TWI843498B - Acoustic output device - Google Patents

Acoustic output device Download PDF

Info

Publication number
TWI843498B
TWI843498B TW112110919A TW112110919A TWI843498B TW I843498 B TWI843498 B TW I843498B TW 112110919 A TW112110919 A TW 112110919A TW 112110919 A TW112110919 A TW 112110919A TW I843498 B TWI843498 B TW I843498B
Authority
TW
Taiwan
Prior art keywords
piezoelectric element
vibration
output device
acoustic output
piezoelectric
Prior art date
Application number
TW112110919A
Other languages
Chinese (zh)
Other versions
TW202341760A (en
Inventor
朱光遠
張磊
齊心
王慶依
Original Assignee
大陸商深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210360069.XA external-priority patent/CN116939444A/en
Application filed by 大陸商深圳市韶音科技有限公司 filed Critical 大陸商深圳市韶音科技有限公司
Publication of TW202341760A publication Critical patent/TW202341760A/en
Application granted granted Critical
Publication of TWI843498B publication Critical patent/TWI843498B/en

Links

Abstract

Embodiments of the present specification provide an acoustic output device comprising a first vibrating element, a second vibrating element and a piezoelectric element. The first vibrating element is physically connected to a first position of the piezoelectric element, and the second vibrating element is connected to at least a second position of The piezoelectric element by means of an elastic element. The piezoelectric element drives the first vibrating element and the second vibrating element in response to an electrical signal, the vibration producing two resonance peaks within the audible range of the human ear.

Description

聲學輸出裝置Acoustic output device

本說明書涉及聲學技術領域,特別涉及一種聲學輸出裝置。This specification relates to the field of acoustic technology, and in particular to an acoustic output device.

本申請案主張於2022年04月07日提交的申請號為202210360069.X的中國專利申請的優先權,其全部內容通過引用的方式併入本文。This application claims priority to Chinese patent application No. 202210360069.X filed on April 7, 2022, the entire contents of which are incorporated herein by reference.

壓電式的聲學輸出裝置是利用壓電材料的逆壓電效應產生振動向外輻射聲波,與傳動電動式揚聲器相比,具有機電換能效率高、能耗低、體積小、集成度高等優勢。在當今器件小型化和集成化的趨勢下,壓電式的聲學輸出裝置具有極其廣闊的前景與未來。但是,壓電式的聲學輸出裝置存在低頻響應差、在人耳可聽域內(例如,20 Hz至20 kHz)的振動模態較多等問題,從而導致其無法在可聽域內形成較為平直的頻響曲線,造成音質較差的問題。Piezoelectric acoustic output devices use the inverse piezoelectric effect of piezoelectric materials to generate vibrations and radiate sound waves. Compared with transducer-electric speakers, they have the advantages of high electromechanical energy conversion efficiency, low energy consumption, small size, and high integration. With the current trend of device miniaturization and integration, piezoelectric acoustic output devices have extremely broad prospects and future. However, piezoelectric acoustic output devices have problems such as poor low-frequency response and more vibration modes in the audible range of the human ear (for example, 20 Hz to 20 kHz), which makes it impossible to form a relatively flat frequency response curve in the audible range, resulting in poor sound quality.

因此,希望提供一種聲學輸出裝置,以提升壓電式聲學輸出裝置的低頻響應,同時能在可聽域內形成較為平直的頻響曲線,提升聲學輸出裝置的音質效果。Therefore, it is desirable to provide an acoustic output device to enhance the low-frequency response of the piezoelectric acoustic output device and to form a relatively flat frequency response curve in the audible range, thereby enhancing the sound quality of the acoustic output device.

本說明書實施例可以提供一種聲學輸出裝置,包括第一振動元件、第二振動元件以及壓電元件,所述第一振動元件物理連接於所述壓電元件的第一位置,所述第二振動元件至少通過彈性元件連接於所述壓電元件的第二位置,其中,所述壓電元件回應於電訊號而帶動所述第一振動元件和所述第二振動元件振動,所述振動產生人耳可聽範圍內的兩個諧振峰。The embodiments of the present specification can provide an acoustic output device, including a first vibration element, a second vibration element and a piezoelectric element, wherein the first vibration element is physically connected to a first position of the piezoelectric element, and the second vibration element is connected to a second position of the piezoelectric element at least through an elastic element, wherein the piezoelectric element drives the first vibration element and the second vibration element to vibrate in response to an electrical signal, and the vibration generates two harmonic peaks within the audible range of the human ear.

本發明的一部分附加特性可以在下面的描述中進行說明。通過對以下描述和相應附圖的研究或者對實施例的生產或操作的瞭解,本發明的一部分附加特性對於所屬技術領域中具有通常知識者是明顯的。本發明的特徵可以通過實踐或使用以下詳細實例中闡述的方法、工具和組合的各個方面來實現和獲得。Some additional features of the present invention may be explained in the following description. Some additional features of the present invention will be apparent to those having ordinary knowledge in the art through study of the following description and corresponding drawings or understanding of the production or operation of the embodiments. The features of the present invention can be realized and obtained by practicing or using various aspects of the methods, tools and combinations described in the following detailed examples.

為了更清楚地說明本發明實施例的技術方案,下面將對實施例描述中所需要使用的附圖作簡單的介紹。顯而易見地,下面描述中的附圖僅僅是本發明的一些示例或實施例,對於所屬技術領域中具有通常知識者來講,在不付出進步性努力的前提下,還可以根據這些附圖將本發明應用於其它類似情景。除非從語言環境中顯而易見或另做說明,圖式中相同的元件符號代表相同結構或操作。In order to more clearly explain the technical solutions of the embodiments of the present invention, the following will briefly introduce the drawings required for the description of the embodiments. Obviously, the drawings described below are only some examples or embodiments of the present invention. For those with ordinary knowledge in the relevant technical field, the present invention can also be applied to other similar scenarios based on these drawings without making any progressive efforts. Unless it is obvious from the language environment or otherwise explained, the same element symbols in the drawings represent the same structure or operation.

應當理解,本文使用的「系統」、「裝置」、「單元」和/或「模組」是用於區分不同級別的不同元件、組件、部件、部分或裝配的一種方法。然而,如果其他詞語可實現相同的目的,則可通過其他表達來替換所述詞語。It should be understood that the "system", "device", "unit" and/or "module" used herein are a method for distinguishing different elements, components, parts, or assemblies at different levels. However, if other words can achieve the same purpose, the words can be replaced by other expressions.

如本發明和申請專利範圍中所示,除非上下文明確提示例外情形,「一」、「一個」、「一種」和/或「該」等詞並非特指單數,也可包括複數。一般說來,術語「包括」與「包含」僅提示包括已明確標識的步驟和元素,而這些步驟和元素不構成一個排它性的羅列,方法或者設備也可能包含其它的步驟或元素。術語「基於」是「至少部分地基於」。術語「一個實施例」表示「至少一個實施例」;術語「另一實施例」表示「至少一個另外的實施例」。As shown in the present invention and the scope of the patent application, unless the context clearly indicates an exception, the words "a", "an", "an" and/or "the" do not specifically refer to the singular and may also include the plural. Generally speaking, the terms "include" and "comprise" only indicate the inclusion of clearly identified steps and elements, and these steps and elements do not constitute an exclusive list. The method or apparatus may also include other steps or elements. The term "based on" means "at least partially based on". The term "one embodiment" means "at least one embodiment"; the term "another embodiment" means "at least one other embodiment".

在本說明書的描述中,需要理解的是,術語「第一」、「第二」、「第三」、「第四」等僅用於描述目的,而不能理解為指示或暗示相對重要性或者隱含指明所指示的技術特徵的數量。由此,限定有「第一」、「第二」、「第三」、「第四」的特徵可以明示或者隱含地包括至少一個該特徵。在本說明書的描述中,「多個」的含義是至少兩個,例如兩個、三個等,除非另有明確具體的限定。In the description of this specification, it should be understood that the terms "first", "second", "third", "fourth", etc. are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as "first", "second", "third", "fourth" may explicitly or implicitly include at least one of the features. In the description of this specification, the meaning of "plurality" is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.

在本說明書中,除非另有明確的規定和限定,術語「連接」、「固定」等術語應做廣義理解。例如,術語「連接」可以指固定連接,也可以是可拆卸連接,或成一體;可以是機械連接,也可以是電連接;可以是直接相連,也可以通過中間媒介間接相連,可以是兩個元件內部的連通或兩個元件的相互作用關係,除非另有明確的限定。對於所屬技術領域中具有通常知識者而言,可以根據具體情況理解上述術語在本說明書中的具體含義。In this specification, unless otherwise clearly defined and limited, the terms "connection", "fixation" and the like should be understood in a broad sense. For example, the term "connection" can refer to fixed connection, detachable connection, or integration; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediate medium; it can be the internal connection of two components or the interaction relationship between two components, unless otherwise clearly defined. For those with ordinary knowledge in the relevant technical field, the specific meanings of the above terms in this specification can be understood according to the specific circumstances.

本發明實施例提供的聲學輸出裝置可以利用逆壓電效應通過壓電元件產生振動而輸出聲音。通常,壓電元件可以採用d33與d31兩種工作模式。在d33工作模式下,壓電元件的振動方向(也可以稱為位移輸出方向)與電學方向(也可以稱為極化方向)相同,其諧振頻率較高且輸出振幅小,低頻響應較差。在d31工作模式下,壓電元件的振動方向與電學方向垂直。在d31工作模式下,雖然通過增長壓電元件的長度可以提供頻率足夠低的低頻峰,輸出振幅也顯著增加,但在這種情況下,壓電元件在可聽域內(例如,20 Hz至20 kHz)存在較多的振動模態,表現為頻響曲線峰谷較多,因此聲學輸出裝置(或壓電式揚聲器)的音質仍然較差。The acoustic output device provided by the embodiment of the present invention can utilize the reverse piezoelectric effect to generate vibration through the piezoelectric element to output sound. Generally, the piezoelectric element can adopt two working modes: d33 and d31. In the d33 working mode, the vibration direction of the piezoelectric element (also called the displacement output direction) is the same as the electrical direction (also called the polarization direction), and its resonant frequency is high and the output amplitude is small, and the low-frequency response is poor. In the d31 working mode, the vibration direction of the piezoelectric element is perpendicular to the electrical direction. In the d31 working mode, although a sufficiently low-frequency peak can be provided by increasing the length of the piezoelectric element and the output amplitude is significantly increased, in this case, the piezoelectric element has more vibration modes in the audible domain (for example, 20 Hz to 20 kHz), which is manifested as more peaks and valleys in the frequency response curve, so the sound quality of the acoustic output device (or piezoelectric speaker) is still poor.

為解決壓電式揚聲器的低頻響應差以及可聽域內模態較多的問題,本說明書的實施例提供的聲學輸出裝置可以包括第一振動元件、第二振動元件以及壓電元件。其中,第一振動元件物理連接於壓電元件的第一位置,第二振動元件至少通過彈性元件連接於壓電元件的第二位置。壓電元件可以回應於電訊號而帶動第一振動元件和第二振動元件振動。該振動能夠產生人耳可聽範圍內的兩個諧振峰(例如,第一諧振峰和第二諧振峰)。In order to solve the problem of poor low-frequency response of piezoelectric speakers and a large number of modes in the audible range, the acoustic output device provided in the embodiments of this specification may include a first vibration element, a second vibration element and a piezoelectric element. The first vibration element is physically connected to the first position of the piezoelectric element, and the second vibration element is connected to the second position of the piezoelectric element at least through an elastic element. The piezoelectric element can drive the first vibration element and the second vibration element to vibrate in response to an electrical signal. The vibration can generate two resonance peaks (for example, a first resonance peak and a second resonance peak) within the audible range of the human ear.

根據本說明書的實施例,通過利用第二振動元件和彈性元件的諧振產生兩個諧振峰中頻率較低(例如,50 Hz至2000 Hz)的第一諧振峰,可以提升壓電元件的低頻響應。此外,由於壓電元件和第一振動元件的諧振可以產生兩個諧振峰中頻率較高(例如,1 kHz至10 kHz)的第二諧振峰,當聲音訊號通過第二振動元件振動輸出(例如第二振動元件與使用者臉部貼合以向使用者傳遞骨傳導聲音,或者第二振動元件推動空氣產生向使用者耳朵輻射的氣傳導聲音)時,可以使得第一諧振峰和第二諧振峰之間的頻響曲線較為平直,從而提升聲學輸出裝置的音質。在一些實施例中,當聲音訊號通過第一振動元件振動輸出(例如,第一振動元件與使用者臉部貼合以向使用者傳遞骨傳導聲音,或者第一振動元件推動空氣產生向使用者耳朵輻射的氣傳導聲音)時,可以提升聲學輸出裝置在中高頻段(例如,500 Hz–10 kHz)的靈敏度,從而有利於聲學輸出裝置在特殊場景下的應用。According to an embodiment of the present specification, the low-frequency response of the piezoelectric element can be enhanced by utilizing the resonance of the second vibration element and the elastic element to generate a first resonance peak with a lower frequency (for example, 50 Hz to 2000 Hz) among two resonance peaks. In addition, since the resonance between the piezoelectric element and the first vibration element can generate a second resonance peak with a higher frequency (for example, 1 kHz to 10 kHz) among the two resonance peaks, when the sound signal is vibrated and output through the second vibration element (for example, the second vibration element fits against the user's face to transmit bone-conducted sound to the user, or the second vibration element pushes the air to generate air-conducted sound radiated to the user's ears), the frequency curve between the first resonance peak and the second resonance peak can be made flatter, thereby improving the sound quality of the acoustic output device. In some embodiments, when the sound signal is vibrated and outputted through the first vibration element (for example, the first vibration element is in contact with the user's face to transmit bone-conducted sound to the user, or the first vibration element pushes the air to produce air-conducted sound radiated toward the user's ears), the sensitivity of the acoustic output device in the mid- and high-frequency bands (for example, 500 Hz-10 kHz) can be improved, thereby facilitating the application of the acoustic output device in special scenarios.

下面結合附圖對本發明實施例提供的聲學輸出裝置進行詳細說明。The acoustic output device provided by the embodiment of the present invention is described in detail below with reference to the accompanying drawings.

圖1是根據本說明書的一些實施例所示的示例性聲學輸出裝置的結構框圖。在一些實施例中,聲學輸出裝置100可以為骨傳導聲學輸出裝置、氣傳導聲學輸出裝置或骨氣傳導結合的聲學輸出裝置。在一些實施例中,聲學輸出裝置100可以包括音響、耳機、眼鏡、助聽器、增強實境(Augmented Reality,AR)設備、虛擬實境(Virtual Reality,VR)設備等或具有音訊播放功能的其他設備(如手機、電腦等)。在一些實施例中,聲學輸出裝置100可以為開放式的聲學輸出裝置。如圖1所示,聲學輸出裝置100可以包括第一振動元件110、第二振動元件120、壓電元件130及彈性元件140。FIG. 1 is a block diagram of an exemplary acoustic output device according to some embodiments of the present specification. In some embodiments, the acoustic output device 100 may be a bone conduction acoustic output device, an air conduction acoustic output device, or a bone-air conduction combined acoustic output device. In some embodiments, the acoustic output device 100 may include audio, headphones, glasses, hearing aids, augmented reality (AR) devices, virtual reality (VR) devices, etc., or other devices with audio playback functions (such as mobile phones, computers, etc.). In some embodiments, the acoustic output device 100 may be an open acoustic output device. As shown in FIG. 1 , the acoustic output device 100 may include a first vibration element 110, a second vibration element 120, a piezoelectric element 130, and an elastic element 140.

第一振動元件110與第二振動元件120均可以為具有一定質量的質量塊。在一些實施例中,第一振動元件110和/或第二振動元件120可以包括振動板、振膜等,以使聲學輸出裝置100通過第一振動元件110和/或第二振動元件120輸出振動。在一些實施例中,質量塊的材質可以包括但不限於金屬(例如,銅、鐵、鎂、鋁、鎢等)、合金(鋁合金、鈦合金、鎢合金等)、高分子材料(例如,聚四氟乙烯、矽橡膠等)等材質。在一些實施例中,第一振動元件110的材質與第二振動元件120的材質可以相同也可以不同。在一些實施例中,第一振動元件110的質量與第二振動元件120的質量可以相同也可以不同。The first vibration element 110 and the second vibration element 120 may both be mass blocks with a certain mass. In some embodiments, the first vibration element 110 and/or the second vibration element 120 may include a vibration plate, a diaphragm, etc., so that the acoustic output device 100 outputs vibrations through the first vibration element 110 and/or the second vibration element 120. In some embodiments, the material of the mass block may include but is not limited to metals (e.g., copper, iron, magnesium, aluminum, tungsten, etc.), alloys (aluminum alloys, titanium alloys, tungsten alloys, etc.), polymer materials (e.g., polytetrafluoroethylene, silicone rubber, etc.), and the like. In some embodiments, the material of the first vibration element 110 and the material of the second vibration element 120 may be the same or different. In some embodiments, the mass of the first vibration element 110 and the mass of the second vibration element 120 may be the same or different.

