120 or the second piezoelectric element 140 is When the element 140 is 4 mm away from the fixed end, there are different frequency response curves of the acoustic output device 900 corresponding to different distances between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure. Among them, curve L161, curve L162 and curve L163 are respectively when the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is -4mm, -2.5mm and -1mm. Frequency response curve of the acoustic output device 900. Inside the dotted circle R is the first resonance peak generated by the vibrating element 110 and the mass element 130 in the low frequency band (for example, 50 Hz-2000 Hz). The distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure may refer to the distance between the center point (eg, centroid) of the piezoelectric element 120 and the center point of the second piezoelectric element 140 distance. It should be noted that when the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is 0, it can be understood that the center point of the piezoelectric element 120 and the center point of the second piezoelectric element 140 are along the The projections of the vibration directions of the beam structure coincide. When the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is a positive number, it can be understood that the position of one of the piezoelectric elements (for example, the second piezoelectric element 140) does not change, and the position of the other piezoelectric element does not change. The distance between the center points of the piezoelectric element 120 and the second piezoelectric element 140 when the image mass element 130 is deflected along the length of the beam structure (for example, the piezoelectric element 120 ). When the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is a negative number, it can be understood that the position of one of the piezoelectric elements (for example, the second piezoelectric element 140) does not change, and the position of the other piezoelectric element does not change. The distance between the center points of the piezoelectric element 120 and the second piezoelectric element 140 when the fixed end 111 is deflected along the length direction of the beam structure (for example, the piezoelectric element 120 ).

從圖16中可以看出,當聲學輸出裝置900的梁結構長度為50mm、壓電元件120和第二壓電元件140的長度為25mm、壓電元件120或第二壓電元件140距離固定端4mm,並且壓電元件120與第二壓電元件140沿梁結構長度方向上的距離為-2.5mm時,聲學輸出裝置900的頻響曲線(即曲線L162)在中高頻段(例如,300Hz-3000Hz)內的曲線較為平滑,具體表現為曲線L162在中高頻段內具有較小或沒有諧振峰和/或諧振谷,而當壓電元件120與第二壓電元件140沿梁結構長度方向上的距離為-4mm或-1mm時,聲學輸出裝置900的頻響曲線(即曲線L161或L163)在中高頻段內具有諧振峰和/或諧振谷。作為示例性說明,如圖16所示,曲線L161在300Hz-3000Hz內具有諧振谷1611和諧振峰1612,曲線L163在300Hz- 3000Hz內具有諧振谷1631和諧振峰1632。由此可以得出,透過合理設計壓電元件120與第二壓電元件140沿梁結構長度方向上的距離(例如,-2.5mm),可以使得聲學輸出裝置900在中高頻段內的產生的諧振谷和諧振峰(例如,諧振谷1611和諧振峰1612、諧振谷1631和諧振峰1632)進行合併(或稱為抵消),從而使得聲學輸出裝置900的頻響曲線較為平坦,從而保證聲學輸出裝置900具有較好的音質。 It can be seen from Figure 16 that when the length of the beam structure of the acoustic output device 900 is 50mm, the length of the piezoelectric element 120 and the second piezoelectric element 140 is 25mm, and the piezoelectric element 120 or the second piezoelectric element 140 is far from the fixed end 4mm, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is -2.5mm, the frequency response curve (ie, curve L162) of the acoustic output device 900 is in the mid-to-high frequency band (for example, 300Hz- 3000Hz) is relatively smooth, specifically as curve L162 has small or no resonance peaks and/or resonance valleys in the mid-to-high frequency range, while when the piezoelectric element 120 and the second piezoelectric element 140 move along the length direction of the beam structure When the distance is -4 mm or -1 mm, the frequency response curve (ie, curve L161 or L163) of the acoustic output device 900 has a resonance peak and/or a resonance valley in the mid-to-high frequency range. As an illustration, as shown in Figure 16, curve L161 has a resonance valley 1611 and a resonance peak 1612 within 300Hz-3000Hz, and the curve L163 has a resonance valley 1611 and a resonance peak 1612 within 300Hz-3000Hz. There are resonance valleys 1631 and resonance peaks 1632 within 3000Hz. It can be concluded that by rationally designing the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure (for example, -2.5 mm), the acoustic output device 900 can produce sound in the mid-to-high frequency range. The resonance valley and the resonance peak (for example, the resonance valley 1611 and the resonance peak 1612, the resonance valley 1631 and the resonance peak 1632) are combined (or called offset), so that the frequency response curve of the acoustic output device 900 is relatively flat, thereby ensuring the acoustic output Device 900 has better sound quality.

結合圖10和16,當梁結構的長度、壓電元件120或第二壓電元件140與固定端111的距離不變時,隨著壓電元件120和第二壓電元件140的長度增加(例如,圖10和16依次為5mm、25mm),合併諧振峰和諧振谷所對應的壓電元件120與第二壓電元件140沿梁結構長度方向上的距離逐漸減小(例如,圖10和16依次為18mm、-2.5mm)。由此,在一些實施例中,可以基於不同壓電元件120和第二壓電元件140的長度來調整壓電元件120與第二壓電元件140沿梁結構長度方向上的距離。僅作為示例,當壓電元件120和第二壓電元件140的長度增加時,可以適當減小壓電元件120與第二壓電元件140沿梁結構長度方向上的距離,從而將諧振峰和諧振谷進行合併,使得聲學輸出裝置900的頻響曲線較為平坦,提升聲學輸出裝置900的音質。例如,壓電元件120和第二壓電元件140的長度與梁結構的長度之間的比值大於0.05,壓電元件120與第二壓電元件140沿梁結構長度方向上的距離與梁結構的長度之間的比值可以小於0.4。再例如,壓電元件120和第二壓電元件140的長度與梁結構的長度之間的比值大於0.1,壓電元件120與第二壓電元件140沿梁結構長度方向上的距離與梁結構的長度之間的比值可以小於0.3。再例如,壓電元件120和第二壓電元件140的長度與梁結構的長度之間的比值大於0.4,壓電元件120與第二壓電元件140沿梁結構長度方向上的距離與梁結構的長度之間的比值可以小於0(即壓電元件120與第二壓電元件140在梁結構長度放上存在重疊區域)。 10 and 16, when the length of the beam structure, the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end 111 remains unchanged, as the length of the piezoelectric element 120 and the second piezoelectric element 140 increases ( For example, Figures 10 and 16 are 5mm and 25mm respectively), the distance between the piezoelectric element 120 and the second piezoelectric element 140 corresponding to the combined resonance peak and resonance valley gradually decreases along the length direction of the beam structure (for example, Figures 10 and 16 16 is 18mm, -2.5mm). Therefore, in some embodiments, the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure can be adjusted based on the lengths of the different piezoelectric elements 120 and the second piezoelectric element 140 . For example only, when the lengths of the piezoelectric element 120 and the second piezoelectric element 140 are increased, the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure can be appropriately reduced, thereby harmonizing the resonance peak. The vibration valleys are merged so that the frequency response curve of the acoustic output device 900 is relatively flat, thereby improving the sound quality of the acoustic output device 900 . For example, the ratio between the lengths of the piezoelectric element 120 and the second piezoelectric element 140 and the length of the beam structure is greater than 0.05, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is less than the length of the beam structure. The ratio between lengths can be less than 0.4. For another example, the ratio between the lengths of the piezoelectric element 120 and the second piezoelectric element 140 and the length of the beam structure is greater than 0.1, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is less than the length of the beam structure. The ratio between the lengths can be less than 0.3. For another example, the ratio between the lengths of the piezoelectric element 120 and the second piezoelectric element 140 and the length of the beam structure is greater than 0.4, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 along the length direction of the beam structure is less than the length of the beam structure. The ratio between the lengths may be less than 0 (that is, there is an overlapping area between the piezoelectric element 120 and the second piezoelectric element 140 on the length of the beam structure).

