TW202340400A - Gas barrier laminate - Google Patents
Gas barrier laminate Download PDFInfo
- Publication number
- TW202340400A TW202340400A TW111114297A TW111114297A TW202340400A TW 202340400 A TW202340400 A TW 202340400A TW 111114297 A TW111114297 A TW 111114297A TW 111114297 A TW111114297 A TW 111114297A TW 202340400 A TW202340400 A TW 202340400A
- Authority
- TW
- Taiwan
- Prior art keywords
- gas barrier
- layer
- acid
- barrier layer
- less
- Prior art date
Links
- 230000004888 barrier function Effects 0.000 title claims abstract description 842
- 239000000203 mixture Substances 0.000 claims abstract description 198
- 238000004458 analytical method Methods 0.000 claims abstract description 119
- 238000005011 time of flight secondary ion mass spectroscopy Methods 0.000 claims abstract description 55
- 238000002042 time-of-flight secondary ion mass spectrometry Methods 0.000 claims abstract description 55
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 claims abstract description 42
- 239000010410 layer Substances 0.000 claims description 777
- -1 phosphorus compound Chemical class 0.000 claims description 298
- 239000000463 material Substances 0.000 claims description 224
- 239000002253 acid Substances 0.000 claims description 199
- 150000001875 compounds Chemical class 0.000 claims description 136
- 229910052698 phosphorus Inorganic materials 0.000 claims description 128
- 239000011574 phosphorus Substances 0.000 claims description 124
- 229920000768 polyamine Polymers 0.000 claims description 120
- 229910052751 metal Inorganic materials 0.000 claims description 94
- 150000003839 salts Chemical class 0.000 claims description 90
- 239000002184 metal Substances 0.000 claims description 88
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 78
- 150000002736 metal compounds Chemical class 0.000 claims description 72
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 70
- 150000002500 ions Chemical group 0.000 claims description 58
- 229920005989 resin Polymers 0.000 claims description 53
- 239000011347 resin Substances 0.000 claims description 53
- 238000010521 absorption reaction Methods 0.000 claims description 50
- 229920000642 polymer Polymers 0.000 claims description 50
- 125000003277 amino group Chemical group 0.000 claims description 47
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 45
- 229910052725 zinc Inorganic materials 0.000 claims description 45
- 239000000126 substance Substances 0.000 claims description 42
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 41
- 238000000862 absorption spectrum Methods 0.000 claims description 40
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 38
- 229920002125 Sokalan® Polymers 0.000 claims description 37
- 239000004952 Polyamide Substances 0.000 claims description 35
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 35
- 229920001577 copolymer Polymers 0.000 claims description 35
- 229920002647 polyamide Polymers 0.000 claims description 35
- 239000004584 polyacrylic acid Substances 0.000 claims description 33
- 229910052782 aluminium Inorganic materials 0.000 claims description 29
- 239000012790 adhesive layer Substances 0.000 claims description 28
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 26
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 26
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 26
- 150000002739 metals Chemical class 0.000 claims description 25
- 229920002845 Poly(methacrylic acid) Polymers 0.000 claims description 24
- 238000002835 absorbance Methods 0.000 claims description 22
- 125000004437 phosphorous atom Chemical group 0.000 claims description 22
- 239000000565 sealant Substances 0.000 claims description 21
- 235000013305 food Nutrition 0.000 claims description 20
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 20
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 19
- 229920002873 Polyethylenimine Polymers 0.000 claims description 18
- 229920000137 polyphosphoric acid Polymers 0.000 claims description 18
- 229910052788 barium Inorganic materials 0.000 claims description 17
- 229910052791 calcium Inorganic materials 0.000 claims description 17
- 229910052749 magnesium Inorganic materials 0.000 claims description 17
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 16
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 14
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 claims description 14
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims description 13
- 150000002148 esters Chemical class 0.000 claims description 13
- 238000004806 packaging method and process Methods 0.000 claims description 12
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 claims description 12
- 150000001734 carboxylic acid salts Chemical class 0.000 claims description 8
- 238000004566 IR spectroscopy Methods 0.000 claims description 5
- 150000001735 carboxylic acids Chemical class 0.000 claims description 3
- 238000000691 measurement method Methods 0.000 claims description 3
- 150000005690 diesters Chemical class 0.000 claims description 2
- 238000004611 spectroscopical analysis Methods 0.000 claims description 2
- 239000000758 substrate Substances 0.000 abstract description 8
- 125000001308 pyruvoyl group Chemical group O=C([*])C(=O)C([H])([H])[H] 0.000 abstract 4
- 239000007789 gas Substances 0.000 description 626
- 239000002585 base Substances 0.000 description 195
- 239000011701 zinc Substances 0.000 description 126
- 238000010438 heat treatment Methods 0.000 description 88
- 238000000576 coating method Methods 0.000 description 78
- 239000011248 coating agent Substances 0.000 description 75
- 239000010408 film Substances 0.000 description 72
- 238000000034 method Methods 0.000 description 62
- 230000006870 function Effects 0.000 description 57
- 238000011282 treatment Methods 0.000 description 53
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 51
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 50
- 238000001228 spectrum Methods 0.000 description 45
- 235000011007 phosphoric acid Nutrition 0.000 description 42
- 238000001035 drying Methods 0.000 description 35
- 239000000047 product Substances 0.000 description 35
- 239000004593 Epoxy Substances 0.000 description 34
- 239000000178 monomer Substances 0.000 description 30
- 239000000853 adhesive Substances 0.000 description 28
- 229920005992 thermoplastic resin Polymers 0.000 description 28
- 238000004519 manufacturing process Methods 0.000 description 27
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 26
- 230000001070 adhesive effect Effects 0.000 description 26
- 238000005259 measurement Methods 0.000 description 25
- 229920001519 homopolymer Polymers 0.000 description 22
- 230000000737 periodic effect Effects 0.000 description 22
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 21
- PRKQVKDSMLBJBJ-UHFFFAOYSA-N ammonium carbonate Chemical compound N.N.OC(O)=O PRKQVKDSMLBJBJ-UHFFFAOYSA-N 0.000 description 20
- 239000004094 surface-active agent Substances 0.000 description 20
- 238000004364 calculation method Methods 0.000 description 19
- 238000001879 gelation Methods 0.000 description 19
- 229920001187 thermosetting polymer Polymers 0.000 description 19
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 18
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 17
- 238000001514 detection method Methods 0.000 description 17
- 150000003018 phosphorus compounds Chemical class 0.000 description 17
- 229920005749 polyurethane resin Polymers 0.000 description 17
- 229920000178 Acrylic resin Polymers 0.000 description 16
- 239000004925 Acrylic resin Substances 0.000 description 16
- 239000004743 Polypropylene Substances 0.000 description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 16
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 16
- 150000003863 ammonium salts Chemical class 0.000 description 16
- 239000011777 magnesium Substances 0.000 description 16
- 238000001819 mass spectrum Methods 0.000 description 16
- 239000011368 organic material Substances 0.000 description 16
- 229920005862 polyol Polymers 0.000 description 16
- 229920001155 polypropylene Polymers 0.000 description 16
- 238000012545 processing Methods 0.000 description 16
- 229910052710 silicon Inorganic materials 0.000 description 16
- 239000010703 silicon Substances 0.000 description 16
- 239000011575 calcium Substances 0.000 description 15
- 238000005229 chemical vapour deposition Methods 0.000 description 15
- 238000004132 cross linking Methods 0.000 description 15
- 239000012634 fragment Substances 0.000 description 15
- 230000003472 neutralizing effect Effects 0.000 description 15
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 14
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 14
- 150000007513 acids Chemical class 0.000 description 14
- 239000001099 ammonium carbonate Substances 0.000 description 14
- 238000010411 cooking Methods 0.000 description 14
- 229920001225 polyester resin Polymers 0.000 description 14
- 239000002987 primer (paints) Substances 0.000 description 14
- 239000004642 Polyimide Substances 0.000 description 13
- 229910010272 inorganic material Inorganic materials 0.000 description 13
- 239000011147 inorganic material Substances 0.000 description 13
- 239000007788 liquid Substances 0.000 description 13
- 229920001721 polyimide Polymers 0.000 description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 12
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 12
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 12
- 239000007864 aqueous solution Substances 0.000 description 12
- 239000004645 polyester resin Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 238000012546 transfer Methods 0.000 description 12
- 125000003504 2-oxazolinyl group Chemical group O1C(=NCC1)* 0.000 description 11
- 238000006386 neutralization reaction Methods 0.000 description 11
- 229920000098 polyolefin Polymers 0.000 description 11
- 229920002635 polyurethane Polymers 0.000 description 11
- 239000004814 polyurethane Substances 0.000 description 11
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 10
- 235000012501 ammonium carbonate Nutrition 0.000 description 10
- 238000010884 ion-beam technique Methods 0.000 description 10
- 229910021645 metal ion Inorganic materials 0.000 description 10
- 239000005022 packaging material Substances 0.000 description 10
- 238000005240 physical vapour deposition Methods 0.000 description 10
- 239000005056 polyisocyanate Substances 0.000 description 10
- 229920001228 polyisocyanate Polymers 0.000 description 10
- 150000003077 polyols Chemical class 0.000 description 10
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 10
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 150000005215 alkyl ethers Chemical class 0.000 description 9
- 125000000217 alkyl group Chemical group 0.000 description 9
- 150000007942 carboxylates Chemical group 0.000 description 9
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 9
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 9
- 239000011112 polyethylene naphthalate Substances 0.000 description 9
- 239000011342 resin composition Substances 0.000 description 9
- 230000003595 spectral effect Effects 0.000 description 9
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 8
- 239000000654 additive Substances 0.000 description 8
- 150000001408 amides Chemical class 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 235000014113 dietary fatty acids Nutrition 0.000 description 8
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 8
- 239000003822 epoxy resin Substances 0.000 description 8
- 239000000194 fatty acid Substances 0.000 description 8
- 229930195729 fatty acid Natural products 0.000 description 8
- 238000005227 gel permeation chromatography Methods 0.000 description 8
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 8
- 150000003016 phosphoric acids Chemical class 0.000 description 8
- 229920000647 polyepoxide Polymers 0.000 description 8
- 238000000992 sputter etching Methods 0.000 description 8
- 150000003751 zinc Chemical class 0.000 description 8
- 150000007934 α,β-unsaturated carboxylic acids Chemical class 0.000 description 8
- 229910019142 PO4 Inorganic materials 0.000 description 7
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 7
- 238000005530 etching Methods 0.000 description 7
- 235000021317 phosphate Nutrition 0.000 description 7
- 229920000728 polyester Polymers 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 6
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 6
- 229920000877 Melamine resin Polymers 0.000 description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 6
- 125000001931 aliphatic group Chemical group 0.000 description 6
- 150000001336 alkenes Chemical class 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 150000008064 anhydrides Chemical class 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 229930016911 cinnamic acid Natural products 0.000 description 6
- 235000013985 cinnamic acid Nutrition 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 239000003431 cross linking reagent Substances 0.000 description 6
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000001530 fumaric acid Substances 0.000 description 6
- 230000014509 gene expression Effects 0.000 description 6
- 150000004820 halides Chemical class 0.000 description 6
- 239000003999 initiator Substances 0.000 description 6
- 238000007733 ion plating Methods 0.000 description 6
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 6
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 6
- 150000004767 nitrides Chemical class 0.000 description 6
- 239000002736 nonionic surfactant Substances 0.000 description 6
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 6
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 6
- 229920000515 polycarbonate Polymers 0.000 description 6
- 239000004417 polycarbonate Substances 0.000 description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 6
- 229920002050 silicone resin Polymers 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 6
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 6
- 239000011787 zinc oxide Substances 0.000 description 6
- 235000014692 zinc oxide Nutrition 0.000 description 6
- 229910000165 zinc phosphate Inorganic materials 0.000 description 6
- CAWGQUPKYLTTNX-UHFFFAOYSA-N 3,4,5,6-tetrahydro-2,7-benzodioxecine-1,8-dione Chemical compound O=C1OCCCCOC(=O)C2=CC=CC=C12 CAWGQUPKYLTTNX-UHFFFAOYSA-N 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 239000004640 Melamine resin Substances 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 5
- 238000005102 attenuated total reflection Methods 0.000 description 5
- 238000009835 boiling Methods 0.000 description 5
- VPKDCDLSJZCGKE-UHFFFAOYSA-N carbodiimide group Chemical group N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 description 5
- 238000006482 condensation reaction Methods 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 230000018044 dehydration Effects 0.000 description 5
- 238000006297 dehydration reaction Methods 0.000 description 5
- 150000002009 diols Chemical class 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000005038 ethylene vinyl acetate Substances 0.000 description 5
- 229910052732 germanium Inorganic materials 0.000 description 5
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 239000010452 phosphate Substances 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 5
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 5
- 238000010183 spectrum analysis Methods 0.000 description 5
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- 239000001602 (E)-hex-3-enoic acid Substances 0.000 description 4
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 4
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 4
- XXHDAWYDNSXJQM-UHFFFAOYSA-N Chloride-3-Hexenoic acid Natural products CCC=CCC(O)=O XXHDAWYDNSXJQM-UHFFFAOYSA-N 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 4
- 229920002292 Nylon 6 Polymers 0.000 description 4
- 229920002302 Nylon 6,6 Polymers 0.000 description 4
- 108010039918 Polylysine Proteins 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 4
- 150000003973 alkyl amines Chemical class 0.000 description 4
- 150000001346 alkyl aryl ethers Chemical class 0.000 description 4
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 4
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 4
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 125000006226 butoxyethyl group Chemical group 0.000 description 4
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 4
- 239000004568 cement Substances 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 235000013804 distarch phosphate Nutrition 0.000 description 4
- NFDRPXJGHKJRLJ-UHFFFAOYSA-N edtmp Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CCN(CP(O)(O)=O)CP(O)(O)=O NFDRPXJGHKJRLJ-UHFFFAOYSA-N 0.000 description 4
- 125000004494 ethyl ester group Chemical group 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 150000004679 hydroxides Chemical class 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 4
- 229920003986 novolac Polymers 0.000 description 4
- 229920006284 nylon film Polymers 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 229920006255 plastic film Polymers 0.000 description 4
- 239000002985 plastic film Substances 0.000 description 4
- 229920000724 poly(L-arginine) polymer Polymers 0.000 description 4
- 229920000083 poly(allylamine) Polymers 0.000 description 4
- 108010011110 polyarginine Proteins 0.000 description 4
- 229920001748 polybutylene Polymers 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 229920000656 polylysine Polymers 0.000 description 4
- 230000000379 polymerizing effect Effects 0.000 description 4
- 239000011116 polymethylpentene Substances 0.000 description 4
- 229920000306 polymethylpentene Polymers 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 239000011591 potassium Substances 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- 229940005657 pyrophosphoric acid Drugs 0.000 description 4
- 229920005604 random copolymer Polymers 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 238000010025 steaming Methods 0.000 description 4
- 229910052712 strontium Inorganic materials 0.000 description 4
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 150000003512 tertiary amines Chemical class 0.000 description 4
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 4
- YHGNXQAFNHCBTK-OWOJBTEDSA-N trans-3-hexenedioic acid Chemical compound OC(=O)C\C=C\CC(O)=O YHGNXQAFNHCBTK-OWOJBTEDSA-N 0.000 description 4
- XXHDAWYDNSXJQM-ONEGZZNKSA-N trans-hex-3-enoic acid Chemical compound CC\C=C\CC(O)=O XXHDAWYDNSXJQM-ONEGZZNKSA-N 0.000 description 4
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 4
- 229940048102 triphosphoric acid Drugs 0.000 description 4
- 150000003752 zinc compounds Chemical class 0.000 description 4
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 4
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 4
- 229940007718 zinc hydroxide Drugs 0.000 description 4
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 3
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000005062 Polybutadiene Substances 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 239000004721 Polyphenylene oxide Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 3
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 3
- 239000006087 Silane Coupling Agent Substances 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 230000001174 ascending effect Effects 0.000 description 3
- 229910052790 beryllium Inorganic materials 0.000 description 3
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 3
- 238000009739 binding Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000005591 charge neutralization Effects 0.000 description 3
- 150000001805 chlorine compounds Chemical class 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 238000003851 corona treatment Methods 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 150000002222 fluorine compounds Chemical class 0.000 description 3
- 239000005003 food packaging material Substances 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 229910052735 hafnium Inorganic materials 0.000 description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 3
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 229920000554 ionomer Polymers 0.000 description 3
- 229920000092 linear low density polyethylene Polymers 0.000 description 3
- 239000004707 linear low-density polyethylene Substances 0.000 description 3
- 229920001684 low density polyethylene Polymers 0.000 description 3
- 239000004702 low-density polyethylene Substances 0.000 description 3
- 229940018564 m-phenylenediamine Drugs 0.000 description 3
- 235000012254 magnesium hydroxide Nutrition 0.000 description 3
- 229910001512 metal fluoride Inorganic materials 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 238000009832 plasma treatment Methods 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- 229920002857 polybutadiene Polymers 0.000 description 3
- 229920000570 polyether Polymers 0.000 description 3
- 239000004848 polyfunctional curative Substances 0.000 description 3
- 229920005629 polypropylene homopolymer Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- 239000005033 polyvinylidene chloride Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 229910052707 ruthenium Inorganic materials 0.000 description 3
- 229910052711 selenium Inorganic materials 0.000 description 3
- 239000011669 selenium Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 238000003980 solgel method Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 3
- 229910052714 tellurium Inorganic materials 0.000 description 3
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 3
- 229910052716 thallium Inorganic materials 0.000 description 3
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229920006337 unsaturated polyester resin Polymers 0.000 description 3
- 150000003673 urethanes Chemical class 0.000 description 3
- 238000007738 vacuum evaporation Methods 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- CUNWUEBNSZSNRX-RKGWDQTMSA-N (2r,3r,4r,5s)-hexane-1,2,3,4,5,6-hexol;(z)-octadec-9-enoic acid Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O CUNWUEBNSZSNRX-RKGWDQTMSA-N 0.000 description 2
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 2
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 2
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 2
- LOCPTSFJZDIICR-UHFFFAOYSA-N 1,3-bis(3-isocyanato-4-methylphenyl)-1,3-diazetidine-2,4-dione Chemical compound C1=C(N=C=O)C(C)=CC=C1N1C(=O)N(C=2C=C(C(C)=CC=2)N=C=O)C1=O LOCPTSFJZDIICR-UHFFFAOYSA-N 0.000 description 2
- SBJCUZQNHOLYMD-UHFFFAOYSA-N 1,5-Naphthalene diisocyanate Chemical compound C1=CC=C2C(N=C=O)=CC=CC2=C1N=C=O SBJCUZQNHOLYMD-UHFFFAOYSA-N 0.000 description 2
- ACYNBXCKNMWUCE-UHFFFAOYSA-N 1,6-diisocyanatohexane;hexane-1,1,1-triol Chemical compound CCCCCC(O)(O)O.O=C=NCCCCCCN=C=O ACYNBXCKNMWUCE-UHFFFAOYSA-N 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 2
- LXOFYPKXCSULTL-UHFFFAOYSA-N 2,4,7,9-tetramethyldec-5-yne-4,7-diol Chemical compound CC(C)CC(C)(O)C#CC(C)(O)CC(C)C LXOFYPKXCSULTL-UHFFFAOYSA-N 0.000 description 2
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 2
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 2
- IKCQWKJZLSDDSS-UHFFFAOYSA-N 2-formyloxyethyl formate Chemical compound O=COCCOC=O IKCQWKJZLSDDSS-UHFFFAOYSA-N 0.000 description 2
- HFCUBKYHMMPGBY-UHFFFAOYSA-N 2-methoxyethyl prop-2-enoate Chemical compound COCCOC(=O)C=C HFCUBKYHMMPGBY-UHFFFAOYSA-N 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 2
- NECRQCBKTGZNMH-UHFFFAOYSA-N 3,5-dimethylhex-1-yn-3-ol Chemical compound CC(C)CC(C)(O)C#C NECRQCBKTGZNMH-UHFFFAOYSA-N 0.000 description 2
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 2
- 229920006197 POE laurate Polymers 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 229920001807 Urea-formaldehyde Polymers 0.000 description 2
- LWZFANDGMFTDAV-BURFUSLBSA-N [(2r)-2-[(2r,3r,4s)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O LWZFANDGMFTDAV-BURFUSLBSA-N 0.000 description 2
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 2
- YDHWWBZFRZWVHO-UHFFFAOYSA-N [hydroxy(phosphonooxy)phosphoryl] phosphono hydrogen phosphate Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(=O)OP(O)(O)=O YDHWWBZFRZWVHO-UHFFFAOYSA-N 0.000 description 2
- 150000008062 acetophenones Chemical class 0.000 description 2
- 239000004840 adhesive resin Substances 0.000 description 2
- 229920006223 adhesive resin Polymers 0.000 description 2
- 229920000180 alkyd Polymers 0.000 description 2
- 239000002280 amphoteric surfactant Substances 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 2
- 230000000181 anti-adherent effect Effects 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 2
- 229910001863 barium hydroxide Inorganic materials 0.000 description 2
- CHIHQLCVLOXUJW-UHFFFAOYSA-N benzoic anhydride Chemical compound C=1C=CC=CC=1C(=O)OC(=O)C1=CC=CC=C1 CHIHQLCVLOXUJW-UHFFFAOYSA-N 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- 150000008366 benzophenones Chemical class 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 239000007859 condensation product Substances 0.000 description 2
- 229930003836 cresol Natural products 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- HHICRQHZPBOQPI-UHFFFAOYSA-L diazanium;zinc;dicarbonate Chemical compound [NH4+].[NH4+].[Zn+2].[O-]C([O-])=O.[O-]C([O-])=O HHICRQHZPBOQPI-UHFFFAOYSA-L 0.000 description 2
- 125000005442 diisocyanate group Chemical group 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- QNDQILQPPKQROV-UHFFFAOYSA-N dizinc Chemical compound [Zn]=[Zn] QNDQILQPPKQROV-UHFFFAOYSA-N 0.000 description 2
- TVIDDXQYHWJXFK-UHFFFAOYSA-N dodecanedioic acid Chemical compound OC(=O)CCCCCCCCCCC(O)=O TVIDDXQYHWJXFK-UHFFFAOYSA-N 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- QFXZANXYUCUTQH-UHFFFAOYSA-N ethynol Chemical compound OC#C QFXZANXYUCUTQH-UHFFFAOYSA-N 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 125000003709 fluoroalkyl group Chemical group 0.000 description 2
- 229940051250 hexylene glycol Drugs 0.000 description 2
- 239000008240 homogeneous mixture Substances 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 230000005865 ionizing radiation Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000002648 laminated material Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- 229920002114 octoxynol-9 Polymers 0.000 description 2
- 229940049964 oleate Drugs 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 239000012766 organic filler Substances 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 239000003504 photosensitizing agent Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920005906 polyester polyol Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000012748 slip agent Substances 0.000 description 2
- 229950006451 sorbitan laurate Drugs 0.000 description 2
- 235000011067 sorbitan monolaureate Nutrition 0.000 description 2
- 239000001593 sorbitan monooleate Substances 0.000 description 2
- 235000011069 sorbitan monooleate Nutrition 0.000 description 2
- 229940035049 sorbitan monooleate Drugs 0.000 description 2
- 239000001587 sorbitan monostearate Substances 0.000 description 2
- 235000011076 sorbitan monostearate Nutrition 0.000 description 2
- 229940035048 sorbitan monostearate Drugs 0.000 description 2
- 229960005078 sorbitan sesquioleate Drugs 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 2
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- YZTJKOLMWJNVFH-UHFFFAOYSA-N 2-sulfobenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1S(O)(=O)=O YZTJKOLMWJNVFH-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- CARJPEPCULYFFP-UHFFFAOYSA-N 5-Sulfo-1,3-benzenedicarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(S(O)(=O)=O)=C1 CARJPEPCULYFFP-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 239000004970 Chain extender Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 description 1
- OMRDSWJXRLDPBB-UHFFFAOYSA-N N=C=O.N=C=O.C1CCCCC1 Chemical compound N=C=O.N=C=O.C1CCCCC1 OMRDSWJXRLDPBB-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000005025 cast polypropylene Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009820 dry lamination Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 229920005674 ethylene-propylene random copolymer Polymers 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229940079826 hydrogen sulfite Drugs 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229920000831 ionic polymer Polymers 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 229920001179 medium density polyethylene Polymers 0.000 description 1
- 239000004701 medium-density polyethylene Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
本發明是有關於一種氣體阻擋性積層體及其相關技術。The present invention relates to a gas barrier laminate and related technologies.
一般而言,作為對水蒸氣或氧的氣體阻擋性材料,使用在基材層上設置有具有氣體阻擋性的無機物層的積層體。Generally, as a gas barrier material against water vapor or oxygen, a laminate in which an inorganic layer having gas barrier properties is provided on a base material layer is used.
然而,該無機物層不耐摩擦等,此種氣體阻擋性積層體在後加工的印刷時、層壓時或內容物的填充時,有時會因摩擦或伸長而在無機物層產生裂紋,造成氣體阻擋性降低。However, the inorganic layer is not resistant to friction, etc. In such a gas barrier laminate, cracks may occur in the inorganic layer due to friction or elongation during post-processing printing, lamination, or filling of contents, resulting in gas Barrier resistance reduced.
因此,作為氣體阻擋性層,例如於專利文獻1(國際公開第2016/017544號)中揭示了一種氣體阻擋用塗材,其包含多羧酸、多胺化合物、多價金屬化合物及鹼,(所述多羧酸中所含的-COO-基的莫耳數)/(所述多胺化合物中所含的胺基的莫耳數)=100/20~100/90。Therefore, as a gas barrier layer, for example, Patent Document 1 (International Publication No. 2016/017544) discloses a gas barrier coating material containing a polycarboxylic acid, a polyamine compound, a polyvalent metal compound, and a base, ( The molar number of the -COO- group contained in the polycarboxylic acid) / (the molar number of the amine group contained in the polyamine compound) = 100/20 to 100/90.
於專利文獻1中揭示了,若使用此種氣體阻擋用塗材,則可提供低濕度下及高濕度下兩種條件下的氣體阻擋性、特別是氧阻擋性良好的氣體阻擋性膜及其積層體。Patent Document 1 discloses that using such a gas barrier coating material can provide a gas barrier film with excellent gas barrier properties, especially oxygen barrier properties, under both conditions of low humidity and high humidity, and its gas barrier film can be provided. Laminated body.
另外,於專利文獻2(國際公開第03/091317號)中揭示了一種膜,其以多羧酸(A)及多價金屬化合物(B)為原料,且該膜的紅外線吸收光譜的峰比(A 1560/A 1700)為0.25以上。 In addition, Patent Document 2 (International Publication No. 03/091317) discloses a film using a polycarboxylic acid (A) and a polyvalent metal compound (B) as raw materials, and the peak ratio of the infrared absorption spectrum of the film is (A 1560 /A 1700 ) is above 0.25.
於專利文獻2中揭示了,若為此種膜,則即便於高濕度環境下氧等的氣體阻擋性亦優異,具有不會因中性的水、高溫水蒸氣及熱水的影響而損害外觀、形狀及氣體阻擋性的耐水性,可獲得對酸及/或鹼具有易溶性的膜。Patent Document 2 discloses that such a film has excellent gas barrier properties such as oxygen even in a high-humidity environment, and has the ability to not impair the appearance due to the influence of neutral water, high-temperature water vapor, and hot water. , shape and gas barrier water resistance, a film that is easily soluble in acids and/or alkali can be obtained.
另外,專利文獻3(國際公開第2016/088534號)中揭示了一種氣體阻擋性聚合物,其藉由對包含多羧酸及多胺化合物的混合物進行加熱而形成,於該氣體阻擋性聚合物的紅外線吸收光譜中,於將吸收帶1493 cm -1以上且1780 cm -1以下的範圍的總峰面積設為A,將吸收帶1598 cm -1以上且1690 cm -1以下的範圍的總峰面積設為B時,由B/A所表示的醯胺鍵的面積比率為0.370以上。 In addition, Patent Document 3 (International Publication No. 2016/088534) discloses a gas barrier polymer formed by heating a mixture containing a polycarboxylic acid and a polyamine compound. In the infrared absorption spectrum of When the area is B, the area ratio of the amide bond represented by B/A is 0.370 or more.
於專利文獻3中揭示了一種氣體阻擋性聚合物,若為此種聚合物,則可實現於高濕度下及煮沸/蒸煮處理後此兩種條件下的氣體阻擋性能優異、且外觀、尺寸穩定性、生產性的平衡亦優異的氣體阻擋性膜及氣體阻擋積層體。Patent Document 3 discloses a gas barrier polymer. This polymer can achieve excellent gas barrier properties under high humidity and after boiling/cooking treatment, and can achieve stable appearance and size. Gas barrier films and gas barrier laminates with excellent balance between performance and productivity.
進而,作為與氣體阻擋性材料相關的現有技術,亦可列舉以下的專利文獻4~專利文獻6。 [現有技術文獻] [專利文獻] Furthermore, the following Patent Documents 4 to 6 can also be cited as prior art related to gas barrier materials. [Prior art documents] [Patent Document]
專利文獻1:國際公開第2016/017544號 專利文獻2:國際公開第03/091317號 專利文獻3:國際公開第2016/088534號 專利文獻4:日本專利特開2005-225940號公報 專利文獻5:日本專利特開2013-10857號公報 專利文獻6:國際公開第2011/122036號 Patent Document 1: International Publication No. 2016/017544 Patent Document 2: International Publication No. 03/091317 Patent Document 3: International Publication No. 2016/088534 Patent Document 4: Japanese Patent Application Publication No. 2005-225940 Patent Document 5: Japanese Patent Application Publication No. 2013-10857 Patent Document 6: International Publication No. 2011/122036
[發明所欲解決之課題][Problem to be solved by the invention]
對於氣體阻擋性材料的各種特性所要求的技術水準逐漸變高。The technical level required for various properties of gas barrier materials is gradually increasing.
根據本發明者等人的見解及初步研究,例如關於專利文獻1~專利文獻3中記載的先前的氣體阻擋性材料,存在如以下般的課題。 如專利文獻1或專利文獻2中記載般的包含含有多羧酸及多價金屬化合物的體系的氣體阻擋性材料存在因兩層層壓結構而蒸煮處理後的阻擋性能會惡化的問題。 另外,如專利文獻3中記載般的包含含有多羧酸及多胺化合物的體系的氣體阻擋性材料存在因三層層壓結構而蒸煮處理後的阻擋性能會惡化的問題。 如此,本發明者等人發現,如專利文獻1~專利文獻3中記載般的先前的氣體阻擋性材料存在因層壓結構而蒸煮處理後的阻擋性能惡化的問題。 即,本發明者等人發現,就蒸煮處理後的阻擋性能的觀點而言,先前的氣體阻擋性材料存在改善的餘地。 According to the findings and preliminary studies of the present inventors, the conventional gas barrier materials described in Patent Documents 1 to 3, for example, have the following problems. The gas barrier material containing a system containing a polycarboxylic acid and a polyvalent metal compound as described in Patent Document 1 or Patent Document 2 has a problem that the barrier performance after retort treatment is deteriorated due to the two-layer laminated structure. In addition, the gas barrier material containing a system containing a polycarboxylic acid and a polyamine compound as described in Patent Document 3 has a problem that the barrier performance after retort treatment is deteriorated due to the three-layer laminate structure. As described above, the present inventors discovered that the conventional gas barrier materials as described in Patent Documents 1 to 3 had a problem of deterioration in barrier performance after retort treatment due to the laminate structure. That is, the present inventors found that there is room for improvement in conventional gas barrier materials from the viewpoint of barrier performance after retort treatment.
本發明是鑒於所述情況而成者。本發明的目的之一是提供一種阻擋性積層體,其可用於蒸煮處理後的阻擋性能、例如兩層層壓結構中的水蒸氣滲透率良好的阻擋膜。 (該發明的目的特別是有關於一種後述的第一發明) The present invention was made in view of the above-mentioned circumstances. One object of the present invention is to provide a barrier laminate that can be used as a barrier film having excellent barrier properties after retort treatment, such as a water vapor permeability in a two-layer laminate structure. (The purpose of this invention relates specifically to a first invention described below)
於氣體阻擋性材料中,要求進一步提高水蒸氣等氣體的阻擋性。例如,於製造蒸煮食品時,進行蒸煮處理,即於利用氣體阻擋性材料包裝食品後進行加熱處理,但要求於蒸煮處理後亦可獲得良好的阻擋性。 本發明的目的之一是提供一種改善了水蒸氣等氣體的阻擋性的氣體阻擋性材料。 (該發明的目的特別是有關於一種後述的第二發明) Among gas barrier materials, it is required to further improve the barrier properties of gases such as water vapor. For example, when manufacturing retort food, a retort process is performed, that is, the food is packaged with a gas barrier material and then heated. However, it is required that good barrier properties can also be obtained after the retort process. One object of the present invention is to provide a gas barrier material with improved barrier properties to gases such as water vapor. (The purpose of this invention is specifically related to a second invention described below)
根據本發明者等人的見解,如專利文獻1~專利文獻3中記載般的先前的氣體阻擋性材料存在因層壓結構而蒸煮處理後的阻擋性能惡化的問題。 本發明的目的之一是提供一種阻擋性積層體,其可用於無論層壓結構如何,蒸煮處理後的阻擋性能均良好的阻擋膜中。 (該發明的目的特別是有關於一種後述的第三發明) According to the findings of the present inventors, conventional gas barrier materials such as those described in Patent Documents 1 to 3 have a problem that their barrier properties after retort treatment deteriorate due to their laminate structure. One object of the present invention is to provide a barrier laminate that can be used in a barrier film having good barrier properties after retort treatment regardless of the lamination structure. (The purpose of this invention is specifically related to a third invention described below)
根據本發明者等人的見解,就均衡地提高生產性及阻擋性的觀點而言,氣體阻擋性材料仍然存在改善的餘地。迄今為止,著眼於阻擋性能的提高的技術有很多,但迄今為止未報告均衡地提高阻擋性及生產性的技術。 本發明的目的之一是提供一種氣體阻擋性材料,其生產性及阻擋性的平衡優異,於各種層結構中可發揮較佳的阻擋性。 (該發明的目的特別是有關於一種後述的第四發明) According to the findings of the present inventors, there is still room for improvement in gas barrier materials from the viewpoint of improving productivity and barrier properties in a balanced manner. Until now, many technologies have focused on improving barrier properties, but no technology has been reported that improves barrier properties and productivity in a balanced manner. One object of the present invention is to provide a gas barrier material that has an excellent balance between productivity and barrier properties and can exhibit excellent barrier properties in various layer structures. (The purpose of this invention is specifically related to a fourth invention described below)
對於氣體阻擋性材料的各種特性所要求的技術水準逐漸變高。根據本發明者等人的見解,關於如專利文獻4及專利文獻5中記載般的氣體阻擋性材料,為了使多羧酸與多胺交聯,需要於高溫下長時間加熱,因此有時生產性降低。 另外,為了提高此種氣體阻擋性材料的生產性,若縮短用於使多羧酸與多胺交聯的加熱處理時間,則有時藉由多羧酸與多胺交聯而形成的醯胺鍵的比例降低,阻擋性降低。 根據該些,本發明者等人發現就均衡地提高生產性及阻擋性的觀點而言,先前的氣體阻擋性材料存在改善的餘地。迄今為止,著眼於阻擋性能的提高的技術有很多,但迄今為止未報告均衡地提高阻擋性及生產性的技術。 本發明的目的之一是提供一種生產性及阻擋性的平衡優異的氣體阻擋性材料。 (該發明的目的特別是有關於一種後述的第五發明) [解決課題之手段] The technical level required for various properties of gas barrier materials is gradually increasing. According to the knowledge of the present inventors, gas barrier materials such as those described in Patent Document 4 and Patent Document 5 require heating at high temperatures for a long time in order to crosslink a polycarboxylic acid and a polyamine, and therefore are sometimes produced. Sexuality is reduced. In addition, in order to improve the productivity of such gas barrier materials, if the heat treatment time for cross-linking polycarboxylic acid and polyamine is shortened, amide formed by cross-linking polycarboxylic acid and polyamine may sometimes occur. The proportion of the keys is reduced and the blocking properties are reduced. Based on these, the present inventors found that there is room for improvement in conventional gas barrier materials from the viewpoint of improving productivity and barrier properties in a balanced manner. Until now, many technologies have focused on improving barrier properties, but no technology has been reported that improves barrier properties and productivity in a balanced manner. One object of the present invention is to provide a gas barrier material with an excellent balance between productivity and barrier properties. (The purpose of this invention relates specifically to a fifth invention described below) [Means to solve the problem]
本發明者等人為了達成所述課題中的至少一個而反覆進行努力研究。其結果,發現例如如下積層體的蒸煮處理後的阻擋性能良好,所述積層體是包括藉由X射線光電子分光(X-ray Photoelectron Spectroscopy,XPS)分析而Zn處於特定的組成比的範圍內、藉由飛行時間型二次離子質量(Time of Flight Secondary Ion Mass Spectroscopy,TOF-SIMS)分析觀測到的源自Zn的特定的峰的強度比處於某範圍內的氣體阻擋性層的氣體阻擋性積層體,且包括藉由XPS分析而N的組成比處於特定的範圍內、藉由TOF-SIMS分析觀測到的源自N的特定的峰強度比處於特定的範圍內的氣體阻擋性層。然後,完成了以下的第一發明。 另外,本發明者等人完成了以下的第二發明、第三發明、第四發明及第五發明。 The inventors of the present invention have repeatedly conducted research in order to achieve at least one of the above-mentioned subjects. As a result, it was found that, for example, a laminate in which Zn is within a specific composition ratio range as analyzed by X-ray Photoelectron Spectroscopy (XPS) has good barrier properties after retort treatment. A gas barrier layer in which the intensity ratio of a specific peak derived from Zn observed by Time of Flight Secondary Ion Mass Spectroscopy (TOF-SIMS) analysis falls within a certain range. The body includes a gas barrier layer in which the composition ratio of N is within a specific range by XPS analysis and the specific peak intensity ratio derived from N observed by TOF-SIMS analysis is within a specific range. Then, the following first invention was completed. In addition, the present inventors have completed the following second invention, third invention, fourth invention and fifth invention.
[第一發明] 1. 一種氣體阻擋性積層體,包括:基材層;氣體阻擋性層,設置於所述基材層的至少一個面;以及無機物層,設置於所述基材層與所述氣體阻擋性層之間, 藉由對所述氣體阻擋性層進行X射線光電子分光分析而測定的Zn的組成比為1原子(atomic)%~10原子%, 於將藉由對所述氣體阻擋性層進行飛行時間型二次離子質量分析而測定的 64ZnPO 4H -的質量峰強度設為I( 64ZnPO 4H -),將C 3H 3O 2 -的質量峰強度設為I(C 3H 3O 2 -)時, I( 64ZnPO 4H -)/I(C 3H 3O 2 -) 的值為6×10 -4以上且5×10 -2以下, 藉由對所述氣體阻擋性層進行X射線光電子分光分析而測定的N的組成比率超過0原子%且為12原子%以下, 於將藉由對所述氣體阻擋性層進行飛行時間型二次離子質量分析而測定的CN -的質量峰強度設為I(CN -)時, I(CN -)/I(C 3H 3O 2 -) 的值大於0且為2以下。 2. 如1.所述的氣體阻擋性積層體,其中於將藉由所述飛行時間型二次離子質量分析對所述氣體阻擋性層進行測定而得的PO 2 -的質量峰強度設為I(PO 2 -),將PO 3 -的質量峰強度設為I(PO 3 -)時, (I(PO 2 -)+I(PO 3 -))/I(C 3H 3O 2 -) 的值為0.02以上且5以下。 3. 如1.或2.所述的氣體阻擋性積層體,其中作為所述I(PO 2 -)與所述I(PO 3 -)的強度比的 I(PO 2 -)/I(PO 3 -) 的值為0.05以上且1以下。 4. 如1.~3.中任一項所述的氣體阻擋性積層體,其中所述氣體阻擋性層包括混合物的硬化物,所述混合物至少包含多羧酸、Zn及含有一個以上的-P-OH基的磷化合物或其鹽。 5. 如4.所述的氣體阻擋性積層體,其中相對於所述多羧酸1 mol,所述混合物中的所述磷化合物或其鹽的P原子的濃度為5×10 -4mol以上且0.3 mol以下。 6. 如4.或5.所述的氣體阻擋性積層體,其中所述混合物更包含多胺。 7. 如6.所述的氣體阻擋性積層體,其中所述多胺為聚乙烯亞胺。 8. 如4.~7.中任一項所述的氣體阻擋性積層體,其中所述多羧酸包含選自由聚丙烯酸、聚甲基丙烯酸、及丙烯酸與甲基丙烯酸的共聚物所組成的群組中的一種或兩種以上的聚合物。 9. 如1.~8.中任一項所述的氣體阻擋性積層體,其中所述氣體阻擋性層的厚度為0.05 μm以上且10 μm以下。 [First Invention] 1. A gas barrier laminated body, including: a base material layer; a gas barrier layer provided on at least one surface of the base material layer; and an inorganic layer provided between the base material layer and the base material layer. Between the gas barrier layers, the composition ratio of Zn measured by X-ray photoelectron spectrometry of the gas barrier layer is 1 atomic % to 10 atomic %, so that by analyzing the gas The mass peak intensity of 64 ZnPO 4 H - measured by time-of-flight secondary ion mass analysis of the barrier layer is set to I ( 64 ZnPO 4 H - ), and the mass peak intensity of C 3 H 3 O 2 - is set to I. (C 3 H 3 O 2 - ), the value of I ( 64 ZnPO 4 H - )/I (C 3 H 3 O 2 - ) is 6×10 -4 or more and 5×10 -2 or less. By The composition ratio of N measured by X-ray photoelectron spectroscopy in the gas barrier layer exceeds 0 atomic % and is 12 atomic % or less, and the gas barrier layer is subjected to time-of-flight secondary ion mass analysis. When the measured mass peak intensity of CN - is set to I(CN - ), the value of I(CN - )/I(C 3 H 3 O 2 - ) is greater than 0 and 2 or less. 2. The gas barrier laminate according to 1., wherein the mass peak intensity of PO 2 - measured by the time-of-flight secondary ion mass spectrometry of the gas barrier layer is I (PO 2 - ), when the mass peak intensity of PO 3 - is set to I (PO 3 - ), (I (PO 2 - ) + I (PO 3 - ))/I (C 3 H 3 O 2 - ) value is 0.02 or more and 5 or less. 3. The gas barrier laminate according to 1. or 2., wherein I(PO 2 - )/I(PO) is the intensity ratio of the I(PO 2 - ) to the I(PO 3 - ). 3- ) The value is 0.05 or more and 1 or less. 4. The gas barrier laminate according to any one of 1. to 3., wherein the gas barrier layer includes a hardened product of a mixture containing at least polycarboxylic acid, Zn, and one or more - P-OH group phosphorus compound or its salt. 5. The gas barrier laminate according to 4., wherein the concentration of P atoms of the phosphorus compound or its salt in the mixture is 5×10 -4 mol or more based on 1 mol of the polycarboxylic acid. And less than 0.3 mol. 6. The gas barrier laminate according to 4. or 5., wherein the mixture further contains a polyamine. 7. The gas barrier laminate according to 6., wherein the polyamine is polyethyleneimine. 8. The gas barrier laminate according to any one of 4. to 7., wherein the polycarboxylic acid contains polyacrylic acid, polymethacrylic acid, and a copolymer of acrylic acid and methacrylic acid. One or more polymers in a group. 9. The gas barrier laminate according to any one of 1. to 8., wherein the gas barrier layer has a thickness of 0.05 μm or more and 10 μm or less.
[第二發明] 1. 一種氣體阻擋性積層體,包括:基材層;氣體阻擋性層,設置於所述基材層的至少一個面;以及無機物層,設置於所述基材層與所述氣體阻擋性層之間, 於將對所述氣體阻擋性層進行飛行時間型二次離子質量分析時的PO 2 -的質量峰強度設為I(PO 2 -),將PO 3 -的質量峰強度設為I(PO 3 -),將C 3H 3O 2 -的質量峰強度設為I(C 3H 3O 2 -)時,(I(PO 2 -)+I(PO 3 -))/I(C 3H 3O 2 -)的值為0.02~5, 所述氣體阻擋性層包含選自由Zn、Ca、Mg、Ba及Al所組成的群組中的一種或兩種以上的金屬元素,藉由對所述氣體阻擋性層進行X射線光電子分光分析而求出的所述氣體阻擋性層中的所述金屬元素的組成比率為1原子%~15原子%。 2. 如1.所述的氣體阻擋性積層體,其中 於將對所述氣體阻擋性層進行飛行時間型二次離子質量分析時的CN -的質量峰強度設為I(CN -),將C 3H 3O 2 -的質量峰強度設為I(C 3H 3O 2 -)時,I(CN -)/I(C 3H 3O 2 -)的值為2以下。 3. 如1.或2.所述的氣體阻擋性積層體,其中 於藉由利用全反射測定法對所述氣體阻擋性層進行紅外分光測定而獲得的吸收光譜中, 於將吸收帶1493 cm -1以上且1780 cm -1以下的範圍的總峰面積設為A,將吸收帶1493 cm -1以上且1598 cm -1以下的範圍的總峰面積設為D時,面積比率D/A為0.5以上。 4. 如1.~3.中任一項所述的氣體阻擋性積層體,其中 所述無機物層與所述基材層接觸,或者在所述無機物層與所述基材層之間設置有底塗層。 5. 如1.~4.中任一項所述的氣體阻擋性積層體,其中 所述無機物層包含選自由氧化矽、氧化鋁及鋁所組成的群組中的一種或兩種以上的無機物。 6. 如1.~5.中任一項所述的氣體阻擋性積層體,其中 所述氣體阻擋性層的厚度為0.01 μm~15 μm。 7. 如1.~6.中任一項所述的氣體阻擋性積層體,其中 進而在所述氣體阻擋性層的與所述無機物層相反的面側設置有密封劑層。 8. 如7.所述的氣體阻擋性積層體,其中 所述密封劑層與所述氣體阻擋性層接觸,或者所述氣體阻擋性層與所述密封劑層藉由接著劑層接著。 9. 如7.所述的氣體阻擋性積層體,其中 在所述氣體阻擋性層與所述密封劑層之間設置有含聚醯胺的層。 10. 如1.~9.中任一項所述的氣體阻擋性積層體, 為食品包裝用途。 11. 如1.~10.中任一項所述的氣體阻擋性積層體, 用於製造蒸煮食品。 12. 一種包裝用袋,包含如1.~11.中任一項所述的氣體阻擋性積層體。 13. 一種食品,藉由如1.~12.中任一項所述的氣體阻擋性積層體包裝。 [Second invention] 1. A gas barrier laminated body, including: a base material layer; a gas barrier layer provided on at least one surface of the base material layer; and an inorganic layer provided between the base material layer and the base material layer. Between the gas barrier layers, the mass peak intensity of PO 2 - when the gas barrier layer is subjected to time-of-flight secondary ion mass analysis is set to I (PO 2 - ), and the mass peak intensity of PO 3 - is When the peak intensity is set to I(PO 3 - ) and the mass peak intensity of C 3 H 3 O 2 - is set to I (C 3 H 3 O 2 - ), (I (PO 2 - ) + I (PO 3 - ))/I(C 3 H 3 O 2 - ) has a value of 0.02 to 5, and the gas barrier layer includes one or more types selected from the group consisting of Zn, Ca, Mg, Ba and Al. The composition ratio of the metal element in the gas barrier layer, which is determined by X-ray photoelectron spectroscopic analysis of the gas barrier layer, is 1 atomic % to 15 atomic %. 2. The gas barrier laminate as described in 1., wherein the mass peak intensity of CN - when the gas barrier layer is subjected to time-of-flight secondary ion mass analysis is set to I (CN - ), When the mass peak intensity of C 3 H 3 O 2 - is set to I (C 3 H 3 O 2 - ), the value of I (CN - )/I (C 3 H 3 O 2 - ) is 2 or less. 3. The gas barrier laminate according to 1. or 2., wherein in the absorption spectrum obtained by subjecting the gas barrier layer to infrared spectrometry using a total reflection measurement method, the absorption band is 1493 cm When the total peak area in the range from -1 to 1780 cm -1 is A and the total peak area in the absorption band from 1493 cm -1 to 1598 cm -1 is D, the area ratio D/A is 0.5 or above. 4. The gas barrier laminated body according to any one of 1. to 3., wherein the inorganic layer is in contact with the base layer, or there is provided between the inorganic layer and the base layer. Basecoat. 5. The gas barrier laminate according to any one of 1. to 4., wherein the inorganic layer contains one or more inorganic substances selected from the group consisting of silicon oxide, aluminum oxide and aluminum. . 6. The gas barrier laminate according to any one of 1. to 5., wherein the gas barrier layer has a thickness of 0.01 μm to 15 μm. 7. The gas barrier laminate according to any one of 1. to 6., wherein a sealant layer is further provided on the side of the gas barrier layer opposite to the inorganic layer. 8. The gas barrier laminate according to 7., wherein the sealant layer is in contact with the gas barrier layer, or the gas barrier layer and the sealant layer are connected through an adhesive layer. 9. The gas barrier laminate according to 7., wherein a polyamide-containing layer is provided between the gas barrier layer and the sealant layer. 10. The gas barrier laminate according to any one of 1. to 9. is used for food packaging. 11. The gas barrier laminate according to any one of 1. to 10., used for manufacturing retort food. 12. A packaging bag containing the gas barrier laminated body according to any one of 1. to 11. 13. A food packaged with the gas barrier laminated body according to any one of 1. to 12..
[第三發明] 1. 一種氣體阻擋性積層體,包括:基材層;氣體阻擋性層,設置於所述基材層的至少一個面;以及無機物層,設置於所述基材層與所述氣體阻擋性層之間, 藉由對所述氣體阻擋性層進行X射線光電子分光分析而測定的Zn的組成比為1原子%~10原子%, 於將藉由對所述氣體阻擋性層進行飛行時間型二次離子質量分析而測定的 64ZnPO 4H -的質量峰強度設為I( 64ZnPO 4H -),將C 3H 3O 2 -的質量峰強度設為I(C 3H 3O 2 -)時, I( 64ZnPO 4H -)/I(C 3H 3O 2 -) 的值為7×10 -4以上且5×10 -2以下。 2. 如1.所述的氣體阻擋性積層體,其中於將藉由所述飛行時間型二次離子質量分析對所述氣體阻擋性層進行測定而得的PO 2 -的質量峰強度設為I(PO 2 -),將PO 3 -的質量峰強度設為I(PO 3 -)時, (I(PO 2 -)+I(PO 3 -))/I(C 3H 3O 2 -) 的值為0.02以上且5以下。 3. 如1.或2.所述的氣體阻擋性積層體,其中作為所述I(PO 2 -)與所述I(PO 3 -)的強度比的 I(PO 2 -)/I(PO 3 -) 的值為0.05以上且1以下。 4. 如1.~3.中任一項所述的氣體阻擋性積層體,其中所述氣體阻擋性層包括混合物的硬化物,所述混合物至少包含多羧酸、Zn及含有一個以上的-P-OH基的磷化合物或其鹽。 5. 如4.所述的氣體阻擋性積層體,其中相對於所述多羧酸中的羧基1 mol,所述混合物中的所述含有一個以上的-P-OH基的磷化合物或其鹽的濃度為5×10 -4mol以上且0.3 mol以下。 6. 如4.或5.所述的氣體阻擋性積層體,其中所述多羧酸包含選自由聚丙烯酸、聚甲基丙烯酸、及丙烯酸與甲基丙烯酸的共聚物所組成的群組中的一種或兩種以上的聚合物。 7. 如1.~6.中任一項所述的氣體阻擋性積層體,其中所述氣體阻擋性層的厚度為0.05 μm以上且10 μm以下。 [Third invention] 1. A gas barrier laminate, including: a base material layer; a gas barrier layer provided on at least one surface of the base material layer; and an inorganic layer provided between the base material layer and the base material layer. Between the gas barrier layers, the composition ratio of Zn measured by X-ray photoelectron spectrometry of the gas barrier layer is 1 atomic % to 10 atomic %. The mass peak intensity of 64 ZnPO 4 H - measured by time-of-flight secondary ion mass analysis is set to I ( 64 ZnPO 4 H - ), and the mass peak intensity of C 3 H 3 O 2 - is set to I (C 3 H 3 O 2 - ), the value of I( 64 ZnPO 4 H - )/I(C 3 H 3 O 2 - ) is 7×10 -4 or more and 5×10 -2 or less. 2. The gas barrier laminate according to 1., wherein the mass peak intensity of PO 2 - measured by the time-of-flight secondary ion mass spectrometry of the gas barrier layer is I (PO 2 - ), when the mass peak intensity of PO 3 - is set to I (PO 3 - ), (I (PO 2 - ) + I (PO 3 - ))/I (C 3 H 3 O 2 - ) value is 0.02 or more and 5 or less. 3. The gas barrier laminate according to 1. or 2., wherein I(PO 2 - )/I(PO) is the intensity ratio of the I(PO 2 - ) to the I(PO 3 - ). 3- ) The value is 0.05 or more and 1 or less. 4. The gas barrier laminate according to any one of 1. to 3., wherein the gas barrier layer includes a hardened product of a mixture containing at least polycarboxylic acid, Zn, and one or more - P-OH group phosphorus compound or its salt. 5. The gas barrier laminate according to 4., wherein the phosphorus compound or a salt thereof containing one or more -P-OH groups in the mixture is contained per 1 mol of the carboxyl group in the polycarboxylic acid. The concentration is 5×10 -4 mol or more and 0.3 mol or less. 6. The gas barrier laminate according to 4. or 5., wherein the polycarboxylic acid includes polyacrylic acid, polymethacrylic acid, and a copolymer of acrylic acid and methacrylic acid selected from the group consisting of One or more than two polymers. 7. The gas barrier laminate according to any one of 1. to 6., wherein the gas barrier layer has a thickness of 0.05 μm or more and 10 μm or less.
[第四發明] [1] 一種氣體阻擋性積層體,包括:基材層; 氣體阻擋性層,設置於所述基材層的至少一個面;以及 無機物層,設置於所述基材層與所述氣體阻擋性層之間, 所述氣體阻擋性層包括混合物的硬化物,所述混合物包含多羧酸、多胺化合物、多價金屬化合物、及含有一個以上的-P-OH基的磷化合物或其鹽。 [2] 如[1]所述的氣體阻擋性積層體,更包含設置於所述基材層與所述無機物層之間的底塗層。 [3] 如[1]或[2]所述的氣體阻擋性積層體,其中所述無機物層是設置在所述基材層上、或者於在所述基材層與所述無機物層之間具有中介層時設置在所述中介層上的蒸鍍膜,且包含選自由氧化矽、氧化鋁及鋁所組成的群組中的一種或兩種以上的無機物。 [4] 如[1]~[3]中任一項所述的氣體阻擋性積層體,其中於所述氣體阻擋性層的紅外線吸收光譜中, 於將1300 cm -1以上且1490 cm -1以下的範圍的吸光度的最大峰高度設為α, 將1690 cm -1以上且1780 cm -1以下的範圍的吸光度的最大峰高度設為γ時, 由γ/α所表示的游離羧基相對於NH 3錯合物的比例為0.00以上且1.00以下。 [5] 如[1]~[4]中任一項所述的氣體阻擋性積層體,其中於所述氣體阻擋性層的紅外線吸收光譜中, 於將吸收帶1493 cm -1以上且1780 cm -1以下的範圍的總峰面積設為A, 將吸收帶1598 cm -1以上且1690 cm -1以下的範圍的總峰面積設為B, 將吸收帶1690 cm -1以上且1780 cm -1以下的範圍的總峰面積設為C, 將吸收帶1493 cm -1以上且1598 cm -1以下的範圍的總峰面積設為D時, 由B/A所表示的醯胺鍵的面積比率為0.200以上且0.370以下, 由C/A所表示的羧酸的面積比率為0.150以下, 由D/A所表示的羧酸鹽的面積比率為0.580以上且0.800以下。 [6] 如[1]~[5]中任一項所述的氣體阻擋性積層體,其中所述氣體阻擋性層的厚度為0.01 μm以上且15 μm以下。 [7] 如[1]~[6]中任一項所述的氣體阻擋性積層體,其中所述多價金屬化合物是選自由Zn、Ca、Mg、Ba及Al所組成的群組中的一種或兩種以上的二價以上的金屬的化合物。 [8] 如[1]~[7]中任一項所述的氣體阻擋性積層體,其中(所述混合物中的源自所述磷化合物或其鹽的P原子的莫耳數)/(所述混合物中的源自所述多羧酸的-COO-基的莫耳數)為0.001以上且0.3以下。 [9] 如[1]~[8]中任一項所述的氣體阻擋性積層體,其中所述磷化合物為選自由磷酸、亞磷酸、次磷酸、多磷酸、膦酸及該些的鹽所組成的群組中的一種或兩種以上。 [10] 如[1]~[9]中任一項所述的氣體阻擋性積層體,其中(所述混合物中的源自所述多價金屬化合物的多價金屬的莫耳數)/(所述混合物中的源自所述多羧酸的-COO-基的莫耳數)為0.10以上且0.80以下。 [11] 如[1]~[10]中任一項所述的氣體阻擋性積層體,其中(所述混合物中的源自所述多價金屬化合物的多價金屬的莫耳數)/(所述混合物中的源自所述多胺化合物的胺基的莫耳數)為0.25以上且0.65以下。 [12] 如[1]~[11]中任一項所述的氣體阻擋性積層體,其中所述多羧酸包含選自由聚丙烯酸、聚甲基丙烯酸、及丙烯酸與甲基丙烯酸的共聚物所組成的群組中的一種或兩種以上的聚合物。 [13] 如[1]~[12]中任一項所述的氣體阻擋性積層體,其中所述多胺化合物包含聚乙烯亞胺。 [14] 如[1]~[13]中任一項所述的氣體阻擋性積層體,其中所述基材層包含選自由聚醯胺、聚對苯二甲酸乙二酯及聚對苯二甲酸丁二酯所組成的群組中的一種或兩種以上的樹脂。 [Fourth invention] [1] A gas barrier laminated body including: a base material layer; a gas barrier layer provided on at least one surface of the base material layer; and an inorganic layer provided between the base material layer and Between the gas barrier layers, the gas barrier layer includes a hardened product of a mixture including a polycarboxylic acid, a polyamine compound, a polyvalent metal compound, and phosphorus containing one or more -P-OH groups. compound or its salt. [2] The gas barrier laminate according to [1], further comprising a primer layer provided between the base layer and the inorganic layer. [3] The gas barrier laminate according to [1] or [2], wherein the inorganic layer is provided on the base layer or between the base layer and the inorganic layer When there is an interposer layer, the evaporated film is disposed on the interposer layer and contains one or more inorganic substances selected from the group consisting of silicon oxide, aluminum oxide and aluminum. [4] The gas barrier laminate according to any one of [1] to [3], wherein the infrared absorption spectrum of the gas barrier layer is between 1300 cm -1 and 1490 cm -1 Let α be the maximum peak height of the absorbance in the following range, and let γ be the maximum peak height of the absorbance in the range of 1690 cm -1 or more and 1780 cm -1 . The free carboxyl group represented by γ/α relative to NH The ratio of the 3- complex is 0.00 or more and 1.00 or less. [5] The gas barrier laminate according to any one of [1] to [4], wherein in the infrared absorption spectrum of the gas barrier layer, the absorption band is between 1493 cm -1 and 1780 cm Let the total peak area in the range of -1 and below be A. Let the total peak area in the range of the absorption band between 1598 cm -1 and 1690 cm -1 be B. Let the absorption band be between 1690 cm -1 and 1780 cm -1 When the total peak area in the following range is designated as C, and the total peak area in the range of the absorption band from 1493 cm -1 to 1598 cm -1 is designated as D, the area ratio of the amide bond represented by B/A is: 0.200 or more and 0.370 or less, the area ratio of the carboxylic acid represented by C/A is 0.150 or less, and the area ratio of the carboxylic acid salt represented by D/A is 0.580 or more and 0.800 or less. [6] The gas barrier laminate according to any one of [1] to [5], wherein the gas barrier layer has a thickness of 0.01 μm or more and 15 μm or less. [7] The gas barrier laminate according to any one of [1] to [6], wherein the polyvalent metal compound is selected from the group consisting of Zn, Ca, Mg, Ba, and Al A compound of one or two or more metals having a valence of more than two valences. [8] The gas barrier laminate according to any one of [1] to [7], wherein (the molar number of P atoms derived from the phosphorus compound or its salt in the mixture)/( The molar number of the -COO- group derived from the polycarboxylic acid in the mixture is 0.001 or more and 0.3 or less. [9] The gas barrier laminate according to any one of [1] to [8], wherein the phosphorus compound is selected from the group consisting of phosphoric acid, phosphorous acid, hypophosphorous acid, polyphosphoric acid, phosphonic acid and salts thereof. One or more than two types of groups. [10] The gas barrier laminate according to any one of [1] to [9], wherein (moles of the polyvalent metal derived from the polyvalent metal compound in the mixture)/( The molar number of the -COO- group derived from the polycarboxylic acid in the mixture is 0.10 or more and 0.80 or less. [11] The gas barrier laminate according to any one of [1] to [10], wherein (moles of the polyvalent metal derived from the polyvalent metal compound in the mixture)/( The molar number of the amine group derived from the polyamine compound in the mixture is 0.25 or more and 0.65 or less. [12] The gas barrier laminate according to any one of [1] to [11], wherein the polycarboxylic acid contains a copolymer selected from the group consisting of polyacrylic acid, polymethacrylic acid, and acrylic acid and methacrylic acid. One or more than two polymers in a group. [13] The gas barrier laminate according to any one of [1] to [12], wherein the polyamine compound contains polyethyleneimine. [14] The gas barrier laminate according to any one of [1] to [13], wherein the base layer contains a material selected from the group consisting of polyamide, polyethylene terephthalate, and polyterephthalate. One or more resins in the group consisting of butylene formate.