第一振動元件110可以物理連接(例如,膠接、卡接、螺紋連接、焊接等)於壓電元件130的第一位置,第二振動元件120可以至少通過彈性元件140連接於壓電元件130的第二位置。在一些實施例中,第一位置可以與第二位置相同或不同。例如,當壓電元件130具有樑狀結構時,第一位置和第二位置都可以位於壓電元件130的樑狀結構長度延伸方向的端部。又例如,如圖2所示,第一位置和第二位置可以分別位於壓電元件130的樑狀結構的長度延伸方向的兩端。再例如,如圖7所示,第一位置可以位於壓電元件130的中心,第二位置可以位於壓電元件130的樑狀結構的長度延伸方向的任意一端。在本說明書中,壓電元件130的樑狀結構的長度延伸方向可以指樑狀結構在該延伸方向上的特徵尺寸大於樑狀結構在其他任意方向的特徵尺寸1倍以上的方向。在一些實施例中,樑狀結構可以包括直線型的樑狀結構、彎曲型的樑狀結構等。在本說明書中,將以直線型的樑狀結構作為示例進行說明,其並不旨在限制本說明書的範圍。在一些實施例中,彈性元件140可以直接連接於壓電元件130的第二位置。在一些實施例中,聲學輸出裝置100可以包括連接件(未示出)。第二振動元件120和彈性元件140可以通過連接件連接於壓電元件130的第二位置。例如,如圖7所示,第二振動元件120和彈性元件140可以通過連接件190連接於壓電元件130的端部(即第二位置)。The first vibration element 110 can be physically connected (for example, glued, clamped, screwed, welded, etc.) to the first position of the piezoelectric element 130, and the second vibration element 120 can be connected to the second position of the piezoelectric element 130 at least through the elastic element 140. In some embodiments, the first position can be the same as or different from the second position. For example, when the piezoelectric element 130 has a beam-shaped structure, both the first position and the second position can be located at the end of the length extension direction of the beam-shaped structure of the piezoelectric element 130. For another example, as shown in FIG. 2, the first position and the second position can be located at the two ends of the length extension direction of the beam-shaped structure of the piezoelectric element 130, respectively. For another example, as shown in FIG. 7, the first position can be located at the center of the piezoelectric element 130, and the second position can be located at either end of the length extension direction of the beam-shaped structure of the piezoelectric element 130. In this specification, the length extension direction of the beam structure of the piezoelectric element 130 may refer to a direction in which the characteristic dimension of the beam structure in the extension direction is greater than 1 times the characteristic dimension of the beam structure in any other direction. In some embodiments, the beam structure may include a straight beam structure, a curved beam structure, etc. In this specification, a straight beam structure will be used as an example for explanation, which is not intended to limit the scope of this specification. In some embodiments, the elastic element 140 may be directly connected to the second position of the piezoelectric element 130. In some embodiments, the acoustic output device 100 may include a connector (not shown). The second vibration element 120 and the elastic element 140 may be connected to the second position of the piezoelectric element 130 through the connector. For example, as shown in FIG. 7 , the second vibration element 120 and the elastic element 140 may be connected to the end portion (ie, the second position) of the piezoelectric element 130 via a connector 190 .

第一振動元件110與第二振動元件120可以分別回應於壓電元件130的振動而產生振動。具體地,壓電元件130可以將振動直接傳遞給第一振動元件110,壓電元件130的振動可以通過彈性元件140傳遞至第二振動元件120。在本說明書實施例中,直接與壓電元件130連接的第一振動元件110可以稱為質量端,而通過彈性元件140與壓電元件130連接的第二振動元件120可以稱為彈性質量端。The first vibration element 110 and the second vibration element 120 can generate vibrations in response to the vibration of the piezoelectric element 130. Specifically, the piezoelectric element 130 can directly transmit the vibration to the first vibration element 110, and the vibration of the piezoelectric element 130 can be transmitted to the second vibration element 120 through the elastic element 140. In the embodiment of this specification, the first vibration element 110 directly connected to the piezoelectric element 130 can be called a mass end, and the second vibration element 120 connected to the piezoelectric element 130 through the elastic element 140 can be called an elastic mass end.

在一些實施例中,彈性元件140的材料可以為任何具有傳輸振動能力的材料。例如,彈性元件140的材料可以為矽膠、泡棉、塑膠、橡膠、金屬等,或其任意組合。在一些實施例中,彈性元件140可以是具有良好彈性(即易發生彈性形變)的元器件。例如,彈性元件140可以包括彈簧(例如空氣彈簧、機械彈簧、電磁彈簧等)、傳振片、彈片、基板等,或其任意組合。在一些實施例中,彈性元件140的數量可以是一或多個。例如,如圖2所示,第二振動元件120可以通過一個彈性元件140與壓電元件130連接。又例如,如圖7所示,第二振動元件120可以通過4個彈性元件140與壓電元件130連接。在一些實施例中,彈性元件140的形狀可以是環形、桿狀結構等。在一些實施例中,彈性元件140可以以過壓電元件130的中心的軸成軸對稱分佈。In some embodiments, the material of the elastic element 140 can be any material that has the ability to transmit vibration. For example, the material of the elastic element 140 can be silicone, foam, plastic, rubber, metal, etc., or any combination thereof. In some embodiments, the elastic element 140 can be a component with good elasticity (i.e., prone to elastic deformation). For example, the elastic element 140 can include a spring (such as an air spring, a mechanical spring, an electromagnetic spring, etc.), a vibration-transmitting sheet, a spring sheet, a substrate, etc., or any combination thereof. In some embodiments, the number of elastic elements 140 can be one or more. For example, as shown in FIG. 2 , the second vibration element 120 can be connected to the piezoelectric element 130 via an elastic element 140. For another example, as shown in FIG7 , the second vibration element 120 may be connected to the piezoelectric element 130 via four elastic elements 140. In some embodiments, the elastic element 140 may be in a ring shape, a rod-shaped structure, etc. In some embodiments, the elastic elements 140 may be axially symmetrically distributed with respect to the axis of the center of the piezoelectric element 130.

壓電元件130可以是能利用逆壓電效應將電能轉換為機械能的電能轉換設備。在一些實施例中,壓電元件130可以由壓電陶瓷、壓電石英、壓電晶體、壓電聚合物等具有壓電效應的材料組成。在一些實施例中,壓電元件130可以為片狀、環狀、棱型、長方體型、柱型、球型等形狀,或其任意組合,也可以為其他不規則形狀。在一些實施例中,壓電元件130可以包括樑狀結構(如圖2、圖7、圖16等所示)。作為示例,其可以包括兩層壓電片和基板,兩層壓電片分別貼附在基板的相反兩側。基板可以根據兩層壓電片沿樑狀結構的長度延伸方向的伸縮產生振動(例如,沿著垂直於基板表面的方向振動)。更多關於樑狀結構的描述可以參見圖2及其描述。The piezoelectric element 130 may be an electric energy conversion device that can convert electric energy into mechanical energy using the reverse piezoelectric effect. In some embodiments, the piezoelectric element 130 may be composed of materials having a piezoelectric effect, such as piezoelectric ceramics, piezoelectric quartz, piezoelectric crystals, and piezoelectric polymers. In some embodiments, the piezoelectric element 130 may be in the shape of a sheet, a ring, a prism, a rectangular parallelepiped, a column, a sphere, or any combination thereof, or may be other irregular shapes. In some embodiments, the piezoelectric element 130 may include a beam structure (as shown in FIG. 2 , FIG. 7 , FIG. 16 , etc.). As an example, it may include two layers of piezoelectric sheets and a substrate, and the two layers of piezoelectric sheets are attached to opposite sides of the substrate, respectively. The substrate can vibrate according to the expansion and contraction of the two layers of piezoelectric sheets along the length extension direction of the beam structure (for example, vibrate along a direction perpendicular to the substrate surface). For more description of the beam structure, please refer to FIG. 2 and its description.

在一些實施例中,當壓電元件130包括樑狀結構時,第一位置和第二位置可以分別位於壓電元件130的兩個端部(如圖2所示)。在一些實施例中,當壓電元件130包括樑狀結構時,第一位置可以位於樑狀結構的長度延伸方向的中心。第二位置可以位於樑狀結構的長度延伸方向的端部(如圖7所示)。在一些實施例中,當壓電元件130包括樑狀結構時,第一振動元件110可以包括兩個子振動元件,其中,兩個子振動元件可以分別連接在壓電元件130的長度延伸方向的兩端(即第一位置)(如圖17所示)。第二位置可以位於壓電元件130的長度延伸方向的中心。In some embodiments, when the piezoelectric element 130 includes a beam-shaped structure, the first position and the second position may be located at two ends of the piezoelectric element 130, respectively (as shown in FIG. 2 ). In some embodiments, when the piezoelectric element 130 includes a beam-shaped structure, the first position may be located at the center of the length extension direction of the beam-shaped structure. The second position may be located at the end of the length extension direction of the beam-shaped structure (as shown in FIG. 7 ). In some embodiments, when the piezoelectric element 130 includes a beam-shaped structure, the first vibration element 110 may include two sub-vibration elements, wherein the two sub-vibration elements may be connected to the two ends (i.e., the first position) of the length extension direction of the piezoelectric element 130, respectively (as shown in FIG. 17 ). The second position may be located at the center of the length extension direction of the piezoelectric element 130.

壓電元件130可以在驅動電壓(或激勵訊號)的作用下發生變形,從而產生振動。該振動可以帶動第一振動元件110和第二振動元件120振動,從而產生人耳可聽範圍內(例如,20 Hz至 20 kHz)的兩個諧振峰。具體地,第二振動元件120和彈性元件140的諧振可以產生所述兩個諧振峰中頻率較低(例如,20 Hz至2000 Hz)的第一諧振峰(如圖4中的虛線圈X中的諧振峰),壓電元件130和第一振動元件110的諧振可以產生所述兩個諧振峰中頻率較高(例如,1 kHz至10 kHz)的第二諧振峰(如圖4中的虛線圈Y中的諧振峰)。第二諧振峰對應的頻率(也可以稱為第二諧振頻率)可以高於第一諧振峰對應的頻率(也可以稱為第一諧振頻率)。The piezoelectric element 130 may be deformed under the action of a driving voltage (or an excitation signal), thereby generating vibration. The vibration may drive the first vibration element 110 and the second vibration element 120 to vibrate, thereby generating two resonance peaks within the audible range of the human ear (e.g., 20 Hz to 20 kHz). Specifically, the resonance of the second vibration element 120 and the elastic element 140 can generate a first resonance peak (such as the resonance peak in the dotted coil X in FIG. 4 ) with a lower frequency among the two resonance peaks (for example, 20 Hz to 2000 Hz), and the resonance of the piezoelectric element 130 and the first vibration element 110 can generate a second resonance peak (such as the resonance peak in the dotted coil Y in FIG. 4 ) with a higher frequency among the two resonance peaks (for example, 1 kHz to 10 kHz). The frequency corresponding to the second resonance peak (also referred to as the second resonance frequency) can be higher than the frequency corresponding to the first resonance peak (also referred to as the first resonance frequency).

在一些實施例中,通過調整第二振動元件120的質量和/或彈性元件140的彈性係數可以調整第一諧振峰對應的第一諧振頻率的頻率範圍。在一些實施例中,第一諧振頻率的頻率範圍可以為50 Hz至1500 Hz。在一些實施例中,第一諧振頻率的頻率範圍可以為100 Hz至1000 Hz。在一些實施例中,第一諧振頻率的頻率範圍可以為150 Hz至500 Hz。In some embodiments, the frequency range of the first harmonic frequency corresponding to the first harmonic peak can be adjusted by adjusting the mass of the second vibration element 120 and/or the elastic coefficient of the elastic element 140. In some embodiments, the frequency range of the first harmonic frequency can be 50 Hz to 1500 Hz. In some embodiments, the frequency range of the first harmonic frequency can be 100 Hz to 1000 Hz. In some embodiments, the frequency range of the first harmonic frequency can be 150 Hz to 500 Hz.

在一些實施例中,通過調整壓電元件130的性能參數可以調整第二諧振峰對應的第二諧振頻率的頻率範圍。在一些實施例中,壓電元件130的性能參數可以包括幾何參數、材料參數等。示例性的幾何參數可以包括厚度、長度等。示例性的材料參數可以包括彈性模量、密度等。在一些實施例中,第二諧振頻率可以是壓電元件130的自然頻率。在一些實施例中,第二諧振頻率的頻率範圍可以為1 kHz至10 kHz。在一些實施例中,第二諧振頻率的頻率範圍可以為1 kHz至8 kHz。在一些實施例中,第二諧振頻率的頻率範圍可以為2 kHz至5 kHz。在一些實施例中,第二諧振頻率的頻率範圍可以為3 kHz至4 kHz。In some embodiments, the frequency range of the second resonant frequency corresponding to the second resonant peak can be adjusted by adjusting the performance parameters of the piezoelectric element 130. In some embodiments, the performance parameters of the piezoelectric element 130 may include geometric parameters, material parameters, etc. Exemplary geometric parameters may include thickness, length, etc. Exemplary material parameters may include elastic modulus, density, etc. In some embodiments, the second resonant frequency may be the natural frequency of the piezoelectric element 130. In some embodiments, the frequency range of the second resonant frequency may be 1 kHz to 10 kHz. In some embodiments, the frequency range of the second resonant frequency may be 1 kHz to 8 kHz. In some embodiments, the frequency range of the second resonant frequency may be 2 kHz to 5 kHz. In some embodiments, the frequency range of the second resonant frequency may be 3 kHz to 4 kHz.

在一些實施例中,可以在聲學輸出裝置100中的一或多個元件上附加阻尼,從而使聲學輸出裝置100的輸出的頻響曲線更加平滑。例如,可以使用阻尼效果較大的材料(例如,矽膠、橡膠、泡棉等)來製備彈性元件140。又例如,可以在壓電元件130上塗覆阻尼材料。再例如,可以在第一振動元件110和/或第二振動元件120上塗覆阻尼材料或電磁阻尼。In some embodiments, damping may be added to one or more elements in the acoustic output device 100, so as to make the frequency response curve of the output of the acoustic output device 100 smoother. For example, a material with a large damping effect (e.g., silicone, rubber, foam, etc.) may be used to prepare the elastic element 140. For another example, a damping material may be coated on the piezoelectric element 130. For another example, a damping material or electromagnetic damping may be coated on the first vibration element 110 and/or the second vibration element 120.

在一些實施例中,壓電元件130(或聲學輸出裝置100)的振動可以通過第一振動元件110和/或第二振動元件120以骨傳導的方式傳遞給使用者。示例性的,第二振動元件120可以直接與使用者的頭部皮膚接觸,壓電元件130的振動通過第二振動元件120傳遞至使用者面部的骨骼和/或肌肉,最終傳遞到使用者的耳部。又例如,第二振動元件120也可以不與人體直接接觸,壓電元件130的振動可以通過第二振動元件120傳遞至聲學輸出裝置的外殼,再由外殼傳遞至使用者面部骨骼和/或肌肉,最終傳遞到使用者的耳部。在一些實施例中,壓電元件130的振動也可以通過第一振動元件110和/或第二振動元件120以氣傳導的方式傳遞給使用者。示例性地,第二振動元件120可以直接帶動其周圍的空氣振動,從而通過空氣傳遞至使用者耳部。又例如,第二振動元件120可以進一步地與振膜相連,第二振動元件120的振動可以傳遞至振膜,再由振膜帶動空氣振動,從而通過空氣傳遞至使用者耳部。In some embodiments, the vibration of the piezoelectric element 130 (or the acoustic output device 100) can be transmitted to the user by bone conduction through the first vibration element 110 and/or the second vibration element 120. For example, the second vibration element 120 can be directly in contact with the skin of the user's head, and the vibration of the piezoelectric element 130 is transmitted to the bones and/or muscles of the user's face through the second vibration element 120, and finally transmitted to the user's ears. For another example, the second vibration element 120 may not be in direct contact with the human body, and the vibration of the piezoelectric element 130 can be transmitted to the outer shell of the acoustic output device through the second vibration element 120, and then transmitted from the outer shell to the bones and/or muscles of the user's face, and finally transmitted to the user's ears. In some embodiments, the vibration of the piezoelectric element 130 can also be transmitted to the user by air conduction through the first vibration element 110 and/or the second vibration element 120. For example, the second vibration element 120 can directly drive the air around it to vibrate, thereby transmitting to the user's ears through the air. For another example, the second vibration element 120 can be further connected to the diaphragm, and the vibration of the second vibration element 120 can be transmitted to the diaphragm, and then the diaphragm drives the air to vibrate, thereby transmitting to the user's ears through the air.

在一些實施例中,聲學輸出裝置100還可以包括第二壓電元件150。在一些實施例中,壓電元件130(也可以稱為第一壓電元件130)和第二壓電元件150均可以包括樑狀結構。第二壓電元件150的樑狀結構的長度(即沿樑狀結構的長度延伸方向的尺寸,也可以稱為第二長度)可以短於第一壓電元件130的樑狀結構的長度(也可以稱為第一長度)。在一些實施例中,第二壓電元件150可以直接與第二振動元件120連接。例如,第二壓電元件150可以直接貼附在第二振動元件120上。第二壓電元件150可以接收第二振動元件120的振動。第二壓電元件150諧振可以產生頻率高於第一諧振峰和第二諧振峰的第三諧振峰。在一些實施例中,通過調整第二壓電元件150的性能參數(例如,幾何參數、材料參數等)可以調整第三諧振峰對應的第三諧振頻率的頻率範圍。在一些實施例中,第三諧振頻率的頻率範圍可以為10 kHz至40 kHz。更多關於第二壓電元件150的描述可以參見圖10,此處不再贅述。In some embodiments, the acoustic output device 100 may further include a second piezoelectric element 150. In some embodiments, the piezoelectric element 130 (also referred to as the first piezoelectric element 130) and the second piezoelectric element 150 may both include a beam structure. The length of the beam structure of the second piezoelectric element 150 (i.e., the dimension along the length extension direction of the beam structure, also referred to as the second length) may be shorter than the length of the beam structure of the first piezoelectric element 130 (also referred to as the first length). In some embodiments, the second piezoelectric element 150 may be directly connected to the second vibration element 120. For example, the second piezoelectric element 150 may be directly attached to the second vibration element 120. The second piezoelectric element 150 may receive the vibration of the second vibration element 120. The second piezoelectric element 150 resonates to generate a third resonant peak having a higher frequency than the first resonant peak and the second resonant peak. In some embodiments, the frequency range of the third resonant frequency corresponding to the third resonant peak can be adjusted by adjusting the performance parameters (e.g., geometric parameters, material parameters, etc.) of the second piezoelectric element 150. In some embodiments, the frequency range of the third resonant frequency can be 10 kHz to 40 kHz. For more description of the second piezoelectric element 150, please refer to FIG. 10, which will not be repeated here.