結合圖10-16所示,透過合理設計壓電元件120與第二壓電元件140之間的距離可以使得聲學輸出裝置900的頻響曲線(例如,曲線L102、L112、L122、L132、L142、L152以及L162)在中高頻段內較為平滑,從而可以使聲學輸出裝置900具有較好的音質。在一些實施例中,梁結構的長度可以小於50mm,壓電元件120和第二壓電元件140之間的距離可以小於25mm。在一些實施例中,梁結構的長度可以小於50mm,壓電元件120和第二壓電元件140之間的距離可以小於18mm。在一些實施例中,梁結構的長度可以小於40mm,壓電元件120和第二壓電元件140之間的距離可以小於10mm。在一些實施例中,梁結構的長度可以小於40mm,壓電元件120和第二壓電元件140之間的距離可以小於2.5mm。在一些實施例中,梁結構的長度可以小於30mm,壓電元件120和第二壓電元件140之間的距離可以小於-1mm。 10-16, by rationally designing the distance between the piezoelectric element 120 and the second piezoelectric element 140, the frequency response curve of the acoustic output device 900 (for example, curves L102, L112, L122, L132, L142, L152 and L162) are relatively smooth in the mid-to-high frequency band, so that the acoustic output device 900 can have better sound quality. In some embodiments, the length of the beam structure may be less than 50 mm, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 may be less than 25 mm. In some embodiments, the length of the beam structure may be less than 50 mm, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 may be less than 18 mm. In some embodiments, the length of the beam structure may be less than 40 mm, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 may be less than 10 mm. In some embodiments, the length of the beam structure may be less than 40 mm, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 may be less than 2.5 mm. In some embodiments, the length of the beam structure may be less than 30 mm, and the distance between the piezoelectric element 120 and the second piezoelectric element 140 may be less than -1 mm.

結合曲線L101、曲線L112以及曲線L123可知,在梁結構長度、壓電元件120長度以及壓電元件120和第二壓電元件140之間的間距一定的情況下,壓電元件120或第二壓電元件140與固定端之間的距離(例如,圖9所示的第二壓電元件140與固定端的距離)增大時,聲學輸出裝置900在低頻段內產生的第一諧振峰的峰值在增大。作為示例性說明,曲線L101在虛線圈Z內的第一諧振峰的峰值在170dB左右,曲線112在虛線圈M內的第一諧振峰的峰值在175dB左右,曲線L123在虛線圈N內的第一諧振峰的峰值在180dB左右。在一些實施例中,可以透過增加壓電元件120或第二壓電元件140與固定端之間的距離來提高聲學輸出裝置900在低頻段內的第一諧振峰峰值,從而提高聲學輸出裝置900在低頻段內的靈敏度。在一些實施例中,壓電元件120或第二壓電元件140與固定端之間的距離可以大於3mm。在一些實施例中,壓電元件120或第二壓電元件140 與固定端之間的距離可以大於5mm。在一些實施例中,壓電元件120或第二壓電元件140與固定端之間的距離可以大於7mm。 Combining the curve L101, the curve L112 and the curve L123, it can be seen that when the length of the beam structure, the length of the piezoelectric element 120 and the distance between the piezoelectric element 120 and the second piezoelectric element 140 are constant, the piezoelectric element 120 or the second piezoelectric element 140 will When the distance between the electrical element 140 and the fixed end (for example, the distance between the second piezoelectric element 140 and the fixed end shown in FIG. 9 ) increases, the peak value of the first resonance peak generated by the acoustic output device 900 in the low frequency band is at increase. As an example, the peak value of the first resonance peak of the curve L101 in the dotted circle Z is around 170dB, the peak value of the first resonance peak of the curve 112 in the dotted circle M is around 175dB, and the peak value of the first resonance peak of the curve L123 in the dotted circle N is around 175dB. The peak value of a resonance peak is around 180dB. In some embodiments, the first resonance peak-to-peak value of the acoustic output device 900 in the low frequency band can be increased by increasing the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end, thereby improving the acoustic output device 900 Sensitivity in the low frequency band. In some embodiments, the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end may be greater than 3 mm. In some embodiments, the piezoelectric element 120 or the second piezoelectric element 140 The distance from the fixed end can be greater than 5mm. In some embodiments, the distance between the piezoelectric element 120 or the second piezoelectric element 140 and the fixed end may be greater than 7 mm.

圖17是根據本說明書一些實施例所示的聲學輸出裝置的結構示意圖。 Figure 17 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.

如圖17所示,聲學輸出裝置1700的結構可以看作是在聲學輸出裝置200結構的基礎上進行了變化。具體地,聲學輸出裝置1700與聲學輸出裝置200的區別在於:聲學輸出裝置1700還可以包括第二振動元件160,振動元件110和第二振動元件160在質量元件130的兩側對稱設置。聲學輸出裝置1700可以包括與第二振動元件160連接(或貼附)的第三壓電元件170,第三壓電元件170與壓電元件120在質量元件130的兩側對稱設置。在一些實施例中,壓電元件120和第三壓電元件170分別設置在位於質量元件130兩側的兩個壓電梁上,且壓電元件120和第三壓電元件170輸入的電信號可以相同,可以看作是壓電元件120與第三壓電元件170並聯。在一些實施例中,第二振動元件160與振動元件110的振動方向相同。在一些實施例中,壓電元件120和第三壓電元件170可以處於d31工作模式下,壓電元件120和第三壓電元件170的形變方向可以與振動元件110和第二振動元件160的振動方向垂直。在一些實施例中,壓電元件120和第三壓電元件170可以處在d33的工作模式下,壓電元件120和第三壓電元件170的形變方向可以與振動元件110的振動方向平行。在一些實施例中,振動元件110和第二振動元件160遠離質量元件130的一端固定設置(即為固定端)。例如,振動元件110和第二振動元件160遠離質量元件130的一端可以固定於聲學輸出裝置1700的其他部件(例如,殼體)上。再例如,壓電元件120與第三壓電元件170可以處於d33的工作模式下,壓電元件120與第三壓電元件170沿振動元件110和第二振動元件160振動方向的一端固定,另一端分別貼附在振動元件110和第二振動元件160遠離質量元件130 的一端,從而使得振動元件110和第二振動元件160遠離質量元件130的一端可以相對於質量元件130固定設置。關於第二振動元件160以及第三壓電元件170的更多描述可以分別參考振動元件110和壓電元件120的相關描述,在此不再贅述。 As shown in FIG. 17 , the structure of the acoustic output device 1700 can be regarded as a change based on the structure of the acoustic output device 200 . Specifically, the difference between the acoustic output device 1700 and the acoustic output device 200 is that the acoustic output device 1700 may also include a second vibration element 160 , and the vibration element 110 and the second vibration element 160 are symmetrically arranged on both sides of the mass element 130 . The acoustic output device 1700 may include a third piezoelectric element 170 connected (or attached) to the second vibration element 160 . The third piezoelectric element 170 and the piezoelectric element 120 are symmetrically arranged on both sides of the mass element 130 . In some embodiments, the piezoelectric element 120 and the third piezoelectric element 170 are respectively disposed on two piezoelectric beams located on both sides of the mass element 130, and the electrical signals input by the piezoelectric element 120 and the third piezoelectric element 170 They may be the same and can be regarded as the piezoelectric element 120 and the third piezoelectric element 170 being connected in parallel. In some embodiments, the second vibration element 160 vibrates in the same direction as the vibration element 110 . In some embodiments, the piezoelectric element 120 and the third piezoelectric element 170 can be in the d31 working mode, and the deformation directions of the piezoelectric element 120 and the third piezoelectric element 170 can be consistent with the directions of the vibration element 110 and the second vibration element 160 . The vibration direction is vertical. In some embodiments, the piezoelectric element 120 and the third piezoelectric element 170 may be in the working mode of d33, and the deformation direction of the piezoelectric element 120 and the third piezoelectric element 170 may be parallel to the vibration direction of the vibration element 110 . In some embodiments, one end of the vibrating element 110 and the second vibrating element 160 away from the mass element 130 is fixedly arranged (ie, the fixed end). For example, one end of the vibrating element 110 and the second vibrating element 160 away from the mass element 130 can be fixed on other components of the acoustic output device 1700 (eg, the housing). For another example, the piezoelectric element 120 and the third piezoelectric element 170 can be in the working mode of d33, with one end of the piezoelectric element 120 and the third piezoelectric element 170 fixed along the vibration direction of the vibrating element 110 and the second vibrating element 160, and the other end. One end is respectively attached to the vibrating element 110 and the second vibrating element 160 away from the mass element 130 One end of the vibrating element 110 and the second vibrating element 160 away from the mass element 130 can be fixedly arranged relative to the mass element 130 . For more descriptions about the second vibration element 160 and the third piezoelectric element 170, please refer to the relevant descriptions of the vibration element 110 and the piezoelectric element 120 respectively, which will not be described again here.