[第五發明] [1] 一種氣體阻擋性積層體,包括: 基材層; 氣體阻擋性層,設置於所述基材層的至少一個面;以及 無機物層,設置於所述基材層與所述氣體阻擋性層之間, 所述氣體阻擋性層包括混合物的硬化物,所述混合物包含多羧酸、多胺化合物、及多價金屬化合物。 [2] 如[1]所述的氣體阻擋性積層體,更包含設置於所述基材層與所述無機物層之間的底塗層。 [3] 如[1]或[2]所述的氣體阻擋性積層體,其中所述無機物層是設置在所述基材層上、或者於在所述基材層與所述無機物層之間具有中介層時設置在所述中介層上的蒸鍍膜,且包含選自由氧化矽、氧化鋁及鋁所組成的群組中的一種或兩種以上的無機物。 [4] 如[1]~[3]中任一項所述的氣體阻擋性積層體,其中所述無機物層包括包含氧化鋁的氧化鋁層。 [5] 如[1]~[4]中任一項所述的氣體阻擋性積層體,其中於所述氣體阻擋性層的紅外線吸收光譜中, 於將1300 cm -1以上且1490 cm -1以下的範圍的吸光度的最大峰高度設為α, 將1690 cm -1以上且1780 cm -1以下的範圍的吸光度的最大峰高度設為γ時, 由γ/α所表示的游離羧基相對於NH 3錯合物的比例為0.00以上且1.00以下。 [6] 如[1]~[5]中任一項所述的氣體阻擋性積層體,其中於所述氣體阻擋性層的紅外線吸收光譜中, 於將吸收帶1493 cm -1以上且1780 cm -1以下的範圍的總峰面積設為A, 將吸收帶1598 cm -1以上且1690 cm -1以下的範圍的總峰面積設為B, 將吸收帶1690 cm -1以上且1780 cm -1以下的範圍的總峰面積設為C, 將吸收帶1493 cm -1以上且1598 cm -1以下的範圍的總峰面積設為D時, 由B/A所表示的醯胺鍵的面積比率為0.200以上且0.370以下, 由C/A所表示的羧酸的面積比率為0.150以下, 由D/A所表示的羧酸鹽的面積比率為0.580以上且0.800以下。 [7] 如[1]~[6]中任一項所述的氣體阻擋性積層體,其中所述氣體阻擋性層的厚度為0.01 μm以上且15 μm以下。 [8] 如[1]~[7]中任一項所述的氣體阻擋性積層體,其中所述多價金屬化合物是選自由Zn、Ca、Mg、Ba及Al所組成的群組中的一種或兩種以上的二價以上的金屬的化合物。 [9] 如[1]~[8]中任一項所述的氣體阻擋性積層體,其中(所述混合物中的源自所述多價金屬化合物的多價金屬的莫耳數)/(所述混合物中的源自所述多羧酸的-COO-基的莫耳數)為0.10以上且0.80以下。 [10] 如[1]~[9]中任一項所述的氣體阻擋性積層體,其中(所述混合物中的源自所述多價金屬化合物的多價金屬的莫耳數)/(所述混合物中的源自所述多胺化合物的胺基的莫耳數)為0.25以上且0.75以下。 [11] 如[1]~[10]中任一項所述的氣體阻擋性積層體,其中所述多羧酸包含選自由聚丙烯酸、聚甲基丙烯酸、及丙烯酸與甲基丙烯酸的共聚物所組成的群組中的一種或兩種以上的聚合物。 [12] 如[1]~[11]中任一項所述的氣體阻擋性積層體,其中所述多胺化合物包含聚乙烯亞胺。 [13] 如[1]~[12]中任一項所述的氣體阻擋性積層體,其中所述基材層是包含選自由聚醯胺、聚對苯二甲酸乙二酯及聚對苯二甲酸丁二酯所組成的群組中的一種或兩種以上的樹脂的層。 [發明的效果] [Fifth invention] [1] A gas barrier laminated body, including: a base material layer; a gas barrier layer provided on at least one surface of the base material layer; and an inorganic layer provided between the base material layer and Between the gas barrier layers, the gas barrier layer includes a hardened product of a mixture including a polycarboxylic acid, a polyamine compound, and a polyvalent metal compound. [2] The gas barrier laminate according to [1], further comprising a primer layer provided between the base layer and the inorganic layer. [3] The gas barrier laminate according to [1] or [2], wherein the inorganic layer is provided on the base layer or between the base layer and the inorganic layer When there is an interposer layer, the evaporated film is disposed on the interposer layer and contains one or more inorganic substances selected from the group consisting of silicon oxide, aluminum oxide and aluminum. [4] The gas barrier laminate according to any one of [1] to [3], wherein the inorganic layer includes an aluminum oxide layer containing aluminum oxide. [5] The gas barrier laminate according to any one of [1] to [4], wherein the infrared absorption spectrum of the gas barrier layer is between 1300 cm -1 and 1490 cm -1 Let α be the maximum peak height of the absorbance in the following range, and let γ be the maximum peak height of the absorbance in the range of 1690 cm -1 or more and 1780 cm -1 . The free carboxyl group represented by γ/α relative to NH The ratio of the 3- complex is 0.00 or more and 1.00 or less. [6] The gas barrier laminate according to any one of [1] to [5], wherein in the infrared absorption spectrum of the gas barrier layer, the absorption band is between 1493 cm -1 and 1780 cm Let the total peak area in the range of -1 and below be A. Let the total peak area in the range of the absorption band between 1598 cm -1 and 1690 cm -1 be B. Let the absorption band be between 1690 cm -1 and 1780 cm -1 When the total peak area in the following range is designated as C, and the total peak area in the range of the absorption band from 1493 cm -1 to 1598 cm -1 is designated as D, the area ratio of the amide bond represented by B/A is: 0.200 or more and 0.370 or less, the area ratio of the carboxylic acid represented by C/A is 0.150 or less, and the area ratio of the carboxylic acid salt represented by D/A is 0.580 or more and 0.800 or less. [7] The gas barrier laminate according to any one of [1] to [6], wherein the gas barrier layer has a thickness of 0.01 μm or more and 15 μm or less. [8] The gas barrier laminate according to any one of [1] to [7], wherein the polyvalent metal compound is selected from the group consisting of Zn, Ca, Mg, Ba, and Al A compound of one or two or more metals having a valence of more than two valences. [9] The gas barrier laminate according to any one of [1] to [8], wherein (the number of moles of the polyvalent metal derived from the polyvalent metal compound in the mixture)/( The molar number of the -COO- group derived from the polycarboxylic acid in the mixture is 0.10 or more and 0.80 or less. [10] The gas barrier laminate according to any one of [1] to [9], wherein (moles of the polyvalent metal derived from the polyvalent metal compound in the mixture)/( The molar number of the amine group derived from the polyamine compound in the mixture is 0.25 or more and 0.75 or less. [11] The gas barrier laminate according to any one of [1] to [10], wherein the polycarboxylic acid contains a copolymer selected from the group consisting of polyacrylic acid, polymethacrylic acid, and acrylic acid and methacrylic acid. One or more than two polymers in a group. [12] The gas barrier laminate according to any one of [1] to [11], wherein the polyamine compound contains polyethyleneimine. [13] The gas barrier laminate according to any one of [1] to [12], wherein the base material layer is selected from the group consisting of polyamide, polyethylene terephthalate, and polyparaphenylene. A layer of one or more resins in the group consisting of butylene dicarboxylate. [Effects of the invention]
根據本發明,例如可提供一種蒸煮後的阻擋性能良好的氣體阻擋性積層體。 根據本發明,例如可提供一種氣體的阻擋性得到改善的氣體阻擋性材料。 根據本發明,例如可提供一種無論層壓結構如何蒸煮後的阻擋性能均良好的氣體阻擋性積層體。 根據本發明,例如可提供一種氣體阻擋性材料,其生產性及阻擋性的平衡優異,於各種層結構中可發揮較佳的阻擋性。 根據本發明,例如可提供一種生產性及阻擋性的平衡優異的氣體阻擋性材料。 According to the present invention, for example, it is possible to provide a gas barrier laminate having excellent barrier properties after cooking. According to the present invention, for example, a gas barrier material with improved gas barrier properties can be provided. According to the present invention, for example, it is possible to provide a gas barrier laminate having excellent barrier properties after cooking regardless of the laminate structure. According to the present invention, for example, a gas barrier material can be provided that has an excellent balance between productivity and barrier properties and can exhibit excellent barrier properties in various layer structures. According to the present invention, for example, a gas barrier material excellent in balance between productivity and barrier properties can be provided.
以下,使用圖式對第一發明至第五發明的實施方式進行說明。 將第一發明的實施方式記載為第一實施方式,將第二發明的實施方式記載為第二實施方式,將第三發明的實施方式記載為第三實施方式,將第四發明的實施方式記載為第四實施方式,將第五發明的實施方式記載為第五實施方式。 所有圖均為說明用的概略圖,與實際的尺寸比率未必一致。 關於圖中的符號,於不同的實施方式之間,同一符號有時表示不同的要素。例如,於用於對第一實施方式進行說明的圖即圖2中,符號10表示「三層層壓結構阻擋膜」,另一方面,於用於對第四實施方式進行說明的圖即圖13中,符號10表示「氣體阻擋性膜」。 只要無特別說明,則在文中的數值之間的「~」表示以上至以下。 Hereinafter, embodiments of the first to fifth inventions will be described using drawings. The embodiment of the first invention will be described as the first embodiment, the embodiment of the second invention will be described as the second embodiment, the embodiment of the third invention will be described as the third embodiment, and the embodiment of the fourth invention will be described This is the fourth embodiment, and the embodiment of the fifth invention is described as the fifth embodiment. All figures are schematics for illustrative purposes and may not correspond to actual size ratios. Regarding the symbols in the drawings, the same symbol may represent different elements in different embodiments. For example, in FIG. 2 , which is a diagram illustrating the first embodiment, reference numeral 10 indicates a “three-layer laminated structure barrier film”. On the other hand, in FIG. 2 , which is a diagram illustrating the fourth embodiment, Among 13, symbol 10 represents "gas barrier film". Unless otherwise specified, "~" between numerical values in the text means above to below.
於本說明書中的基(原子團)的表述中,未記述經取代或未經取代的表述包含不具有取代基的表述及具有取代基的表述此兩者。例如,所謂「烷基」不僅包含不具有取代基的烷基(未經取代的烷基),而且亦包含具有取代基的烷基(經取代的烷基)。 本說明書中的「(甲基)丙烯酸」的表述表示包含丙烯酸與甲基丙烯酸此兩者的概念。關於「(甲基)丙烯酸酯」等類似的表述亦同樣。 In the expressions of groups (atomic groups) in this specification, expressions that do not describe substituted or unsubstituted include both expressions that do not have a substituent and expressions that have a substituent. For example, the so-called "alkyl group" includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group). The expression "(meth)acrylic acid" in this specification represents a concept including both acrylic acid and methacrylic acid. The same applies to similar expressions such as "(meth)acrylate".
<第一實施方式> 第一實施方式的氣體阻擋性積層體是如下氣體阻擋性積層體, 包括:基材層;氣體阻擋性層,設置於所述基材層的至少一個面;以及無機物層,設置於所述基材層與所述氣體阻擋性層之間, 藉由對所述氣體阻擋性層進行X射線光電子分光分析而測定的Zn的組成比為1原子%~10原子%, 於將藉由對所述氣體阻擋性層進行飛行時間型二次離子質量分析而測定的 64ZnPO 4H -的峰強度設為I( 64ZnPO 4H -),將C 3H 3O 2 -的峰強度設為I(C 3H 3O 2 -)時, I( 64ZnPO 4H -)/I(C 3H 3O 2 -) 的值為6×10 -4以上且5×10 -2以下, 藉由對所述氣體阻擋性層進行X射線光電子分光分析而測定的N的組成比率超過0原子%且為12原子%以下, 於將藉由對所述氣體阻擋性層進行飛行時間型二次離子質量分析而測定的CN -的峰強度設為I(CN -)時, I(CN -)/I(C 3H 3O 2 -) 的值大於0且為2以下。 <First Embodiment> The gas barrier laminated body of the first embodiment is a gas barrier laminated body including: a base material layer; a gas barrier layer provided on at least one surface of the base material layer; and an inorganic layer , is provided between the base material layer and the gas barrier layer, and the composition ratio of Zn measured by X-ray photoelectron spectrometry of the gas barrier layer is 1 atomic % to 10 atomic %, at Let the peak intensity of 64 ZnPO 4 H - measured by time-of-flight secondary ion mass analysis of the gas barrier layer be I ( 64 ZnPO 4 H - ), and the peak intensity of C 3 H 3 O 2 - When the peak intensity is I (C 3 H 3 O 2 - ), the value of I ( 64 ZnPO 4 H - )/I (C 3 H 3 O 2 - ) is 6 × 10 -4 or more and 5 × 10 -2 Hereinafter, the composition ratio of N measured by X-ray photoelectron spectrometry of the gas barrier layer exceeds 0 atomic % and is 12 atomic % or less, and the gas barrier layer will be analyzed by time-of-flight analysis. When the peak intensity of CN - measured by secondary ion mass analysis is set to I(CN - ), the value of I(CN - )/I(C 3 H 3 O 2 - ) is greater than 0 and 2 or less.
藉由進行X射線光電子分光測定的Zn的組成比為1原子%~10原子%的情況意味著氣體阻擋性層中以一定的濃度包含Zn。 另外,藉由質量分析自氣體阻擋性層中檢測出C 3H 3O 2 -的情況意味著氣體阻擋性層包含聚丙烯酸或其衍生物/類似化合物(聚丙烯酸等)。而且,認為I(C 3H 3O 2 -)的值是與氣體阻擋性層中的羧基的量(濃度)相關的值。 由於氣體阻擋性層以一定的濃度包含Zn,另外,於氣體阻擋性積層中存在具有羧基的多羧酸,因此認為氣體阻擋性層中的多羧酸與Zn形成交聯體,形成有Zn交聯體的氣體阻擋性層和設置於基材層與氣體阻擋性層之間的無機物層一起承擔氣體阻擋性積層體的氣體阻擋性。 When the composition ratio of Zn measured by X-ray photoelectron spectroscopy is 1 atomic % to 10 atomic %, it means that the gas barrier layer contains Zn at a certain concentration. In addition, the detection of C 3 H 3 O 2 - from the gas barrier layer by mass analysis means that the gas barrier layer contains polyacrylic acid or its derivatives/similar compounds (polyacrylic acid, etc.). Furthermore, the value of I(C 3 H 3 O 2 - ) is considered to be a value related to the amount (concentration) of carboxyl groups in the gas barrier layer. Since the gas barrier layer contains Zn at a certain concentration, and polycarboxylic acid having a carboxyl group is present in the gas barrier layer, it is considered that the polycarboxylic acid in the gas barrier layer forms a cross-linked body with Zn, forming a Zn cross-linked body. The combined gas barrier layer and the inorganic layer provided between the base material layer and the gas barrier layer together bear the gas barrier properties of the gas barrier laminate.
進而,藉由質量分析自氣體阻擋性層中檢測出 64ZnPO 4H -的情況意味著於氣體阻擋性層中存在以磷酸為代表的磷化合物與Zn的鍵,認為I( 64ZnPO 4H -)的值是和磷化合物與Zn的鍵的量(濃度)相關的值。而且,據此推斷,Zn不僅與多羧酸的羧基鍵結,而且一部分的Zn經由多價的磷酸化合物而Zn彼此進行化學鍵結。 Furthermore, the detection of 64 ZnPO 4 H - from the gas barrier layer by mass analysis means that there is a bond between a phosphorus compound represented by phosphoric acid and Zn in the gas barrier layer, and it is considered that I ( 64 ZnPO 4 H - ) is a value related to the amount (concentration) of the bond between the phosphorus compound and Zn. Furthermore, it is inferred from this that Zn is not only bonded to the carboxyl group of the polycarboxylic acid, but also a part of the Zn is chemically bonded to each other via the polyvalent phosphate compound.
另外,認為I( 64ZnPO 4H -)/I(C 3H 3O 2 -)的值是和磷化合物與Zn的鍵相對於多羧酸的羧基的量(濃度)相關的值。 且說,磷酸鋅被認為是不溶於水的化合物,磷化合物與Zn的鍵是相對於由蒸煮處理等引起的水合難以被切斷的鍵。因此,認為氣體阻擋性層中的磷化合物與Zn的鍵的存在抑制由於在蒸煮處理等中氣體阻擋性層過度膨脹、收縮而對相鄰的無機物層造成損傷從而氣體阻擋性會大幅降低的情況。 In addition, the value of I( 64 ZnPO 4 H - )/I (C 3 H 3 O 2 - ) is considered to be a value related to the amount (concentration) of the bond between the phosphorus compound and Zn relative to the carboxyl group of the polycarboxylic acid. In addition, zinc phosphate is considered to be a water-insoluble compound, and the bond between the phosphorus compound and Zn is a bond that is difficult to cut due to hydration caused by retort treatment or the like. Therefore, it is considered that the presence of a bond between the phosphorus compound and Zn in the gas barrier layer suppresses the occurrence of damage to the adjacent inorganic layer due to excessive expansion and contraction of the gas barrier layer during retort processing, etc., resulting in a significant decrease in gas barrier properties. .
另一方面,藉由質量分析自氣體阻擋性層中檢測出CN -的情況意味著氣體阻擋性層包含多胺。認為藉由進行X射線光電子分光分析測定的N的組成比超過0原子%且為12原子%以下、I(CN -)/I(C 3H 3O 2 -)的值大於0且為2以下的情況是與在包含多羧酸的氣體阻擋性層中亦存在多胺且源自其的胺基的量(濃度)相關的值。 於氣體阻擋性層中以某種程度的濃度存在多胺及多羧酸,因此源自多羧酸的羧基不僅可與Zn鍵結,亦可與胺基鍵結。進而,藉由羧基與胺基的脫水縮合反應,可形成醯胺交聯。認為多羧酸藉由Zn或多胺均衡地形成利用離子交聯或醯胺交聯的交聯體,形成有金屬交聯體的氣體阻擋性層和設置於基材層與氣體阻擋性層之間的無機物層一起承擔氣體阻擋性積層體的氣體阻擋性。 即,藉由Zn的組成比為1原子%~10原子%、或I( 64ZnPO 4H -)/I(C 3H 3O 2 -)的值為6×10 -4以上且5×10 -2以下、進而N的組成比超過0原子%且為12原子%以下、I(CN -)/I(C 3H 3O 2 -)的值大於0且為2以下,蒸煮後的阻擋性能得到良好地保持。 On the other hand, the detection of CN − from the gas barrier layer by mass analysis means that the gas barrier layer contains polyamine. It is considered that the composition ratio of N measured by X-ray photoelectron spectroscopy exceeds 0 atomic % and is 12 atomic % or less, and the value of I(CN - )/I(C 3 H 3 O 2 - ) is greater than 0 and 2 or less. is a value related to the amount (concentration) of amine groups derived from a polyamine also present in the gas barrier layer containing a polycarboxylic acid. Since polyamine and polycarboxylic acid exist in a certain concentration in the gas barrier layer, the carboxyl group derived from the polycarboxylic acid can be bonded not only to Zn but also to the amine group. Furthermore, amide crosslinks can be formed through the dehydration condensation reaction of carboxyl groups and amine groups. It is considered that the polycarboxylic acid forms a cross-linked body by ionic cross-linking or amide cross-linking in a balanced manner through Zn or polyamine, and forms a gas barrier layer with a metal cross-linked body and is provided between the base material layer and the gas barrier layer. The inorganic layers between them jointly bear the gas barrier properties of the gas barrier laminate. That is, the composition ratio of Zn is 1 atomic % to 10 atomic %, or the value of I( 64 ZnPO 4 H - )/I (C 3 H 3 O 2 - ) is 6 × 10 -4 or more and 5 × 10 -2 or less, furthermore, the composition ratio of N exceeds 0 atomic % and is 12 atomic % or less, and the value of I(CN - )/I(C 3 H 3 O 2 - ) is greater than 0 and is 2 or less, the barrier performance after cooking Well maintained.
圖1中示出包含第一實施方式的氣體阻擋性積層體的兩層層壓結構阻擋膜的一例的概略剖面圖。兩層層壓結構阻擋膜1包括氣體阻擋性積層體8。該氣體阻擋性積層體8包括:基材層2;該基材層2的至少一個面的氣體阻擋性層5;以及所述基材層2與所述氣體阻擋性層5之間的無機物層4。另外,亦可於無機物層4之下、即基材層2之上包括底塗層(UC層)3。關於兩層層壓結構阻擋膜1,例如氣體阻擋性積層體8可經由接著層6而與未拉伸聚丙烯(流延聚丙烯(Cast Polypropylene,CPP))7接著。FIG. 1 shows a schematic cross-sectional view of an example of a two-layer laminated structure barrier film including the gas barrier laminate according to the first embodiment. The two-layer laminated structure barrier film 1 includes a gas barrier laminate 8 . This gas barrier laminate 8 includes: a base material layer 2; a gas barrier layer 5 on at least one surface of the base material layer 2; and an inorganic layer between the base material layer 2 and the gas barrier layer 5. 4. In addition, the undercoat layer (UC layer) 3 may be included below the inorganic layer 4 , that is, on the base layer 2 . Regarding the two-layer laminated structure barrier film 1 , for example, the gas barrier laminate 8 can be bonded to unstretched polypropylene (cast polypropylene (CPP)) 7 via the adhesive layer 6 .
另外,圖2中示出包含第一實施方式的氣體阻擋性積層體的三層層壓結構阻擋膜的一例的概略剖面圖。於三層層壓結構阻擋膜10中,例如可於設置有第一接著層61的阻擋性積層體8的第一接著層61上接著尼龍膜9,並經由第二接著層62將該尼龍膜9與未拉伸聚丙烯7接著。In addition, FIG. 2 shows a schematic cross-sectional view of an example of a three-layer laminated structure barrier film including the gas barrier laminate of the first embodiment. In the three-layer laminated structure barrier film 10, for example, the nylon film 9 can be adhered to the first adhesive layer 61 of the barrier laminate 8 provided with the first adhesive layer 61, and the nylon film 9 can be connected through the second adhesive layer 62. 9 is followed by unstretched polypropylene 7.
第一實施方式的氣體阻擋性積層體8的氣體阻擋性層5是藉由X射線光電子分光(XPS)分析至少檢測出鋅(Zn)及氮(N)的層。另外,藉由飛行時間型二次離子質量分析(TOF-SIMS)分析檢測出 64ZnPO 4H -的峰、C 3H 3O 2 -的峰、CN -的峰。 於第一實施方式的氣體阻擋性積層體的氣體阻擋性層中,藉由檢測出耐水性高的 64ZnPO 4H -的峰,而成為蒸煮後的阻擋性能良好的氣體阻擋性積層體。 The gas barrier layer 5 of the gas barrier laminate 8 of the first embodiment is a layer in which at least zinc (Zn) and nitrogen (N) are detected by X-ray photoelectron spectroscopy (XPS) analysis. In addition, the peak of 64 ZnPO 4 H - , the peak of C 3 H 3 O 2 - , and the peak of CN - were detected by time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis. In the gas barrier layer of the gas barrier laminate of the first embodiment, the peak of 64 ZnPO 4 H -, which has high water resistance, is detected, so that the gas barrier laminate has good barrier performance after cooking.
[XPS分析] 氣體阻擋性層中所含的Zn的組成於XPS分析中為1原子%以上,較佳為1.5原子%以上,更佳為2原子%以上。另外,氣體阻擋性層中所含的Zn的組成為10原子%以下,較佳為8原子%以下,更佳為7原子%以下。其相當於Zn的峰強度相對於碳的峰強度即Zn/C為0.01以上且0.2以下(原子/原子%)。 如此,藉由於氣體阻擋性層中存在一定量的Zn,蒸煮後的阻擋性能變得良好。 [XPS analysis] The composition of Zn contained in the gas barrier layer is 1 atomic % or more according to XPS analysis, preferably 1.5 atomic % or more, more preferably 2 atomic % or more. In addition, the composition of Zn contained in the gas barrier layer is 10 atomic % or less, preferably 8 atomic % or less, more preferably 7 atomic % or less. This corresponds to the peak intensity of Zn relative to the peak intensity of carbon, that is, Zn/C being 0.01 or more and 0.2 or less (atomic/atomic %). In this way, due to the presence of a certain amount of Zn in the gas barrier layer, the barrier performance after cooking becomes good.
另外,氣體阻擋性層中所含的所述N的組成於XPS分析中大於0%,較佳為2原子%以上,更佳為3原子%。另外,所述N的組成為12原子%以下,較佳為10原子%以下,更佳為9原子%以下。其相當於N的峰強度相對於碳的峰強度即N/C為0以上且0.2以下(原子/原子%)。 如此,於氣體阻擋性層的N的組成比超過0原子%且為12原子%以下的情況下,蒸煮後的阻擋性能變得良好。 In addition, the composition of the N contained in the gas barrier layer is greater than 0% by XPS analysis, preferably 2 atomic % or more, and more preferably 3 atomic %. In addition, the composition of N is 12 atomic % or less, preferably 10 atomic % or less, and more preferably 9 atomic % or less. This corresponds to the peak intensity of N relative to the peak intensity of carbon, that is, N/C being 0 or more and 0.2 or less (atomic/atomic %). In this way, when the composition ratio of N in the gas barrier layer exceeds 0 atomic % and is 12 atomic % or less, the barrier performance after cooking becomes good.
以下示出能夠應用於第一實施方式的XPS分析的具體條件的一例。 分析裝置:克拉托斯(KRATOS)公司製造的艾斯諾瓦(AXIS-NOVA) X射線源:單色化Al-Kα X射線源輸出:15 kV、10 mA 分析區域:300 μm×700 μm 分析時:使用帶電校正用中和槍 於XPS分析中,可使用自氣體阻擋性層切出的1 cm×1 cm的測定用樣品。另外,為了分析氣體阻擋性層的內部,較佳為於分析前對氣體阻擋性層的表面進行濺鍍蝕刻。為了減輕對氣體阻擋性層的損害,濺鍍蝕刻理想的是使用Ar-氣體團簇離子束(Argon Gas Cluster Ion Beam,Ar-GCIB)源。Ar-氣體團簇離子束作為不破壞被檢體的化學結構進行蝕刻的方法而為人所知。 An example of specific conditions applicable to the XPS analysis of the first embodiment is shown below. Analytical device: AXIS-NOVA manufactured by KRATOS X-ray source: monochromated Al-Kα X-ray source output: 15 kV, 10 mA Analysis area: 300 μm×700 μm During analysis: Use a neutralizing gun for charged calibration For XPS analysis, a measurement sample of 1 cm×1 cm cut out from the gas barrier layer can be used. In addition, in order to analyze the inside of the gas barrier layer, it is preferable to perform sputter etching on the surface of the gas barrier layer before analysis. In order to reduce damage to the gas barrier layer, sputter etching ideally uses an Argon Gas Cluster Ion Beam (Ar-GCIB) source. Ar-gas cluster ion beam is known as a method of etching without destroying the chemical structure of the object to be inspected.
於XPS分析中,藉由寬掃描,確定檢測元素,針對各個元素藉由窄掃描取得光譜。然後,根據所獲得的光譜,藉由Shirley法估算背景,自光譜中去除背景。關於所測定的各元素,取得去除了背景的光譜,根據所獲得的峰面積,使用相對感度係數法計算出檢測元素的原子組成比率(原子%)。 再者,一般的XPS分析中的原子組成比率的檢測感度為0.1原子%左右。例如,於在氣體阻擋性層中添加微量的磷化合物的情況下,XPS分析中有時無法檢測出P的含有。 In XPS analysis, a wide scan is used to determine the detection elements, and a spectrum is obtained through a narrow scan for each element. Then, based on the obtained spectrum, the background is estimated by Shirley's method and the background is removed from the spectrum. For each element to be measured, a spectrum with the background removed is obtained, and based on the obtained peak area, the atomic composition ratio (atomic %) of the detected element is calculated using the relative sensitivity coefficient method. Furthermore, the detection sensitivity of the atomic composition ratio in general XPS analysis is about 0.1 atomic %. For example, when a trace amount of a phosphorus compound is added to the gas barrier layer, the content of P cannot be detected in XPS analysis.
[TOF-SIMS分析] 於在氣體阻擋性層的TOF-SIMS分析中檢測出的片段中,將 64ZnPO 4H -的峰強度設為I( 64ZnPO 4H -),將C 3H 3O 2 -的片段的峰強度設為I(C 3H 3O 2 -)時, I( 64ZnPO 4H -)/I(C 3H 3O 2 -) 的值為6×10 -4以上,較佳為7×10 -4以上,更佳為1×10 -3以上。另外,為5×10 -2以下,較佳為3×10 -2以下,更佳為2×10 -2以下。 如此,檢測出源自耐水性高的鍵的 64ZnPO 4H -的質量峰,於I( 64ZnPO 4H -)/I(C 3H 3O 2 -)的值處於所述範圍內的情況下,成為蒸煮後的阻擋性能良好的氣體阻擋性積層體。另外,於( 64ZnPO 4H -)/I(C 3H 3O 2 -)的值過大時,於氣體阻擋性層中磷酸鋅化合物的微粒子成長,對氣體阻擋性層帶來不均勻性,並且顯示出蒸煮後的阻擋性能惡化的傾向。 [TOF-SIMS Analysis] Among the fragments detected in the TOF-SIMS analysis of the gas barrier layer, the peak intensity of 64 ZnPO 4 H - was set to I ( 64 ZnPO 4 H - ), and C 3 H 3 O When the peak intensity of the 2 - fragment is I (C 3 H 3 O 2 - ), the value of I ( 64 ZnPO 4 H - )/I (C 3 H 3 O 2 - ) is 6 × 10 -4 or more, It is preferably 7×10 -4 or more, more preferably 1×10 -3 or more. In addition, it is 5×10 -2 or less, preferably 3×10 -2 or less, more preferably 2×10 -2 or less. In this way, the mass peak of 64 ZnPO 4 H - derived from the highly water-resistant bond is detected when the value of I ( 64 ZnPO 4 H - )/I (C 3 H 3 O 2 - ) is within the above range. , it becomes a gas barrier laminate with good barrier properties after cooking. In addition, when the value of ( 64 ZnPO 4 H - )/I (C 3 H 3 O 2 - ) is too large, fine particles of the zinc phosphate compound grow in the gas barrier layer, causing unevenness to the gas barrier layer. Furthermore, the barrier properties after retort tend to deteriorate.
另外,於在氣體阻擋性層的TOF-SIMS分析中檢測出的片段中,將CN -的質量峰強度設為I(CN -)時, I(CN -)/I(C 3H 3O 2 -) 的值大於0,較佳為0.2以上,更佳為0.4以上。另外,I(CN -)/I(C 3H 3O 2 -)的值為2以下,較佳為1.8以下,更佳為1.5以下。 若為此種氣體阻擋性層,則成為蒸煮後的阻擋性能良好的氣體阻擋性積層體。 In addition, when the mass peak intensity of CN - is I(CN - ) in the fragment detected by TOF-SIMS analysis of the gas barrier layer, I(CN - )/I(C 3 H 3 O 2 - ) is greater than 0, preferably 0.2 or more, more preferably 0.4 or more. In addition, the value of I(CN - )/I(C 3 H 3 O 2 - ) is 2 or less, preferably 1.8 or less, more preferably 1.5 or less. If it is such a gas barrier layer, it will become a gas barrier laminate with excellent barrier performance after retort.
以下示出能夠應用於第一實施方式的TOF-SIMS分析的具體條件的一例。 為了分析氣體阻擋性層的內部,較佳為於TOF-SIMS分析前,利用TOF-SIMS分析裝置附帶的Ar-氣體團簇離子束(Ar-GCIB)對氣體阻擋性層的表層進行濺鍍蝕刻。Ar-GCIB的使用可減少對氣體阻擋性層的損害。 示出能夠應用於第一實施方式的Ar-GCIB的具體條件的一例。 GCIB:5 kV、5 μA GCIB處理時間:TOF-SIMS的光譜圖案不再變化的時間點 An example of specific conditions applicable to TOF-SIMS analysis according to the first embodiment is shown below. In order to analyze the inside of the gas barrier layer, it is preferable to perform sputter etching on the surface layer of the gas barrier layer using the Ar-gas cluster ion beam (Ar-GCIB) attached to the TOF-SIMS analysis device before TOF-SIMS analysis. . The use of Ar-GCIB can reduce damage to the gas barrier layer. An example of specific conditions applicable to Ar-GCIB according to the first embodiment is shown. GCIB: 5 kV, 5 μA GCIB processing time: the time point when the spectral pattern of TOF-SIMS no longer changes
TOF-SIMS分析例如可以如下方式進行。 分析裝置:日本真空(Ulvac-phi)公司製造的PHI奈米(nano)-TOFII 一次離子:Bi 3 2+一次離子源輸出:30 kV、0.5 μA 分析區域:300 μm×300 μm(一次離子束的掃描區域) 分析時,可藉由裝置附帶的低能量電子束及低能量Ar離子照射實施帶電中和。另外,於TOF-SIMS分析中,與XPS分析同樣地,可使用自氣體阻擋性層切出的1 cm×1 cm的測定用樣品。 TOF-SIMS analysis can be performed, for example, as follows. Analysis device: PHI nano (nano)-TOFII manufactured by Nippon Vacuum (Ulvac-phi) Co., Ltd. Primary ion: Bi 3 2+ primary ion source output: 30 kV, 0.5 μA Analysis area: 300 μm × 300 μm (primary ion beam Scanning area) During analysis, charge neutralization can be carried out by low-energy electron beam and low-energy Ar ion irradiation attached to the device. In addition, in the TOF-SIMS analysis, like the XPS analysis, a 1 cm×1 cm measurement sample cut out from the gas barrier layer can be used.
此時,於將藉由TOF-SIMS分析對氣體阻擋性層觀測到的PO 2 -的質量峰強度設為I(PO 2 -),將PO 3 -的質量峰強度設為I(PO 3 -)時, (I(PO 2 -)+I(PO 3 -))/I(C 3H 3O 2 -) 的值較佳為0.02以上,更佳為0.05以上,進而佳為0.07以上。另外,(I(PO 2 -)+I(PO 3 -))/I(C 3H 3O 2 -)的值較佳為5以下,更佳為3以下,進而佳為2.5以下。 檢測出PO 2 -或PO 3 -的質量峰的情況意味著氣體阻擋性層包含以磷酸為代表的含有一個以上的P-OH基的磷化合物。而且,認為(I(PO 2 -)+I(PO 3 -))/I(C 3H 3O 2 -)的值是和磷化合物相對於氣體阻擋性層中的多羧酸的羧基的量(濃度)相關的值。 At this time, let the mass peak intensity of PO 2 - observed in the gas barrier layer by TOF-SIMS analysis be I (PO 2 - ), and let the mass peak intensity of PO 3 - be I (PO 3 - ), the value of (I(PO 2 - ) + I (PO 3 - ))/I (C 3 H 3 O 2 - ) is preferably 0.02 or more, more preferably 0.05 or more, and still more preferably 0.07 or more. In addition, the value of (I(PO 2 - ) + I (PO 3 - ))/I (C 3 H 3 O 2 - ) is preferably 5 or less, more preferably 3 or less, and still more preferably 2.5 or less. The detection of a mass peak of PO 2 - or PO 3 - means that the gas barrier layer contains a phosphorus compound containing one or more P-OH groups, represented by phosphoric acid. Furthermore, the value of (I(PO 2 - ) + I (PO 3 - ))/I (C 3 H 3 O 2 - ) is considered to be the amount of the phosphorus compound relative to the carboxyl group of the polycarboxylic acid in the gas barrier layer (concentration) related values.
此時,作為所述I(PO 2 -)與I(PO 3 -)的強度比的 I(PO 2 -)/I(PO 3 -) 的值較佳為0.05以上,更佳為0.08以上,進而佳為0.1。另外,I(PO 2 -)/I(PO 3 -)的值為1以下,較佳為0.9以下,更佳為0.8以下。 於TOF-SIMS分析中檢測出PO 2 -及PO 3 -的質量峰的情況意味著包含以磷酸(H 3PO 4)等為代表的含有一個以上的P-OH基的磷化合物,其比率即I(PO 2 -)/I(PO 3 -)成為反映磷系化合物的種類的值。 反映氣體阻擋性層中的磷酸鋅鍵的量(濃度)的I( 64ZnPO 4H -)/I(C 3H 3O 2 -)影響磷化合物的種類。即,亦與I(PO 2 -)/I(PO 3 -)的值有關。關於所述I(PO 2 -)/I(PO 3 -)的值為0.05以上且1以下的情況,將I( 64ZnPO 4H -)/I(C 3H 3O 2 -)的值設為適合的範圍,可良好地保持第一實施方式的氣體阻擋性積層體的蒸煮後的阻擋性能。 At this time, the value of I(PO 2 - )/I (PO 3 - ), which is the intensity ratio of I (PO 2 - ) and I (PO 3 - ), is preferably 0.05 or more, more preferably 0.08 or more, Further preferably, it is 0.1. In addition, the value of I(PO 2 - )/I(PO 3 - ) is 1 or less, preferably 0.9 or less, more preferably 0.8 or less. The detection of mass peaks of PO 2 - and PO 3 - in TOF-SIMS analysis means that phosphorus compounds containing one or more P-OH groups, such as phosphoric acid (H 3 PO 4 ), are included, and the ratio is I( PO2 - )/I( PO3- ) is a value reflecting the type of phosphorus-based compound. I( 64 ZnPO 4 H - )/I (C 3 H 3 O 2 - ), which reflects the amount (concentration) of zinc phosphate bonds in the gas barrier layer, affects the type of phosphorus compound. That is, it is also related to the value of I(PO 2 - )/I(PO 3 - ). When the value of I(PO 2 - )/I(PO 3 - ) is 0.05 or more and 1 or less, let the value of I( 64 ZnPO 4 H - )/I (C 3 H 3 O 2 - ) be It is an appropriate range and the barrier performance after retort of the gas barrier laminate of the first embodiment can be maintained well.
藉由TOF-SIMS獲得的資料的解析方法可以如下方式進行。 為了進行詳細的光譜解析,於第一實施方式中,對於正及負的各二次離子,藉由分析裝置取得使質量數m i、及與其對應的計數數目c i成對的原始資料串及總離子計數(total ion counts)(C T)。此處,為i=0、1、2、···、N,原始資料串中,對m i按照升序排列。再者,C T是由檢測器檢測出的二次離子的總計數數目。 The analysis method of data obtained by TOF-SIMS can be performed as follows. In order to perform detailed spectral analysis, in the first embodiment, for each positive and negative secondary ion, the analysis device obtains a raw data string pairing the mass number m i and its corresponding count number c i Total ion counts (C T ). Here, i=0, 1, 2,···,N. In the original data string, m i are arranged in ascending order. Furthermore, C T is the total number of secondary ion counts detected by the detector.
將關注的質量光譜峰周邊的質量數的範圍設為i=n 1、n 1+1、···、n 2。利用下式所示般的y i近似藉由分析獲得的該範圍的計數數目的資料c i。具體而言,藉由使用背景水準b 0及K個三角形形狀函數Y j(m i)的曲線擬合對c i進行近似。此處,b 0是常數。 The range of mass numbers around the mass spectrum peak of interest is set to i=n 1 , n 1 +1,..., n 2 . The data c i of the count number in this range obtained by analysis is approximated by yi as shown in the following equation. Specifically, c i is approximated by curve fitting using a background level b 0 and K triangular shape functions Y j (mi ) . Here, b 0 is a constant.
[數1] [Number 1]
Y j(m i)是於如圖3所示般的質量數x 0 j時具有峰值Y 0 j的函數,由下式所表示。 Y j ( mi ) is a function having a peak value Y 0 j at the mass number x 0 j as shown in Fig. 3, and is represented by the following equation.
[數2] [Number 2]
此處,b 0、x 0 j、Y 0 j、B - j、B + j成為擬合參數。另外,j是j=1、···、K。例如,於光譜的背景並非一定值而是相對於m i呈直線性變化的情況下,將b 0與三角形形狀函數Y j(m i)組合並對背景進行近似。於關注的質量光譜峰為單峰的情況下,除背景以外,利用一個三角形形狀函數進行近似,於與其他質量峰接近的情況下,使用亦包括其他質量峰在內的多個三角形形狀函數進行近似。若進行了近似的所關注的質量光譜峰是K個三角形形狀函數中第j=k個峰,則峰強度I由利用總離子計數(C T)將至i=n 1、···、n 2為止的Y k(m i)的總和標準化後的數值所表示,根據下式求出。 Here, b 0 , x 0 j , Y 0 j , B - j , and B + j become fitting parameters. In addition, j is j=1,···,K. For example, when the background of the spectrum is not a constant value but changes linearly with respect to m i , b 0 is combined with the triangular shape function Y j (mi ) to approximate the background. When the mass spectrum peak of interest is a single peak, except for the background, a triangle shape function is used for approximation. When it is close to other mass peaks, multiple triangle shape functions including other mass peaks are used for approximation. approximate. If the approximated mass spectrum peak of interest is the j=kth peak among K triangular shape functions, the peak intensity I is reduced to i=n 1 ,···,n using the total ion count (C T ) It is represented by the normalized numerical value of the sum of Y k ( mi ) up to 2 , and is calculated according to the following formula.
[數3] [Number 3]
若質量光譜峰中存在尾端部分,則變得難以定義應計數的質量數的範圍。於第一實施方式中,為了避免該情況,利用三角形形狀函數對質量光譜峰進行近似。藉此,會忽視質量光譜峰的尾端部分的計數數目。以質量光譜峰的中央部分符合三角形形狀函數的方式進行曲線擬合。 另外,有時觀測到與作為目標的峰成分重疊的其他成分(例如,相同質量數的其他種類的質量峰)。於此種情況下,藉由利用三角形形狀函數對與作為目標的峰成分重疊的其他成分進行近似,求出作為目標的峰成分。 計算於第一實施方式中關注的片段的質量數並於以下示出。同位素的原子量數依賴於http://physics.nist.gov/。 If there is a tail portion in a mass spectrum peak, it becomes difficult to define the range of masses that should be counted. In the first embodiment, in order to avoid this situation, a triangle shape function is used to approximate the mass spectrum peak. By this, the number of counts in the tail portion of the mass spectral peak is ignored. Curve fitting was performed in such a way that the central part of the mass spectral peak fit a triangular shape function. In addition, other components (for example, other types of mass peaks with the same mass number) that overlap with the target peak component may be observed. In this case, the target peak component is obtained by approximating other components that overlap with the target peak component using a triangle shape function. The mass number of the fragment of interest in the first embodiment was calculated and shown below. The atomic weight number of an isotope depends on http://physics.nist.gov/.
[表1]
[ 64ZnPO 4H -的質量峰強度的算出] 已知Zn有5個同位素,於TOF-SIMS分析中,主要檢測出其中與 64Zn、 66Zn及 68Zn相關聯的片段。於第一實施方式中,著眼於存在比率最高的 64Zn。於表示 64Zn與含有P-OH的磷化合物的鍵的片段中,檢測出 64ZnPO 4H -、 64ZnP 2O 6H -、 64ZnP 2O 7H -、 64ZnP 3O 9 -等,但著眼於質量峰強度較大的 64ZnPO 4H -。 著眼於負的二次離子光譜的質量數=159.5~160.3的範圍,根據對相當於 64Zn 31P 16O 4 1H -的159.890附近的質量峰進行近似而成的三角形形狀函數與m i的資料,計算計數數目的總和,將利用C T標準化後的值設為 64ZnPO 4H -的質量峰強度。 [Calculation of mass peak intensity of 64 ZnPO 4 H - ] Zn is known to have five isotopes, and in TOF-SIMS analysis, fragments associated with 64 Zn, 66 Zn, and 68 Zn are mainly detected. In the first embodiment, attention is paid to 64 Zn, which has the highest ratio. In the fragment showing the bond between 64 Zn and the phosphorus compound containing P-OH, 64 ZnPO 4 H - , 64 ZnP 2 O 6 H - , 64 ZnP 2 O 7 H - , 64 ZnP 3 O 9 - , etc. were detected. But focus on 64 ZnPO 4 H - which has a larger mass peak intensity. Focusing on the range of mass number = 159.5 to 160.3 in the negative secondary ion spectrum, a triangular shape function approximated by the mass peak near 159.890 corresponding to 64 Zn 31 P 16 O 4 1 H - and m i Data, calculate the sum of the count numbers, and set the value normalized by C T to the mass peak intensity of 64 ZnPO 4 H - .
將曲線擬合的例子示於圖4中,將此時使用的參數與計數數目的總和的計算結果示於表2中。於圖4所示的例子中,根據對作為目標的 64ZnPO 4H -的質量峰進行近似而成的三角形形狀函數與m i的資料而獲得的計數數目的總和為1514。此時的負的二次離子的總離子計數(C T)=8571746,因此 64ZnPO 4H -的質量峰強度I( 64ZnPO 4H -)成為 I( 64ZnPO 4H -)=1514/8571746=1.77×10 -4。 An example of curve fitting is shown in FIG. 4 , and the calculation results of the sum of the parameters used at this time and the number of counts are shown in Table 2 . In the example shown in FIG. 4 , the total number of counts obtained based on the triangular shape function that approximates the mass peak of 64 ZnPO 4 H - as the target and the data of m i is 1514. At this time, the total ion count (C T ) of negative secondary ions = 8571746, so the mass peak intensity I ( 64 ZnPO 4 H - ) of 64 ZnPO 4 H - becomes I ( 64 ZnPO 4 H - ) = 1514/8571746 =1.77×10 -4 .
[表2]
對表示曲線擬合的例子的圖4進行補充。 (i)為了獲得再現作為目標的峰位置附近的測定資料c i的近似曲線y i,需要「背景b 0」及「其他成分的三角形形狀函數近似」的曲線、以及「作為目標的三角形形狀函數Y j(m i)」的曲線。 (ii)於圖4的例子中,於質量數(m/z)為159.7~160.2時,為了獲得再現測定資料c i的「近似曲線y i」,使用「背景b 0」及「作為目標的三角形形狀函數Y j(m i)」的曲線(表2中,j=2)、以及「其他成分的三角形形狀函數近似」的曲線兩個(表2中,j=0、1)。 Supplementary information is provided to Figure 4 showing an example of curve fitting. (i) In order to obtain an approximate curve yi that reproduces the measurement data c i near the target peak position, a curve of "the background b 0 " and "triangular shape function approximation of other components" and "the target triangle shape function" are required Y j ( mi )" curve. (ii) In the example of Figure 4, when the mass number (m/z) is 159.7 to 160.2, in order to obtain the "approximate curve yi " that reproduces the measurement data c i , the "background b 0 " and "target There are two curves of "triangular shape function Y j ( mi )" (j=2 in Table 2) and "triangular shape function approximation of other components" (j=0, 1 in Table 2).
[C 3H 3O 2 -的質量峰強度的計算] 著眼於負的二次離子光譜的質量數=70.7~71.4的範圍,根據對自曲線擬合獲得的相當於 12C 3 1H 3 16O 2 -的71.013附近的質量峰進行近似而成的三角形形狀函數Y k(m i)與m i的資料,計算計數數目的總和,將利用C T標準化後的值設為C 3H 3O 2 -的質量峰強度I(C 3H 3O 2 -)。 [Calculation of mass peak intensity of C 3 H 3 O 2 - ] Focusing on the range of mass number = 70.7 to 71.4 in the negative secondary ion spectrum, the equivalent of 12 C 3 1 H 3 16 obtained by fitting the autocurve Calculate the sum of the number of counts using the triangular shape function Y k (mi) and m i approximated by the mass peak near 71.013 of O 2 - , and set the value normalized by C T to C 3 H 3 O The mass peak intensity of 2 - I (C 3 H 3 O 2 - ).
[PO 2 -的質量峰強度的計算] 著眼於負的二次離子光譜的質量數=62.5~63.3的範圍,根據對相當於 31P 16O 2 -的62.964附近的質量峰進行近似而成的三角形形狀函數與m i的資料,計算計數數目的總和,將利用C T標準化後的值設為PO 2 -的質量峰強度I(PO 2 -)。 [Calculation of mass peak intensity of PO 2 - ] Focusing on the range of mass number = 62.5 to 63.3 in the negative secondary ion spectrum, it was calculated by approximating the mass peak near 62.964 corresponding to 31 P 16 O 2 - From the data of the triangle shape function and m i , calculate the sum of the number of counts, and set the value normalized by C T as the mass peak intensity I (PO 2 - ) of PO 2 - .
[PO 3 -的質量峰強度的計算] 著眼於負的二次離子光譜的質量數=78.5~79.3的範圍,根據對相當於 31P 16O 3 -的78.959附近的質量峰進行近似而成的三角形形狀函數與m i的資料,計算計數數目的總和,將利用C T標準化後的值設為PO 3 -的質量峰強度I(PO 3 -)。 [Calculation of mass peak intensity of PO 3 - ] Focusing on the range of mass number = 78.5 to 79.3 in the negative secondary ion spectrum, it was calculated by approximating the mass peak near 78.959 corresponding to 31 P 16 O 3 - From the data of the triangle shape function and m i , calculate the sum of the count numbers, and set the value normalized by C T as the mass peak intensity I (PO 3 - ) of PO 3 - .
[CN -的質量峰強度的計算] 著眼於負的二次離子光譜的質量數=25.5~26.3的範圍,根據對相當於 12C 14N -的26.003附近的質量峰進行近似而成的三角形形狀函數與m i的資料,計算計數數目的總和,將利用C T標準化後的值設為CN -的質量峰強度I(CN -)。 [Calculation of mass peak intensity of CN - ] Focusing on the range of mass number = 25.5 to 26.3 in the negative secondary ion spectrum, a triangular shape is obtained by approximating the mass peak near 26.003 corresponding to 12 C 14 N - Function and m i data, calculate the sum of the count numbers, and set the value normalized by C T as the mass peak intensity I of CN - (CN - ).
氣體阻擋性層較佳為由混合物的硬化物形成,所述混合物包含:多羧酸、Zn、以及以磷酸(H 3PO 4)為代表的含有一個以上的-P-OH基的磷化合物或其鹽。 若為由包含該些成分的混合物的硬化物形成的氣體阻擋性層,則源自多羧酸的羧基經由Zn形成金屬離子交聯,另外,Zn亦與包含P-OH基的磷化合物反應,形成具有耐水性的鍵。詳細的機制雖不清楚,但認為藉由於氣體阻擋性層中均勻地存在適量的該些的經由Zn的金屬離子交聯或Zn與磷化合物的鍵,而形成緊密的氣體阻擋性層,並且藉由蒸煮處理等抑制氣體阻擋性層過度膨脹、收縮。 The gas barrier layer is preferably formed from a hardened product of a mixture containing polycarboxylic acid, Zn, and a phosphorus compound containing one or more -P-OH groups represented by phosphoric acid (H 3 PO 4 ) or Its salt. In the case of a gas barrier layer formed from a cured product of a mixture of these components, the carboxyl groups derived from the polycarboxylic acid form metal ion cross-links via Zn, and Zn also reacts with the phosphorus compound containing the P-OH group, Forms bonds that are water resistant. Although the detailed mechanism is not clear, it is thought that a tight gas barrier layer is formed by the uniform presence of an appropriate amount of these metal ion crosslinks via Zn or the bond between Zn and the phosphorus compound in the gas barrier layer, and by Suppresses excessive expansion and contraction of the gas barrier layer by retort treatment, etc.
第一實施方式的氣體阻擋性層的Zn的組成比及TOF-SIMS中的I( 64ZnPO 4H -)/I(C 3H 3O 2 -)的值、(I(PO 2 -)+I(PO 3 -))/I(C 3H 3O 2 -)的值、I(PO 2 -)/I(PO 3 -)的值能夠藉由適當地調節氣體阻擋性層的製造條件來控制。 於第一實施方式中,例如,磷酸相對於多羧酸的濃度可作為用於控制所述Zn組成比及I( 64ZnPO 4H -)/I(C 3H 3O 2 -)的值的因子之一而列舉。 The composition ratio of Zn in the gas barrier layer of the first embodiment and the values of I ( 64 ZnPO4H - )/I( C3H3O2- ) and (I( PO2 - )+ in TOF-SIMS The value of I(PO 3 - ))/I(C 3 H 3 O 2 - ) and the value of I(PO 2 - )/I(PO 3 - ) can be appropriately adjusted by appropriately adjusting the manufacturing conditions of the gas barrier layer. control. In the first embodiment , for example, the concentration of phosphoric acid relative to the polycarboxylic acid can be used as a parameter for controlling the Zn composition ratio and the value of I( 64 ZnPO4H - )/I( C3H3O2- ) Listed as one of the factors.
關於第一實施方式中能夠應用的多羧酸、鋅或其化合物、磷化合物、其他可添加的成分,以下進行詳述。Polycarboxylic acids, zinc or its compounds, phosphorus compounds, and other addable components applicable to the first embodiment will be described in detail below.
(多羧酸) 多羧酸是於分子內具有兩個以上的羧基者。具體而言,可列舉丙烯酸、甲基丙烯酸、衣康酸、富馬酸、巴豆酸、肉桂酸、3-己烯酸、3-己烯二酸等α,β-不飽和羧酸的均聚物或該些的共聚物。另外,亦可為所述α,β-不飽和羧酸與乙基酯等酯類、乙烯等烯烴類等的共聚物。 (polycarboxylic acid) Polycarboxylic acids have two or more carboxyl groups in the molecule. Specific examples include homopolymerization of α,β-unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, crotonic acid, cinnamic acid, 3-hexenoic acid, and 3-hexenedioic acid. substances or copolymers of these. In addition, copolymers of the α,β-unsaturated carboxylic acid and esters such as ethyl ester, olefins such as ethylene, etc. may also be used.
該些中,較佳為丙烯酸、甲基丙烯酸的均聚物或該些的共聚物,更佳為選自聚丙烯酸、聚甲基丙烯酸、丙烯酸與甲基丙烯酸的共聚物中的一種或兩種以上的聚合物,進而佳為選自聚丙烯酸、聚甲基丙烯酸中的至少一種聚合物,特佳為選自丙烯酸的均聚物、甲基丙烯酸的均聚物中的至少一種聚合物。Among these, homopolymers of acrylic acid and methacrylic acid or copolymers of these are preferred, and one or two selected from the group consisting of polyacrylic acid, polymethacrylic acid, and copolymers of acrylic acid and methacrylic acid are more preferred. The above polymer is more preferably at least one polymer selected from the group consisting of polyacrylic acid and polymethacrylic acid, and particularly preferably at least one polymer selected from the group consisting of acrylic acid homopolymers and methacrylic acid homopolymers.
此處,於第一實施方式中,所謂聚丙烯酸,包含丙烯酸的均聚物、丙烯酸與其他單體的共聚物兩者。於丙烯酸與其他單體的共聚物的情況下,聚丙烯酸在聚合物100質量%中包含通常為90質量%以上、較佳為95質量%以上、更佳為99質量%以上的源自丙烯酸的結構單元。Here, in the first embodiment, polyacrylic acid includes both homopolymers of acrylic acid and copolymers of acrylic acid and other monomers. In the case of a copolymer of acrylic acid and other monomers, the polyacrylic acid contains usually 90 mass% or more, preferably 95 mass% or more, and more preferably 99 mass% or more derived from acrylic acid in 100 mass% of the polymer. structural unit.
另外,於第一實施方式中,所謂聚甲基丙烯酸,包含甲基丙烯酸的均聚物、甲基丙烯酸與其他單體的共聚物兩者。於甲基丙烯酸與其他單體的共聚物的情況下,聚甲基丙烯酸在聚合物100質量%中包含通常為90質量%以上、較佳為95質量%以上、更佳為99質量%以上的源自甲基丙烯酸的結構單元。In addition, in the first embodiment, polymethacrylic acid includes both homopolymers of methacrylic acid and copolymers of methacrylic acid and other monomers. In the case of a copolymer of methacrylic acid and other monomers, polymethacrylic acid contains usually 90 mass% or more, preferably 95 mass% or more, and more preferably 99 mass% or more in 100 mass% of the polymer. Structural unit derived from methacrylic acid.
多羧酸是羧酸單體聚合而成的聚合物,作為多羧酸的分子量,就氣體阻擋性及操作性的平衡優異的觀點而言,較佳為500~2,500,000,更佳為5,000~2,000,000,更佳為10,000~1,500,000,進而佳為100,000~1,200,000。A polycarboxylic acid is a polymer obtained by polymerizing a carboxylic acid monomer. The molecular weight of the polycarboxylic acid is preferably 500 to 2,500,000 and more preferably 5,000 to 2,000,000 from the viewpoint of excellent balance between gas barrier properties and workability. , more preferably 10,000~1,500,000, further preferably 100,000~1,200,000.
此處,多羧酸的分子量是聚環氧乙烷換算的重量平均分子量,可使用凝膠滲透層析法(GPC)進行測定。Here, the molecular weight of the polycarboxylic acid is a weight average molecular weight in terms of polyethylene oxide, and can be measured using gel permeation chromatography (GPC).
藉由利用揮發性鹼中和多羧酸,於將後述的鋅或多胺與多羧酸混合時,可抑制發生凝膠化。因此,於多羧酸中,就防止凝膠化的觀點而言,較佳為藉由揮發性鹼來製成羧基的部分中和物或完全中和物。中和物可藉由利用揮發性鹼來部分地或完全中和多羧酸的羧基(即,將多羧酸的羧基部分地或完全製成羧酸鹽)而獲得。藉此,於添加多胺或鋅時,可防止凝膠化。By neutralizing the polycarboxylic acid with a volatile base, gelation can be suppressed when zinc or a polyamine described below is mixed with the polycarboxylic acid. Therefore, among polycarboxylic acids, from the viewpoint of preventing gelation, it is preferable to use a volatile base to form a partially neutralized product or a completely neutralized product of the carboxyl group. The neutralizer can be obtained by partially or completely neutralizing the carboxyl group of the polycarboxylic acid using a volatile base (ie, partially or completely making the carboxyl group of the polycarboxylic acid into a carboxylate salt). This prevents gelation when polyamine or zinc is added.
部分中和物是藉由於多羧酸聚合物的水溶液中添加揮發性鹼來製備,可藉由調節多羧酸與揮發性鹼的量比而製成所期望的中和度。於第一實施方式中,就充分抑制由與多胺的胺基的中和反應所引起的凝膠化的觀點而言,揮發性鹼對多羧酸的中和度較佳為30當量%~100當量%,更佳為50當量%~100當量%。The partially neutralized product is prepared by adding a volatile base to an aqueous solution of the polycarboxylic acid polymer, and the desired degree of neutralization can be obtained by adjusting the ratio of the polycarboxylic acid to the volatile base. In the first embodiment, from the viewpoint of fully suppressing gelation caused by the neutralization reaction with the amine group of the polyamine, the degree of neutralization of the polycarboxylic acid by the volatile base is preferably 30 equivalent% to 100 equivalent%, more preferably 50 equivalent% to 100 equivalent%.
作為揮發性鹼,可使用任意的水溶性鹼。As the volatile base, any water-soluble base can be used.
作為揮發性鹼,例如可列舉氨、嗎啉、烷基胺、2-二甲基胺基乙醇、N-甲基嗎啉、乙二胺、三乙胺等三級胺或該些的水溶液、或該些的混合物。就獲得良好的氣體阻擋性的觀點而言,較佳為氨水溶液。Examples of the volatile base include tertiary amines such as ammonia, morpholine, alkylamine, 2-dimethylaminoethanol, N-methylmorpholine, ethylenediamine, and triethylamine, or aqueous solutions of these; or a mixture of these. From the viewpoint of obtaining good gas barrier properties, an ammonia aqueous solution is preferred.
構成第一實施方式的氣體阻擋性積層體的混合物較佳為更包含碳酸系銨鹽。碳酸系銨鹽是為了使後述的鋅成為碳酸鋅銨錯合物的狀態,提高鋅的溶解性,製備包含鋅的均勻的溶液而添加。The mixture constituting the gas barrier laminate of the first embodiment preferably further contains a carbonic acid ammonium salt. The carbonate-based ammonium salt is added in order to bring zinc, which will be described later, into the state of a zinc ammonium carbonate complex, improve the solubility of zinc, and prepare a uniform solution containing zinc.
作為碳酸系銨鹽,例如可列舉碳酸銨、碳酸氫銨等。就容易揮發、不易殘存於所獲得的氣體阻擋性層的方面而言,較佳為碳酸銨。Examples of carbonic acid-based ammonium salts include ammonium carbonate, ammonium bicarbonate, and the like. Ammonium carbonate is preferred in terms of being easily volatilized and not easily remaining in the obtained gas barrier layer.
(鋅) 鋅(Zn)可與磷化合物形成具有耐水性的磷酸Zn鍵,藉由TOF-SIMS分析可檢測出由 64ZnPO 4H -所表示的質量峰。另外,於氣體阻擋性層中包含多羧酸的情況下,與多羧酸形成鹽。Zn只要是可添加至形成氣體阻擋性層的混合物中的鋅或鋅化合物即可,例如可使用金屬鋅、氧化鋅(ZnO)、鋅化合物等。相對於所述多羧酸的羧基1 mol,鋅的添加量可設為0.1 mol以上且0.5 mol以下。 (Zinc) Zinc (Zn) can form a water-resistant Zn phosphate bond with a phosphorus compound, and a mass peak represented by 64 ZnPO 4 H - can be detected by TOF-SIMS analysis. In addition, when the gas barrier layer contains a polycarboxylic acid, a salt is formed with the polycarboxylic acid. Zn may be any zinc or zinc compound that can be added to the mixture for forming the gas barrier layer. For example, metallic zinc, zinc oxide (ZnO), zinc compounds, etc. can be used. The amount of zinc added may be 0.1 mol or more and 0.5 mol or less per 1 mol of the carboxyl group of the polycarboxylic acid.
(磷化合物) 如上所述,於對阻擋性層進行質量分析時,較佳為檢測出PO 2 -及/或PO 3 -。為了設置此種阻擋性層,硬化前的混合物較佳為包含磷化合物或其鹽。 磷化合物或其鹽中的磷化合物於分子結構中含有一個以上的-P-OH基。磷化合物亦可作為鹽調配於混合物中。 就進一步提高蒸煮處理後的水蒸氣阻擋性的觀點而言,磷化合物較佳為包含兩個以上的-P-OH基,更佳為包含三個以上的-P-OH基。另外,就生產性的觀點而言,磷化合物中的-P-OH基的數量例如亦可為10個以下。 作為磷化合物的具體例,可列舉磷酸、亞磷酸、膦酸、次磷酸、多磷酸、該些的衍生物。 多磷酸具體而言於分子結構中具有兩個以上的磷酸的縮合結構,例如可列舉:二磷酸(焦磷酸)、三磷酸、四個以上的磷酸縮合而成的多磷酸等。 作為衍生物的具體例,可列舉:磷酸化澱粉、磷酸交聯澱粉等所述磷化合物的酯;氯化物等鹵化物;十氧化四磷酸等的酐;以及硝基三(亞甲基膦酸)、N,N,N',N'-乙二胺四(亞甲基膦酸)等具有與磷原子鍵結的氫原子被烷基取代而成的結構的化合物。 就進一步提高阻擋性及生產性的平衡的觀點而言,磷化合物為選自由磷酸、亞磷酸、次磷酸、多磷酸、膦酸及該些的鹽所組成的群組中的一種或兩種以上,更佳為選自由磷酸及亞磷酸、膦酸及該些的鹽所組成的群組中的至少一個。 另外,作為磷化合物的鹽中的鹽的具體例,可列舉:鈉、鉀等一價金屬的鹽;銨鹽。就阻擋性的觀點而言,磷化合物的鹽較佳為銨鹽。 相對於混合物中的所述多羧酸的羧基1 mol,磷化合物的P原子的濃度典型而言為5×10 -4mol以上,較佳為1×10 -3mol以上,更佳為3×10 -3mol以上,另外,典型而言為0.3 mol以下,較佳為0.1 mol以下,更佳為0.05 mol以下。關於如磷酸般於化學式中包含一個P原子的磷化合物,P原子的莫耳數與磷化合物的莫耳數成為相同含義。 認為若為此種濃度的源自磷化合物或其鹽的磷化合物,則藉由與具有耐水性的磷化合物確實地形成Zn鍵,可抑制於蒸煮處理等中氣體阻擋性層過度膨脹、收縮,進一步提高蒸煮處理後的氣體阻擋性積層體的氣體阻擋性。磷化合物與Zn鍵的存在反映在利用所述TOF-SIMS分析而獲得的 64ZnPO 4H -的質量峰上。 (Phosphorus Compound) As mentioned above, when performing mass analysis on the barrier layer, it is preferable to detect PO 2 - and/or PO 3 - . In order to provide such a barrier layer, the mixture before hardening preferably contains a phosphorus compound or a salt thereof. The phosphorus compound or the phosphorus compound in its salt contains more than one -P-OH group in the molecular structure. The phosphorus compound can also be formulated in the mixture as a salt. From the viewpoint of further improving the water vapor barrier property after retort treatment, the phosphorus compound preferably contains two or more -P-OH groups, and more preferably contains three or more -P-OH groups. In addition, from the viewpoint of productivity, the number of -P-OH groups in the phosphorus compound may be, for example, 10 or less. Specific examples of the phosphorus compound include phosphoric acid, phosphorous acid, phosphonic acid, hypophosphorous acid, polyphosphoric acid, and derivatives thereof. Specifically, polyphosphoric acid has a condensed structure of two or more phosphoric acids in its molecular structure. Examples thereof include diphosphoric acid (pyrophosphoric acid), triphosphoric acid, polyphosphoric acid in which four or more phosphoric acids are condensed, and the like. Specific examples of the derivatives include esters of the phosphorus compounds such as phosphorylated starch and phosphate cross-linked starch; halides such as chlorides; anhydrides such as tetraphosphoric acid decaoxide; and nitrotris(methylenephosphonic acid). ), N,N,N',N'-ethylenediaminetetrakis(methylenephosphonic acid) and other compounds having a structure in which the hydrogen atom bonded to the phosphorus atom is replaced by an alkyl group. From the viewpoint of further improving the balance between barrier properties and productivity, the phosphorus compound is one or two or more selected from the group consisting of phosphoric acid, phosphorous acid, hypophosphorous acid, polyphosphoric acid, phosphonic acid and salts thereof. , more preferably at least one selected from the group consisting of phosphoric acid and phosphorous acid, phosphonic acid and salts thereof. Specific examples of salts among the salts of phosphorus compounds include salts of monovalent metals such as sodium and potassium; and ammonium salts. From the viewpoint of barrier properties, the salt of the phosphorus compound is preferably an ammonium salt. The concentration of P atoms of the phosphorus compound is typically 5 × 10 -4 mol or more, preferably 1 × 10 -3 mol or more, and more preferably 3 × relative to 1 mol of the carboxyl group of the polycarboxylic acid in the mixture. 10 -3 mol or more, and typically 0.3 mol or less, preferably 0.1 mol or less, more preferably 0.05 mol or less. For phosphorus compounds that contain one P atom in the chemical formula like phosphoric acid, the mole number of the P atom and the mole number of the phosphorus compound have the same meaning. It is thought that if the phosphorus compound derived from the phosphorus compound or its salt is of such a concentration, excessive expansion and contraction of the gas barrier layer during retort processing or the like can be suppressed by reliably forming a Zn bond with the water-resistant phosphorus compound. The gas barrier properties of the gas barrier laminate after the retort treatment are further improved. The presence of the phosphorus compound and the Zn bond is reflected in the mass peak of 64 ZnPO 4 H - obtained using the TOF-SIMS analysis.