在一些實施例中,聲學輸出裝置100還可以包括第三壓電元件160。第三壓電元件160可以回應於電訊號產生振動並將振動傳遞給第二壓電元件150。在一些實施例中,第三壓電元件160的振動可以通過第三振動元件傳遞給第二壓電元件150。在一些實施例中,第三振動元件可以至少通過第二彈性元件與第三壓電元件160相連。第三壓電元件160諧振可以產生頻率低於第三諧振峰的第四諧振峰。更多關於第三壓電元件160的描述可以參見圖14,此處不再贅述。In some embodiments, the acoustic output device 100 may further include a third piezoelectric element 160. The third piezoelectric element 160 may generate vibration in response to the electrical signal and transmit the vibration to the second piezoelectric element 150. In some embodiments, the vibration of the third piezoelectric element 160 may be transmitted to the second piezoelectric element 150 via the third vibration element. In some embodiments, the third vibration element may be connected to the third piezoelectric element 160 at least via the second elastic element. The resonance of the third piezoelectric element 160 may generate a fourth resonance peak having a frequency lower than the third resonance peak. For more description of the third piezoelectric element 160, please refer to FIG. 14, which will not be repeated here.

在一些實施例中,聲學輸出裝置100還可以包括殼體結構170。殼體結構170可以被配置為承載聲學輸出裝置100的其他部件(例如,第一振動元件110、第二振動元件120、壓電元件130、彈性元件140等)。在一些實施例中,殼體結構170可以是內部中空的封閉式或半封閉式結構,且聲學輸出裝置100的其他部件位於殼體結構內或上。在一些實施例中,殼體結構的形狀可以為長方體、圓柱體、圓臺等規則或不規則形狀的立體結構。當使用者佩戴聲學輸出裝置100時,殼體結構可以位於靠近使用者耳朵附近的位置。例如,殼體結構可以位於使用者耳廓的周側(例如,前側或後側)。又例如,殼體結構可以位於使用者耳朵上但不堵塞或覆蓋使用者的耳道。在一些實施例中,聲學輸出裝置100可以為骨傳導耳機,殼體結構的至少一側可以與使用者的皮膚接觸。骨傳導耳機中聲學驅動器元件(例如,壓電元件130、第一振動元件110、彈性元件140和第二振動元件120的組合)將音訊訊號轉換為機械振動,該機械振動可以通過殼體結構以及使用者的骨骼傳遞至使用者的聽覺神經。在一些實施例中,聲學輸出裝置100可以為氣傳導耳機,殼體結構的至少一側可以與使用者的皮膚接觸或不接觸。殼體結構的側壁上包括至少一個導聲孔,氣傳導耳機中的聲學驅動器元件將音訊訊號轉換為氣傳導聲音,該氣傳導聲音可以通過導聲孔向使用者耳朵的方向進行輻射。In some embodiments, the acoustic output device 100 may further include a housing structure 170. The housing structure 170 may be configured to carry other components of the acoustic output device 100 (e.g., the first vibration element 110, the second vibration element 120, the piezoelectric element 130, the elastic element 140, etc.). In some embodiments, the housing structure 170 may be a closed or semi-closed structure with a hollow interior, and other components of the acoustic output device 100 are located in or on the housing structure. In some embodiments, the housing structure may be a three-dimensional structure of a regular or irregular shape such as a cuboid, a cylinder, or a frustum. When a user wears the acoustic output device 100, the housing structure may be located near the user's ear. For example, the housing structure may be located around the user's auricle (e.g., the front side or the back side). For another example, the housing structure may be located on the user's ear but does not block or cover the user's ear canal. In some embodiments, the acoustic output device 100 may be a bone conduction earphone, and at least one side of the housing structure may be in contact with the user's skin. The acoustic driver element in the bone conduction earphone (e.g., a combination of a piezoelectric element 130, a first vibration element 110, an elastic element 140, and a second vibration element 120) converts the audio signal into mechanical vibration, which can be transmitted to the user's auditory nerve through the housing structure and the user's bones. In some embodiments, the acoustic output device 100 may be an air conduction earphone, and at least one side of the housing structure may or may not be in contact with the user's skin. The side wall of the housing structure includes at least one sound-conducting hole, and the acoustic driver element in the air conduction earphone converts the audio signal into air-conducted sound, which can be radiated toward the user's ear through the sound-conducting hole.

在一些實施例中,聲學輸出裝置100可以包括固定結構180。固定結構180可以被配置為將聲學輸出裝置100固定在使用者耳朵附近。在一些實施例中,固定結構180可以與聲學輸出裝置100的殼體結構170物理連接(例如,膠接、卡接、螺紋連接、焊接等)。在一些實施例中,聲學輸出裝置100的殼體結構170可以為固定結構180的一部分。在一些實施例中,固定結構180可以包括耳掛、後掛、彈性帶、眼鏡腿等,使得聲學輸出裝置100可以更好地固定在使用者耳朵附近位置,防止使用者在使用時發生掉落。例如,固定結構180可以為耳掛,耳掛可以被配置為圍繞耳部區域佩戴。在一些實施例中,耳掛可以是連續的鉤狀物,並可以被彈性地拉伸以佩戴在使用者的耳部,同時耳掛還可以對使用者的耳廓施加壓力,使得聲學輸出裝置100牢固地固定在使用者的耳部或頭部的特定位置上。在一些實施例中,耳掛可以是不連續的帶狀物。例如,耳掛可以包括剛性部分和柔性部分。剛性部分可以由剛性材料(例如,塑膠或金屬)製成,剛性部分可以與聲學輸出裝置100的殼體結構170通過物理連接(例如,卡接、螺紋連接等)的方式進行固定。柔性部分可以由彈性材料(例如,布料、複合材料或/和氯丁橡膠)製成。又例如,固定結構180可以為頸帶,被配置為圍繞頸/肩區域佩戴。再例如,固定結構180可以為眼鏡腿,其作為眼鏡的一部分,被架設在使用者耳部。In some embodiments, the acoustic output device 100 may include a fixing structure 180. The fixing structure 180 may be configured to fix the acoustic output device 100 near the ear of the user. In some embodiments, the fixing structure 180 may be physically connected to the housing structure 170 of the acoustic output device 100 (e.g., glued, clamped, screwed, welded, etc.). In some embodiments, the housing structure 170 of the acoustic output device 100 may be a part of the fixing structure 180. In some embodiments, the fixing structure 180 may include an ear hook, a back hook, an elastic band, a temple of glasses, etc., so that the acoustic output device 100 can be better fixed near the ear of the user to prevent the user from falling off during use. For example, the fixing structure 180 may be an ear hook, and the ear hook may be configured to be worn around the ear area. In some embodiments, the ear hook may be a continuous hook and may be elastically stretched to be worn on the user's ear. The ear hook may also apply pressure to the user's auricle so that the acoustic output device 100 is firmly fixed to a specific position of the user's ear or head. In some embodiments, the ear hook may be a discontinuous strip. For example, the ear hook may include a rigid portion and a flexible portion. The rigid portion may be made of a rigid material (e.g., plastic or metal), and the rigid portion may be fixed to the housing structure 170 of the acoustic output device 100 by physical connection (e.g., snap connection, thread connection, etc.). The flexible portion may be made of an elastic material (e.g., cloth, composite material, or/and neoprene). For another example, the fixing structure 180 can be a neck strap, configured to be worn around the neck/shoulder area. For another example, the fixing structure 180 can be a glasses leg, which is a part of the glasses and is set on the user's ears.

應當注意的是,以上關於圖1的描述僅僅是出於說明的目的而提供的,並不旨在限制本發明的範圍。對於本領域的普通技術人員來說,根據本發明的指導可以做出多種變化和修改。例如,在一些實施例中,聲學輸出裝置100還可以包括一或多個部件(例如,訊號收發器、互動模組、電池等)。在一些實施例中,聲學輸出裝置100中的一或多個部件可以被其他能實現類似功能的元件替代。例如,聲學輸出裝置100可以不包括固定結構180,殼體結構170或其一部分可以為具有人體耳朵適配形狀(例如圓環形、橢圓形、多邊形(規則或不規則)、U型、V型、半圓形)的殼體結構,以便殼體結構可以掛靠在使用者的耳朵附近。這些變化和修改不會背離本發明的範圍。It should be noted that the above description of FIG. 1 is provided for illustrative purposes only and is not intended to limit the scope of the present invention. For a person of ordinary skill in the art, various changes and modifications may be made according to the teachings of the present invention. For example, in some embodiments, the acoustic output device 100 may further include one or more components (e.g., a signal transceiver, an interactive module, a battery, etc.). In some embodiments, one or more components in the acoustic output device 100 may be replaced by other components that can achieve similar functions. For example, the acoustic output device 100 may not include the fixing structure 180, and the housing structure 170 or a portion thereof may be a housing structure having a shape adapted to the human ear (e.g., a ring shape, an ellipse shape, a polygon (regular or irregular), a U shape, a V shape, a semicircle shape), so that the housing structure can be hung near the user's ear. Such changes and modifications will not depart from the scope of the invention.

圖2是根據本發明的一些實施例所示的示例性聲學輸出裝置的結構示意圖。圖3是根據本說明書一些實施例所示的壓電懸臂樑模型。如圖2所示,聲學輸出裝置200可以包括第一振動元件110、第二振動元件120、壓電元件130及彈性元件140。壓電元件130可以包括樑狀結構。第一振動元件110連接在壓電元件130的一端(即第一位置),第二振動元件120通過彈性元件140連接在壓電元件130的另一端(即第二位置)。壓電元件130可以帶動第一振動元件110和第二振動元件120振動。該振動可以產生人耳可聽範圍內的兩個諧振峰(如圖4所示)。需要知道的是,當壓電元件130振動時,樑狀結構沿長度延伸方向的端部的振幅較大,靈敏度較高,因此,第一位置和第二位置設於樑狀結構沿長度延伸方向的端部,可以提升聲學輸出裝置200的頻響的靈敏度。在一些實施例中,聲學輸出裝置200還可以包括固定結構(未示出),其可以被配置為將聲學輸出裝置200固定在使用者耳朵附近,從而使壓電元件130與第一振動元件110(和/或第二振動元件120)構成懸臂樑結構。在本發明中,具有樑狀結構的壓電元件的長度延伸方向上一端連接一振動元件,另一端通過彈性元件連接另一振動元件的結構可以簡稱為單樑結構。FIG. 2 is a schematic diagram of the structure of an exemplary acoustic output device according to some embodiments of the present invention. FIG. 3 is a piezoelectric cantilever beam model according to some embodiments of the present specification. As shown in FIG. 2 , the acoustic output device 200 may include a first vibration element 110, a second vibration element 120, a piezoelectric element 130 and an elastic element 140. The piezoelectric element 130 may include a beam structure. The first vibration element 110 is connected to one end of the piezoelectric element 130 (i.e., the first position), and the second vibration element 120 is connected to the other end of the piezoelectric element 130 (i.e., the second position) through the elastic element 140. The piezoelectric element 130 may drive the first vibration element 110 and the second vibration element 120 to vibrate. The vibration may generate two resonance peaks within the audible range of the human ear (as shown in FIG. 4 ). It should be noted that when the piezoelectric element 130 vibrates, the end of the beam-shaped structure along the length extension direction has a larger amplitude and a higher sensitivity. Therefore, the first position and the second position are set at the end of the beam-shaped structure along the length extension direction, which can improve the sensitivity of the frequency response of the acoustic output device 200. In some embodiments, the acoustic output device 200 may also include a fixing structure (not shown), which can be configured to fix the acoustic output device 200 near the user's ear, so that the piezoelectric element 130 and the first vibration element 110 (and/or the second vibration element 120) form a cantilever beam structure. In the present invention, a structure in which one end of the piezoelectric element with a beam-shaped structure in the length extension direction is connected to a vibration element, and the other end is connected to another vibration element through an elastic element can be simply referred to as a single beam structure.

在一些實施例中,壓電元件130可以包括兩個壓電片(即,壓電片132和壓電片134)與基板136。基板136可以被配置為承載元器件的載體以及回應振動發生形變的元件。在一些實施例中,基板136的材料可以包括金屬(如覆銅箔、鋼製等)、酚醛樹脂、交聯聚苯乙烯等中的一種或多種的組合。在一些實施例中,基板136的形狀可以根據壓電元件130的形狀進行確定。例如,壓電元件130包括樑狀結構,則基板136可以對應設置為長條狀。又例如,壓電元件130為壓電膜,則基板136可以對應設置為板狀、片狀。In some embodiments, the piezoelectric element 130 may include two piezoelectric sheets (i.e., a piezoelectric sheet 132 and a piezoelectric sheet 134) and a substrate 136. The substrate 136 may be configured as a carrier for carrying components and an element that deforms in response to vibration. In some embodiments, the material of the substrate 136 may include a combination of one or more of metals (such as copper foil, steel, etc.), phenolic resin, cross-linked polystyrene, etc. In some embodiments, the shape of the substrate 136 may be determined according to the shape of the piezoelectric element 130. For example, if the piezoelectric element 130 includes a beam-shaped structure, the substrate 136 may be correspondingly configured as a strip. For another example, if the piezoelectric element 130 is a piezoelectric film, the substrate 136 may be correspondingly configured as a plate or sheet.

壓電片132和壓電片134可以為被配置為提供壓電效應和/或逆壓電效應的元件。在一些實施例中,壓電片可以覆蓋於基板136的一或多個表面,並在驅動電壓的作用下發生形變帶動基板136發生形變,從而實現壓電元件130輸出振動。例如,沿壓電元件130的厚度方向(如圖箭頭BB’所示),壓電片132和壓電片134分別貼附在基板136的相反兩側,基板136可以根據壓電片132和壓電片134沿壓電元件130長度延伸方向(如圖箭頭AA’所示)的伸縮而產生振動。具體地,當沿壓電元件130的厚度方向BB’通電時,位於基板136一側的壓電片可以沿其長度延伸方向收縮,位於基板136另一側的壓電片可以沿其長度延伸方向伸長,從而帶動基板136沿垂直於基板136表面的方向(即厚度方向BB’)彎曲振動。The piezoelectric sheet 132 and the piezoelectric sheet 134 may be elements configured to provide a piezoelectric effect and/or an inverse piezoelectric effect. In some embodiments, the piezoelectric sheet may cover one or more surfaces of the substrate 136, and deform under the action of a driving voltage to drive the substrate 136 to deform, thereby achieving the output vibration of the piezoelectric element 130. For example, along the thickness direction of the piezoelectric element 130 (as shown by arrow BB' in the figure), the piezoelectric sheet 132 and the piezoelectric sheet 134 are respectively attached to opposite sides of the substrate 136, and the substrate 136 may generate vibration according to the expansion and contraction of the piezoelectric sheet 132 and the piezoelectric sheet 134 along the length extension direction of the piezoelectric element 130 (as shown by arrow AA' in the figure). Specifically, when electricity is applied along the thickness direction BB’ of the piezoelectric element 130, the piezoelectric strip on one side of the substrate 136 can shrink along its length extension direction, and the piezoelectric strip on the other side of the substrate 136 can stretch along its length extension direction, thereby driving the substrate 136 to bend and vibrate in a direction perpendicular to the surface of the substrate 136 (i.e., the thickness direction BB’).

在一些實施例中,壓電片132和/或134的材質可以包括壓電陶瓷、壓電石英、壓電晶體、壓電聚合物等,或其任意組合。示例性壓電晶體可以包括水晶、閃鋅礦、方硼石、電氣石、紅鋅礦、GaAs、鈦酸鋇及其衍生結構晶體、KH2PO4、NaKC4H4O6·4H2O(羅息鹽)等。示例性壓電陶瓷材料可以包括鈦酸鋇(BT)、鋯鈦酸鉛(PZT)、鈮酸鉛鋇鋰(PBLN)、改性鈦酸鉛(PT)、氮化鋁(AIN)、氧化鋅(ZnO)等,或其任意組合。示例性壓電聚合物材料可以包括聚偏氟乙烯(PVDF)等。In some embodiments, the material of the piezoelectric sheet 132 and/or 134 may include piezoelectric ceramics, piezoelectric quartz, piezoelectric crystals, piezoelectric polymers, etc., or any combination thereof. Exemplary piezoelectric crystals may include crystal, pyrophyllite, borate, pyrotechnics, red zinc ore, GaAs, barium titanium and its derivative structure crystals, KH2PO4, NaKC4H4O6·4H2O (Rosenberg salt), etc. Exemplary piezoelectric ceramic materials may include barium titanium (BT), lead zirconate titanium (PZT), barium lithium lead niobate (PBLN), modified lead titanium (PT), aluminum nitride (AIN), zinc oxide (ZnO), etc., or any combination thereof. Exemplary piezoelectric polymer materials may include polyvinylidene fluoride (PVDF), etc.