圖18是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖。 Figure 18 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.

在圖18中,曲線L181為振動元件110和第二振動元件160中間無質量元件連接(或稱為振動元件110和第二振動元件160空載)時的頻響曲線。曲線L182為振動元件110和第二振動元件160中間連接有質量元件(或稱為振動元件110和第二振動元件160負載)時的頻響曲線。 In FIG. 18 , curve L181 is the frequency response curve when a massless element is connected between the vibrating element 110 and the second vibrating element 160 (or the vibrating element 110 and the second vibrating element 160 are unloaded). Curve L182 is a frequency response curve when a mass element (or load of the vibrating element 110 and the second vibrating element 160 ) is connected between the vibrating element 110 and the second vibrating element 160 .

如圖18所示,曲線L181和曲線L182上相鄰諧振峰之間的曲線較為平滑,不存在諧振谷。由此可以得出,透過設置壓電片並聯的結構可以使得聲學輸出裝置1700的頻響曲線不產生諧振谷,使得頻響曲線更加平滑,有利於提高聲學輸出裝置1700音質。除此之外,透過比較曲線L181的諧振峰1811和曲線L182的諧振峰1821可以發現,當振動元件110和第二振動元件160中間連接有質量元件130時,諧振峰對應的諧振頻率會減小。因此,可以透過改變質量元件130的質量,來改變聲學輸出裝置1700在低頻段(例如,100Hz-1000Hz)產生的諧振峰對應的諧振頻率。 As shown in Figure 18, the curves between adjacent resonance peaks on curve L181 and curve L182 are relatively smooth, and there is no resonance valley. It can be concluded that by arranging a structure in which piezoelectric sheets are connected in parallel, the frequency response curve of the acoustic output device 1700 will not produce a resonance valley, making the frequency response curve smoother and conducive to improving the sound quality of the acoustic output device 1700 . In addition, by comparing the resonant peak 1811 of the curve L181 and the resonant peak 1821 of the curve L182, it can be found that when the mass element 130 is connected between the vibrating element 110 and the second vibrating element 160, the resonant frequency corresponding to the resonant peak will decrease. . Therefore, the resonant frequency corresponding to the resonant peak generated by the acoustic output device 1700 in the low frequency band (eg, 100 Hz-1000 Hz) can be changed by changing the mass of the mass element 130 .

圖19是根據本說明書一些實施例所示的聲學輸出裝置的結構示意圖。 Figure 19 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.

如圖19所示,聲學輸出裝置1900的結構可以看作是在聲學輸出裝置200結構的基礎上進行了變化。具體地,聲學輸出裝置1900與聲學輸出裝置200的區別在於:聲學輸出裝置1900還可以包括第三振動元件180,第三振動元件180與質量元件130連接。其中,第三振動元件180的振動方向與振動元件110的振動方向平行。 進一步地,聲學輸出裝置1900還可以包括第四壓電元件190,第四壓電元件190可以與第三振動元件180連接。在一些實施例中,第四壓電元件190處於d31工作模式下,第四壓電元件190的形變方向與第三振動元件180的振動方向垂直。在一些實施例中,第三振動元件180與振動元件110可以具有相同或不同的結構、材質等。在一些實施例中,第四壓電元件190與壓電元件120可以具有相同或不同的結構、材質等。在一些實施例中,如圖19所示,第三振動元件180位於質量元件130兩側的梁結構可以對稱設置。在一些實施例中,第四壓電元件190可以包括位於質量元件130兩側的兩個壓電片。在一些實施例中,第四壓電元件190可以包括一個壓電片,該一個壓電片可以完全覆蓋第三振動元件180或部分覆蓋第三振動元件180。關於第三振動元件180、第四壓電元件190的更多描述可以分別參考振動元件110、壓電元件120的相關描述,在此不再贅述。 As shown in FIG. 19 , the structure of the acoustic output device 1900 can be regarded as a change based on the structure of the acoustic output device 200 . Specifically, the difference between the acoustic output device 1900 and the acoustic output device 200 is that the acoustic output device 1900 may also include a third vibration element 180 , and the third vibration element 180 is connected to the mass element 130 . The vibration direction of the third vibration element 180 is parallel to the vibration direction of the vibration element 110 . Further, the acoustic output device 1900 may also include a fourth piezoelectric element 190 , and the fourth piezoelectric element 190 may be connected to the third vibration element 180 . In some embodiments, the fourth piezoelectric element 190 is in the d31 working mode, and the deformation direction of the fourth piezoelectric element 190 is perpendicular to the vibration direction of the third vibration element 180 . In some embodiments, the third vibration element 180 and the vibration element 110 may have the same or different structures, materials, etc. In some embodiments, the fourth piezoelectric element 190 and the piezoelectric element 120 may have the same or different structures, materials, etc. In some embodiments, as shown in FIG. 19 , the beam structure of the third vibration element 180 located on both sides of the mass element 130 can be arranged symmetrically. In some embodiments, the fourth piezoelectric element 190 may include two piezoelectric sheets located on both sides of the mass element 130 . In some embodiments, the fourth piezoelectric element 190 may include a piezoelectric sheet, and the piezoelectric sheet may completely cover the third vibration element 180 or partially cover the third vibration element 180 . For more descriptions about the third vibration element 180 and the fourth piezoelectric element 190, please refer to the relevant descriptions of the vibration element 110 and the piezoelectric element 120 respectively, which will not be described again here.

需要說明的是,圖19中所示的聲學輸出裝置1900僅用來示例性說明,並無意於限制本說明書的保護範圍。對於本領域的普通技術人員來說,根據本說明書的指導可以做出多種變化和修改。例如,第四壓電元件190可以包括一個壓電片,該一個壓電片可以完全覆蓋第三振動元件180或部分覆蓋第三振動元件180。再例如,壓電元件120可以包括一個壓電片,該一個壓電片可以完全覆蓋振動元件110。 It should be noted that the acoustic output device 1900 shown in FIG. 19 is only used for illustrative purposes and is not intended to limit the scope of protection of this specification. For those of ordinary skill in the art, various changes and modifications can be made based on the guidance of this specification. For example, the fourth piezoelectric element 190 may include a piezoelectric sheet, and the piezoelectric sheet may completely cover the third vibration element 180 or partially cover the third vibration element 180 . For another example, the piezoelectric element 120 may include a piezoelectric sheet, and the piezoelectric sheet may completely cover the vibrating element 110 .

在一些實施例中,振動元件110可以具有懸臂梁結構。該懸臂梁具有固定端111和自由端112。質量元件130在自由端112與振動元件110連接。在一些實施例中,第三振動元件180可以具有梁結構。例如,第三振動元件180可以為自由梁,該自由梁的至少一部分(例如,長度方向的中心區域)與質量元件130連接,自由梁的兩端為自由端。在一些實施例中,在沿著第三振動元件180或振動元件110的振動方向的投影平面上,第三振動元件180的長度方向(即 自由梁的長軸方向)與振動元件110的長度方向之間的夾角可以為90°。在一些實施例中,質量元件130與第三振動元件180的連接位置可以位於第三振動元件180長度方向上的中心,即振動元件110和第三振動元件180可以形成“T”型結構(或稱為T型梁)。在一些實施例中,第三振動元件180的長度方向與振動元件110的長度方向之間的夾角也可以小於90°或大於90°。在一些實施例中,質量元件130與第三振動元件180的連接位置可以位於第三振動元件180長度方向上的任意位置。 In some embodiments, vibrating element 110 may have a cantilever beam structure. The cantilever beam has a fixed end 111 and a free end 112 . The mass element 130 is connected to the vibration element 110 at its free end 112 . In some embodiments, the third vibration element 180 may have a beam structure. For example, the third vibration element 180 may be a free beam, at least a part of the free beam (for example, a central region in the length direction) is connected to the mass element 130 , and both ends of the free beam are free ends. In some embodiments, on the projection plane along the vibration direction of the third vibration element 180 or the vibration element 110, the length direction of the third vibration element 180 (i.e. The angle between the long axis direction of the free beam and the length direction of the vibrating element 110 may be 90°. In some embodiments, the connection position between the mass element 130 and the third vibration element 180 can be located at the center of the length direction of the third vibration element 180 , that is, the vibration element 110 and the third vibration element 180 can form a "T"-shaped structure (or called a T-beam). In some embodiments, the angle between the length direction of the third vibration element 180 and the length direction of the vibration element 110 may also be less than 90° or greater than 90°. In some embodiments, the connection position between the mass element 130 and the third vibration element 180 can be located at any position along the length direction of the third vibration element 180 .