(多胺) 構成第一實施方式的氣體阻擋性積層體的混合物較佳為更包含多胺。藉由包含多胺,可提高所獲得的氣體阻擋性積層體的阻擋性,並且可提高所獲得的氣體阻擋性積層體的層間接著性,可使耐脫層性良好。 (polyamine) The mixture constituting the gas barrier laminate of the first embodiment preferably further contains polyamine. By containing a polyamine, the barrier properties of the obtained gas barrier laminate can be improved, and the interlayer adhesion of the obtained gas barrier laminate can be improved, resulting in good delamination resistance.
多胺是於主鏈或側鏈或末端具有兩個以上的胺基的聚合物。具體而言,可列舉:聚烯丙胺、聚乙烯胺、聚乙烯亞胺、聚(三亞甲基亞胺)等脂肪族系多胺類;如聚離胺酸、聚精胺酸般於側鏈具有胺基的聚醯胺類等。另外,亦可為對胺基的一部分進行了改質的多胺。就獲得良好的氣體阻擋性的觀點而言,更佳為聚乙烯亞胺。相對於所述多羧酸中所含的羧基1 mol,多胺的添加量可設為0 mol以上且0.9 mol以下。Polyamines are polymers having two or more amine groups in the main chain, side chains or terminals. Specific examples include: aliphatic polyamines such as polyallylamine, polyvinylamine, polyethyleneimine, and poly(trimethyleneimine); side chains such as polylysine acid and polyarginine Polyamides with amine groups, etc. In addition, a polyamine in which part of the amine group has been modified may also be used. From the viewpoint of obtaining good gas barrier properties, polyethyleneimine is more preferred. The amount of polyamine added may be 0 mol or more and 0.9 mol or less per 1 mol of carboxyl groups contained in the polycarboxylic acid.
就氣體阻擋性及操作性的平衡優異的觀點而言,多胺的重量平均分子量較佳為50~2,000,000,更佳為100~1,000,000,進而佳為1,500~500,000,進而更佳為1,500~100,000,進而更佳為1,500~50,000,進而更佳為3,500~20,000,進而更佳為5,000~15,000,特佳為7,000~12,000。 此處,於第一實施方式中,多胺的分子量可使用沸點上升法或黏度法進行測定。 From the viewpoint of excellent balance between gas barrier properties and workability, the weight average molecular weight of the polyamine is preferably 50 to 2,000,000, more preferably 100 to 1,000,000, further preferably 1,500 to 500,000, still more preferably 1,500 to 100,000. More preferably, it is 1,500-50,000, still more preferably 3,500-20,000, still more preferably 5,000-15,000, and particularly preferably 7,000-12,000. Here, in the first embodiment, the molecular weight of the polyamine can be measured using the boiling point elevation method or the viscosity method.
(氣體阻擋性層的製造方法) 第一實施方式的氣體阻擋性層例如可以如下方式製造。 首先,製備構成多羧酸的羧基的完全或部分中和溶液。 (Method for manufacturing gas barrier layer) The gas barrier layer of the first embodiment can be produced as follows, for example. First, a completely or partially neutralized solution of the carboxyl groups constituting the polycarboxylic acid is prepared.
於多羧酸中添加揮發性鹼,使多羧酸的羧基完全中和或部分中和。藉由中和該多羧酸的羧基,於後步驟中,有效果地防止藉由於添加鋅或多胺時構成多羧酸的羧基與構成鋅或多胺的胺基反應而產生的凝膠化,而獲得均勻的氣體阻擋用塗材中間體。A volatile base is added to the polycarboxylic acid to completely or partially neutralize the carboxyl groups of the polycarboxylic acid. By neutralizing the carboxyl group of the polycarboxylic acid, gelation caused by the reaction between the carboxyl group constituting the polycarboxylic acid and the amine group constituting the zinc or polyamine is effectively prevented in the subsequent step when zinc or polyamine is added. , and obtain a uniform gas barrier coating intermediate.
繼而,於所述中間體中添加鋅鹽化合物及碳酸系銨鹽,使其溶解,利用生成的鋅離子形成與構成多羧酸的-COO-基的鋅鹽。此時,與鋅離子形成鹽的-COO-基是指未與所述鹼中和的羧基及被鹼中和的-COO-基此兩者。在與鹼中和的-COO-基的情況下,所述源自鋅的鋅離子交換並進行配位而形成-COO-基的鋅鹽。而且,藉由於形成鋅鹽後添加磷酸,可獲得氣體阻擋用塗材(混合物)。此時,可進一步添加多胺。Next, a zinc salt compound and a carbonic acid ammonium salt are added to the intermediate and dissolved, and the generated zinc ions are used to form a zinc salt with the -COO- group constituting the polycarboxylic acid. In this case, the -COO- group that forms a salt with zinc ions refers to both the carboxyl group that is not neutralized with the base and the -COO- group that is neutralized with the base. In the case of a -COO- group neutralized with a base, the zinc-derived zinc ions exchange and coordinate to form a zinc salt of the -COO- group. Furthermore, by adding phosphoric acid after forming a zinc salt, a gas barrier coating material (mixture) can be obtained. At this time, polyamine may be further added.
將以所述方式製造的氣體阻擋用塗材(混合物)塗佈於後述的無機物層上,使其乾燥、硬化,藉此形成氣體阻擋性層。將氣體阻擋用塗材塗佈於基材層上的方法並無特別限定,可使用通常的方法。例如可列舉使用邁爾棒(meyer bar)塗佈機、氣刀塗佈機、直接凹版塗佈機、間接凹版、電弧凹版塗佈機、反向凹版及噴射管嘴方式等凹版塗佈機、頂部進料反向塗佈機、底部進料反向塗佈機及管嘴進料反向塗佈機等反向輥塗機、五輥塗佈機、模唇塗佈機、棒式塗佈機、反向棒塗佈機、模具塗佈機等各種公知的塗敷機進行塗敷的方法。The gas barrier coating material (mixture) produced in the above manner is applied on an inorganic layer described below, and dried and hardened to form a gas barrier layer. The method of applying the gas barrier coating material to the base material layer is not particularly limited, and a common method can be used. For example, gravure coaters using Meyer bar coaters, air knife coaters, direct gravure coaters, indirect gravure, arc gravure coaters, reverse gravure and spray nozzle methods, etc. Top feed reverse coater, bottom feed reverse coater and nozzle feed reverse coater and other reverse roller coaters, five-roller coater, die lip coater, rod coater The coating method is performed by various well-known coating machines such as machine, reverse rod coater, die coater, etc.
氣體阻擋用塗材(混合物)的塗敷量(濕厚度)較佳為0.05 μm以上,更佳為1 μm以上。另外,塗敷量較佳為300 μm以下,更佳為200 μm以下,進而佳為100 μm以下。 另外,乾燥、硬化後的氣體阻擋性層的平均厚度較佳為0.05 μm以上且10 μm以下,更佳為0.08 μm以上且5 μm以下,進而佳為0.1 μm以上且1 μm以下。於為所述上限值以下時,可抑制所獲得的氣體阻擋性積層體或氣體阻擋性膜捲曲。另外,於為所述下限值以上時,可使所獲得的氣體阻擋性積層體或氣體阻擋性膜的阻擋性能更良好。 The coating amount (wet thickness) of the gas barrier coating material (mixture) is preferably 0.05 μm or more, more preferably 1 μm or more. In addition, the coating amount is preferably 300 μm or less, more preferably 200 μm or less, still more preferably 100 μm or less. In addition, the average thickness of the gas barrier layer after drying and hardening is preferably from 0.05 μm to 10 μm, more preferably from 0.08 μm to 5 μm, and even more preferably from 0.1 μm to 1 μm. When it is below the upper limit, curling of the obtained gas barrier laminate or gas barrier film can be suppressed. Moreover, when it is more than the said lower limit value, the barrier performance of the obtained gas barrier laminate or gas barrier film can be made more favorable.
乾燥及熱處理可於乾燥後進行熱處理,亦可同時進行乾燥與熱處理。Drying and heat treatment can be carried out after drying or at the same time.
進行乾燥、加熱處理的方法只要可達成本發明的目的則並無特別限定,只要是可使氣體阻擋用塗材硬化者、可加熱硬化的氣體阻擋用塗材的方法即可。例如可列舉烘箱、乾燥裝置等利用對流傳熱的裝置,加熱輥等利用傳導傳熱的裝置,紅外線、遠紅外線、近紅外線的加熱器等利用使用電磁波的輻射傳熱的裝置,微波等利用內部發熱的裝置。作為乾燥、加熱處理中使用的裝置,就製造效率的觀點而言,較佳為可進行乾燥與加熱處理兩者的裝置。其中,具體而言,就可在乾燥、加熱、退火等各種目的中利用的觀點而言,較佳為使用熱風烘箱,另外,就對膜的熱傳導效率優異的觀點而言,較佳為使用加熱輥。另外,亦可適宜組合乾燥、加熱處理中使用的方法。亦可併用熱風烘箱與加熱輥,例如若在熱風烘箱中乾燥氣體阻擋用塗材後,利用加熱輥進行加熱處理,則加熱處理步驟的時間變短,就製造效率的觀點而言較佳。另外,較佳為僅藉由熱風烘箱進行乾燥與加熱處理。The method of drying and heat treatment is not particularly limited as long as the object of the present invention can be achieved, as long as the gas barrier coating material can be hardened or the gas barrier coating material can be heat-cured. Examples include devices that utilize convection heat transfer such as ovens and dryers, devices that utilize conductive heat transfer such as heating rollers, devices that utilize radiation heat transfer using electromagnetic waves such as infrared, far-infrared, and near-infrared heaters, and devices that utilize internal heat transfer such as microwaves. Heating device. As an apparatus used for drying and heat treatment, from the viewpoint of manufacturing efficiency, an apparatus capable of performing both drying and heat treatment is preferred. Among them, specifically, it is preferable to use a hot air oven from the viewpoint that it can be used for various purposes such as drying, heating, and annealing. In addition, from the viewpoint of excellent heat conduction efficiency to the film, it is preferable to use heating. Roller. In addition, methods used for drying and heat treatment may be appropriately combined. A hot air oven and a heating roller may be used together. For example, if the gas barrier coating material is dried in a hot air oven and then heated using a heating roller, the time of the heating treatment step will be shortened, which is preferable from the viewpoint of manufacturing efficiency. In addition, it is preferable to perform drying and heating processing only by a hot air oven.
例如,理想的是於加熱處理溫度為80℃~250℃、加熱處理時間為1秒~10分鐘,較佳為加熱處理溫度為120℃~240℃、加熱處理時間為1秒~1分鐘,更佳為加熱處理溫度為170℃~230℃、加熱處理時間為1秒~30秒下進行加熱處理。進而如上所述,藉由併用加熱輥,能夠於短時間內進行加熱處理。重要的是加熱處理溫度及加熱處理時間根據氣體阻擋用塗材的濕厚度進行調整。For example, the heat treatment temperature is preferably 80°C to 250°C and the heat treatment time is 1 second to 10 minutes. More preferably, the heat treatment temperature is 120°C to 240°C and the heat treatment time is 1 second to 1 minute. More preferably, the heat treatment temperature is 80°C to 250°C and the heat treatment time is 1 second to 10 minutes. Preferably, the heat treatment temperature is 170°C to 230°C and the heat treatment time is 1 second to 30 seconds. Furthermore, as mentioned above, by using a heating roller together, heat processing can be performed in a short time. It is important to adjust the heat treatment temperature and heat treatment time according to the wet thickness of the gas barrier coating material.
氣體阻擋用塗材(混合物)藉由構成多羧酸的-COO-基的鋅鹽形成金屬交聯及具有耐水性的磷酸Zn鍵(反映在利用所述TOF-SIMS分析而獲得的 64ZnPO 4H -的質量峰上),並進行乾燥、熱處理,從而可獲得具有優異的氣體阻擋性的氣體阻擋性層。 The gas barrier coating material (mixture) forms metal cross-links and water-resistant phosphate Zn bonds through the zinc salt of the -COO- group constituting the polycarboxylic acid (reflected in 64 ZnPO 4 obtained by the TOF-SIMS analysis) H - mass peak), drying and heat treatment can be performed to obtain a gas barrier layer with excellent gas barrier properties.
(無機物層) 構成無機物層4的無機物例如可列舉:可形成具有阻擋性的薄膜的金屬、金屬氧化物、金屬氮化物、金屬氟化物、金屬氮氧化物等。 (Inorganic layer) Examples of the inorganic substances constituting the inorganic substance layer 4 include metals, metal oxides, metal nitrides, metal fluorides, and metal oxynitrides that can form a barrier thin film.
作為構成無機物層4的無機物,例如可列舉選自鈹、鎂、鈣、鍶、鋇等週期表2A族元素;鈦、鋯、釕、鉿、鉭等週期表過渡元素;鋅等週期表2B族元素;鋁、鎵、銦、鉈等週期表3A族元素;矽、鍺、錫等週期表4A族元素;硒、碲等週期表6A族元素等的單質、氧化物、氮化物、氟化物、或氮氧化物等中的一種或兩種以上。 再者,於第一實施方式中,週期表的族名由舊CAS式表示。 Examples of the inorganic substance constituting the inorganic substance layer 4 include elements selected from Group 2A of the Periodic Table such as beryllium, magnesium, calcium, strontium, and barium; transition elements of the Periodic Table such as titanium, zirconium, ruthenium, hafnium, and tantalum; Group 2B of the Periodic Table such as zinc; Elements; aluminum, gallium, indium, thallium and other periodic table group 3A elements; periodic table group 4A elements such as silicon, germanium and tin; periodic table group 6A elements such as selenium, tellurium and other elements, oxides, nitrides, fluorides, etc. or one or more of nitrogen oxides, etc. Furthermore, in the first embodiment, the group names of the periodic table are represented by the old CAS formula.
進而,於所述無機物中,就阻擋性、成本等的平衡優異而言,較佳為選自由氧化矽、氧化鋁、鋁所組成的群組中的一種或兩種以上的無機物,更佳為氧化鋁。 再者,於氧化矽中,除了二氧化矽以外,亦可含有一氧化矽、亞氧化矽。 Furthermore, among the inorganic substances, one or two or more inorganic substances selected from the group consisting of silica, alumina, and aluminum are preferred in terms of excellent balance between barrier properties, cost, etc., and more preferred are aluminum oxide. Furthermore, the silicon oxide may also contain silicon monoxide and silicon suboxide in addition to silicon dioxide.
無機物層由所述無機物形成。無機物層4可包含單層的無機物層,亦可包含多個無機物層。另外,於無機物層4包含多個無機物層的情況下,可包含同一種類的無機物層,亦可包含不同種類的無機物層。The inorganic substance layer is formed from the inorganic substance. The inorganic layer 4 may include a single inorganic layer or multiple inorganic layers. In addition, when the inorganic layer 4 includes a plurality of inorganic layers, it may include the same type of inorganic layer or may include different types of inorganic layers.
就阻擋性、密接性、操作性等的平衡的觀點而言,無機物層4的厚度通常為1 nm以上且1000 nm以下,較佳為1 nm以上且500 nm以下。 於第一實施方式中,無機物層的厚度可藉由穿透式電子顯微鏡或掃描式電子顯微鏡得到的觀察圖像而求出。 From the viewpoint of a balance between barrier properties, adhesion, operability, etc., the thickness of the inorganic layer 4 is usually from 1 nm to 1000 nm, preferably from 1 nm to 500 nm. In the first embodiment, the thickness of the inorganic layer can be determined from an observation image obtained by a transmission electron microscope or a scanning electron microscope.
無機物層的形成方法並無特別限定,例如可藉由真空蒸鍍法、離子鍍法、濺鍍法、化學氣相沈積法、物理氣相蒸鍍法、化學氣相蒸鍍法(CVD(Chemical Vapor Deposition)法)、電漿CVD法、溶膠-凝膠法等而於基材層2的單面或兩面形成無機物層4。其中,理想的是濺鍍法、離子鍍法、化學氣相蒸鍍法(CVD)、物理氣相蒸鍍法(PVD(Physical Vapor Deposition))、電漿CVD法等於減壓下的製膜。藉此,預計藉由氮化矽或氮氧化矽等含有矽的化學活性的分子種迅速地反應,而改良無機物層4的表面的平滑性,可使孔變少。 為了迅速地進行該些結合反應,理想的是該無機原子或化合物為化學活性的分子種或原子種。 The method for forming the inorganic layer is not particularly limited. For example, it can be vacuum evaporation, ion plating, sputtering, chemical vapor deposition, physical vapor deposition, chemical vapor deposition (CVD). Vapor Deposition method), plasma CVD method, sol-gel method, etc. to form the inorganic layer 4 on one or both sides of the base material layer 2. Among them, sputtering, ion plating, chemical vapor deposition (CVD), physical vapor deposition (PVD (Physical Vapor Deposition)), plasma CVD, or film formation under reduced pressure are ideal. Therefore, it is expected that chemically active molecular species containing silicon such as silicon nitride or silicon oxynitride react rapidly to improve the smoothness of the surface of the inorganic layer 4 and reduce the number of holes. In order to rapidly carry out these binding reactions, it is ideal that the inorganic atom or compound is a chemically active molecular species or atomic species.
(基材層) 基材層2只要可塗敷氣體阻擋用塗材的溶液,則可並無特別限定地使用。例如可列舉:熱硬化性樹脂、熱塑性樹脂或紙等有機質材料;玻璃、陶、陶瓷、氧化矽、氮氧化矽、氮化矽、水泥、鋁、氧化鋁、鐵、銅、不鏽鋼等金屬等無機質材料;包含有機質材料彼此或有機質材料與無機質材料的組合的多層結構的基材層等。該些中,例如於包裝材料或面板等各種膜用途的情況下,較佳為使用熱硬化性樹脂、熱塑性樹脂的塑膠膜或紙等有機質材料。 (Substrate layer) The base material layer 2 can be used without particular limitation as long as it can be coated with a solution of the gas barrier coating material. Examples include: organic materials such as thermosetting resin, thermoplastic resin, or paper; inorganic materials such as glass, pottery, ceramics, silicon oxide, silicon oxynitride, silicon nitride, cement, aluminum, alumina, iron, copper, stainless steel, and other metals Material; a base material layer of a multilayer structure including a combination of organic materials or a combination of organic materials and inorganic materials, etc. Among these, for example, in the case of various film applications such as packaging materials and panels, it is preferable to use thermosetting resins, thermoplastic resins, plastic films, or organic materials such as paper.
作為熱硬化性樹脂,可使用公知的熱硬化性樹脂。例如可列舉:環氧樹脂、不飽和聚酯樹脂、酚樹脂、脲-三聚氰胺樹脂、聚胺基甲酸酯樹脂、矽酮樹脂、聚醯亞胺等。As the thermosetting resin, a known thermosetting resin can be used. Examples include epoxy resin, unsaturated polyester resin, phenol resin, urea-melamine resin, polyurethane resin, silicone resin, polyimide, and the like.
作為熱塑性樹脂,可使用公知的熱塑性樹脂。例如可列舉:聚烯烴(聚乙烯、聚丙烯、聚(4-甲基-1-戊烯)、聚(1-丁烯)等)、聚酯(聚對苯二甲酸乙二酯、聚對苯二甲酸丁二酯、聚萘二甲酸乙二酯等)、聚醯胺(尼龍-6、尼龍-66、聚己二醯間苯二甲胺等)、聚氯乙烯、聚醯亞胺、乙烯-乙酸乙烯酯共聚物或其皂化物、聚乙烯醇、聚丙烯腈、聚碳酸酯、聚苯乙烯、離子聚合物、氟樹脂或該些的混合物等。As the thermoplastic resin, a known thermoplastic resin can be used. Examples include polyolefins (polyethylene, polypropylene, poly(4-methyl-1-pentene), poly(1-butene), etc.), polyesters (polyethylene terephthalate, poly(p-p) Butylene phthalate, polyethylene naphthalate, etc.), polyamide (nylon-6, nylon-66, polyethylene glycol m-phenylenediamine, etc.), polyvinyl chloride, polyimide, Ethylene-vinyl acetate copolymer or its saponified product, polyvinyl alcohol, polyacrylonitrile, polycarbonate, polystyrene, ionomer, fluororesin, or a mixture thereof, etc.
該些中,就使透明性良好的觀點而言,較佳為選自由聚丙烯、聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯、聚醯胺、聚醯亞胺及聚對苯二甲酸丁二酯所組成的群組中的一種或兩種以上的樹脂,就耐針孔性、耐破裂性及耐熱性等優異的觀點而言,較佳為選自由聚醯胺、聚對苯二甲酸乙二酯及聚對苯二甲酸丁二酯所組成的群組中的一種或兩種以上的樹脂。 另外,包含熱塑性樹脂的基材層2根據氣體阻擋性積層體8的用途可為單層,亦可為兩種以上的層。 另外,亦可將由所述熱硬化性樹脂、熱塑性樹脂形成的膜在至少一個方向、較佳為雙軸方向上拉伸而製成基材層。 Among these, from the viewpoint of improving transparency, it is preferable to be selected from the group consisting of polypropylene, polyethylene terephthalate, polyethylene naphthalate, polyamide, polyimide, and poly(p-p). One or two or more resins in the group consisting of butylene phthalate are preferably selected from the group consisting of polyamide, polyamide and polyamide from the viewpoint of excellent pinhole resistance, crack resistance and heat resistance. One or more resins in the group consisting of ethylene terephthalate and polybutylene terephthalate. In addition, the base material layer 2 containing the thermoplastic resin may be a single layer or two or more layers depending on the use of the gas barrier laminate 8 . In addition, a film made of the thermosetting resin or thermoplastic resin may be stretched in at least one direction, preferably in a biaxial direction, to form a base material layer.
作為第一實施方式的基材層2,就透明性、剛性、耐熱性優異的觀點而言,較佳為由選自聚丙烯、聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯、聚醯胺、聚醯亞胺及聚對苯二甲酸丁二酯中的一種或兩種以上的熱塑性樹脂形成的雙軸拉伸膜,更佳為由選自聚醯胺、聚對苯二甲酸乙二酯及聚對苯二甲酸丁二酯中的一種或兩種以上的熱塑性樹脂形成的雙軸拉伸膜。The base material layer 2 of the first embodiment is preferably made of polypropylene, polyethylene terephthalate, and polyethylene naphthalate from the viewpoint of excellent transparency, rigidity, and heat resistance. , a biaxially stretched film formed of one or more thermoplastic resins selected from the group consisting of polyamide, polyimide and polybutylene terephthalate, and more preferably a biaxially stretched film made of polyamide, polyimide and polybutylene terephthalate. A biaxially stretched film formed of one or more thermoplastic resins selected from ethylene formate and polybutylene terephthalate.
另外,於基材層2的表面亦可塗佈聚偏二氯乙烯、聚乙烯醇、乙烯-乙烯醇共聚物、丙烯酸樹脂、胺基甲酸酯系樹脂等。In addition, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, acrylic resin, urethane resin, etc. may also be coated on the surface of the base material layer 2 .
進而,基材層2為了改良接著性,亦可進行表面處理。具體而言,亦可進行電暈處理、火焰處理、電漿處理、底漆塗佈(primer coat)處理等表面活性化處理。Furthermore, the base material layer 2 may be surface-treated in order to improve the adhesiveness. Specifically, surface activation treatments such as corona treatment, flame treatment, plasma treatment, and primer coat treatment can also be performed.
就獲得良好的膜特性的觀點而言,基材層2的厚度較佳為1 μm~1000 μm,更佳為1 μm~500 μm,進而佳為1 μm~300 μm。From the viewpoint of obtaining good film properties, the thickness of the base material layer 2 is preferably 1 μm to 1000 μm, more preferably 1 μm to 500 μm, and still more preferably 1 μm to 300 μm.
基材層2的形狀並無特別限定,例如可列舉片或膜形狀、托盤、杯、中空體等形狀。The shape of the base material layer 2 is not particularly limited, and examples include a sheet or film shape, a tray, a cup, a hollow body, and the like.
(底塗層) 於氣體阻擋性積層體8中,就提高基材層2與無機物層4的接著性的觀點而言,可於基材層2的表面形成底塗層3。底塗層較佳為由環氧(甲基)丙烯酸酯系化合物或胺基甲酸酯(甲基)丙烯酸酯系化合物形成的層。 (base coat) In the gas barrier laminated body 8 , from the viewpoint of improving the adhesion between the base material layer 2 and the inorganic layer 4 , the primer layer 3 may be formed on the surface of the base material layer 2 . The undercoat layer is preferably a layer formed of an epoxy (meth)acrylate compound or a urethane (meth)acrylate compound.
作為所述底塗層3,較佳為將選自環氧(甲基)丙烯酸酯系化合物及胺基甲酸酯(甲基)丙烯酸酯系化合物中的至少一種硬化而成的層。The undercoat layer 3 is preferably a layer obtained by hardening at least one selected from the group consisting of epoxy (meth)acrylate compounds and urethane (meth)acrylate compounds.
作為環氧(甲基)丙烯酸酯系化合物,可例示使雙酚A型環氧化合物、雙酚F型環氧化合物、雙酚S型環氧化合物、苯酚酚醛清漆型環氧化合物、甲酚酚醛清漆型環氧化合物、脂肪族環氧化合物等環氧化合物與丙烯酸或甲基丙烯酸反應而獲得的化合物,進而可例示使所述環氧化合物與羧酸或其酸酐反應而獲得的酸改質環氧(甲基)丙烯酸酯。該些環氧(甲基)丙烯酸酯系的化合物與光聚合起始劑及視需要包含其他光聚合起始劑或熱反應性單體的稀釋劑一同塗佈於基材層的表面,然後照射紫外線等而藉由交聯反應形成底塗層。Examples of the epoxy (meth)acrylate compound include a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, a bisphenol S type epoxy compound, a phenol novolak type epoxy compound, and a cresol novolac type epoxy compound. Compounds obtained by reacting epoxy compounds such as varnish-type epoxy compounds and aliphatic epoxy compounds with acrylic acid or methacrylic acid, and further examples include acid-modified rings obtained by reacting the epoxy compound with carboxylic acid or its anhydride. Oxy(meth)acrylate. These epoxy (meth)acrylate compounds are coated on the surface of the base material layer together with a photopolymerization initiator and a diluent including other photopolymerization initiators or heat-reactive monomers if necessary, and then irradiated Ultraviolet rays, etc. form a primer layer through a cross-linking reaction.
作為胺基甲酸酯(甲基)丙烯酸酯系化合物,例如可列舉將包含多元醇化合物與聚異氰酸酯化合物的寡聚物(以下亦稱為聚胺基甲酸酯系寡聚物)丙烯酸酯化而成者等。Examples of the urethane (meth)acrylate-based compound include acrylation of an oligomer containing a polyol compound and a polyisocyanate compound (hereinafter also referred to as a polyurethane-based oligomer). Those who become mature and so on.
聚胺基甲酸酯系寡聚物可由聚異氰酸酯化合物與多元醇化合物的縮合產物獲得。作為具體的聚異氰酸酯化合物,可例示亞甲基-雙(對苯二異氰酸酯)、六亞甲基二異氰酸酯-己三醇的加成物、六亞甲基二異氰酸酯、甲苯二異氰酸酯、甲苯二異氰酸酯三羥甲基丙烷的加合物、1,5-萘二異氰酸酯、硫基丙基二異氰酸酯、乙基苯-2,4-二異氰酸酯、2,4-甲苯二異氰酸酯二聚物、氫化伸二甲苯基二異氰酸酯、三(4-苯基異氰酸酯)硫代磷酸酯等,另外,作為具體的多元醇化合物,有聚氧四亞甲基二醇等聚醚系多元醇、聚己二酸酯多元醇、聚碳酸酯多元醇等聚酯系多元醇、丙烯酸酯類與甲基丙烯酸羥基乙酯的共聚物等。作為構成丙烯酸酯的單量體,可例示(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸-2-乙基己酯、(甲基)丙烯酸甲氧基乙酯、(甲基)丙烯酸丁氧基乙酯、(甲基)丙烯酸苯酯等。The polyurethane oligomer can be obtained from a condensation product of a polyisocyanate compound and a polyol compound. Specific polyisocyanate compounds include methylene-bis(terphenylene diisocyanate), hexamethylene diisocyanate-hexanetriol adduct, hexamethylene diisocyanate, toluene diisocyanate, and toluene diisocyanate. Adduct of trimethylolpropane, 1,5-naphthalene diisocyanate, thiopropyl diisocyanate, ethylbenzene-2,4-diisocyanate, 2,4-toluene diisocyanate dimer, hydrogenated xylene diisocyanate, tris(4-phenyl isocyanate)thiophosphate, etc. Specific polyol compounds include polyether polyols such as polyoxytetramethylene glycol and polyadipate polyols. , polyester polyols such as polycarbonate polyol, copolymers of acrylates and hydroxyethyl methacrylate, etc. Examples of the monomer constituting the acrylate include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and (meth)acrylate. Methoxyethyl acrylate, butoxyethyl (meth)acrylate, phenyl (meth)acrylate, etc.
該些環氧(甲基)丙烯酸酯系化合物、胺基甲酸酯(甲基)丙烯酸酯系化合物視需要而併用。另外,作為使該些化合物聚合的方法,可列舉公知的各種方法,具體而言為藉由照射包含電離性放射線的能量線或加熱等來進行的方法。These epoxy (meth)acrylate compounds and urethane (meth)acrylate compounds are used in combination as necessary. Examples of methods for polymerizing these compounds include various known methods, specifically methods by irradiating energy rays containing ionizing radiation, heating, or the like.
於利用紫外線進行硬化來形成底塗層的情況下,較佳為以苯乙酮類、二苯甲酮類、米氏苯甲醯基苯甲酸酯(Michler's benzoyl benzoate)、α-戊基肟酯或噻噸酮類等為光聚合起始劑,另外以正丁胺、三乙胺、三正丁基膦等為光增感劑,進行混合而使用。另外,於第一實施方式中,亦可併用環氧(甲基)丙烯酸酯系化合物與胺基甲酸酯(甲基)丙烯酸酯系化合物來進行。When hardening with ultraviolet rays is used to form the undercoat layer, acetophenones, benzophenones, Michler's benzoyl benzoate, and α-pentyl oxime are preferred. Esters, thioxanthones, etc. are used as photopolymerization initiators, and n-butylamine, triethylamine, tri-n-butylphosphine, etc. are used as photosensitizers, and are mixed and used. In addition, in the first embodiment, an epoxy (meth)acrylate compound and a urethane (meth)acrylate compound may be used together.
另外,對該些環氧(甲基)丙烯酸酯系化合物或胺基甲酸酯(甲基)丙烯酸酯系化合物實施利用(甲基)丙烯酸系單體進行稀釋。作為此種(甲基)丙烯酸系單體,可例示(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸-2-乙基己酯、(甲基)丙烯酸甲氧基乙酯、(甲基)丙烯酸丁氧基乙酯、(甲基)丙烯酸苯酯,作為多官能單體,可例示三羥甲基丙烷三(甲基)丙烯酸酯、己二醇(甲基)丙烯酸酯、三丙二醇二(甲基)丙烯酸酯、二乙二醇二(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯等。In addition, these epoxy (meth)acrylate compounds or urethane (meth)acrylate compounds are diluted with (meth)acrylic monomers. Examples of such a (meth)acrylic monomer include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate. , methoxyethyl (meth)acrylate, butoxyethyl (meth)acrylate, phenyl (meth)acrylate, as the polyfunctional monomer, trimethylolpropane tri(meth)acrylic acid can be exemplified Esters, hexylene glycol (meth)acrylate, tripropylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol hexa(meth)acrylate Acrylate, 1,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, etc.
其中,於使用胺基甲酸酯(甲基)丙烯酸酯系化合物作為底塗層的情況下,所獲得的氣體阻擋性積層體8的氧氣體阻擋性進一步改良。 第一實施方式的底塗層的厚度以塗佈量計通常處於0.01 g/m 2~100 g/m 2、較佳為0.05 g/m 2~50 g/m 2的範圍。 Among them, when a urethane (meth)acrylate compound is used as the undercoat layer, the oxygen gas barrier properties of the gas barrier laminate 8 obtained are further improved. The thickness of the undercoat layer of the first embodiment is usually in the range of 0.01 g/m 2 to 100 g/m 2 in terms of coating amount, preferably 0.05 g/m 2 to 50 g/m 2 .
(接著劑層) 另外,亦可於氣體阻擋性層5上設置接著劑層6。接著劑層6只要包含公知的接著劑即可。作為接著劑,可列舉由有機鈦系樹脂、聚乙烯亞胺系樹脂、胺基甲酸酯系樹脂、環氧系樹脂、丙烯酸系樹脂、聚酯系樹脂、含有噁唑啉基的樹脂、改質矽酮樹脂及鈦酸烷基酯、聚酯系聚丁二烯等組成的層壓接著劑、或一液型、二液型的多元醇與多元異氰酸酯、水系胺基甲酸酯、離子聚合物等。或者,亦可使用以丙烯酸系樹脂、乙酸乙烯酯系樹脂、胺基甲酸酯系樹脂、聚酯樹脂等為主原料的水性接著劑。 (adhesive layer) In addition, the adhesive layer 6 may be provided on the gas barrier layer 5 . The adhesive layer 6 only needs to contain a known adhesive. Examples of adhesives include organic titanium-based resins, polyethyleneimine-based resins, urethane-based resins, epoxy-based resins, acrylic resins, polyester-based resins, oxazoline group-containing resins, modified Laminated adhesives composed of silicone resin, alkyl titanate, polyester-based polybutadiene, etc., or one-liquid or two-liquid polyols and polyisocyanates, water-based urethanes, ion polymerization Things etc. Alternatively, a water-based adhesive whose main raw material is acrylic resin, vinyl acetate resin, urethane resin, polyester resin, etc. can also be used.
另外,亦可根據氣體阻擋性積層體8的用途,於接著劑中添加硬化劑、矽烷偶合劑等其他添加物。於氣體阻擋性積層體的用途為在蒸煮等熱水處理中使用的情況下,就耐熱性或耐水性的觀點而言,較佳為以聚胺基甲酸酯系接著劑為代表的乾式層壓用接著劑,更佳為溶劑系的二液硬化型的聚胺基甲酸酯系接著劑。In addition, other additives such as a hardener and a silane coupling agent may be added to the adhesive according to the use of the gas barrier laminate 8 . When the gas barrier laminate is used for hot water treatment such as steaming, a dry layer represented by a polyurethane adhesive is preferred from the viewpoint of heat resistance or water resistance. The pressure adhesive is more preferably a solvent-based two-liquid curing type polyurethane adhesive.
第一實施方式的氣體阻擋性積層體8的蒸煮後的氣體阻擋性能優異,以包裝材料、特別是要求高氣體阻擋性的內容物的食品包裝材料為代表,亦可適宜用作醫療用途、工業用途、日常雜貨用途等各種包裝材料。The gas barrier laminate 8 of the first embodiment has excellent gas barrier properties after cooking, and can be suitably used as packaging materials, especially food packaging materials for contents requiring high gas barrier properties. It can also be suitably used for medical purposes and industrial applications. Various packaging materials for use, daily groceries, etc.
另外,第一實施方式的氣體阻擋性積層體8例如可適宜用作:要求高阻擋性能的真空隔熱用膜;用以密封電致發光元件、太陽電池等的密封用膜等。In addition, the gas barrier laminate 8 of the first embodiment can be suitably used as, for example, a vacuum insulation film requiring high barrier performance; a sealing film for sealing electroluminescent elements, solar cells, and the like.
<第二實施方式> 圖5是示意性地表示第二實施方式的氣體阻擋性積層體的結構的一例的剖面圖。 氣體阻擋性積層體100包括:基材層101;氣體阻擋性層103,設置於基材層101的至少一個面;以及無機物層102,設置於基材層101與氣體阻擋性層103之間。 於將對氣體阻擋性層103進行飛行時間型二次離子質量分析(TOF-SIMS)時的PO 2 -的質量峰強度設為I(PO 2 -),將PO 3 -的質量峰強度設為I(PO 3 -),將C 3H 3O 2 -的質量峰強度設為I(C 3H 3O 2 -)時,(I(PO 2 -)+I(PO 3 -))/I(C 3H 3O 2 -)的值為0.02~5,較佳為0.05~3。 另外,氣體阻擋性層103包含選自由Zn、Ca、Mg、Ba及Al所組成的群組中的一種或兩種以上的金屬元素,藉由對氣體阻擋性層103進行X射線光電子分光分析而求出的氣體阻擋性層103中的所述金屬元素的組成比率為1原子%~15原子%,較佳為1.5原子%~12原子%。 <Second Embodiment> FIG. 5 is a cross-sectional view schematically showing an example of the structure of a gas barrier laminate according to a second embodiment. The gas barrier laminate 100 includes a base material layer 101; a gas barrier layer 103 provided on at least one surface of the base material layer 101; and an inorganic layer 102 provided between the base material layer 101 and the gas barrier layer 103. Let the mass peak intensity of PO 2 - when the gas barrier layer 103 be subjected to time-of-flight secondary ion mass spectrometry (TOF-SIMS) be I (PO 2 - ), and the mass peak intensity of PO 3 - be I (PO 3 - ), when the mass peak intensity of C 3 H 3 O 2 - is set to I (C 3 H 3 O 2 - ), (I (PO 2 - ) + I (PO 3 - ))/I The value of (C 3 H 3 O 2 - ) is 0.02 to 5, preferably 0.05 to 3. In addition, the gas barrier layer 103 includes one or more metal elements selected from the group consisting of Zn, Ca, Mg, Ba, and Al, and the gas barrier layer 103 is analyzed by X-ray photoelectron spectroscopy. The calculated composition ratio of the metal element in the gas barrier layer 103 is 1 atomic % to 15 atomic %, preferably 1.5 atomic % to 12 atomic %.
(I(PO 2 -)+I(PO 3 -))/I(C 3H 3O 2 -)的值為0.02~5、或氣體阻擋性層103中的所述金屬元素的組成比率為1原子%~15原子%的情況如以下般被賦予含義。 The value of (I(PO 2 - ) + I (PO 3 - ))/I (C 3 H 3 O 2 - ) is 0.02 to 5, or the composition ratio of the metal element in the gas barrier layer 103 is 1 The meaning of atomic % to 15 atomic % is as follows.
藉由質量分析自氣體阻擋性層103中檢測出PO 2 -或PO 3 -的情況意味著氣體阻擋性層103包含以磷酸為代表例的磷化合物。而且,認為I(PO 2 -)+I(PO 3 -)的值是與氣體阻擋性層103中的磷化合物的量(濃度)相關的值。 The detection of PO 2 - or PO 3 - from the gas barrier layer 103 by mass analysis means that the gas barrier layer 103 contains a phosphorus compound represented by phosphoric acid. Furthermore, the value of I(PO 2 - ) + I(PO 3 - ) is considered to be a value related to the amount (concentration) of the phosphorus compound in the gas barrier layer 103 .
另外,藉由質量分析自氣體阻擋性層103中檢測出C 3H 3O 2 -的情況意味著氣體阻擋性層103包含聚丙烯酸或其衍生物/類似化合物(聚丙烯酸等)的多羧酸。而且,認為I(C 3H 3O 2 -)的值是與氣體阻擋性層103中所含的多羧酸的羧基的量(濃度)相關的值。 In addition, the detection of C 3 H 3 O 2 - from the gas barrier layer 103 by mass analysis means that the gas barrier layer 103 contains polycarboxylic acid of polyacrylic acid or its derivatives/similar compounds (polyacrylic acid, etc.) . Furthermore, the value of I(C 3 H 3 O 2 − ) is considered to be a value related to the amount (concentration) of carboxyl groups of the polycarboxylic acid contained in the gas barrier layer 103 .
根據本發明者等人的見解、研究,以磷酸為代表例的磷化合物能夠與Zn、Ca、Mg、Ba、Al等多價金屬相互作用而於氣體阻擋性層103中形成磷酸-多價金屬鍵。詳情雖不清楚,但認為該磷酸-多價金屬的鍵是難以藉由水合而切斷的鍵,因此對蒸煮處理等具有耐性,由於磷酸-多價金屬的鍵的存在,即便於蒸煮處理後亦可獲得良好的氣體阻擋性。According to the findings and research of the present inventors, phosphorus compounds, such as phosphoric acid as a representative example, can interact with polyvalent metals such as Zn, Ca, Mg, Ba, and Al to form phosphoric acid-polyvalent metal in the gas barrier layer 103 key. Although the details are not clear, it is believed that the bond between phosphoric acid and the polyvalent metal is difficult to break through hydration, and therefore it is resistant to retort processing. Good gas barrier properties can also be obtained.
(I(PO 2 -)+I(PO 3 -))/I(C 3H 3O 2 -)的值為0.02~5的情況意味著於氣體阻擋性層103中包含以多羧酸等為基準相對充分量的磷化合物。 另外,氣體阻擋性層103中的所述金屬元素的組成比率為1原子%~15原子%的情況意味著於氣體阻擋性層103中包含適量的與磷酸等交聯的多價金屬。 即,氣體阻擋性層103的(I(PO 2 -)+I(PO 3 -))/I(C 3H 3O 2 -)的值為0.02~5且氣體阻擋性層103中的所述金屬元素的組成比率為1原子%~15原子%的情況對應於在氣體阻擋性層103中存在充分量的磷酸-多價金屬的鍵(對蒸煮處理等具有耐性)。 When the value of (I(PO 2 - ) + I (PO 3 - ))/I (C 3 H 3 O 2 - ) is 0.02 to 5, it means that the gas barrier layer 103 contains a polycarboxylic acid or the like. A relatively sufficient amount of phosphorus compound. In addition, when the composition ratio of the metal element in the gas barrier layer 103 is 1 atomic % to 15 atomic %, it means that the gas barrier layer 103 contains an appropriate amount of a polyvalent metal cross-linked with phosphoric acid or the like. That is, the value of (I(PO 2 - ) + I (PO 3 - ))/I (C 3 H 3 O 2 - ) of the gas barrier layer 103 is 0.02 to 5 and the above-mentioned The case where the composition ratio of the metal element is 1 atomic % to 15 atomic % corresponds to the presence of a sufficient amount of phosphoric acid-polyvalent metal bonds in the gas barrier layer 103 (resistance to retort processing, etc.).
順便提及,根據本發明者等人的見解,認為藉由氣體阻擋性層103包含Zn、Ca、Mg、Ba及Al中的任一種以上的金屬元素,於氣體阻擋性層103中導入例如在聚丙烯酸等所具有的羧基與金屬元素之間可形成的如-COO···M···OOC-般的交聯結構。認為藉由阻擋性層103包含此種交聯結構,阻擋性進一步提高。 以防萬一先說一下,所謂「氣體阻擋性層103中的Zn、Ca、Mg、Ba及Al的組成比率」於氣體阻擋性層103包含多種金屬元素的情況下表示該些的合計比率。 Incidentally, according to the findings of the present inventors, it is considered that when the gas barrier layer 103 contains at least one metal element among Zn, Ca, Mg, Ba, and Al, for example, A cross-linked structure like -COO···M···OOC- can be formed between the carboxyl groups of polyacrylic acid and the like and metal elements. It is considered that the barrier layer 103 includes such a cross-linked structure, thereby further improving the barrier properties. Just in case, the so-called "composition ratio of Zn, Ca, Mg, Ba, and Al in the gas barrier layer 103" means the total ratio of these metal elements when the gas barrier layer 103 contains a plurality of metal elements.
預先對基於TOF-SIMS進行的氣體阻擋性層103的分析進行補充。 為了分析氣體阻擋性層103的內部,較佳為於分析前,利用TOF-SIMS分析裝置附帶的Ar-氣體團簇離子束(Ar-GCIB)對氣體阻擋性層103的表層進行濺鍍蝕刻,從而使氣體阻擋性層103的內部露出。Ar-GCIB的使用減輕了由蝕刻引起的氣體阻擋性層103的損害。 The analysis of the gas barrier layer 103 based on TOF-SIMS is supplemented in advance. In order to analyze the inside of the gas barrier layer 103, it is preferable to perform sputter etching on the surface layer of the gas barrier layer 103 using the Ar-gas cluster ion beam (Ar-GCIB) attached to the TOF-SIMS analysis device before analysis. Thereby, the inside of the gas barrier layer 103 is exposed. The use of Ar-GCIB mitigates damage to the gas barrier layer 103 caused by etching.
示出Ar-GCIB蝕刻的具體條件的一例。 GCIB輸出:5 kV、5 μA GCIB處理時間:TOF-SIMS的光譜圖案不再變化的時間點 An example of specific conditions for Ar-GCIB etching is shown. GCIB output: 5 kV, 5 μA GCIB processing time: the time point when the spectral pattern of TOF-SIMS no longer changes
另外,示出TOF-SIMS分析的具體條件的一例。 分析裝置:日本真空(Ulvac-phi)公司製造的PHI奈米(NaNo)TOF II 一次離子:Bi 3 ++一次離子源輸出:30 kV、0.5 μA 分析區域:300 μm×300 μm(作為一次離子束的掃描區域) 分析時,藉由裝置附帶的低能量電子束及低能量Ar離子照射實施帶電中和。 In addition, an example of specific conditions for TOF-SIMS analysis is shown. Analytical device: PHI Nano (NaNo) TOF II manufactured by Nippon Vacuum (Ulvac-phi) Co., Ltd. Primary ion: Bi 3 ++ primary ion source output: 30 kV, 0.5 μA Analysis area: 300 μm × 300 μm (as primary ion (beam scanning area) During analysis, charge neutralization is carried out by low-energy electron beam and low-energy Ar ion irradiation attached to the device.
預先對藉由TOF-SIMS獲得的資料的解析方法進行記述。 為了進行詳細的質量光譜解析,對於正及負的各二次離子,較佳為藉由分析裝置取得使質量數m i、及與其對應的計數數目c i成對的原始資料串及總離子計數(C T)。此處,為i=0、1、···、N。原始資料串中,對m i按照升序排列。C T是由檢測器檢測出的二次離子的總計數數目。 將關注的質量光譜峰周邊的質量數的範圍設為i=N 1、N 1+1、···、N 2。利用下式所示般的y i近似藉由分析獲得的該範圍的計數數目的資料c i。具體而言,藉由使用背景水準b 0及K個三角形形狀函數Y j(m i)的曲線擬合對c i進行近似。 The analysis method of data obtained by TOF-SIMS is described in advance. In order to conduct detailed mass spectrum analysis, for each positive and negative secondary ion, it is better to obtain the raw data string and total ion count pairing the mass number m i and its corresponding count number c i through an analysis device ( CT ). Here, i=0, 1,···,N. In the original data string, m i is arranged in ascending order. C T is the total number of secondary ion counts detected by the detector. The range of mass numbers around the mass spectrum peak of interest is set to i=N 1 , N 1 +1,..., N 2 . The data c i of the count number in this range obtained by analysis is approximated using y i as shown in the following equation. Specifically, c i is approximated by curve fitting using a background level b 0 and K triangular shape functions Y j (mi ) .
[數4] [Number 4]
於所述數式中,b 0是常數。Y j(m i)是於如圖7所示般的質量數x 0 j時具有峰值Y 0 j的函數(三角形形狀函數),由下式所表示。 In the above equation, b 0 is a constant. Y j (m i ) is a function (triangular shape function) having a peak value Y 0 j at the mass number x 0 j as shown in FIG. 7 , and is represented by the following equation.
[數5] [Number 5]
三角形形狀函數Y j(m i)的半值寬成為(B - j+B + j)/2。 b 0、x 0 j、Y 0 j、B - j、B + j成為擬合參數。j是j=1、···、K。 例如,於光譜的背景並非一定值而是相對於m i呈直線性變化的情況下,將b 0與三角形形狀函數Y j(m i)組合並對背景進行近似。 於關注的質量光譜峰為單峰的情況下,除背景以外,利用一個三角形形狀函數進行近似,於與其他質量峰接近的情況下,使用亦包括其他質量峰在內的多個三角形形狀函數進行近似。 若進行了近似的所關注的質量光譜峰是K個三角形形狀函數中第j=k個峰,則峰強度I由利用總離子計數(C T)將至i=n 1、···、n 2為止的Y k(m i)的總和標準化後的數值所表示,根據下式求出。 The half-value width of the triangle shape function Y j ( mi ) is (B - j +B + j )/2. b 0 , x 0 j , Y 0 j , B - j , and B + j become the fitting parameters. j is j=1,···,K. For example, when the background of the spectrum is not a constant value but changes linearly with respect to m i , b 0 is combined with the triangular shape function Y j (mi ) to approximate the background. When the mass spectrum peak of interest is a single peak, except for the background, a triangle shape function is used for approximation. When it is close to other mass peaks, multiple triangle shape functions including other mass peaks are used for approximation. approximate. If the approximated mass spectrum peak of interest is the j=kth peak among K triangular shape functions, the peak intensity I is reduced to i=n 1 ,···,n using the total ion count (C T ) It is represented by the normalized numerical value of the sum of Y k ( mi ) up to 2 , and is calculated according to the following formula.
[數6] [Number 6]
若質量光譜峰中存在尾端部分,則變得難以定義應計數的質量數的範圍。因此,上述中為了避免該情況,利用三角形形狀函數對質量光譜峰進行近似。藉此,會忽視質量光譜峰的尾端部分的計數數目。以質量光譜峰的中央部分符合三角形形狀函數的方式進行曲線擬合。If there is a tail portion in a mass spectrum peak, it becomes difficult to define the range of masses that should be counted. Therefore, in order to avoid this situation in the above, a triangle shape function is used to approximate the mass spectrum peak. By this, the number of counts in the tail portion of the mass spectral peak is ignored. Curve fitting was performed in such a way that the central part of the mass spectral peak fit a triangular shape function.
計算於第二實施方式中關注的片段的質量數並於以下示出。同位素的原子質量依賴於https://physics.nist.gov/。The mass number of the fragment of interest in the second embodiment was calculated and shown below. The atomic mass of an isotope depends on https://physics.nist.gov/.
[表3]
預先對在第二實施方式中關注的片段的質量峰強度的計算進行補充。The calculation of the mass peak intensity of the fragment of interest in the second embodiment is supplemented in advance.
(PO 2 -的質量峰強度的計算) 著眼於負的二次離子光譜的質量數=62.5~63.3的範圍,根據對相當於 31P 16O 2 -的62.964附近的質量峰進行近似而成的三角形形狀函數與m i的資料,計算計數數目的總和,將利用C T標準化後的值設為PO 2 -的質量峰強度I(PO 2 -)。 (Calculation of mass peak intensity of PO 2 - ) Focusing on the range of mass number = 62.5 to 63.3 in the negative secondary ion spectrum, it was calculated by approximating the mass peak near 62.964 corresponding to 31 P 16 O 2 - Based on the data of the triangle shape function and m i , calculate the sum of the count numbers, and set the value normalized by C T as the mass peak intensity I (PO 2 - ) of PO 2 - .
將曲線擬合的例子示於圖8中,將此時使用的參數與計數數目的總和的計算結果示於下表中。根據對作為目標的PO 2 -的質量峰形狀進行近似而成的三角形形狀函數與m i的資料而獲得的計數數目的總和為436。此時的負的二次離子的總離子計數(C T)=6838528,因此PO 2 -的質量峰強度I(PO 2 -)成為如以下般。 I(PO 2 -)=436/6838528=5.48×10 -5 An example of curve fitting is shown in FIG. 8 , and the calculation results of the sum of the parameters used at this time and the number of counts are shown in the table below. The total number of counts obtained based on the triangular shape function that approximates the target mass peak shape of PO 2 - and the data of m i is 436. The total ion count (C T ) of negative secondary ions at this time is 6838528, so the mass peak intensity I (PO 2 - ) of PO 2 - is as follows. I(PO 2 - )=436/6838528=5.48×10 -5
[表4]
預先對表示曲線擬合的例子的圖8進行補充。 (i)為了獲得再現作為目標的峰位置附近的測定資料c i的近似曲線y i,需要「背景b 0」及「其他成分的三角形形狀函數近似」的曲線、以及「作為目標的三角形形狀函數Y j(m i)」的曲線。 (ii)於圖8的例子中,於質量數(m/z)為62.94~62.98附近時,為了獲得再現測定資料c i的「近似曲線y i」,使用「背景b 0」及「作為目標的三角形形狀函數Y j(m i)」的曲線(表2中,j=1)、以及「其他成分的三角形形狀函數近似」的曲線(表2中,j=0)。 (iii)不利用三角形形狀函數對m/z為63~63.05附近的大的峰進行近似的原因在於與作為目標的峰成分明顯不重疊。 Figure 8 showing an example of curve fitting is supplemented in advance. (i) In order to obtain an approximate curve yi that reproduces the measurement data c i near the target peak position, a curve of "the background b 0 " and "triangular shape function approximation of other components" and "the target triangle shape function" are required Y j ( mi )" curve. (ii) In the example of Figure 8, when the mass number (m/z) is around 62.94 to 62.98, in order to obtain the "approximate curve yi " that reproduces the measurement data c i , "background b 0 " and "as the target The curve of the triangular shape function Y j (m i )" (j=1 in Table 2), and the curve of the "triangular shape function approximation of other components" (j=0 in Table 2). (iii) The reason why the large peak near m/z 63 to 63.05 is not approximated using a triangle shape function is that it clearly does not overlap with the target peak component.
(PO 3 -的質量峰強度的計算) 著眼於負的二次離子光譜的質量數=78.5~79.3的範圍,根據對相當於 31P 16O 3 -的78.959附近的質量峰進行近似而成的三角形形狀函數與m i的資料,計算計數數目的總和,將利用C T標準化後的值設為PO 3 -的質量峰強度I(PO 3 -)。 (Calculation of mass peak intensity of PO 3 - ) Focusing on the range of mass number = 78.5 to 79.3 in the negative secondary ion spectrum, it was calculated by approximating the mass peak near 78.959 corresponding to 31 P 16 O 3 - From the data of the triangle shape function and m i , calculate the sum of the count numbers, and set the value normalized by C T as the mass peak intensity I (PO 3 - ) of PO 3 - .
(C 3H 3O 2 -的質量峰強度的計算) 著眼於負的二次離子光譜的質量數=70.7~71.4的範圍,根據對自曲線擬合獲得的相當於 12C 3 1H 3 16O 2 -的71.013附近的質量峰進行近似而成的三角形形狀函數Y k(m i)與m i的資料,計算計數數目的總和,將利用C T標準化後的值設為C 3H 3O 2 -的質量峰強度I(C 3H 3O 2 -)。 (Calculation of the mass peak intensity of C 3 H 3 O 2 - ) Focusing on the range of mass number = 70.7 to 71.4 in the negative secondary ion spectrum, the value obtained by fitting the autocurve is equivalent to 12 C 3 1 H 3 16 Calculate the sum of the number of counts using the triangular shape function Y k (mi) and m i approximated by the mass peak near 71.013 of O 2 - , and set the value normalized by C T to C 3 H 3 O The mass peak intensity of 2 - I (C 3 H 3 O 2 - ).
(CN -的質量峰強度的計算) 著眼於負的二次離子光譜的質量數=70.7~71.4的範圍,根據對自曲線擬合獲得的相當於 12C 14N -的26.003附近的質量峰進行近似而成的三角形形狀函數Y k(m i)與m i的資料,計算計數數目的總和,將利用C T標準化後的值設為CN -的質量峰強度I(CN -)。 (Calculation of the mass peak intensity of CN - ) Focusing on the range of mass number = 70.7 to 71.4 in the negative secondary ion spectrum, the calculation was performed based on the mass peak near 26.003 corresponding to 12 C 14 N - obtained by fitting the curve. The approximated triangular shape function Y k (mi ) and the data of m i are calculated as the sum of the number of counts, and the value normalized by C T is set as the mass peak intensity I (CN - ) of CN - .
預先對基於X射線光電子分光法進行的氣體阻擋性層103的分析進行補充。 示出分析的具體條件的一例。 分析裝置:克拉托斯(KRATOS)公司製造的艾斯諾瓦(AXIS-NOVA) X射線源:單色化Al-Kα X射線源輸出:15 kV、10 mA 分析區域:300 μm×700 μm 分析時使用帶電校正用的中和電子槍 The analysis of the gas barrier layer 103 based on X-ray photoelectron spectroscopy is supplemented in advance. An example of specific conditions for analysis is shown. Analytical device: AXIS-NOVA manufactured by KRATOS X-ray source: monochromated Al-Kα X-ray source output: 15 kV, 10 mA Analysis area: 300 μm×700 μm A neutralizing electron gun for charged correction is used during analysis.
為了分析氣體阻擋性層103的內部,理想的是於分析前對氣體阻擋性層的表層進行濺鍍蝕刻。其中,為了減輕由蝕刻引起的對氣體阻擋性層的損害,理想的是基於Ar-氣體團簇離子束源進行的蝕刻。 藉由寬掃描,確定檢測元素,針對各個元素藉由窄掃描取得光譜。而且,自所獲得的光譜中去除利用Shirley法求出的背景,根據所獲得的峰面積,使用相對感度係數法計算出檢測元素的原子組成比率(原子%)。 順便提及,一般的XPS分析中的原子組成比率的檢測感度為0.1原子%左右。例如,於在氣體阻擋性層中添加微量的磷化合物的情況下,XPS分析中有時無法檢測出P的含有。 In order to analyze the inside of the gas barrier layer 103, it is ideal to perform sputter etching on the surface layer of the gas barrier layer before analysis. Among them, in order to reduce damage to the gas barrier layer caused by etching, etching based on an Ar-gas cluster ion beam source is ideal. Through wide scanning, the detection elements are determined, and spectra are obtained through narrow scanning for each element. Furthermore, the background determined by the Shirley method is removed from the obtained spectrum, and the atomic composition ratio (atomic %) of the detected element is calculated using the relative sensitivity coefficient method based on the obtained peak area. By the way, the detection sensitivity of the atomic composition ratio in general XPS analysis is about 0.1 atomic %. For example, when a trace amount of a phosphorus compound is added to the gas barrier layer, the content of P cannot be detected in XPS analysis.
作為其他觀點,氣體阻擋性層103較佳為包含在某種程度上多的羧酸鹽結構(而且,作為其結果,自由的羧基的量少)。該情況可謂表示氣體阻擋性層103於某種程度上包含例如金屬-羧基的交聯結構。藉由氣體阻擋性層103包含在某種程度上多的羧酸鹽結構,可進一步提高氣體阻擋性。 具體而言,於藉由利用全反射測定法對氣體阻擋性層103進行紅外分光測定而獲得的吸收光譜中,於將吸收帶1493 cm -1以上且1780 cm -1以下的範圍的總峰面積設為A,將吸收帶1493 cm -1以上且1598 cm -1以下的範圍的總峰面積設為D時,面積比率D/A較佳為0.5以上,更佳為0.58以上,更佳為0.6以上。D/A的上限值例如為0.8以下。 根據紅外分光法的過去見解或本發明者等人的見解,由於基於自由的羧酸的νC=O的吸收為1700 cm -1附近、或基於羧酸鹽的ν(C=O)的吸收為1540 cm -1~1560 cm -1附近,因此可將D/A設為氣體阻擋性層103所包含的羧酸鹽結構的量的指標。順便提及,如後所述,於在氣體阻擋性層103中包含多胺的情況下,有時基於醯胺鍵的ν(C=O)的吸收於1630 cm -1~1685 cm -1附近可見。 From another viewpoint, the gas barrier layer 103 preferably contains a certain amount of carboxylate structures (and, as a result, the amount of free carboxyl groups is small). This situation can be said to mean that the gas barrier layer 103 contains a cross-linked structure of, for example, metal-carboxyl groups to some extent. By including a certain amount of carboxylate structures in the gas barrier layer 103, the gas barrier properties can be further improved. Specifically, in the absorption spectrum obtained by infrared spectrometry of the gas barrier layer 103 using a total reflection measurement method, the total peak area in the range of the absorption band from 1493 cm -1 to 1780 cm -1 When A is used and the total peak area in the range of the absorption band from 1493 cm -1 to 1598 cm -1 is D, the area ratio D/A is preferably 0.5 or more, more preferably 0.58 or more, still more preferably 0.6 above. The upper limit of D/A is, for example, 0.8 or less. According to conventional knowledge of infrared spectroscopy or the knowledge of the present inventors, the absorption of νC=O based on a free carboxylic acid is around 1700 cm -1 or the absorption based on ν (C=O) of a carboxylic acid salt is In the vicinity of 1540 cm -1 to 1560 cm -1 , D/A can be used as an index of the amount of the carboxylate structure contained in the gas barrier layer 103. Incidentally, as will be described later, when the gas barrier layer 103 contains a polyamine, the absorption of ν (C=O) based on the amide bond may be around 1630 cm -1 to 1685 cm -1 Visible.
藉由全反射測定法進行的紅外分光測定具體而言可以如下方式進行。 首先,自氣體阻擋性層103中切出1 cm×3 cm的測定用樣品。 繼而,藉由紅外線全反射測定(ATR(Attenuated Total Reflection,衰減全反射)法)獲得該氣體阻擋性層103的表面的紅外線吸收光譜。 於所獲得的紅外線吸收光譜中,用直線(基線:N)連結1493 cm -1處的測定點與1780 cm -1處的測定點,獲得所獲得的紅外線吸收光譜與N的差光譜,將其作為光譜(S BN)。其中,於氣體阻擋性層103的厚度約為0.5 μm以下的情況下,所測定的紅外線吸收光譜中包含較氣體阻擋性層更靠下層的影響。 於該情況下,僅包含無氣體阻擋性層的下層的基材亦作為測定樣品來準備,同樣地獲得基材表面的ATR-IR光譜,求出與基線N的差光譜,將其作為光譜(S SN)。於1493 cm -1至1780 cm -1的波數範圍內,於顯示出明顯的吸收峰的情況下,進行根據下式的差光譜解析,獲得去除了基材的影響的光譜(S BN')。 <光譜(S BN')>=<光譜(S BN)>-α*<光譜(S SN)> 此處,α是用於去除基材的影響的係數,且為0≦α<1。 Infrared spectrometry by total reflection measurement can be performed specifically as follows. First, a measurement sample of 1 cm×3 cm was cut out from the gas barrier layer 103 . Then, the infrared absorption spectrum of the surface of the gas barrier layer 103 is obtained by infrared total reflection measurement (ATR (Attenuated Total Reflection) method). In the obtained infrared absorption spectrum, a straight line (baseline: N) is used to connect the measurement point at 1493 cm -1 and the measurement point at 1780 cm -1 to obtain the difference spectrum between the obtained infrared absorption spectrum and N, and then as spectrum (S BN ). When the thickness of the gas barrier layer 103 is approximately 0.5 μm or less, the measured infrared absorption spectrum includes the influence of the layer below the gas barrier layer. In this case, a base material including only a lower layer without a gas barrier layer was also prepared as a measurement sample, and the ATR-IR spectrum of the base material surface was obtained in the same way, and the difference spectrum from the baseline N was calculated and used as the spectrum ( SSN ). In the wave number range of 1493 cm -1 to 1780 cm -1 , when a clear absorption peak is displayed, a difference spectrum analysis based on the following formula is performed to obtain a spectrum without the influence of the substrate (S BN ') . <Spectrum (S BN ')>=<Spectrum (S BN )>-α*<Spectrum (S SN )> Here, α is a coefficient for removing the influence of the base material, and is 0≦α<1.