第二振動元件120和彈性元件140組成的彈性質量端的諧振可以產生頻率較低的第一諧振峰,壓電元件130和第一振動元件110的諧振可以產生頻率較高的第二諧振峰。例如,第一諧振峰對應的第一諧振頻率f0的範圍可以為50 Hz至2000 Hz,第二諧振峰對應的第二諧振頻率f1的範圍可以為1 kHz至10 kHz。在一些實施例中,當振動訊號從彈性質量端的質量元件(即第二振動元件120)輸出時,在聲學輸出裝置200的頻響曲線的第一諧振峰和第二諧振峰之間形成了平直的頻響曲線(如圖4中曲線L41所示)。在一些實施例中,第一諧振峰對應的第一諧振頻率的大小受第二振動元件120的質量和彈性元件140的彈性係數的影響。在一些實施例中,第一諧振峰的第一諧振頻率可以根據公式(1)確定: ,                         (1) 其中, f 0表示第一諧振頻率, k表示彈性元件140的彈性係數, m表示第二振動元件120的質量。 The resonance of the elastic mass end composed of the second vibration element 120 and the elastic element 140 can generate a first resonance peak with a lower frequency, and the resonance of the piezoelectric element 130 and the first vibration element 110 can generate a second resonance peak with a higher frequency. For example, the first resonance frequency f0 corresponding to the first resonance peak can range from 50 Hz to 2000 Hz, and the second resonance frequency f1 corresponding to the second resonance peak can range from 1 kHz to 10 kHz. In some embodiments, when the vibration signal is output from the mass element (i.e., the second vibration element 120) at the elastic mass end, a flat frequency curve is formed between the first harmonic peak and the second harmonic peak of the frequency curve of the acoustic output device 200 (as shown by curve L41 in FIG. 4 ). In some embodiments, the magnitude of the first harmonic frequency corresponding to the first harmonic peak is affected by the mass of the second vibration element 120 and the elastic coefficient of the elastic element 140. In some embodiments, the first harmonic frequency of the first harmonic peak can be determined according to formula (1): , (1) Wherein, f0 represents the first harmonic frequency, k represents the elastic coefficient of the elastic element 140, and m represents the mass of the second vibration element 120.

請參照圖3,第二諧振峰的第二諧振頻率 f 1可近似由與樑狀結構的壓電元件130等長的壓電懸臂樑自由端138的頻響的一階諧振峰確定。例如,第二諧振峰的第二諧振頻率可以根據公式(2)確定: ,                   (2) 其中, b為壓電元件130寬度, E b 為基板136材料的彈性模量, I b 為基板136區域的慣性矩, E p 為壓電片132或134材料的彈性模量, I p 為壓電片132或134區域的慣性矩, ρ l 為壓電片132或134的單位長度密度, l為壓電元件130的長度。需要知道的是,本說明書中,壓電懸臂樑可以指如圖2所示的單樑結構中壓電元件130上不連彈性元件140和第二振動元件120時的結構。 3 , the second resonance frequency f1 of the second resonance peak can be approximately determined by the first-order resonance peak of the frequency response of the free end 138 of the piezoelectric cantilever beam having the same length as the piezoelectric element 130 of the beam-shaped structure. For example, the second resonance frequency of the second resonance peak can be determined according to formula (2): , (2) Wherein, b is the width of the piezoelectric element 130, Eb is the elastic modulus of the material of the substrate 136, Ib is the inertia moment of the region of the substrate 136, Ep is the elastic modulus of the material of the piezoelectric sheet 132 or 134, Ip is the inertia moment of the region of the piezoelectric sheet 132 or 134, ρl is the unit length density of the piezoelectric sheet 132 or 134, and l is the length of the piezoelectric element 130. It should be noted that in this specification, the piezoelectric cantilever beam may refer to a structure in which the elastic element 140 and the second vibration element 120 are not connected to the piezoelectric element 130 in the single beam structure as shown in FIG. 2.

基板136區域的慣性矩 I b 滿足: ,                           (3) 其中, h b 為基板136的厚度。 The moment of inertia Ib of the substrate 136 region satisfies: , (3) where hb is the thickness of the substrate 136.

壓電片132或134區域的慣性矩 I p 滿足: ,                 (4) 其中, h p 為壓電片132或134的厚度。 The inertia moment I p of the piezoelectric sheet 132 or 134 satisfies: , (4) wherein h p is the thickness of the piezoelectric sheet 132 or 134.

壓電元件130單位長度密度 ρ l 滿足: ,                     (5) 其中, ρ b 為基板136密度, ρ p 為壓電片132或134的材料密度。 The piezoelectric element 130 unit length density ρ l satisfies: , (5) Wherein, ρ b is the density of the substrate 136, and ρ p is the material density of the piezoelectric sheet 132 or 134.

因此,在一些實施例中,可以通過對壓電元件130的性能參數(例如,材料參數(包括彈性模量、密度)、幾何參數(包括厚度、長度)等)進行設計,以調整聲學輸出裝置200的第二諧振頻率 f 1Therefore, in some embodiments, the second resonant frequency f 1 of the acoustic output device 200 can be adjusted by designing the performance parameters (eg, material parameters (including elastic modulus, density), geometric parameters (including thickness , length), etc.) of the piezoelectric element 130 .

具體地,在一些實施例中,可以通過調節壓電元件130的長度來調節聲學輸出裝置200的頻響曲線中的平直曲線範圍。在一些實施例中,如圖5所示,為了保證音質,使在可聽域(20 Hz~20 kHz)範圍內出現儘量少的高階模態(或振動模態),壓電元件130的樑狀結構應盡可能短。在一些實施例中,為了保證聲學輸出裝置200在低頻段(例如,100 Hz至1000 Hz)的靈敏度,壓電元件130的樑狀結構的長度不能太短。在一些實施例中,為了提高聲學輸出裝置200在低頻段(例如,100 Hz至1000 Hz)的靈敏度,且在100 Hz至500 Hz區間具有平坦的頻響曲線,壓電元件130的長度可以在20 mm至30 mm之間。在一些實施例中,為了不降低聲學輸出裝置200在低頻段(例如,100 Hz至800 Hz)的靈敏度,且在200 Hz至2000 Hz區間具有平坦的頻響曲線,壓電元件130的長度可以在10 mm至20 mm之間。在一些實施例中,為了使聲學輸出裝置200在200 Hz至5 kHz區間具有平坦的頻響曲線,壓電元件130的長度可以在3 mm至10 mm之間。在一些實施例中,還可以通過調節質量端(即第一壓電元件110)的質量來實現對諧振峰(例如,第一諧振峰和/或第二諧振峰)的微調(如圖6所示)。Specifically, in some embodiments, the range of the flat curve in the frequency response curve of the acoustic output device 200 can be adjusted by adjusting the length of the piezoelectric element 130. In some embodiments, as shown in FIG5 , in order to ensure the sound quality and minimize the high-order modes (or vibration modes) within the audible range (20 Hz to 20 kHz), the beam structure of the piezoelectric element 130 should be as short as possible. In some embodiments, in order to ensure the sensitivity of the acoustic output device 200 in the low frequency band (e.g., 100 Hz to 1000 Hz), the length of the beam structure of the piezoelectric element 130 cannot be too short. In some embodiments, in order to improve the sensitivity of the acoustic output device 200 in the low frequency band (e.g., 100 Hz to 1000 Hz) and have a flat frequency response curve in the range of 100 Hz to 500 Hz, the length of the piezoelectric element 130 may be between 20 mm and 30 mm. In some embodiments, in order not to reduce the sensitivity of the acoustic output device 200 in the low frequency band (e.g., 100 Hz to 800 Hz) and have a flat frequency response curve in the range of 200 Hz to 2000 Hz, the length of the piezoelectric element 130 may be between 10 mm and 20 mm. In some embodiments, in order to make the acoustic output device 200 have a flat frequency response curve in the range of 200 Hz to 5 kHz, the length of the piezoelectric element 130 may be between 3 mm and 10 mm. In some embodiments, the resonance peak (e.g., the first resonance peak and/or the second resonance peak) may be fine-tuned by adjusting the mass of the mass end (i.e., the first piezoelectric element 110) (as shown in FIG. 6 ).

在一些實施例中,基於聲學輸出裝置200的輸出需求,可以設計聲學輸出裝置200的具體結構參數。示例性的,可以根據實際需求,首先確定第一諧振頻率 f 0和第二諧振頻率 f 1的範圍(例如,50 Hz< f 0<2000 Hz,200 Hz< f 1<40 kHz,其中, f 0f 1)。其次,可以確定彈性質量端的第二振動元件120(例如,振動板)的質量。然後,可以根據聲學輸出裝置200的尺寸需求(主要根據空間尺寸)確定壓電元件130的寬度。最後,可以基於壓電片的製作製程技術能力確定基板136厚度與壓電片厚度。 In some embodiments, the specific structural parameters of the acoustic output device 200 can be designed based on the output requirements of the acoustic output device 200. For example, the range of the first harmonic frequency f 0 and the second harmonic frequency f 1 can be first determined according to actual requirements (for example, 50 Hz < f 0 < 2000 Hz, 200 Hz < f 1 < 40 kHz, where f 0 < f 1 ). Secondly, the mass of the second vibration element 120 (for example, a vibration plate) at the elastic mass end can be determined. Then, the width of the piezoelectric element 130 can be determined according to the size requirements of the acoustic output device 200 (mainly according to the spatial size). Finally, the thickness of the substrate 136 and the thickness of the piezoelectric sheet can be determined based on the manufacturing process technology capabilities of the piezoelectric sheet.

在確定上述參數之後,可以計算出彈性元件140的彈性係數: ,                        (6) After determining the above parameters, the elastic coefficient of the elastic element 140 can be calculated: , (6)

然後可以根據壓電元件130的材料參數(例如,彈性模量、密度等)和幾何參數(例如,厚度、長度等),即可確定壓電元件130的長度。Then, the length of the piezoelectric element 130 can be determined according to the material parameters (e.g., elastic modulus, density, etc.) and geometric parameters (e.g., thickness, length, etc.) of the piezoelectric element 130.

最終可以確定聲學輸出裝置200的全部幾何結構參數。Finally, all geometric structure parameters of the acoustic output device 200 can be determined.

圖4是根據本說明書一些實施例所示的示例性聲學輸出裝置的彈性質量端與質量端的輸出頻響曲線圖。如圖4所示,曲線L41表示振動訊號由彈性質量端輸出時聲學輸出裝置200的頻響曲線。曲線L42表示振動訊號由質量端輸出時聲學輸出裝置200的頻響曲線。虛線圈X中的第一諧振峰可以由第二振動元件120和彈性元件140的諧振產生。虛線圈Y中的第二諧振峰可以由壓電元件130和第一振動元件110的諧振產生。從圖4中可以看出,曲線L41和L42在20 Hz至2 kHz範圍內分別具有2個諧振峰。當振動訊號由質量端輸出時(對應曲線L42),聲學輸出裝置200在中高頻段(如600 Hz至5 kHz)具有更高的靈敏度。但在第一諧振峰與第二諧振峰之間存在一個諧振谷,從而影響聲學輸出裝置200的中低頻段(如200 Hz至1000 Hz)的音質。因此,當聲學輸出裝置200的應用場景為中高頻段需要較高靈敏度時,可以較佳通過質量端輸出振動訊號。當振動訊號由彈性質量端輸出時(對應曲線L41),聲學輸出裝置200在第一諧振峰與第二諧振峰之間具有較為平直的頻響曲線,從而使得聲學輸出裝置200在可聽域內具有較好的音質。FIG4 is a graph of the output frequency response curves of the elastic mass end and the mass end of an exemplary acoustic output device according to some embodiments of the present specification. As shown in FIG4 , curve L41 represents the frequency response curve of the acoustic output device 200 when the vibration signal is output by the elastic mass end. Curve L42 represents the frequency response curve of the acoustic output device 200 when the vibration signal is output by the mass end. The first resonance peak in the virtual coil X can be generated by the resonance of the second vibration element 120 and the elastic element 140. The second resonance peak in the virtual coil Y can be generated by the resonance of the piezoelectric element 130 and the first vibration element 110. As can be seen from FIG4 , curves L41 and L42 have two resonance peaks in the range of 20 Hz to 2 kHz, respectively. When the vibration signal is output from the mass end (corresponding to curve L42), the acoustic output device 200 has higher sensitivity in the mid-high frequency band (such as 600 Hz to 5 kHz). However, there is a resonance valley between the first resonance peak and the second resonance peak, which affects the sound quality of the mid-low frequency band (such as 200 Hz to 1000 Hz) of the acoustic output device 200. Therefore, when the application scenario of the acoustic output device 200 is that the mid-high frequency band requires higher sensitivity, the vibration signal can be preferably output through the mass end. When the vibration signal is output from the elastic mass end (corresponding to curve L41), the acoustic output device 200 has a relatively flat frequency response curve between the first harmonic peak and the second harmonic peak, so that the acoustic output device 200 has better sound quality in the audible range.

圖5是根據本說明書一些實施例所示的壓電懸臂樑自由端輸出的頻響與包括相同樑長度的單樑結構的聲學輸出裝置的頻響的對比圖。如圖5所示,曲線L51、L52、L53分別表示長度為25 mm、15 mm、5 mm的壓電懸臂樑的頻響曲線。L51’、L52’、L53’分別表示包含樑長度為25 mm、15 mm、5 mm的單樑結構的聲學輸出裝置的頻響曲線。從圖5中曲線L51、L52、L53可以看出,當壓電懸臂樑越短時(如),其在可聽域(20 Hz~20 kHz)範圍內的高階模態越少。從曲線L51和L51’、L52和L52’、L53和L53’的對比可以看出,當壓電懸臂樑的樑長度與單樑結構的樑長度相同時,壓電懸臂樑自由端輸出的一階諧振頻率與包括相應樑長度的單樑結構的聲學輸出裝置的第二諧振頻率相近。因此,為了使聲學輸出裝置在可聽域範圍內出現儘量少的高階模態(或振動模態),單樑結構中壓電元件130的樑狀結構應盡可能短。此外,從曲線L51’、L52’、L53’可以看出,在各種樑長度(即,單樑結構中壓電元件130的長度)下,單樑結構的第一諧振頻率(即,單樑結構中的彈性元件140與第二振動元件120諧振產生的諧振峰的頻率)(虛線圈M中的諧振峰對應的頻率)由於樑變短質量減小而略微升高,且在第一諧振峰和第二諧振峰之間均形成平直曲線。FIG5 is a comparison diagram of the frequency response of the free end output of the piezoelectric cantilever beam shown in some embodiments of the present specification and the frequency response of the acoustic output device including a single beam structure with the same beam length. As shown in FIG5, curves L51, L52, and L53 respectively represent the frequency response curves of the piezoelectric cantilever beam with a length of 25 mm, 15 mm, and 5 mm. L51', L52', and L53' respectively represent the frequency response curves of the acoustic output device including a single beam structure with a beam length of 25 mm, 15 mm, and 5 mm. It can be seen from the curves L51, L52, and L53 in FIG5 that when the piezoelectric cantilever beam is shorter (such as), the higher-order modes in the audible range (20 Hz~20 kHz) are less. From the comparison of curves L51 and L51', L52 and L52', and L53 and L53', it can be seen that when the beam length of the piezoelectric cantilever beam is the same as the beam length of the single beam structure, the first-order harmonic frequency output from the free end of the piezoelectric cantilever beam is close to the second harmonic frequency of the acoustic output device of the single beam structure including the corresponding beam length. Therefore, in order to minimize the occurrence of high-order modes (or vibration modes) in the acoustic output device within the audible range, the beam structure of the piezoelectric element 130 in the single beam structure should be as short as possible. In addition, it can be seen from the curves L51', L52', and L53' that under various beam lengths (i.e., the length of the piezoelectric element 130 in the single-beam structure), the first resonant frequency of the single-beam structure (i.e., the frequency of the resonant peak generated by the resonance of the elastic element 140 and the second vibration element 120 in the single-beam structure) (the frequency corresponding to the resonant peak in the virtual coil M) increases slightly due to the reduction in mass as the beam becomes shorter, and a straight curve is formed between the first resonant peak and the second resonant peak.

圖6是根據本說明書一些實施例所示的包括不同質量的第一振動元件的聲學輸出裝置的頻響曲線。如圖6所示,在壓電元件130長度相等的情況下,隨著質量端(第一振動元件110)質量的增加,聲學輸出裝置200的諧振峰向低頻移動。因此,在一些實施例中,可以通過增減質量端(第一振動元件110)的質量,以使聲學輸出裝置200的頻響曲線整體左右移動,從而實現對第一諧振峰位置(虛線圈O中的諧振峰)與第二諧振峰(虛線圈P中的諧振峰)的微調。在一些實施例中,可以根據實際需要的平坦頻響範圍,調整第一振動元件110的質量。例如,若需要使聲學輸出裝置的平坦頻響範圍偏低頻,可以設置較大質量的第一振動元件110。反之,若需要使聲學輸出裝置的平坦頻響範圍偏高頻,可以設置較小質量的第一振動元件110。在一些實施例中,第一振動元件110的質量可以在0至10 g範圍內。例如,當需要使聲學輸出裝置在200 Hz至900 Hz的頻響曲線平坦時,第一振動元件110的質量可以在0 g至0.5 g。又例如,當需要使聲學輸出裝置在160 Hz至800 Hz的頻響曲線平坦時,第一振動元件110的質量可以在0.5 g至1 g。再例如,當需要使聲學輸出裝置在150 Hz至700 Hz的頻響曲線平坦時,第一振動元件110的質量可以在1 g至2 g。FIG6 is a frequency response curve of an acoustic output device including first vibration elements of different masses according to some embodiments of the present specification. As shown in FIG6 , when the length of the piezoelectric element 130 is equal, as the mass of the mass end (first vibration element 110) increases, the resonance peak of the acoustic output device 200 moves toward the low frequency. Therefore, in some embodiments, the mass of the mass end (first vibration element 110) can be increased or decreased to make the overall frequency response curve of the acoustic output device 200 move left or right, thereby achieving fine adjustment of the first resonance peak position (the resonance peak in the dotted coil O) and the second resonance peak (the resonance peak in the dotted coil P). In some embodiments, the mass of the first vibration element 110 can be adjusted according to the flat frequency response range actually required. For example, if the flat frequency response range of the acoustic output device needs to be biased towards low frequencies, a first vibration element 110 with a larger mass can be provided. On the contrary, if the flat frequency response range of the acoustic output device needs to be biased towards high frequencies, a first vibration element 110 with a smaller mass can be provided. In some embodiments, the mass of the first vibration element 110 can be in the range of 0 to 10 g. For example, when the frequency response curve of the acoustic output device needs to be flat between 200 Hz and 900 Hz, the mass of the first vibration element 110 can be between 0 g and 0.5 g. For another example, when the frequency curve of the acoustic output device needs to be flat between 160 Hz and 800 Hz, the mass of the first vibration element 110 can be between 0.5 g and 1 g. For another example, when the frequency curve of the acoustic output device needs to be flat between 150 Hz and 700 Hz, the mass of the first vibration element 110 can be between 1 g and 2 g.