在一些實施例中,振動元件110和第三振動元件180可以是一體成型的“T”型結構或者其他構型的結構。其他構型包括在振動元件110的長度方向上(即圖中x方向),振動元件110的不同位置具有不同的寬度(即圖中y方向),例如,越靠近自由端寬度越大,或者越靠近自由端寬度越小等。 In some embodiments, the vibration element 110 and the third vibration element 180 may be an integrally formed “T”-shaped structure or other configurations. Other configurations include that different positions of the vibrating element 110 have different widths (ie, the y direction in the figure) along the length direction of the vibrating element 110 (i.e., the x direction in the figure). For example, the width is larger closer to the free end, or the width is larger. The width becomes smaller near the free end, etc.

圖20是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖。 Figure 20 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.

在圖20中,曲線L201為壓電元件120單獨激勵時產生的頻響曲線(即振動元件110(或稱為懸臂梁)帶動質量元件130振動時產生的頻響曲線)。曲線L202為第四壓電元件190單獨激勵時產生的頻響曲線(即第三振動元件180(或稱為自由梁)和質量元件130振動時產生的頻響曲線)。曲線L203為聲學輸出裝置1900中壓電元件120和第四壓電元件190同時激勵時的頻響曲線(即振動元件110、第三振動元件180以及質量元件130同時(或稱為T型梁)振動時產生的頻響曲線)。 In FIG. 20 , curve L201 is the frequency response curve generated when the piezoelectric element 120 is excited alone (that is, the frequency response curve generated when the vibrating element 110 (or cantilever beam) drives the mass element 130 to vibrate). Curve L202 is the frequency response curve generated when the fourth piezoelectric element 190 is excited alone (that is, the frequency response curve generated when the third vibrating element 180 (also known as the free beam) and the mass element 130 vibrate). Curve L203 is the frequency response curve when the piezoelectric element 120 and the fourth piezoelectric element 190 in the acoustic output device 1900 are excited at the same time (that is, the vibrating element 110, the third vibrating element 180 and the mass element 130 are simultaneously excited (or called a T-beam) Frequency response curve produced during vibration).

如圖20所示,曲線L201在人耳可聽域(例如,20Hz-20000Hz)內至少存在兩個諧振峰(例如,第一諧振峰2011和第二諧振峰2012)。其中,第一諧振峰2011和第二諧振峰2012之間存在有諧振谷2013。在一些實施例中,第一諧振峰2011的頻率可以在50 Hz-2000Hz的範圍內。諧振谷2013的頻率在1330Hz左右。曲線L202在人耳可聽域(例如,20Hz-20000Hz)內至少存在一個諧振峰(例如,諧振峰2021)。其中,諧振峰2021的頻率在1330Hz左右。曲線L203在人耳可聽域(例如,20Hz-20000Hz)內至少存在兩個諧振峰(例如,第一諧振峰2031和第二諧振峰2032)。從圖20中可以看出,曲線L203在第一諧振峰2031和第二諧振峰2032之間並未出現諧振谷。這是因為諧振峰2021對頻率相同的諧振谷2013進行了補充,使得曲線L203在第一諧振峰2031和第二諧振峰2032之間並未出現諧振谷。另外,在大於100Hz的頻率範圍內,曲線L203的幅值相比於曲線L201有所提升。 As shown in FIG. 20 , curve L201 has at least two resonance peaks (eg, a first resonance peak 2011 and a second resonance peak 2012) within the audible range of the human ear (eg, 20 Hz-20000 Hz). There is a resonance valley 2013 between the first resonance peak 2011 and the second resonance peak 2012. In some embodiments, the frequency of the first resonance peak 2011 may be at 50 Hz-2000Hz range. The frequency of resonance valley 2013 is around 1330Hz. Curve L202 has at least one resonance peak (eg, resonance peak 2021) within the audible range of the human ear (eg, 20 Hz-20000 Hz). Among them, the frequency of resonance peak 2021 is around 1330Hz. Curve L203 has at least two resonance peaks (eg, first resonance peak 2031 and second resonance peak 2032) within the audible range of the human ear (eg, 20 Hz-20000 Hz). As can be seen from FIG. 20 , the curve L203 does not have a resonance valley between the first resonance peak 2031 and the second resonance peak 2032 . This is because the resonance peak 2021 complements the resonance valley 2013 with the same frequency, so that the curve L203 does not have a resonance valley between the first resonance peak 2031 and the second resonance peak 2032 . In addition, in the frequency range greater than 100 Hz, the amplitude of curve L203 is improved compared to curve L201.

由此,在一些實施例中,可以透過第三振動元件180與質量元件130振動在低頻段(例如,50Hz-2000Hz)產生的諧振峰(為便於描述,以下稱為第三振動元件180對應的諧振峰)來補充振動元件110與質量元件130振動產生的在第一諧振峰和第二諧振峰之間的諧振谷(為便於描述,以下稱為振動元件110對應的諧振谷),從而使得聲學輸出裝置1900的頻響曲線在第一諧振峰和第二諧振峰之間不具有諧振谷,從而使第一諧振峰和第二諧振峰之間的曲線更加平滑,有利於提高聲學輸出裝置的音質。 Therefore, in some embodiments, the resonance peak generated by the vibration of the third vibration element 180 and the mass element 130 in the low frequency band (for example, 50Hz-2000Hz) (for convenience of description, hereafter referred to as the resonance peak corresponding to the third vibration element 180 ) can be resonance peak) to supplement the resonance valley between the first resonance peak and the second resonance peak produced by the vibration of the vibration element 110 and the mass element 130 (for convenience of description, hereafter referred to as the resonance valley corresponding to the vibration element 110), thereby making the acoustic output The frequency response curve of the device 1900 does not have a resonance valley between the first resonance peak and the second resonance peak, thereby making the curve between the first resonance peak and the second resonance peak smoother, which is beneficial to improving the sound quality of the acoustic output device.

在一些實施例中,振動元件110對應的第一諧振峰的頻率f 0和第二諧振峰的頻率f 1之間的比值可以在5-30範圍內。在一些實施例中,振動元件110對應的第一諧振峰的頻率f 0和第二諧振峰的頻率f 1之間的比值可以在8-20範圍內。在一些實施例中,振動元件110對應的第一諧振峰的頻率f 0和第二諧振峰的頻率f 1之間的比值可以在10-18範圍內。 In some embodiments, the ratio between the frequency f 0 of the first resonance peak and the frequency f 1 of the second resonance peak corresponding to the vibration element 110 may be in the range of 5-30. In some embodiments, the ratio between the frequency f 0 of the first resonance peak and the frequency f 1 of the second resonance peak corresponding to the vibration element 110 may be in the range of 8-20. In some embodiments, the ratio between the frequency f 0 of the first resonance peak and the frequency f 1 of the second resonance peak corresponding to the vibration element 110 may be in the range of 10-18.

在一些實施例中,梁結構(例如,振動元件110對應的懸臂梁或第三振動元件180對應的自由梁)的諧振頻率可以根據公式(2)確定: In some embodiments, the resonant frequency of the beam structure (for example, the cantilever beam corresponding to the vibrating element 110 or the free beam corresponding to the third vibrating element 180) can be determined according to formula (2):

Figure 112112684-A0101-12-0045-2
Figure 112112684-A0101-12-0045-2

其中,l表示梁結構的長度,EI表示梁結構的抗彎剛度,ρ l 表示梁結構的單位長度密度,β i l表示第i階諧振本征值相關的係數。根據公式(2)可知,當梁結構的抗彎剛度EI以及ρ l 固定不變時,梁結構的諧振頻率隨著β i l的變化而改變。 Among them, l represents the length of the beam structure, EI represents the bending stiffness of the beam structure, ρ l represents the density per unit length of the beam structure, and β i l represents the coefficient related to the i -th order resonance eigenvalue. According to formula (2), when the bending stiffness EI and ρ l of the beam structure are fixed, the resonant frequency of the beam structure changes with the change of β i l .