於所獲得的差光譜(S BN')中,將1493 cm -1至1780 cm -1的波數範圍的光譜的面積設為總峰面積A,將1493 cm -1至1598 cm -1的波數範圍的光譜的面積設為總峰面積D。 此處,作為具體例,關於基材層為聚對苯二甲酸乙二酯(PET)膜的情況,對用於去除包含基材層或無機層等的基材的影響的係數α的決定方法進行補充。 PET於1700 cm -1附近具有大的吸收峰,因此影響1493 cm -1至1780 cm -1的波數範圍內的峰面積的計算。為了去除該影響,使用一般的差光譜解析法。例如,作為與1493 cm -1至1780 cm -1的波數範圍相鄰且不與氣體阻擋性層的吸收峰重疊的PET的尖銳吸收峰,選擇1340 cm -1附近的吸收峰,並將其作為基準峰。於利用所述差光譜分析獲得的光譜(S BN')中,藉由以消除1340 cm -1附近的基準峰的方式調節係數α,可獲得去除了1700 cm -1附近的PET的吸收峰的影響的光譜(S BN')。 另外,係數α亦可如以下般作為紅外線吸收光譜的面積比求出。 關於自氣體阻擋性層的表面測定的紅外線吸收光譜及僅包含無氣體阻擋性層的下層的基材的紅外線吸收光譜,用直線(基線:M)連結1325 cm -1處的測定點與1355 cm -1處的測定點,於1325 cm -1~1355 cm -1的波數範圍內,獲得所獲得的紅外線吸收光譜與基線M的差光譜,分別作為光譜(S BM)、光譜(S SM)。關於光譜(S BM)及光譜(S SM),若將1325 cm -1以上且1355 cm -1以下的峰面積分別設為面積(A BM)、面積(A SM),則係數α根據下式求出。 α=A BM/A SM In the obtained difference spectrum (S BN '), the area of the spectrum in the wave number range of 1493 cm -1 to 1780 cm -1 is set as the total peak area A, and the area of the wave number range of 1493 cm -1 to 1598 cm -1 is The area of the spectrum in the numerical range is set as the total peak area D. Here, as a specific example, when the base material layer is a polyethylene terephthalate (PET) film, a method for determining the coefficient α for removing the influence of the base material including the base material layer, the inorganic layer, etc. Supplement. PET has a large absorption peak near 1700 cm -1 , thus affecting the calculation of the peak area in the wave number range from 1493 cm -1 to 1780 cm -1 . In order to remove this effect, a general difference spectrum analysis method is used. For example, as a sharp absorption peak of PET adjacent to the wave number range of 1493 cm -1 to 1780 cm -1 and not overlapping with the absorption peak of the gas barrier layer, an absorption peak near 1340 cm -1 is selected and as a reference peak. In the spectrum (S BN ') obtained by the difference spectrum analysis, by adjusting the coefficient α to eliminate the reference peak near 1340 cm -1 , it is possible to obtain a spectrum in which the absorption peak of PET near 1700 cm -1 is removed. Effect spectrum (S BN '). In addition, the coefficient α can also be obtained as the area ratio of the infrared absorption spectrum as follows. Regarding the infrared absorption spectrum measured from the surface of the gas barrier layer and the infrared absorption spectrum of the base material including only the lower layer without the gas barrier layer, a straight line (baseline: M) connects the measurement point at 1325 cm -1 and 1355 cm At the measurement point at -1 , in the wave number range of 1325 cm -1 to 1355 cm -1 , the difference spectrum between the obtained infrared absorption spectrum and the baseline M is obtained, which is regarded as spectrum (S BM ) and spectrum (S SM ) respectively. . Regarding the spectrum (S BM ) and the spectrum (S SM ), if the peak areas above 1325 cm -1 and below 1355 cm -1 are respectively the area (A BM ) and the area (A SM ), the coefficient α is given by the following formula Find out. α= ABM / ASM
紅外線吸收光譜的測定(紅外線全反射測定:ATR法)例如可使用日本分光公司製造的IRT-5200裝置,安裝PKM-GE-S(鍺(Germanium))結晶,於入射角度45度、室溫、分解能4 cm -1、累計次數100次的條件下進行。 For the measurement of infrared absorption spectrum (infrared total reflection measurement: ATR method), for example, the IRT-5200 device manufactured by JASCO Corporation can be used, equipped with a PKM-GE-S (Germanium) crystal, at an incident angle of 45 degrees, room temperature, The decomposition can be carried out under the conditions of 4 cm -1 and a cumulative number of 100 times.
圖6是示意性地表示氣體阻擋性積層體的其他結構例的剖面圖。 圖6的氣體阻擋性積層體110的基本結構與圖5的氣體阻擋性積層體100相同,但於基材層101與無機物層102不直接接觸而更包括設置於基材層101與無機物層102之間的底塗層104的方面不同。 於氣體阻擋性積層體110中,亦可獲得與氣體阻擋性積層體100同樣的效果。此外,於氣體阻擋性積層體110中,藉由在基材層101與無機物層102之間設置底塗層104,可進一步提高基材層101與無機物層102的接著性。 FIG. 6 is a cross-sectional view schematically showing another structural example of the gas barrier laminate. The basic structure of the gas barrier laminated body 110 of FIG. 6 is the same as the gas barrier laminated body 100 of FIG. 5 , but the base material layer 101 and the inorganic material layer 102 are not in direct contact. The aspects of the base coat 104 differ between. Also in the gas barrier laminated body 110, the same effect as that of the gas barrier laminated body 100 can be obtained. In addition, in the gas barrier laminate 110, by providing the primer layer 104 between the base material layer 101 and the inorganic material layer 102, the adhesion between the base material layer 101 and the inorganic material layer 102 can be further improved.
第二實施方式的氣體阻擋性積層體可藉由使用適量的適當的原材料並選擇適當的製造方法、製造條件來製造。關於該些的詳細情況,之後進行敘述,就交聯結構的形成的方面而言,較佳為除了原材料的種類或量以外例如適當地設定氣體阻擋性層103形成時的製造條件(後述的加熱處理的溫度或時間)。The gas barrier laminate of the second embodiment can be produced by using an appropriate amount of appropriate raw materials and selecting an appropriate manufacturing method and manufacturing conditions. These details will be described later. In terms of forming the cross-linked structure, it is preferable to appropriately set the manufacturing conditions (heating to be described later) when forming the gas barrier layer 103 in addition to the type or amount of raw materials. temperature or time of treatment).
以下,對氣體阻擋性積層體可包含的層進行具體說明。Hereinafter, the layers that can be included in the gas barrier laminate will be described in detail.
(氣體阻擋性層) 氣體阻擋性層103包括混合物的硬化物,所述混合物例如包含聚丙烯酸等多羧酸、多胺化合物、及多價金屬化合物。更具體而言,氣體阻擋性層103是包含所述硬化物的膜(氣體阻擋性膜10)。 更具體而言,氣體阻擋性層103例如可於無機物層102等配置於氣體阻擋性層103的正下方的層上塗佈硬化前的混合物(氣體阻擋用塗材)後,進行乾燥、熱處理來使氣體阻擋用塗材硬化而獲得。 (gas barrier layer) The gas barrier layer 103 includes a hardened product of a mixture containing, for example, a polycarboxylic acid such as polyacrylic acid, a polyamine compound, and a polyvalent metal compound. More specifically, the gas barrier layer 103 is a film (gas barrier film 10 ) including the cured product. More specifically, the gas barrier layer 103 can be formed by applying a pre-hardened mixture (gas barrier coating material) on a layer such as the inorganic layer 102 and other layers immediately below the gas barrier layer 103 and then drying and heat-treating it. It is obtained by hardening the gas barrier coating material.
以下,對硬化前的混合物(氣體阻擋用塗材)可包含的成分進行說明。藉由適當地選擇該些成分的種類或量並設置氣體阻擋性層103,可製造第二實施方式的氣體阻擋性積層體。The components that can be contained in the mixture before hardening (gas barrier coating material) are explained below. By appropriately selecting the types or amounts of these components and providing the gas barrier layer 103, the gas barrier laminate of the second embodiment can be produced.
·羧酸 多羧酸是於分子內具有兩個以上的羧基者。具體而言,可列舉(甲基)丙烯酸、衣康酸、富馬酸、巴豆酸、肉桂酸、3-己烯酸、3-己烯二酸等α,β-不飽和羧酸的均聚物或該些的共聚物。另外,亦可為所述α,β-不飽和羧酸與乙基酯等酯類、乙烯等烯烴類等的共聚物。 ·carboxylic acid Polycarboxylic acids have two or more carboxyl groups in the molecule. Specific examples include homopolymerization of α,β-unsaturated carboxylic acids such as (meth)acrylic acid, itaconic acid, fumaric acid, crotonic acid, cinnamic acid, 3-hexenoic acid, and 3-hexenedioic acid. substances or copolymers of these. In addition, copolymers of the α,β-unsaturated carboxylic acid and esters such as ethyl ester, olefins such as ethylene, etc. may also be used.
該些中較佳為丙烯酸、甲基丙烯酸、衣康酸、富馬酸、巴豆酸、肉桂酸的均聚物或該些的共聚物,更佳為選自由聚丙烯酸、聚甲基丙烯酸、以及丙烯酸與甲基丙烯酸的共聚物所組成的群組中的一種或兩種以上的聚合物,進而佳為選自聚丙烯酸及聚甲基丙烯酸中的至少一種聚合物,進而佳為選自丙烯酸的均聚物及甲基丙烯酸的均聚物中的至少一種聚合物。Among these, homopolymers or copolymers of acrylic acid, methacrylic acid, itaconic acid, fumaric acid, crotonic acid, and cinnamic acid are preferred, and more preferred are selected from the group consisting of polyacrylic acid, polymethacrylic acid, and One or more polymers from the group consisting of copolymers of acrylic acid and methacrylic acid, more preferably at least one polymer selected from polyacrylic acid and polymethacrylic acid, further preferably selected from acrylic acid At least one polymer selected from the group consisting of a homopolymer and a homopolymer of methacrylic acid.
此處,於第二實施方式中,所謂聚丙烯酸,包含丙烯酸的均聚物、丙烯酸與其他單體的共聚物兩者。於丙烯酸與其他單體的共聚物的情況下,聚丙烯酸在聚合物100質量%中包含通常為90質量%以上、較佳為95質量%以上、更佳為99質量%以上的源自丙烯酸的結構單元。 另外,於第二實施方式中,所謂聚甲基丙烯酸,包含甲基丙烯酸的均聚物、甲基丙烯酸與其他單體的共聚物兩者。於甲基丙烯酸與其他單體的共聚物的情況下,聚甲基丙烯酸在聚合物100質量%中包含通常為90質量%以上、較佳為95質量%以上、更佳為99質量%以上的源自甲基丙烯酸的結構單元。 Here, in the second embodiment, polyacrylic acid includes both homopolymers of acrylic acid and copolymers of acrylic acid and other monomers. In the case of a copolymer of acrylic acid and other monomers, the polyacrylic acid contains usually 90 mass% or more, preferably 95 mass% or more, and more preferably 99 mass% or more derived from acrylic acid in 100 mass% of the polymer. structural unit. In addition, in the second embodiment, polymethacrylic acid includes both homopolymers of methacrylic acid and copolymers of methacrylic acid and other monomers. In the case of a copolymer of methacrylic acid and other monomers, polymethacrylic acid contains usually 90 mass% or more, preferably 95 mass% or more, and more preferably 99 mass% or more in 100 mass% of the polymer. Structural unit derived from methacrylic acid.
多羧酸是羧酸單體聚合而成的聚合物。就氣體阻擋性及操作性的平衡優異的觀點而言,多羧酸的分子量較佳為500~2,500,000,更佳為5,000~2,000,000,更佳為10,000~1,500,000,進而佳為100,000~1,200,000。 此處,於第二實施方式中,多羧酸的分子量是聚環氧乙烷換算的重量平均分子量,可使用凝膠滲透層析法(GPC)進行測定。 Polycarboxylic acids are polymers made from carboxylic acid monomers. From the viewpoint of excellent balance between gas barrier properties and workability, the molecular weight of the polycarboxylic acid is preferably 500 to 2,500,000, more preferably 5,000 to 2,000,000, more preferably 10,000 to 1,500,000, and still more preferably 100,000 to 1,200,000. Here, in the second embodiment, the molecular weight of the polycarboxylic acid is a weight average molecular weight in terms of polyethylene oxide, and can be measured using gel permeation chromatography (GPC).
多羧酸的至少一部分亦可藉由揮發性鹼中和。藉由利用揮發性鹼中和多羧酸,於將多價金屬化合物或多胺化合物與多羧酸混合時,可抑制發生凝膠化。因此,於多羧酸中,就防止凝膠化的觀點而言,較佳為藉由揮發性鹼來製成羧基的部分中和物或完全中和物。中和物可藉由利用揮發性鹼來部分地或完全中和多羧酸的羧基,即,將多羧酸的羧基部分地或完全製成羧酸鹽而獲得。藉此,於添加多胺化合物或多價金屬化合物時,可防止凝膠化。 部分中和物是藉由於多羧酸聚合物的水溶液中添加揮發性鹼來製備,可藉由調節多羧酸與揮發性鹼的量比而製成所期望的中和度。於第二實施方式中,就充分抑制由與多胺化合物的胺基的中和反應所引起的凝膠化的觀點而言,揮發性鹼對多羧酸的中和度較佳為70當量%~300當量%,更佳為90當量%~250當量%,進而佳為100當量%~200當量%。 At least a portion of the polycarboxylic acid can also be neutralized by a volatile base. By neutralizing the polycarboxylic acid with a volatile base, gelation can be suppressed when the polyvalent metal compound or polyamine compound is mixed with the polycarboxylic acid. Therefore, among polycarboxylic acids, from the viewpoint of preventing gelation, it is preferable to use a volatile base to form a partially neutralized product or a completely neutralized product of the carboxyl group. The neutralized product can be obtained by partially or completely neutralizing the carboxyl group of the polycarboxylic acid using a volatile base, that is, partially or completely converting the carboxyl group of the polycarboxylic acid into a carboxylic acid salt. This can prevent gelation when adding a polyamine compound or a polyvalent metal compound. The partially neutralized product is prepared by adding a volatile base to an aqueous solution of the polycarboxylic acid polymer, and the desired degree of neutralization can be obtained by adjusting the ratio of the polycarboxylic acid to the volatile base. In the second embodiment, from the viewpoint of fully suppressing gelation caused by the neutralization reaction with the amine group of the polyamine compound, the degree of neutralization of the polycarboxylic acid by the volatile base is preferably 70 equivalent % ~300 equivalent%, more preferably 90 equivalent% ~ 250 equivalent%, further preferably 100 equivalent% ~ 200 equivalent%.
作為揮發性鹼,可使用任意的水溶性鹼。 作為揮發性鹼,例如可列舉氨、嗎啉、烷基胺、2-二甲基胺基乙醇、N-甲基嗎啉、乙二胺、三乙胺等三級胺或該些的水溶液、或該些的混合物。就獲得良好的氣體阻擋性的觀點而言,較佳為氨水溶液。 As the volatile base, any water-soluble base can be used. Examples of the volatile base include tertiary amines such as ammonia, morpholine, alkylamine, 2-dimethylaminoethanol, N-methylmorpholine, ethylenediamine, and triethylamine, or aqueous solutions of these; or a mixture of these. From the viewpoint of obtaining good gas barrier properties, an ammonia aqueous solution is preferred.
·多胺化合物 硬化前的混合物較佳為包含多胺化合物。多胺化合物可與多羧酸反應而形成交聯結構(醯胺鍵)。藉此,可進一步提高氣體阻擋性。 多胺化合物是於主鏈或側鏈或末端具有兩個以上的胺基的化合物,較佳為聚合物。具體而言,可列舉:聚烯丙胺、聚乙烯胺、聚乙烯亞胺、聚(三亞甲基亞胺)等脂肪族多胺類;如聚離胺酸、聚精胺酸般於側鏈具有胺基的聚醯胺類等。另外,亦可為對胺基的一部分進行了改質的多胺。 就獲得良好的氣體阻擋性的觀點而言,多胺化合物較佳為包含聚乙烯亞胺,更佳為聚乙烯亞胺。 ·Polyamine compounds The mixture before hardening preferably contains a polyamine compound. Polyamine compounds can react with polycarboxylic acids to form cross-linked structures (amide bonds). Thereby, the gas barrier property can be further improved. The polyamine compound is a compound having two or more amine groups in the main chain, side chain or terminal, and is preferably a polymer. Specific examples include: aliphatic polyamines such as polyallylamine, polyvinylamine, polyethyleneimine, and poly(trimethyleneimine); such as polylysine and polyarginine, which have polyamines in their side chains. Amino-based polyamides, etc. In addition, a polyamine in which part of the amine group has been modified may also be used. From the viewpoint of obtaining good gas barrier properties, the polyamine compound preferably contains polyethyleneimine, more preferably polyethyleneimine.
就氣體阻擋性及操作性的平衡優異的觀點而言,多胺化合物的數量平均分子量較佳為50~2,000,000,更佳為100~1,000,000,進而佳為1,500~500,000,進而更佳為1,500~100,000,進而更佳為1,500~50,000,進而更佳為3,500~20,000,進而更佳為5,000~15,000,進一步尤佳為7,000~12,000。 多胺化合物的分子量可使用沸點上升法或黏度法進行測定。 From the viewpoint of excellent balance between gas barrier properties and workability, the number average molecular weight of the polyamine compound is preferably 50 to 2,000,000, more preferably 100 to 1,000,000, further preferably 1,500 to 500,000, still more preferably 1,500 to 100,000 , more preferably 1,500 to 50,000, still more preferably 3,500 to 20,000, still more preferably 5,000 to 15,000, still more preferably 7,000 to 12,000. The molecular weight of polyamine compounds can be measured using the boiling point elevation method or the viscosity method.
就更進一步提高蒸煮處理後的氣體阻擋性能的觀點而言,(混合物中的多胺化合物中所含的胺基的莫耳數)/(混合物中的多羧酸中所含的-COO-基的莫耳數)較佳為0.20以上,更佳為0.25以上,進而佳為0.30以上,進而更佳為0.35以上,進一步尤佳為0.40以上。 就同樣的觀點而言,(混合物中的多胺化合物中所含的胺基的莫耳數)/(混合物中的多羧酸中所含的-COO-基的莫耳數)較佳為0.90以下,更佳為0.85以下,進而佳為0.80以下,進而更佳為0.75以下,進一步尤佳為0.70以下。 該理由的詳細情況尚不明確,但認為藉由由構成多胺化合物的胺基進行的醯胺交聯、和由構成多羧酸與多價金屬的鹽的多價金屬進行的金屬交聯均衡地形成緻密的結構,可獲得蒸煮處理後的氣體阻擋性能優異的氣體阻擋性層103及具有其的氣體阻擋性積層體。 From the viewpoint of further improving the gas barrier performance after retort treatment, (the mole number of amine groups contained in the polyamine compound in the mixture) / (the number of -COO- groups contained in the polycarboxylic acid in the mixture The molar number) is preferably 0.20 or more, more preferably 0.25 or more, still more preferably 0.30 or more, still more preferably 0.35 or more, and still more preferably 0.40 or more. From the same viewpoint, (the mole number of amine groups contained in the polyamine compound in the mixture)/(the mole number of -COO- groups contained in the polycarboxylic acid in the mixture) is preferably 0.90 or less, more preferably 0.85 or less, still more preferably 0.80 or less, still more preferably 0.75 or less, still more preferably 0.70 or less. The details of this reason are not yet clear, but it is thought that the amide crosslinking by the amine group constituting the polyamine compound and the metal crosslinking by the polyvalent metal constituting the salt of the polycarboxylic acid and the polyvalent metal are balanced. By forming a dense structure, the gas barrier layer 103 and the gas barrier laminate having the gas barrier layer 103 having excellent gas barrier properties after the retort treatment can be obtained.
與多胺化合物相關聯,於將對氣體阻擋性層103進行飛行時間型二次離子質量分析時的CN -的峰強度設為I(CN -),將C 3H 3O 2 -的峰強度設為I(C 3H 3O 2 -)時,I(CN -)/I(C 3H 3O 2 -)的值為2以下,較佳為1.8以下,更佳為1.5以下。I(CN -)/I(C 3H 3O 2 -)的值的下限例如為0,較佳為0.2,進而佳為0.4。關於飛行時間型二次離子質量分析的詳細情況為如上所述。 認為利用質量分析檢測出的CN -源自多胺。因此,認為I(CN -)/I(C 3H 3O 2 -)的值為適當的數值的情況與所述「由構成多胺化合物的胺基進行的醯胺交聯、和由構成多羧酸與多價金屬的鹽的多價金屬進行的金屬交聯均衡地形成緻密的結構」對應。 In relation to the polyamine compound, the peak intensity of CN - when the gas barrier layer 103 is subjected to time-of-flight secondary ion mass analysis is assumed to be I (CN - ), and the peak intensity of C 3 H 3 O 2 - is When I (C 3 H 3 O 2 - ) is used, the value of I (CN - )/I (C 3 H 3 O 2 - ) is 2 or less, preferably 1.8 or less, more preferably 1.5 or less. The lower limit of the value of I(CN - )/I(C 3 H 3 O 2 - ) is, for example, 0, preferably 0.2, further preferably 0.4. Details regarding time-of-flight secondary ion mass analysis are as described above. The CN - detected by mass analysis is considered to be derived from polyamines. Therefore, it is considered that the value of I(CN - )/I(C 3 H 3 O 2 - ) is an appropriate numerical value and is related to the above-mentioned "amide crosslinking by the amine group constituting the polyamine compound, and the "Metal cross-linking by polyvalent metals such as salts of carboxylic acids and polyvalent metals forms a dense structure in a balanced manner."
·金屬 如上所述,氣體阻擋性層103較佳為包含選自由Zn、Ca、Mg、Ba及Al所組成的群組中的一種或兩種以上的金屬元素。因此,硬化前的混合物較佳為包含該些金屬的化合物。該些中,若鑒於對蒸煮食品的包裝的應用,則較佳為含Mg的化合物及含Zn的化合物,更佳為含Zn的化合物。 作為金屬化合物,可列舉所述金屬的氧化物、氫氧化物、鹵化物、碳酸鹽、磷酸鹽、亞磷酸鹽、次磷酸鹽、硫酸鹽、亞硫酸鹽等。就耐水性或雜質等觀點而言,較佳為金屬的氧化物或金屬氫氧化物。 ·Metal As mentioned above, the gas barrier layer 103 preferably contains one or more metal elements selected from the group consisting of Zn, Ca, Mg, Ba, and Al. Therefore, the mixture before hardening is preferably a compound containing these metals. Among these, in view of application to packaging of retort foods, Mg-containing compounds and Zn-containing compounds are preferred, and Zn-containing compounds are more preferred. Examples of metal compounds include oxides, hydroxides, halides, carbonates, phosphates, phosphites, hypophosphites, sulfates, and sulfites of the metal. From the viewpoint of water resistance, impurities, etc., metal oxides or metal hydroxides are preferred.
作為能夠較佳地使用的金屬化合物,為選自由氧化鎂、氧化鈣、氧化鋇、氧化鋅、氫氧化鎂等氧化物以及氫氧化鈣、氫氧化鋇、氫氧化鋅等氫氧化物所組成的群組中的一種或兩種以上的化合物,更佳為氧化鋅及氫氧化鋅中的至少一者,進而佳為氧化鋅。Metal compounds that can be preferably used are those selected from oxides such as magnesium oxide, calcium oxide, barium oxide, zinc oxide, and magnesium hydroxide; and hydroxides such as calcium hydroxide, barium hydroxide, and zinc hydroxide. One or more compounds in the group are more preferably at least one of zinc oxide and zinc hydroxide, and further preferably zinc oxide.
於第二實施方式中,就更進一步提高蒸煮處理後的氣體阻擋性能的觀點而言,(混合物中的金屬化合物的莫耳數)/(混合物中的多羧酸中所含的-COO-基的莫耳數)較佳為0.1以上,更佳為0.13以上,進而佳為0.15以上,進而更佳為0.18以上。 就同樣的觀點而言,(混合物中的多價金屬化合物的莫耳數)/(混合物中的多羧酸中所含的-COO-基的莫耳數)較佳為0.80以下,更佳為0.70以下,進而佳為0.60以下,進而更佳為0.55以下,進一步尤佳為0.50以下。 In the second embodiment, from the viewpoint of further improving the gas barrier performance after retort treatment, (the molar number of the metal compound in the mixture)/(the -COO- group contained in the polycarboxylic acid in the mixture) The molar number) is preferably 0.1 or more, more preferably 0.13 or more, still more preferably 0.15 or more, still more preferably 0.18 or more. From the same viewpoint, (the mole number of the polyvalent metal compound in the mixture)/(the mole number of the -COO- group contained in the polycarboxylic acid in the mixture) is preferably 0.80 or less, more preferably 0.70 or less, more preferably 0.60 or less, still more preferably 0.55 or less, still more preferably 0.50 or less.
於第二實施方式中,就更進一步提高蒸煮處理後的氣體阻擋性能的觀點而言,(混合物中的金屬化合物的莫耳數)/(混合物中的源自多胺化合物的胺基的莫耳數)較佳為0.25以上,更佳為0.35以上,進而佳為0.40以上。 就同樣的觀點而言,(混合物中的金屬化合物的莫耳數)/(混合物中的源自多胺化合物的胺基的莫耳數)較佳為0.75以下,更佳為0.60以下,進而佳為0.55以下。 In the second embodiment, from the viewpoint of further improving the gas barrier performance after the retort treatment, (moles of the metal compound in the mixture)/(moles of the amine groups derived from the polyamine compound in the mixture) number) is preferably 0.25 or more, more preferably 0.35 or more, and still more preferably 0.40 or more. From the same viewpoint, (the molar number of the metal compound in the mixture)/(the molar number of the amine group derived from the polyamine compound in the mixture) is preferably 0.75 or less, more preferably 0.60 or less, and still more preferably is below 0.55.
·磷化合物或其鹽 如上所述,於對阻擋性層103進行質量分析時,檢測出PO 2 -及/或PO 3 -。為了設置此種阻擋性層103,硬化前的混合物較佳為包含磷化合物或其鹽。 磷化合物或其鹽中的磷化合物於分子結構中含有一個以上的-P-OH基。磷化合物亦可作為鹽調配於混合物中。 就進一步提高蒸煮處理後的水蒸氣阻擋性的觀點而言,磷化合物較佳為包含兩個以上的-P-OH基,更佳為包含三個以上的-P-OH基。另外,就生產性的觀點而言,磷化合物中的-P-OH基的數量例如亦可為10個以下。 ·Phosphorus compound or its salt As mentioned above, when the barrier layer 103 is mass-analyzed, PO 2 - and/or PO 3 - are detected. In order to provide such a barrier layer 103, the mixture before hardening preferably contains a phosphorus compound or a salt thereof. The phosphorus compound or the phosphorus compound in its salt contains more than one -P-OH group in the molecular structure. The phosphorus compound can also be formulated in the mixture as a salt. From the viewpoint of further improving the water vapor barrier property after retort treatment, the phosphorus compound preferably contains two or more -P-OH groups, and more preferably contains three or more -P-OH groups. In addition, from the viewpoint of productivity, the number of -P-OH groups in the phosphorus compound may be, for example, 10 or less.
作為磷化合物的具體例,可列舉磷酸、亞磷酸、膦酸、次磷酸、多磷酸、該些的衍生物。 多磷酸具體而言於分子結構中具有兩個以上的磷酸的縮合結構,例如可列舉:二磷酸(焦磷酸)、三磷酸、四個以上的磷酸縮合而成的多磷酸等。 作為衍生物的具體例,可列舉:磷酸化澱粉、磷酸交聯澱粉等所述磷化合物的酯;氯化物等鹵化物;十氧化四磷等的酐;以及硝基三(亞甲基膦酸)、N,N,N',N'-乙二胺四(亞甲基膦酸)等具有與磷原子鍵結的氫原子被烷基取代而成的結構的化合物。 Specific examples of the phosphorus compound include phosphoric acid, phosphorous acid, phosphonic acid, hypophosphorous acid, polyphosphoric acid, and derivatives thereof. Specifically, polyphosphoric acid has a condensed structure of two or more phosphoric acids in its molecular structure. Examples thereof include diphosphoric acid (pyrophosphoric acid), triphosphoric acid, polyphosphoric acid in which four or more phosphoric acids are condensed, and the like. Specific examples of the derivatives include esters of the phosphorus compounds such as phosphorylated starch and phosphate cross-linked starch; halides such as chlorides; anhydrides such as tetraphosphorus decaoxide; and nitrotris(methylenephosphonic acid). ), N,N,N',N'-ethylenediaminetetrakis(methylenephosphonic acid) and other compounds having a structure in which the hydrogen atom bonded to the phosphorus atom is replaced by an alkyl group.
就進一步提高阻擋性及生產性的平衡的觀點而言,磷化合物為選自由磷酸、亞磷酸、次磷酸、多磷酸、膦酸及該些的鹽所組成的群組中的一種或兩種以上,更佳為選自由磷酸及亞磷酸、膦酸及該些的鹽所組成的群組中的至少一個。From the viewpoint of further improving the balance between barrier properties and productivity, the phosphorus compound is one or two or more selected from the group consisting of phosphoric acid, phosphorous acid, hypophosphorous acid, polyphosphoric acid, phosphonic acid and salts thereof. , more preferably at least one selected from the group consisting of phosphoric acid and phosphorous acid, phosphonic acid and salts thereof.
另外,作為磷化合物的鹽中的鹽的具體例,可列舉:鈉、鉀等一價金屬的鹽;銨鹽。就阻擋性的觀點而言,磷化合物的鹽較佳為銨鹽。Specific examples of salts among the salts of phosphorus compounds include salts of monovalent metals such as sodium and potassium; and ammonium salts. From the viewpoint of barrier properties, the salt of the phosphorus compound is preferably an ammonium salt.
於第二實施方式中,就阻擋性提高的觀點而言,(混合物中的源自磷化合物或其鹽的磷化合物的P原子的莫耳數)/(混合物中的源自多羧酸的-COO-基的莫耳數)較佳為0.0005以上,更佳為0.001以上,進而佳為0.003以上,進而更佳為0.005以上。於如磷酸般於化學式中包含一個P原子的磷化合物中,P原子的莫耳數與磷化合物的莫耳數成為相同含義。 另外,就阻擋性及生產性(塗液的穩定性、塗膜的均勻性/外觀)的觀點而言,(混合物中的源自磷化合物或其鹽的磷化合物的莫耳數)/(混合物中的源自多羧酸的-COO-基的莫耳數)較佳為0.3以下,更佳為0.1以下,進而佳為0.08以下,進而更佳為0.05以下。 In the second embodiment, from the viewpoint of barrier improvement, (the mole number of P atoms of the phosphorus compound derived from the phosphorus compound or its salt in the mixture)/(- derived from the polycarboxylic acid in the mixture) The molar number of the COO group) is preferably 0.0005 or more, more preferably 0.001 or more, still more preferably 0.003 or more, still more preferably 0.005 or more. In phosphorus compounds that contain a P atom in the chemical formula like phosphoric acid, the molar number of the P atom and the molar number of the phosphorus compound have the same meaning. In addition, from the viewpoint of barrier properties and productivity (stability of the coating liquid, uniformity/appearance of the coating film), (the number of moles of the phosphorus compound derived from the phosphorus compound or its salt in the mixture) / (the mixture The molar number of the -COO- group derived from the polycarboxylic acid) is preferably 0.3 or less, more preferably 0.1 or less, still more preferably 0.08 or less, still more preferably 0.05 or less.
·其他成分 硬化前的混合物亦可包含所述成分以外的成分。 例如,混合物較佳為更包含碳酸系銨鹽。碳酸系銨鹽是為了使多價金屬化合物成為碳酸多價金屬銨錯合物的狀態,並提高多價金屬化合物的溶解性,製備包含多價金屬化合物的均勻的溶液而添加者。藉由硬化前的混合物包含碳酸系銨鹽,可增加多價金屬化合物的溶解量,其結果,可使調配有多價金屬化合物的混合物更均質。 作為碳酸系銨鹽,例如可列舉碳酸銨、碳酸氫銨等,就容易揮發、不易殘存於所獲得的氣體阻擋性層的方面而言,較佳為碳酸銨。 就更進一步提高多價金屬化合物的溶解性的觀點而言,(混合物中的碳酸系銨鹽的莫耳數)/(混合物中的金屬化合物的莫耳數)較佳為0.05以上,更佳為0.10以上,進而佳為0.25以上,進而更佳為0.50以上,特佳為0.75以上。 另外,就更進一步提高作為氣體阻擋用塗材的塗敷性的觀點而言,(氣體阻擋用塗材中的碳酸系銨鹽的莫耳數)/(氣體阻擋用塗材中的金屬化合物的莫耳數)較佳為10.0以下,更佳為5.0以下,進而佳為2.0以下,進而更佳為1.5以下。 ·Other ingredients The mixture before hardening may contain components other than the above-mentioned components. For example, the mixture preferably further contains carbonic acid ammonium salt. The carbonate-based ammonium salt is added in order to convert the polyvalent metal compound into the state of a polyvalent metal ammonium carbonate complex, improve the solubility of the polyvalent metal compound, and prepare a uniform solution containing the polyvalent metal compound. By including the ammonium carbonate salt in the mixture before hardening, the dissolved amount of the polyvalent metal compound can be increased. As a result, the mixture prepared with the polyvalent metal compound can be made more homogeneous. Examples of carbonic acid-based ammonium salts include ammonium carbonate and ammonium bicarbonate. Ammonium carbonate is preferred in that it is easily volatilized and is less likely to remain in the obtained gas barrier layer. From the viewpoint of further improving the solubility of the polyvalent metal compound, (the molar number of the carbonic acid ammonium salt in the mixture)/(the molar number of the metal compound in the mixture) is preferably 0.05 or more, more preferably 0.10 or more, more preferably 0.25 or more, still more preferably 0.50 or more, particularly preferably 0.75 or more. In addition, from the viewpoint of further improving the coating properties of the gas barrier coating material, (the molar number of the carbonic acid ammonium salt in the gas barrier coating material)/(the mole number of the metal compound in the gas barrier coating material) Mohr number) is preferably 10.0 or less, more preferably 5.0 or less, still more preferably 2.0 or less, still more preferably 1.5 or less.
另外,就抑制於作為氣體阻擋用塗材塗佈時產生收縮的觀點而言,硬化前的混合物較佳為更包含界面活性劑。 於將混合物的固體成分整體設為100質量%時,界面活性劑的添加量較佳為0.01質量%~3質量%,更佳為0.01質量%~1質量%。 In addition, from the viewpoint of suppressing shrinkage during application as a gas barrier coating material, the mixture before curing preferably further contains a surfactant. When the total solid content of the mixture is 100% by mass, the added amount of the surfactant is preferably 0.01% by mass to 3% by mass, more preferably 0.01% by mass to 1% by mass.
作為界面活性劑,例如可列舉陰離子性界面活性劑、非離子性界面活性劑、陽離子界面活性劑、兩性界面活性劑等,就獲得良好的塗敷性的觀點而言,較佳為非離子性界面活性劑,更佳為聚氧伸乙基烷基醚類。Examples of surfactants include anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, and the like. From the viewpoint of obtaining good coating properties, nonionic surfactants are preferred. Surfactants are preferably polyoxyethylene alkyl ethers.
作為非離子性界面活性劑,例如可列舉聚氧伸烷基烷基芳基醚類、聚氧伸烷基烷基醚類、聚氧伸烷基脂肪酸酯類、山梨糖醇酐脂肪酸酯類、矽酮系界面活性劑、乙炔醇系界面活性劑、含氟界面活性劑等。Examples of nonionic surfactants include polyoxyalkylene alkyl aryl ethers, polyoxyalkylene alkyl ethers, polyoxyalkylene fatty acid esters, sorbitan fatty acid esters, Silicone surfactants, acetylenol surfactants, fluorine-containing surfactants, etc.
作為聚氧伸烷基烷基芳基醚類,例如可列舉聚氧伸乙基壬基苯基醚、聚氧伸乙基辛基苯基醚、聚氧伸乙基十二烷基苯基醚等。 作為聚氧伸烷基烷基醚類,例如可列舉聚氧伸乙基油烯基醚、聚氧伸乙基月桂基醚等聚氧伸乙基烷基醚類。 作為聚氧伸烷基脂肪酸酯類,例如可列舉聚氧伸乙基油酸酯、聚氧伸乙基月桂酸酯、聚氧伸乙基二硬脂酸酯等。 作為山梨糖醇酐脂肪酸酯類,例如可列舉山梨糖醇酐月桂酸酯、山梨糖醇酐單硬脂酸酯、山梨糖醇酐單油酸酯、山梨糖醇酐倍半油酸酯、聚氧伸乙基單油酸酯、聚氧伸乙基硬脂酸酯等。 作為矽酮系界面活性劑,例如可列舉二甲基聚矽氧烷等。 作為乙炔醇系界面活性劑,例如可列舉2,4,7,9-四甲基-5-癸炔-4,7-二醇、3,6-二甲基-4-辛炔-3,6-二醇、3,5-二甲基-1-己炔-3醇等。 作為含氟系界面活性劑,例如可列舉氟烷基酯等。 Examples of the polyoxyalkylene alkylaryl ethers include polyoxyethylene nonylphenyl ether, polyoxyethylene octylphenyl ether, and polyoxyethylene dodecylphenyl ether. wait. Examples of the polyoxyalkylene alkyl ethers include polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether and polyoxyethylene lauryl ether. Examples of the polyoxyalkylene fatty acid esters include polyoxyethylene oleate, polyoxyethylene laurate, polyoxyethylene distearate, and the like. Examples of sorbitan fatty acid esters include sorbitan laurate, sorbitan monostearate, sorbitan monooleate, sorbitan sesquioleate, poly Oxyethylene monooleate, polyoxyethyl stearate, etc. Examples of silicone surfactants include dimethylpolysiloxane and the like. Examples of the acetylenic alcohol surfactant include 2,4,7,9-tetramethyl-5-decyne-4,7-diol and 3,6-dimethyl-4-octyne-3. 6-diol, 3,5-dimethyl-1-hexyn-3-ol, etc. Examples of fluorine-containing surfactants include fluoroalkyl esters and the like.
硬化前的混合物亦可包含所述成分以外的添加劑。例如,可包含潤滑劑、增滑劑、防黏連劑、抗靜電劑、防霧劑、顏料、染料、無機或有機的填充劑等各種添加劑。The mixture before hardening may also contain additives other than the above-mentioned components. For example, various additives such as lubricants, slip agents, anti-adhesive agents, antistatic agents, anti-fogging agents, pigments, dyes, and inorganic or organic fillers may be included.
另外,就提高作為氣體阻擋用塗材進行塗敷時的塗敷性的觀點而言,硬化前的混合物的固體成分濃度較佳為設為0.5質量%~15質量%,進而佳為設為1質量%~10質量%。In addition, from the viewpoint of improving the coating properties when applying as a gas barrier coating material, the solid content concentration of the mixture before curing is preferably 0.5 mass % to 15 mass %, and more preferably 1 Mass%~10 mass%.
·氣體阻擋性層的製造方法 具體而言,氣體阻擋性層103可藉由塗敷硬化前的混合物(氣體阻擋性用塗材)並進行硬化來製造。 混合物可以如下方式獲得。 首先,藉由於多羧酸中適宜加入揮發性鹼來對多羧酸的羧基進行完全或部分中和。進而混合多價金屬鹽化合物及適宜碳酸系銨鹽,在與揮發性鹼中和的所述多羧酸的羧基的全部或一部分、以及未與揮發性鹼中和的多羧酸的羧基中形成金屬鹽。 然後,進一步添加多胺化合物,最後添加磷化合物或其鹽,藉此可獲得硬化前的混合物。藉此,在磷化合物與多價金屬化合物或多胺的胺基中形成鹽。 藉由按照此種順序混合多羧酸、多價金屬鹽化合物、磷化合物或其鹽、適宜碳酸系銨鹽及多胺化合物,可抑制凝聚物的生成,可獲得更均勻的混合物。藉此,能夠更有效果地促進多羧酸中所含的-COO-基與多胺化合物中所含的胺基的脫水縮合反應。 ·Method for manufacturing gas barrier layer Specifically, the gas barrier layer 103 can be produced by applying a pre-cured mixture (gas barrier coating material) and curing the mixture. The mixture can be obtained as follows. First, the carboxyl group of the polycarboxylic acid is completely or partially neutralized by appropriately adding a volatile base to the polycarboxylic acid. Furthermore, a polyvalent metal salt compound and a suitable ammonium carbonate salt are mixed to form a mixture of all or part of the carboxyl groups of the polycarboxylic acid neutralized with the volatile base and the carboxyl groups of the polycarboxylic acid not neutralized with the volatile base. Metal salts. Then, a polyamine compound is further added, and finally a phosphorus compound or a salt thereof is added, thereby obtaining a mixture before hardening. Thereby, a salt is formed between the phosphorus compound and the polyvalent metal compound or the amine group of the polyamine. By mixing a polycarboxylic acid, a polyvalent metal salt compound, a phosphorus compound or a salt thereof, a suitable carbonic acid ammonium salt, and a polyamine compound in this order, the formation of aggregates can be suppressed and a more uniform mixture can be obtained. Thereby, the dehydration condensation reaction of the -COO- group contained in the polycarboxylic acid and the amine group contained in the polyamine compound can be promoted more effectively.
更詳細而言為如下所述。以下,以於混合物中調配揮發性鹼及碳酸系銨鹽的情況為例進行說明。 首先,製備構成多羧酸的羧基的完全或部分中和溶液。 於多羧酸中添加揮發性鹼,使多羧酸的羧基完全中和或部分中和。藉由中和該多羧酸的羧基,可有效果地防止由於於添加多價金屬化合物或多胺化合物時構成多羧酸的羧基與構成多價金屬化合物或多胺化合物的胺基反應而產生的凝膠化,而獲得更均勻的混合物。 繼而,添加多價金屬鹽化合物及碳酸系銨鹽,使其溶解,利用生成的多價金屬離子形成與構成多羧酸的-COO-基的多價金屬鹽。此時,與多價金屬離子形成鹽的-COO-基是指未與所述鹼中和的羧基及被鹼中和的-COO-基此兩者。在與鹼中和的-COO-基的情況下,所述源自多價金屬化合物的多價金屬離子交換並進行配位而形成-COO-基的多價金屬鹽。 然後,於形成多價金屬鹽後,進一步添加多胺化合物、及磷化合物或其鹽,藉此可獲得混合物。此時,配位於-COO-基的多價金屬鹽亦配位於磷化合物中的-P-O -基,形成-COO-多價金屬-O-P-結構。另外,在多胺中的-NH 2基與磷化合物中的-P-O -基之間形成離子鍵。 More details are as follows. Hereinafter, the case where a volatile base and a carbonic acid ammonium salt are mixed into a mixture will be demonstrated as an example. First, a completely or partially neutralized solution of the carboxyl groups constituting the polycarboxylic acid is prepared. A volatile base is added to the polycarboxylic acid to completely or partially neutralize the carboxyl groups of the polycarboxylic acid. By neutralizing the carboxyl group of the polycarboxylic acid, it is possible to effectively prevent the reaction between the carboxyl group constituting the polycarboxylic acid and the amine group constituting the polyvalent metal compound or polyamine compound when a polyvalent metal compound or polyamine compound is added. of gelation, resulting in a more homogeneous mixture. Next, a polyvalent metal salt compound and a carbonic acid ammonium salt are added and dissolved, and the generated polyvalent metal ions are used to form a polyvalent metal salt with the -COO- group constituting the polycarboxylic acid. In this case, the -COO- group that forms a salt with the polyvalent metal ion refers to both the carboxyl group that is not neutralized with the base and the -COO- group that is neutralized with the base. In the case of a -COO- group neutralized with a base, the multivalent metal ions derived from the multivalent metal compound are exchanged and coordinated to form a multivalent metal salt of the -COO- group. Then, after the polyvalent metal salt is formed, a polyamine compound and a phosphorus compound or a salt thereof are further added to obtain a mixture. At this time, the multivalent metal salt coordinated to the -COO- group is also coordinated to the -PO - group in the phosphorus compound, forming a -COO- multivalent metal-OP- structure. In addition, an ionic bond is formed between the -NH 2 group in the polyamine and the -PO - group in the phosphorus compound.
將以所述方式製造的混合物作為氣體阻擋用塗材塗佈於無機物層102或無機物層102上所形成的與氣體阻擋性層103的中介層上,並使其乾燥、硬化,藉此形成氣體阻擋性層103。此時,構成多羧酸的-COO-基的多價金屬鹽的多價金屬形成金屬交聯,藉由構成多胺的胺基形成醯胺交聯,形成磷化合物中的-P-O -基與多價金屬或多胺中的胺基的離子交聯,可獲得具有優異的氣體阻擋性的氣體阻擋性層103。關於氣體阻擋性層103的更詳細的製造方法,將後述。 The mixture produced in the above manner is applied as a gas barrier coating material on the inorganic layer 102 or the interlayer formed on the inorganic layer 102 and the gas barrier layer 103, and is dried and hardened to form a gas. Barrier layer 103. At this time, the polyvalent metal constituting the polyvalent metal salt of the -COO- group of the polycarboxylic acid forms a metal cross-link, and the amine group constituting the polyamine forms an amide cross-link, forming a -PO - group in the phosphorus compound and The gas barrier layer 103 having excellent gas barrier properties can be obtained by ionic cross-linking of amine groups in polyvalent metals or polyamines. A more detailed manufacturing method of the gas barrier layer 103 will be described later.
就阻擋性提高的觀點而言,乾燥、硬化後的氣體阻擋性層103的厚度較佳為0.01 μm以上,更佳為0.05 μm以上,進而佳為0.1 μm以上。 另外,就氣體阻擋性積層體整體的薄型化的觀點而言,乾燥、硬化後的氣體阻擋性層103的厚度較佳為15 μm以下,更佳為5 μm以下,進而佳為1 μm以下。 From the viewpoint of improving barrier properties, the thickness of the dried and hardened gas barrier layer 103 is preferably 0.01 μm or more, more preferably 0.05 μm or more, and still more preferably 0.1 μm or more. In addition, from the viewpoint of thinning the entire gas barrier laminate, the thickness of the gas barrier layer 103 after drying and curing is preferably 15 μm or less, more preferably 5 μm or less, and still more preferably 1 μm or less.
(基材層) 基材層101可為單層,亦可為兩種以上的層。基材層101的形狀並無限定,例如可列舉片或膜形狀、托盤、杯、中空體等形狀。 (Substrate layer) The base material layer 101 may be a single layer or two or more layers. The shape of the base material layer 101 is not limited, and examples include a sheet or film shape, a tray, a cup, a hollow body, and the like.
作為基材層101的材料,只要是可於基材層101上穩定地形成無機物層102並且可於無機物層102的上部塗敷氣體阻擋用塗材的溶液者,則可無限定地使用。作為基材層101的材料,例如可列舉:熱硬化性樹脂、熱塑性樹脂等樹脂或紙等有機質材料;玻璃、陶、陶瓷、氧化矽、氮氧化矽、氮化矽、水泥、鋁、氧化鋁、鐵、銅、不鏽鋼等金屬等無機質材料;包含有機質材料彼此或有機質材料與無機質材料的組合的多層結構的基材層等。該些中,例如於包裝材料或面板等各種膜用途的情況下,較佳為使用選自由熱硬化性樹脂及熱塑性樹脂所組成的群組中的至少一種的塑膠膜或紙等有機質材料。The material of the base layer 101 can be used without any limitation as long as it can stably form the inorganic layer 102 on the base layer 101 and apply a solution of the gas barrier coating material on top of the inorganic layer 102 . Examples of materials for the base layer 101 include resins such as thermosetting resins and thermoplastic resins, and organic materials such as paper; glass, pottery, ceramics, silicon oxide, silicon oxynitride, silicon nitride, cement, aluminum, and alumina. , iron, copper, stainless steel and other metals and other inorganic materials; a multi-layer structure base material layer including a combination of organic materials or a combination of organic materials and inorganic materials, etc. Among these, for example, in the case of various film applications such as packaging materials and panels, it is preferable to use at least one organic material such as a plastic film or paper selected from the group consisting of a thermosetting resin and a thermoplastic resin.
作為熱硬化性樹脂,可使用公知的熱硬化性樹脂。例如可列舉:環氧樹脂、不飽和聚酯樹脂、酚樹脂、脲-三聚氰胺樹脂、聚胺基甲酸酯樹脂、矽酮樹脂、聚醯亞胺等。As the thermosetting resin, a known thermosetting resin can be used. Examples include epoxy resin, unsaturated polyester resin, phenol resin, urea-melamine resin, polyurethane resin, silicone resin, polyimide, and the like.
作為熱塑性樹脂,可使用公知的熱塑性樹脂。例如可列舉:聚烯烴(聚乙烯、聚丙烯、聚(4-甲基-1-戊烯)、聚(1-丁烯)等)、聚酯(聚對苯二甲酸乙二酯、聚對苯二甲酸丁二酯、聚萘二甲酸乙二酯等)、聚醯胺(尼龍-6、尼龍-66、聚己二醯間苯二甲胺等)、聚氯乙烯、聚醯亞胺、乙烯-乙酸乙烯酯共聚物或其皂化物、聚乙烯醇、聚丙烯腈、聚碳酸酯、聚苯乙烯、離子聚合物、氟樹脂或該些的混合物等。As the thermoplastic resin, a known thermoplastic resin can be used. Examples include polyolefins (polyethylene, polypropylene, poly(4-methyl-1-pentene), poly(1-butene), etc.), polyesters (polyethylene terephthalate, poly(p-p) Butylene phthalate, polyethylene naphthalate, etc.), polyamide (nylon-6, nylon-66, polyethylene glycol m-phenylenediamine, etc.), polyvinyl chloride, polyimide, Ethylene-vinyl acetate copolymer or its saponified product, polyvinyl alcohol, polyacrylonitrile, polycarbonate, polystyrene, ionomer, fluororesin, or a mixture thereof, etc.
該些中,就使透明性良好的觀點而言,較佳為選自由聚丙烯、聚對苯二甲酸乙二酯(PET)、聚萘二甲酸乙二酯、聚醯胺、聚醯亞胺及聚對苯二甲酸丁二酯所組成的群組中的一種或兩種以上的樹脂。 另外,就耐針孔性、耐破裂性及耐熱性等優異的觀點而言,較佳為選自由聚醯胺、聚對苯二甲酸乙二酯及聚對苯二甲酸丁二酯所組成的群組中的一種或兩種以上的樹脂。就同樣的觀點而言,基材層101較佳為包含選自由聚醯胺、聚對苯二甲酸乙二酯及聚對苯二甲酸丁二酯所組成的群組中的一種或兩種以上的樹脂的層,更佳為該些中的一種或兩種以上的樹脂的層。 Among these, from the viewpoint of improving transparency, it is preferable to be selected from the group consisting of polypropylene, polyethylene terephthalate (PET), polyethylene naphthalate, polyamide, and polyimide. One or more resins in the group consisting of polybutylene terephthalate and polybutylene terephthalate. In addition, from the viewpoint of excellent pinhole resistance, crack resistance, heat resistance, etc., it is preferably selected from the group consisting of polyamide, polyethylene terephthalate, and polybutylene terephthalate. One or more resins in a group. From the same point of view, the base material layer 101 preferably contains one or more types selected from the group consisting of polyamide, polyethylene terephthalate, and polybutylene terephthalate. The resin layer is preferably a layer of one or more than two of these resins.
另外,於基材層101使用聚醯胺等具有吸濕性的材料的情況下,於氣體阻擋性積層體中,基材層101吸收水分而膨潤,高濕度下的氣體阻擋性能或蒸煮處理後的氣體阻擋性能、填充酸性內容物時的氣體阻擋性能等容易降低,但於第二實施方式中,作為基材層101,即便於使用具有吸濕性的材料的情況下,亦可較佳地抑制氣體阻擋性積層體於高濕度下的氣體阻擋性能或蒸煮處理後的氣體阻擋性能的降低。In addition, when the base material layer 101 uses a hygroscopic material such as polyamide, in the gas barrier laminate, the base material layer 101 absorbs moisture and swells, and the gas barrier performance under high humidity or after retort treatment The gas barrier performance and the gas barrier performance when filling acidic contents are easily reduced. However, in the second embodiment, even when a hygroscopic material is used as the base material layer 101, it is better to Suppresses the gas barrier performance of the gas barrier laminate under high humidity or the decrease in gas barrier performance after retort treatment.
另外,亦可將由熱硬化性樹脂或熱塑性樹脂形成的膜在至少一個方向、較佳為雙軸方向上拉伸而基材層101。 就透明性、剛性及耐熱性優異的觀點而言,基材層101較佳為由選自由聚丙烯、聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯、聚醯胺、聚醯亞胺及聚對苯二甲酸丁二酯所組成的群組中的一種或兩種以上的熱塑性樹脂形成的雙軸拉伸膜,更佳為由選自由聚醯胺、聚對苯二甲酸乙二酯及聚對苯二甲酸丁二酯所組成的群組中的一種或兩種以上的熱塑性樹脂形成的雙軸拉伸膜。 In addition, the base material layer 101 may be formed by stretching a film made of a thermosetting resin or a thermoplastic resin in at least one direction, preferably in a biaxial direction. From the viewpoint of excellent transparency, rigidity, and heat resistance, the base material layer 101 is preferably made of polypropylene, polyethylene terephthalate, polyethylene naphthalate, polyamide, or polyamide. A biaxially stretched film formed of one or more thermoplastic resins from the group consisting of imine and polybutylene terephthalate, preferably a biaxially stretched film selected from the group consisting of polyamide, polyethylene terephthalate A biaxially stretched film formed of one or more thermoplastic resins from the group consisting of diester and polybutylene terephthalate.
另外,於基材層101的表面亦可塗佈聚偏二氯乙烯、聚乙烯醇、乙烯-乙烯醇共聚物、丙烯酸樹脂、胺基甲酸酯樹脂等。 進而,基材層101為了改良與氣體阻擋性層103的接著性,亦可實施表面處理。具體而言,亦可在與基材層101的氣體阻擋性層103的相向面進行電暈處理、火焰處理、電漿處理、底漆塗佈處理等表面活性化處理。 In addition, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, acrylic resin, urethane resin, etc. may also be coated on the surface of the base material layer 101 . Furthermore, the base material layer 101 may be surface-treated in order to improve the adhesion with the gas barrier layer 103 . Specifically, surface activation treatment such as corona treatment, flame treatment, plasma treatment, and primer coating treatment may be performed on the surface facing the gas barrier layer 103 of the base layer 101 .
就獲得良好的膜特性的觀點而言,基材層101的厚度較佳為1 μm以上,更佳為5 μm以上,進而佳為10 μm以上,另外,較佳為1000 μm以下,更佳為500 μm以下,進而佳為300 μm以下。From the viewpoint of obtaining good film characteristics, the thickness of the base material layer 101 is preferably 1 μm or more, more preferably 5 μm or more, further preferably 10 μm or more, and further preferably 1000 μm or less, more preferably 1000 μm or less, more preferably 500 μm or less, more preferably 300 μm or less.
(底塗層) 如圖6中所說明般,在基材層101與無機物層102之間亦可設置底塗層104。藉由設置底塗層104,可進一步提高該些的接著性,另外,可進一步提高蒸煮處理後的阻擋性。 (base coat) As illustrated in FIG. 6 , a primer layer 104 may be provided between the base layer 101 and the inorganic layer 102 . By providing the undercoat layer 104, the adhesion between these layers can be further improved, and the barrier properties after retort treatment can be further improved.
就基材層101與無機物層102的接著性提高的觀點而言,作為底塗層104的材料,例如可列舉選自由聚胺基甲酸酯樹脂、聚酯樹脂、噁唑啉樹脂、(甲基)丙烯酸樹脂所組成的群組中的一種或兩種以上。From the viewpoint of improving the adhesion between the base layer 101 and the inorganic layer 102, examples of the material of the undercoat layer 104 include polyurethane resin, polyester resin, oxazoline resin, (methane resin), etc. One or more of the group consisting of acrylic resins.
作為聚胺基甲酸酯樹脂,可例示各種聚胺基甲酸酯樹脂、聚胺基甲酸酯聚脲樹脂及該些的預聚物等。作為此種胺基甲酸酯樹脂的具體例,可列舉:甲苯二異氰酸酯、二甲苯二異氰酸酯、二苯基甲烷二異氰酸酯、六亞甲基二異氰酸酯、環己烷二異氰酸酯、異佛爾酮二異氰酸酯、二環己基二異氰酸酯等二異氰酸酯成分與乙二醇、丙二醇、1,4-丁二醇、1,6-己二醇、新戊二醇、環己烷二甲醇、雙酚、聚酯二醇、聚醚二醇、聚碳酸酯二醇、聚乙二醇等二醇成分的反應物;末端具有異氰酸酯基的胺基甲酸酯預聚物與胺基化合物、胺基磺酸鹽、聚羥基羧酸、亞硫酸氫等的反應物等。Examples of the polyurethane resin include various polyurethane resins, polyurethane polyurea resins, and prepolymers thereof. Specific examples of such urethane resins include toluene diisocyanate, xylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, and isophorone diisocyanate. Diisocyanate components such as isocyanate and dicyclohexyl diisocyanate are combined with ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, cyclohexanedimethanol, bisphenol, and polyester Reactants of diol components such as diols, polyether diols, polycarbonate diols, and polyethylene glycols; urethane prepolymers with isocyanate groups at the end and amine compounds, amine sulfonates, Reactants of polyhydroxycarboxylic acid, hydrogen sulfite, etc.
另外,就使蒸煮處理後的阻擋性及基材層101與無機物層102之間的接著性進一步良好的觀點而言,亦較佳為於底塗層104中,聚胺基甲酸酯樹脂包含在主鏈具有芳香族環結構的聚胺基甲酸酯樹脂。於主鏈具有芳香族環結構的聚胺基甲酸酯系樹脂例如可藉由多元醇與有機聚異氰酸酯及鏈伸長劑的反應而作為水分散型聚胺基甲酸酯樹脂獲得。藉此,可於聚胺基甲酸酯系樹脂的主鏈導入芳香族環結構。 作為於主鏈具有芳香族環結構的聚胺基甲酸酯樹脂,更具體而言,可使用日本專利特開2018-171827號公報中記載者。 In addition, from the viewpoint of further improving the barrier properties after the retort treatment and the adhesion between the base layer 101 and the inorganic layer 102 , it is also preferable that the undercoat layer 104 contains a polyurethane resin. Polyurethane resin with an aromatic ring structure in the main chain. A polyurethane resin having an aromatic ring structure in the main chain can be obtained as a water-dispersed polyurethane resin by reacting a polyol with an organic polyisocyanate and a chain extender, for example. Thereby, an aromatic ring structure can be introduced into the main chain of the polyurethane resin. As the polyurethane resin having an aromatic ring structure in the main chain, more specifically, those described in Japanese Patent Application Laid-Open No. 2018-171827 can be used.
關於水分散型聚胺基甲酸酯樹脂等聚胺基甲酸酯樹脂,出於提高耐熱性、耐水性及耐水解性等的目的,亦可併用交聯劑。交聯劑可為作為與聚胺基甲酸酯樹脂不同的成分的外部交聯劑,亦可為於聚胺基甲酸酯樹脂的分子結構內預先導入成為交聯結構的反應點的內部交聯劑。For polyurethane resins such as water-dispersed polyurethane resin, a cross-linking agent may be used together for the purpose of improving heat resistance, water resistance, hydrolysis resistance, etc. The cross-linking agent may be an external cross-linking agent that is a component different from the polyurethane resin, or it may be an internal cross-linking agent that introduces reaction points that become a cross-linked structure into the molecular structure of the polyurethane resin in advance. combination agent.
作為交聯劑,可較佳地使用具有異氰酸酯基、噁唑啉基、碳二醯亞胺基、環氧基、三聚氰胺樹脂及矽醇基等的化合物,進而佳為具有碳二醯亞胺基的化合物。另外,於使用具有碳二醯亞胺基的化合物作為交聯劑的情況下,具有碳二醯亞胺基的化合物的添加量為相對於聚胺基甲酸酯樹脂中的羧基1.0 mol而言碳二醯亞胺基成為較佳為0.1 mol~3.0 mol、進而佳為0.2 mol~2.0 mol、特佳為0.3 mol~1.0 mol的量。As the cross-linking agent, compounds having an isocyanate group, an oxazoline group, a carbodiimide group, an epoxy group, a melamine resin, a silyl alcohol group, etc. are preferably used, and more preferably, a compound having a carbodiimide group is used. compound of. In addition, when using a compound having a carbodiimide group as a cross-linking agent, the amount of the compound having a carbodiimide group is added relative to 1.0 mol of the carboxyl group in the polyurethane resin. The carbodiimide group is preferably in an amount of 0.1 mol to 3.0 mol, more preferably 0.2 mol to 2.0 mol, and particularly preferably 0.3 mol to 1.0 mol.
作為底塗層104中使用的聚酯樹脂,可例示各種聚酯樹脂及該些的改質物。作為此種聚酯樹脂的具體例,可列舉:對苯二甲酸、鄰苯二甲酸、間苯二甲酸、偏苯三甲酸、均苯四甲酸、2-磺基間苯二甲酸、5-磺基間苯二甲酸、己二酸、癸二酸、琥珀酸、十二烷二酸等多元羧酸成分與乙二醇、丙二醇、1,4-丁二醇、1,6-己二醇、新戊二醇、環己烷二甲醇、雙酚等二醇成分的反應物,亦包含基於丙烯酸樹脂、環氧樹脂等的改質物。Examples of the polyester resin used in the undercoat layer 104 include various polyester resins and modified products thereof. Specific examples of such polyester resins include terephthalic acid, phthalic acid, isophthalic acid, trimellitic acid, pyromellitic acid, 2-sulfoisophthalic acid, and 5-sulfoisophthalic acid. Polyisophthalic acid, adipic acid, sebacic acid, succinic acid, dodecanedioic acid and other polycarboxylic acid components are combined with ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, The reactants of diol components such as neopentyl glycol, cyclohexanedimethanol, and bisphenol also include modified products based on acrylic resin, epoxy resin, etc.