由圖2至圖6可知,聲學輸出裝置200的頻響曲線的平直區域可以位於第一諧振峰與第二諧振峰之間,因此要使聲學輸出裝置200的頻響曲線在較寬頻段範圍內平直,可使第一諧振峰和第二諧振峰之間的距離增加,即減小第一諧振頻率和/或增大第二諧振頻率。由公式(2)可知,當選用長度較短的壓電元件130時,第二諧振頻率增大。但是長度過短的壓電元件130可能會造成頻響曲線整體幅值降低,從而使聲學輸出裝置200的靈敏度降低。為了解決上述問題,在一些實施例中,聲學輸出裝置200可以採用包含多個如圖2所示的結構(也可以稱為單樑結構)(例如,圖7或17中對稱佈置的兩個結構),其可以在不影響聲學輸出裝置200整體輸出音質的情況下,提升靈敏度。在一些實施例中,對稱式的結構還能夠降低非必要的晃動、偏移,避免對聲學輸出裝置200的輸出音質造成不利影響。對稱式的結構可以包括多個壓電元件130以質量端(第一振動元件110)呈中心對稱的結構、多個壓電元件130以彈性質量端(彈性元件140與第二振動元件120)呈中心對稱的結構,具體內容可以參見如圖7、圖8、圖16、圖17及其相關描述。As can be seen from FIGS. 2 to 6 , the flat region of the frequency response curve of the acoustic output device 200 can be located between the first resonant peak and the second resonant peak. Therefore, to make the frequency response curve of the acoustic output device 200 flat within a wide frequency band, the distance between the first resonant peak and the second resonant peak can be increased, that is, the first resonant frequency can be reduced and/or the second resonant frequency can be increased. As can be seen from formula (2), when a piezoelectric element 130 with a shorter length is selected, the second resonant frequency increases. However, a piezoelectric element 130 with an excessively short length may cause the overall amplitude of the frequency response curve to decrease, thereby reducing the sensitivity of the acoustic output device 200. To solve the above problems, in some embodiments, the acoustic output device 200 may adopt a structure including multiple structures (also referred to as a single beam structure) as shown in FIG. 2 (for example, two symmetrically arranged structures in FIG. 7 or 17 ), which can improve the sensitivity without affecting the overall output sound quality of the acoustic output device 200. In some embodiments, the symmetrical structure can also reduce unnecessary shaking and offset, avoiding adverse effects on the output sound quality of the acoustic output device 200. The symmetrical structure may include a structure in which multiple piezoelectric elements 130 are centrally symmetrical with respect to the mass end (the first vibration element 110), and a structure in which multiple piezoelectric elements 130 are centrally symmetrical with respect to the elastic mass end (the elastic element 140 and the second vibration element 120). For details, please refer to Figures 7, 8, 16, 17 and related descriptions.

圖7是根據本說明書一些實施例所示的聲學輸出裝置的結構示意圖。在一些實施例中,如圖7所示,聲學輸出裝置700可以包括壓電元件130、第一振動元件110、第二振動元件120、彈性元件140。在一些實施例中,壓電元件130可以包括樑狀結構,第一振動元件110連接於壓電元件130的第一位置。第二振動元件120可以通過彈性元件140連接於壓電元件130的第二位置。需要知道的是,當樑狀結構的壓電元件130振動時,其端部的振幅幅度較大,因此第一位置或第二位置位於樑狀結構的端部時,與其對應的振動元件端的輸出響應靈敏度較高,音質較好。FIG7 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification. In some embodiments, as shown in FIG7 , the acoustic output device 700 may include a piezoelectric element 130, a first vibration element 110, a second vibration element 120, and an elastic element 140. In some embodiments, the piezoelectric element 130 may include a beam structure, and the first vibration element 110 is connected to a first position of the piezoelectric element 130. The second vibration element 120 may be connected to a second position of the piezoelectric element 130 through the elastic element 140. It should be noted that when the piezoelectric element 130 of the beam structure vibrates, the amplitude of the end thereof is relatively large, so when the first position or the second position is located at the end of the beam structure, the output response sensitivity of the corresponding vibration element end is relatively high, and the sound quality is relatively good.

在一些實施例中,如圖7所示,第一位置可以位於樑狀結構的長度延伸方向的中心(例如,第一振動元件110可以貼合在壓電元件130的一表面的中間位置。),第二位置可以位於樑狀結構長度延伸方向的兩端(例如,彈性元件140可以貼合在壓電元件130的另一面的兩端),從而實現壓電元件130以過第一位置且垂直於樑狀結構的長度延伸方向的面為對稱面的對稱結構。在這種情況下,壓電元件130可以視為包括兩個子壓電元件,第一振動元件110和第二振動元件120可以分別視為包括兩個子振動元件。如圖7所示,虛線框C或C’中的結構與圖2所示單樑結構相同,即,壓電元件的一端連接振動元件,其另一端通過彈性元件連接另一振動元件。因此,如圖7所示的包含兩個單樑結構的聲學輸出裝置700的結構可稱為雙樑結構。在一些實施例中,壓電元件130可以包括兩個子壓電元件。每個子壓電元件的一端可以連接在一個子振動元件上。每個子壓電元件的另一端可以通過彈性件140與第二振動元件120連接。在這種情況下,每個子壓電元件可以屬於一個單樑結構。在一些實施例中,兩個單樑結構中的壓電元件可以在一條直線上。兩個單樑結構可以呈對稱佈置。在一些實施例中,聲學裝置700可以包括四樑結構。換句話說,聲學輸出裝置700可以包括4個單樑結構。例如,聲學輸出裝置700還可以包括另一壓電元件,其可以與壓電元件130呈「十」字設置。另一壓電元件可以通過彈性元件與第二振動元件連接。需要知道的是,在本發明中,多樑結構可以不必包含對應個數的壓電元件130,只要聲學輸出裝置的結構可以與多個單樑結構等效即可。例如,如圖7所示的雙樑結構可以只包括一個壓電元件130。又例如,對於「十」字形的四樑結構可以只包括相互交叉設置的2個壓電元件130。In some embodiments, as shown in FIG. 7 , the first position may be located at the center of the longitudinal extension direction of the beam structure (for example, the first vibration element 110 may be attached to the middle position of one surface of the piezoelectric element 130), and the second position may be located at both ends of the longitudinal extension direction of the beam structure (for example, the elastic element 140 may be attached to both ends of the other surface of the piezoelectric element 130), thereby realizing a symmetrical structure of the piezoelectric element 130 with the surface passing through the first position and perpendicular to the longitudinal extension direction of the beam structure as the symmetrical surface. In this case, the piezoelectric element 130 may be regarded as including two sub-piezoelectric elements, and the first vibration element 110 and the second vibration element 120 may be regarded as including two sub-vibration elements, respectively. As shown in FIG7 , the structure in the dashed frame C or C′ is the same as the single-beam structure shown in FIG2 , that is, one end of the piezoelectric element is connected to the vibration element, and the other end thereof is connected to another vibration element through an elastic element. Therefore, the structure of the acoustic output device 700 including two single-beam structures as shown in FIG7 can be called a double-beam structure. In some embodiments, the piezoelectric element 130 can include two sub-piezoelectric elements. One end of each sub-piezoelectric element can be connected to a sub-vibration element. The other end of each sub-piezoelectric element can be connected to a second vibration element 120 through an elastic member 140. In this case, each sub-piezoelectric element can belong to a single-beam structure. In some embodiments, the piezoelectric elements in the two single-beam structures can be on a straight line. The two single-beam structures may be arranged symmetrically. In some embodiments, the acoustic device 700 may include a four-beam structure. In other words, the acoustic output device 700 may include four single-beam structures. For example, the acoustic output device 700 may also include another piezoelectric element, which may be arranged in a "cross" shape with the piezoelectric element 130. The other piezoelectric element may be connected to the second vibration element through an elastic element. It should be noted that in the present invention, a multi-beam structure may not necessarily include a corresponding number of piezoelectric elements 130, as long as the structure of the acoustic output device can be equivalent to a plurality of single-beam structures. For example, the double-beam structure shown in FIG. 7 may include only one piezoelectric element 130. For another example, a "cross"-shaped four-beam structure may include only two piezoelectric elements 130 arranged crosswise with each other.

在一些實施例中,聲學輸出裝置700還可以包括連接件190,第二振動元件120和彈性元件140可以通過連接件190連接於壓電元件130的第二位置。連接件190設置於壓電元件130的第二位置處,彈性元件140的一端與連接件190相連,彈性元件140的另一端與第二振動元件120相連。連接件190的設置使得壓電元件130第二位置處的振動可以傳遞至彈性元件140與第二振動元件120的同時,還使得彈性元件140的結構可以設置得更加靈活。例如,如圖7所示,彈性元件140可以包括多個彈性桿。彈性桿可以通過連接件190與壓電元件130連接。在這種情況下,在第二振動元件120的振動方向上,彈性桿可以具有縱向彈性,且在垂直於第二振動元件120的振動方向上,彈性桿還可以具有橫向彈性。又例如,如圖8所示,彈性元件140可以為彈簧。第二振動元件120可以為振動板。振動板的長度可以長於或等於樑狀結構的長度。In some embodiments, the acoustic output device 700 may further include a connector 190, and the second vibration element 120 and the elastic element 140 may be connected to the second position of the piezoelectric element 130 through the connector 190. The connector 190 is disposed at the second position of the piezoelectric element 130, one end of the elastic element 140 is connected to the connector 190, and the other end of the elastic element 140 is connected to the second vibration element 120. The arrangement of the connector 190 allows the vibration of the piezoelectric element 130 at the second position to be transmitted to the elastic element 140 and the second vibration element 120, and also allows the structure of the elastic element 140 to be arranged more flexibly. For example, as shown in FIG. 7 , the elastic element 140 may include a plurality of elastic rods. The elastic rod may be connected to the piezoelectric element 130 via a connector 190. In this case, the elastic rod may have longitudinal elasticity in the vibration direction of the second vibration element 120, and may also have transverse elasticity in the vibration direction perpendicular to the second vibration element 120. For another example, as shown in FIG8 , the elastic element 140 may be a spring. The second vibration element 120 may be a vibration plate. The length of the vibration plate may be longer than or equal to the length of the beam structure.

在一些實施例中,多個彈性桿可以以過第二振動元件120中心的軸呈軸對稱分佈。示例性的,如圖7所示,聲學輸出裝置700可以包括4個彈性桿,4個彈性桿呈「Ⅹ」形分佈於第二振動元件120的兩側。在一些實施例中,第二振動元件120可以對應樑狀結構的中部位置,從而使得第二振動元件120不易產生非振動方向上的晃動,從而提升聲學輸出裝置700的彈性質量端輸出響應曲線的平直程度。In some embodiments, the plurality of elastic rods may be axially symmetrically distributed about an axis passing through the center of the second vibration element 120. Exemplarily, as shown in FIG7 , the acoustic output device 700 may include four elastic rods, and the four elastic rods are distributed in an “X” shape on both sides of the second vibration element 120. In some embodiments, the second vibration element 120 may correspond to the middle position of the beam structure, so that the second vibration element 120 is not prone to shaking in a non-vibration direction, thereby improving the flatness of the output response curve of the elastic mass end of the acoustic output device 700.

圖8是根據本說明書一些實施例所示的聲學輸出裝置的結構示意圖。如圖8所示,聲學輸出裝置800可以與聲學輸出裝置700具有類似的結構。例如,聲學輸出裝置800可以包括壓電元件130、第一振動元件110、第二振動元件120、彈性元件140。又例如,壓電元件130可以包括樑狀結構,第一振動元件110連接於樑狀結構的長度延伸方向的中心。第二振動元件120可以通過彈性元件140連接於樑狀結構長度延伸方向的兩端。FIG8 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification. As shown in FIG8 , the acoustic output device 800 may have a similar structure to the acoustic output device 700. For example, the acoustic output device 800 may include a piezoelectric element 130, a first vibration element 110, a second vibration element 120, and an elastic element 140. For another example, the piezoelectric element 130 may include a beam structure, and the first vibration element 110 is connected to the center of the length extension direction of the beam structure. The second vibration element 120 may be connected to both ends of the length extension direction of the beam structure through the elastic element 140.

在一些實施例中,如圖8所示,第二振動元件120的長度可以長於或等於壓電元件130(或樑狀結構)的長度。例如,第二振動元件120可以為與壓電元件130具有相同形狀的振動板。振動板與壓電元件130可以相對佈置。彈性元件140可以是彈簧,或由其他彈性係數較小的材質製成的桿狀物。彈性元件140可以垂直佈置在第二振動元件120和壓電元件130之間。In some embodiments, as shown in FIG8 , the length of the second vibration element 120 may be longer than or equal to the length of the piezoelectric element 130 (or beam structure). For example, the second vibration element 120 may be a vibration plate having the same shape as the piezoelectric element 130. The vibration plate and the piezoelectric element 130 may be arranged opposite to each other. The elastic element 140 may be a spring or a rod-shaped object made of other materials with a smaller elastic coefficient. The elastic element 140 may be arranged vertically between the second vibration element 120 and the piezoelectric element 130.

在一些實施例中,第二振動元件120的數量可以是1個,也可以是多個。例如,壓電元件130可以通過多個彈性元件140與同一個第二振動元件120相連(如圖8所示)。又例如,壓電元件130的每個第二位置可以分別對應一個第二振動元件120,壓電元件130可以通過一或多個彈性元件140與對應的第二振動元件120相連。In some embodiments, the number of the second vibration elements 120 may be one or more. For example, the piezoelectric element 130 may be connected to the same second vibration element 120 via multiple elastic elements 140 (as shown in FIG. 8 ). For another example, each second position of the piezoelectric element 130 may correspond to a second vibration element 120 , and the piezoelectric element 130 may be connected to the corresponding second vibration element 120 via one or more elastic elements 140 .

圖9是根據本說明書一些實施例所示的分別具有單樑結構、雙樑結構和四樑結構的聲學輸出裝置的振動訊號由彈性質量端輸出時的頻響曲線。如圖9所示,曲線L91表示具有單樑結構的聲學輸出裝置(例如,聲學輸出裝置200)的振動訊號由彈性質量端輸出時的頻響曲線。曲線L92表示具有雙樑結構的聲學輸出裝置(例如,聲學輸出裝置700)的振動訊號由質量端輸出時的頻響曲線。曲線L93表示具有四樑結構的聲學輸出裝置的振動訊號由質量端輸出時的頻響曲線。從圖9中可以看出,相較於具有單樑結構的聲學輸出裝置(對應曲線L91),採用雙樑結構的聲學輸出裝置(對應曲線L92)的輸出靈敏度更高。第一諧振峰與第二諧振峰之間的平直曲線段靈敏度提高了大約6 dB。相較於具有單樑結構的聲學輸出裝置(對應曲線L91),採用四樑結構的聲學輸出裝置(對應曲線L93)的第一諧振峰與第二諧振峰之間的平直曲線段靈敏度提高了大約12 dB。FIG9 is a frequency response curve of the vibration signal of the acoustic output device having a single-beam structure, a double-beam structure and a four-beam structure respectively when it is output from the elastic mass end according to some embodiments of this specification. As shown in FIG9 , curve L91 represents the frequency response curve of the vibration signal of the acoustic output device having a single-beam structure (e.g., the acoustic output device 200) when it is output from the elastic mass end. Curve L92 represents the frequency response curve of the vibration signal of the acoustic output device having a double-beam structure (e.g., the acoustic output device 700) when it is output from the mass end. Curve L93 represents the frequency response curve of the vibration signal of the acoustic output device having a four-beam structure when it is output from the mass end. As can be seen from Figure 9, the output sensitivity of the acoustic output device with a double-beam structure (corresponding to curve L92) is higher than that of the acoustic output device with a single-beam structure (corresponding to curve L91). The sensitivity of the straight curve segment between the first resonant peak and the second resonant peak is increased by about 6 dB. Compared with the acoustic output device with a single-beam structure (corresponding to curve L91), the sensitivity of the straight curve segment between the first resonant peak and the second resonant peak of the acoustic output device with a four-beam structure (corresponding to curve L93) is increased by about 12 dB.

從曲線L91、L92、L93可知,隨著聲學輸出裝置中的單樑結構的增多,第一諧振峰的頻率逐漸向高頻移動。這是由於多個單樑結構對稱分佈會引入多個彈性元件140並聯,使得總體彈性係數增加,從而使第一諧振峰的頻率升高。From the curves L91, L92, and L93, it can be seen that as the number of single-beam structures in the acoustic output device increases, the frequency of the first resonant peak gradually moves toward high frequencies. This is because the symmetrical distribution of multiple single-beam structures introduces multiple elastic elements 140 in parallel, which increases the overall elastic coefficient and thus increases the frequency of the first resonant peak.