在一些實施例中,與質量元件130連接的振動元件110(懸臂梁)的頻率方程可以表示為: In some embodiments, the frequency equation of the vibration element 110 (cantilever beam) connected to the mass element 130 can be expressed as:

cos(β i l 1).cosh(β i l 1)+1=αβ i l 1.(sin(β i l 1). cosh(β i l 1)-cos(β i l 1).sinh(β i l 1)),(3) cos( β i l 1 ). cosh( β i l 1 )+1= α . β i l 1 . (sin( β i l 1 ). cosh( β i l 1 )-cos( β i l 1 ). sinh( β i l 1 )), (3)

其中,α表示質量元件130的質量與振動元件110的質量之間的比值,β i l 1表示懸臂梁對應的第i階諧振本征值相關的係數。求解公式(3)可得β i l 1的值如下表1所示: Wherein, α represents the ratio between the mass of the mass element 130 and the mass of the vibration element 110, and β i l 1 represents the coefficient related to the i-th order resonance eigenvalue corresponding to the cantilever beam. Solving formula (3), we can get the value of β i l 1 as shown in Table 1 below:

Figure 112112684-A0101-12-0045-3
Figure 112112684-A0101-12-0045-3

在一些實施例中,第三振動元件180(自由梁)的頻率方程可以表示為: In some embodiments, the frequency equation of the third vibration element 180 (free beam) can be expressed as:

cos(β i l 2)cosh(β i l 2)-1=0, (4) cos ( β i l 2 ) cosh ( β i l 2 )-1=0, (4)

其中,β i l 2表示自由梁對應的第i階諧振本征值相關的係數。求解 公式(4)可得β i l 2的值為4.730、7.853...(i=1、2...)。 Among them, β i l 2 represents the coefficient related to the i-th order resonance eigenvalue corresponding to the free beam. Solving formula (4), we can get the values of β i l 2 to be 4.730, 7.853...(i=1, 2...).

為了保證第三振動元件180對應的諧振峰能夠補充振動元件110對應的諧振谷,在一些實施例中,第三振動元件180對應的諧振峰的頻率

Figure 112112684-A0101-12-0046-31
與振動元件110對應的第二諧振峰對應的頻率f 1之間的比值可以小於2。在一些實施例中,第三振動元件180對應的諧振峰的頻率
Figure 112112684-A0101-12-0046-33
與振動元件110對應的第二諧振峰的頻率f 1之間的比值可以小於1.5。在一些實施例中,第三振動元件180對應的諧振峰的頻率
Figure 112112684-A0101-12-0046-34
與振動元件110對應的第二諧振峰的頻率f 1之間的比值可以小於1。在一些實施例中,第三振動元件180對應的諧振峰的頻率
Figure 112112684-A0101-12-0046-35
與振動元件110對應的第二諧振峰的頻率f 1之間的比值可以小於0.5。在一些實施例中,為了保證第三振動元件180對應的諧振峰能夠補充振動元件110對應的諧振谷,第三振動元件180對應的諧振峰的頻率
Figure 112112684-A0101-12-0046-36
可以位於振動元件110對應的諧振谷的頻率附近(例如,諧振谷2013與諧振峰2021對應的諧振頻率均在1330Hz左右),由此,第三振動元件180對應的諧振峰的頻率
Figure 112112684-A0101-12-0046-37
可以小於振動元件110對應的第二諧振峰對應的諧振頻率f 1,即 In order to ensure that the resonance peak corresponding to the third vibration element 180 can supplement the resonance valley corresponding to the vibration element 110, in some embodiments, the frequency of the resonance peak corresponding to the third vibration element 180
Figure 112112684-A0101-12-0046-31
The ratio between the frequencies f 1 corresponding to the second resonance peak corresponding to the vibration element 110 may be less than 2. In some embodiments, the frequency of the resonance peak corresponding to the third vibration element 180
Figure 112112684-A0101-12-0046-33
The ratio between the frequencies f 1 of the second resonance peak corresponding to the vibration element 110 may be less than 1.5. In some embodiments, the frequency of the resonance peak corresponding to the third vibration element 180
Figure 112112684-A0101-12-0046-34
The ratio between the frequencies f 1 of the second resonance peak corresponding to the vibration element 110 may be less than 1. In some embodiments, the frequency of the resonance peak corresponding to the third vibration element 180
Figure 112112684-A0101-12-0046-35
The ratio between the frequencies f 1 of the second resonance peak corresponding to the vibration element 110 may be less than 0.5. In some embodiments, in order to ensure that the resonance peak corresponding to the third vibration element 180 can supplement the resonance valley corresponding to the vibration element 110, the frequency of the resonance peak corresponding to the third vibration element 180 is
Figure 112112684-A0101-12-0046-36
It can be located near the frequency of the resonance valley corresponding to the vibration element 110 (for example, the resonance frequencies corresponding to the resonance valley 2013 and the resonance peak 2021 are both around 1330 Hz). Therefore, the frequency of the resonance peak corresponding to the third vibration element 180
Figure 112112684-A0101-12-0046-37
It may be less than the resonant frequency f 1 corresponding to the second resonant peak corresponding to the vibrating element 110, that is,

Figure 112112684-A0101-12-0046-4
Figure 112112684-A0101-12-0046-4

其中,β 1 l 2的值為4.730,公式(5)可以表示為: Among them, the value of β 1 l 2 is 4.730, and formula (5) can be expressed as:

Figure 112112684-A0101-12-0046-5
Figure 112112684-A0101-12-0046-5

根據公式(6)以及表1,在一些實施例中,第三振動元件180的長度與振動元件120的長度間的比值可以大於0.7。在一些實施例中,第三振動元件180的長度與振動元件120的長度間的比 值可以大於1。在一些實施例中,第三振動元件180的長度與振動元件120的長度間的比值可以大於1.2。 According to formula (6) and Table 1, in some embodiments, the ratio between the length of the third vibration element 180 and the length of the vibration element 120 may be greater than 0.7. In some embodiments, the ratio between the length of the third vibration element 180 and the length of the vibration element 120 Value can be greater than 1. In some embodiments, the ratio between the length of the third vibration element 180 and the length of the vibration element 120 may be greater than 1.2.

另外,結合曲線L201和L203可知,在中高頻段(200Hz-20000Hz)內,曲線L203的幅值均大於曲線L201的幅值。由此,在一些實施例中,在大於100Hz的範圍內,第三振動元件180可以增加質量元件130的振動幅度。因此,透過採用聲學輸出裝置1900相同或相似的結構,可以使得聲學輸出裝置在中高頻段內能夠具有較好的靈敏度。 In addition, combining curves L201 and L203, it can be seen that in the medium and high frequency band (200Hz-20000Hz), the amplitude of curve L203 is greater than the amplitude of curve L201. Thus, in some embodiments, the third vibration element 180 can increase the vibration amplitude of the mass element 130 in a range greater than 100 Hz. Therefore, by adopting the same or similar structure of the acoustic output device 1900, the acoustic output device can have better sensitivity in the mid-to-high frequency band.

圖21是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖。 Figure 21 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.

在圖21中,曲線L211為壓電元件120單獨激勵時的頻響曲線(即振動元件110(或稱為懸臂梁)帶動質量元件130振動時產生的頻響曲線)。曲線L212為第四壓電元件190單獨激勵時的頻響曲線(即第三振動元件180(或稱為自由梁)和質量元件130振動時產生的頻響曲線)。曲線L213、曲線L214、曲線L215以及曲線L216分別為聲學輸出裝置1900中壓電元件120和第四壓電元件190同時激勵時、激勵信號的相位差(圖中用theta表示)為0°、45°、135°以及180°時的頻響曲線。 In FIG. 21 , curve L211 is the frequency response curve when the piezoelectric element 120 is excited alone (that is, the frequency response curve generated when the vibration element 110 (or cantilever beam) drives the mass element 130 to vibrate). Curve L212 is the frequency response curve when the fourth piezoelectric element 190 is excited alone (that is, the frequency response curve generated when the third vibration element 180 (also known as the free beam) and the mass element 130 vibrate). Curve L213, curve L214, curve L215 and curve L216 are respectively when the piezoelectric element 120 and the fourth piezoelectric element 190 in the acoustic output device 1900 are excited at the same time, the phase difference of the excitation signal (represented by theta in the figure) is 0° and 45 Frequency response curves at °, 135° and 180°.