於底塗層104使用噁唑啉樹脂的情況下,底塗層104較佳為包含噁唑啉系樹脂組成物,所述噁唑啉系樹脂組成物包含含噁唑啉基的水性聚合物、水性(甲基)丙烯酸樹脂及水性聚酯樹脂。 噁唑啉系樹脂組成物例如包含噁唑啉基含量為6.0 mmol/g~9.0 mmol/g的含噁唑啉基的水性聚合物、羧基含量為0.5 mmol/g~3.5 mmol/g的水性(甲基)丙烯酸樹脂及羧基含量為0.5 mmol/g~2.0 mmol/g的水性聚酯樹脂。 另外,關於噁唑啉系樹脂組成物,將含噁唑啉基的水性聚合物、水性(甲基)丙烯酸樹脂及水性聚酯樹脂的合計量設為100質量%,例如含有10質量%~55質量%的含噁唑啉基的水性聚合物、10質量%~80質量%的水性(甲基)丙烯酸樹脂、10質量%~80質量%的水性聚酯樹脂。 另外,於噁唑啉系樹脂組成物中,例如,噁唑啉基的莫耳數與羧基的莫耳數的比率〔由噁唑啉基的莫耳數(x mmol)與羧基的莫耳數(y mmol)的比(x/y)×100[mol%]所表示〕為150 mol%~420 mol%。 作為底塗層104中使用的噁唑啉樹脂,更具體而言,可使用國際公開第2016/186074號中記載者。 When the base coat 104 uses an oxazoline resin, the base coat 104 preferably includes an oxazoline-based resin composition, and the oxazoline-based resin composition includes an oxazoline group-containing aqueous polymer, Water-based (meth)acrylic resin and water-based polyester resin. The oxazoline-based resin composition includes, for example, an oxazoline group-containing aqueous polymer with an oxazoline group content of 6.0 mmol/g to 9.0 mmol/g, and an aqueous polymer with a carboxyl group content of 0.5 mmol/g to 3.5 mmol/g. Meth)acrylic resin and water-based polyester resin with carboxyl content between 0.5 mmol/g and 2.0 mmol/g. In addition, regarding the oxazoline-based resin composition, the total amount of the oxazoline group-containing aqueous polymer, the aqueous (meth)acrylic resin, and the aqueous polyester resin is 100% by mass. For example, the oxazoline-based resin composition contains 10% by mass to 55% by mass. Mass % of the oxazoline group-containing water-based polymer, 10 mass % to 80 mass % of the water-based (meth)acrylic resin, and 10 mass % to 80 mass % of the water-based polyester resin. In addition, in the oxazoline-based resin composition, for example, the ratio of the molar number of the oxazoline group to the molar number of the carboxyl group [from the molar number of the oxazoline group (x mmol) and the molar number of the carboxyl group The ratio (x/y) × 100 [mol%] of (y mmol) is 150 mol% ~ 420 mol%. As the oxazoline resin used in the undercoat layer 104, more specifically, those described in International Publication No. 2016/186074 can be used.
就獲得良好的接著性的觀點而言,底塗層104的厚度較佳為0.001 μm以上,更佳為0.005 μm以上,進而佳為0.01 μm以上,進而更佳為0.05 μm以上,進一步尤佳為0.1 μm以上,進一步更佳為0.2 μm以上。 另外,就經濟性的觀點而言,底塗層104的厚度較佳為1.0 μm以下,更佳為0.6 μm以下,進而佳為0.5 μm以下,進而更佳為0.1 μm,進一步尤佳為0.05 μm以下。 From the viewpoint of obtaining good adhesion, the thickness of the primer layer 104 is preferably 0.001 μm or more, more preferably 0.005 μm or more, still more preferably 0.01 μm or more, still more preferably 0.05 μm or more, and still more preferably 0.05 μm or more. 0.1 μm or more, more preferably 0.2 μm or more. In addition, from the viewpoint of economy, the thickness of the undercoat layer 104 is preferably 1.0 μm or less, more preferably 0.6 μm or less, still more preferably 0.5 μm or less, still more preferably 0.1 μm, and even more preferably 0.05 μm. the following.
(無機物層) 構成無機物層102的無機物例如可列舉:可形成具有阻擋性的薄膜的金屬、金屬氧化物、金屬氮化物、金屬氟化物、金屬氮氧化物等。 作為構成無機物層102的無機物,例如可列舉選自鈹、鎂、鈣、鍶、鋇等週期表2A族元素;鈦、鋯、釕、鉿、鉭等週期表過渡元素;鋅等週期表2B族元素;鋁、鎵、銦、鉈等週期表3A族元素;矽、鍺、錫等週期表4A族元素;硒、碲等週期表6A族元素等的單質、氧化物、氮化物、氟化物、或氮氧化物等中的一種或兩種以上(週期表的族名由舊CAS式表示)。 (Inorganic layer) Examples of the inorganic substances constituting the inorganic substance layer 102 include metals, metal oxides, metal nitrides, metal fluorides, and metal oxynitrides that can form a barrier thin film. Examples of the inorganic substance constituting the inorganic substance layer 102 include elements selected from Group 2A of the Periodic Table such as beryllium, magnesium, calcium, strontium, and barium; transition elements of the Periodic Table such as titanium, zirconium, ruthenium, hafnium, and tantalum; Group 2B of the Periodic Table such as zinc; Elements; aluminum, gallium, indium, thallium and other periodic table group 3A elements; periodic table group 4A elements such as silicon, germanium and tin; periodic table group 6A elements such as selenium, tellurium and other elements, oxides, nitrides, fluorides, etc. Or one or more of nitrogen oxides, etc. (the group name of the periodic table is represented by the old CAS formula).
進而,於所述無機物中,就阻擋性、成本等的平衡優異而言,較佳為選自由氧化矽、氧化鋁及鋁所組成的群組中的一種或兩種以上的無機物,更佳為氧化鋁。 再者,於氧化矽中,除了二氧化矽以外,亦可含有一氧化矽、亞氧化矽。 Furthermore, among the inorganic substances, in terms of excellent balance between barrier properties, cost, etc., one or two or more inorganic substances selected from the group consisting of silica, alumina, and aluminum are preferred, and more preferred are aluminum oxide. Furthermore, the silicon oxide may also contain silicon monoxide and silicon suboxide in addition to silicon dioxide.
無機物層102由所述無機物形成。就阻擋性、成本等的平衡優異而言,無機物層102較佳為包含含有氧化鋁的氧化鋁層。 無機物層102可包含單層的無機物層,亦可包含多個無機物層。另外,於無機物層102包含多個無機物層的情況下,可包含同一種類的無機物層,亦可包含不同種類的無機物層。 The inorganic substance layer 102 is formed of the above-mentioned inorganic substance. In terms of excellent balance between barrier properties, cost, etc., the inorganic layer 102 preferably includes an aluminum oxide layer containing aluminum oxide. The inorganic layer 102 may include a single inorganic layer or multiple inorganic layers. In addition, when the inorganic layer 102 includes a plurality of inorganic layers, it may include the same type of inorganic layer or may include different types of inorganic layers.
就阻擋性提高及操作性提高的平衡的觀點而言,無機物層102的厚度通常為1 nm以上,較佳為4 nm以上,另外,通常為1000 nm以下,較佳為500 nm以下。 此處,無機物層102的厚度例如可藉由穿透式電子顯微鏡或掃描式電子顯微鏡得到的觀察圖像而求出。 From the viewpoint of a balance between improved barrier properties and improved operability, the thickness of the inorganic layer 102 is usually 1 nm or more, preferably 4 nm or more, and is usually 1000 nm or less, preferably 500 nm or less. Here, the thickness of the inorganic layer 102 can be determined from an observation image obtained by a transmission electron microscope or a scanning electron microscope, for example.
無機物層102的形成方法並無限定,例如可藉由真空蒸鍍法、離子鍍法、濺鍍法、化學氣相沈積法、物理氣相蒸鍍法、化學氣相蒸鍍法(CVD法)、電漿CVD法、溶膠-凝膠法等而於基材層101的單面或兩面形成無機物層102。其中,理想的是濺鍍法、離子鍍法、化學氣相蒸鍍法(CVD)、物理氣相蒸鍍法(PVD)、電漿CVD法等於減壓下的製膜。藉此,預計藉由氮化矽或氮氧化矽等含有矽的化學活性的分子種迅速地反應,而改良無機物層102的表面的平滑性,可使孔變少。為了迅速地進行該些結合反應,理想的是該無機原子或化合物為化學活性的分子種或原子種。 另外,就提高氣體阻擋性積層體的阻擋性與生產性的平衡的觀點而言,無機物層102較佳為蒸鍍膜。 The method of forming the inorganic layer 102 is not limited, and may be, for example, vacuum evaporation, ion plating, sputtering, chemical vapor deposition, physical vapor deposition, or chemical vapor deposition (CVD). , plasma CVD method, sol-gel method, etc. to form the inorganic layer 102 on one or both sides of the base material layer 101 . Among them, sputtering, ion plating, chemical vapor deposition (CVD), physical vapor deposition (PVD), plasma CVD, or film formation under reduced pressure are ideal. Therefore, it is expected that chemically active molecular species containing silicon, such as silicon nitride or silicon oxynitride, react rapidly to improve the smoothness of the surface of the inorganic layer 102 and reduce the number of holes. In order to rapidly carry out these binding reactions, it is ideal that the inorganic atom or compound is a chemically active molecular species or atomic species. In addition, from the viewpoint of improving the balance between the barrier properties and productivity of the gas barrier laminate, the inorganic layer 102 is preferably a vapor-deposited film.
就提高氣體阻擋性積層體的阻擋性與生產性的平衡的觀點而言,無機物層102是設置在基材層101上、或者於在基材層101與無機物層102之間具有中介層時設置在所述中介層上的蒸鍍膜,且包含選自由氧化矽、氧化鋁及鋁所組成的群組中的一種或兩種以上的無機物。From the viewpoint of improving the balance between the barrier properties and productivity of the gas barrier laminate, the inorganic layer 102 is provided on the base material layer 101 or when an intermediary layer is provided between the base material layer 101 and the inorganic layer 102 The evaporated film on the interposer layer includes one or more inorganic substances selected from the group consisting of silicon oxide, aluminum oxide and aluminum.
(密封劑層) 就蒸煮食品的製造等實用上的觀點而言,較佳為於氣體阻擋性層103的與無機物層102相反的面側設置有密封劑層。 密封劑層與氣體阻擋性層103接觸,或者氣體阻擋性層103與密封劑層藉由接著劑層接著。關於接著劑層,之後進行說明。 (Sealant layer) From a practical viewpoint such as manufacturing of retort food, it is preferable to provide a sealant layer on the opposite surface side of the gas barrier layer 103 from the inorganic layer 102 . The sealant layer is in contact with the gas barrier layer 103, or the gas barrier layer 103 and the sealant layer are connected through an adhesive layer. The adhesive layer will be described later.
密封劑層例如可列舉:由包含選自乙烯、丙烯、丁烯-1、己烯-1、4-甲基-1-戊烯、辛烯-1等α-烯烴的均聚物或共聚物、高密度聚乙烯、中密度聚乙烯、直鏈狀低密度聚乙烯、低密度聚乙烯等聚乙烯、均聚聚丙烯(homo polypropylene)、丙烯與碳數為2或4以上且10以下的α-烯烴的無規共聚物、低結晶性或非晶性的乙烯-丙烯無規共聚物等中的一種或兩種以上的聚烯烴的樹脂組成物形成的層;由包含乙烯-乙酸乙烯酯共聚物(EVA)的樹脂組成物形成的層;由包含EVA及聚烯烴的樹脂組成物形成的層等。Examples of the sealant layer include homopolymers or copolymers containing α-olefins such as ethylene, propylene, butene-1, hexene-1, 4-methyl-1-pentene, octene-1, etc. , high-density polyethylene, medium-density polyethylene, linear low-density polyethylene, low-density polyethylene and other polyethylenes, homopolypropylene (homo polypropylene), propylene and α with a carbon number of 2 or more than 4 and less than 10 - A layer formed of a resin composition of one or more polyolefins such as olefin random copolymers, low crystallinity or amorphous ethylene-propylene random copolymers; composed of ethylene-vinyl acetate copolymers A layer formed of a resin composition of EVA; a layer formed of a resin composition containing EVA and polyolefin, etc.
該些中,就熱封性的觀點而言,較佳為包含選自低密度聚乙烯、直鏈狀低密度聚乙烯、均聚聚丙烯、以及丙烯與碳數2或4~10的α-烯烴的無規共聚物中的一種或兩種以上的熱塑性樹脂。Among these, from the viewpoint of heat-sealability, it is preferable to include a compound selected from the group consisting of low-density polyethylene, linear low-density polyethylene, homopolypropylene, and propylene and α-C2 or 4-10 carbon atoms. One or more thermoplastic resins of random copolymers of olefins.
另外,作為熱塑性樹脂的形態,亦較佳為未拉伸或拉伸的低密度聚乙烯、直鏈狀低密度聚乙烯(拉伸線性低密度聚乙烯(Linear Low Density Polyethylene,LLDPE))、丙烯與碳數為2或4以上且10以下的α-烯烴的無規共聚物等。 就於蒸煮食品的製造中應用的觀點而言,密封劑層較佳為包含未拉伸的聚丙烯系聚合物。作為聚丙烯系聚合物,可列舉丙烯的均聚物、丙烯與碳數為2或4以上且10以下的α-烯烴的無規共聚物等。 In addition, as the form of the thermoplastic resin, unstretched or stretched low-density polyethylene, linear low-density polyethylene (stretched linear low-density polyethylene (LLDPE)), propylene Random copolymers with α-olefins having a carbon number of 2 or 4 or more and 10 or less, etc. From the viewpoint of application in the manufacture of retort foods, the sealant layer preferably contains an unstretched polypropylene-based polymer. Examples of the polypropylene-based polymer include homopolymers of propylene, random copolymers of propylene and α-olefin having a carbon number of 2 or 4 or more and 10 or less, and the like.
密封劑層亦可包含熱塑性樹脂以外的成分。例如,亦可包含防霧劑或抗黏連劑等添加劑、胺基甲酸酯系樹脂、脲系樹脂、三聚氰胺系樹脂、環氧系樹脂、醇酸系樹脂等接著性的樹脂。The sealant layer may contain components other than thermoplastic resin. For example, additives such as anti-fog agents or anti-blocking agents, and adhesive resins such as urethane resins, urea resins, melamine resins, epoxy resins, and alkyd resins may also be included.
另外,密封劑層亦可作為接著劑設置,可藉由使包含丙烯酸系樹脂、胺基甲酸酯系樹脂、脲系樹脂、三聚氰胺系樹脂、環氧系樹脂、醇酸系樹脂等接著性樹脂的接著劑乾燥、硬化來設置。In addition, the sealant layer can also be provided as an adhesive by using an adhesive resin such as an acrylic resin, a urethane resin, a urea resin, a melamine resin, an epoxy resin, or an alkyd resin. The adhesive is dried and hardened to set.
密封劑層的厚度較佳為10 μm~100 μm,更佳為15 μm~80 μm,進而佳為20 μm~60 μm。藉由設為該厚度,可獲得充分的熱封性,且使膜的處理性良好。The thickness of the sealant layer is preferably 10 μm to 100 μm, more preferably 15 μm to 80 μm, further preferably 20 μm to 60 μm. By setting this thickness, sufficient heat sealability can be obtained, and the handleability of the film can be improved.
(接著劑層) 於氣體阻擋性積層體中亦可進一步設置有接著劑層。具體而言,氣體阻擋性層103與所述密封劑層亦可藉由接著劑層接著。 接著劑層只要包含公知的接著劑即可。作為接著劑,可列舉由有機鈦樹脂、聚乙烯亞胺樹脂、胺基甲酸酯樹脂、環氧樹脂、丙烯酸樹脂、聚酯樹脂、含有噁唑啉基的樹脂、改質矽酮樹脂及鈦酸烷基酯、聚酯聚丁二烯等組成的層壓接著劑、或一液型、二液型的多元醇與多元異氰酸酯、水系胺基甲酸酯、離子聚合物等。或者,亦可使用以丙烯酸樹脂、乙酸乙烯酯樹脂、胺基甲酸酯樹脂、聚酯樹脂等為主原料的水性接著劑。 另外,亦可根據氣體阻擋性積層體的用途,於接著劑中添加硬化劑、矽烷偶合劑等其他添加物。於氣體阻擋性積層體的用途為在蒸煮等熱水處理中使用的情況下,就耐熱性或耐水性的觀點而言,較佳為以聚胺基甲酸酯接著劑為代表的乾式層壓用接著劑,更佳為溶劑系的二液硬化型的聚胺基甲酸酯接著劑。 (adhesive layer) The gas barrier laminated body may further be provided with an adhesive layer. Specifically, the gas barrier layer 103 and the sealant layer may also be connected through an adhesive layer. The adhesive layer only needs to contain a known adhesive. Examples of adhesives include organic titanium resin, polyethyleneimine resin, urethane resin, epoxy resin, acrylic resin, polyester resin, oxazoline group-containing resin, modified silicone resin, and titanium resin. Laminated adhesives composed of alkyl acid esters, polyester polybutadiene, etc., or one-liquid or two-liquid polyols and polyisocyanates, water-based urethanes, ionic polymers, etc. Alternatively, a water-based adhesive whose main raw material is acrylic resin, vinyl acetate resin, urethane resin, polyester resin, etc. can also be used. In addition, other additives such as a hardener and a silane coupling agent may be added to the adhesive according to the use of the gas barrier laminate. When the gas barrier laminate is used for hot water treatment such as steaming, dry lamination represented by a polyurethane adhesive is preferred from the viewpoint of heat resistance or water resistance. Use an adhesive, preferably a solvent-based two-liquid hardening type polyurethane adhesive.
(含聚醯胺的層) 亦可在氣體阻擋性層103與密封劑層之間設置含聚醯胺的層(例如,尼龍層),亦可不設置。藉由設置含聚醯胺的層,可提高膜本身的強度。例如,於包裝體落下時不易破袋。 含聚醯胺的層例如可包含尼龍-6、尼龍-66、聚己二醯間苯二甲胺等中的一種或兩種以上。 於設置含聚醯胺的層的情況下,其厚度較佳為8 μm~100 μm,更佳為10 μm~50 μm,特佳為13 μm~30 μm。 (Polyamide-containing layer) A polyamide-containing layer (for example, a nylon layer) may or may not be provided between the gas barrier layer 103 and the sealant layer. By providing a polyamide-containing layer, the strength of the film itself can be improved. For example, the bag is not easily broken when the packaging body falls. The polyamide-containing layer may include, for example, one or more of nylon-6, nylon-66, poly(adipamide-m-xylylenediamine), and the like. When a polyamide-containing layer is provided, its thickness is preferably 8 μm to 100 μm, more preferably 10 μm to 50 μm, and particularly preferably 13 μm to 30 μm.
(氣體阻擋性積層體的製造方法) 於第二實施方式中,氣體阻擋性積層體100的製造方法可包括:準備基材層101的步驟;於基材層101上形成無機物層102的步驟;以及於形成有無機物層102的基材層101的上部形成氣體阻擋性層103的步驟。 亦可於形成無機物層102的步驟之後且形成氣體阻擋性層103的步驟之前更包括在無機物層102上形成底塗層104的步驟。 (Method for manufacturing gas barrier laminate) In the second embodiment, the manufacturing method of the gas barrier laminate 100 may include: preparing the base material layer 101; forming the inorganic layer 102 on the base layer 101; and forming the inorganic layer 102 on the base material. A step of forming a gas barrier layer 103 on top of layer 101 . The step of forming the undercoat layer 104 on the inorganic layer 102 may also be included after the step of forming the inorganic layer 102 and before the step of forming the gas barrier layer 103 .
關於在基材層101上形成無機物層102的步驟,作為無機物層102的形成方法為如上所述。Regarding the step of forming the inorganic layer 102 on the base material layer 101, the formation method of the inorganic layer 102 is as described above.
形成氣體阻擋性層103的步驟例如包括:將硬化前的混合物作為氣體阻擋用塗材塗敷於無機物層102,繼而,藉由進行乾燥而獲得塗敷層的步驟;以及對所述塗敷層進行加熱,使多羧酸中所含的羧基與多胺化合物中所含的胺基進行脫水縮合反應,藉此形成具有醯胺鍵的氣體阻擋性層103的步驟。The step of forming the gas barrier layer 103 includes, for example, applying the uncured mixture as a gas barrier coating material to the inorganic layer 102 and then drying it to obtain a coating layer; and applying the coating layer to the gas barrier layer 103 . A step of heating to cause a dehydration condensation reaction between the carboxyl groups contained in the polycarboxylic acid and the amine groups contained in the polyamine compound, thereby forming the gas barrier layer 103 having a amide bond.
將氣體阻擋用塗材塗佈於無機物層102上的方法並無限定,可使用公知的方法。例如可列舉使用邁爾棒塗佈機、氣刀塗佈機、直接凹版塗佈機、間接凹版、電弧凹版塗佈機、反向凹版及噴射管嘴方式等凹版塗佈機、頂部進料反向塗佈機、底部進料反向塗佈機及管嘴進料反向塗佈機等反向輥塗機、五輥塗佈機、模唇塗佈機、棒式塗佈機、反向棒塗佈機、模具塗佈機等公知的塗敷機進行塗敷的方法。The method of applying the gas barrier coating material to the inorganic layer 102 is not limited, and a known method can be used. For example, gravure coaters using Meyer rod coaters, air knife coaters, direct gravure coaters, indirect gravure, arc gravure coaters, reverse gravure and spray nozzle methods, top feed reverse gravure coaters, etc. Reverse roll coaters such as reverse roll coaters, bottom feed reverse coaters and nozzle feed reverse coaters, five-roller coaters, die lip coaters, rod coaters, reverse The coating method is performed using a known coater such as a bar coater or a die coater.
就使所獲得的氣體阻擋性積層體的阻擋性能更良好的觀點而言,塗敷量(濕厚度)較佳為0.05 μm,更佳為1 μm以上。 另外,就抑制所獲得的氣體阻擋性積層體捲曲的觀點以及更有效果地促進多羧酸中所含的-COO-基與多胺化合物中所含的胺基的脫水縮合反應的觀點而言,濕厚度較佳為300 μm以下,更佳為200 μm以下,進而佳為100 μm以下。 From the viewpoint of improving the barrier performance of the gas barrier laminate obtained, the coating amount (wet thickness) is preferably 0.05 μm, more preferably 1 μm or more. In addition, from the viewpoint of suppressing curling of the obtained gas barrier laminate and more effectively promoting the dehydration condensation reaction of the -COO- group contained in the polycarboxylic acid and the amine group contained in the polyamine compound , the wet thickness is preferably 300 μm or less, more preferably 200 μm or less, further preferably 100 μm or less.
關於乾燥及熱處理,可於乾燥後進行熱處理,亦可同時進行乾燥與熱處理。 進行乾燥、加熱處理的方法只要是可獲得本發明的效果者,則並無限定,只要是可使氣體阻擋用塗材硬化者、可加熱硬化的氣體阻擋用塗材的方法即可。例如可列舉烘箱、乾燥裝置等利用對流傳熱的裝置,加熱輥等利用傳導傳熱的裝置,紅外線、遠紅外線、近紅外線的加熱器等利用使用電磁波的輻射傳熱的裝置,微波等利用內部發熱的裝置。作為乾燥、加熱處理中使用的裝置,就製造效率的觀點而言,較佳為可進行乾燥與加熱處理兩者的裝置。其中,具體而言,就可在乾燥、加熱、退火等各種用途中利用的觀點而言,較佳為使用熱風烘箱,另外,就對膜的熱傳導效率優異的觀點而言,較佳為使用加熱輥。另外,亦可適宜組合乾燥、加熱處理中使用的方法。具體而言,亦可併用熱風烘箱與加熱輥,例如若在熱風烘箱中乾燥氣體阻擋用塗材後,利用加熱輥進行加熱處理,則加熱處理步驟的時間變短,就製造效率的觀點而言較佳。另外,較佳為僅藉由熱風烘箱進行乾燥與加熱處理。 Regarding drying and heat treatment, heat treatment can be performed after drying, or drying and heat treatment can be performed at the same time. The method of drying and heat treatment is not limited as long as the effects of the present invention can be obtained, as long as the gas barrier coating material can be hardened or the gas barrier coating material can be heat-cured. Examples include devices that utilize convection heat transfer such as ovens and dryers, devices that utilize conductive heat transfer such as heating rollers, devices that utilize radiation heat transfer using electromagnetic waves such as infrared, far-infrared, and near-infrared heaters, and devices that utilize internal heat transfer such as microwaves. Heating device. As an apparatus used for drying and heat treatment, from the viewpoint of manufacturing efficiency, an apparatus capable of performing both drying and heat treatment is preferred. Among them, specifically, it is preferable to use a hot air oven from the viewpoint of being usable in various applications such as drying, heating, and annealing. In addition, from the viewpoint of excellent heat conduction efficiency to the film, it is preferable to use heating. Roller. In addition, methods used for drying and heat treatment may be appropriately combined. Specifically, a hot air oven and a heating roller may be used together. For example, if the gas barrier coating material is dried in a hot air oven and then heated using a heating roller, the time of the heating treatment step will be shortened, and from the viewpoint of manufacturing efficiency Better. In addition, it is preferable to perform drying and heating processing only by a hot air oven.
關於加熱處理條件,例如,加熱處理溫度為80℃~250℃、加熱處理時間為1秒~10分鐘,較佳為加熱處理溫度為120℃~240℃、加熱處理時間為1秒~1分鐘,更佳為加熱處理溫度為170℃~230℃、加熱處理時間為1秒~30秒,進而佳為加熱處理溫度為200℃~220℃、加熱處理時間為1秒~10秒。進而如上所述,藉由併用加熱輥,能夠在短時間內進行加熱處理。 再者,就有效果地促進交聯結構的形成(例如,多羧酸中所含的-COO-基與多胺化合物中所含的胺基的醯胺鍵形成)的觀點而言,重要的是加熱處理溫度及加熱處理時間根據氣體阻擋用塗材的濕厚度進行調整。藉由選擇適當的加熱處理溫度及加熱處理時間而形成適當的交聯結構。 Regarding the heat treatment conditions, for example, the heat treatment temperature is 80°C to 250°C and the heat treatment time is 1 second to 10 minutes. Preferably, the heat treatment temperature is 120°C to 240°C and the heat treatment time is 1 second to 1 minute. More preferably, the heat treatment temperature is 170°C to 230°C and the heat treatment time is 1 second to 30 seconds. Still more preferably, the heat treatment temperature is 200°C to 220°C and the heat treatment time is 1 second to 10 seconds. Furthermore, as mentioned above, by using a heating roller together, heat processing can be performed in a short time. Furthermore, it is important from the viewpoint of effectively promoting the formation of a cross-linked structure (for example, the formation of a amide bond between a -COO- group contained in a polycarboxylic acid and an amine group contained in a polyamine compound). The heat treatment temperature and heat treatment time are adjusted according to the wet thickness of the gas barrier coating material. An appropriate cross-linked structure is formed by selecting an appropriate heat treatment temperature and heat treatment time.
藉由對氣體阻擋用塗材進行乾燥、熱處理,多羧酸的羧基與多胺或多價金屬化合物反應,進行共價鍵及/或離子交聯,藉此形成即便於蒸煮處理後亦具有良好的氣體阻擋性的氣體阻擋性層103。By drying and heat-treating the gas barrier coating material, the carboxyl groups of the polycarboxylic acid react with the polyamine or polyvalent metal compound to form covalent bonds and/or ionic cross-linking, thereby forming a coating with good properties even after retort treatment. gas barrier layer 103.
(層結構的具體例) 以下示出於第二實施方式中包含氣體阻擋性積層體而構成的積層結構的具體例。 (積層結構例1)基材層101(PET基材)/無機物層102(氧化鋁蒸鍍層)/氣體阻擋性層103/接著劑層/聚烯烴層 (積層結構例2)基材層101(PET基材)/底塗層104/無機物層102(氧化鋁蒸鍍層)/氣體阻擋性層103/接著劑層/聚烯烴層 (積層結構例3)基材層101(PET基材)/無機物層102(氧化鋁蒸鍍層)/氣體阻擋性層103/接著劑層/聚醯胺層/接著劑層/聚烯烴層 (積層結構例4)基材層101(PET基材)/底塗層104/無機物層102(氧化鋁蒸鍍層)/氣體阻擋性層103/接著劑層/聚醯胺層/接著劑層/聚烯烴層 此處,藉由於積層結構中包含含有聚乙烯、聚丙烯、聚(4-甲基-1-戊烯)、聚(1-丁烯)等聚烯烴的聚烯烴層,於氣體阻擋性積層體中,可使耐針孔性、耐破裂性及耐熱性等良好,並且更進一步抑制高濕度下的氣體阻擋性能或蒸煮處理後的氣體阻擋性能的降低。 (Specific example of layer structure) Specific examples of the laminated structure including the gas barrier laminated body in the second embodiment are shown below. (Laminated structure example 1) Base material layer 101 (PET base material)/inorganic layer 102 (aluminum oxide vapor deposition layer)/gas barrier layer 103/adhesive layer/polyolefin layer (Laminated structure example 2) Base material layer 101 (PET base material)/undercoat layer 104/inorganic layer 102 (aluminum oxide vapor deposition layer)/gas barrier layer 103/adhesive layer/polyolefin layer (Laminated structure example 3) Base material layer 101 (PET base material)/inorganic layer 102 (aluminum oxide vapor deposition layer)/gas barrier layer 103/adhesive layer/polyamide layer/adhesive layer/polyolefin layer (Laminated structure example 4) Base material layer 101 (PET base material)/undercoat layer 104/inorganic layer 102 (aluminum oxide vapor deposition layer)/gas barrier layer 103/adhesive layer/polyamide layer/adhesive layer/ polyolefin layer Here, since the laminated structure includes a polyolefin layer containing polyolefins such as polyethylene, polypropylene, poly(4-methyl-1-pentene), and poly(1-butene), the gas barrier laminated body Medium can improve pinhole resistance, crack resistance, heat resistance, etc., and further suppress the decrease in gas barrier performance under high humidity or gas barrier performance after retort processing.
(用途) 第二實施方式的氣體阻擋性積層體的氣體阻擋性能優異,例如以包裝材料、其中要求高氣體阻擋性的內容物的食品包裝材料為代表,可適宜用作醫療用途、工業用途、日常雜貨用途等各種包裝材料。第二實施方式的氣體阻擋性積層體較佳為特別是應用於食品包裝用途,更佳為應用於蒸煮食品的製造。 (use) The gas barrier laminate of the second embodiment has excellent gas barrier properties and can be suitably used for medical applications, industrial applications, and daily miscellaneous goods, as represented by packaging materials and food packaging materials for contents requiring high gas barrier properties. and other various packaging materials. The gas barrier laminated body of the second embodiment is preferably used particularly for food packaging purposes, and more preferably is used for the production of retort food.
另外,第二實施方式的氣體阻擋性積層體亦可適宜用作:要求高阻擋性能的真空隔熱用膜;用以密封電致發光元件、太陽電池等的密封用膜等。In addition, the gas barrier laminate of the second embodiment can also be suitably used as a vacuum heat-insulating film requiring high barrier performance; a sealing film for sealing electroluminescent elements, solar cells, etc.;
(包含氣體阻擋性積層體的包裝用袋、藉由氣體阻擋性積層體包裝的食品) 可由所述氣體阻擋性積層體構成包裝用袋。該包裝用袋可較佳地用於例如蒸煮食品的製造中。即,可製造藉由氣體阻擋性積層體包裝的食品(蒸煮食品)。 於構成包裝用袋的氣體阻擋性積層體中,通常,有基材層的一側成為外表面側,有氣體阻擋性層的一側成為內表面側。於有密封劑層的情況下,有密封劑層的一側成為內表面側。 (Packaging bags containing gas barrier laminated materials, food packaged with gas barrier laminated materials) A packaging bag can be formed from the gas barrier laminate. This packaging bag can be preferably used in the manufacture of retort food, for example. That is, food (retort food) packaged with the gas barrier laminated body can be produced. In the gas barrier laminate constituting the packaging bag, generally, the side with the base material layer becomes the outer surface side, and the side with the gas barrier layer becomes the inner surface side. When there is a sealant layer, the side with the sealant layer becomes the inner surface side.
蒸煮食品的製造方法可採用該領域中的通常的方法。藉由利用100℃以上的加壓熱水/蒸汽對用包裝用袋進行熱封的食品進行濕熱殺菌(例如於130℃下30分鐘左右),可製造能夠長期常溫保存的食品。The method of manufacturing the retort food can adopt the usual method in this field. By using pressurized hot water/steam above 100°C to sterilize food heat-sealed in packaging bags (for example, at 130°C for about 30 minutes), food that can be stored at room temperature for a long time can be produced.
<第三實施方式> 第三實施方式的氣體阻擋性積層體是如下氣體阻擋性積層體, 包括:基材層;氣體阻擋性層,設置於所述基材層的至少一個面;以及無機物層,設置於所述基材層與所述氣體阻擋性層之間, 藉由對所述氣體阻擋性層進行X射線光電子分光分析而測定的Zn的組成比為1原子%~10原子%, 於將藉由對所述氣體阻擋性層進行飛行時間型二次離子質量分析而測定的 64ZnPO 4H -的質量峰強度設為I( 64ZnPO 4H -),將C 3H 3O 2 -的質量峰強度設為I(C 3H 3O 2 -)時, I( 64ZnPO 4H -)/I(C 3H 3O 2 -) 的值為7×10 -4以上且5×10 -2以下。 <Third Embodiment> The gas barrier laminate of the third embodiment is a gas barrier laminate including: a base material layer; a gas barrier layer provided on at least one surface of the base material layer; and an inorganic layer , is provided between the base material layer and the gas barrier layer, and the composition ratio of Zn measured by X-ray photoelectron spectrometry of the gas barrier layer is 1 atomic % to 10 atomic %, at Let the mass peak intensity of 64 ZnPO 4 H - measured by time-of-flight secondary ion mass analysis of the gas barrier layer be I ( 64 ZnPO 4 H - ), and C 3 H 3 O 2 - When the mass peak intensity of is set to I (C 3 H 3 O 2 - ), the value of I ( 64 ZnPO 4 H - )/I (C 3 H 3 O 2 - ) is 7 × 10 -4 or more and 5 × 10 -2 or less.
藉由進行X射線光電子分光分析測定的Zn的組成比為1原子%~10原子%的情況意味著於氣體阻擋性層中以一定的濃度包含Zn。 另外,藉由質量分析自氣體阻擋性層中檢測出C 3H 3O 2 -的情況意味著氣體阻擋性層包含聚丙烯酸或其衍生物/類似化合物(聚丙烯酸等)。而且,認為I(C 3H 3O 2 -)的值是與氣體阻擋性層中所含的多羧酸的羧基的量(濃度)相關的值。 由於氣體阻擋性層以一定的濃度包含Zn,另外,於氣體阻擋性層中存在具有羧基的多羧酸,因此認為氣體阻擋性層中的多羧酸與Zn形成交聯體,形成有Zn交聯體的氣體阻擋性層和設置於基材層與氣體阻擋性層之間的無機物層一起承擔氣體阻擋性積層體的氣體阻擋性。 When the composition ratio of Zn measured by X-ray photoelectron spectroscopy is 1 atomic % to 10 atomic %, it means that the gas barrier layer contains Zn at a certain concentration. In addition, the detection of C 3 H 3 O 2 - from the gas barrier layer by mass analysis means that the gas barrier layer contains polyacrylic acid or its derivatives/similar compounds (polyacrylic acid, etc.). Furthermore, the value of I(C 3 H 3 O 2 - ) is considered to be a value related to the amount (concentration) of carboxyl groups of the polycarboxylic acid contained in the gas barrier layer. Since the gas barrier layer contains Zn at a certain concentration, and polycarboxylic acid having a carboxyl group exists in the gas barrier layer, it is considered that the polycarboxylic acid in the gas barrier layer forms a cross-linked body with Zn, forming a Zn cross-linked body. The combined gas barrier layer and the inorganic layer provided between the base material layer and the gas barrier layer together bear the gas barrier properties of the gas barrier laminate.
進而,藉由質量分析自氣體阻擋性層中檢測出 64ZnPO 4H -的情況意味著於氣體阻擋性層中存在以磷酸為代表的磷化合物與Zn的鍵,認為I( 64ZnPO 4H -)的值是和磷化合物與Zn的鍵的量(濃度)相關的值。而且,據此推測,Zn不僅與多羧酸的羧基鍵結,而且經由多價的磷化合物而一部分的Zn彼此進行化學鍵結。 另外,認為I( 64ZnPO 4H -)/I(C 3H 3O 2 -)的值是和磷酸與Zn的鍵相對於多羧酸的羧基的量(濃度)相關的值。 且說,磷酸鋅作為相對於水不溶的化合物而廣為人知,磷化合物與Zn的鍵是作為蒸煮處理後的阻擋性降低的原因之一的、難以被水切斷的鍵。因此,認為氣體阻擋性層中的磷化合物與Zn的鍵的存在抑制由於在蒸煮處理等中氣體阻擋性層過度膨潤、收縮而對相鄰的無機物層造成損傷從而氣體阻擋性會大幅降低的情況。 即,藉由Zn的組成比為1原子%~10原子%、或I( 64ZnPO 4H -)/I(C 3H 3O 2 -)的值為7×10 -4以上且5×10 -2以下,可良好地保持蒸煮後的阻擋性能。 Furthermore, the detection of 64 ZnPO 4 H - from the gas barrier layer by mass analysis means that there is a bond between a phosphorus compound represented by phosphoric acid and Zn in the gas barrier layer, and it is considered that I ( 64 ZnPO 4 H - ) is a value related to the amount (concentration) of the bond between the phosphorus compound and Zn. Furthermore, it is presumed from this that Zn is not only bonded to the carboxyl group of the polycarboxylic acid, but also a part of Zn is chemically bonded to each other via the polyvalent phosphorus compound. In addition, the value of I( 64 ZnPO 4 H - )/I(C 3 H 3 O 2 - ) is considered to be a value related to the amount (concentration) of the bond between phosphoric acid and Zn relative to the carboxyl group of the polycarboxylic acid. Zinc phosphate is widely known as a compound insoluble in water, and the bond between the phosphorus compound and Zn is a bond that is difficult to be cut by water, which is one of the causes of the decrease in barrier properties after retort treatment. Therefore, it is considered that the presence of a bond between the phosphorus compound and Zn in the gas barrier layer suppresses the excessive swelling and shrinkage of the gas barrier layer during retort processing, etc., which causes damage to the adjacent inorganic layer and thus greatly reduces the gas barrier properties. . That is, when the composition ratio of Zn is 1 atomic % to 10 atomic %, or the value of I( 64 ZnPO 4 H - )/I (C 3 H 3 O 2 - ) is 7×10 -4 or more and 5×10 Below -2 , the barrier performance after cooking can be well maintained.
圖9中示出包含第三實施方式的氣體阻擋性積層體的兩層層壓結構阻擋膜的一例的概略剖面圖。兩層層壓結構阻擋膜1包括氣體阻擋性積層體8。該氣體阻擋性積層體8包括:基材層2;該基材層2的至少一個面的氣體阻擋性層5;以及所述基材層2與所述氣體阻擋性層5之間的無機物層4。另外,亦可於無機物層4之下、即基材層2之上包括底塗層(UC層)3。關於兩層層壓結構阻擋膜1,例如氣體阻擋性積層體8可經由接著層6而與未拉伸聚丙烯(CPP)7接著。FIG. 9 shows a schematic cross-sectional view of an example of a two-layer laminated structure barrier film including the gas barrier laminate according to the third embodiment. The two-layer laminated structure barrier film 1 includes a gas barrier laminate 8 . This gas barrier laminate 8 includes: a base material layer 2; a gas barrier layer 5 on at least one surface of the base material layer 2; and an inorganic layer between the base material layer 2 and the gas barrier layer 5. 4. In addition, the undercoat layer (UC layer) 3 may be included below the inorganic layer 4 , that is, on the base layer 2 . Regarding the two-layer laminated structure barrier film 1 , for example, the gas barrier laminate 8 can be bonded to the unstretched polypropylene (CPP) 7 via the adhesive layer 6 .
另外,圖10中示出包含第三實施方式的氣體阻擋性積層體的三層層壓結構阻擋膜的一例的概略剖面圖。於三層層壓結構阻擋膜10中,例如可於設置有第一接著層61的阻擋性積層體8的第一接著層61上接著尼龍膜9,並經由第二接著層62將該尼龍膜9與未拉伸聚丙烯7接著。In addition, FIG. 10 shows a schematic cross-sectional view of an example of a three-layer laminated structure barrier film including the gas barrier laminate of the third embodiment. In the three-layer laminated structure barrier film 10, for example, the nylon film 9 can be adhered to the first adhesive layer 61 of the barrier laminate 8 provided with the first adhesive layer 61, and the nylon film 9 can be connected through the second adhesive layer 62. 9 is followed by unstretched polypropylene 7.
第三實施方式的氣體阻擋性積層體8的氣體阻擋性層5是藉由X射線光電子分光(XPS)分析至少檢測出鋅(Zn)的層。另外,藉由飛行時間型二次離子質量分析(TOF-SIMS)分析檢測出 64ZnPO 4H -的峰、C 3H 3O 2 -的峰。 於第三實施方式的氣體阻擋性積層體的氣體阻擋性層中,藉由檢測出耐水性高的 64ZnPO 4H -的峰,而成為無論層壓結構如何蒸煮後的阻擋性能均良好的氣體阻擋性積層體。 The gas barrier layer 5 of the gas barrier laminate 8 of the third embodiment is a layer in which at least zinc (Zn) is detected by X-ray photoelectron spectroscopy (XPS) analysis. In addition, the peak of 64 ZnPO 4 H - and the peak of C 3 H 3 O 2 - were detected by time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis. In the gas barrier layer of the gas barrier laminated body of the third embodiment, by detecting the peak of 64 ZnPO 4 H - which has high water resistance, the gas barrier performance after cooking is good regardless of the laminate structure. Barrier laminate.
[XPS分析] 氣體阻擋性層中所含的Zn的組成於XPS分析中為1原子%以上,較佳為2原子%以上,更佳為3原子%以上。另外,氣體阻擋性層中所含的Zn的組成為10原子%以下,較佳為9.5原子%以下,更佳為9原子%以下。其相當於Zn的峰強度相對於碳的峰強度即Zn/C為0.01以上且0.2以下(原子/原子%)。 如此,藉由於氣體阻擋性層中存在一定量的Zn,蒸煮後的阻擋性能變得良好。 [XPS analysis] The composition of Zn contained in the gas barrier layer is 1 atomic % or more according to XPS analysis, preferably 2 atomic % or more, more preferably 3 atomic % or more. In addition, the composition of Zn contained in the gas barrier layer is 10 atomic % or less, preferably 9.5 atomic % or less, more preferably 9 atomic % or less. This corresponds to the peak intensity of Zn relative to the peak intensity of carbon, that is, Zn/C being 0.01 or more and 0.2 or less (atomic/atomic %). In this way, due to the presence of a certain amount of Zn in the gas barrier layer, the barrier performance after cooking becomes good.
以下示出能夠應用於第三實施方式的XPS分析的具體條件的一例。 分析裝置:克拉托斯(KRATOS)公司製造的艾斯諾瓦(AXIS-NOVA) X射線源:單色化Al-Kα X射線源輸出:15 kV、10 mA 分析區域:300 μm×700 μm 分析時:使用帶電校正用中和槍 於XPS分析中,可使用自氣體阻擋性層切出的1 cm×1 cm的測定用樣品。另外,為了分析氣體阻擋性層的內部,較佳為於分析前對氣體阻擋性層的表面進行濺鍍蝕刻。為了減輕對氣體阻擋性層的損害,濺鍍蝕刻理想的是使用Ar-氣體團簇離子束(Ar-GCIB)源。Ar-氣體團簇離子束蝕刻作為能夠不破壞被檢體的化學結構進行蝕刻的方法而為人所知。 An example of specific conditions applicable to the XPS analysis of the third embodiment is shown below. Analytical device: AXIS-NOVA manufactured by KRATOS X-ray source: monochromated Al-Kα X-ray source output: 15 kV, 10 mA Analysis area: 300 μm×700 μm During analysis: Use a neutralizing gun for charged calibration For XPS analysis, a measurement sample of 1 cm×1 cm cut out from the gas barrier layer can be used. In addition, in order to analyze the inside of the gas barrier layer, it is preferable to perform sputter etching on the surface of the gas barrier layer before analysis. To mitigate damage to the gas barrier layer, sputter etching ideally uses an Ar-gas cluster ion beam (Ar-GCIB) source. Ar-gas cluster ion beam etching is known as a method capable of etching without destroying the chemical structure of a subject.
於XPS分析中,藉由寬掃描,確定檢測元素,針對各個元素藉由窄掃描取得光譜。然後,根據所獲得的光譜,藉由Shirley法估算背景,自光譜中去除背景。關於所測定的各元素,取得去除了背景的光譜,根據所獲得的峰面積,使用相對感度係數法計算出檢測元素的原子組成比率(原子%)。 再者,一般的XPS分析中的原子組成比率的檢測感度為0.1原子%左右。例如,於在氣體阻擋性層中添加微量的磷化合物的情況下,XPS分析中有時無法檢測出P的含有。 In XPS analysis, a wide scan is used to determine the detection elements, and a spectrum is obtained through a narrow scan for each element. Then, based on the obtained spectrum, the background is estimated by Shirley's method and the background is removed from the spectrum. For each element to be measured, a spectrum with the background removed is obtained, and based on the obtained peak area, the atomic composition ratio (atomic %) of the detected element is calculated using the relative sensitivity coefficient method. Furthermore, the detection sensitivity of the atomic composition ratio in general XPS analysis is about 0.1 atomic %. For example, when a trace amount of a phosphorus compound is added to the gas barrier layer, the content of P cannot be detected in XPS analysis.
[TOF-SIMS分析] 於在氣體阻擋性層的TOF-SIMS分析中檢測出的片段中,將 64ZnPO 4H -的峰強度設為I( 64ZnPO 4H -),將C 3H 3O 2 -的片段的峰強度設為I(C 3H 3O 2 -)時, I( 64ZnPO 4H -)/I(C 3H 3O 2 -) 的值為7×10 -4以上,較佳為1×10 -3以上,更佳為2×10 -3以上。另外,為5×10 -2以下,較佳為3×10 -2以下,更佳為2×10 -2以下。 如此,檢測出源自耐水性高的鍵的片段即 64ZnPO 4H -的質量峰,於I( 64ZnPO 4H -)/I(C 3H 3O 2 -)的值處於所述範圍內的情況下,成為無論層壓結構如何蒸煮後的阻擋性能均良好的氣體阻擋性積層體。另外,於( 64ZnPO 4H -)/I(C 3H 3O 2 -)的值過大時,於氣體阻擋性層中磷酸鋅鍵的微粒子成長,對氣體阻擋性層帶來不均勻性,並且具有氣體阻擋性能惡化的傾向。 [TOF-SIMS Analysis] Among the fragments detected in the TOF-SIMS analysis of the gas barrier layer, the peak intensity of 64 ZnPO 4 H - was set to I ( 64 ZnPO 4 H - ), and C 3 H 3 O When the peak intensity of the 2 - fragment is I (C 3 H 3 O 2 - ), the value of I ( 64 ZnPO 4 H - )/I (C 3 H 3 O 2 - ) is 7 × 10 -4 or more, It is preferably 1×10 -3 or more, more preferably 2×10 -3 or more. In addition, it is 5×10 -2 or less, preferably 3×10 -2 or less, more preferably 2×10 -2 or less. In this way, the mass peak of 64 ZnPO 4 H - , which is a fragment derived from a highly water-resistant bond, is detected, and the value of I ( 64 ZnPO 4 H - )/I (C 3 H 3 O 2 - ) is within the above range. In the case of the gas barrier laminate, the gas barrier laminate has good barrier properties after cooking regardless of the laminate structure. In addition, when the value of ( 64 ZnPO 4 H - )/I (C 3 H 3 O 2 - ) is too large, fine particles of zinc phosphate bonds grow in the gas barrier layer, causing unevenness to the gas barrier layer. Furthermore, the gas barrier performance tends to deteriorate.
以下示出能夠應用於第三實施方式的TOF-SIMS分析的具體條件的一例。 為了分析氣體阻擋性層的內部,較佳為於TOF-SIMS分析前,利用TOF-SIMS分析裝置附帶的Ar-氣體團簇離子束(Ar-GCIB)對氣體阻擋性層的表層進行濺鍍蝕刻。Ar-GCIB的使用可減少對氣體阻擋性層的損害。 示出能夠應用於第三實施方式的Ar-GCIB的具體條件的一例。 GCIB:5 kV、5 μA GCIB處理時間:TOF-SIMS的光譜圖案不再變化的時間點 An example of specific conditions applicable to TOF-SIMS analysis according to the third embodiment is shown below. In order to analyze the inside of the gas barrier layer, it is preferable to perform sputter etching on the surface layer of the gas barrier layer using the Ar-gas cluster ion beam (Ar-GCIB) attached to the TOF-SIMS analysis device before TOF-SIMS analysis. . The use of Ar-GCIB can reduce damage to the gas barrier layer. An example of specific conditions applicable to Ar-GCIB of the third embodiment is shown. GCIB: 5 kV, 5 μA GCIB processing time: the time point when the spectral pattern of TOF-SIMS no longer changes
TOF-SIMS分析例如可以如下方式進行。 分析裝置:日本真空(Ulvac-phi)公司製造的PHI奈米(nano)-TOFII 一次離子:Bi 3 2+一次離子源輸出:30 kV、0.5 μA 分析區域:300 μm×300 μm(一次離子束的掃描區域) 分析時,可藉由裝置附帶的低能量電子束及低能量Ar離子照射實施帶電中和。另外,於TOF-SIMS分析中,與XPS分析同樣地,可使用自氣體阻擋性層切出的1 cm×1 cm的測定用樣品。 TOF-SIMS analysis can be performed, for example, as follows. Analysis device: PHI nano (nano)-TOFII manufactured by Nippon Vacuum (Ulvac-phi) Co., Ltd. Primary ion: Bi 3 2+ primary ion source output: 30 kV, 0.5 μA Analysis area: 300 μm × 300 μm (primary ion beam Scanning area) During analysis, charge neutralization can be carried out by low-energy electron beam and low-energy Ar ion irradiation attached to the device. In addition, in the TOF-SIMS analysis, like the XPS analysis, a 1 cm×1 cm measurement sample cut out from the gas barrier layer can be used.
此時,於將藉由TOF-SIMS分析對氣體阻擋性層觀測到的PO 2 -的質量峰強度設為I(PO 2 -),將PO 3 -的質量峰強度設為I(PO 3 -)時, (I(PO 2 -)+I(PO 3 -))/I(C 3H 3O 2 -) 的值較佳為0.02以上,更佳為0.07以上,進而佳為0.1以上。另外,(I(PO 2 -)+I(PO 3 -))/I(C 3H 3O 2 -)的值較佳為5以下,更佳為4以下,進而佳為3以下。 檢測出PO 2 -或PO 3 -的質量峰的情況意味著氣體阻擋性層包含以磷酸為代表的含有一個以上的P-OH基的磷化合物。而且,認為(I(PO 2 -)+I(PO 3 -))/I(C 3H 3O 2 -)的值是和磷化合物相對於氣體阻擋性層中的多羧酸的羧基的量(濃度)相關的值。 At this time, let the mass peak intensity of PO 2 - observed in the gas barrier layer by TOF-SIMS analysis be I (PO 2 - ), and let the mass peak intensity of PO 3 - be I (PO 3 - ), the value of (I(PO 2 - ) + I (PO 3 - ))/I (C 3 H 3 O 2 - ) is preferably 0.02 or more, more preferably 0.07 or more, and still more preferably 0.1 or more. In addition, the value of (I(PO 2 - ) + I (PO 3 - ))/I (C 3 H 3 O 2 - ) is preferably 5 or less, more preferably 4 or less, and still more preferably 3 or less. The detection of a mass peak of PO 2 - or PO 3 - means that the gas barrier layer contains a phosphorus compound containing one or more P-OH groups, represented by phosphoric acid. Furthermore, the value of (I(PO 2 - ) + I (PO 3 - ))/I (C 3 H 3 O 2 - ) is considered to be the amount of the phosphorus compound relative to the carboxyl group of the polycarboxylic acid in the gas barrier layer (concentration) related values.
此時,作為所述I(PO 2 -)與I(PO 3 -)的強度比的 I(PO 2 -)/I(PO 3 -) 的值較佳為0.05以上,更佳為0.08以上,進而佳為0.1。另外,I(PO 2 -)/I(PO 3 -)的值為1以下,較佳為0.9以下,更佳為0.8以下。 於TOF-SIMS分析中檢測出PO 2 -及PO 3 -的質量峰的情況意味著包含磷酸(H 3PO 4)等磷化合物,其比率即I(PO 2 -)/I(PO 3 -)成為反映包含P-OH基的磷化合物的種類的值。 反映磷酸鋅鍵的量(濃度)的I( 64ZnPO 4H -)/I(C 3H 3O 2 -)影響磷化合物的種類。即,亦與I(PO 2 -)/I(PO 3 -)的值有關。關於所述I(PO 2 -)/I(PO 3 -)的值為0.05以上且1以下的情況,將I( 64ZnPO 4H -)/I(C 3H 3O 2 -)的值設為適合的範圍,可良好地保持第三實施方式的氣體阻擋性積層體的蒸煮後的阻擋性能。 At this time, the value of I(PO 2 - )/I (PO 3 - ), which is the intensity ratio of I (PO 2 - ) and I (PO 3 - ), is preferably 0.05 or more, more preferably 0.08 or more, Further preferably, it is 0.1. In addition, the value of I(PO 2 - )/I(PO 3 - ) is 1 or less, preferably 0.9 or less, more preferably 0.8 or less. The detection of mass peaks of PO 2 - and PO 3 - in TOF-SIMS analysis means that phosphorus compounds such as phosphoric acid (H 3 PO 4 ) are included, and the ratio is I (PO 2 - )/I (PO 3 - ). It is a value reflecting the type of phosphorus compound containing a P-OH group. I( 64 ZnPO 4 H - )/I (C 3 H 3 O 2 - ), which reflects the amount (concentration) of zinc phosphate bonds, affects the type of phosphorus compound. That is, it is also related to the value of I(PO 2 - )/I(PO 3 - ). When the value of I(PO 2 - )/I(PO 3 - ) is 0.05 or more and 1 or less, let the value of I( 64 ZnPO 4 H - )/I (C 3 H 3 O 2 - ) be If it is an appropriate range, the barrier performance after retort of the gas barrier laminate of the third embodiment can be maintained well.
藉由TOF-SIMS分析獲得的資料的解析方法可以如下方式進行。 為了進行詳細的光譜解析,於第三實施方式中,對於正及負的各二次離子,藉由分析裝置取得使質量數m i、及與其對應的計數數目c i成對的原始資料串及總離子計數(C T)。此處,為i=0、1、2、···、N,原始資料串中,對m i按照升序排列。再者,C T是由檢測器檢測出的二次離子的總計數數目。 The analysis method of data obtained by TOF-SIMS analysis can be performed as follows. In order to perform detailed spectral analysis, in the third embodiment, for each positive and negative secondary ion, an analysis device is used to obtain a raw data string pairing the mass number m i and its corresponding count number c i Total ion count (C T ). Here, i=0, 1, 2,···,N. In the original data string, m i are arranged in ascending order. Furthermore, C T is the total number of secondary ion counts detected by the detector.
將關注的質量光譜峰周邊的質量數的範圍設為i=n 1、n 1+1、···、n 2。利用下式所示般的y i近似藉由分析獲得的該範圍的計數數目的資料c i。具體而言,藉由使用背景水準b 0及K個三角形形狀函數Y j(m i)的曲線擬合對c i進行近似。此處,b 0是常數。 The range of mass numbers around the mass spectrum peak of interest is set to i=n 1 , n 1 +1,..., n 2 . The data c i of the count number in this range obtained by analysis is approximated by yi as shown in the following equation. Specifically, c i is approximated by curve fitting using a background level b 0 and K triangular shape functions Y j (mi ) . Here, b 0 is a constant.
[數7] [Number 7]
Y j(m i)是於如圖11所示般的質量數x 0 j時具有峰值Y 0 j的函數,由下式所表示。 Y j (m i ) is a function having a peak value Y 0 j at the mass number x 0 j as shown in Fig. 11, and is represented by the following equation.
[數8] [Number 8]
此處,b 0、x 0 j、Y 0 j、B - j、B + j成為擬合參數。另外,j是j=1、···、K。例如,於光譜的背景並非一定值而是相對於m i呈直線性變化的情況下,將b 0與三角形形狀函數Y j(m i)組合並對背景進行近似。於關注的質量光譜峰為單峰的情況下,除背景以外,利用一個三角形形狀函數進行近似,於與其他質量峰接近的情況下,使用亦包括其他質量峰在內的多個三角形形狀函數進行近似。若進行了近似的所關注的質量光譜峰是K個三角形形狀函數中第j=k個峰,則峰強度I由利用總離子計數(C T)將至i=n 1、···、n 2為止的Y k(m i)的總和標準化後的數值所表示,根據下式求出。 Here, b 0 , x 0 j , Y 0 j , B - j , and B + j become fitting parameters. In addition, j is j=1,···,K. For example, when the background of the spectrum is not a constant value but changes linearly with respect to m i , b 0 is combined with the triangular shape function Y j (mi ) to approximate the background. When the mass spectrum peak of interest is a single peak, except for the background, a triangle shape function is used for approximation. When it is close to other mass peaks, multiple triangle shape functions including other mass peaks are used for approximation. approximate. If the approximated mass spectrum peak of interest is the j=kth peak among K triangular shape functions, the peak intensity I is reduced to i=n 1 ,···,n using the total ion count (C T ) It is represented by the normalized numerical value of the sum of Y k ( mi ) up to 2 , and is calculated according to the following formula.
[數9] [Number 9]
若質量光譜峰中存在尾端部分,則變得難以定義應計數的質量數的範圍。於第三實施方式中,為了避免該情況,利用三角形形狀函數對質量光譜峰進行近似。藉此,會忽視質量光譜峰的尾端部分的計數數目。以質量光譜峰的中央部分符合三角形形狀函數的方式進行曲線擬合。 另外,有時觀測到與作為目標的峰成分重疊的其他成分(例如,相同質量數的其他種類的質量峰)。於此種情況下,藉由利用三角形形狀函數對與作為目標的峰成分重疊的其他成分進行近似,求出作為目標的峰成分。 計算於第三實施方式中關注的片段的質量數並於以下示出。同位素的原子量數依賴於http://physics.nist.gov/。 If there is a tail portion in a mass spectrum peak, it becomes difficult to define the range of masses that should be counted. In the third embodiment, in order to avoid this situation, the mass spectrum peak is approximated using a triangle shape function. By this, the number of counts in the tail portion of the mass spectral peak is ignored. Curve fitting was performed in such a way that the central part of the mass spectral peak fit a triangular shape function. In addition, other components (for example, other types of mass peaks with the same mass number) that overlap with the target peak component may be observed. In this case, the target peak component is obtained by approximating other components that overlap with the target peak component using a triangle shape function. The mass number of the fragment of interest in the third embodiment was calculated and shown below. The atomic weight number of an isotope depends on http://physics.nist.gov/.
[表5]
[ 64ZnPO 4H -的質量峰強度的計算] 已知Zn有5個同位素,於TOF-SIMS分析中,主要檢測出其中與 64Zn、 66Zn及 68Zn相關聯的片段。於第三實施方式中,著眼於存在比率最高的 64Zn。於表示 64Zn與含有P-OH的磷化合物的鍵的片段中,檢測出 64ZnPO 4H -、 64ZnP 2O 6H -、 64ZnP 2O 7H -、 64ZnP 3O 9H -等,但著眼於質量峰強度較大的 64ZnPO 4H -。 著眼於負的二次離子光譜的質量數=159.5~160.3的範圍,根據對相當於 64Zn 31P 16O 4 1H -的158.890附近的質量峰進行近似而成的三角形形狀函數與m i的資料,計算計數數目的總和,將利用C T標準化後的值設為 64ZnPO 4H -的質量峰強度I( 64ZnPO 4H -)。 [Calculation of the mass peak intensity of 64 ZnPO 4 H - ] It is known that Zn has 5 isotopes. In TOF-SIMS analysis, the fragments associated with 64 Zn, 66 Zn and 68 Zn are mainly detected. In the third embodiment, attention is paid to 64 Zn, which has the highest ratio. In the fragment showing the bond between 64 Zn and the phosphorus compound containing P-OH, 64 ZnPO 4 H - , 64 ZnP 2 O 6 H - , 64 ZnP 2 O 7 H - , 64 ZnP 3 O 9 H - , etc. were detected. , but focusing on 64 ZnPO 4 H - which has a larger mass peak intensity. Focusing on the range of mass number = 159.5 to 160.3 in the negative secondary ion spectrum, a triangular shape function approximated by the mass peak near 158.890 corresponding to 64 Zn 31 P 16 O 4 1 H - and m i Data, calculate the sum of the count numbers, and set the value normalized by C T to the mass peak intensity I of 64 ZnPO 4 H - ( 64 ZnPO 4 H - ).
將曲線擬合的例子示於圖12中,將此時使用的參數與計數數目的總和的計算結果示於表6中。於圖12所示的例子中,根據對作為目標的 64ZnPO 4H -的質量峰進行近似而成的三角形形狀函數與m i的資料而獲得的計數數目的總和為1514。此時的負的二次離子的總離子計數(C T)=8571746,因此 64ZnPO 4H -的峰強度I( 64ZnPO 4H -)成為 I( 64ZnPO 4H -)=1514/8571746=1.77×10 -4。 An example of curve fitting is shown in FIG. 12 , and the calculation results of the sum of the parameters used at this time and the number of counts are shown in Table 6 . In the example shown in FIG. 12 , the total number of counts obtained based on the triangular shape function that approximates the target mass peak of 64 ZnPO 4 H - and the data of m i is 1514. At this time, the total ion count (C T ) of negative secondary ions = 8571746, so the peak intensity I ( 64 ZnPO 4 H - ) of 64 ZnPO 4 H - becomes I ( 64 ZnPO 4 H - ) = 1514/8571746= 1.77×10 -4 .
[表6]
對表示曲線擬合的例子的圖12進行補充。 (i)為了獲得再現作為目標的峰位置附近的測定資料c i的近似曲線y i,需要「背景b 0」及「其他成分的三角形形狀函數近似」的曲線、以及「作為目標的三角形形狀函數Y j(m i)」的曲線。 (ii)於圖12的例子中,於質量數(m/z)為159.7~160.2時,為了獲得再現測定資料c i的「近似曲線y i」,使用「背景b 0」及「作為目標的三角形形狀函數Y j(m i)」的曲線(表2中,j=2)、以及「其他成分的三角形形狀函數近似」的曲線兩個(表6中,j=0、1)。 Supplementary information is provided to Figure 12 showing an example of curve fitting. (i) In order to obtain an approximate curve yi that reproduces the measurement data c i near the target peak position, a curve of "the background b 0 " and "triangular shape function approximation of other components" and "the target triangle shape function" are required Y j ( mi )" curve. (ii) In the example of Figure 12, when the mass number (m/z) is 159.7 to 160.2, in order to obtain the "approximate curve yi " that reproduces the measurement data c i , the "background b 0 " and "target There are two curves of "triangular shape function Y j ( mi )" (j=2 in Table 2) and "triangular shape function approximation of other components" (j=0, 1 in Table 6).
[C 3H 3O 2 -的質量峰強度的計算] 著眼於負的二次離子光譜的質量數=70.7~71.4的範圍,根據對自曲線擬合獲得的相當於 12C 3 1H 3 16O 2 -的71.013附近的質量峰進行近似而成的三角形形狀函數Y k(m i)與m i的資料,計算計數數目的總和,將利用C T標準化後的值設為C 3H 3O 2 -的質量峰強度I(C 3H 3O 2 -)。 [Calculation of mass peak intensity of C 3 H 3 O 2 - ] Focusing on the range of mass number = 70.7 to 71.4 in the negative secondary ion spectrum, the equivalent of 12 C 3 1 H 3 16 obtained by fitting the autocurve Calculate the sum of the number of counts using the triangular shape function Y k (mi) and m i approximated by the mass peak near 71.013 of O 2 - , and set the value normalized by C T to C 3 H 3 O The mass peak intensity of 2 - I (C 3 H 3 O 2 - ).