由圖4中曲線L41可知,當振動由聲學輸出裝置200的彈性質量端輸出時,第一諧振峰和第二諧振峰之間的曲線平直,但大於第二諧振峰的高頻段模態增加且幅值下降。為了解決這一問題,在一些實施例中,可利用額外的第二壓電元件150補充聲學輸出裝置在第二諧振峰之後的頻段的幅值。As can be seen from the curve L41 in FIG4 , when the vibration is output from the elastic mass end of the acoustic output device 200, the curve between the first resonance peak and the second resonance peak is straight, but the high-frequency mode greater than the second resonance peak increases and the amplitude decreases. To solve this problem, in some embodiments, an additional second piezoelectric element 150 can be used to supplement the amplitude of the frequency band of the acoustic output device after the second resonance peak.

圖10是根據本說明書一些實施例所示的聲學輸出裝置的結構示意圖。如圖10所示,聲學輸出裝置1000可以包括第一振動元件110、第二振動元件120、第一壓電元件130、彈性元件140以及連接件190。在一些實施例中,聲學輸出裝置1000還可以包括第二壓電元件150。第一壓電元件130和第二壓電元件150均可以包括樑狀結構。在一些實施例中,第一振動元件110可以連接於壓電元件130的長度延伸方向的中心位置。第二振動元件120可以通過彈性元件140連接於壓電元件130的端部。FIG10 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification. As shown in FIG10 , the acoustic output device 1000 may include a first vibration element 110, a second vibration element 120, a first piezoelectric element 130, an elastic element 140, and a connector 190. In some embodiments, the acoustic output device 1000 may further include a second piezoelectric element 150. Both the first piezoelectric element 130 and the second piezoelectric element 150 may include a beam structure. In some embodiments, the first vibration element 110 may be connected to the center position of the length extension direction of the piezoelectric element 130. The second vibration element 120 may be connected to the end of the piezoelectric element 130 through the elastic element 140.

在一些實施例中,第二壓電元件150的樑狀結構的長度(也可以稱為第二長度)可以短於第一壓電元件130的樑狀結構的長度(也可以稱為第一長度)。在一些實施例中,第二長度與第一長度之間的比值可以在0.1至1範圍內。在一些實施例中,第二長度與第一長度之間的比值可以在0.3至0.7範圍內。在一些實施例中,第二長度與第一長度之間的比值可以在0.4至0.6範圍內。從圖5可知,當壓電元件的長度越短,其輸出的頻響向高頻移動。因此,具有較長的樑狀結構的壓電元件可以稱為低頻壓電元件,具有較短的樑狀結構的壓電元件可以稱為高頻壓電元件。在一些實施例中,如圖7中的聲學輸出裝置700或圖8中的聲學輸出裝置800的結構的整體可以構成一個單元。在一些實施例中,聲學輸出裝置1000可以包括包含低頻壓電元件的低頻單元1010和第二壓電元件150。In some embodiments, the length of the beam structure of the second piezoelectric element 150 (also referred to as the second length) may be shorter than the length of the beam structure of the first piezoelectric element 130 (also referred to as the first length). In some embodiments, the ratio between the second length and the first length may be in the range of 0.1 to 1. In some embodiments, the ratio between the second length and the first length may be in the range of 0.3 to 0.7. In some embodiments, the ratio between the second length and the first length may be in the range of 0.4 to 0.6. As can be seen from FIG. 5, when the length of the piezoelectric element is shorter, the frequency response of its output moves toward high frequency. Therefore, a piezoelectric element with a longer beam structure may be referred to as a low-frequency piezoelectric element, and a piezoelectric element with a shorter beam structure may be referred to as a high-frequency piezoelectric element. In some embodiments, the entire structure of the acoustic output device 700 in FIG. 7 or the acoustic output device 800 in FIG. 8 may constitute a unit. In some embodiments, the acoustic output device 1000 may include a low-frequency unit 1010 including a low-frequency piezoelectric element and a second piezoelectric element 150.

第二壓電元件150可以與第二振動元件120連接,從而使其接收第二振動元件150的振動。例如,第二壓電元件150可以貼附在第二振動元件120上。第二壓電元件150諧振可以產生頻率高於低頻單元1010的第二諧振頻率的第三諧振峰。在一些實施例中,第三諧振峰對應的第三諧振頻率的範圍可以是10 kHz至40 kHz。在一些實施例中,第三諧振頻率的頻率範圍可以為20 kHz至30 kHz。The second piezoelectric element 150 can be connected to the second vibration element 120 so that it receives the vibration of the second vibration element 150. For example, the second piezoelectric element 150 can be attached to the second vibration element 120. The second piezoelectric element 150 resonates to generate a third resonance peak having a frequency higher than the second resonance frequency of the low-frequency unit 1010. In some embodiments, the third resonance frequency corresponding to the third resonance peak can range from 10 kHz to 40 kHz. In some embodiments, the frequency range of the third resonance frequency can be from 20 kHz to 30 kHz.

在一些實施例中,如圖10所示,聲學輸出裝置1000還可以包括彈性元件142和振動元件125。振動元件125可以通過彈性元件142與第二壓電元件150連接。第二振動元件120、振動元件125、第二壓電元件150和彈性元件142可以構成聲學輸出裝置1000的高頻單元1020。換句話說,聲學輸出裝置1000可以包括低頻單元1010和高頻單元1020。高頻單元1020與低頻單元1010可以通過第二振動元件120進行連接。也就是說,低頻單元1010的彈性質量端和高頻單元1020的質量端可以共用一個振動元件(即第二振動元件120),從而實現高頻單元1020與低頻單元1010的連接。在這種情況下,聲學輸出裝置1000的振動可以通過第一振動元件110和/或振動元件125輸出。高頻單元1020中的第二壓電元件150的第二長度比低頻單元1010中的第一壓電元件130的第一長度短。第二壓電元件150和第二振動單元130的諧振可以為聲學輸出裝置1000提供上述第三諧振峰。此外,高頻單元1020的彈性元件142和振動元件125的諧振還可以為聲學輸出裝置1000提供第五諧振峰。高頻單元1020的第一個諧振峰(即第五諧振峰)和第二個諧振峰(即第三諧振峰)之間的頻響曲線較為平直。在一些實施例中,第五諧振峰對應的第五諧振頻率可以小於或大於第二諧振峰對應的第二諧振頻率。在一些實施例中,通過調控高頻單元1020和/或低頻單元1010的性能參數(例如,壓電元件的材料參數或幾何參數、質量端或彈性質量端的質量等)可以使第五諧振頻率與第二諧振頻率相近,從而可以減小高頻單元1020的輸出頻響與低頻單元1010的輸出頻響可能互相干擾的頻段範圍,提升聲學輸出裝置1000的音質。在一些實施例中,低頻單元1010的第二個諧振峰(即第二諧振峰)與高頻單元1020的第一個諧振峰(即第五諧振峰)之間的關係可以滿足下式: ,                              (7) In some embodiments, as shown in FIG. 10 , the acoustic output device 1000 may further include an elastic element 142 and a vibration element 125. The vibration element 125 may be connected to the second piezoelectric element 150 via the elastic element 142. The second vibration element 120, the vibration element 125, the second piezoelectric element 150, and the elastic element 142 may constitute a high-frequency unit 1020 of the acoustic output device 1000. In other words, the acoustic output device 1000 may include a low-frequency unit 1010 and a high-frequency unit 1020. The high-frequency unit 1020 and the low-frequency unit 1010 may be connected via the second vibration element 120. That is, the elastic mass end of the low frequency unit 1010 and the mass end of the high frequency unit 1020 can share a vibration element (i.e., the second vibration element 120), thereby realizing the connection between the high frequency unit 1020 and the low frequency unit 1010. In this case, the vibration of the acoustic output device 1000 can be output through the first vibration element 110 and/or the vibration element 125. The second length of the second piezoelectric element 150 in the high frequency unit 1020 is shorter than the first length of the first piezoelectric element 130 in the low frequency unit 1010. The resonance of the second piezoelectric element 150 and the second vibration unit 130 can provide the third resonance peak for the acoustic output device 1000. In addition, the resonance of the elastic element 142 and the vibration element 125 of the high frequency unit 1020 can also provide a fifth resonance peak for the acoustic output device 1000. The frequency curve between the first resonance peak (i.e., the fifth resonance peak) and the second resonance peak (i.e., the third resonance peak) of the high frequency unit 1020 is relatively straight. In some embodiments, the fifth resonance frequency corresponding to the fifth resonance peak can be less than or greater than the second resonance frequency corresponding to the second resonance peak. In some embodiments, the fifth resonant frequency can be made close to the second resonant frequency by adjusting the performance parameters of the high-frequency unit 1020 and/or the low-frequency unit 1010 (for example, the material parameters or geometric parameters of the piezoelectric element, the mass of the mass end or the elastic mass end, etc.), thereby reducing the frequency band range in which the output frequency of the high-frequency unit 1020 and the output frequency of the low-frequency unit 1010 may interfere with each other, thereby improving the sound quality of the acoustic output device 1000. In some embodiments, the relationship between the second resonant peak (i.e., the second resonant peak) of the low-frequency unit 1010 and the first resonant peak (i.e., the fifth resonant peak) of the high-frequency unit 1020 can satisfy the following formula: , (7)

其中, 表示低頻單元1010的第二個諧振峰的頻率(即第二諧振頻率); 表示高頻單元1020的第一個諧振峰的頻率(即第五諧振頻率)。在一些實施例中,當第二諧振頻率在8 kHz至10 kHz之間時,第五諧振頻率可以在5 kHz至40 kHz之間。在一些實施例中,當第二諧振頻率在5 kHz至8 kHz之間時,第五諧振頻率可以在4 kHz至25 kHz之間。在一些實施例中,當第二諧振頻率在2 kHz至5 kHz之間時,第五諧振頻率可以在100 Hz至10 kHz之間。在一些實施例中,當第二諧振頻率在1 kHz至3 kHz之間時,第五諧振頻率可以在100 Hz至5 kHz之間。 in, represents the frequency of the second resonance peak of the low frequency unit 1010 (i.e., the second resonance frequency); Indicates the frequency of the first resonant peak of the high frequency unit 1020 (i.e., the fifth resonant frequency). In some embodiments, when the second resonant frequency is between 8 kHz and 10 kHz, the fifth resonant frequency may be between 5 kHz and 40 kHz. In some embodiments, when the second resonant frequency is between 5 kHz and 8 kHz, the fifth resonant frequency may be between 4 kHz and 25 kHz. In some embodiments, when the second resonant frequency is between 2 kHz and 5 kHz, the fifth resonant frequency may be between 100 Hz and 10 kHz. In some embodiments, when the second resonant frequency is between 1 kHz and 3 kHz, the fifth resonant frequency may be between 100 Hz and 5 kHz.

需要說明的是,聲學輸出裝置1000的低頻單元1010的第一壓電元件130與高頻單元1020的第二壓電元件150的數量可以是一或多個,且第一壓電元件130的數量與第二壓電元件150的數量可以相同,也可以不同。示例性的,聲學輸出裝置1000可以只包括一個壓電元件130與一個第二壓電元件150,此時,振動元件125可以通過彈性元件142連接在第二壓電元件150的兩端,第二振動元件120可以通過彈性元件140連接在第二壓電元件150的兩端。又例如,聲學輸出裝置1000也可以包括兩個第一壓電元件130與一個第二壓電元件150,此時,振動元件125可以通過彈性元件142連接在第二壓電元件150的兩端,第二振動元件120可以通過彈性元件140分別連接在每個第一壓電元件130的一端。每個第一壓電元件130的另一端可以與第一振動元件110連接。It should be noted that the number of the first piezoelectric element 130 of the low-frequency unit 1010 and the second piezoelectric element 150 of the high-frequency unit 1020 of the acoustic output device 1000 may be one or more, and the number of the first piezoelectric element 130 and the number of the second piezoelectric element 150 may be the same or different. Exemplarily, the acoustic output device 1000 may include only one piezoelectric element 130 and one second piezoelectric element 150, in which case the vibration element 125 may be connected to both ends of the second piezoelectric element 150 via the elastic element 142, and the second vibration element 120 may be connected to both ends of the second piezoelectric element 150 via the elastic element 140. For another example, the acoustic output device 1000 may also include two first piezoelectric elements 130 and one second piezoelectric element 150. In this case, the vibration element 125 may be connected to both ends of the second piezoelectric element 150 through the elastic element 142, and the second vibration element 120 may be connected to one end of each first piezoelectric element 130 through the elastic element 140. The other end of each first piezoelectric element 130 may be connected to the first vibration element 110.

圖11是根據本說明書一些實施例所示的示例性聲學輸出裝置的輸出頻響曲線。圖12是不同的激勵訊號相位差所對應聲學輸出裝置的頻響曲線。圖13是不同的激勵訊號相位差所對應聲學輸出裝置的頻響曲線。如圖11所示,曲線L111表示振動訊號由彈性質量端輸出時具有單樑結構的聲學輸出裝置的頻響曲線。曲線L112表示振動訊號由彈性質量端輸出時具有雙樑結構的聲學輸出裝置的頻響曲線。曲線L113表示振動訊號由彈性質量端輸出時具有雙單元結構(即高頻單元和低頻單元)的聲學輸出裝置的頻響曲線。其中,具有雙單元結構的聲學輸出裝置可以為具有如圖10中所示的聲學輸出裝置1000的結構,且高頻單元1020的激勵訊號(例如,激勵電壓)與低頻單元1010的激勵訊號相位差為0°。從圖11中可以看出,聲學輸出裝置1000在第一諧振峰後會產生的諧振谷,這是由於中間的第二振動元件120諧振導致的。在一些實施例中,可以通過調控高頻單元1020的第二壓電元件150與低頻單元1010的第一壓電元件130的激勵訊號之間的相位來填充諧振谷。如圖12所示,隨著高低頻單元激勵訊號的相位差增加(對應曲線L121至124),該諧振谷幅值逐漸上升。在一些實施例中,高、低頻單元激勵訊號相位差(即第二壓電元件150與壓電元件130的相位差)的絕對值的範圍為45°至180°。需要注意的是,如圖13所示,當第二壓電元件150與第一壓電元件130的相位差的絕對值大於135°後,第一諧振峰前的低頻幅值有所降低,因此為了保證聲學輸出裝置1000的低頻幅值,第二壓電元件150與壓電元件130的相位差的絕對值的範圍可以為45°至135°。在一些實施例中,第二壓電元件150與壓電元件130的相位差的絕對值的範圍可以為50°至110°。在一些實施例中,第二壓電元件150與壓電元件130的相位差的絕對值的範圍可以為70°至90°。圖14是根據本說明書一些實施例所示的示例性聲學輸出裝置的結構示意圖。如圖14所示,為了進一步提升聲學輸出裝置的低頻響應,在聲學輸出裝置1000的結構的基礎上,聲學輸出裝置1400還可以包括第三壓電元件160。第三壓電元件160可以回應於驅動壓電振動,並將振動傳遞給第二壓電元件150。在一些實施例中,第一壓電元件130、第二壓電元件150和第三壓電元件160均可以包括樑狀結構。第三壓電元件160的樑狀結構的長度(也可以稱為第三長度)可以長於第二壓電元件150的樑狀結構的長度(即第二長度)。在一些實施例中,第三壓電元件160的第三長度可以介於第二壓電元件150的二長度與第一壓電元件130的第一長度之間。在一些實施例中,第三壓電元件160的第三長度可以等於第一壓電元件130的第一長度。在一些實施例中,第三壓電元件160的第三長度小於第二壓電元件150的第二長度,第三壓電元件160可以諧振產生頻率低於第三諧振峰的第四諧振峰。FIG. 11 is an output frequency response curve of an exemplary acoustic output device according to some embodiments of the present specification. FIG. 12 is a frequency response curve of the acoustic output device corresponding to different phase differences of the excitation signal. FIG. 13 is a frequency response curve of the acoustic output device corresponding to different phase differences of the excitation signal. As shown in FIG. 11, curve L111 represents the frequency response curve of the acoustic output device with a single beam structure when the vibration signal is output from the elastic mass end. Curve L112 represents the frequency response curve of the acoustic output device with a double beam structure when the vibration signal is output from the elastic mass end. Curve L113 represents the frequency response curve of the acoustic output device with a dual unit structure (i.e., a high frequency unit and a low frequency unit) when the vibration signal is output from the elastic mass end. The acoustic output device with a dual unit structure may be a structure of the acoustic output device 1000 as shown in FIG10 , and the phase difference between the excitation signal (e.g., excitation voltage) of the high frequency unit 1020 and the excitation signal of the low frequency unit 1010 is 0°. As can be seen from FIG11 , the acoustic output device 1000 will generate a resonance valley after the first resonance peak, which is caused by the resonance of the second vibration element 120 in the middle. In some embodiments, the resonance valley can be filled by adjusting the phase between the excitation signal of the second piezoelectric element 150 of the high-frequency unit 1020 and the first piezoelectric element 130 of the low-frequency unit 1010. As shown in FIG12, as the phase difference between the high-frequency and low-frequency unit excitation signals increases (corresponding to curves L121 to 124), the amplitude of the resonance valley gradually increases. In some embodiments, the absolute value of the phase difference between the high-frequency and low-frequency unit excitation signals (i.e., the phase difference between the second piezoelectric element 150 and the piezoelectric element 130) ranges from 45° to 180°. It should be noted that, as shown in FIG. 13 , when the absolute value of the phase difference between the second piezoelectric element 150 and the first piezoelectric element 130 is greater than 135°, the low-frequency amplitude before the first resonance peak is reduced. Therefore, in order to ensure the low-frequency amplitude of the acoustic output device 1000, the absolute value of the phase difference between the second piezoelectric element 150 and the piezoelectric element 130 may range from 45° to 135°. In some embodiments, the absolute value of the phase difference between the second piezoelectric element 150 and the piezoelectric element 130 may range from 50° to 110°. In some embodiments, the absolute value of the phase difference between the second piezoelectric element 150 and the piezoelectric element 130 may range from 70° to 90°. FIG. 14 is a schematic diagram of the structure of an exemplary acoustic output device according to some embodiments of the present specification. As shown in FIG. 14 , in order to further enhance the low-frequency response of the acoustic output device, based on the structure of the acoustic output device 1000, the acoustic output device 1400 may further include a third piezoelectric element 160. The third piezoelectric element 160 may respond to the driven piezoelectric vibration and transmit the vibration to the second piezoelectric element 150. In some embodiments, the first piezoelectric element 130, the second piezoelectric element 150, and the third piezoelectric element 160 may all include a beam structure. The length of the beam structure of the third piezoelectric element 160 (also referred to as the third length) may be longer than the length of the beam structure of the second piezoelectric element 150 (i.e., the second length). In some embodiments, the third length of the third piezoelectric element 160 may be between the second length of the second piezoelectric element 150 and the first length of the first piezoelectric element 130. In some embodiments, the third length of the third piezoelectric element 160 may be equal to the first length of the first piezoelectric element 130. In some embodiments, the third length of the third piezoelectric element 160 is less than the second length of the second piezoelectric element 150, and the third piezoelectric element 160 may resonate to generate a fourth resonance peak having a frequency lower than the third resonance peak.