結合曲線L213、曲線L214、曲線L215以及曲線L216可知,當聲學輸出裝置1900中壓電元件120和第四壓電元件190的激勵信號的相位差超過135°時,聲學輸出裝置1900的頻響曲線在第一諧振峰和第二諧振峰之間會出現諧振谷(例如,曲線L216中的諧振谷2161),這是由於振動元件110和第三振動元件180的振動反相相消所導致的。因此,為了使聲學輸出裝置1900的頻響曲線在第一諧振峰和第二諧振峰之間不會出現諧振谷,具有較大的平直曲線範圍,從而具有較好的音質,在一些實施例中,壓電元件120和第四壓電元件190的激勵信號的相位差可以小於或等於135°。在一些實施例中, 壓電元件120和第四壓電元件190的激勵信號的相位差可以小於或等於60°。在一些實施例中,壓電元件120和第四壓電元件190的激勵信號的相位差可以小於或等於30°。在一些實施例中,壓電元件120和第四壓電元件190的激勵信號的相位差可以為0°。 Combining the curve L213, the curve L214, the curve L215 and the curve L216, it can be seen that when the phase difference between the excitation signals of the piezoelectric element 120 and the fourth piezoelectric element 190 in the acoustic output device 1900 exceeds 135°, the frequency response curve of the acoustic output device 1900 A resonance valley (for example, the resonance valley 2161 in the curve L216) may appear between the first resonance peak and the second resonance peak, which is caused by the vibrations of the vibration element 110 and the third vibration element 180 being out of phase and canceling each other. Therefore, in order to ensure that the frequency response curve of the acoustic output device 1900 does not have a resonance valley between the first resonance peak and the second resonance peak, and has a larger flat curve range, thereby having better sound quality, in some embodiments , the phase difference between the excitation signals of the piezoelectric element 120 and the fourth piezoelectric element 190 may be less than or equal to 135°. In some embodiments, The phase difference between the excitation signals of the piezoelectric element 120 and the fourth piezoelectric element 190 may be less than or equal to 60°. In some embodiments, the phase difference between the excitation signals of the piezoelectric element 120 and the fourth piezoelectric element 190 may be less than or equal to 30°. In some embodiments, the phase difference between the excitation signals of the piezoelectric element 120 and the fourth piezoelectric element 190 may be 0°.

圖22是根據本說明書一些實施例所示的聲學輸出裝置的頻響曲線圖。 Figure 22 is a frequency response graph of an acoustic output device according to some embodiments of the present specification.

在圖22中,曲線L221、曲線L222、曲線L223、曲線L224以及曲線L225分別為聲學輸出裝置1900第三振動元件180的長度(圖中用lp_d2表示)為0mm(即可以看成聲學輸出裝置1900不包括第三振動元件180,相當於聲學輸出裝置200)、20mm、22mm、24mm以及30mm時的頻響曲線。其中,振動元件110的長度(圖中用lp_d表示)均為20mm。結合曲線L221、曲線L222、曲線L223、曲線L224以及曲線L225可知,當第三振動元件180的長度小於24mm時,曲線L221、曲線L222、曲線L223在2250Hz附近均具有諧振谷,第三振動元件180的長度增加僅能使得聲學輸出裝置1900的頻響曲線在中高頻段(例如,2000Hz-20000Hz)內的幅度增加,即聲學輸出裝置1900在中高頻段內的靈敏度得以增加。當第三振動元件180的長度超過24mm時,曲線L224和曲線L225上在第一諧振峰和第二諧振峰之間並不具有諧振谷,這使得聲學輸出裝置1900的頻響曲線更為平坦,有利於提高音質。另外,結合曲線L224以及曲線L225可知,隨著第三振動元件180的長度增加,頻響曲線的幅值也在增加,有利於提高聲學輸出裝置1900的靈敏度。另外,隨著第三振動元件180的長度增加,聲學輸出裝置1900的頻響曲線在中高頻段(例如,2000Hz-20000Hz)內的諧振峰左移(即向低頻移動)。由此,可以透過調整第三振動元件180的長度以滿足聲學輸出裝置1900的振動性能的需求。 In Figure 22, curve L221, curve L222, curve L223, curve L224 and curve L225 respectively represent the length of the third vibration element 180 of the acoustic output device 1900 (represented by lp_d2 in the figure), which is 0 mm (that is, it can be regarded as the acoustic output device 1900 Excluding the third vibrating element 180, it is equivalent to the frequency response curve at 20 mm, 22 mm, 24 mm and 30 mm of the acoustic output device 200). Among them, the length of the vibrating elements 110 (indicated by lp_d in the figure) is 20 mm. Combining the curve L221, the curve L222, the curve L223, the curve L224 and the curve L225, it can be seen that when the length of the third vibration element 180 is less than 24mm, the curve L221, the curve L222 and the curve L223 all have resonance valleys near 2250Hz, and the third vibration element 180 The increase in length can only increase the amplitude of the frequency response curve of the acoustic output device 1900 in the mid-to-high frequency band (for example, 2000Hz-20000Hz), that is, the sensitivity of the acoustic output device 1900 in the mid-to-high frequency range is increased. When the length of the third vibrating element 180 exceeds 24 mm, there is no resonance valley between the first resonance peak and the second resonance peak on the curve L224 and the curve L225, which makes the frequency response curve of the acoustic output device 1900 flatter, which is advantageous. To improve sound quality. In addition, combining the curve L224 and the curve L225, it can be seen that as the length of the third vibrating element 180 increases, the amplitude of the frequency response curve also increases, which is beneficial to improving the sensitivity of the acoustic output device 1900. In addition, as the length of the third vibrating element 180 increases, the resonance peak of the frequency response curve of the acoustic output device 1900 in the mid-to-high frequency range (eg, 2000 Hz-20000 Hz) shifts to the left (that is, moves to low frequency). Therefore, the length of the third vibration element 180 can be adjusted to meet the vibration performance requirements of the acoustic output device 1900 .

由上可得,在聲學輸出裝置1900中,可以透過增大第三振動元件180的長度來提高聲學輸出裝置1900的靈敏度和音質。在一些實施例中,振動元件110的長度可以為20mm,第三振動元件180的長度可以大於24mm。在一些實施例中,第三振動元件180的長度可以大於26mm。 It can be seen from the above that in the acoustic output device 1900, the sensitivity and sound quality of the acoustic output device 1900 can be improved by increasing the length of the third vibrating element 180. In some embodiments, the length of the vibration element 110 may be 20 mm, and the length of the third vibration element 180 may be greater than 24 mm. In some embodiments, the length of the third vibrating element 180 may be greater than 26 mm.