[PO 2 -的質量峰強度的計算] 著眼於負的二次離子光譜的質量數=62.5~63.3的範圍,根據對相當於 31P 16O 2 -的62.964附近的質量峰進行近似而成的三角形形狀函數與m i的資料,計算計數數目的總和,將利用C T標準化後的值設為PO 2 -的質量峰強度I(PO 2 -)。 [Calculation of mass peak intensity of PO 2 - ] Focusing on the range of mass number = 62.5 to 63.3 in the negative secondary ion spectrum, it was calculated by approximating the mass peak near 62.964 corresponding to 31 P 16 O 2 - Based on the data of the triangle shape function and m i , calculate the sum of the count numbers, and set the value normalized by C T as the mass peak intensity I (PO 2 - ) of PO 2 - .
[PO 3 -的質量峰強度的計算] 著眼於負的二次離子光譜的質量數=78.5~79.3的範圍,根據對相當於 31P 16O 3 -的78.959附近的質量峰進行近似而成的三角形形狀函數與m i的資料,計算計數數目的總和,將利用C T標準化後的值設為PO 3 -的質量峰強度I(PO 3 -)。 [Calculation of mass peak intensity of PO 3 - ] Focusing on the range of mass number = 78.5 to 79.3 in the negative secondary ion spectrum, it was calculated by approximating the mass peak near 78.959 corresponding to 31 P 16 O 3 - From the data of the triangle shape function and m i , calculate the sum of the count numbers, and set the value normalized by C T as the mass peak intensity I (PO 3 - ) of PO 3 - .
氣體阻擋性層較佳為由混合物的硬化物形成,所述混合物包含:多羧酸、Zn、及以磷酸(H 3PO 4)為代表的含有一個以上的P-OH基的磷化合物或其鹽。 若為由包含該些成分的混合物的硬化物形成的氣體阻擋性層,則源自多羧酸的羧基經由Zn形成金屬離子交聯,另外,Zn亦與包含P-OH基的磷化合物反應,形成具有耐水性的鍵。詳細的機制雖不清楚,但認為藉由於氣體阻擋層中均勻地存在適量的該些的經由Zn的金屬離子交聯或Zn與磷化合物的鍵,而形成緊密的氣體阻擋性層,並且藉由蒸煮處理等抑制氣體阻擋性層過度膨潤、收縮。 The gas barrier layer is preferably formed from a hardened product of a mixture containing polycarboxylic acid, Zn, and a phosphorus compound containing one or more P-OH groups represented by phosphoric acid (H 3 PO 4 ) or other compounds thereof. salt. In the case of a gas barrier layer formed from a cured product of a mixture of these components, the carboxyl groups derived from the polycarboxylic acid form metal ion cross-links via Zn, and Zn also reacts with the phosphorus compound containing the P-OH group, Forms bonds that are water resistant. Although the detailed mechanism is unclear, it is thought that a tight gas barrier layer is formed by the uniform presence of an appropriate amount of these metal ion crosslinks via Zn or the bond between Zn and the phosphorus compound in the gas barrier layer, and by Steaming treatment, etc. suppresses excessive swelling and shrinkage of the gas barrier layer.
第三實施方式的氣體阻擋性層的Zn的組成比及TOF-SIMS中的I( 64ZnPO 4H -)/I(C 3H 3O 2 -)的值、(I(PO 2 -)+I(PO 3 -))/I(C 3H 3O 2 -)的值、I(PO 2 -)/I(PO 3 -)的值能夠藉由適當地調節氣體阻擋性層的製造條件來控制。 於第三實施方式中,例如,磷酸相對於多羧酸的濃度可作為用於控制所述Zn組成比及I( 64ZnPO 4H -)/I(C 3H 3O 2 -)的值的因子之一而列舉。 The Zn composition ratio of the gas barrier layer of the third embodiment and the value of I( 64 ZnPO 4 H - )/I(C 3 H 3 O 2 - ) and (I(PO 2 - ) + in TOF-SIMS The value of I(PO 3 - ))/I(C 3 H 3 O 2 - ) and the value of I(PO 2 - )/I(PO 3 - ) can be adjusted by appropriately adjusting the manufacturing conditions of the gas barrier layer. control. In the third embodiment, for example, the concentration of phosphoric acid relative to the polycarboxylic acid can be used as a parameter for controlling the Zn composition ratio and the value of I( 64 ZnPO4H - )/I( C3H3O2- ) Listed as one of the factors.
關於第三實施方式中能夠應用的多羧酸、鋅或其化合物、磷化合物、其他可添加的成分,以下進行詳述。Polycarboxylic acids, zinc or its compounds, phosphorus compounds, and other addable components applicable to the third embodiment will be described in detail below.
(多羧酸) 多羧酸是於分子內具有兩個以上的羧基者。具體而言,可列舉丙烯酸、甲基丙烯酸、衣康酸、富馬酸、巴豆酸、肉桂酸、3-己烯酸、3-己烯二酸等α,β-不飽和羧酸的均聚物或該些的共聚物。另外,亦可為所述α,β-不飽和羧酸與乙基酯等酯類、乙烯等烯烴類等的共聚物。 (polycarboxylic acid) Polycarboxylic acids have two or more carboxyl groups in the molecule. Specific examples include homopolymerization of α,β-unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, crotonic acid, cinnamic acid, 3-hexenoic acid, and 3-hexenedioic acid. substances or copolymers of these. In addition, copolymers of the α,β-unsaturated carboxylic acid and esters such as ethyl ester, olefins such as ethylene, etc. may also be used.
該些中較佳為丙烯酸、甲基丙烯酸的均聚物或該些的共聚物,更佳為選自聚丙烯酸、聚甲基丙烯酸、丙烯酸與甲基丙烯酸的共聚物中的一種或兩種以上的聚合物,進而佳為選自聚丙烯酸、聚甲基丙烯酸中的至少一種聚合物,特佳為選自丙烯酸的均聚物、甲基丙烯酸的均聚物中的至少一種聚合物。Among these, homopolymers of acrylic acid and methacrylic acid or copolymers of these are preferred, and one or two or more types selected from the group consisting of polyacrylic acid, polymethacrylic acid, and copolymers of acrylic acid and methacrylic acid are more preferred. The polymer is more preferably at least one polymer selected from the group consisting of polyacrylic acid and polymethacrylic acid, and particularly preferably at least one polymer selected from the group consisting of acrylic acid homopolymer and methacrylic acid homopolymer.
此處,於第三實施方式中,所謂聚丙烯酸,包含丙烯酸的均聚物、丙烯酸與其他單體的共聚物兩者。於丙烯酸與其他單體的共聚物的情況下,聚丙烯酸在聚合物100質量%中包含通常為90質量%以上、較佳為95質量%以上、更佳為99質量%以上的源自丙烯酸的結構單元。Here, in the third embodiment, polyacrylic acid includes both homopolymers of acrylic acid and copolymers of acrylic acid and other monomers. In the case of a copolymer of acrylic acid and other monomers, the polyacrylic acid contains usually 90 mass% or more, preferably 95 mass% or more, and more preferably 99 mass% or more derived from acrylic acid in 100 mass% of the polymer. structural unit.
另外,於第三實施方式中,所謂聚甲基丙烯酸,包含甲基丙烯酸的均聚物、甲基丙烯酸與其他單體的共聚物兩者。於甲基丙烯酸與其他單體的共聚物的情況下,聚甲基丙烯酸在聚合物100質量%中包含通常為90質量%以上、較佳為95質量%以上、更佳為99質量%以上的源自甲基丙烯酸的結構單元。In addition, in the third embodiment, polymethacrylic acid includes both homopolymers of methacrylic acid and copolymers of methacrylic acid and other monomers. In the case of a copolymer of methacrylic acid and other monomers, polymethacrylic acid contains usually 90 mass% or more, preferably 95 mass% or more, and more preferably 99 mass% or more in 100 mass% of the polymer. Structural unit derived from methacrylic acid.
多羧酸是羧酸單體聚合而成的聚合物,作為多羧酸的分子量,就氣體阻擋性及操作性的平衡優異的觀點而言,較佳為500~2,500,000,更佳為5,000~2,000,000,更佳為10,000~1,500,000,進而佳為100,000~1,200,000。A polycarboxylic acid is a polymer obtained by polymerizing a carboxylic acid monomer. The molecular weight of the polycarboxylic acid is preferably 500 to 2,500,000 and more preferably 5,000 to 2,000,000 from the viewpoint of excellent balance between gas barrier properties and workability. , more preferably 10,000~1,500,000, further preferably 100,000~1,200,000.
此處,多羧酸的分子量是聚環氧乙烷換算的重量平均分子量,可使用凝膠滲透層析法(GPC)進行測定。Here, the molecular weight of the polycarboxylic acid is a weight average molecular weight in terms of polyethylene oxide, and can be measured using gel permeation chromatography (GPC).
藉由利用揮發性鹼中和多羧酸,在將後述的鋅與多羧酸混合時,可抑制發生凝膠化。因此,於多羧酸中,就防止凝膠化的觀點而言,較佳為藉由揮發性鹼來製成羧基的部分中和物或完全中和物。中和物可藉由利用揮發性鹼來部分地或完全中和多羧酸的羧基(即,將多羧酸的羧基部分地或完全製成羧酸鹽)而獲得。藉此,於添加鋅時,可防止凝膠化。By neutralizing the polycarboxylic acid with a volatile base, gelation can be suppressed when zinc and the polycarboxylic acid described below are mixed. Therefore, among polycarboxylic acids, from the viewpoint of preventing gelation, it is preferable to use a volatile base to form a partially neutralized product or a completely neutralized product of the carboxyl group. The neutralizer can be obtained by partially or completely neutralizing the carboxyl group of the polycarboxylic acid using a volatile base (ie, partially or completely making the carboxyl group of the polycarboxylic acid into a carboxylate salt). This prevents gelation when zinc is added.
部分中和物是藉由於多羧酸聚合物的水溶液中添加揮發性鹼來製備,可藉由調節多羧酸與揮發性鹼的量比而製成所期望的中和度。於第三實施方式中,揮發性鹼對多羧酸的中和度較佳為30當量%~100當量%,更佳為50當量%~100當量%。The partially neutralized product is prepared by adding a volatile base to an aqueous solution of the polycarboxylic acid polymer, and the desired degree of neutralization can be obtained by adjusting the ratio of the polycarboxylic acid to the volatile base. In the third embodiment, the degree of neutralization of the polycarboxylic acid by the volatile base is preferably 30 equivalent% to 100 equivalent%, more preferably 50 equivalent% to 100 equivalent%.
作為揮發性鹼,可使用任意的水溶性鹼。As the volatile base, any water-soluble base can be used.
作為揮發性鹼,例如可列舉氨、嗎啉、烷基胺、2-二甲基胺基乙醇、N-甲基嗎啉、乙二胺、三乙胺等三級胺或該些的水溶液、或該些的混合物。就獲得良好的氣體阻擋性的觀點而言,較佳為氨水溶液。Examples of the volatile base include tertiary amines such as ammonia, morpholine, alkylamine, 2-dimethylaminoethanol, N-methylmorpholine, ethylenediamine, and triethylamine, or aqueous solutions of these; or a mixture of these. From the viewpoint of obtaining good gas barrier properties, an ammonia aqueous solution is preferred.
構成第三實施方式的氣體阻擋性積層體的混合物較佳為更包含碳酸系銨鹽。碳酸系銨鹽是為了使後述的鋅為碳酸鋅銨錯合物的狀態,並提高鋅的溶解性,製備包含鋅的均勻的溶液而添加者。The mixture constituting the gas barrier laminate of the third embodiment preferably further contains a carbonic acid ammonium salt. The carbonate-based ammonium salt is added in order to bring zinc, which will be described later, into the state of a zinc ammonium carbonate complex, improve the solubility of zinc, and prepare a uniform solution containing zinc.
作為碳酸系銨鹽,例如可列舉碳酸銨、碳酸氫銨等。就容易揮發、不易殘存於所獲得的氣體阻擋性層的方面而言,較佳為碳酸銨。Examples of carbonic acid-based ammonium salts include ammonium carbonate, ammonium bicarbonate, and the like. Ammonium carbonate is preferred in terms of being easily volatilized and not easily remaining in the obtained gas barrier layer.
(鋅) 鋅(Zn)可與磷化合物形成具有耐水性的磷酸Zn鍵,藉由TOF-SIMS分析可檢測出由 64ZnPO 4H -所表示的質量峰。另外,於氣體阻擋性層中包含多羧酸的情況下,與多羧酸形成鹽。Zn只要是可添加至形成氣體阻擋性層的混合物中的鋅或鋅化合物即可,例如可使用金屬鋅、氧化鋅(ZnO)、鋅化合物等。相對於所述多羧酸的羧基1 mol,鋅的添加量可設為0.1 mol以上且0.5 mol以下。 (Zinc) Zinc (Zn) can form a water-resistant Zn phosphate bond with a phosphorus compound, and a mass peak represented by 64 ZnPO 4 H - can be detected by TOF-SIMS analysis. In addition, when the gas barrier layer contains a polycarboxylic acid, a salt is formed with the polycarboxylic acid. Zn may be any zinc or zinc compound that can be added to the mixture for forming the gas barrier layer. For example, metallic zinc, zinc oxide (ZnO), zinc compounds, etc. can be used. The amount of zinc added may be 0.1 mol or more and 0.5 mol or less per 1 mol of the carboxyl group of the polycarboxylic acid.
(磷化合物) 如上所述,於對氣體阻擋性層進行質量分析時,較佳為檢測出PO 2 -及/或PO 3 -。為了設置此種氣體阻擋性層,硬化前的混合物較佳為包含磷化合物或其鹽。 磷化合物或其鹽中的磷化合物於分子結構中含有一個以上的-P-OH基。磷化合物亦可作為鹽調配於混合物中。 就進一步提高蒸煮處理後的水蒸氣阻擋性的觀點而言,磷化合物較佳為包含兩個以上的-P-OH基,更佳為包含三個以上的-P-OH基。另外,就生產性的觀點而言,磷化合物中的-P-OH基的數量例如亦可為10個以下。 作為磷化合物的具體例,可列舉磷酸、亞磷酸、膦酸、次磷酸、多磷酸、該些的衍生物。 多磷酸具體而言於分子結構中具有兩個以上的磷酸的縮合結構,例如可列舉:二磷酸(焦磷酸)、三磷酸、四個以上的磷酸縮合而成的多磷酸等。 作為衍生物的具體例,可列舉:磷酸化澱粉、磷酸交聯澱粉等所述磷化合物的酯;氯化物等鹵化物;十氧化四磷酸等的酐;以及硝基三(亞甲基膦酸)、N,N,N',N'-乙二胺四(亞甲基膦酸)等具有與磷原子鍵結的氫原子被烷基取代而成的結構的化合物。 就進一步提高阻擋性及生產性的平衡的觀點而言,磷化合物為選自由磷酸、亞磷酸、次磷酸、多磷酸、膦酸及該些的鹽所組成的群組中的一種或兩種以上,更佳為選自由磷酸及亞磷酸、膦酸及該些的鹽所組成的群組中的至少一個。 另外,作為磷化合物的鹽中的鹽的具體例,可列舉:鈉、鉀等一價金屬的鹽;銨鹽。就阻擋性的觀點而言,磷化合物的鹽較佳為銨鹽。 相對於化合物中的所述多羧酸中的羧基1 mol,磷化合物的P原子的濃度典型而言為5×10 -4mol以上,較佳為1×10 -3mol以上,更佳為5×10 -3mol以上,另外,典型而言為0.3 mol以下,較佳為0.15 mol以下,更佳為0.1 mol以下。關於如磷酸般於化學式中包含一個P原子的磷化合物,P原子的莫耳數與磷化合物的莫耳數成為相同含義。 認為若為此種濃度的源自磷化合物或其鹽的磷化合物,則藉由與具有耐水性的磷化合物確實地形成Zn鍵,可抑制於蒸煮處理等中氣體阻擋性層過度膨潤、收縮,進一步提高蒸煮處理後的氣體阻擋性積層體的氣體阻擋性。磷化合物與Zn鍵的存在反映在利用所述TOF-SIMS分析獲得的 64ZnPO 4H -的質量峰上。 (Phosphorus Compound) As mentioned above, when performing mass analysis on the gas barrier layer, it is preferable to detect PO 2 - and/or PO 3 - . In order to provide such a gas barrier layer, the mixture before hardening preferably contains a phosphorus compound or a salt thereof. The phosphorus compound or the phosphorus compound in its salt contains more than one -P-OH group in the molecular structure. The phosphorus compound can also be formulated in the mixture as a salt. From the viewpoint of further improving the water vapor barrier property after retort treatment, the phosphorus compound preferably contains two or more -P-OH groups, and more preferably contains three or more -P-OH groups. In addition, from the viewpoint of productivity, the number of -P-OH groups in the phosphorus compound may be, for example, 10 or less. Specific examples of the phosphorus compound include phosphoric acid, phosphorous acid, phosphonic acid, hypophosphorous acid, polyphosphoric acid, and derivatives thereof. Specifically, polyphosphoric acid has a condensed structure of two or more phosphoric acids in its molecular structure. Examples thereof include diphosphoric acid (pyrophosphoric acid), triphosphoric acid, polyphosphoric acid in which four or more phosphoric acids are condensed, and the like. Specific examples of the derivatives include esters of the phosphorus compounds such as phosphorylated starch and phosphate cross-linked starch; halides such as chlorides; anhydrides such as tetraphosphoric acid decaoxide; and nitrotris(methylenephosphonic acid). ), N,N,N',N'-ethylenediaminetetrakis(methylenephosphonic acid) and other compounds having a structure in which the hydrogen atom bonded to the phosphorus atom is replaced by an alkyl group. From the viewpoint of further improving the balance between barrier properties and productivity, the phosphorus compound is one or two or more selected from the group consisting of phosphoric acid, phosphorous acid, hypophosphorous acid, polyphosphoric acid, phosphonic acid and salts thereof. , more preferably at least one selected from the group consisting of phosphoric acid and phosphorous acid, phosphonic acid and salts thereof. Specific examples of salts among the salts of phosphorus compounds include salts of monovalent metals such as sodium and potassium; and ammonium salts. From the viewpoint of barrier properties, the salt of the phosphorus compound is preferably an ammonium salt. The concentration of P atoms in the phosphorus compound is typically 5 × 10 -4 mol or more, preferably 1 × 10 -3 mol or more, and more preferably 5 ×10 -3 mol or more, and typically 0.3 mol or less, preferably 0.15 mol or less, more preferably 0.1 mol or less. For phosphorus compounds that contain one P atom in the chemical formula like phosphoric acid, the mole number of the P atom and the mole number of the phosphorus compound have the same meaning. It is thought that the phosphorus compound derived from the phosphorus compound or its salt at such a concentration can suppress excessive swelling and shrinkage of the gas barrier layer during retort processing or the like by reliably forming a Zn bond with the water-resistant phosphorus compound. The gas barrier properties of the gas barrier laminate after the retort treatment are further improved. The presence of the phosphorus compound and the Zn bond is reflected in the mass peak of 64 ZnPO 4 H - obtained using the TOF-SIMS analysis.
(其他成分) 構成第三實施方式的氣體阻擋性層的混合物例如可包含多胺作為其他成分,亦可不包含。於包含多胺的情況下,可提高所獲得的氣體阻擋性積層體的阻擋性,並且可提高所獲得的氣體阻擋性積層體的層間接著性,可使耐脫層性良好。 再者,於TOF-SIMS分析中檢測出的片段被獨立地檢測出,因此對TOF-SIMS分析結果進行解析而獲得的I( 64ZnPO 4H -)/I(C 3H 3O 2 -)、(I(PO 2 -)+I(PO 3 -))/I(C 3H 3O 2 -)、I(PO 2 -)/I(PO 3 -)的值不受有無多胺影響。 (Other components) The mixture constituting the gas barrier layer of the third embodiment may or may not contain polyamine as other components, for example. When polyamine is contained, the barrier properties of the obtained gas barrier laminate can be improved, and the interlayer adhesion of the obtained gas barrier laminate can be improved, resulting in good delamination resistance. Furthermore, the fragments detected in the TOF-SIMS analysis are detected independently, so I( 64 ZnPO 4 H - )/I(C 3 H 3 O 2 - ) obtained by analyzing the TOF-SIMS analysis results , (I(PO 2 - ) + I (PO 3 - ))/I (C 3 H 3 O 2 - ) and I (PO 2 - )/I (PO 3 - ) values are not affected by the presence or absence of polyamine.
多胺是於主鏈或側鏈或末端具有兩個以上的胺基的聚合物。具體而言,可列舉:聚烯丙胺、聚乙烯胺、聚乙烯亞胺、聚(三亞甲基亞胺)等脂肪族系多胺類;如聚離胺酸、聚精胺酸般於側鏈具有胺基的聚醯胺類等。另外,亦可為對胺基的一部分進行了改質的多胺。多胺的添加量可設為相對於所述多羧酸中所含的羧基1 mol而言多胺中的活性氫成為0 mol以上且0.9 mol以下的量。Polyamines are polymers having two or more amine groups in the main chain, side chains or terminals. Specific examples include: aliphatic polyamines such as polyallylamine, polyvinylamine, polyethyleneimine, and poly(trimethyleneimine); side chains such as polylysine acid and polyarginine Polyamides with amine groups, etc. In addition, a polyamine in which part of the amine group has been modified may also be used. The amount of polyamine added can be an amount such that the active hydrogen in the polyamine becomes 0 mol or more and 0.9 mol or less per 1 mol of carboxyl groups contained in the polycarboxylic acid.
就氣體阻擋性及操作性的平衡優異的觀點而言,多胺的重量平均分子量較佳為50~2,000,000,更佳為100~1,000,000,進而佳為1,500~500,000,進而更佳為1,500~100,000,進而更佳為1,500~50,000,進而更佳為3,500~20,000,進而更佳為5,000~15,000,特佳為7,000~12,000。 此處,於第三實施方式中,多胺的分子量可使用沸點上升法或黏度法進行測定。 From the viewpoint of excellent balance between gas barrier properties and workability, the weight average molecular weight of the polyamine is preferably 50 to 2,000,000, more preferably 100 to 1,000,000, further preferably 1,500 to 500,000, still more preferably 1,500 to 100,000. More preferably, it is 1,500-50,000, still more preferably 3,500-20,000, still more preferably 5,000-15,000, and particularly preferably 7,000-12,000. Here, in the third embodiment, the molecular weight of the polyamine can be measured using the boiling point elevation method or the viscosity method.
(氣體阻擋性層的製造方法) 第三實施方式的氣體阻擋性層例如可以如下方式製造。 首先,製備構成多羧酸的羧基的完全或部分中和溶液。 (Method for manufacturing gas barrier layer) The gas barrier layer of the third embodiment can be produced as follows, for example. First, a completely or partially neutralized solution of the carboxyl groups constituting the polycarboxylic acid is prepared.
於多羧酸中添加揮發性鹼,使多羧酸的羧基完全中和或部分中和。藉由中和該多羧酸的羧基,於後步驟中,有效果地防止藉由於添加鋅時與構成多羧酸的羧基反應而產生的凝膠化,而獲得均勻的氣體阻擋用塗材中間體。A volatile base is added to the polycarboxylic acid to completely or partially neutralize the carboxyl groups of the polycarboxylic acid. By neutralizing the carboxyl groups of the polycarboxylic acid, gelation caused by the reaction with the carboxyl groups constituting the polycarboxylic acid when adding zinc is effectively prevented in the subsequent step, thereby obtaining a uniform gas barrier coating intermediate body.
繼而,於所述中間體中添加鋅鹽化合物及碳酸系銨鹽,使其溶解,利用生成的鋅離子形成與構成多羧酸的-COO-基的鋅鹽。此時,與鋅離子形成鹽的-COO-基是指未與所述鹼中和的羧基及被鹼中和的-COO-基此兩者。在與鹼中和的-COO-基的情況下,所述源自鋅的鋅離子交換並進行配位而形成-COO-基的鋅鹽。而且,藉由於形成鋅鹽後添加磷酸,可獲得氣體阻擋用塗材(混合物)。Next, a zinc salt compound and a carbonic acid ammonium salt are added to the intermediate and dissolved, and the generated zinc ions are used to form a zinc salt with the -COO- group constituting the polycarboxylic acid. In this case, the -COO- group that forms a salt with zinc ions refers to both the carboxyl group that is not neutralized with the base and the -COO- group that is neutralized with the base. In the case of a -COO- group neutralized with a base, the zinc-derived zinc ions exchange and coordinate to form a zinc salt of the -COO- group. Furthermore, by adding phosphoric acid after forming a zinc salt, a gas barrier coating material (mixture) can be obtained.
將以所述方式製造的氣體阻擋用塗材(混合物)塗佈於後述的無機物層上,使其乾燥、硬化,藉此形成氣體阻擋性層。將氣體阻擋用塗材塗佈於基材層上的方法並無特別限定,可使用通常的方法。例如可列舉使用邁爾棒塗佈機、氣刀塗佈機、直接凹版塗佈機、間接凹版、電弧凹版塗佈機、反向凹版及噴射管嘴方式等凹版塗佈機、頂部進料反向塗佈機、底部進料反向塗佈機及管嘴進料反向塗佈機等反向輥塗機、五輥塗佈機、模唇塗佈機、棒式塗佈機、反向棒塗佈機、模具塗佈機等各種公知的塗敷機進行塗敷的方法。The gas barrier coating material (mixture) produced in the above manner is applied on an inorganic layer described below, and dried and hardened to form a gas barrier layer. The method of applying the gas barrier coating material to the base material layer is not particularly limited, and a common method can be used. For example, gravure coaters using Meyer rod coaters, air knife coaters, direct gravure coaters, indirect gravure, arc gravure coaters, reverse gravure and spray nozzle methods, top feed reverse gravure coaters, etc. Reverse roll coaters such as reverse roll coaters, bottom feed reverse coaters and nozzle feed reverse coaters, five-roller coaters, die lip coaters, rod coaters, reverse The coating method is performed using various well-known coaters such as bar coaters and die coaters.
氣體阻擋用塗材(混合物)的塗敷量(濕厚度)較佳為0.05 μm以上,更佳為1 μm以上。另外,塗敷量較佳為300 μm以下,更佳為200 μm以下,進而佳為100 μm以下。 另外,乾燥、硬化後的氣體阻擋性層的平均厚度較佳為0.05 μm以上且10 μm以下,更佳為0.08 μm以上且5 μm以下,進而佳為0.1 μm以上且1 μm以下。於為所述上限值以下時,可抑制所獲得的氣體阻擋性積層體或氣體阻擋性膜捲曲。另外,於為所述下限值以上時,可使所獲得的氣體阻擋性積層體或氣體阻擋性膜的阻擋性能更良好。 The coating amount (wet thickness) of the gas barrier coating material (mixture) is preferably 0.05 μm or more, more preferably 1 μm or more. In addition, the coating amount is preferably 300 μm or less, more preferably 200 μm or less, still more preferably 100 μm or less. In addition, the average thickness of the gas barrier layer after drying and hardening is preferably from 0.05 μm to 10 μm, more preferably from 0.08 μm to 5 μm, and even more preferably from 0.1 μm to 1 μm. When it is below the upper limit, curling of the obtained gas barrier laminate or gas barrier film can be suppressed. Moreover, when it is more than the said lower limit value, the barrier performance of the obtained gas barrier laminate or gas barrier film can be made more favorable.
乾燥及熱處理可於乾燥後進行熱處理,亦可同時進行乾燥與熱處理。Drying and heat treatment can be carried out after drying or at the same time.
進行乾燥、加熱處理的方法只要可達成本發明的目的則並無特別限定,只要是可使氣體阻擋用塗材硬化者、可加熱硬化的氣體阻擋用塗材的方法即可。例如可列舉烘箱、乾燥裝置等利用對流傳熱的裝置,加熱輥等利用傳導傳熱的裝置,紅外線、遠紅外線、近紅外線的加熱器等利用使用電磁波的輻射傳熱的裝置,微波等利用內部發熱的裝置。作為乾燥、加熱處理中使用的裝置,就製造效率的觀點而言,較佳為可進行乾燥與加熱處理兩者的裝置。其中,具體而言,就可在乾燥、加熱、退火等各種目的中利用的觀點而言,較佳為使用熱風烘箱,另外,就對膜的熱傳導效率優異的觀點而言,較佳為使用加熱輥。另外,亦可適宜組合乾燥、加熱處理中使用的方法。亦可併用熱風烘箱與加熱輥,例如若在熱風烘箱中乾燥氣體阻擋用塗材後,利用加熱輥進行加熱處理,則加熱處理步驟的時間變短,就製造效率的觀點而言較佳。另外,較佳為僅藉由熱風烘箱進行乾燥與加熱處理。The method of drying and heat treatment is not particularly limited as long as the object of the present invention can be achieved, as long as the gas barrier coating material can be hardened or the gas barrier coating material can be heat-cured. Examples include devices that utilize convection heat transfer such as ovens and dryers, devices that utilize conductive heat transfer such as heating rollers, devices that utilize radiation heat transfer using electromagnetic waves such as infrared, far-infrared, and near-infrared heaters, and devices that utilize internal heat transfer such as microwaves. Heating device. As an apparatus used for drying and heat treatment, from the viewpoint of manufacturing efficiency, an apparatus capable of performing both drying and heat treatment is preferred. Among them, specifically, it is preferable to use a hot air oven from the viewpoint that it can be used for various purposes such as drying, heating, and annealing. In addition, from the viewpoint of excellent heat conduction efficiency to the film, it is preferable to use heating. Roller. In addition, methods used for drying and heat treatment may be appropriately combined. A hot air oven and a heating roller may be used together. For example, if the gas barrier coating material is dried in a hot air oven and then heated using a heating roller, the time of the heating treatment step will be shortened, which is preferable from the viewpoint of manufacturing efficiency. In addition, it is preferable to perform drying and heating processing only by a hot air oven.
例如,理想的是於加熱處理溫度為80℃~250℃、加熱處理時間為1秒~10分鐘,較佳為加熱處理溫度為120℃~240℃、加熱處理時間為1秒~1分鐘,更佳為加熱處理溫度為170℃~230℃、加熱處理時間為1秒~30秒下進行加熱處理。進而如上所述,藉由併用加熱輥,能夠在短時間內進行加熱處理。重要的是加熱處理溫度及加熱處理時間根據氣體阻擋用塗材的濕厚度進行調整。For example, the heat treatment temperature is preferably 80°C to 250°C and the heat treatment time is 1 second to 10 minutes. More preferably, the heat treatment temperature is 120°C to 240°C and the heat treatment time is 1 second to 1 minute. More preferably, the heat treatment temperature is 80°C to 250°C and the heat treatment time is 1 second to 10 minutes. Preferably, the heat treatment temperature is 170°C to 230°C and the heat treatment time is 1 second to 30 seconds. Furthermore, as mentioned above, by using a heating roller together, heat processing can be performed in a short time. It is important to adjust the heat treatment temperature and heat treatment time according to the wet thickness of the gas barrier coating material.
氣體阻擋用塗材(混合物)藉由構成多羧酸的-COO-基的鋅鹽形成金屬交聯及具有耐水性的磷酸Zn鍵(反映在利用所述TOF-SIMS分析獲得的 64ZnPO 4H -的質量峰上),並進行乾燥、熱處理,從而可獲得具有優異的氣體阻擋性的氣體阻擋性層。 The gas barrier coating material (mixture) forms metal cross-links and water-resistant phosphate Zn bonds through the zinc salt of the -COO- group constituting the polycarboxylic acid (reflected in 64 ZnPO 4 H obtained by the TOF-SIMS analysis) - mass peak), drying, and heat treatment can be performed to obtain a gas barrier layer with excellent gas barrier properties.
(無機物層) 構成無機物層4的無機物例如可列舉:可形成具有阻擋性的薄膜的金屬、金屬氧化物、金屬氮化物、金屬氟化物、金屬氮氧化物等。 (Inorganic layer) Examples of the inorganic substances constituting the inorganic substance layer 4 include metals, metal oxides, metal nitrides, metal fluorides, and metal oxynitrides that can form a barrier thin film.
作為構成無機物層4的無機物,例如可列舉選自鈹、鎂、鈣、鍶、鋇等週期表2A族元素;鈦、鋯、釕、鉿、鉭等週期表過渡元素;鋅等週期表2B族元素;鋁、鎵、銦、鉈等週期表3A族元素;矽、鍺、錫等週期表4A族元素;硒、碲等週期表6A族元素等的單質、氧化物、氮化物、氟化物、或氮氧化物等中的一種或兩種以上。 再者,於第三實施方式中,週期表的族名由舊CAS式表示。 Examples of the inorganic substance constituting the inorganic substance layer 4 include elements selected from Group 2A of the Periodic Table such as beryllium, magnesium, calcium, strontium, and barium; transition elements of the Periodic Table such as titanium, zirconium, ruthenium, hafnium, and tantalum; Group 2B of the Periodic Table such as zinc; Elements; aluminum, gallium, indium, thallium and other periodic table group 3A elements; periodic table group 4A elements such as silicon, germanium and tin; periodic table group 6A elements such as selenium, tellurium and other elements, oxides, nitrides, fluorides, etc. or one or more of nitrogen oxides, etc. Furthermore, in the third embodiment, the group names of the periodic table are represented by the old CAS formula.
進而,於所述無機物中,就阻擋性、成本等的平衡優異而言,較佳為選自由氧化矽、氧化鋁、鋁所組成的群組中的一種或兩種以上的無機物,更佳為氧化鋁。 再者,於氧化矽中,除了二氧化矽以外,亦可含有一氧化矽、亞氧化矽。 Furthermore, among the inorganic substances, one or two or more inorganic substances selected from the group consisting of silica, alumina, and aluminum are preferred in terms of excellent balance between barrier properties, cost, etc., and more preferred are aluminum oxide. Furthermore, the silicon oxide may also contain silicon monoxide and silicon suboxide in addition to silicon dioxide.
無機物層由所述無機物形成。無機物層4可包含單層的無機物層,亦可包含多個無機物層。另外,於無機物層4包含多個無機物層的情況下,可包含同一種類的無機物層,亦可包含不同種類的無機物層。The inorganic substance layer is formed from the inorganic substance. The inorganic layer 4 may include a single inorganic layer or multiple inorganic layers. In addition, when the inorganic layer 4 includes a plurality of inorganic layers, it may include the same type of inorganic layer or may include different types of inorganic layers.
就阻擋性、密接性、操作性等的平衡的觀點而言,無機物層4的厚度通常為1 nm以上且1000 nm以下,較佳為1 nm以上且500 nm以下。 於第三實施方式中,無機物層的厚度可藉由穿透式電子顯微鏡或掃描式電子顯微鏡得到的觀察圖像而求出。 From the viewpoint of a balance between barrier properties, adhesion, operability, etc., the thickness of the inorganic layer 4 is usually from 1 nm to 1000 nm, preferably from 1 nm to 500 nm. In the third embodiment, the thickness of the inorganic layer can be determined from an observation image obtained by a transmission electron microscope or a scanning electron microscope.
無機物層的形成方法並無特別限定,例如可藉由真空蒸鍍法、離子鍍法、濺鍍法、化學氣相沈積法、物理氣相蒸鍍法、化學氣相蒸鍍法(CVD法)、電漿CVD法、溶膠-凝膠法等而於基材層2的單面或兩面形成無機物層4。其中,理想的是濺鍍法、離子鍍法、化學氣相蒸鍍法(CVD)、物理氣相蒸鍍法(PVD)、電漿CVD法等於減壓下的製膜。藉此,預計藉由氮化矽或氮氧化矽等含有矽的化學活性的分子種迅速地反應,而改良無機物層4的表面的平滑性,可使孔變少。 為了迅速地進行該些結合反應,理想的是該無機原子或化合物為化學活性的分子種或原子種。 The method of forming the inorganic layer is not particularly limited. For example, it can be vacuum evaporation, ion plating, sputtering, chemical vapor deposition, physical vapor deposition, or chemical vapor deposition (CVD). , plasma CVD method, sol-gel method, etc. to form the inorganic layer 4 on one or both sides of the base material layer 2 . Among them, sputtering, ion plating, chemical vapor deposition (CVD), physical vapor deposition (PVD), plasma CVD, or film formation under reduced pressure are ideal. Therefore, it is expected that chemically active molecular species containing silicon such as silicon nitride or silicon oxynitride react rapidly to improve the smoothness of the surface of the inorganic layer 4 and reduce the number of holes. In order to rapidly carry out these binding reactions, it is ideal that the inorganic atom or compound is a chemically active molecular species or atomic species.
(基材層) 基材層2只要可塗敷氣體阻擋用塗材的溶液,則可並無特別限定地使用。例如可列舉:熱硬化性樹脂、熱塑性樹脂或紙等有機質材料;玻璃、陶、陶瓷、氧化矽、氮氧化矽、氮化矽、水泥、鋁、氧化鋁、鐵、銅、不鏽鋼等金屬等無機質材料;包含有機質材料彼此或有機質材料與無機質材料的組合的多層結構的基材層等。該些中,例如於包裝材料或面板等各種膜用途的情況下,較佳為使用熱硬化性樹脂、熱塑性樹脂的塑膠膜或紙等有機質材料。 (Substrate layer) The base material layer 2 can be used without particular limitation as long as it can be coated with a solution of the gas barrier coating material. Examples include: organic materials such as thermosetting resin, thermoplastic resin, or paper; inorganic materials such as glass, pottery, ceramics, silicon oxide, silicon oxynitride, silicon nitride, cement, aluminum, alumina, iron, copper, stainless steel, and other metals Material; a base material layer of a multilayer structure including a combination of organic materials or a combination of organic materials and inorganic materials, etc. Among these, for example, in the case of various film applications such as packaging materials and panels, it is preferable to use thermosetting resins, thermoplastic resins, plastic films, or organic materials such as paper.
作為熱硬化性樹脂,可使用公知的熱硬化性樹脂。例如可列舉:環氧樹脂、不飽和聚酯樹脂、酚樹脂、脲-三聚氰胺樹脂、聚胺基甲酸酯樹脂、矽酮樹脂、聚醯亞胺等。As the thermosetting resin, a known thermosetting resin can be used. Examples include epoxy resin, unsaturated polyester resin, phenol resin, urea-melamine resin, polyurethane resin, silicone resin, polyimide, and the like.
作為熱塑性樹脂,可使用公知的熱塑性樹脂。例如可列舉:聚烯烴(聚乙烯、聚丙烯、聚(4-甲基-1-戊烯)、聚(1-丁烯)等)、聚酯(聚對苯二甲酸乙二酯、聚對苯二甲酸丁二酯、聚萘二甲酸乙二酯等)、聚醯胺(尼龍-6、尼龍-66、聚己二醯間苯二甲胺等)、聚氯乙烯、聚醯亞胺、乙烯-乙酸乙烯酯共聚物或其皂化物、聚乙烯醇、聚丙烯腈、聚碳酸酯、聚苯乙烯、離子聚合物、氟樹脂或該些的混合物等。As the thermoplastic resin, a known thermoplastic resin can be used. Examples include polyolefins (polyethylene, polypropylene, poly(4-methyl-1-pentene), poly(1-butene), etc.), polyesters (polyethylene terephthalate, poly(p-p) Butylene phthalate, polyethylene naphthalate, etc.), polyamide (nylon-6, nylon-66, polyethylene glycol m-phenylenediamine, etc.), polyvinyl chloride, polyimide, Ethylene-vinyl acetate copolymer or its saponified product, polyvinyl alcohol, polyacrylonitrile, polycarbonate, polystyrene, ionomer, fluororesin, or a mixture thereof, etc.
該些中,就使透明性良好的觀點而言,較佳為選自由聚丙烯、聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯、聚醯胺、聚醯亞胺及聚對苯二甲酸丁二酯所組成的群組中的一種或兩種以上的樹脂,就耐針孔性、耐破裂性及耐熱性等優異的觀點而言,較佳為選自由聚醯胺、聚對苯二甲酸乙二酯及聚對苯二甲酸丁二酯所組成的群組中的一種或兩種以上的樹脂。 另外,包含熱塑性樹脂的基材層2根據氣體阻擋性積層體8的用途可為單層,亦可為兩種以上的層。 另外,亦可將由所述熱硬化性樹脂、熱塑性樹脂形成的膜在至少一個方向、較佳為雙軸方向上拉伸而製成基材層。 Among these, from the viewpoint of improving transparency, it is preferable to be selected from the group consisting of polypropylene, polyethylene terephthalate, polyethylene naphthalate, polyamide, polyimide, and poly(p-p). One or two or more resins in the group consisting of butylene phthalate are preferably selected from the group consisting of polyamide, polyamide and polyamide from the viewpoint of excellent pinhole resistance, crack resistance and heat resistance. One or more resins in the group consisting of ethylene terephthalate and polybutylene terephthalate. In addition, the base material layer 2 containing the thermoplastic resin may be a single layer or two or more layers depending on the use of the gas barrier laminate 8 . In addition, a film made of the thermosetting resin or thermoplastic resin may be stretched in at least one direction, preferably in a biaxial direction, to form a base material layer.
作為第三實施方式的基材層2,就透明性、剛性、耐熱性優異的觀點而言,較佳為由選自聚丙烯、聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯、聚醯胺、聚醯亞胺及聚對苯二甲酸丁二酯中的一種或兩種以上的熱塑性樹脂形成的雙軸拉伸膜,更佳為由選自聚醯胺、聚對苯二甲酸乙二酯及聚對苯二甲酸丁二酯中的一種或兩種以上的熱塑性樹脂形成的雙軸拉伸膜。The base material layer 2 of the third embodiment is preferably made of polypropylene, polyethylene terephthalate, and polyethylene naphthalate from the viewpoint of excellent transparency, rigidity, and heat resistance. , a biaxially stretched film formed of one or more thermoplastic resins selected from the group consisting of polyamide, polyimide and polybutylene terephthalate, and more preferably a biaxially stretched film made of polyamide, polyimide and polybutylene terephthalate. A biaxially stretched film formed of one or more thermoplastic resins selected from ethylene formate and polybutylene terephthalate.
另外,於基材層2的表面亦可塗佈聚偏二氯乙烯、聚乙烯醇、乙烯-乙烯醇共聚物、丙烯酸樹脂、胺基甲酸酯系樹脂等。In addition, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, acrylic resin, urethane resin, etc. may also be coated on the surface of the base material layer 2 .
進而,基材層2為了改良接著性,亦可進行表面處理。具體而言,亦可進行電暈處理、火焰處理、電漿處理、底漆塗佈處理等表面活性化處理。Furthermore, the base material layer 2 may be surface-treated in order to improve the adhesiveness. Specifically, surface activation treatments such as corona treatment, flame treatment, plasma treatment, and primer coating treatment can also be performed.
就獲得良好的膜特性的觀點而言,基材層2的厚度較佳為1 μm~1000 μm,更佳為1 μm~500 μm,進而佳為1 μm~300 μm。From the viewpoint of obtaining good film properties, the thickness of the base material layer 2 is preferably 1 μm to 1000 μm, more preferably 1 μm to 500 μm, and still more preferably 1 μm to 300 μm.
基材層2的形狀並無特別限定,例如可列舉片或膜形狀、托盤、杯、中空體等形狀。The shape of the base material layer 2 is not particularly limited, and examples include a sheet or film shape, a tray, a cup, a hollow body, and the like.
(底塗層) 於氣體阻擋性積層體8中,就提高基材層2與無機物層4的接著性的觀點而言,可於基材層2的表面形成底塗層3。底塗層較佳為由環氧(甲基)丙烯酸酯系化合物或胺基甲酸酯(甲基)丙烯酸酯系化合物形成的層。 (base coat) In the gas barrier laminated body 8 , from the viewpoint of improving the adhesion between the base material layer 2 and the inorganic layer 4 , the primer layer 3 may be formed on the surface of the base material layer 2 . The undercoat layer is preferably a layer formed of an epoxy (meth)acrylate compound or a urethane (meth)acrylate compound.
作為所述底塗層3,較佳為將選自環氧(甲基)丙烯酸酯系化合物及胺基甲酸酯(甲基)丙烯酸酯系化合物中的至少一種硬化而成的層。The undercoat layer 3 is preferably a layer obtained by hardening at least one selected from the group consisting of epoxy (meth)acrylate compounds and urethane (meth)acrylate compounds.
作為環氧(甲基)丙烯酸酯系化合物,可例示使雙酚A型環氧化合物、雙酚F型環氧化合物、雙酚S型環氧化合物、苯酚酚醛清漆型環氧化合物、甲酚酚醛清漆型環氧化合物、脂肪族環氧化合物等環氧化合物與丙烯酸或甲基丙烯酸反應而獲得的化合物,進而可例示使所述環氧化合物與羧酸或其酸酐反應而獲得的酸改質環氧(甲基)丙烯酸酯。該些環氧(甲基)丙烯酸酯系的化合物與光聚合起始劑及視需要包含其他光聚合起始劑或熱反應性單體的稀釋劑一同塗佈於基材層的表面,然後照射紫外線等而藉由交聯反應形成底塗層。Examples of the epoxy (meth)acrylate compound include a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, a bisphenol S type epoxy compound, a phenol novolak type epoxy compound, and a cresol novolac type epoxy compound. Compounds obtained by reacting epoxy compounds such as varnish-type epoxy compounds and aliphatic epoxy compounds with acrylic acid or methacrylic acid, and further examples include acid-modified rings obtained by reacting the epoxy compound with carboxylic acid or its anhydride. Oxy(meth)acrylate. These epoxy (meth)acrylate compounds are coated on the surface of the base material layer together with a photopolymerization initiator and a diluent including other photopolymerization initiators or heat-reactive monomers if necessary, and then irradiated Ultraviolet rays, etc. form a primer layer through a cross-linking reaction.
作為胺基甲酸酯(甲基)丙烯酸酯系化合物,例如可列舉將包含多元醇化合物與聚異氰酸酯化合物的寡聚物(以下亦稱為聚胺基甲酸酯系寡聚物)丙烯酸酯化而成者等。Examples of the urethane (meth)acrylate-based compound include acrylation of an oligomer containing a polyol compound and a polyisocyanate compound (hereinafter also referred to as a polyurethane-based oligomer). Those who become mature and so on.
聚胺基甲酸酯系寡聚物可由聚異氰酸酯化合物與多元醇化合物的縮合產物獲得。作為具體的聚異氰酸酯化合物,可例示亞甲基-雙(對苯二異氰酸酯)、六亞甲基二異氰酸酯-己三醇的加成物、六亞甲基二異氰酸酯、甲苯二異氰酸酯、甲苯二異氰酸酯三羥甲基丙烷的加合物、1,5-萘二異氰酸酯、硫基丙基二異氰酸酯、乙基苯-2,4-二異氰酸酯、2,4-甲苯二異氰酸酯二聚物、氫化伸二甲苯基二異氰酸酯、三(4-苯基異氰酸酯)硫代磷酸酯等,另外,作為具體的多元醇化合物,有聚氧四亞甲基二醇等聚醚系多元醇、聚己二酸酯多元醇、聚碳酸酯多元醇等聚酯系多元醇、丙烯酸酯類與甲基丙烯酸羥基乙酯的共聚物等。作為構成丙烯酸酯的單量體,可例示(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸-2-乙基己酯、(甲基)丙烯酸甲氧基乙酯、(甲基)丙烯酸丁氧基乙酯、(甲基)丙烯酸苯酯等。The polyurethane oligomer can be obtained from a condensation product of a polyisocyanate compound and a polyol compound. Specific polyisocyanate compounds include methylene-bis(terphenylene diisocyanate), hexamethylene diisocyanate-hexanetriol adduct, hexamethylene diisocyanate, toluene diisocyanate, and toluene diisocyanate. Adduct of trimethylolpropane, 1,5-naphthalene diisocyanate, thiopropyl diisocyanate, ethylbenzene-2,4-diisocyanate, 2,4-toluene diisocyanate dimer, hydrogenated xylene diisocyanate, tris(4-phenyl isocyanate)thiophosphate, etc. Specific polyol compounds include polyether polyols such as polyoxytetramethylene glycol and polyadipate polyols. , polyester polyols such as polycarbonate polyol, copolymers of acrylates and hydroxyethyl methacrylate, etc. Examples of the monomer constituting the acrylate include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and (meth)acrylate. Methoxyethyl acrylate, butoxyethyl (meth)acrylate, phenyl (meth)acrylate, etc.
該些環氧(甲基)丙烯酸酯系化合物、胺基甲酸酯(甲基)丙烯酸酯系化合物視需要而併用。另外,作為使該些化合物聚合的方法,可列舉公知的各種方法,具體而言為藉由照射包含電離性放射線的能量線或加熱等來進行的方法。These epoxy (meth)acrylate compounds and urethane (meth)acrylate compounds are used in combination as necessary. Examples of methods for polymerizing these compounds include various known methods, specifically methods by irradiating energy rays containing ionizing radiation, heating, or the like.
於利用紫外線進行硬化來形成底塗層的情況下,較佳為以苯乙酮類、二苯甲酮類、米氏苯甲醯基苯甲酸酯、α-戊基肟酯或噻噸酮類等為光聚合起始劑,另外以正丁胺、三乙胺、三正丁基膦等為光增感劑,進行混合而使用。另外,於第三實施方式中,亦可併用環氧(甲基)丙烯酸酯系化合物與胺基甲酸酯(甲基)丙烯酸酯系化合物來進行。When hardening with ultraviolet rays is used to form the undercoat layer, acetophenones, benzophenones, Michaelis benzoyl benzoate, α-amyl oxime ester or thioxanthone are preferred. are used as photopolymerization initiators, and n-butylamine, triethylamine, tri-n-butylphosphine, etc. are used as photosensitizers, and are mixed and used. In the third embodiment, an epoxy (meth)acrylate compound and a urethane (meth)acrylate compound can also be used together.
另外,對該些環氧(甲基)丙烯酸酯系化合物或胺基甲酸酯(甲基)丙烯酸酯系化合物實施利用(甲基)丙烯酸系單體進行稀釋。作為此種(甲基)丙烯酸系單體,可例示(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸-2-乙基己酯、(甲基)丙烯酸甲氧基乙酯、(甲基)丙烯酸丁氧基乙酯、(甲基)丙烯酸苯酯,作為多官能單體,可例示三羥甲基丙烷三(甲基)丙烯酸酯、己二醇(甲基)丙烯酸酯、三丙二醇二(甲基)丙烯酸酯、二乙二醇二(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯等。In addition, these epoxy (meth)acrylate compounds or urethane (meth)acrylate compounds are diluted with (meth)acrylic monomers. Examples of such a (meth)acrylic monomer include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate. , methoxyethyl (meth)acrylate, butoxyethyl (meth)acrylate, phenyl (meth)acrylate, as the polyfunctional monomer, trimethylolpropane tri(meth)acrylic acid can be exemplified Esters, hexylene glycol (meth)acrylate, tripropylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol hexa(meth)acrylate Acrylate, 1,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, etc.
其中,於使用胺基甲酸酯(甲基)丙烯酸酯系化合物作為底塗層的情況下,所獲得的氣體阻擋性積層體8的氧氣體阻擋性進一步改良。 第三實施方式的底塗層的厚度以塗佈量計通常處於0.01 g/m 2~100 g/m 2、較佳為0.05 g/m 2~50 g/m 2的範圍。 Among them, when a urethane (meth)acrylate compound is used as the undercoat layer, the oxygen gas barrier properties of the gas barrier laminate 8 obtained are further improved. The thickness of the undercoat layer of the third embodiment is usually in the range of 0.01 g/m 2 to 100 g/m 2 in terms of coating amount, preferably 0.05 g/m 2 to 50 g/m 2 .
(接著劑層) 另外,亦可於氣體阻擋性層5上設置接著劑層6。接著劑層6只要包含公知的接著劑即可。作為接著劑,可列舉由有機鈦系樹脂、聚乙烯亞胺系樹脂、胺基甲酸酯系樹脂、環氧系樹脂、丙烯酸系樹脂、聚酯系樹脂、含有噁唑啉基的樹脂、改質矽酮樹脂及鈦酸烷基酯、聚酯系聚丁二烯等組成的層壓接著劑、或一液型、二液型的多元醇與多元異氰酸酯、水系胺基甲酸酯、離子聚合物等。或者,亦可使用以丙烯酸系樹脂、乙酸乙烯酯系樹脂、胺基甲酸酯系樹脂、聚酯樹脂等為主原料的水性接著劑。 (adhesive layer) In addition, the adhesive layer 6 may be provided on the gas barrier layer 5 . The adhesive layer 6 only needs to contain a known adhesive. Examples of adhesives include organic titanium-based resins, polyethyleneimine-based resins, urethane-based resins, epoxy-based resins, acrylic resins, polyester-based resins, oxazoline group-containing resins, modified Laminated adhesives composed of silicone resin, alkyl titanate, polyester-based polybutadiene, etc., or one-liquid or two-liquid polyols and polyisocyanates, water-based urethanes, ion polymerization Things etc. Alternatively, a water-based adhesive whose main raw material is acrylic resin, vinyl acetate resin, urethane resin, polyester resin, etc. can also be used.
另外,亦可根據氣體阻擋性積層體8的用途,於接著劑中添加硬化劑、矽烷偶合劑等其他添加物。於氣體阻擋性積層體的用途為在蒸煮等熱水處理中使用的情況下,就耐熱性或耐水性的觀點而言,較佳為以聚胺基甲酸酯系接著劑為代表的乾式層壓用接著劑,更佳為溶劑系的二液硬化型的聚胺基甲酸酯系接著劑。In addition, other additives such as a hardener and a silane coupling agent may be added to the adhesive according to the use of the gas barrier laminate 8 . When the gas barrier laminate is used for hot water treatment such as steaming, a dry layer represented by a polyurethane adhesive is preferred from the viewpoint of heat resistance or water resistance. The pressure adhesive is more preferably a solvent-based two-liquid curing type polyurethane adhesive.
關於第三實施方式的氣體阻擋性積層體8,無論層壓結構如何蒸煮後的氣體阻擋性能均優異。因此,可較佳地應用於包裝材料、特別是要求高氣體阻擋性的內容物的食品包裝材料。另外,亦可適宜用作醫療用途、工業用途、日常雜貨用途等各種包裝材料。The gas barrier laminate 8 according to the third embodiment has excellent gas barrier performance after retort regardless of the laminate structure. Therefore, it can be suitably applied to packaging materials, especially food packaging materials for contents requiring high gas barrier properties. In addition, it is also suitable for various packaging materials such as medical use, industrial use, and daily groceries.
另外,第三實施方式的氣體阻擋性積層體8例如可適宜用作:要求高阻擋性能的真空隔熱用膜;用以密封電致發光元件、太陽電池等的密封用膜等。In addition, the gas barrier laminate 8 of the third embodiment can be suitably used as, for example, a vacuum heat-insulating film requiring high barrier performance; a sealing film for sealing electroluminescent elements, solar cells, and the like.
<第四實施方式> 圖13是示意性地表示第四實施方式的氣體阻擋性積層體的結構的一例的剖面圖。圖13所示的氣體阻擋性積層體100包括:基材層101;氣體阻擋性層103,設置於基材層101的至少一個面;以及無機物層102,設置於基材層101與氣體阻擋性層103之間。而且,氣體阻擋性層103包括混合物的硬化物,所述混合物包含多羧酸、多胺化合物、多價金屬化合物及含有一個以上的-P-OH基的磷化合物或其鹽。 關於各層的具體的結構,將後述。 <Fourth Embodiment> FIG. 13 is a cross-sectional view schematically showing an example of the structure of the gas barrier laminate according to the fourth embodiment. The gas barrier laminate 100 shown in FIG. 13 includes: a base material layer 101; a gas barrier layer 103 provided on at least one surface of the base material layer 101; and an inorganic layer 102 provided between the base material layer 101 and the gas barrier layer. between layers 103. Furthermore, the gas barrier layer 103 includes a hardened product of a mixture containing a polycarboxylic acid, a polyamine compound, a polyvalent metal compound, a phosphorus compound containing one or more -P-OH groups, or a salt thereof. The specific structure of each layer will be described later.
於氣體阻擋性積層體100中,基材層101、無機物層102及氣體阻擋性層103依次積層,並且氣體阻擋性層103包含所述混合物的硬化物,因此阻擋性及生產性的平衡優異,於各種層結構中可發揮較佳的阻擋性。 更具體而言,氣體阻擋性積層體100是蒸煮處理後的氧阻擋性或水蒸氣阻擋性等阻擋性能優異者。另外,於氣體阻擋性積層體100中,氣體阻擋性層103包含所述混合物的硬化物,因此例如即便獲得氣體阻擋性層103時的硬化時間、具體而言加熱處理時間短,亦可獲得阻擋性優異的氣體阻擋性積層體100。 另外,氣體阻擋性層103包括混合物的硬化物,所述混合物包含多羧酸、多胺化合物、多價金屬化合物、及含有一個以上的-P-OH基的磷化合物或其鹽,因此亦變得能夠獲得例如阻擋性及耐水性優異的氣體阻擋性積層體100。 In the gas barrier laminate 100, the base material layer 101, the inorganic layer 102, and the gas barrier layer 103 are laminated in this order, and the gas barrier layer 103 contains a cured product of the mixture. Therefore, the balance between barrier properties and productivity is excellent. It can exert better barrier properties in various layer structures. More specifically, the gas barrier laminate 100 has excellent barrier properties such as oxygen barrier properties and water vapor barrier properties after retort treatment. In addition, in the gas barrier layered body 100, the gas barrier layer 103 contains a cured product of the mixture. Therefore, for example, even if the curing time, specifically the heat treatment time, when obtaining the gas barrier layer 103 is short, the barrier can be obtained. The gas barrier laminate 100 has excellent gas barrier properties. In addition, the gas barrier layer 103 includes a hardened product of a mixture including a polycarboxylic acid, a polyamine compound, a polyvalent metal compound, and a phosphorus compound or a salt thereof containing one or more -P-OH groups. Therefore, it also becomes For example, the gas barrier laminate 100 having excellent barrier properties and water resistance can be obtained.
圖14是示意性地表示氣體阻擋性積層體的其他結構例的剖面圖。圖14所示的氣體阻擋性積層體110的基本結構與參照圖13敘述的氣體阻擋性積層體100相同,但於更包括設置於基材層101與無機物層102之間的底塗層104的方面不同。 於氣體阻擋性積層體110中,亦可獲得與氣體阻擋性積層體100同樣的效果。此外,於氣體阻擋性積層體110中,藉由在基材層101與無機物層102之間設置底塗層104,可進一步提高基材層101與無機物層102的接著性。 以下,對氣體阻擋性積層體中所含的層的結構進行更具體的說明。首先,對氣體阻擋性層103進行說明。 FIG. 14 is a cross-sectional view schematically showing another structural example of the gas barrier laminate. The basic structure of the gas barrier laminate 110 shown in FIG. 14 is the same as the gas barrier laminate 100 described with reference to FIG. 13 , but further includes a primer layer 104 provided between the base material layer 101 and the inorganic layer 102 . Different aspects. Also in the gas barrier laminated body 110, the same effect as that of the gas barrier laminated body 100 can be obtained. In addition, in the gas barrier laminate 110, by providing the primer layer 104 between the base material layer 101 and the inorganic material layer 102, the adhesion between the base material layer 101 and the inorganic material layer 102 can be further improved. Hereinafter, the structure of the layers included in the gas barrier laminate will be described in more detail. First, the gas barrier layer 103 will be described.
(氣體阻擋性層) 氣體阻擋性層103包括混合物的硬化物,所述混合物包含多羧酸、多胺化合物、及多價金屬化合物。更具體而言,氣體阻擋性層103是包含所述硬化物的膜(氣體阻擋性膜10)。 更具體而言,氣體阻擋性層103例如可於無機物層102等配置於氣體阻擋性層103的正下方的層上塗佈硬化前的混合物即氣體阻擋用塗材後,進行乾燥、熱處理來使氣體阻擋用塗材硬化而獲得。 (gas barrier layer) The gas barrier layer 103 includes a hardened product of a mixture including a polycarboxylic acid, a polyamine compound, and a polyvalent metal compound. More specifically, the gas barrier layer 103 is a film (gas barrier film 10 ) including the cured product. More specifically, the gas barrier layer 103 can be formed by applying a pre-cured mixture, that is, a gas barrier coating material on a layer such as the inorganic layer 102 and other layers arranged directly below the gas barrier layer 103, and then drying and heat-treating it. It is obtained by hardening the gas barrier coating material.
於氣體阻擋性層103的紅外線吸收光譜中,於將1300 cm -1以上且1490 cm -1以下的範圍的吸光度的最大峰高度設為α,將1690 cm -1以上且1780 cm -1以下的範圍的吸光度的最大峰高度設為γ時,就塗敷前的氣體阻擋塗材的液體穩定性的觀點而言,由γ/α所表示的游離羧基相對於NH 3錯合物的比例較佳為0.00以上,更佳為0.01以上,進而佳為0.02以上。 另外,就於塗敷後獲得的氣體阻擋性層103的阻擋性提高的觀點而言,所述γ/α較佳為1.00以下,更佳為0.80以下,進而佳為0.60以下,進而更佳為0.40以下,進一步尤佳為0.20以下,進一步更佳為0.10以下。 In the infrared absorption spectrum of the gas barrier layer 103, let the maximum peak height of the absorbance in the range of 1300 cm -1 or more and 1490 cm -1 be α, and let α be the maximum peak height of the absorbance in the range of 1690 cm -1 or more and 1780 cm -1 When the maximum peak height of the absorbance in the range is γ, from the viewpoint of the liquid stability of the gas barrier coating material before coating, the ratio of free carboxyl groups to NH 3 complex represented by γ/α is preferable It is 0.00 or more, more preferably, it is 0.01 or more, and still more preferably, it is 0.02 or more. In addition, from the viewpoint of improving the barrier properties of the gas barrier layer 103 obtained after coating, the γ/α is preferably 1.00 or less, more preferably 0.80 or less, even more preferably 0.60 or less, and still more preferably 0.60 or less. 0.40 or less, more preferably 0.20 or less, still more preferably 0.10 or less.
另外,於氣體阻擋性層103的紅外線吸收光譜中,於將吸收帶1493 cm -1以上且1780 cm -1以下的範圍的總峰面積設為A,將吸收帶1598 cm -1以上且1690 cm -1以下的範圍的總峰面積設為B,將吸收帶1690 cm -1以上且1780 cm -1以下的範圍的總峰面積設為C,將吸收帶1493 cm -1以上且1598 cm -1以下的範圍的總峰面積設為D時,以下示出面積比的較佳例。 於氣體阻擋性層103的紅外線吸收光譜中,就更進一步提高蒸煮處理後的氣體阻擋性能的觀點而言,由B/A所表示的醯胺鍵的面積比率較佳為0.200以上,更佳為0.220以上,進而佳為0.250以上。 另外,就更進一步提高阻擋性及生產性的平衡的觀點而言,所述由B/A所表示的醯胺鍵的面積比率較佳為0.370以下,更佳為0.350以下,進而佳為0.300以下。 In addition, in the infrared absorption spectrum of the gas barrier layer 103, let the total peak area in the range of the absorption band 1493 cm -1 or more and 1780 cm -1 be A, and let the absorption band 1598 cm -1 or more and 1690 cm Let the total peak area in the range of -1 and below be B, let the total peak area in the range of the absorption band 1690 cm -1 and above and 1780 cm -1 be C, and let the absorption band 1493 cm -1 and above and 1598 cm -1 When the total peak area in the following range is assumed to be D, preferred examples of the area ratio are shown below. In the infrared absorption spectrum of the gas barrier layer 103, from the viewpoint of further improving the gas barrier performance after the retort treatment, the area ratio of the amide bond represented by B/A is preferably 0.200 or more, more preferably 0.220 or more, preferably 0.250 or more. In addition, from the viewpoint of further improving the balance between barrier properties and productivity, the area ratio of the amide bond represented by B/A is preferably 0.370 or less, more preferably 0.350 or less, and even more preferably 0.300 or less. .