在一些實施例中,聲學輸出裝置1400還可以包括第三振動元件127。第三振動元件127可以與第二壓電元件150連接,且至少通過第二彈性元件145與第三壓電元件160相連。因此,第三壓電元件160的振動可以通過第三振動元件127傳遞給第二壓電元件150。在一些實施例中,聲學輸出裝置1400還可以包括振動元件129。振動元件129可以位於第三壓電元件160的長度延伸方向的中心位置。第三振動元件127、振動元件129、第三壓電元件160和第二彈性元件145可以構成結構類似於低頻單元1010(也可以稱為第一低頻單元)的第二低頻單元1015。換句話說,聲學輸出裝置1000可以包括低頻單元1010、第二低頻單元1015和高頻單元1020。在一些實施例中,低頻單元1010與第二低頻單元1015可以並聯,從而提升聲學輸出裝置1400的低頻響應(如圖15所示)。在一些實施例中,聲學輸出裝置1000包括低頻單元1010、第二低頻單元1015和高頻單元1020也可以稱為聲學輸出裝置1000包括三單元結構。In some embodiments, the acoustic output device 1400 may further include a third vibration element 127. The third vibration element 127 may be connected to the second piezoelectric element 150, and may be connected to the third piezoelectric element 160 at least through the second elastic element 145. Therefore, the vibration of the third piezoelectric element 160 may be transmitted to the second piezoelectric element 150 through the third vibration element 127. In some embodiments, the acoustic output device 1400 may further include a vibration element 129. The vibration element 129 may be located at the center of the length extension direction of the third piezoelectric element 160. The third vibration element 127, the vibration element 129, the third piezoelectric element 160, and the second elastic element 145 may constitute a second low-frequency unit 1015 having a structure similar to the low-frequency unit 1010 (also referred to as the first low-frequency unit). In other words, the acoustic output device 1000 may include a low-frequency unit 1010, a second low-frequency unit 1015, and a high-frequency unit 1020. In some embodiments, the low-frequency unit 1010 and the second low-frequency unit 1015 may be connected in parallel to improve the low-frequency response of the acoustic output device 1400 (as shown in FIG. 15 ). In some embodiments, the acoustic output device 1000 including the low-frequency unit 1010, the second low-frequency unit 1015, and the high-frequency unit 1020 may also be referred to as the acoustic output device 1000 including a three-unit structure.

具體地,如圖14所示,第一壓電元件130和第三壓電元件160可以平行佈置。低頻單元1010的彈性質量端(即第二振動元件120)可以和第二低頻單元1015的彈性質量端(即第三振動元件127)連接。第二壓電元件150可以直接連接在連接後的第二振動元件120和/或第三振動元件127上。連接後的第二振動元件120和第三振動元件127的整體可以作為高頻單元1020的質量端。在一些實施例中,低頻單元1010的質量端(即第一振動元件110)與第二低頻單元1015的質量端(即振動單元129)可以是連接的(如圖14所示),也可以是分離的。分離式結構可以使低頻單元1010的質量端與第二低頻單元1015的質量端能夠各自產生振動。連接式的結構可以使低頻單元1010的質量端與第二低頻單元1015的質量端兩者的振動輸出頻響一致。在一些實施例中,低頻單元1010的質量端可以與第二低頻單元1015的質量端相連。Specifically, as shown in FIG14 , the first piezoelectric element 130 and the third piezoelectric element 160 can be arranged in parallel. The elastic mass end of the low-frequency unit 1010 (i.e., the second vibration element 120) can be connected to the elastic mass end of the second low-frequency unit 1015 (i.e., the third vibration element 127). The second piezoelectric element 150 can be directly connected to the second vibration element 120 and/or the third vibration element 127 after connection. The entirety of the connected second vibration element 120 and the third vibration element 127 can serve as the mass end of the high-frequency unit 1020. In some embodiments, the mass end of the low-frequency unit 1010 (i.e., the first vibration element 110) and the mass end of the second low-frequency unit 1015 (i.e., the vibration unit 129) can be connected (as shown in FIG14 ) or separated. The separated structure can make the mass end of the low frequency unit 1010 and the mass end of the second low frequency unit 1015 generate vibrations separately. The connected structure can make the vibration output frequency of the mass end of the low frequency unit 1010 and the mass end of the second low frequency unit 1015 consistent. In some embodiments, the mass end of the low frequency unit 1010 can be connected to the mass end of the second low frequency unit 1015.

在一些實施例中,低頻單元1010、低頻單元1015與高頻單元1020的結構可以相同,也可以不同。例如,低頻單元1010、低頻單元1015均可以具有如聲學輸出裝置800的結構,高頻單元1020可以具有如聲學輸出裝置700的結構。又例如,低頻單元1010、低頻單元1015與高頻單元1020均可以具有如聲學輸出裝置800的結構。In some embodiments, the structures of the low frequency unit 1010, the low frequency unit 1015, and the high frequency unit 1020 may be the same or different. For example, the low frequency unit 1010 and the low frequency unit 1015 may have the structure of the acoustic output device 800, and the high frequency unit 1020 may have the structure of the acoustic output device 700. For another example, the low frequency unit 1010, the low frequency unit 1015, and the high frequency unit 1020 may have the structure of the acoustic output device 800.

在一些實施例中,聲學輸出裝置1400可以不包括第三振動元件127。低頻單元1015的第三壓電元件160的振動可以通過第二彈性元件145傳遞給第二振動元件120,再由第二振動元件120傳遞給第二壓電元件150。換句話說,如圖14中第二振動元件120和第三振動元件127可以看作是一個整體,低頻單元1010的壓電元件130的振動與低頻單元1015的第三壓電元件160的振動均傳遞給同一個第二振動元件,從而減少振動元件的數量,節約資源。In some embodiments, the acoustic output device 1400 may not include the third vibration element 127. The vibration of the third piezoelectric element 160 of the low-frequency unit 1015 may be transmitted to the second vibration element 120 through the second elastic element 145, and then transmitted to the second piezoelectric element 150 by the second vibration element 120. In other words, as shown in FIG. 14 , the second vibration element 120 and the third vibration element 127 may be regarded as a whole, and the vibration of the piezoelectric element 130 of the low-frequency unit 1010 and the vibration of the third piezoelectric element 160 of the low-frequency unit 1015 are both transmitted to the same second vibration element, thereby reducing the number of vibration elements and saving resources.

圖15是根據本說明書一些實施例所示的不同結構的聲學輸出裝置的輸出頻響曲線圖。如圖15所示,曲線L151表示振動訊號由彈性質量端輸出時具有雙單元結構(即高頻單元和低頻單元)的聲學輸出裝置(例如,聲學輸出裝置1000)的頻響曲線。曲線L152表示振動訊號由質量端輸出時包括低頻單元1010、第二低頻單元1015與高頻單元1020的聲學輸出裝置1400的頻響曲線。從圖15可知,聲學輸出裝置1400的低頻響應(對應曲線L152中20 Hz至500 Hz)明顯高於具有雙單元結構的聲學輸出裝置1000的低頻響應。FIG15 is a graph of output frequency response curves of acoustic output devices of different structures according to some embodiments of the present specification. As shown in FIG15 , curve L151 represents the frequency response curve of an acoustic output device (e.g., acoustic output device 1000) having a dual unit structure (i.e., a high-frequency unit and a low-frequency unit) when a vibration signal is output from an elastic mass end. Curve L152 represents the frequency response curve of an acoustic output device 1400 including a low-frequency unit 1010, a second low-frequency unit 1015, and a high-frequency unit 1020 when a vibration signal is output from a mass end. As can be seen from FIG. 15 , the low-frequency response of the acoustic output device 1400 (corresponding to 20 Hz to 500 Hz in curve L152 ) is significantly higher than the low-frequency response of the acoustic output device 1000 having a dual-unit structure.

圖16是根據本說明書一些實施例所示的示例性聲學輸出裝置的結構示意圖。如圖16所示,聲學輸出裝置1600可以包括第一振動元件110、第二振動元件120、壓電元件130、彈性元件140。壓電元件130可以包括樑狀結構,第一振動元件110可以包括子振動元件112和子振動元件114。在一些實施例中,子振動元件112和子振動元件114可以分別連接在壓電元件130的長度延伸方向的兩端(也稱為第一位置)。第二振動元件120可以通過彈性元件140連接在壓電元件130第二位置。例如,第二振動元件120可以通過連接件190和彈性元件140設置於壓電元件130的長度延伸方向的中心位置(即第二位置)。在一些實施例中,壓電元件130可以包括兩個子壓電元件。每個子壓電元件的一端可以分別連接一個子振動元件(112或114)。每個子壓電元件的另一端可以通過連接件190連接。在這種情況下,聲學輸出裝置1600的結構可以視為包括兩個如圖2所示的單樑結構。FIG16 is a schematic diagram of the structure of an exemplary acoustic output device according to some embodiments of the present specification. As shown in FIG16 , the acoustic output device 1600 may include a first vibration element 110, a second vibration element 120, a piezoelectric element 130, and an elastic element 140. The piezoelectric element 130 may include a beam-shaped structure, and the first vibration element 110 may include a sub-vibration element 112 and a sub-vibration element 114. In some embodiments, the sub-vibration element 112 and the sub-vibration element 114 may be connected to the two ends of the length extension direction of the piezoelectric element 130 (also referred to as the first position). The second vibration element 120 may be connected to the second position of the piezoelectric element 130 through the elastic element 140. For example, the second vibration element 120 can be disposed at the center position (i.e., the second position) of the length extension direction of the piezoelectric element 130 through the connector 190 and the elastic element 140. In some embodiments, the piezoelectric element 130 can include two sub-piezoelectric elements. One end of each sub-piezoelectric element can be connected to a sub-vibration element (112 or 114), respectively. The other end of each sub-piezoelectric element can be connected through the connector 190. In this case, the structure of the acoustic output device 1600 can be regarded as including two single-beam structures as shown in FIG. 2.

在一些實施例中,子振動元件112和子振動元件114的質量可以相同,且子振動元件112和子振動元件114與壓電元件130連接的兩個第一位置相對於壓電元件130的中心對稱,從而使得子振動元件112和子振動元件114相對於壓電元件130的中心對稱。通過對稱結構相互平衡以降低子振動元件112非必要的晃動,提升聲學輸出裝置1600頻響曲線的平直程度。In some embodiments, the sub-vibration element 112 and the sub-vibration element 114 may have the same mass, and the two first positions where the sub-vibration element 112 and the sub-vibration element 114 are connected to the piezoelectric element 130 are symmetrical with respect to the center of the piezoelectric element 130, so that the sub-vibration element 112 and the sub-vibration element 114 are symmetrical with respect to the center of the piezoelectric element 130. The symmetrical structures are balanced to reduce unnecessary shaking of the sub-vibration element 112, thereby improving the flatness of the frequency curve of the acoustic output device 1600.

在一些實施例中,壓電元件130的數量可以包括一或多個。相應地,與壓電元件130直接連接的第一振動元件110的數量可以包括多個。例如,壓電元件130的個數可以為2個。兩個壓電元件130可以呈「十」字形通過連接件交叉連接在一起。進一步地,每個壓電元件130的端部可以佈置有第一振動元件110。第二振動元件120可以通過彈性元件140連接在「十」字形的交叉點位置。又例如,壓電元件130的數量可以為4個,四個壓電元件130可以通過連接件190將其一端連接,從而使4個壓電元件130呈「十」字形設置於連接件190的周側,每個壓電元件130均可以與一個第一振動元件110相連。在一些實施例中,多個壓電元件130也可以對應一個第一振動元件110。示例性的,四個壓電元件130以連接件190為中心,呈「十」字形設置於連接件190的周側,每個壓電元件130可以均與一個環狀的第一振動元件110相連。In some embodiments, the number of piezoelectric elements 130 may include one or more. Correspondingly, the number of first vibration elements 110 directly connected to the piezoelectric element 130 may include multiple. For example, the number of piezoelectric elements 130 may be 2. Two piezoelectric elements 130 may be cross-connected together through a connector in a "cross" shape. Further, the end of each piezoelectric element 130 may be arranged with a first vibration element 110. The second vibration element 120 may be connected at the intersection of the "cross" through an elastic element 140. For another example, the number of piezoelectric elements 130 may be 4, and the four piezoelectric elements 130 may be connected at one end through the connector 190, so that the four piezoelectric elements 130 are arranged in a "cross" shape around the connector 190, and each piezoelectric element 130 may be connected to a first vibration element 110. In some embodiments, a plurality of piezoelectric elements 130 may also correspond to one first vibration element 110. Exemplarily, the four piezoelectric elements 130 are arranged in a "cross" shape around the connector 190 with the connector 190 as the center, and each piezoelectric element 130 may be connected to a ring-shaped first vibration element 110.

在一些實施例中,如圖16所示,彈性元件140可以包括多個彈性桿。彈性桿可以通過連接件190與壓電元件130連接。在這種情況下,在第二振動元件120的振動方向上,彈性桿可以具有第一彈性係數,且在垂直於第二振動元件120的振動方向上,彈性桿還可以具有第二彈性係數。在一些實施例中,為了使第二振動元件120能在垂直於壓電元件130的表面的方向上容易振動,而在平行於壓電元件130長軸的方向上不易晃動,第二彈性係數可以遠大於第一彈性係數。例如,第二彈性係數與第一彈性係數的比值可以大於或等於1×103。例如,第二彈性係數與第一彈性係數的比值可以為1×103、1×104、1×105、1×106、1×1010等。在一些實施例中,彈性元件140可以為傳振片。In some embodiments, as shown in FIG. 16 , the elastic element 140 may include a plurality of elastic rods. The elastic rod may be connected to the piezoelectric element 130 via a connector 190. In this case, the elastic rod may have a first elastic coefficient in the vibration direction of the second vibration element 120, and may also have a second elastic coefficient in the vibration direction perpendicular to the second vibration element 120. In some embodiments, in order to allow the second vibration element 120 to vibrate easily in a direction perpendicular to the surface of the piezoelectric element 130 and not to shake easily in a direction parallel to the long axis of the piezoelectric element 130, the second elastic coefficient may be much larger than the first elastic coefficient. For example, the ratio of the second elastic coefficient to the first elastic coefficient may be greater than or equal to 1×103. For example, the ratio of the second elastic coefficient to the first elastic coefficient may be 1×10 3 , 1×10 4 , 1×10 5 , 1×10 6 , 1×10 10 , etc. In some embodiments, the elastic element 140 may be a vibration-transmitting sheet.

圖17是根據本說明書一些實施例所示的示例性聲學輸出裝置的結構示意圖。如圖17所示,聲學輸出裝置1700可以具有與聲學輸出裝置1600類似的結構。在一些實施例中,如圖17所示,彈性元件140還可以為彈簧或由其他彈性係數較小的材質製成的桿狀物。彈性元件140可以垂直佈置在第二振動元件120和壓電元件130之間。FIG17 is a schematic diagram of an exemplary acoustic output device according to some embodiments of the present specification. As shown in FIG17 , the acoustic output device 1700 may have a structure similar to the acoustic output device 1600. In some embodiments, as shown in FIG17 , the elastic element 140 may also be a spring or a rod-shaped object made of other materials with a smaller elastic coefficient. The elastic element 140 may be vertically arranged between the second vibration element 120 and the piezoelectric element 130.

圖18是根據本說明書一些實施例所示的分別具有單樑結構、雙樑結構和四樑結構的聲學輸出裝置的振動訊號由彈性質量端輸出時的頻響曲線圖。如圖18所示,曲線L181表示具有單樑結構的聲學輸出裝置(例如,聲學輸出裝置200)的振動訊號由彈性質量端輸出時的頻響曲線。曲線L182表示具有雙樑結構且彈性質量端位於壓電元件長度延伸方向的中間位置的聲學輸出裝置(例如,聲學輸出裝置1600)的振動訊號由彈性質量端輸出時的頻響曲線。曲線L183表示具有四樑結構且彈性質量端位於壓電元件長度延伸方向的中間位置的聲學輸出裝置的振動訊號由彈性質量端輸出時的頻響曲線。由圖18可知,相較於單樑結構(對應曲線L181),採用多樑結構(對應曲線L182或L183)的聲學輸出裝置的第一諧振峰向低頻移動,因此採用多樑結構能夠明顯提升聲學輸出裝置的低頻響應性能。FIG18 is a frequency response curve diagram of the vibration signal of the acoustic output device having a single-beam structure, a double-beam structure, and a four-beam structure respectively when outputted from the elastic mass end according to some embodiments of the present specification. As shown in FIG18 , curve L181 represents the frequency response curve of the vibration signal of the acoustic output device having a single-beam structure (e.g., the acoustic output device 200) when outputted from the elastic mass end. Curve L182 represents the frequency response curve of the vibration signal of the acoustic output device having a double-beam structure and the elastic mass end being located in the middle of the length extension direction of the piezoelectric element (e.g., the acoustic output device 1600) when outputted from the elastic mass end. Curve L183 represents the frequency response curve of the vibration signal of the acoustic output device with a four-beam structure and the elastic mass end located in the middle of the length extension direction of the piezoelectric element when it is output from the elastic mass end. As shown in Figure 18, compared with the single-beam structure (corresponding to curve L181), the first resonance peak of the acoustic output device with a multi-beam structure (corresponding to curve L182 or L183) moves to the low frequency, so the use of a multi-beam structure can significantly improve the low-frequency response performance of the acoustic output device.