本說明書實施例可能帶來的有益效果包括但不限於:(1)在本說明書實施例提供的聲學輸出裝置中,質量元件和振動的振動能夠使得其頻響曲線在低頻段(例如,50Hz~2000Hz)具有第一諧振峰,從而使得聲學輸出裝置在低頻段內的靈敏度有所提升,並且在高頻段(例如,2000Hz~20000Hz)內具有第二諧振峰,且第一諧振峰和第二諧振峰之間具有至少一個諧振谷,該第一諧振峰或第二諧振峰與該至少一個諧振谷之間的幅值差小於80dB,從而獲得從低頻到高頻範圍內較為平坦的振動回應曲線,進而提升聲學輸出裝置的音質;(2)透過調整壓電元件和第二壓電元件在梁結構長度方向上的間距,可以使得聲學輸出裝置在中高頻段內產生的諧振峰和諧振谷進行合併,從而可以消除聲學輸出裝置在中高頻段內的高階模態,使得頻響曲線更加平滑,保證聲學輸出裝置的音質能夠有所提升;(3)透過使第二質量元件的質量大於第一質量元件質量,可以使得梁結構趨向於第二質量元件的一側固定,從而解決梁結構的固定端在聲學輸出裝置(例如,殼體)內難以找到固定邊界、不好固定的問題,並且透過調整第二質量元件和第一質量元件的質量間的比值,可以實現對第一諧振峰對應的諧振頻率的調整;(4)壓電元件的形變方向與振動元件的振動方向平行,透過調整第一位置到梁結構固定端的距離與梁結構的長度之間的比值,可以調整聲學輸出裝置在低頻段內的諧振峰對應的諧振頻率,以使得聲學輸出裝置可以在不同頻段內的靈敏度都能提升,以適用更多的使用場景;(5)透過使第三壓電元件與壓電元件在質量元件的兩側對稱設置,可以減少或消除聲學輸出裝置的頻響曲線 在人耳可聽域內的諧振谷,保證聲學輸出裝置的頻響曲線較為平滑,具有較好的音質;(6)透過第四壓電元件與第三振動元件連接,且第四壓電元件的形變方向與第三振動元件的振動方向垂直,可以使得聲學輸出裝置的頻響曲線更加平滑,音質更好,並且第三振動元件可以增加質量元件在低頻段內的振動幅度,從而提高聲學輸出裝置在低頻段內的靈敏度。 Possible beneficial effects brought about by the embodiments of this specification include but are not limited to: (1) In the acoustic output device provided by the embodiments of this specification, the vibration of the mass element and vibration can make its frequency response curve in the low frequency band (for example, 50Hz~ 2000Hz) has a first resonance peak, thereby improving the sensitivity of the acoustic output device in the low frequency band, and has a second resonance peak in the high frequency band (for example, 2000Hz~20000Hz), and the first resonance peak and the second resonance There is at least one resonance valley between the peaks, and the amplitude difference between the first resonance peak or the second resonance peak and the at least one resonance valley is less than 80dB, thereby obtaining a relatively flat vibration response curve from low frequency to high frequency, and then Improve the sound quality of the acoustic output device; (2) By adjusting the spacing between the piezoelectric element and the second piezoelectric element in the length direction of the beam structure, the resonance peaks and resonance valleys generated by the acoustic output device in the mid-to-high frequency range can be merged, This can eliminate the high-order modes of the acoustic output device in the mid-to-high frequency range, making the frequency response curve smoother and ensuring that the sound quality of the acoustic output device can be improved; (3) By making the second mass element have a greater mass than the first mass element The mass can make the beam structure tend to be fixed on one side of the second mass element, thereby solving the problem that the fixed end of the beam structure is difficult to find a fixed boundary and difficult to fix in the acoustic output device (for example, a shell), and by adjusting the second mass element The ratio between the masses of the second mass element and the first mass element can realize the adjustment of the resonant frequency corresponding to the first resonance peak; (4) The deformation direction of the piezoelectric element is parallel to the vibration direction of the vibrating element. By adjusting the first position The ratio between the distance to the fixed end of the beam structure and the length of the beam structure can adjust the resonant frequency corresponding to the resonance peak of the acoustic output device in the low frequency band, so that the sensitivity of the acoustic output device can be improved in different frequency bands. Applicable to more usage scenarios; (5) By arranging the third piezoelectric element and the piezoelectric element symmetrically on both sides of the mass element, the frequency response curve of the acoustic output device can be reduced or eliminated The resonance valley within the audible range of the human ear ensures that the frequency response curve of the acoustic output device is relatively smooth and has better sound quality; (6) The fourth piezoelectric element is connected to the third vibration element, and the fourth piezoelectric element The deformation direction is perpendicular to the vibration direction of the third vibrating element, which can make the frequency response curve of the acoustic output device smoother and have better sound quality, and the third vibrating element can increase the vibration amplitude of the mass element in the low frequency band, thereby improving the acoustic output The sensitivity of the device in the low frequency band.

需要說明的是,不同實施例可能產生的有益效果不同,在不同的實施例裡,可能產生的有益效果可以是以上任意一種或幾種的組合,也可以是其他任何可能獲得的有益效果。 It should be noted that different embodiments may produce different beneficial effects. In different embodiments, the possible beneficial effects may be any one or a combination of the above, or any other possible beneficial effects.

上文已對基本概念做了描述,顯然,對於本領域技術人員來說,上述詳細披露僅僅作為示例,而並不構成對本說明書的限定。雖然此處並沒有明確說明,本領域技術人員可能會對本說明書進行各種修改、改進和修正。該類修改、改進和修正在本說明書中被建議,所以該類修改、改進、修正仍屬於本說明書示範實施例的精神和範圍。 The basic concepts have been described above. It is obvious to those skilled in the art that the above detailed disclosure is only an example and does not constitute a limitation of this specification. Although not explicitly stated herein, various modifications, improvements, and corrections may be made to this specification by those skilled in the art. Such modifications, improvements, and corrections are suggested in this specification, and therefore such modifications, improvements, and corrections remain within the spirit and scope of the exemplary embodiments of this specification.

同時,本說明書使用了特定詞語來描述本說明書的實施例。如“一個實施例”、“一實施例”、和/或“一些實施例”意指與本說明書至少一個實施例相關的某一特徵、結構或特點。因此,應強調並注意的是,本說明書中在不同位置兩次或多次提及的“一實施例”或“一個實施例”或“一個替代性實施例”並不一定是指同一實施例。此外,本說明書的一個或多個實施例中的某些特徵、結構或特點可以進行適當的組合。 At the same time, this specification uses specific words to describe the embodiments of this specification. For example, "one embodiment," "an embodiment," and/or "some embodiments" means a certain feature, structure, or characteristic related to at least one embodiment of this specification. Therefore, it should be emphasized and noted that “one embodiment” or “an embodiment” or “an alternative embodiment” mentioned twice or more at different places in this specification does not necessarily refer to the same embodiment. . In addition, certain features, structures or characteristics in one or more embodiments of this specification may be appropriately combined.

同理,應當注意的是,為了簡化本說明書披露的表述,從而幫助對一個或多個發明實施例的理解,前文對本說明書實施例的描述中,有時會將多種特徵歸併至一個實施例、圖式或對其的描述中。但是,這種披露方法並不意味著本說明書物件所需要的特徵比請求項中提及的特徵多。實際上,實施例的特徵要少於上述披露的單個實施例的全部特徵。 Similarly, it should be noted that, in order to simplify the expression disclosed in this specification and thereby help understand one or more embodiments of the invention, in the previous description of the embodiments of this specification, multiple features are sometimes combined into one embodiment. in a diagram or its description. However, this method of disclosure does not mean that the object of the description requires more features than are mentioned in the claim. In fact, embodiments may have less than all features of a single disclosed embodiment.

一些實施例中使用了描述成分、屬性數量的數位,應當理解的是,此類用於實施例描述的數字,在一些示例中使用了修飾詞“大約”、“近似”或“大體上”來修飾。除非另外說明,“大約”、“近似”或“大體上”表明該數字允許有±20%的變化。相應地,在一些實施例中,說明書和請求項中使用的數值參數均為近似值,該近似值根據個別實施例所需特點可以發生改變。在一些實施例中,數值參數應考慮規定的有效數位並採用一般位數保留的方法。儘管本說明書一些實施例中用於確認其範圍廣度的數值域和參數為近似值,在具體實施例中,此類數值的設定在可行範圍內盡可能精確。 In some embodiments, digits are used to describe the quantities of components and properties. It should be understood that the modifiers "about", "approximately" or "substantially" are used in some examples to describe such numbers. Grooming. Unless otherwise stated, "about", "approximately" or "substantially" means that the number is allowed to vary by ±20%. Accordingly, in some embodiments, the numerical parameters used in the description and claims are approximations that may vary depending on the desired characteristics of individual embodiments. In some embodiments, numerical parameters should account for the specified number of significant digits and use general digit preservation methods. Although the numerical ranges and parameters used to identify the breadth of ranges in some embodiments of this specification are approximations, in specific embodiments, such numerical values are set as accurately as is feasible.

最後,應當理解的是,本說明書中該實施例僅用以說明本說明書實施例的原則。其他的變形也可能屬於本說明書的範圍。因此,作為示例而非限制,本說明書實施例的替代配置可視為與本說明書的教導一致。相應地,本說明書的實施例不僅限於本說明書明確介紹和描述的實施例。 Finally, it should be understood that the embodiments in this specification are only used to illustrate the principles of the embodiments in this specification. Other variations may also fall within the scope of this specification. Accordingly, by way of example and not limitation, alternative configurations of the embodiments of this specification may be considered consistent with the teachings of this specification. Accordingly, the embodiments of this specification are not limited to those expressly introduced and described in this specification.