於氣體阻擋性層103的紅外線吸收光譜中,就更進一步提高蒸煮處理後的氣體阻擋性能的觀點而言,由C/A所表示的羧酸的面積比率較佳為0.150以下,更佳為0.100以下,進而佳為0.080以下,進而更佳為0.060以下。 另外,所述由C/A所表示的羧酸的面積比率的下限並無限定,例如為0.000以上,另外,例如亦可為0.0001以上。 In the infrared absorption spectrum of the gas barrier layer 103, from the viewpoint of further improving the gas barrier performance after retort treatment, the area ratio of carboxylic acid represented by C/A is preferably 0.150 or less, more preferably 0.100. or less, more preferably 0.080 or less, still more preferably 0.060 or less. In addition, the lower limit of the area ratio of the carboxylic acid represented by C/A is not limited, but may be, for example, 0.000 or more. Alternatively, it may be, for example, 0.0001 or more.
於氣體阻擋性層103的紅外線吸收光譜中,就更進一步提高阻擋性及生產性的平衡的觀點而言,由D/A所表示的羧酸鹽的面積比率較佳為0.580以上,更佳為0.600以上。 另外,就更進一步提高蒸煮處理後的氣體阻擋性能的觀點而言,所述D/A較佳為0.800以下,更佳為0.780以下,進而佳為0.760以下,進而更佳為0.740以下。 In the infrared absorption spectrum of the gas barrier layer 103, from the viewpoint of further improving the balance between barrier properties and productivity, the area ratio of the carboxylate represented by D/A is preferably 0.580 or more, more preferably 0.600 and above. In addition, from the viewpoint of further improving the gas barrier performance after retort treatment, the D/A is preferably 0.800 or less, more preferably 0.780 or less, further preferably 0.760 or less, still more preferably 0.740 or less.
進而,就使氣體阻擋性積層體的生產性及阻擋性的平衡進而佳的觀點而言,亦較佳為由B/A所表示的醯胺鍵的面積比率為0.200以上且0.370以下,由C/A所表示的羧酸的面積比率為0.150以下,由D/A所表示的羧酸鹽的面積比率為0.580以上且0.800以下。Furthermore, from the viewpoint of further improving the balance between productivity and barrier properties of the gas barrier laminate, it is also preferred that the area ratio of the amide bond represented by B/A is 0.200 or more and 0.370 or less, and C The area ratio of the carboxylic acid represented by /A is 0.150 or less, and the area ratio of the carboxylic acid salt represented by D/A is 0.580 or more and 0.800 or less.
於氣體阻擋性層103的紅外線吸收光譜中,就阻擋性提高的觀點而言,相對於由B/A所表示的醯胺鍵的面積比率而言的由D/A所表示的羧酸鹽的面積比率較佳為1.2以上,更佳為1.5以上,更佳為2.0以上。 另外,就蒸煮後的阻擋性提高的觀點而言,相對於由B/A所表示的醯胺鍵的面積比率而言的由D/A所表示的羧酸鹽的面積比率較佳為4.0以下,更佳為3.5以下,進而更佳為3.0以下。 In the infrared absorption spectrum of the gas barrier layer 103, from the viewpoint of improving the barrier properties, the area ratio of the carboxylate represented by D/A with respect to the area ratio of the amide bond represented by B/A The area ratio is preferably 1.2 or more, more preferably 1.5 or more, and more preferably 2.0 or more. In addition, from the viewpoint of improving barrier properties after cooking, the area ratio of the carboxylate represented by D/A to the area ratio of the amide bond represented by B/A is preferably 4.0 or less. , more preferably 3.5 or less, and still more preferably 3.0 or less.
此處,於氣體阻擋性層103中,紅外線吸收光譜中的基於未反應的羧酸的νC=O的吸收於1700 cm -1附近可見,基於作為交聯結構的醯胺鍵的νC=O的吸收於1630 cm -1~1685 cm -1附近可見,基於羧酸鹽的νC=O的吸收於1540 cm -1~1560 cm -1附近可見,基於形成錯合物的氨的δN-H的吸收於1300 cm -1~1490 cm -1附近可見。 Here, in the gas barrier layer 103, the absorption of νC=O based on the unreacted carboxylic acid in the infrared absorption spectrum is visible near 1700 cm -1 , and the absorption based on νC=O based on the amide bond which is the cross-linked structure Absorption is visible around 1630 cm -1 ~ 1685 cm -1 , νC=O absorption based on carboxylate is visible around 1540 cm -1 ~ 1560 cm -1 , absorption based on δN-H of ammonia forming a complex Visible around 1300 cm -1 ~ 1490 cm -1 .
認為紅外線吸收光譜中的1300 cm -1以上且1490 cm -1以下的範圍的吸光度的最大峰高度α表示形成錯合物的氨的存在量的一個指標,1690 cm -1以上且1780 cm -1以下的範圍的最大峰高度γ表示游離的、即未反應的羧酸的存在量的一個指標。 The maximum peak height α of the absorbance in the range of 1300 cm -1 to 1490 cm -1 in the infrared absorption spectrum is considered to be an index of the amount of ammonia that forms a complex, and 1690 cm -1 to 1780 cm -1 The maximum peak height γ in the following range represents an index of the amount of free, that is, unreacted, carboxylic acid present.
於第四實施方式中,所述最大峰高度α及γ具體而言可按照以下的順序測定。即,自氣體阻擋性層103中切出1 cm×3 cm的測定用樣品。繼而,藉由紅外線全反射測定(ATR法)獲得該氣體阻擋性層103的表面的紅外線吸收光譜。於所獲得的紅外線吸收光譜中,將用直線連結900 cm -1的吸光度與1900 cm -1的吸光度的線作為基線,求出各吸光度的範圍的最大峰高度。 In the fourth embodiment, the maximum peak heights α and γ can be specifically measured according to the following procedure. That is, a measurement sample of 1 cm×3 cm was cut out from the gas barrier layer 103 . Then, the infrared absorption spectrum of the surface of the gas barrier layer 103 is obtained by infrared total reflection measurement (ATR method). In the obtained infrared absorption spectrum, a straight line connecting the absorbance of 900 cm -1 and the absorbance of 1900 cm -1 was used as a baseline, and the maximum peak height in each absorbance range was calculated.
另外,認為紅外線吸收光譜中的吸收帶1493 cm -1以上且1780 cm -1以下的範圍的總峰面積A表示羧酸、醯胺鍵及羧酸鹽的合計量的一個指標,吸收帶1598 cm -1以上且1690 cm -1以下的範圍的總峰面積B表示醯胺鍵的存在量的一個指標。進而,認為吸收帶1690 cm -1以上且1780 cm -1以下的範圍的總峰面積C表示未反應的羧酸的存在量的一個指標,吸收帶1493 cm -1以上且1598 cm -1以下的範圍的總峰面積D表示羧酸鹽的存在量的一個指標。 In addition, the total peak area A in the range of the absorption band from 1493 cm -1 to 1780 cm -1 in the infrared absorption spectrum is considered to be an index of the total amount of carboxylic acid, amide bond and carboxylate, and the absorption band is 1598 cm The total peak area B in the range from -1 to 1690 cm -1 is an indicator of the amount of amide bonds present. Furthermore, it is considered that the total peak area C in the range of the absorption band from 1690 cm -1 to 1780 cm -1 represents an index of the amount of unreacted carboxylic acid, and the absorption band from 1493 cm -1 to 1598 cm -1 is considered to be an indicator of the amount of unreacted carboxylic acid present. The total peak area D of the range represents an indicator of the amount of carboxylate present.
於第四實施方式中,所述總峰面積A~總峰面積D具體而言可按照以下的順序測定。 首先,自氣體阻擋性層103中切出1 cm×3 cm的測定用樣品。繼而,藉由紅外線全反射測定(ATR法)獲得該氣體阻擋性層103的表面的紅外線吸收光譜。根據所獲得的紅外線吸收光譜,按照以下的順序(1)~順序(4)計算出所述總峰面積A~總峰面積D。 (1)用直線(N)連結1780 cm -1與1493 cm -1的吸光度,將吸收帶1493 cm -1以上且1780 cm -1以下的範圍的吸光光譜與N所包圍的面積作為總峰面積A。 (2)自1690 cm -1的吸光度(Q)垂直地引出直線(O),將N與O的交叉點設為P,自1598 cm -1的吸光度(R)垂直地引出直線(S),將N與S的交叉點設為T,將吸收帶1598 cm -1以上且1690 cm -1以下的範圍的吸收光譜與直線S、點T、直線N、點P、直線O、吸光度Q、吸光度R所包圍的面積作為總峰面積B。 (3)將吸收帶1690 cm -1以上且1780 cm -1以下的範圍的吸收光譜與吸光度Q、直線O、點P、直線N所包圍的面積作為總峰面積C。 (4)將吸收帶1493 cm -1以上且1598 cm -1以下的範圍的吸收光譜與吸光度R、直線S、點T、直線N所包圍的面積作為總峰面積D。 繼而,根據藉由所述方法而求出的面積求出面積比B/A、面積比C/A、面積比D/A。 In the fourth embodiment, the total peak area A to total peak area D can be specifically measured according to the following procedure. First, a measurement sample of 1 cm×3 cm was cut out from the gas barrier layer 103 . Then, the infrared absorption spectrum of the surface of the gas barrier layer 103 is obtained by infrared total reflection measurement (ATR method). Based on the obtained infrared absorption spectrum, the total peak areas A to D are calculated according to the following procedures (1) to (4). (1) Connect the absorbance at 1780 cm -1 and 1493 cm -1 with a straight line (N), and take the area surrounded by the absorption spectrum in the range of the absorption band 1493 cm -1 and above and below 1780 cm -1 and N as the total peak area. A. (2) Draw a straight line (O) vertically from the absorbance (Q) of 1690 cm -1 , let the intersection point of N and O be P, draw a straight line (S) vertically from the absorbance (R) of 1598 cm -1 , Let the intersection point of N and S be T, and compare the absorption spectrum in the range of the absorption band from 1598 cm -1 to 1690 cm -1 with straight line S, point T, straight line N, point P, straight line O, absorbance Q, absorbance The area surrounded by R is taken as the total peak area B. (3) The area surrounded by the absorption spectrum and absorbance Q, straight line O, point P, and straight line N in the range of the absorption band from 1690 cm -1 to 1780 cm -1 is the total peak area C. (4) The area surrounded by the absorption spectrum and the absorbance R, the straight line S, the point T, and the straight line N in the range of the absorption band from 1493 cm -1 to 1598 cm -1 is the total peak area D. Next, the area ratio B/A, the area ratio C/A, and the area ratio D/A are determined based on the areas determined by the above method.
再者,於第四實施方式中,紅外線吸收光譜的測定(紅外線全反射測定:ATR法)例如可使用日本分光公司製造的IRT-5200裝置,安裝PKM-GE-S(鍺(Germanium))結晶,於入射角度45度、室溫、分解能4 cm -1、累計次數100次的條件下進行。 Furthermore, in the fourth embodiment, the infrared absorption spectrum (infrared total reflection measurement: ATR method) can be measured using, for example, an IRT-5200 device manufactured by JASCO Corporation and equipped with a PKM-GE-S (Germanium) crystal. , carried out under the conditions of incident angle 45 degrees, room temperature, decomposition energy 4 cm -1 and cumulative number of 100 times.
氣體阻擋性層103的最大峰高度α及γ、以及由B/A所表示的醯胺鍵的面積比率、由C/A所表示的羧酸的面積比率及由D/A所表示的羧酸鹽的面積比率能夠藉由適當調節氣體阻擋性層103的製造條件來控制。具體而言,多羧酸、多胺化合物、多價金屬化合物及磷化合物的調配比率、硬化前的混合物的製備方法、混合物的加熱處理的方法、溫度、時間等可作為用於控制氣體阻擋性層103的最大峰高度α及γ、以及由B/A所表示的醯胺鍵的面積比率、由C/A所表示的羧酸的面積比率及由D/A所表示的羧酸鹽的面積比率的因素而列舉。The maximum peak heights α and γ of the gas barrier layer 103, the area ratio of the amide bond represented by B/A, the area ratio of the carboxylic acid represented by C/A, and the carboxylic acid represented by D/A The area ratio of the salt can be controlled by appropriately adjusting the manufacturing conditions of the gas barrier layer 103 . Specifically, the blending ratio of the polycarboxylic acid, the polyamine compound, the polyvalent metal compound and the phosphorus compound, the preparation method of the mixture before hardening, the method of heat treatment of the mixture, temperature, time, etc. can be used as factors for controlling the gas barrier properties. The maximum peak heights α and γ of the layer 103, the area ratio of the amide bond represented by B/A, the area ratio of the carboxylic acid represented by C/A, and the area ratio of the carboxylate salt represented by D/A ratio factors.
接著,對硬化前的混合物(氣體阻擋用塗材)中所含的成分進行說明。 (多羧酸) 多羧酸是於分子內具有兩個以上的羧基者。具體而言,可列舉(甲基)丙烯酸、衣康酸、富馬酸、巴豆酸、肉桂酸、3-己烯酸、3-己烯二酸等α,β-不飽和羧酸的均聚物或該些的共聚物。另外,亦可為所述α,β-不飽和羧酸與乙基酯等酯類、乙烯等烯烴類等的共聚物。 Next, the components contained in the mixture before hardening (gas barrier coating material) will be described. (polycarboxylic acid) Polycarboxylic acids have two or more carboxyl groups in the molecule. Specific examples include homopolymerization of α,β-unsaturated carboxylic acids such as (meth)acrylic acid, itaconic acid, fumaric acid, crotonic acid, cinnamic acid, 3-hexenoic acid, and 3-hexenedioic acid. substances or copolymers of these. In addition, copolymers of the α,β-unsaturated carboxylic acid and esters such as ethyl ester, olefins such as ethylene, etc. may also be used.
該些中較佳為丙烯酸、甲基丙烯酸、衣康酸、富馬酸、巴豆酸、肉桂酸的均聚物或該些的共聚物,更佳為選自由聚丙烯酸、聚甲基丙烯酸、以及丙烯酸與甲基丙烯酸的共聚物所組成的群組中的一種或兩種以上的聚合物,進而佳為選自聚丙烯酸及聚甲基丙烯酸中的至少一種聚合物,且進而更佳為選自丙烯酸的均聚物、甲基丙烯酸的均聚物中的至少一種聚合物。Among these, homopolymers or copolymers of acrylic acid, methacrylic acid, itaconic acid, fumaric acid, crotonic acid, and cinnamic acid are preferred, and more preferred are selected from the group consisting of polyacrylic acid, polymethacrylic acid, and One or two or more polymers in the group consisting of copolymers of acrylic acid and methacrylic acid, more preferably at least one polymer selected from polyacrylic acid and polymethacrylic acid, and even more preferably selected from At least one polymer selected from a homopolymer of acrylic acid and a homopolymer of methacrylic acid.
此處,於第四實施方式中,所謂聚丙烯酸,包含丙烯酸的均聚物、丙烯酸與其他單體的共聚物兩者。於丙烯酸與其他單體的共聚物的情況下,聚丙烯酸在聚合物100質量%中包含通常為90質量%以上、較佳為95質量%以上、更佳為99質量%以上的源自丙烯酸的結構單元。 另外,於第四實施方式中,所謂聚甲基丙烯酸,包含甲基丙烯酸的均聚物、甲基丙烯酸與其他單體的共聚物兩者。於甲基丙烯酸與其他單體的共聚物的情況下,聚甲基丙烯酸在聚合物100質量%中包含通常為90質量%以上、較佳為95質量%以上、更佳為99質量%以上的源自甲基丙烯酸的結構單元。 Here, in the fourth embodiment, polyacrylic acid includes both homopolymers of acrylic acid and copolymers of acrylic acid and other monomers. In the case of a copolymer of acrylic acid and other monomers, the polyacrylic acid contains usually 90 mass% or more, preferably 95 mass% or more, and more preferably 99 mass% or more derived from acrylic acid in 100 mass% of the polymer. structural unit. In addition, in the fourth embodiment, polymethacrylic acid includes both homopolymers of methacrylic acid and copolymers of methacrylic acid and other monomers. In the case of a copolymer of methacrylic acid and other monomers, polymethacrylic acid contains usually 90 mass% or more, preferably 95 mass% or more, and more preferably 99 mass% or more in 100 mass% of the polymer. Structural unit derived from methacrylic acid.
多羧酸是羧酸單體聚合而成的聚合物。就氣體阻擋性及操作性的平衡優異的觀點而言,多羧酸的分子量較佳為500~2,500,000,更佳為5,000~2,000,000,更佳為10,000~1,500,000,進而佳為100,000~1,200,000。 此處,於第四實施方式中,多羧酸的分子量是聚環氧乙烷換算的重量平均分子量,可使用凝膠滲透層析法(GPC)進行測定。 Polycarboxylic acids are polymers made from carboxylic acid monomers. From the viewpoint of excellent balance between gas barrier properties and workability, the molecular weight of the polycarboxylic acid is preferably 500 to 2,500,000, more preferably 5,000 to 2,000,000, more preferably 10,000 to 1,500,000, and still more preferably 100,000 to 1,200,000. Here, in the fourth embodiment, the molecular weight of the polycarboxylic acid is a weight average molecular weight in terms of polyethylene oxide, and can be measured using gel permeation chromatography (GPC).
多羧酸的至少一部分亦可藉由揮發性鹼中和。藉由利用揮發性鹼中和多羧酸,於將多價金屬化合物或多胺化合物與多羧酸混合時,可抑制發生凝膠化。因此,於多羧酸中,就防止凝膠化的觀點而言,較佳為藉由揮發性鹼來製成羧基的部分中和物或完全中和物。中和物可藉由利用揮發性鹼來部分地或完全中和多羧酸的羧基,即,將多羧酸的羧基部分地或完全製成羧酸鹽而獲得。藉此,於添加多胺化合物或多價金屬化合物時,可防止凝膠化。 部分中和物可藉由於多羧酸聚合物的水溶液中添加揮發性鹼來製備,可藉由調節多羧酸與揮發性鹼的量比而製成所期望的中和度。於第四實施方式中,就充分抑制由與多胺化合物的胺基的中和反應所引起的凝膠化的觀點而言,揮發性鹼對多羧酸的中和度較佳為70當量%~300當量%,更佳為90當量%~250當量%,進而佳為100當量%~200當量%。 At least a portion of the polycarboxylic acid can also be neutralized by a volatile base. By neutralizing the polycarboxylic acid with a volatile base, gelation can be suppressed when the polyvalent metal compound or polyamine compound is mixed with the polycarboxylic acid. Therefore, among polycarboxylic acids, from the viewpoint of preventing gelation, it is preferable to use a volatile base to form a partially neutralized product or a completely neutralized product of the carboxyl group. The neutralized product can be obtained by partially or completely neutralizing the carboxyl group of the polycarboxylic acid using a volatile base, that is, partially or completely converting the carboxyl group of the polycarboxylic acid into a carboxylic acid salt. This can prevent gelation when adding a polyamine compound or a polyvalent metal compound. The partially neutralized product can be prepared by adding a volatile base to the aqueous solution of the polycarboxylic acid polymer, and the desired degree of neutralization can be obtained by adjusting the ratio of the polycarboxylic acid to the volatile base. In the fourth embodiment, from the viewpoint of fully suppressing gelation caused by the neutralization reaction with the amine group of the polyamine compound, the degree of neutralization of the polycarboxylic acid by the volatile base is preferably 70 equivalent% ~300 equivalent%, more preferably 90 equivalent% ~ 250 equivalent%, further preferably 100 equivalent% ~ 200 equivalent%.
作為揮發性鹼,可使用任意的水溶性鹼。 作為揮發性鹼,例如可列舉氨、嗎啉、烷基胺、2-二甲基胺基乙醇、N-甲基嗎啉、乙二胺、三乙胺等三級胺或該些的水溶液、或該些的混合物。就獲得良好的氣體阻擋性的觀點而言,較佳為氨水溶液。 As the volatile base, any water-soluble base can be used. Examples of the volatile base include tertiary amines such as ammonia, morpholine, alkylamine, 2-dimethylaminoethanol, N-methylmorpholine, ethylenediamine, and triethylamine, or aqueous solutions of these; or a mixture of these. From the viewpoint of obtaining good gas barrier properties, an ammonia aqueous solution is preferred.
(多胺化合物) 硬化前的混合物包含多胺化合物。藉由包含多胺化合物,可提高所獲得的氣體阻擋性材料的阻擋性。 多胺化合物是於主鏈或側鏈或末端具有兩個以上的胺基的化合物,較佳為聚合物。具體而言,可列舉:聚烯丙胺、聚乙烯胺、聚乙烯亞胺、聚(三亞甲基亞胺)等脂肪族系多胺類;如聚離胺酸、聚精胺酸般於側鏈具有胺基的聚醯胺類等。另外,亦可為對胺基的一部分進行了改質的多胺。 就獲得良好的氣體阻擋性的觀點而言,多胺化合物較佳為包含聚乙烯亞胺,更佳為聚乙烯亞胺。 (polyamine compound) The mixture before hardening contains polyamine compounds. By including a polyamine compound, the barrier properties of the obtained gas barrier material can be improved. The polyamine compound is a compound having two or more amine groups in the main chain, side chain or terminal, and is preferably a polymer. Specific examples include: aliphatic polyamines such as polyallylamine, polyvinylamine, polyethyleneimine, and poly(trimethyleneimine); side chains such as polylysine acid and polyarginine Polyamides with amine groups, etc. In addition, a polyamine in which part of the amine group has been modified may also be used. From the viewpoint of obtaining good gas barrier properties, the polyamine compound preferably contains polyethyleneimine, more preferably polyethyleneimine.
就氣體阻擋性及操作性的平衡優異的觀點而言,多胺化合物的數量平均分子量較佳為50~2,000,000,更佳為100~1,000,000,進而佳為1,500~500,000,進而更佳為1,500~100,000,進而更佳為1,500~50,000,進而更佳為3,500~20,000,進而更佳為5,000~15,000,進一步尤佳為7,000~12,000。 此處,於第四實施方式中,多胺化合物的分子量可使用沸點上升法或黏度法進行測定。 From the viewpoint of excellent balance between gas barrier properties and workability, the number average molecular weight of the polyamine compound is preferably 50 to 2,000,000, more preferably 100 to 1,000,000, further preferably 1,500 to 500,000, still more preferably 1,500 to 100,000 , more preferably 1,500 to 50,000, still more preferably 3,500 to 20,000, still more preferably 5,000 to 15,000, still more preferably 7,000 to 12,000. Here, in the fourth embodiment, the molecular weight of the polyamine compound can be measured using the boiling point elevation method or the viscosity method.
就更進一步提高蒸煮處理後的氣體阻擋性能的觀點而言,(混合物中的多胺化合物中所含的胺基的莫耳數)/(混合物中的多羧酸中所含的-COO-基的莫耳數)較佳為0.20以上,更佳為0.25以上,進而佳為0.30以上,進而更佳為0.35以上,進一步尤佳為0.40以上。 就同樣的觀點而言,(混合物中的多胺化合物中所含的胺基的莫耳數)/(混合物中的多羧酸中所含的-COO-基的莫耳數)較佳為0.90以下,更佳為0.85以下,進而佳為0.80以下,進而更佳為0.75以下,進一步尤佳為0.70以下。 該理由的詳細情況尚不明確,但認為藉由由構成多胺化合物的胺基進行的醯胺交聯、和由構成多羧酸與多價金屬的鹽的多價金屬進行的金屬交聯均衡地形成緻密的結構,可獲得蒸煮處理後的氣體阻擋性能優異的氣體阻擋性層103及具有其的氣體阻擋性積層體。 From the viewpoint of further improving the gas barrier performance after retort treatment, (the mole number of amine groups contained in the polyamine compound in the mixture) / (the number of -COO- groups contained in the polycarboxylic acid in the mixture The molar number) is preferably 0.20 or more, more preferably 0.25 or more, still more preferably 0.30 or more, still more preferably 0.35 or more, and still more preferably 0.40 or more. From the same viewpoint, (the mole number of amine groups contained in the polyamine compound in the mixture)/(the mole number of -COO- groups contained in the polycarboxylic acid in the mixture) is preferably 0.90 or less, more preferably 0.85 or less, still more preferably 0.80 or less, still more preferably 0.75 or less, still more preferably 0.70 or less. The details of this reason are not yet clear, but it is thought that the amide crosslinking by the amine group constituting the polyamine compound and the metal crosslinking by the polyvalent metal constituting the salt of the polycarboxylic acid and the polyvalent metal are balanced. By forming a dense structure, the gas barrier layer 103 and the gas barrier laminate having the gas barrier layer 103 having excellent gas barrier properties after the retort treatment can be obtained.
(多價金屬化合物) 具體而言,多價金屬化合物是屬於週期表的2族~13族的金屬及金屬化合物,更具體而言,可列舉:鎂(Mg)、鈣(Ca)、鍶(Sr)、鋇(Ba)、鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、鋅(Zn)、鋁(Al)等二價以上的金屬、該些金屬的氧化物、氫氧化物、鹵化物、碳酸鹽、磷酸鹽、亞磷酸鹽、次磷酸鹽、硫酸鹽或亞硫酸鹽等。就耐水性或雜質等觀點而言,較佳為金屬的氧化物或金屬氫氧化物。 (polyvalent metal compound) Specifically, polyvalent metal compounds are metals and metal compounds belonging to Groups 2 to 13 of the periodic table. More specifically, they include magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba). ), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), aluminum (Al) and other divalent or higher metals, oxides, hydroxides, and halides of these metals substances, carbonates, phosphates, phosphites, hypophosphites, sulfates or sulfites, etc. From the viewpoint of water resistance, impurities, etc., metal oxides or metal hydroxides are preferred.
就進一步提高蒸煮處理後的氣體阻擋性能的觀點而言,多價金屬化合物中的二價以上的金屬較佳為選自由Zn、Ca、Mg、Ba及Al所組成的群組中的一種或兩種以上的金屬,更佳為Zn。 就同樣的觀點而言,多價金屬化合物較佳為選自由Zn、Ca、Mg、Ba及Al所組成的群組中的一種或兩種以上的二價以上的金屬的化合物,更佳為Zn的化合物。 就同樣的觀點而言,多價金屬化合物較佳為選自由氧化鎂、氧化鈣、氧化鋇、氧化鋅、氫氧化鎂等氧化物以及氫氧化鈣、氫氧化鋇、氫氧化鋅等氫氧化物所組成的群組中的一種或兩種以上的化合物,更佳為氧化鋅及氫氧化鋅中的至少一者,進而佳為氧化鋅。 From the viewpoint of further improving the gas barrier performance after retort treatment, the metal having a divalent or higher valence in the multivalent metal compound is preferably one or two selected from the group consisting of Zn, Ca, Mg, Ba and Al. More than one metal, preferably Zn. From the same viewpoint, the polyvalent metal compound is preferably a compound of one or more bivalent or higher metals selected from the group consisting of Zn, Ca, Mg, Ba and Al, and more preferably Zn compound of. From the same viewpoint, the polyvalent metal compound is preferably selected from oxides such as magnesium oxide, calcium oxide, barium oxide, zinc oxide, and magnesium hydroxide, and hydroxides such as calcium hydroxide, barium hydroxide, and zinc hydroxide. One or two or more compounds in the group are more preferably at least one of zinc oxide and zinc hydroxide, and even more preferably zinc oxide.
於第四實施方式中,就更進一步提高蒸煮處理後的氣體阻擋性能的觀點而言,(混合物中的多價金屬化合物的莫耳數)/(混合物中的多羧酸中所含的-COO-基的莫耳數)較佳為0.10以上,更佳為0.13以上,進而佳為0.15以上,進而更佳為0.18以上。 就同樣的觀點而言,(混合物中的多價金屬化合物的莫耳數)/(混合物中的多羧酸中所含的-COO-基的莫耳數)較佳為0.80以下,更佳為0.70以下,進而佳為0.60以下,進而更佳為0.55以下,進一步尤佳為0.50以下。 In the fourth embodiment, from the viewpoint of further improving the gas barrier performance after retort treatment, (mol number of the polyvalent metal compound in the mixture)/(-COO contained in the polycarboxylic acid in the mixture) The molar number of - base) is preferably 0.10 or more, more preferably 0.13 or more, still more preferably 0.15 or more, and still more preferably 0.18 or more. From the same viewpoint, (the mole number of the polyvalent metal compound in the mixture)/(the mole number of the -COO- group contained in the polycarboxylic acid in the mixture) is preferably 0.80 or less, more preferably 0.70 or less, more preferably 0.60 or less, still more preferably 0.55 or less, still more preferably 0.50 or less.
於第四實施方式中,就更進一步提高蒸煮處理後的氣體阻擋性能的觀點而言,(混合物中的多價金屬化合物的莫耳數)/(混合物中的源自多胺化合物的胺基的莫耳數)較佳為0.25以上,更佳為0.35以上,進而佳為0.40以上。 就同樣的觀點而言,(混合物中的多價金屬化合物的莫耳數)/(混合物中的源自多胺化合物的胺基的莫耳數)較佳為0.65以下,更佳為0.60以下,進而佳為0.55以下。 In the fourth embodiment, from the viewpoint of further improving the gas barrier performance after retort treatment, (the molar number of the polyvalent metal compound in the mixture)/(the number of moles derived from the amine group of the polyamine compound in the mixture Mohr number) is preferably 0.25 or more, more preferably 0.35 or more, and still more preferably 0.40 or more. From the same viewpoint, (the molar number of the polyvalent metal compound in the mixture)/(the molar number of the amine group derived from the polyamine compound in the mixture) is preferably 0.65 or less, more preferably 0.60 or less, More preferably, it is 0.55 or less.
(磷化合物或其鹽) 磷化合物或其鹽中的磷化合物於分子結構中含有一個以上的-P-OH基。磷化合物亦可作為鹽調配於混合物中。 就進一步提高蒸煮處理後的水蒸氣阻擋性的觀點而言,磷化合物較佳為包含兩個以上的-P-OH基,更佳為包含三個以上的-P-OH基。另外,就氣體阻擋塗材的液體穩定性提高的觀點而言,磷化合物中的-P-OH基的數量例如亦可為兩個以下。 (phosphorus compound or its salt) The phosphorus compound or the phosphorus compound in its salt contains more than one -P-OH group in the molecular structure. The phosphorus compound can also be formulated in the mixture as a salt. From the viewpoint of further improving the water vapor barrier property after retort treatment, the phosphorus compound preferably contains two or more -P-OH groups, and more preferably contains three or more -P-OH groups. In addition, from the viewpoint of improving the liquid stability of the gas barrier coating material, the number of -P-OH groups in the phosphorus compound may be, for example, two or less.
作為磷化合物的具體例,可列舉磷酸、亞磷酸、膦酸、次磷酸、多磷酸、該些的衍生物。 多磷酸具體而言於分子結構中具有兩個以上的磷酸的縮合結構,例如可列舉:二磷酸(焦磷酸)、三磷酸、四個以上的磷酸縮合而成的多磷酸等。 作為衍生物的具體例,可列舉:磷酸化澱粉、磷酸交聯澱粉等所述磷化合物的酯; 氯化物等鹵化物; 十氧化四磷等的酐;以及 硝基三(亞甲基膦酸)、N,N,N',N'-乙二胺四(亞甲基膦酸)等具有與磷原子鍵結的氫原子被烷基取代而成的結構的化合物。 Specific examples of the phosphorus compound include phosphoric acid, phosphorous acid, phosphonic acid, hypophosphorous acid, polyphosphoric acid, and derivatives thereof. Specifically, polyphosphoric acid has a condensed structure of two or more phosphoric acids in its molecular structure. Examples thereof include diphosphoric acid (pyrophosphoric acid), triphosphoric acid, polyphosphoric acid in which four or more phosphoric acids are condensed, and the like. Specific examples of derivatives include esters of the phosphorus compounds such as phosphorylated starch and phosphate cross-linked starch; Halides such as chloride; Anhydrides such as tetraphosphorus decaoxide; and Nitrotris(methylenephosphonic acid), N,N,N',N'-ethylenediaminetetrakis(methylenephosphonic acid), etc. have a structure in which the hydrogen atom bonded to the phosphorus atom is replaced by an alkyl group. compound of.
就進一步提高阻擋性及生產性的平衡的觀點而言,磷化合物為選自由磷酸、亞磷酸、次磷酸、多磷酸、膦酸及該些的鹽所組成的群組中的一種或兩種以上,更佳為選自由磷酸及亞磷酸所組成的群組中的至少一個。From the viewpoint of further improving the balance between barrier properties and productivity, the phosphorus compound is one or two or more selected from the group consisting of phosphoric acid, phosphorous acid, hypophosphorous acid, polyphosphoric acid, phosphonic acid and salts thereof. , more preferably at least one selected from the group consisting of phosphoric acid and phosphorous acid.
另外,作為磷化合物的鹽中的鹽的具體例,可列舉:鈉、鉀等一價金屬的鹽;銨鹽。就阻擋性提高的觀點而言,磷化合物的鹽較佳為銨鹽。Specific examples of salts among the salts of phosphorus compounds include salts of monovalent metals such as sodium and potassium; and ammonium salts. From the viewpoint of improving barrier properties, the salt of the phosphorus compound is preferably an ammonium salt.
於第四實施方式中,就阻擋性提高的觀點而言,(混合物中的源自磷化合物或其鹽的P原子的莫耳數)/(混合物中的源自多羧酸的-COO-基的莫耳數)例如為0.0001以上,較佳為0.001以上,更佳為0.003以上,進而佳為0.005以上。於如磷酸般於化學式中包含一個P原子的磷化合物中,P原子的莫耳數與磷化合物的莫耳數成為相同含義。 另外,就阻擋塗材(混合物)的液體穩定性提高的觀點而言,(混合物中的源自磷化合物或其鹽的P原子的莫耳數)/(混合物中的源自多羧酸的-COO-基的莫耳數)較佳為0.3以下,更佳為0.1以下,進而佳為0.08以下,進而更佳為0.005以下。 In the fourth embodiment, from the viewpoint of improving barrier properties, (the molar number of P atoms derived from the phosphorus compound or its salt in the mixture)/(the -COO- group derived from the polycarboxylic acid in the mixture) The molar number) is, for example, 0.0001 or more, preferably 0.001 or more, more preferably 0.003 or more, still more preferably 0.005 or more. In phosphorus compounds that contain a P atom in the chemical formula like phosphoric acid, the molar number of the P atom and the molar number of the phosphorus compound have the same meaning. In addition, from the viewpoint of improving the liquid stability of the barrier coating material (mixture), (the mole number of P atoms derived from the phosphorus compound or its salt in the mixture) / (the number of moles of P atoms derived from the polycarboxylic acid in the mixture) The molar number of the COO group) is preferably 0.3 or less, more preferably 0.1 or less, still more preferably 0.08 or less, still more preferably 0.005 or less.
硬化前的混合物亦可包含所述成分以外的成分。 例如,混合物較佳為更包含碳酸系銨鹽。碳酸系銨鹽是為了使多價金屬化合物為碳酸多價金屬銨錯合物的狀態,並提高多價金屬化合物的溶解性,製備包含多價金屬化合物的均勻的溶液而添加者。藉由硬化前的混合物包含碳酸系銨鹽,可增加多價金屬化合物的溶解量,其結果,可使調配有多價金屬化合物的混合物更均質。 作為碳酸系銨鹽,例如可列舉碳酸銨、碳酸氫銨等,就容易揮發、不易殘存於所獲得的氣體阻擋性層的方面而言,較佳為碳酸銨。 就更進一步提高多價金屬化合物的溶解性的觀點而言,(混合物中的碳酸系銨鹽的莫耳數)/(混合物中的多價金屬化合物的莫耳數)較佳為0.05以上,更佳為0.10以上,進而佳為0.25以上,進而更佳為0.50以上,進一步尤佳為0.75以上。 另外,就更進一步提高作為氣體阻擋用塗材的塗敷性的觀點而言,(氣體阻擋用塗材中的碳酸系銨鹽的莫耳數)/(氣體阻擋用塗材中的多價金屬化合物的莫耳數)較佳為10.0以下,更佳為5.0以下,進而佳為2.0以下,進而更佳為1.5以下。 The mixture before hardening may contain components other than the above-mentioned components. For example, the mixture preferably further contains carbonic acid ammonium salt. The carbonate-based ammonium salt is added in order to convert the polyvalent metal compound into the state of a polyvalent metal ammonium carbonate complex, improve the solubility of the polyvalent metal compound, and prepare a uniform solution containing the polyvalent metal compound. By including the ammonium carbonate salt in the mixture before hardening, the dissolved amount of the polyvalent metal compound can be increased. As a result, the mixture prepared with the polyvalent metal compound can be made more homogeneous. Examples of carbonic acid-based ammonium salts include ammonium carbonate and ammonium bicarbonate. Ammonium carbonate is preferred in that it is easily volatilized and is less likely to remain in the obtained gas barrier layer. From the viewpoint of further improving the solubility of the polyvalent metal compound, (the molar number of the carbonic acid ammonium salt in the mixture)/(the molar number of the polyvalent metal compound in the mixture) is preferably 0.05 or more, more preferably Preferably it is 0.10 or more, more preferably 0.25 or more, still more preferably 0.50 or more, still more preferably 0.75 or more. In addition, from the viewpoint of further improving the coating properties of the gas barrier coating material, (moles of the carbonate ammonium salt in the gas barrier coating material)/(polyvalent metal in the gas barrier coating material) The molar number of the compound) is preferably 10.0 or less, more preferably 5.0 or less, still more preferably 2.0 or less, still more preferably 1.5 or less.
另外,就抑制於作為氣體阻擋用塗材塗佈時產生收縮的觀點而言,硬化前的混合物較佳為更包含界面活性劑。 於將混合物的固體成分整體設為100質量%時,界面活性劑的添加量較佳為0.01質量%~3質量%,更佳為0.01質量%~1質量%。 In addition, from the viewpoint of suppressing shrinkage during application as a gas barrier coating material, the mixture before curing preferably further contains a surfactant. When the total solid content of the mixture is 100% by mass, the added amount of the surfactant is preferably 0.01% by mass to 3% by mass, more preferably 0.01% by mass to 1% by mass.
作為界面活性劑,例如可列舉陰離子性界面活性劑、非離子性界面活性劑、陽離子界面活性劑、兩性界面活性劑等,就獲得良好的塗敷性的觀點而言,較佳為非離子性界面活性劑,更佳為聚氧伸烷基烷基醚類,進而佳為聚氧伸乙基烷基醚類。Examples of surfactants include anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, and the like. From the viewpoint of obtaining good coating properties, nonionic surfactants are preferred. As the surfactant, polyoxyalkylene alkyl ethers are more preferred, and polyoxyethylene alkyl ethers are more preferred.
作為非離子性界面活性劑,例如可列舉聚氧伸烷基烷基芳基醚類、聚氧伸烷基烷基醚類、聚氧伸烷基脂肪酸酯類、山梨糖醇酐脂肪酸酯類、矽酮系界面活性劑、乙炔醇系界面活性劑、含氟界面活性劑等。Examples of nonionic surfactants include polyoxyalkylene alkyl aryl ethers, polyoxyalkylene alkyl ethers, polyoxyalkylene fatty acid esters, sorbitan fatty acid esters, Silicone surfactants, acetylenol surfactants, fluorine-containing surfactants, etc.
作為聚氧伸烷基烷基芳基醚類,例如可列舉聚氧伸乙基壬基苯基醚、聚氧伸乙基辛基苯基醚、聚氧伸乙基十二烷基苯基醚等。 作為聚氧伸烷基烷基醚類,例如可列舉聚氧伸乙基油烯基醚、聚氧伸乙基月桂基醚等聚氧伸乙基烷基醚類。 作為聚氧伸烷基脂肪酸酯類,例如可列舉聚氧伸乙基油酸酯、聚氧伸乙基月桂酸酯、聚氧伸乙基二硬脂酸酯等。 作為山梨糖醇酐脂肪酸酯類,例如可列舉山梨糖醇酐月桂酸酯、山梨糖醇酐單硬脂酸酯、山梨糖醇酐單油酸酯、山梨糖醇酐倍半油酸酯、聚氧伸乙基單油酸酯、聚氧伸乙基硬脂酸酯等。 作為矽酮系界面活性劑,例如可列舉二甲基聚矽氧烷等。 作為乙炔醇系界面活性劑,例如可列舉2,4,7,9-四甲基-5-癸炔-4,7-二醇、3,6-二甲基-4-辛炔-3,6-二醇、3,5-二甲基-1-己炔-3醇等。 作為含氟系界面活性劑,例如可列舉氟烷基酯等。 Examples of the polyoxyalkylene alkylaryl ethers include polyoxyethylene nonylphenyl ether, polyoxyethylene octylphenyl ether, and polyoxyethylene dodecylphenyl ether. wait. Examples of the polyoxyalkylene alkyl ethers include polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether and polyoxyethylene lauryl ether. Examples of the polyoxyalkylene fatty acid esters include polyoxyethylene oleate, polyoxyethylene laurate, polyoxyethylene distearate, and the like. Examples of sorbitan fatty acid esters include sorbitan laurate, sorbitan monostearate, sorbitan monooleate, sorbitan sesquioleate, poly Oxyethylene monooleate, polyoxyethyl stearate, etc. Examples of silicone surfactants include dimethylpolysiloxane and the like. Examples of the acetylenic alcohol surfactant include 2,4,7,9-tetramethyl-5-decyne-4,7-diol and 3,6-dimethyl-4-octyne-3. 6-diol, 3,5-dimethyl-1-hexyn-3-ol, etc. Examples of fluorine-containing surfactants include fluoroalkyl esters and the like.
硬化前的混合物亦可包含所述成分以外的添加劑。例如,可添加潤滑劑、增滑劑、防黏連劑、抗靜電劑、防霧劑、顏料、染料、無機或有機的填充劑等各種添加劑。The mixture before hardening may also contain additives other than the above-mentioned components. For example, various additives such as lubricants, slip agents, anti-adhesive agents, antistatic agents, anti-fogging agents, pigments, dyes, and inorganic or organic fillers can be added.
另外,就提高作為氣體阻擋用塗材進行塗敷時的塗敷性的觀點而言,硬化前的混合物的固體成分濃度較佳為設為0.5質量%~15質量%,進而佳為設為1質量%~10質量%。In addition, from the viewpoint of improving the coating properties when applying as a gas barrier coating material, the solid content concentration of the mixture before curing is preferably 0.5 mass % to 15 mass %, and more preferably 1 Mass%~10 mass%.
(氣體阻擋性層的製造方法) 具體而言,氣體阻擋性層103可藉由塗敷硬化前的混合物(氣體阻擋性用塗材)並進行硬化來製造。 混合物可以如下方式獲得。 首先,藉由於多羧酸中適宜加入揮發性鹼來對多羧酸的羧基進行完全或部分中和。進而混合多價金屬鹽化合物及適宜碳酸系銨鹽,在與揮發性鹼中和的所述多羧酸的羧基的全部或一部分、以及未與揮發性鹼中和的多羧酸的羧基中形成金屬鹽。 然後,進一步添加多胺化合物,最後添加磷化合物或其鹽,藉此可獲得硬化前的混合物。藉此,在磷化合物與多價金屬化合物或多胺的胺基中形成鹽。 藉由按照此種順序混合多羧酸、多價金屬鹽化合物、磷化合物或其鹽、適宜碳酸系銨鹽及多胺化合物,可抑制凝聚物的生成,可獲得更均勻的混合物。藉此,能夠更有效果地促進多羧酸中所含的-COO-基與多胺化合物中所含的胺基的脫水縮合反應。 (Method for manufacturing gas barrier layer) Specifically, the gas barrier layer 103 can be produced by applying a pre-cured mixture (gas barrier coating material) and curing the mixture. The mixture can be obtained as follows. First, the carboxyl group of the polycarboxylic acid is completely or partially neutralized by appropriately adding a volatile base to the polycarboxylic acid. Furthermore, a polyvalent metal salt compound and a suitable ammonium carbonate salt are mixed to form a mixture of all or part of the carboxyl groups of the polycarboxylic acid neutralized with the volatile base and the carboxyl groups of the polycarboxylic acid not neutralized with the volatile base. Metal salts. Then, a polyamine compound is further added, and finally a phosphorus compound or a salt thereof is added, thereby obtaining a mixture before hardening. Thereby, a salt is formed between the phosphorus compound and the polyvalent metal compound or the amine group of the polyamine. By mixing a polycarboxylic acid, a polyvalent metal salt compound, a phosphorus compound or a salt thereof, a suitable carbonic acid ammonium salt, and a polyamine compound in this order, the formation of aggregates can be suppressed and a more uniform mixture can be obtained. Thereby, the dehydration condensation reaction of the -COO- group contained in the polycarboxylic acid and the amine group contained in the polyamine compound can be promoted more effectively.
更詳細而言為如下所述。以下,以於混合物中調配揮發性鹼及碳酸系銨鹽的情況為例進行說明。 首先,製備構成多羧酸的羧基的完全或部分中和溶液。 於多羧酸中添加揮發性鹼,使多羧酸的羧基完全中和或部分中和。藉由中和該多羧酸的羧基,可有效果地防止由於於添加多價金屬化合物或多胺化合物時構成多羧酸的羧基與構成多價金屬化合物或多胺化合物的胺基反應而產生的凝膠化,而獲得更均勻的混合物。 繼而,添加多價金屬鹽化合物及碳酸系銨鹽,使其溶解,利用生成的多價金屬離子形成與構成多羧酸的-COO-基的多價金屬鹽。此時,與多價金屬離子形成鹽的-COO-基是指未與所述鹼中和的羧基及被鹼中和的-COO-基此兩者。在與鹼中和的-COO-基的情況下,所述源自多價金屬化合物的多價金屬離子交換並進行配位而形成-COO-基的多價金屬鹽。 然後,於形成多價金屬鹽後,進一步添加多胺化合物、及磷化合物或其鹽,藉此可獲得混合物。此時,配位於-COO-基的多價金屬鹽亦配位於磷化合物中的-P-O -基,形成-COO-多價金屬-O-P-結構。另外,在多胺中的-NH 2基與磷化合物中的-P-O -基之間形成離子鍵。 More details are as follows. Hereinafter, the case where a volatile base and a carbonic acid ammonium salt are mixed into a mixture will be demonstrated as an example. First, a completely or partially neutralized solution of the carboxyl groups constituting the polycarboxylic acid is prepared. A volatile base is added to the polycarboxylic acid to completely or partially neutralize the carboxyl groups of the polycarboxylic acid. By neutralizing the carboxyl group of the polycarboxylic acid, it is possible to effectively prevent the carboxyl group constituting the polycarboxylic acid from reacting with the amine group constituting the polyvalent metal compound or polyamine compound when a polyvalent metal compound or polyamine compound is added. of gelation, resulting in a more homogeneous mixture. Next, a polyvalent metal salt compound and a carbonic acid ammonium salt are added and dissolved, and the generated polyvalent metal ions are used to form a polyvalent metal salt with the -COO- group constituting the polycarboxylic acid. In this case, the -COO- group that forms a salt with the polyvalent metal ion refers to both the carboxyl group that is not neutralized with the base and the -COO- group that is neutralized with the base. In the case of a -COO- group neutralized with a base, the multivalent metal ions derived from the multivalent metal compound are exchanged and coordinated to form a multivalent metal salt of the -COO- group. Then, after the polyvalent metal salt is formed, a polyamine compound and a phosphorus compound or a salt thereof are further added to obtain a mixture. At this time, the multivalent metal salt coordinated to the -COO- group is also coordinated to the -PO - group in the phosphorus compound, forming a -COO- multivalent metal-OP- structure. In addition, an ionic bond is formed between the -NH 2 group in the polyamine and the -PO - group in the phosphorus compound.
將以所述方式製造的混合物作為氣體阻擋用塗材塗佈於無機物層102或無機物層102上所形成的與氣體阻擋性層103的中介層上,並使其乾燥、硬化,藉此形成氣體阻擋性層103。此時,構成多羧酸的-COO-基的多價金屬鹽的多價金屬形成金屬交聯,藉由構成多胺的胺基形成醯胺交聯,形成磷化合物中的-P-O -基與多價金屬或多胺中的胺基的離子交聯,可獲得具有優異的氣體阻擋性的氣體阻擋性層103。關於氣體阻擋性層103的更詳細的製造方法,將後述。 The mixture produced in the above manner is applied as a gas barrier coating material on the inorganic layer 102 or the interlayer formed on the inorganic layer 102 and the gas barrier layer 103, and is dried and hardened to form a gas. Barrier layer 103. At this time, the polyvalent metal constituting the polyvalent metal salt of the -COO- group of the polycarboxylic acid forms a metal cross-link, and the amine group constituting the polyamine forms an amide cross-link, forming a -PO - group in the phosphorus compound and The gas barrier layer 103 having excellent gas barrier properties can be obtained by ionic cross-linking of amine groups in polyvalent metals or polyamines. A more detailed manufacturing method of the gas barrier layer 103 will be described later.
就阻擋性提高的觀點而言,乾燥、硬化後的氣體阻擋性層103的厚度較佳為0.01 μm以上,更佳為0.05 μm以上,進而佳為0.1 μm以上。 另外,就氣體阻擋性積層體整體的薄型化的觀點而言,乾燥、硬化後的氣體阻擋性層103的厚度較佳為15 μm以下,更佳為5 μm以下,進而佳為1 μm以下。 From the viewpoint of improving barrier properties, the thickness of the dried and hardened gas barrier layer 103 is preferably 0.01 μm or more, more preferably 0.05 μm or more, and still more preferably 0.1 μm or more. In addition, from the viewpoint of thinning the entire gas barrier laminate, the thickness of the gas barrier layer 103 after drying and curing is preferably 15 μm or less, more preferably 5 μm or less, and still more preferably 1 μm or less.
(基材層) 基材層101可為單層,亦可為兩種以上的層。基材層101的形狀並無限定,例如可列舉片或膜形狀、托盤、杯、中空體等形狀。 (Substrate layer) The base material layer 101 may be a single layer or two or more layers. The shape of the base material layer 101 is not limited, and examples include a sheet or film shape, a tray, a cup, a hollow body, and the like.
作為基材層101的材料,只要是可於基材層101上穩定地形成無機物層102並且可於無機物層102的上部塗敷氣體阻擋用塗材的溶液者,則可無限定地使用。作為基材層101的材料,例如可列舉:熱硬化性樹脂、熱塑性樹脂等樹脂或紙等有機質材料;玻璃、陶、陶瓷、氧化矽、氮氧化矽、氮化矽、水泥、鋁、氧化鋁、鐵、銅、不鏽鋼等金屬等無機質材料;包含有機質材料彼此或有機質材料與無機質材料的組合的多層結構的基材層等。該些中,例如於包裝材料或面板等各種膜用途的情況下,較佳為使用選自由熱硬化性樹脂及熱塑性樹脂所組成的群組中的至少一種的塑膠膜或紙等有機質材料。The material of the base layer 101 can be used without any limitation as long as it can stably form the inorganic layer 102 on the base layer 101 and apply a solution of the gas barrier coating material on top of the inorganic layer 102 . Examples of materials for the base layer 101 include resins such as thermosetting resins and thermoplastic resins, and organic materials such as paper; glass, pottery, ceramics, silicon oxide, silicon oxynitride, silicon nitride, cement, aluminum, and alumina. , iron, copper, stainless steel and other metals and other inorganic materials; a multi-layer structure base material layer including a combination of organic materials or a combination of organic materials and inorganic materials, etc. Among these, for example, in the case of various film applications such as packaging materials and panels, it is preferable to use at least one organic material such as a plastic film or paper selected from the group consisting of a thermosetting resin and a thermoplastic resin.
作為熱硬化性樹脂,可使用公知的熱硬化性樹脂。例如可列舉:環氧樹脂、不飽和聚酯樹脂、酚樹脂、脲-三聚氰胺樹脂、聚胺基甲酸酯樹脂、矽酮樹脂、聚醯亞胺等。As the thermosetting resin, a known thermosetting resin can be used. Examples include epoxy resin, unsaturated polyester resin, phenol resin, urea-melamine resin, polyurethane resin, silicone resin, polyimide, and the like.
作為熱塑性樹脂,可使用公知的熱塑性樹脂。例如可列舉:聚烯烴(聚乙烯、聚丙烯、聚(4-甲基-1-戊烯)、聚(1-丁烯)等)、聚酯(聚對苯二甲酸乙二酯、聚對苯二甲酸丁二酯、聚萘二甲酸乙二酯等)、聚醯胺(尼龍-6、尼龍-66、聚己二醯間苯二甲胺等)、聚氯乙烯、聚醯亞胺、乙烯-乙酸乙烯酯共聚物或其皂化物、聚乙烯醇、聚丙烯腈、聚碳酸酯、聚苯乙烯、離子聚合物、氟樹脂或該些的混合物等。As the thermoplastic resin, a known thermoplastic resin can be used. Examples include polyolefins (polyethylene, polypropylene, poly(4-methyl-1-pentene), poly(1-butene), etc.), polyesters (polyethylene terephthalate, poly(p-p) Butylene phthalate, polyethylene naphthalate, etc.), polyamide (nylon-6, nylon-66, polyethylene glycol m-phenylenediamine, etc.), polyvinyl chloride, polyimide, Ethylene-vinyl acetate copolymer or its saponified product, polyvinyl alcohol, polyacrylonitrile, polycarbonate, polystyrene, ionomer, fluororesin, or a mixture thereof, etc.
該些中,就使透明性良好的觀點而言,較佳為選自由聚丙烯、聚對苯二甲酸乙二酯(PET)、聚萘二甲酸乙二酯、聚醯胺、聚醯亞胺及聚對苯二甲酸丁二酯所組成的群組中的一種或兩種以上的樹脂。 另外,就耐針孔性、耐破裂性及耐熱性等優異的觀點而言,較佳為選自由聚醯胺、聚對苯二甲酸乙二酯及聚對苯二甲酸丁二酯所組成的群組中的一種或兩種以上的樹脂。就同樣的觀點而言,基材層101較佳為包含選自由聚醯胺、聚對苯二甲酸乙二酯及聚對苯二甲酸丁二酯所組成的群組中的一種或兩種以上的樹脂的層,更佳為該些中的一種或兩種以上的樹脂的層。 Among these, from the viewpoint of improving transparency, it is preferable to be selected from the group consisting of polypropylene, polyethylene terephthalate (PET), polyethylene naphthalate, polyamide, and polyimide. One or more resins in the group consisting of polybutylene terephthalate. In addition, from the viewpoint of excellent pinhole resistance, crack resistance, heat resistance, etc., it is preferably selected from the group consisting of polyamide, polyethylene terephthalate, and polybutylene terephthalate. One or more resins in a group. From the same point of view, the base material layer 101 preferably contains one or more types selected from the group consisting of polyamide, polyethylene terephthalate, and polybutylene terephthalate. The resin layer is preferably a layer of one or more than two of these resins.
另外,於基材層101使用聚醯胺等具有吸濕性的材料的情況下,於氣體阻擋性積層體中,基材層101吸收水分而膨潤,高濕度下的氣體阻擋性能或蒸煮處理後的氣體阻擋性能、填充酸性內容物時的氣體阻擋性能等容易降低,但於第四實施方式中,作為基材層101,即便於使用具有吸濕性的材料的情況下,亦可較佳地抑制氣體阻擋性積層體於高濕度下的氣體阻擋性能或蒸煮處理後的氣體阻擋性能的降低。In addition, when the base material layer 101 uses a hygroscopic material such as polyamide, in the gas barrier laminate, the base material layer 101 absorbs moisture and swells, and the gas barrier performance under high humidity or after retort treatment The gas barrier performance and the gas barrier performance when filling acidic contents are easily reduced. However, in the fourth embodiment, even when a hygroscopic material is used as the base material layer 101, it is better to Suppresses the gas barrier performance of the gas barrier laminate under high humidity or the decrease in gas barrier performance after retort treatment.
另外,亦可將由熱硬化性樹脂或熱塑性樹脂形成的膜在至少一個方向、較佳為雙軸方向上拉伸而製成基材層101。 就透明性、剛性及耐熱性優異的觀點而言,基材層101較佳為由選自由聚丙烯、聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯、聚醯胺、聚醯亞胺及聚對苯二甲酸丁二酯所組成的群組中的一種或兩種以上的熱塑性樹脂形成的雙軸拉伸膜,更佳為由選自由聚醯胺、聚對苯二甲酸乙二酯及聚對苯二甲酸丁二酯所組成的群組中的一種或兩種以上的熱塑性樹脂形成的雙軸拉伸膜。 In addition, the base material layer 101 may be formed by stretching a film made of a thermosetting resin or a thermoplastic resin in at least one direction, preferably in a biaxial direction. From the viewpoint of excellent transparency, rigidity, and heat resistance, the base material layer 101 is preferably made of polypropylene, polyethylene terephthalate, polyethylene naphthalate, polyamide, or polyamide. A biaxially stretched film formed of one or more thermoplastic resins from the group consisting of imine and polybutylene terephthalate, preferably a biaxially stretched film selected from the group consisting of polyamide, polyethylene terephthalate A biaxially stretched film formed of one or more thermoplastic resins from the group consisting of diester and polybutylene terephthalate.
另外,於基材層101的表面亦可塗佈聚偏二氯乙烯、聚乙烯醇、乙烯-乙烯醇共聚物、丙烯酸樹脂、胺基甲酸酯樹脂等。 進而,基材層101為了改良與氣體阻擋性層103的接著性,亦可實施表面處理。具體而言,亦可在與基材層101的氣體阻擋性層103的相向面進行電暈處理、火焰處理、電漿處理、底漆塗佈處理等表面活性化處理。 In addition, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, acrylic resin, urethane resin, etc. may also be coated on the surface of the base material layer 101 . Furthermore, the base material layer 101 may be surface-treated in order to improve the adhesion with the gas barrier layer 103 . Specifically, surface activation treatment such as corona treatment, flame treatment, plasma treatment, and primer coating treatment may be performed on the surface facing the gas barrier layer 103 of the base layer 101 .
就獲得良好的膜特性的觀點而言,基材層101的厚度較佳為1 μm以上,更佳為5 μm以上,進而佳為10 μm以上,另外,較佳為1000 μm以下,更佳為500 μm以下,進而佳為300 μm以下。From the viewpoint of obtaining good film characteristics, the thickness of the base material layer 101 is preferably 1 μm or more, more preferably 5 μm or more, further preferably 10 μm or more, and further preferably 1000 μm or less, more preferably 1000 μm or less, more preferably 500 μm or less, more preferably 300 μm or less.
(無機物層) 構成無機物層102的無機物例如可列舉:可形成具有阻擋性的薄膜的金屬、金屬氧化物、金屬氮化物、金屬氟化物、金屬氮氧化物等。 作為構成無機物層102的無機物,例如可列舉選自鈹、鎂、鈣、鍶、鋇等週期表2A族元素;鈦、鋯、釕、鉿、鉭等週期表過渡元素;鋅等週期表2B族元素;鋁、鎵、銦、鉈等週期表3A族元素;矽、鍺、錫等週期表4A族元素;硒、碲等週期表6A族元素等的單質、氧化物、氮化物、氟化物、或氮氧化物等中的一種或兩種以上。 再者,於第四實施方式中,關於無機物層102的週期表的族名由舊CAS式表示。 (Inorganic layer) Examples of the inorganic substances constituting the inorganic substance layer 102 include metals, metal oxides, metal nitrides, metal fluorides, and metal oxynitrides that can form a barrier thin film. Examples of the inorganic substance constituting the inorganic substance layer 102 include elements selected from Group 2A of the Periodic Table such as beryllium, magnesium, calcium, strontium, and barium; transition elements of the Periodic Table such as titanium, zirconium, ruthenium, hafnium, and tantalum; Group 2B of the Periodic Table such as zinc; Elements; aluminum, gallium, indium, thallium and other periodic table group 3A elements; periodic table group 4A elements such as silicon, germanium and tin; periodic table group 6A elements such as selenium, tellurium and other elements, oxides, nitrides, fluorides, etc. or one or more of nitrogen oxides, etc. Furthermore, in the fourth embodiment, the group name of the periodic table of the inorganic layer 102 is represented by the old CAS formula.
進而,於所述無機物中,就阻擋性、成本等的平衡優異而言,較佳為選自由氧化矽、氧化鋁及鋁所組成的群組中的一種或兩種以上的無機物,更佳為氧化鋁。 再者,於氧化矽中,除了二氧化矽以外,亦可含有一氧化矽、亞氧化矽。 Furthermore, among the inorganic substances, in terms of excellent balance between barrier properties, cost, etc., one or two or more inorganic substances selected from the group consisting of silica, alumina, and aluminum are preferred, and more preferred are aluminum oxide. Furthermore, the silicon oxide may also contain silicon monoxide and silicon suboxide in addition to silicon dioxide.
無機物層102由所述無機物形成。就阻擋性、成本等的平衡優異而言,無機物層102較佳為包含含有氧化鋁的氧化鋁層。 無機物層102可包含單層的無機物層,亦可包含多個無機物層。另外,於無機物層102包含多個無機物層的情況下,可包含同一種類的無機物層,亦可包含不同種類的無機物層。 The inorganic substance layer 102 is formed of the above-mentioned inorganic substance. In terms of excellent balance between barrier properties, cost, etc., the inorganic layer 102 preferably includes an aluminum oxide layer containing aluminum oxide. The inorganic layer 102 may include a single inorganic layer or multiple inorganic layers. In addition, when the inorganic layer 102 includes a plurality of inorganic layers, it may include the same type of inorganic layer or may include different types of inorganic layers.
就阻擋性提高及操作性提高的平衡的觀點而言,無機物層102的厚度通常為1 nm以上,較佳為4 nm以上,另外,通常為1000 nm以下,較佳為500 nm以下。 此處,無機物層102的厚度例如可藉由穿透式電子顯微鏡或掃描式電子顯微鏡得到的觀察圖像而求出。 From the viewpoint of a balance between improved barrier properties and improved operability, the thickness of the inorganic layer 102 is usually 1 nm or more, preferably 4 nm or more, and is usually 1000 nm or less, preferably 500 nm or less. Here, the thickness of the inorganic layer 102 can be determined from an observation image obtained by a transmission electron microscope or a scanning electron microscope, for example.
無機物層102的形成方法並無限定,例如可藉由真空蒸鍍法、離子鍍法、濺鍍法、化學氣相沈積法、物理氣相蒸鍍法、化學氣相蒸鍍法(CVD法)、電漿CVD法、溶膠-凝膠法等而於基材層101的單面或兩面形成無機物層102。其中,理想的是濺鍍法、離子鍍法、化學氣相蒸鍍法(CVD)、物理氣相蒸鍍法(PVD)、電漿CVD法等於減壓下的製膜。藉此,預計藉由氮化矽或氮氧化矽等含有矽的化學活性的分子種迅速地反應,而改良無機物層102的表面的平滑性,可使孔變少。為了迅速地進行該些結合反應,理想的是該無機原子或化合物為化學活性的分子種或原子種。 另外,就提高氣體阻擋性積層體的阻擋性與生產性的平衡的觀點而言,無機物層102較佳為蒸鍍膜。 The method of forming the inorganic layer 102 is not limited, and may be, for example, vacuum evaporation, ion plating, sputtering, chemical vapor deposition, physical vapor deposition, or chemical vapor deposition (CVD). , plasma CVD method, sol-gel method, etc. to form the inorganic layer 102 on one or both sides of the base material layer 101 . Among them, sputtering, ion plating, chemical vapor deposition (CVD), physical vapor deposition (PVD), plasma CVD, or film formation under reduced pressure are ideal. Therefore, it is expected that chemically active molecular species containing silicon, such as silicon nitride or silicon oxynitride, react rapidly to improve the smoothness of the surface of the inorganic layer 102 and reduce the number of holes. In order to rapidly carry out these binding reactions, it is ideal that the inorganic atom or compound is a chemically active molecular species or atomic species. In addition, from the viewpoint of improving the balance between the barrier properties and productivity of the gas barrier laminate, the inorganic layer 102 is preferably a vapor-deposited film.