本發明實施例提出的聲學輸出裝置可能帶來的有益效果包括但不限於:(1)在聲學輸出裝置中,通過在壓電元件上直接連接第一振動元件,同時利用彈性元件在壓電元件上連接第二振動元件,可以使聲學輸出裝置產生兩個諧振峰,通過利用第二振動元件和彈性元件的諧振產生頻率較低的第一諧振峰,提升壓電元件的低頻響應;(2)當訊號通過第二振動元件輸出時,可以使第一諧振峰和第二諧振峰之間的頻響曲線較平直,提升聲學輸出裝置的音質;(3)當訊號通過第一振動元件輸出時,可以提升聲學輸出裝置在中高頻段的靈敏度,有利於聲學輸出裝置在特殊場景下的應用。需要說明的是,不同實施例可能產生的有益效果不同,在不同的實施例裡,可能產生的有益效果可以是以上任意一種或幾種的組合,也可以是其他任何可能獲得的有益效果。The beneficial effects that may be brought about by the acoustic output device proposed in the embodiment of the present invention include but are not limited to: (1) In the acoustic output device, by directly connecting the first vibration element to the piezoelectric element and simultaneously connecting the second vibration element to the piezoelectric element using the elastic element, the acoustic output device can generate two resonance peaks, and the second vibration element with a lower frequency is generated by utilizing the resonance of the second vibration element and the elastic element. (1) When the signal is output through the second vibration element, the frequency response curve between the first resonance peak and the second resonance peak can be made flatter, thereby improving the sound quality of the acoustic output device; (2) When the signal is output through the second vibration element, the frequency response curve between the first resonance peak and the second resonance peak can be made flatter, thereby improving the sound quality of the acoustic output device; (3) When the signal is output through the first vibration element, the sensitivity of the acoustic output device in the mid- and high-frequency bands can be improved, which is beneficial to the application of the acoustic output device in special scenarios. It should be noted that different embodiments may produce different beneficial effects. In different embodiments, the beneficial effects that may be produced may be any one or a combination of the above, or any other beneficial effects that may be obtained.

上文已對基本概念做了描述,顯然,對於所屬技術領域中具有通常知識者來說,上述詳細披露僅僅作為示例,而並不構成對本發明的限定。雖然此處並沒有明確說明,所屬技術領域中具有通常知識者可能會對本發明進行各種修改、改進和修正。該類修改、改進和修正在本發明中被建議,所以該類修改、改進、修正仍屬於本發明示範實施例的精神和範圍。The basic concepts have been described above. Obviously, for those with ordinary knowledge in the art, the above detailed disclosure is only for example and does not constitute a limitation of the present invention. Although not explicitly stated here, those with ordinary knowledge in the art may make various modifications, improvements and amendments to the present invention. Such modifications, improvements and amendments are suggested in the present invention, so such modifications, improvements and amendments still belong to the spirit and scope of the exemplary embodiments of the present invention.

100:聲學輸出裝置 110:第一振動元件 120:第二振動元件 130:壓電元件 140:彈性元件 150:第二壓電元件 160:第三壓電元件 170:殼體結構 180:固定結構 200:聲學輸出裝置 132:壓電片 134:壓電片 136:基板 A:方向 A’:方向 B:方向 B’:方向 138:壓電懸臂樑自由端 h p:厚度 h b:厚度 b:寬度 L41:曲線 L42:曲線 X:虛線圈 Y:虛線圈 L51:曲線 L52:曲線 L53:曲線 L51’:曲線 L52’:曲線 L53’:曲線 M:虛線圈 O:虛線圈 P:虛線圈 700:聲學輸出裝置 190:連接件 C:虛線框 C’:虛線框 800:聲學輸出裝置 L91:曲線 L92:曲線 L93:曲線 1000:聲學輸出裝置 1010:低頻單元 1020:高頻單元 125:振動元件 142:彈性元件 L111:曲線 L112:曲線 L113:曲線 L121:曲線 L122:曲線 L123:曲線 L124:曲線 1400:聲學輸出裝置 1015:第二低頻單元 127:第三振動元件 129:振動元件 145:第二彈性元件 L151:曲線 L152:曲線 1600:聲學輸出裝置 112:子振動元件 114:子振動元件 1700:聲學輸出裝置 L181:曲線 L182:曲線 L183:曲線 100: acoustic output device 110: first vibration element 120: second vibration element 130: piezoelectric element 140: elastic element 150: second piezoelectric element 160: third piezoelectric element 170: housing structure 180: fixing structure 200: acoustic output device 132: piezoelectric sheet 134: piezoelectric sheet 136: substrate A: direction A': direction B: direction B': direction 138: free end of piezoelectric cantilever beam h p : thickness h b :Thickness b:Width L41:Curve L42:Curve X:Dummy circle Y:Dummy circle L51:Curve L52:Curve L53:Curve L51':Curve L52':Curve L53':Curve M:Dummy circle O:Dummy circle P:Dummy circle 700:Acoustic output device 190:Connector C:Dummy frame C':Dummy frame 800:Acoustic output device L91:Curve L92:Curve L93:Curve 1000:Acoustic output device 1010:Low frequency unit 1020:High frequency unit 125:Vibration element 142 : elastic element L111: curve L112: curve L113: curve L121: curve L122: curve L123: curve L124: curve 1400: acoustic output device 1015: second low frequency unit 127: third vibration element 129: vibration element 145: second elastic element L151: curve L152: curve 1600: acoustic output device 112: sub-vibration element 114: sub-vibration element 1700: acoustic output device L181: curve L182: curve L183: curve

本發明將以示例性實施例的方式進一步說明,這些示例性實施例將通過圖式進行詳細描述。這些實施例並非限制性的,在這些實施例中,相同的編號表示相同的結構,其中:The present invention will be further described in the form of exemplary embodiments, which will be described in detail by way of drawings. These embodiments are not restrictive, and in these embodiments, the same numbers represent the same structures, wherein:

[圖1]係根據本說明書的一些實施例所示的示例性聲學輸出裝置的方塊圖;FIG. 1 is a block diagram of an exemplary acoustic output device according to some embodiments of the present specification;

[圖2]係根據本申請的一些實施例所示的示例性聲學輸出裝置的結構示意圖;FIG. 2 is a schematic structural diagram of an exemplary acoustic output device according to some embodiments of the present application;

[圖3]係根據本說明書一些實施例所示的壓電懸臂樑模型;[FIG. 3] is a piezoelectric cantilever beam model according to some embodiments of the present specification;

[圖4]係根據本說明書一些實施例所示的示例性聲學輸出裝置的彈性質量端與質量端的輸出頻響曲線圖;FIG. 4 is a graph showing the output frequency response curves of the elastic mass end and the mass end of an exemplary acoustic output device according to some embodiments of the present specification;

[圖5]係根據本說明書一些實施例所示的壓電懸臂樑自由端輸出的頻響與包括相同樑長度的單樑結構的聲學輸出裝置的頻響的對比圖;FIG. 5 is a comparison diagram of the frequency response of the free end output of the piezoelectric cantilever beam shown in some embodiments of the present specification and the frequency response of the acoustic output device including a single beam structure with the same beam length;

[圖6]係根據本說明書一些實施例所示的包括不同質量的第一振動元件的聲學輸出裝置的頻響曲線;FIG. 6 is a frequency response curve of an acoustic output device including first vibration elements of different masses according to some embodiments of the present specification;

[圖7]係根據本說明書一些實施例所示的聲學輸出裝置的結構示意圖;FIG. 7 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification;

[圖8]係根據本說明書一些實施例所示的聲學輸出裝置的結構示意圖;FIG. 8 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification;

[圖9]係根據本說明書一些實施例所示的分別具有單樑結構、雙樑結構和四樑結構的聲學輸出裝置的振動訊號由彈性質量端輸出時的頻響曲線;FIG. 9 shows the frequency response curves of the vibration signal of the acoustic output device having a single-beam structure, a double-beam structure and a four-beam structure when it is output from the elastic mass end according to some embodiments of the present specification;

[圖10]係根據本說明書一些實施例所示的聲學輸出裝置的結構示意圖;FIG. 10 is a schematic diagram of the structure of an acoustic output device according to some embodiments of the present specification;

[圖11]係根據本說明書一些實施例所示的示例性聲學輸出裝置的輸出頻響曲線;FIG. 11 is an output frequency curve of an exemplary acoustic output device according to some embodiments of the present specification;

[圖12]係不同的激勵訊號相位差所對應聲學輸出裝置的頻響曲線;[Figure 12] shows the frequency response curve of the acoustic output device corresponding to different phase differences of the excitation signal;

[圖13]係不同的激勵訊號相位差所對應聲學輸出裝置的頻響曲線;[Figure 13] shows the frequency response curve of the acoustic output device corresponding to different phase differences of the excitation signal;

[圖14]係根據本說明書一些實施例所示的示例性聲學輸出裝置的結構示意圖;FIG. 14 is a schematic diagram of an exemplary acoustic output device according to some embodiments of the present specification;

[圖15]係根據本說明書一些實施例所示的不同結構的聲學輸出裝置的輸出頻響曲線圖;FIG. 15 is an output frequency curve diagram of acoustic output devices of different structures shown in some embodiments of this specification;

[圖16]係根據本說明書一些實施例所示的示例性聲學輸出裝置的結構示意圖;FIG. 16 is a schematic diagram of an exemplary acoustic output device according to some embodiments of the present specification;

[圖17]係根據本說明書一些實施例所示的示例性聲學輸出裝置的結構示意圖;FIG. 17 is a schematic diagram of an exemplary acoustic output device according to some embodiments of the present specification;

[圖18]係根據本說明書一些實施例所示的分別具有單樑結構、雙樑結構和四樑結構的聲學輸出裝置的振動訊號由彈性質量端輸出時的頻響曲線圖。[FIG. 18] is a frequency response curve diagram of a vibration signal output from an elastic mass end of an acoustic output device having a single-beam structure, a double-beam structure, and a four-beam structure according to some embodiments of this specification.

200:聲學輸出裝置 200:Acoustic output device

110:第一振動元件 110: First vibration element

120:第二振動元件 120: Second vibration element

130:壓電元件 130: Piezoelectric components

140:彈性元件 140: Elastic element

132:壓電片 132: Piezoelectric film

134:壓電片 134: Piezoelectric film

136:基板 136: Substrate

Claims (10)

一種聲學輸出裝置,其中,包括: 第一振動元件; 第二振動元件;以及 壓電元件,所述第一振動元件物理連接於所述壓電元件的第一位置,所述第二振動元件至少通過彈性元件連接於所述壓電元件的第二位置,其中,所述壓電元件回應於電訊號而帶動所述第一振動元件和所述第二振動元件振動,所述振動產生人耳可聽範圍內的兩個諧振峰。 An acoustic output device, comprising: a first vibration element; a second vibration element; and a piezoelectric element, wherein the first vibration element is physically connected to a first position of the piezoelectric element, and the second vibration element is connected to a second position of the piezoelectric element at least through an elastic element, wherein the piezoelectric element drives the first vibration element and the second vibration element to vibrate in response to an electrical signal, and the vibration generates two resonance peaks within the audible range of the human ear. 如請求項1之聲學輸出裝置,其中,所述第二振動元件和所述彈性元件的諧振產生所述兩個諧振峰中頻率較低的第一諧振峰,所述壓電元件和所述第一振動元件的諧振產生所述兩個諧振峰中頻率較高的第二諧振峰。An acoustic output device as claimed in claim 1, wherein the resonance between the second vibration element and the elastic element generates a first resonance peak with a lower frequency among the two resonance peaks, and the resonance between the piezoelectric element and the first vibration element generates a second resonance peak with a higher frequency among the two resonance peaks. 如請求項1之聲學輸出裝置,其中,所述壓電元件包括樑狀結構,所述第一位置位於所述樑狀結構的長度延伸方向的中心,所述第二位置位於所述樑狀結構的所述長度延伸方向的端部。An acoustic output device as claimed in claim 1, wherein the piezoelectric element comprises a beam-shaped structure, the first position is located at the center of the length extension direction of the beam-shaped structure, and the second position is located at the end of the length extension direction of the beam-shaped structure. 如請求項3之聲學輸出裝置,其中,所述振動通過所述第二振動元件以骨傳導的方式傳遞給使用者。An acoustic output device as claimed in claim 3, wherein the vibration is transmitted to the user via the second vibration element in a bone-conducting manner. 如請求項2之聲學輸出裝置,還包括: 第二壓電元件,所述第二壓電元件接收所述第二振動元件的振動,所述第二壓電元件諧振產生頻率高於所述兩個諧振峰的第三諧振峰。 The acoustic output device of claim 2 further includes: A second piezoelectric element, the second piezoelectric element receives the vibration of the second vibration element, and the second piezoelectric element resonates to generate a third resonance peak with a frequency higher than the two resonance peaks. 如請求項5之聲學輸出裝置,其中,所述壓電元件和所述第二壓電元件均包括樑狀結構,所述第二壓電元件的樑狀結構的長度短於所述壓電元件的樑狀結構的長度。An acoustic output device as claimed in claim 5, wherein the piezoelectric element and the second piezoelectric element both include a beam structure, and the length of the beam structure of the second piezoelectric element is shorter than the length of the beam structure of the piezoelectric element. 如請求項5之聲學輸出裝置,其中,所述壓電元件與所述第二壓電元件的激勵訊號的相位差的絕對值在45°至135°範圍內。An acoustic output device as claimed in claim 5, wherein the absolute value of the phase difference between the excitation signals of the piezoelectric element and the second piezoelectric element is in the range of 45° to 135°. 如請求項5至7中任一項之聲學輸出裝置,還包括: 第三壓電元件,所述第三壓電元件振動並傳遞給所述第二壓電元件,所述第三壓電元件諧振產生頻率低於所述第三諧振峰的第四諧振峰。 The acoustic output device of any one of claims 5 to 7 further comprises: A third piezoelectric element, the third piezoelectric element vibrates and transmits to the second piezoelectric element, and the third piezoelectric element resonates to generate a fourth resonance peak with a frequency lower than the third resonance peak. 如請求項1之聲學輸出裝置,其中,所述壓電元件包括樑狀結構,所述第一振動元件包括兩個子振動元件,其中, 所述兩個子振動元件分別連接在所述壓電元件的長度延伸方向的兩端。 As in claim 1, the acoustic output device, wherein the piezoelectric element includes a beam-shaped structure, and the first vibration element includes two sub-vibration elements, wherein the two sub-vibration elements are respectively connected to the two ends of the length extension direction of the piezoelectric element. 如請求項9之聲學輸出裝置,其中,所述兩個子振動元件的質量相同,且所述兩個子振動元件與所述壓電元件連接的兩個第一位置相對於所述壓電元件的中心對稱。An acoustic output device as claimed in claim 9, wherein the two sub-vibration elements have the same mass, and the two first positions where the two sub-vibration elements are connected to the piezoelectric element are symmetrical with respect to the center of the piezoelectric element.
TW112110919A 2022-04-07 2023-03-23 Acoustic output device TWI843498B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210360069.XA CN116939444A (en) 2022-04-07 2022-04-07 Acoustic output device
CN202210360069X 2022-04-07

Publications (2)

Publication Number Publication Date
TW202341760A TW202341760A (en) 2023-10-16
TWI843498B true TWI843498B (en) 2024-05-21

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114025293A (en) 2020-06-15 2022-02-08 乐金显示有限公司 Acoustic device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114025293A (en) 2020-06-15 2022-02-08 乐金显示有限公司 Acoustic device

Similar Documents

Publication Publication Date Title
TW200526057A (en) Acoustic vibration generating element
JP2007165938A (en) Earphone device
EP2519031A1 (en) Electroacoustic transducer, electronic device, method for converting electronic sound, and method for outputting acoustic wave from electronic device
TW515220B (en) Loudspeakers
TWI843498B (en) Acoustic output device
JP2001258095A (en) Acoustic device and drive method for magnetostriction vibrator
TW202341760A (en) Acoustic output device
TWI843202B (en) Acoustic output device
WO2023193191A1 (en) Acoustic output device
US20230328458A1 (en) Acoustic output device
WO2023193195A1 (en) Piezoelectric speaker
WO2023206143A1 (en) Acoustic output device
TW202341759A (en) Acoustic output device
CN116939445A (en) Piezoelectric loudspeaker
TW202339521A (en) Acoustic output device
TW202344073A (en) Acoustic output device
WO2014061646A1 (en) Earphone
TWI820888B (en) Acoustic device
WO2024130627A1 (en) Acoustic output apparatus
WO2024020846A1 (en) Acoustic output device
JP4241435B2 (en) Pronunciation
TW202341657A (en) Acoustic device
TW202341533A (en) Acoustic device
CN116801161A (en) Acoustic output device
JP2024520967A (en) Audio output device and wearable device