100:聲學輸出裝置 100:Acoustic output device

110:振動元件 110:Vibration element

120:壓電元件 120: Piezoelectric element

130:質量元件 130:Quality component

140:第二壓電元件 140: Second piezoelectric element

150:第二質量元件 150: Second mass element

160:第二振動元件 160: Second vibration element

170:第三壓電元件 170: The third piezoelectric element

180:第三振動元件 180: The third vibration element

190:第四壓電元件 190: The fourth piezoelectric element

210:殼體結構 210: Shell structure

220:固定結構 220: Fixed structure

Claims (11)

一種聲學輸出裝置,包括: An acoustic output device comprising: 振動元件,該振動元件具有沿著長度方向延伸的梁結構; a vibrating element having a beam structure extending along the length; 壓電元件,用於回應電信號而發生形變,該形變帶動該振動元件振動,其中,該壓電元件貼附於該梁結構的第一位置,並且貼附區域沿著該長度方向的尺寸不超過該梁結構沿著該長度方向尺寸的80%;以及 The piezoelectric element is used to deform in response to an electrical signal, and the deformation drives the vibrating element to vibrate. The piezoelectric element is attached to the first position of the beam structure, and the size of the attached area along the length direction is not the same. Exceeds 80% of the dimension of the beam structure along that length; and 質量元件,該質量元件連接於該梁結構的第二位置,其中,該第一位置與該第二位置在該長度方向上間隔分佈,該振動元件的振動帶動該質量元件在垂直於該長度方向的方向上振動。 A mass element connected to a second position of the beam structure, wherein the first position and the second position are spaced apart in the length direction, and the vibration of the vibrating element drives the mass element in a direction perpendicular to the length direction. vibrates in the direction. 如請求項1該的聲學輸出裝置,其中,該振動元件與該質量元件諧振產生第一諧振峰,該第一諧振峰的頻率範圍為50Hz-2000Hz。 The acoustic output device of claim 1, wherein the vibration element resonates with the mass element to generate a first resonance peak, and the frequency range of the first resonance peak is 50Hz-2000Hz. 如請求項2該的聲學輸出裝置,其中,該振動元件與該質量元件的振動具有第二諧振峰,該第二諧振峰的頻率與該第一諧振峰的頻率之比大於5。 The acoustic output device of claim 2, wherein the vibrations of the vibration element and the mass element have a second resonance peak, and the ratio of the frequency of the second resonance peak to the frequency of the first resonance peak is greater than 5. 如請求項3該的聲學輸出裝置,其中,在該第一諧振峰和該第二諧振峰之間,該振動元件與該質量元件的振動產生至少一個諧振谷,其中,該第一諧振峰或該第二諧振峰與該至少一個諧振谷之間的幅值差小於80dB。 The acoustic output device of claim 3, wherein the vibration of the vibration element and the mass element generates at least one resonance valley between the first resonance peak and the second resonance peak, wherein the first resonance peak or the second resonance peak The amplitude difference between the second resonance peak and the at least one resonance valley is less than 80 dB. 如請求項1該的聲學輸出裝置,其中,該壓電元件的形變方向與該振動元件的振動方向垂直。 The acoustic output device of claim 1, wherein the deformation direction of the piezoelectric element is perpendicular to the vibration direction of the vibrating element. 如請求項5該的聲學輸出裝置,其中,還包括第二壓電元件,該第二壓電元件貼附於該梁結構的第三位置,其中,該壓電元件與該第二壓電元件在該振動元件的長度方向上間隔設置。 The acoustic output device of claim 5, further comprising a second piezoelectric element attached to a third position of the beam structure, wherein the piezoelectric element and the second piezoelectric element They are spaced apart in the length direction of the vibrating element. 如請求項5該的聲學輸出裝置,其中,還包括第二 質量元件,其中,在該振動元件的長度方向上,該質量元件與該第二質量元件分別位於該壓電元件的兩側,其中,該第二質量元件的質量大於該質量元件的質量。 The acoustic output device of claim 5, further comprising a second A mass element, wherein the mass element and the second mass element are respectively located on both sides of the piezoelectric element in the length direction of the vibrating element, wherein the mass of the second mass element is greater than the mass of the mass element. 如請求項1該的聲學輸出裝置,其中,該壓電元件的形變方向與該振動元件的振動方向平行;該壓電元件沿振動方向的一端固定,另一端在該第一位置與該梁結構連接;該梁結構包括固定端,該第一位置與該固定端的距離與該梁結構的長度間的比值小於0.6。 The acoustic output device of claim 1, wherein the deformation direction of the piezoelectric element is parallel to the vibration direction of the vibration element; one end of the piezoelectric element is fixed along the vibration direction, and the other end is connected to the beam structure at the first position Connection; the beam structure includes a fixed end, and the ratio between the distance between the first position and the fixed end and the length of the beam structure is less than 0.6. 如請求項1該的聲學輸出裝置,其中,還包括第二振動元件以及與該第二振動元件連接的第三壓電元件;其中,該振動元件與該第二振動元件在該質量元件的兩側對稱設置,該第三壓電元件與該壓電元件在該質量元件的兩側對稱設置。 The acoustic output device of claim 1, further comprising a second vibrating element and a third piezoelectric element connected to the second vibrating element; wherein the vibrating element and the second vibrating element are on both sides of the mass element. The third piezoelectric element and the piezoelectric element are arranged symmetrically on both sides of the mass element. 如請求項1該的聲學輸出裝置,其中,還包括第三振動元件,該第三振動元件與該質量元件連接;其中,該第三振動元件的振動方向與該振動元件的振動方向平行;在大於100Hz的頻率範圍內,該第三振動元件增加該質量元件的振動幅度。 The acoustic output device of claim 1, further comprising a third vibration element connected to the mass element; wherein the vibration direction of the third vibration element is parallel to the vibration direction of the vibration element; in In a frequency range greater than 100 Hz, the third vibration element increases the vibration amplitude of the mass element. 如請求項10該的聲學輸出裝置,其中,還包括第四壓電元件,該第四壓電元件與該第三振動元件連接,其中,該第四壓電元件的形變方向與該第三振動元件的振動方向垂直;該壓電元件和該第四壓電元件所接收的電信號具有相位差,該相位差小於135°。 The acoustic output device of claim 10, further comprising a fourth piezoelectric element connected to the third vibration element, wherein the deformation direction of the fourth piezoelectric element is consistent with the third vibration element. The vibration direction of the element is vertical; the electrical signals received by the piezoelectric element and the fourth piezoelectric element have a phase difference, and the phase difference is less than 135°.
TW112112684A 2022-04-27 2023-03-31 Acoustic output device TW202344073A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210453523.6A CN117014778A (en) 2022-04-27 2022-04-27 Acoustic output device
CN2022104535236 2022-04-27

Publications (1)

Publication Number Publication Date
TW202344073A true TW202344073A (en) 2023-11-01

Family

ID=88574819

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112112684A TW202344073A (en) 2022-04-27 2023-03-31 Acoustic output device

Country Status (2)

Country Link
CN (1) CN117014778A (en)
TW (1) TW202344073A (en)

Also Published As

Publication number Publication date
CN117014778A (en) 2023-11-07

Similar Documents

Publication Publication Date Title
CN110611853B (en) Bone conduction loudspeaker
US7382079B2 (en) Piezoelectric device for generating acoustic signal
US8913767B2 (en) Electro-acoustic transducer, electronic apparatus, electro-acoustic conversion method, and sound wave output method of electronic apparatus
WO2023206143A1 (en) Acoustic output device
TW202344073A (en) Acoustic output device
TWI843498B (en) Acoustic output device
WO2023193189A1 (en) Acoustic output device
TW202341760A (en) Acoustic output device
WO2023193191A1 (en) Acoustic output device
TWI843202B (en) Acoustic output device
TW202341759A (en) Acoustic output device
RU2795203C1 (en) Acoustic output devices
WO2023193195A1 (en) Piezoelectric speaker
WO2024108334A1 (en) Acoustic output device
CN116939445A (en) Piezoelectric loudspeaker
WO2024108332A1 (en) Acoustic output apparatus
WO2023173355A1 (en) Acoustic output apparatus
TW202423134A (en) Acoustic output device
CN117177124A (en) Acoustic output device and earphone