就提高氣體阻擋性積層體的阻擋性與生產性的平衡的觀點而言,無機物層102是設置在基材層101上、或者於在基材層101與無機物層102之間具有中介層時設置在所述中介層上的蒸鍍膜,且包含選自由氧化矽、氧化鋁及鋁所組成的群組中的一種或兩種以上的無機物。From the viewpoint of improving the balance between the barrier properties and productivity of the gas barrier laminate, the inorganic layer 102 is provided on the base material layer 101 or when an intermediary layer is provided between the base material layer 101 and the inorganic layer 102 The evaporated film on the interposer layer includes one or more inorganic substances selected from the group consisting of silicon oxide, aluminum oxide and aluminum.
(底塗層) 亦可在基材層101與無機物層102之間設置底塗層104(圖14),藉由設置底塗層104,可進一步提高該些的接著性,另外,可進一步提高蒸煮處理後的阻擋性。 (base coat) A primer layer 104 can also be provided between the base material layer 101 and the inorganic layer 102 (Fig. 14). By providing the primer layer 104, the adhesion between these layers can be further improved. In addition, the barrier properties after cooking can be further improved. sex.
就基材層101與無機物層102的接著性提高的觀點而言,作為底塗層104的材料,例如可列舉選自由聚胺基甲酸酯樹脂、聚酯樹脂、噁唑啉樹脂、(甲基)丙烯酸樹脂所組成的群組中的一種或兩種以上。From the viewpoint of improving the adhesion between the base layer 101 and the inorganic layer 102, examples of the material of the undercoat layer 104 include polyurethane resin, polyester resin, oxazoline resin, (methane resin), etc. One or more of the group consisting of acrylic resins.
作為聚胺基甲酸酯樹脂,可例示各種聚胺基甲酸酯樹脂、聚胺基甲酸酯聚脲樹脂及該些的預聚物等。作為此種胺基甲酸酯樹脂的具體例,可列舉:甲苯二異氰酸酯、二甲苯二異氰酸酯、二苯基甲烷二異氰酸酯、六亞甲基二異氰酸酯、環己烷二異氰酸酯、異佛爾酮二異氰酸酯、二環己基二異氰酸酯等二異氰酸酯成分與乙二醇、丙二醇、1,4-丁二醇、1,6-己二醇、新戊二醇、環己烷二甲醇、雙酚、聚酯二醇、聚醚二醇、聚碳酸酯二醇、聚乙二醇等二醇成分的反應物;末端具有異氰酸酯基的胺基甲酸酯預聚物與胺基化合物、胺基磺酸鹽、聚羥基羧酸、亞硫酸氫等的反應物等。Examples of the polyurethane resin include various polyurethane resins, polyurethane polyurea resins, and prepolymers thereof. Specific examples of such urethane resins include toluene diisocyanate, xylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, and isophorone diisocyanate. Diisocyanate components such as isocyanate and dicyclohexyl diisocyanate are combined with ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, cyclohexanedimethanol, bisphenol, and polyester Reactants of diol components such as diols, polyether diols, polycarbonate diols, and polyethylene glycols; urethane prepolymers with isocyanate groups at the end and amine compounds, amine sulfonates, Reactants of polyhydroxycarboxylic acid, hydrogen sulfite, etc.
另外,就使蒸煮處理後的阻擋性及基材層101與無機物層102之間的接著性進一步良好的觀點而言,亦較佳為於底塗層104中,聚胺基甲酸酯樹脂包含在主鏈具有芳香族環結構的聚胺基甲酸酯樹脂。於主鏈具有芳香族環結構的聚胺基甲酸酯系樹脂例如可藉由多元醇與有機聚異氰酸酯及鏈伸長劑的反應而作為水分散型聚胺基甲酸酯樹脂獲得。藉此,可於聚胺基甲酸酯系樹脂的主鏈導入芳香族環結構。 作為於主鏈具有芳香族環結構的聚胺基甲酸酯樹脂,更具體而言,可使用日本專利特開2018-171827號公報中記載者。 In addition, from the viewpoint of further improving the barrier properties after the retort treatment and the adhesion between the base layer 101 and the inorganic layer 102 , it is also preferable that the undercoat layer 104 contains a polyurethane resin. Polyurethane resin with an aromatic ring structure in the main chain. A polyurethane resin having an aromatic ring structure in the main chain can be obtained as a water-dispersed polyurethane resin by reacting a polyol with an organic polyisocyanate and a chain extender, for example. Thereby, an aromatic ring structure can be introduced into the main chain of the polyurethane resin. As the polyurethane resin having an aromatic ring structure in the main chain, more specifically, those described in Japanese Patent Application Laid-Open No. 2018-171827 can be used.
另外,就提高耐熱性、耐水性及耐水解性等的觀點而言,亦可於所述水分散型聚胺基甲酸酯樹脂中併用交聯劑。交聯劑可為針對水分散型聚胺基甲酸酯樹脂作為第三成分添加的外部交聯劑,另外,亦可為於水分散型聚胺基甲酸酯樹脂的分子結構內預先導入成為交聯結構的反應點的內部交聯劑。In addition, from the viewpoint of improving heat resistance, water resistance, hydrolysis resistance, etc., a crosslinking agent may be used in combination with the water-dispersed polyurethane resin. The crosslinking agent may be an external crosslinking agent added as a third component to the water-dispersed polyurethane resin, or may be introduced in advance into the molecular structure of the water-dispersed polyurethane resin. Internal cross-linking agent at the reaction site of the cross-linking structure.
作為交聯劑,可較佳地使用具有異氰酸酯基、噁唑啉基、碳二醯亞胺基、環氧基、三聚氰胺樹脂及矽醇基等的化合物,進而佳為具有碳二醯亞胺基的化合物。另外,於使用具有碳二醯亞胺基的化合物作為交聯劑的情況下,具有碳二醯亞胺基的化合物的添加量為相對於聚胺基甲酸酯樹脂中的羧基1.0 mol而言碳二醯亞胺基成為較佳為0.1 mol~3.0 mol、進而佳為0.2 mol~2.0 mol、進而更佳為0.3 mol~1.0 mol的量。As the cross-linking agent, compounds having an isocyanate group, an oxazoline group, a carbodiimide group, an epoxy group, a melamine resin, a silyl alcohol group, etc. are preferably used, and more preferably, a compound having a carbodiimide group is used. compound of. In addition, when using a compound having a carbodiimide group as a cross-linking agent, the amount of the compound having a carbodiimide group is added relative to 1.0 mol of the carboxyl group in the polyurethane resin. The carbodiimide group is preferably in an amount of 0.1 mol to 3.0 mol, more preferably 0.2 mol to 2.0 mol, and still more preferably 0.3 mol to 1.0 mol.
作為底塗層104中使用的聚酯樹脂,可例示各種聚酯樹脂及該些的改質物。作為此種聚酯樹脂的具體例,可列舉:對苯二甲酸、鄰苯二甲酸、間苯二甲酸、偏苯三甲酸、均苯四甲酸、2-磺基間苯二甲酸、5-磺基間苯二甲酸、己二酸、癸二酸、琥珀酸、十二烷二酸等多元羧酸成分與乙二醇、丙二醇、1,4-丁二醇、1,6-己二醇、新戊二醇、環己烷二甲醇、雙酚等二醇成分的反應物,亦包含基於丙烯酸樹脂、環氧樹脂等的改質物。Examples of the polyester resin used in the undercoat layer 104 include various polyester resins and modified products thereof. Specific examples of such polyester resins include terephthalic acid, phthalic acid, isophthalic acid, trimellitic acid, pyromellitic acid, 2-sulfoisophthalic acid, and 5-sulfoisophthalic acid. Polyisophthalic acid, adipic acid, sebacic acid, succinic acid, dodecanedioic acid and other polycarboxylic acid components are combined with ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, The reactants of diol components such as neopentyl glycol, cyclohexanedimethanol, and bisphenol also include modified products based on acrylic resin, epoxy resin, etc.
於底塗層104使用噁唑啉樹脂的情況下,底塗層104較佳為包含噁唑啉系樹脂組成物,所述噁唑啉系樹脂組成物包含含噁唑啉基的水性聚合物、水性(甲基)丙烯酸樹脂及水性聚酯樹脂。 噁唑啉系樹脂組成物例如包含噁唑啉基含量為6.0 mmol/g~9.0 mmol/g的含噁唑啉基的水性聚合物、羧基含量為0.5 mmol/g~3.5 mmol/g的水性(甲基)丙烯酸樹脂及羧基含量為0.5 mmol/g~2.0 mmol/g的水性聚酯樹脂。 另外,關於噁唑啉系樹脂組成物,將含噁唑啉基的水性聚合物、水性(甲基)丙烯酸樹脂及水性聚酯樹脂的合計量設為100質量%,例如含有10質量%~55質量%的含噁唑啉基的水性聚合物、10質量%~80質量%的水性(甲基)丙烯酸樹脂、10質量%~80質量%的水性聚酯樹脂。 另外,於噁唑啉系樹脂組成物中,例如,噁唑啉基的莫耳數與羧基的莫耳數的比率〔由噁唑啉基的莫耳數(x mmol)與羧基的莫耳數(y mmol)的比(x/y)×100[mol%]所表示〕為150 mol%~420 mol%。 作為底塗層104中使用的噁唑啉樹脂,更具體而言,可使用國際公開第2016/186074號中記載者。 When the base coat 104 uses an oxazoline resin, the base coat 104 preferably includes an oxazoline-based resin composition, and the oxazoline-based resin composition includes an oxazoline group-containing aqueous polymer, Water-based (meth)acrylic resin and water-based polyester resin. The oxazoline-based resin composition includes, for example, an oxazoline group-containing aqueous polymer with an oxazoline group content of 6.0 mmol/g to 9.0 mmol/g, and an aqueous polymer with a carboxyl group content of 0.5 mmol/g to 3.5 mmol/g. Meth)acrylic resin and water-based polyester resin with carboxyl content between 0.5 mmol/g and 2.0 mmol/g. In addition, regarding the oxazoline-based resin composition, the total amount of the oxazoline group-containing aqueous polymer, the aqueous (meth)acrylic resin, and the aqueous polyester resin is 100% by mass. For example, the oxazoline-based resin composition contains 10% by mass to 55% by mass. Mass % of the oxazoline group-containing water-based polymer, 10 mass % to 80 mass % of the water-based (meth)acrylic resin, and 10 mass % to 80 mass % of the water-based polyester resin. In addition, in the oxazoline-based resin composition, for example, the ratio of the molar number of the oxazoline group to the molar number of the carboxyl group [from the molar number of the oxazoline group (x mmol) and the molar number of the carboxyl group The ratio (x/y) × 100 [mol%] of (y mmol) is 150 mol% ~ 420 mol%. As the oxazoline resin used in the undercoat layer 104, more specifically, those described in International Publication No. 2016/186074 can be used.
就獲得良好的接著性的觀點而言,底塗層104的厚度較佳為0.001 μm以上,更佳為0.005 μm以上,進而佳為0.01 μm以上,進而更佳為0.05 μm以上,進一步尤佳為0.1 μm以上,進一步更佳為0.2 μm以上。 另外,就經濟性的觀點而言,底塗層104的厚度較佳為1.0 μm以下,更佳為0.6 μm以下,進而佳為0.5 μm以下,另外,例如為0.1 μm以下,或者亦可為例如0.05 μm以下。 From the viewpoint of obtaining good adhesion, the thickness of the primer layer 104 is preferably 0.001 μm or more, more preferably 0.005 μm or more, still more preferably 0.01 μm or more, still more preferably 0.05 μm or more, and still more preferably 0.05 μm or more. 0.1 μm or more, more preferably 0.2 μm or more. In addition, from the viewpoint of economy, the thickness of the undercoat layer 104 is preferably 1.0 μm or less, more preferably 0.6 μm or less, further preferably 0.5 μm or less, and may be, for example, 0.1 μm or less, or may be, for example, Below 0.05 μm.
(接著劑層) 於氣體阻擋性積層體中亦可進一步設置有接著劑層。再者,自接著劑層中去除底塗層104。 接著劑層例如設置於氣體阻擋性層103與氣體阻擋性層103的上層之間。另外,於所述上層由多個層形成時,亦可於多個層之間設置有接著層。此處,所謂氣體阻擋性層103的上層,是指積層於氣體阻擋性層103的與無機物層102相向的面為相反側的面的層。 接著劑層只要包含公知的接著劑即可。作為接著劑,可列舉由有機鈦樹脂、聚乙烯亞胺樹脂、胺基甲酸酯樹脂、環氧樹脂、丙烯酸樹脂、聚酯樹脂、含有噁唑啉基的樹脂、改質矽酮樹脂及鈦酸烷基酯、聚酯聚丁二烯等組成的層壓接著劑、或一液型、二液型的多元醇與多元異氰酸酯、水系胺基甲酸酯、離子聚合物等。或者,亦可使用以丙烯酸樹脂、乙酸乙烯酯樹脂、胺基甲酸酯樹脂、聚酯樹脂等為主原料的水性接著劑。 另外,亦可根據氣體阻擋性積層體100的用途,於接著劑中添加硬化劑、矽烷偶合劑等其他添加物。於氣體阻擋性積層體的用途為在蒸煮等熱水處理中使用的情況下,就耐熱性或耐水性的觀點而言,較佳為以聚胺基甲酸酯接著劑為代表的乾式層壓用接著劑,更佳為溶劑系的二液硬化型的聚胺基甲酸酯接著劑。 (adhesive layer) The gas barrier laminated body may further be provided with an adhesive layer. Furthermore, the primer layer 104 is removed from the adhesive layer. The adhesive layer is, for example, provided between the gas barrier layer 103 and the upper layer of the gas barrier layer 103 . In addition, when the upper layer is formed of a plurality of layers, an adhesive layer may be provided between the plurality of layers. Here, the upper layer of the gas barrier layer 103 refers to a layer laminated on the surface of the gas barrier layer 103 opposite to the surface facing the inorganic layer 102 . The adhesive layer only needs to contain a known adhesive. Examples of adhesives include organic titanium resin, polyethyleneimine resin, urethane resin, epoxy resin, acrylic resin, polyester resin, oxazoline group-containing resin, modified silicone resin, and titanium resin. Laminated adhesives composed of alkyl acid esters, polyester polybutadiene, etc., or one-liquid or two-liquid polyols and polyisocyanates, water-based urethanes, ionic polymers, etc. Alternatively, a water-based adhesive whose main raw material is acrylic resin, vinyl acetate resin, urethane resin, polyester resin, etc. can also be used. In addition, other additives such as a hardener and a silane coupling agent may be added to the adhesive according to the use of the gas barrier laminate 100 . When the gas barrier laminate is used for hot water treatment such as steaming, dry lamination represented by a polyurethane adhesive is preferred from the viewpoint of heat resistance or water resistance. Use an adhesive, preferably a solvent-based two-liquid hardening type polyurethane adhesive.
(氣體阻擋性積層體的製造方法) 於第四實施方式中,氣體阻擋性積層體100的製造方法例如包括:準備基材層101的步驟;於基材層101上形成無機物層102的步驟;以及於形成有無機物層102的基材層101的上部形成氣體阻擋性層103的步驟。另外,亦可於形成無機物層102的步驟之後且形成氣體阻擋性層103的步驟之前更包括在無機物層102上形成底塗層104的步驟。 (Method for manufacturing gas barrier laminate) In the fourth embodiment, the manufacturing method of the gas barrier laminate 100 includes, for example: the steps of preparing the base material layer 101; the step of forming the inorganic layer 102 on the base layer 101; and the step of forming the inorganic layer 102 on the base material. A step of forming a gas barrier layer 103 on top of layer 101 . In addition, the step of forming the undercoat layer 104 on the inorganic layer 102 may be further included after the step of forming the inorganic layer 102 and before the step of forming the gas barrier layer 103 .
於基材層101上形成無機物層102的步驟例如可使用所述無機物層102的形成方法。The step of forming the inorganic layer 102 on the base material layer 101 may use, for example, the method for forming the inorganic layer 102 described above.
形成氣體阻擋性層103的步驟例如包括:將硬化前的混合物作為氣體阻擋用塗材塗敷於無機物層102,繼而,藉由進行乾燥而獲得塗敷層的步驟;以及對所述塗敷層進行加熱,使多羧酸中所含的羧基與多胺化合物中所含的胺基進行脫水縮合反應,藉此形成具有醯胺鍵的氣體阻擋性層103的步驟。The step of forming the gas barrier layer 103 includes, for example, applying the uncured mixture as a gas barrier coating material to the inorganic layer 102 and then drying it to obtain a coating layer; and applying the coating layer to the gas barrier layer 103 . A step of heating to cause a dehydration condensation reaction between the carboxyl groups contained in the polycarboxylic acid and the amine groups contained in the polyamine compound, thereby forming the gas barrier layer 103 having a amide bond.
將氣體阻擋用塗材塗佈於無機物層102上的方法並無限定,可使用通常的方法。例如可列舉使用邁爾棒塗佈機、氣刀塗佈機、直接凹版塗佈機、間接凹版、電弧凹版塗佈機、反向凹版及噴射管嘴方式等凹版塗佈機、頂部進料反向塗佈機、底部進料反向塗佈機及管嘴進料反向塗佈機等反向輥塗機、五輥塗佈機、模唇塗佈機、棒式塗佈機、反向棒塗佈機、模具塗佈機等公知的塗敷機進行塗敷的方法。The method of applying the gas barrier coating material to the inorganic layer 102 is not limited, and a common method can be used. For example, gravure coaters using Meyer rod coaters, air knife coaters, direct gravure coaters, indirect gravure, arc gravure coaters, reverse gravure and spray nozzle methods, top feed reverse gravure coaters, etc. Reverse roll coaters such as reverse roll coaters, bottom feed reverse coaters and nozzle feed reverse coaters, five-roller coaters, die lip coaters, rod coaters, reverse The coating method is performed using a known coater such as a bar coater or a die coater.
就使所獲得的氣體阻擋性積層體的阻擋性能更良好的觀點而言,塗敷量(濕厚度)較佳為0.05 μm,更佳為1 μm以上。 另外,就抑制所獲得的氣體阻擋性積層體捲曲的觀點以及更有效果地促進多羧酸中所含的-COO-基與多胺化合物中所含的胺基的脫水縮合反應的觀點而言,濕厚度較佳為300 μm以下,更佳為200 μm以下,進而佳為100 μm以下。 From the viewpoint of improving the barrier performance of the gas barrier laminate obtained, the coating amount (wet thickness) is preferably 0.05 μm, more preferably 1 μm or more. In addition, from the viewpoint of suppressing curling of the obtained gas barrier laminate and more effectively promoting the dehydration condensation reaction of the -COO- group contained in the polycarboxylic acid and the amine group contained in the polyamine compound , the wet thickness is preferably 300 μm or less, more preferably 200 μm or less, further preferably 100 μm or less.
乾燥及熱處理可於乾燥後進行熱處理,亦可同時進行乾燥與熱處理。 進行乾燥、加熱處理的方法只要是可獲得本發明的效果者,則並無限定,只要是可使氣體阻擋用塗材硬化者、可加熱硬化的氣體阻擋用塗材的方法即可。例如可列舉烘箱、乾燥裝置等利用對流傳熱的裝置,加熱輥等利用傳導傳熱的裝置,紅外線、遠紅外線、近紅外線的加熱器等利用使用電磁波的輻射傳熱的裝置,微波等利用內部發熱的裝置。作為乾燥、加熱處理中使用的裝置,就製造效率的觀點而言,較佳為可進行乾燥與加熱處理兩者的裝置。其中,具體而言,就可在乾燥、加熱、退火等各種用途中利用的觀點而言,較佳為使用熱風烘箱,另外,就對膜的熱傳導效率優異的觀點而言,較佳為使用加熱輥。另外,亦可適宜組合乾燥、加熱處理中使用的方法。具體而言,亦可併用熱風烘箱與加熱輥,例如若在熱風烘箱中乾燥氣體阻擋用塗材後,利用加熱輥進行加熱處理,則加熱處理步驟的時間變短,就製造效率的觀點而言較佳。另外,較佳為僅藉由熱風烘箱進行乾燥與加熱處理。 Drying and heat treatment can be carried out after drying or at the same time. The method of drying and heat treatment is not limited as long as the effects of the present invention can be obtained, as long as the gas barrier coating material can be hardened or the gas barrier coating material can be heat-cured. Examples include devices that utilize convection heat transfer such as ovens and dryers, devices that utilize conductive heat transfer such as heating rollers, devices that utilize radiation heat transfer using electromagnetic waves such as infrared, far-infrared, and near-infrared heaters, and devices that utilize internal heat transfer such as microwaves. Heating device. As an apparatus used for drying and heat treatment, from the viewpoint of manufacturing efficiency, an apparatus capable of performing both drying and heat treatment is preferred. Among them, specifically, it is preferable to use a hot air oven from the viewpoint of being usable in various applications such as drying, heating, and annealing. In addition, from the viewpoint of excellent heat conduction efficiency to the film, it is preferable to use heating. Roller. In addition, methods used for drying and heat treatment may be appropriately combined. Specifically, a hot air oven and a heating roller may be used together. For example, if the gas barrier coating material is dried in a hot air oven and then heated using a heating roller, the time of the heating treatment step will be shortened, and from the viewpoint of manufacturing efficiency Better. In addition, it is preferable to perform drying and heating processing only by a hot air oven.
關於加熱處理條件,例如,加熱處理溫度為80℃~250℃、加熱處理時間為1秒~10分鐘,較佳為加熱處理溫度為120℃~240℃、加熱處理時間為1秒~1分鐘,更佳為加熱處理溫度為170℃~230℃、加熱處理時間為1秒~30秒,進而佳為加熱處理溫度為200℃~220℃、加熱處理時間為1秒~10秒。進而如上所述,藉由併用加熱輥,能夠在短時間內進行加熱處理。 再者,就有效果地促進多羧酸中所含的-COO-基與多胺化合物中所含的胺基的脫水縮合反應的觀點而言,重要的是加熱處理溫度及加熱處理時間根據氣體阻擋用塗材的濕厚度進行調整。藉由選擇適當的加熱處理溫度及加熱處理時間而形成適當的交聯結構。 Regarding the heat treatment conditions, for example, the heat treatment temperature is 80°C to 250°C and the heat treatment time is 1 second to 10 minutes. Preferably, the heat treatment temperature is 120°C to 240°C and the heat treatment time is 1 second to 1 minute. More preferably, the heat treatment temperature is 170°C to 230°C and the heat treatment time is 1 second to 30 seconds. Still more preferably, the heat treatment temperature is 200°C to 220°C and the heat treatment time is 1 second to 10 seconds. Furthermore, as mentioned above, by using a heating roller together, heat processing can be performed in a short time. Furthermore, from the viewpoint of effectively promoting the dehydration condensation reaction between the -COO- group contained in the polycarboxylic acid and the amine group contained in the polyamine compound, it is important that the heat treatment temperature and heat treatment time are adjusted according to the gas The wet thickness of the barrier coating is adjusted. An appropriate cross-linked structure is formed by selecting an appropriate heat treatment temperature and heat treatment time.
藉由對氣體阻擋用塗材進行乾燥、熱處理,多羧酸的羧基與多胺或多價金屬化合物反應,進行共價鍵以及離子交聯,藉此形成即便於蒸煮處理後亦具有良好的氣體阻擋性的氣體阻擋性層103。By drying and heat-treating the gas barrier coating material, the carboxyl group of the polycarboxylic acid reacts with the polyamine or polyvalent metal compound to form covalent bonds and ionic cross-linking, thereby forming a gas that has good properties even after retort treatment. Barrier gas barrier layer 103 .
於第四實施方式中,氣體阻擋性積層體的氣體阻擋性能優異,例如以包裝材料、其中要求高氣體阻擋性的內容物的食品包裝材料為代表,可適宜用作醫療用途、工業用途、日常雜貨用途等各種包裝材料。In the fourth embodiment, the gas barrier laminate has excellent gas barrier properties and can be suitably used in medical applications, industrial applications, and daily life as represented by packaging materials and food packaging materials for contents requiring high gas barrier properties. Various packaging materials for groceries and other purposes.
另外,第四實施方式的氣體阻擋性積層體例如可適宜用作:要求高阻擋性能的真空隔熱用膜;用於密封電致發光元件、太陽電池等的密封用膜等。In addition, the gas barrier laminate of the fourth embodiment can be suitably used as, for example, a vacuum insulation film requiring high barrier performance; a sealing film for sealing electroluminescent elements, solar cells, and the like.
以下示出於第四實施方式中包含氣體阻擋性積層體而構成的積層結構的具體例。 (積層結構例1)基材層101(PET基材)/無機物層102(氧化鋁蒸鍍層)/氣體阻擋性層103/接著劑層/聚烯烴層 (積層結構例2)基材層101(PET基材)/底塗層104/無機物層102(氧化鋁蒸鍍層)/氣體阻擋性層103/接著劑層/聚烯烴層 (積層結構例3)基材層101(PET基材)/無機物層102(氧化鋁蒸鍍層)/氣體阻擋性層103/接著劑層/聚醯胺層/接著劑層/聚烯烴層 (積層結構例4)基材層101(PET基材)/底塗層104/無機物層102(氧化鋁蒸鍍層)/氣體阻擋性層103/接著劑層/聚醯胺層/接著劑層/聚烯烴層 此處,藉由於積層結構中包含含有聚乙烯、聚丙烯、聚(4-甲基-1-戊烯)、聚(1-丁烯)等聚烯烴的聚烯烴層,於氣體阻擋性積層體中,可使耐針孔性、耐破裂性及耐熱性等良好,並且更進一步抑制高濕度下的氣體阻擋性能或蒸煮處理後的氣體阻擋性能的降低。 Specific examples of the laminated structure including the gas barrier laminated body in the fourth embodiment are shown below. (Laminated structure example 1) Base material layer 101 (PET base material)/inorganic layer 102 (aluminum oxide vapor deposition layer)/gas barrier layer 103/adhesive layer/polyolefin layer (Laminated structure example 2) Base material layer 101 (PET base material)/undercoat layer 104/inorganic layer 102 (aluminum oxide vapor deposition layer)/gas barrier layer 103/adhesive layer/polyolefin layer (Laminated structure example 3) Base material layer 101 (PET base material)/inorganic layer 102 (aluminum oxide vapor deposition layer)/gas barrier layer 103/adhesive layer/polyamide layer/adhesive layer/polyolefin layer (Laminated structure example 4) Base material layer 101 (PET base material)/undercoat layer 104/inorganic layer 102 (aluminum oxide vapor deposition layer)/gas barrier layer 103/adhesive layer/polyamide layer/adhesive layer/ polyolefin layer Here, since the laminated structure includes a polyolefin layer containing polyolefins such as polyethylene, polypropylene, poly(4-methyl-1-pentene), and poly(1-butene), the gas barrier laminated body Medium can improve pinhole resistance, crack resistance, heat resistance, etc., and further suppress the decrease in gas barrier performance under high humidity or gas barrier performance after retort processing.
<第五實施方式> 圖15是示意性地表示第五實施方式的氣體阻擋性積層體的結構的一例的剖面圖。圖15所示的氣體阻擋性積層體100包括:基材層101;氣體阻擋性層103,設置於基材層101的至少一個面;以及無機物層102,設置於基材層101與氣體阻擋性層103之間。而且,氣體阻擋性層103包括混合物的硬化物,所述混合物包含多羧酸、多胺化合物、及多價金屬化合物。 關於各層的具體的結構,將後述。 <Fifth Embodiment> FIG. 15 is a cross-sectional view schematically showing an example of the structure of the gas barrier laminate according to the fifth embodiment. The gas barrier laminate 100 shown in FIG. 15 includes: a base material layer 101; a gas barrier layer 103 provided on at least one surface of the base material layer 101; and an inorganic layer 102 provided between the base material layer 101 and the gas barrier layer. between layers 103. Furthermore, the gas barrier layer 103 includes a hardened product of a mixture including a polycarboxylic acid, a polyamine compound, and a polyvalent metal compound. The specific structure of each layer will be described later.
於氣體阻擋性積層體100中,基材層101、無機物層102及氣體阻擋性層103依次積層,並且氣體阻擋性層103包含所述混合物的硬化物,因此阻擋性及生產性的平衡優異。 更具體而言,氣體阻擋性積層體100是蒸煮處理後的氧阻擋性或水蒸氣阻擋性等阻擋性能優異者。另外,於氣體阻擋性積層體100中,氣體阻擋性層103包含所述混合物的硬化物,因此例如即便獲得氣體阻擋性層103時的硬化時間、具體而言加熱處理時間短,亦可獲得阻擋性優異的氣體阻擋性積層體100。 In the gas barrier laminated body 100, the base material layer 101, the inorganic layer 102, and the gas barrier layer 103 are laminated in this order, and the gas barrier layer 103 contains a cured product of the mixture. Therefore, the balance between barrier properties and productivity is excellent. More specifically, the gas barrier laminate 100 has excellent barrier properties such as oxygen barrier properties and water vapor barrier properties after retort treatment. In addition, in the gas barrier layered body 100, the gas barrier layer 103 contains a cured product of the mixture. Therefore, for example, even if the curing time, specifically the heat treatment time, when obtaining the gas barrier layer 103 is short, the barrier can be obtained. The gas barrier laminate 100 has excellent gas barrier properties.
圖16是示意性地表示氣體阻擋性積層體的其他結構例的剖面圖。圖16所示的氣體阻擋性積層體110的基本結構與參照圖15敘述的氣體阻擋性積層體100相同,但於更包括設置於基材層101與無機物層102之間的底塗層104的方面不同。 於氣體阻擋性積層體110中,亦可獲得與氣體阻擋性積層體100同樣的效果。此外,於氣體阻擋性積層體110中,藉由在基材層101與無機物層102之間設置底塗層104,可進一步提高基材層101與無機物層102的接著性。 以下,對氣體阻擋性積層體中所含的層的結構進行更具體的說明。首先,對氣體阻擋性層103進行說明。 FIG. 16 is a cross-sectional view schematically showing another structural example of the gas barrier laminate. The basic structure of the gas barrier laminate 110 shown in FIG. 16 is the same as the gas barrier laminate 100 described with reference to FIG. 15 , but further includes a primer layer 104 provided between the base material layer 101 and the inorganic layer 102 Different aspects. Also in the gas barrier laminated body 110, the same effect as that of the gas barrier laminated body 100 can be obtained. In addition, in the gas barrier laminate 110, by providing the primer layer 104 between the base material layer 101 and the inorganic material layer 102, the adhesion between the base material layer 101 and the inorganic material layer 102 can be further improved. Hereinafter, the structure of the layers included in the gas barrier laminate will be described in more detail. First, the gas barrier layer 103 will be described.
(氣體阻擋性層) 氣體阻擋性層103包括混合物的硬化物,所述混合物包含多羧酸、多胺化合物、及多價金屬化合物。更具體而言,氣體阻擋性層103是包含所述硬化物的膜(氣體阻擋性膜10)。 更具體而言,氣體阻擋性層103例如可於無機物層102等配置於氣體阻擋性層103的正下方的層上塗佈硬化前的混合物即氣體阻擋用塗材後,進行乾燥、熱處理來使氣體阻擋用塗材硬化而獲得。 (gas barrier layer) The gas barrier layer 103 includes a hardened product of a mixture including a polycarboxylic acid, a polyamine compound, and a polyvalent metal compound. More specifically, the gas barrier layer 103 is a film (gas barrier film 10 ) including the cured product. More specifically, the gas barrier layer 103 can be formed by applying a pre-cured mixture, that is, a gas barrier coating material on a layer such as the inorganic layer 102 and other layers arranged directly below the gas barrier layer 103, and then drying and heat-treating it. It is obtained by hardening the gas barrier coating material.
於氣體阻擋性層103的紅外線吸收光譜中,於將1300 cm -1以上且1490 cm -1以下的範圍的吸光度的最大峰高度設為α,將1690 cm -1以上且1780 cm -1以下的範圍的吸光度的最大峰高度設為γ時,就塗敷前的氣體阻擋塗材的液體穩定性的觀點而言,由γ/α所表示的游離羧基相對於NH 3錯合物的比例較佳為0.00以上,更佳為0.01以上,進而佳為0.02以上。 另外,就於塗敷後獲得的氣體阻擋性層103的阻擋性提高的觀點而言,所述γ/α較佳為1.00以下,更佳為0.80以下,進而佳為0.60以下,進而更佳為0.40以下,進一步尤佳為0.20以下,進一步更佳為0.10以下。 In the infrared absorption spectrum of the gas barrier layer 103, let the maximum peak height of the absorbance in the range of 1300 cm -1 or more and 1490 cm -1 be α, and let α be the maximum peak height of the absorbance in the range of 1690 cm -1 or more and 1780 cm -1 When the maximum peak height of the absorbance in the range is γ, from the viewpoint of the liquid stability of the gas barrier coating material before coating, the ratio of free carboxyl groups to NH 3 complex represented by γ/α is preferable It is 0.00 or more, more preferably, it is 0.01 or more, and still more preferably, it is 0.02 or more. In addition, from the viewpoint of improving the barrier properties of the gas barrier layer 103 obtained after coating, the γ/α is preferably 1.00 or less, more preferably 0.80 or less, even more preferably 0.60 or less, and still more preferably 0.60 or less. 0.40 or less, more preferably 0.20 or less, still more preferably 0.10 or less.
另外,於氣體阻擋性層103的紅外線吸收光譜中,於將吸收帶1493 cm -1以上且1780 cm -1以下的範圍的總峰面積設為A,將吸收帶1598 cm -1以上且1690 cm -1以下的範圍的總峰面積設為B,將吸收帶1690 cm -1以上且1780 cm -1以下的範圍的總峰面積設為C,將吸收帶1493 cm -1以上且1598 cm -1以下的範圍的總峰面積設為D時,以下示出面積比的較佳例。 於氣體阻擋性層103的紅外線吸收光譜中,就更進一步提高蒸煮處理後的氣體阻擋性能的觀點而言,由B/A所表示的醯胺鍵的面積比率較佳為0.200以上,更佳為0.250以上,進而佳為0.270以上,進而更佳為0.290以上,進一步尤佳為0.310以上。 另外,就更進一步提高阻擋性及生產性的平衡的觀點而言,所述由B/A所表示的醯胺鍵的面積比率較佳為0.370以下,更佳為0.360以下,進而佳為0.350以下。 In addition, in the infrared absorption spectrum of the gas barrier layer 103, let the total peak area in the range of the absorption band 1493 cm -1 or more and 1780 cm -1 be A, and let the absorption band 1598 cm -1 or more and 1690 cm Let the total peak area in the range of -1 and below be B, let the total peak area in the range of the absorption band between 1690 cm -1 and 1780 cm -1 be C, and let the absorption band be 1493 cm -1 and above and 1598 cm -1 When the total peak area in the following range is assumed to be D, preferred examples of the area ratio are shown below. In the infrared absorption spectrum of the gas barrier layer 103, from the viewpoint of further improving the gas barrier performance after retort treatment, the area ratio of the amide bond represented by B/A is preferably 0.200 or more, more preferably 0.250 or more, more preferably 0.270 or more, still more preferably 0.290 or more, still more preferably 0.310 or more. In addition, from the viewpoint of further improving the balance between barrier properties and productivity, the area ratio of the amide bond represented by B/A is preferably 0.370 or less, more preferably 0.360 or less, and even more preferably 0.350 or less. .
於氣體阻擋性層103的紅外線吸收光譜中,就更進一步提高蒸煮處理後的氣體阻擋性能的觀點而言,由C/A所表示的羧酸的面積比率較佳為0.150以下,更佳為0.100以下,進而佳為0.080以下,進而更佳為0.060以下。 另外,所述由C/A所表示的羧酸的面積比率的下限並無限定,例如為0.000以上,另外,例如亦可為0.0001以上。 In the infrared absorption spectrum of the gas barrier layer 103, from the viewpoint of further improving the gas barrier performance after retort treatment, the area ratio of carboxylic acid represented by C/A is preferably 0.150 or less, more preferably 0.100. or less, more preferably 0.080 or less, still more preferably 0.060 or less. In addition, the lower limit of the area ratio of the carboxylic acid represented by C/A is not limited, but may be, for example, 0.000 or more. Alternatively, it may be, for example, 0.0001 or more.
於氣體阻擋性層103的紅外線吸收光譜中,就更進一步提高阻擋性及生產性的平衡的觀點而言,由D/A所表示的羧酸鹽的面積比率較佳為0.580以上,更佳為0.600以上。 另外,就更進一步提高蒸煮處理後的氣體阻擋性能的觀點而言,所述D/A較佳為0.800以下,更佳為0.720以下,進而佳為0.700以下,進而更佳為0.680以下。 In the infrared absorption spectrum of the gas barrier layer 103, from the viewpoint of further improving the balance between barrier properties and productivity, the area ratio of the carboxylate represented by D/A is preferably 0.580 or more, more preferably 0.600 and above. In addition, from the viewpoint of further improving the gas barrier performance after retort treatment, the D/A is preferably 0.800 or less, more preferably 0.720 or less, still more preferably 0.700 or less, still more preferably 0.680 or less.
進而,就使氣體阻擋性積層體的生產性及阻擋性的平衡進而佳的觀點而言,亦較佳為由B/A所表示的醯胺鍵的面積比率為0.200以上且0.370以下,由C/A所表示的羧酸的面積比率為0.150以下,由D/A所表示的羧酸鹽的面積比率為0.580以上且0.800以下。Furthermore, from the viewpoint of further improving the balance between productivity and barrier properties of the gas barrier laminate, it is also preferred that the area ratio of the amide bond represented by B/A is 0.200 or more and 0.370 or less, and C The area ratio of the carboxylic acid represented by /A is 0.150 or less, and the area ratio of the carboxylic acid salt represented by D/A is 0.580 or more and 0.800 or less.
於氣體阻擋性層103的紅外線吸收光譜中,就阻擋性提高的觀點而言,相對於由B/A所表示的醯胺鍵的面積比率而言的由D/A所表示的羧酸鹽的面積比率較佳為1.2以上,更佳為1.6以上,更佳為1.8以上。 另外,就蒸煮後的阻擋性提高的觀點而言,相對於由B/A所表示的醯胺鍵的面積比率而言的由D/A所表示的羧酸鹽的面積比率較佳為4.0以下,更佳為3.5以下,進而更佳為3.0以下,進一步尤佳為2.5以下。 In the infrared absorption spectrum of the gas barrier layer 103, from the viewpoint of improving the barrier properties, the area ratio of the carboxylate represented by D/A with respect to the area ratio of the amide bond represented by B/A The area ratio is preferably 1.2 or more, more preferably 1.6 or more, more preferably 1.8 or more. In addition, from the viewpoint of improving barrier properties after cooking, the area ratio of the carboxylate represented by D/A to the area ratio of the amide bond represented by B/A is preferably 4.0 or less. , more preferably 3.5 or less, still more preferably 3.0 or less, still more preferably 2.5 or less.
此處,於氣體阻擋性層103中,紅外線吸收光譜中的基於未反應的羧酸的νC=O的吸收於1700 cm -1附近可見,基於作為交聯結構的醯胺鍵的νC=O的吸收於1630 cm -1~1685 cm -1附近可見,基於羧酸鹽的νC=O的吸收於1540 cm -1~1560 cm -1附近可見,基於形成錯合物的氨的δN-H的吸收於1300 cm -1~1490 cm -1附近可見。 Here, in the gas barrier layer 103, the absorption of νC=O based on the unreacted carboxylic acid in the infrared absorption spectrum is visible near 1700 cm -1 , and the absorption based on νC=O based on the amide bond which is the cross-linked structure Absorption is visible around 1630 cm -1 ~ 1685 cm -1 , νC=O absorption based on carboxylate is visible around 1540 cm -1 ~ 1560 cm -1 , absorption based on δN-H of ammonia forming a complex Visible around 1300 cm -1 ~ 1490 cm -1 .
認為紅外線吸收光譜中的1300 cm -1以上且1490 cm -1以下的範圍的吸光度的最大峰高度α表示形成錯合物的氨的存在量的一個指標,1690 cm -1以上且1780 cm -1以下的範圍的最大峰高度γ表示游離的、即未反應的羧酸的存在量的一個指標。 The maximum peak height α of the absorbance in the range of 1300 cm -1 to 1490 cm -1 in the infrared absorption spectrum is considered to be an index of the amount of ammonia that forms a complex, and is considered to be 1690 cm -1 to 1780 cm -1 The maximum peak height γ in the following range represents an index of the amount of free, that is, unreacted, carboxylic acid present.
於第五實施方式中,所述最大峰高度α及γ具體而言可按照以下的順序測定。即,自氣體阻擋性層103中切出1 cm×3 cm的測定用樣品。繼而,藉由紅外線全反射測定(ATR法)獲得該氣體阻擋性層103的表面的紅外線吸收光譜。於所獲得的紅外線吸收光譜中,將用直線連結900 cm -1的吸光度與1900 cm -1的吸光度的線作為基線,求出各吸光度的範圍的最大峰高度。 In the fifth embodiment, the maximum peak heights α and γ can be specifically measured according to the following procedure. That is, a measurement sample of 1 cm×3 cm was cut out from the gas barrier layer 103 . Then, the infrared absorption spectrum of the surface of the gas barrier layer 103 is obtained by infrared total reflection measurement (ATR method). In the obtained infrared absorption spectrum, a straight line connecting the absorbance of 900 cm -1 and the absorbance of 1900 cm -1 was used as a baseline, and the maximum peak height of each absorbance range was calculated.
另外,認為紅外線吸收光譜中的吸收帶1493 cm -1以上且1780 cm -1以下的範圍的總峰面積A表示羧酸、醯胺鍵及羧酸鹽的合計量的一個指標,吸收帶1598 cm -1以上且1690 cm -1以下的範圍的總峰面積B表示醯胺鍵的存在量的一個指標。進而,認為吸收帶1690 cm -1以上且1780 cm -1以下的範圍的總峰面積C表示未反應的羧酸的存在量的一個指標,吸收帶1493 cm -1以上且1598 cm -1以下的範圍的總峰面積D表示羧酸鹽的存在量的一個指標。 In addition, the total peak area A in the range of the absorption band from 1493 cm -1 to 1780 cm -1 in the infrared absorption spectrum is considered to be an index of the total amount of carboxylic acid, amide bond and carboxylate, and the absorption band is 1598 cm The total peak area B in the range from -1 to 1690 cm -1 is an indicator of the amount of amide bonds present. Furthermore, it is considered that the total peak area C in the range of the absorption band from 1690 cm -1 to 1780 cm -1 represents an indicator of the amount of unreacted carboxylic acid, and the absorption band from 1493 cm -1 to 1598 cm -1 is considered to be an indicator of the amount of unreacted carboxylic acid present. The total peak area D of the range represents an indicator of the amount of carboxylate present.
於第五實施方式中,所述總峰面積A~總峰面積D具體而言可按照以下的順序測定。 首先,自氣體阻擋性層103中切出1 cm×3 cm的測定用樣品。繼而,藉由紅外線全反射測定(ATR法)獲得該氣體阻擋性層103的表面的紅外線吸收光譜。根據所獲得的紅外線吸收光譜,按照以下的順序(1)~順序(4)計算出所述總峰面積A~總峰面積D。 (1)用直線(N)連結1780 cm -1與1493 cm -1的吸光度,將吸收帶1493 cm -1以上且1780 cm -1以下的範圍的吸光光譜與N所包圍的面積作為總峰面積A。 (2)自1690 cm -1的吸光度(Q)垂直地引出直線(O),將N與O的交叉點設為P,自1598 cm -1的吸光度(R)垂直地引出直線(S),將N與S的交叉點設為T,將吸收帶1598 cm -1以上且1690 cm -1以下的範圍的吸收光譜與直線S、點T、直線N、點P、直線O、吸光度Q、吸光度R所包圍的面積作為總峰面積B。 (3)將吸收帶1690 cm -1以上且1780 cm -1以下的範圍的吸收光譜與吸光度Q、直線O、點P、直線N所包圍的面積作為總峰面積C。 (4)將吸收帶1493 cm -1以上且1598 cm -1以下的範圍的吸收光譜與吸光度R、直線S、點T、直線N所包圍的面積作為總峰面積D。 繼而,根據藉由所述方法而求出的面積求出面積比B/A、面積比C/A、面積比D/A。 In the fifth embodiment, the total peak area A to total peak area D can be specifically measured according to the following procedure. First, a measurement sample of 1 cm×3 cm was cut out from the gas barrier layer 103 . Then, the infrared absorption spectrum of the surface of the gas barrier layer 103 is obtained by infrared total reflection measurement (ATR method). Based on the obtained infrared absorption spectrum, the total peak areas A to D are calculated according to the following procedures (1) to (4). (1) Connect the absorbance at 1780 cm -1 and 1493 cm -1 with a straight line (N), and take the area surrounded by the absorption spectrum in the range of the absorption band 1493 cm -1 and above and below 1780 cm -1 and N as the total peak area. A. (2) Draw a straight line (O) vertically from the absorbance (Q) of 1690 cm -1 , let the intersection point of N and O be P, draw a straight line (S) vertically from the absorbance (R) of 1598 cm -1 , Let the intersection point of N and S be T, and compare the absorption spectrum in the range of the absorption band from 1598 cm -1 to 1690 cm -1 with straight line S, point T, straight line N, point P, straight line O, absorbance Q, absorbance The area surrounded by R is taken as the total peak area B. (3) The area surrounded by the absorption spectrum and absorbance Q, straight line O, point P, and straight line N in the range of the absorption band from 1690 cm -1 to 1780 cm -1 is the total peak area C. (4) The area surrounded by the absorption spectrum and the absorbance R, the straight line S, the point T, and the straight line N in the range of the absorption band from 1493 cm -1 to 1598 cm -1 is the total peak area D. Next, the area ratio B/A, the area ratio C/A, and the area ratio D/A are determined based on the areas determined by the above method.
再者,於第五實施方式中,紅外線吸收光譜的測定(紅外線全反射測定:ATR法)例如可使用日本分光公司製造的IRT-5200裝置,安裝PKM-GE-S(鍺(Germanium))結晶,於入射角度45度、室溫、分解能4 cm -1、累計次數100次的條件下進行。 Furthermore, in the fifth embodiment, the infrared absorption spectrum (infrared total reflection measurement: ATR method) can be measured using, for example, an IRT-5200 device manufactured by JASCO Corporation, equipped with a PKM-GE-S (Germanium) crystal. , carried out under the conditions of incident angle 45 degrees, room temperature, decomposition energy 4 cm -1 and cumulative number of 100 times.
氣體阻擋性層103的最大峰高度α及γ、以及由B/A所表示的醯胺鍵的面積比率、由C/A所表示的羧酸的面積比率及由D/A所表示的羧酸鹽的面積比率能夠藉由適當調節氣體阻擋性層103的製造條件來控制。具體而言,多羧酸、多胺化合物及多價金屬化合物的調配比率、硬化前的混合物的製備方法、混合物的加熱處理的方法、溫度、時間等可作為用於控制氣體阻擋性層103的最大峰高度α及γ、以及由B/A所表示的醯胺鍵的面積比率、由C/A所表示的羧酸的面積比率及由D/A所表示的羧酸鹽的面積比率的因素而列舉。The maximum peak heights α and γ of the gas barrier layer 103, the area ratio of the amide bond represented by B/A, the area ratio of the carboxylic acid represented by C/A, and the carboxylic acid represented by D/A The area ratio of the salt can be controlled by appropriately adjusting the manufacturing conditions of the gas barrier layer 103 . Specifically, the mixing ratio of the polycarboxylic acid, the polyamine compound, and the polyvalent metal compound, the preparation method of the mixture before hardening, the method of heating the mixture, temperature, time, etc. can be used as the parameters for controlling the gas barrier layer 103 Factors for the maximum peak heights α and γ, the area ratio of the amide bond represented by B/A, the area ratio of the carboxylic acid represented by C/A, and the area ratio of the carboxylate salt represented by D/A And enumerate.
接著,對硬化前的混合物(氣體阻擋用塗材)中所含的成分進行說明。 (多羧酸) 多羧酸是於分子內具有兩個以上的羧基者。具體而言,可列舉(甲基)丙烯酸、衣康酸、富馬酸、巴豆酸、肉桂酸、3-己烯酸、3-己烯二酸等α,β-不飽和羧酸的均聚物或該些的共聚物。另外,亦可為所述α,β-不飽和羧酸與乙基酯等酯類、乙烯等烯烴類等的共聚物。 Next, the components contained in the mixture before hardening (gas barrier coating material) will be described. (polycarboxylic acid) Polycarboxylic acids have two or more carboxyl groups in the molecule. Specific examples include homopolymerization of α,β-unsaturated carboxylic acids such as (meth)acrylic acid, itaconic acid, fumaric acid, crotonic acid, cinnamic acid, 3-hexenoic acid, and 3-hexenedioic acid. substances or copolymers of these. In addition, copolymers of the α,β-unsaturated carboxylic acid and esters such as ethyl ester, olefins such as ethylene, etc. may also be used.
該些中較佳為丙烯酸、甲基丙烯酸、衣康酸、富馬酸、巴豆酸、肉桂酸的均聚物或該些的共聚物,更佳為選自由聚丙烯酸、聚甲基丙烯酸、以及丙烯酸與甲基丙烯酸的共聚物所組成的群組中的一種或兩種以上的聚合物,進而佳為選自聚丙烯酸及聚甲基丙烯酸中的至少一種聚合物,進而更佳為選自丙烯酸的均聚物及甲基丙烯酸的均聚物中的至少一種聚合物。Among these, homopolymers or copolymers of acrylic acid, methacrylic acid, itaconic acid, fumaric acid, crotonic acid, and cinnamic acid are preferred, and more preferred are selected from the group consisting of polyacrylic acid, polymethacrylic acid, and One or more polymers from the group consisting of copolymers of acrylic acid and methacrylic acid, more preferably at least one polymer selected from polyacrylic acid and polymethacrylic acid, more preferably selected from acrylic acid At least one polymer selected from the group consisting of a homopolymer of and a homopolymer of methacrylic acid.
此處,於第五實施方式中,所謂聚丙烯酸,包含丙烯酸的均聚物、丙烯酸與其他單體的共聚物兩者。於丙烯酸與其他單體的共聚物的情況下,聚丙烯酸在聚合物100質量%中包含通常為90質量%以上、較佳為95質量%以上、更佳為99質量%以上的源自丙烯酸的結構單元。 另外,於第五實施方式中,所謂聚甲基丙烯酸,包含甲基丙烯酸的均聚物、甲基丙烯酸與其他單體的共聚物兩者。於甲基丙烯酸與其他單體的共聚物的情況下,聚甲基丙烯酸在聚合物100質量%中包含通常為90質量%以上、較佳為95質量%以上、更佳為99質量%以上的源自甲基丙烯酸的結構單元。 Here, in the fifth embodiment, polyacrylic acid includes both homopolymers of acrylic acid and copolymers of acrylic acid and other monomers. In the case of a copolymer of acrylic acid and other monomers, the polyacrylic acid contains usually 90 mass% or more, preferably 95 mass% or more, and more preferably 99 mass% or more derived from acrylic acid in 100 mass% of the polymer. structural unit. In addition, in the fifth embodiment, polymethacrylic acid includes both homopolymers of methacrylic acid and copolymers of methacrylic acid and other monomers. In the case of a copolymer of methacrylic acid and other monomers, polymethacrylic acid contains usually 90 mass% or more, preferably 95 mass% or more, and more preferably 99 mass% or more in 100 mass% of the polymer. Structural unit derived from methacrylic acid.
多羧酸是羧酸單體聚合而成的聚合物。就氣體阻擋性及操作性的平衡優異的觀點而言,多羧酸的分子量較佳為500~2,500,000,更佳為5,000~2,000,000,更佳為10,000~1,500,000,進而佳為100,000~1,200,000。 此處,於第五實施方式中,多羧酸的分子量是聚環氧乙烷換算的重量平均分子量,可使用凝膠滲透層析法(GPC)進行測定。 Polycarboxylic acids are polymers made from carboxylic acid monomers. From the viewpoint of excellent balance between gas barrier properties and workability, the molecular weight of the polycarboxylic acid is preferably 500 to 2,500,000, more preferably 5,000 to 2,000,000, more preferably 10,000 to 1,500,000, and still more preferably 100,000 to 1,200,000. Here, in the fifth embodiment, the molecular weight of the polycarboxylic acid is a weight average molecular weight in terms of polyethylene oxide, and can be measured using gel permeation chromatography (GPC).
多羧酸的至少一部分亦可藉由揮發性鹼中和。藉由利用揮發性鹼中和多羧酸,於將多價金屬化合物或多胺化合物與多羧酸混合時,可抑制發生凝膠化。因此,於多羧酸中,就防止凝膠化的觀點而言,較佳為藉由揮發性鹼來製成羧基的部分中和物或完全中和物。中和物可藉由利用揮發性鹼來部分地或完全中和多羧酸的羧基,即,將多羧酸的羧基部分地或完全製成羧酸鹽而獲得。藉此,於添加多胺化合物或多價金屬化合物時,可防止凝膠化。 部分中和物可藉由於多羧酸聚合物的水溶液中添加揮發性鹼來製備,可藉由調節多羧酸與揮發性鹼的量比而製成所期望的中和度。於第五實施方式中,就充分抑制由與多胺化合物的胺基的中和反應所引起的凝膠化的觀點而言,揮發性鹼對多羧酸的中和度較佳為70當量%~300當量%,更佳為90當量%~250當量%,進而佳為100當量%~200當量%。 At least a portion of the polycarboxylic acid can also be neutralized by a volatile base. By neutralizing the polycarboxylic acid with a volatile base, gelation can be suppressed when the polyvalent metal compound or polyamine compound is mixed with the polycarboxylic acid. Therefore, among polycarboxylic acids, from the viewpoint of preventing gelation, it is preferable to use a volatile base to form a partially neutralized product or a completely neutralized product of the carboxyl group. The neutralized product can be obtained by partially or completely neutralizing the carboxyl group of the polycarboxylic acid using a volatile base, that is, partially or completely converting the carboxyl group of the polycarboxylic acid into a carboxylic acid salt. This can prevent gelation when adding a polyamine compound or a polyvalent metal compound. The partially neutralized product can be prepared by adding a volatile base to the aqueous solution of the polycarboxylic acid polymer, and the desired degree of neutralization can be obtained by adjusting the ratio of the polycarboxylic acid to the volatile base. In the fifth embodiment, from the viewpoint of fully suppressing gelation caused by the neutralization reaction with the amine group of the polyamine compound, the degree of neutralization of the polycarboxylic acid by the volatile base is preferably 70 equivalent% ~300 equivalent%, more preferably 90 equivalent% ~ 250 equivalent%, further preferably 100 equivalent% ~ 200 equivalent%.
作為揮發性鹼,可使用任意的水溶性鹼。 作為揮發性鹼,例如可列舉氨、嗎啉、烷基胺、2-二甲基胺基乙醇、N-甲基嗎啉、乙二胺、三乙胺等三級胺或該些的水溶液、或該些的混合物。就獲得良好的氣體阻擋性的觀點而言,較佳為氨水溶液。 As the volatile base, any water-soluble base can be used. Examples of the volatile base include tertiary amines such as ammonia, morpholine, alkylamine, 2-dimethylaminoethanol, N-methylmorpholine, ethylenediamine, and triethylamine, or aqueous solutions of these; or a mixture of these. From the viewpoint of obtaining good gas barrier properties, an ammonia aqueous solution is preferred.
(多胺化合物) 硬化前的混合物包含多胺化合物。藉由包含多胺化合物,可提高所獲得的氣體阻擋性材料的阻擋性。 多胺化合物是於主鏈或側鏈或末端具有兩個以上的胺基的化合物,較佳為聚合物。具體而言,可列舉:聚烯丙胺、聚乙烯胺、聚乙烯亞胺、聚(三亞甲基亞胺)等脂肪族多胺類;如聚離胺酸、聚精胺酸般於側鏈具有胺基的聚醯胺類等。另外,亦可為對胺基的一部分進行了改質的多胺。 就獲得良好的氣體阻擋性的觀點而言,多胺化合物較佳為包含聚乙烯亞胺,更佳為聚乙烯亞胺。 (polyamine compound) The mixture before hardening contains polyamine compounds. By including a polyamine compound, the barrier properties of the obtained gas barrier material can be improved. The polyamine compound is a compound having two or more amine groups in the main chain, side chain or terminal, and is preferably a polymer. Specific examples include: aliphatic polyamines such as polyallylamine, polyvinylamine, polyethyleneimine, and poly(trimethyleneimine); such as polylysine and polyarginine, which have polyamines in their side chains. Amino-based polyamides, etc. In addition, a polyamine in which part of the amine group has been modified may also be used. From the viewpoint of obtaining good gas barrier properties, the polyamine compound preferably contains polyethyleneimine, more preferably polyethyleneimine.
就氣體阻擋性及操作性的平衡優異的觀點而言,多胺化合物的數量平均分子量較佳為50~2,000,000,更佳為100~1,000,000,進而佳為1,500~500,000,進而更佳為1,500~100,000,進而更佳為1,500~50,000,進而更佳為3,500~20,000,進而更佳為5,000~15,000,進一步尤佳為7,000~12,000。 此處,於第五實施方式中,多胺化合物的分子量可使用沸點上升法或黏度法進行測定。 From the viewpoint of excellent balance between gas barrier properties and workability, the number average molecular weight of the polyamine compound is preferably 50 to 2,000,000, more preferably 100 to 1,000,000, further preferably 1,500 to 500,000, still more preferably 1,500 to 100,000 , more preferably 1,500 to 50,000, still more preferably 3,500 to 20,000, still more preferably 5,000 to 15,000, still more preferably 7,000 to 12,000. Here, in the fifth embodiment, the molecular weight of the polyamine compound can be measured using the boiling point elevation method or the viscosity method.
就更進一步提高蒸煮處理後的氣體阻擋性能的觀點而言,(混合物中的多胺化合物中所含的胺基的莫耳數)/(混合物中的多羧酸中所含的-COO-基的莫耳數)較佳為0.20以上,更佳為0.25以上,進而佳為0.30以上,進而更佳為0.35以上,進一步尤佳為0.40以上。 就同樣的觀點而言,(混合物中的多胺化合物中所含的胺基的莫耳數)/(混合物中的多羧酸中所含的-COO-基的莫耳數)較佳為0.90以下,更佳為0.85以下,進而佳為0.80以下,進而更佳為0.75以下,進一步尤佳為0.70以下。 該理由的詳細情況尚不明確,但認為藉由由構成多胺化合物的胺基進行的醯胺交聯、和由構成多羧酸與多價金屬的鹽的多價金屬進行的金屬交聯均衡地形成緻密的結構,可獲得蒸煮處理後的氣體阻擋性能優異的氣體阻擋性層103及具有其的氣體阻擋性積層體。 From the viewpoint of further improving the gas barrier performance after retort treatment, (the mole number of amine groups contained in the polyamine compound in the mixture) / (the number of -COO- groups contained in the polycarboxylic acid in the mixture The molar number) is preferably 0.20 or more, more preferably 0.25 or more, still more preferably 0.30 or more, still more preferably 0.35 or more, and still more preferably 0.40 or more. From the same viewpoint, (the mole number of amine groups contained in the polyamine compound in the mixture)/(the mole number of -COO- groups contained in the polycarboxylic acid in the mixture) is preferably 0.90 or less, more preferably 0.85 or less, still more preferably 0.80 or less, still more preferably 0.75 or less, still more preferably 0.70 or less. The details of this reason are not yet clear, but it is thought that the amide crosslinking by the amine group constituting the polyamine compound and the metal crosslinking by the polyvalent metal constituting the salt of the polycarboxylic acid and the polyvalent metal are balanced. By forming a dense structure, the gas barrier layer 103 and the gas barrier laminate having the gas barrier layer 103 having excellent gas barrier properties after the retort treatment can be obtained.
(多價金屬化合物) 具體而言,多價金屬化合物是屬於週期表的2族~13族的金屬及金屬化合物,更具體而言,可列舉:鎂(Mg)、鈣(Ca)、鍶(Sr)、鋇(Ba)、鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、鋅(Zn)、鋁(Al)等二價以上的金屬、該些金屬的氧化物、氫氧化物、鹵化物、碳酸鹽、磷酸鹽、亞磷酸鹽、次磷酸鹽、硫酸鹽或亞硫酸鹽等。就耐水性或雜質等觀點而言,較佳為金屬的氧化物或金屬氫氧化物。 (polyvalent metal compound) Specifically, polyvalent metal compounds are metals and metal compounds belonging to Groups 2 to 13 of the periodic table. More specifically, they include magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba). ), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), aluminum (Al) and other divalent or higher metals, oxides, hydroxides, and halides of these metals substances, carbonates, phosphates, phosphites, hypophosphites, sulfates or sulfites, etc. From the viewpoint of water resistance, impurities, etc., metal oxides or metal hydroxides are preferred.
就進一步提高蒸煮處理後的氣體阻擋性能的觀點而言,多價金屬化合物中的二價以上的金屬較佳為選自由Zn、Ca、Mg、Ba及Al所組成的群組中的一種或兩種以上的金屬,更佳為Zn。 就同樣的觀點而言,多價金屬化合物較佳為選自由Zn、Ca、Mg、Ba及Al所組成的群組中的一種或兩種以上的二價以上的金屬的化合物,更佳為Zn的化合物。 就同樣的觀點而言,多價金屬化合物較佳為選自由氧化鎂、氧化鈣、氧化鋇、氧化鋅、氫氧化鎂等氧化物以及氫氧化鈣、氫氧化鋇、氫氧化鋅等氫氧化物所組成的群組中的一種或兩種以上的化合物,更佳為氧化鋅及氫氧化鋅中的至少一者,進而佳為氧化鋅。 From the viewpoint of further improving the gas barrier performance after retort treatment, the metal having a divalent or higher valence in the multivalent metal compound is preferably one or two selected from the group consisting of Zn, Ca, Mg, Ba and Al. More than one metal, preferably Zn. From the same viewpoint, the polyvalent metal compound is preferably a compound of one or more bivalent or higher metals selected from the group consisting of Zn, Ca, Mg, Ba and Al, and more preferably Zn compound of. From the same viewpoint, the polyvalent metal compound is preferably selected from oxides such as magnesium oxide, calcium oxide, barium oxide, zinc oxide, and magnesium hydroxide, and hydroxides such as calcium hydroxide, barium hydroxide, and zinc hydroxide. One or two or more compounds in the group are more preferably at least one of zinc oxide and zinc hydroxide, and even more preferably zinc oxide.
於第五實施方式中,就更進一步提高蒸煮處理後的氣體阻擋性能的觀點而言,(混合物中的多價金屬化合物的莫耳數)/(混合物中的多羧酸中所含的-COO-基的莫耳數)較佳為0.10以上,更佳為0.13以上,進而佳為0.15以上,進而更佳為0.18以上,進一步更佳為0.20以上,進一步更佳為0.25以上,進一步尤佳為0.28以上。 就同樣的觀點而言,(混合物中的多價金屬化合物的莫耳數)/(混合物中的多羧酸中所含的-COO-基的莫耳數)較佳為0.80以下,更佳為0.70以下,進而佳為0.60以下,進而更佳為0.55以下,進一步尤佳為0.50以下。 In the fifth embodiment, from the viewpoint of further improving the gas barrier performance after retort treatment, (mol number of the polyvalent metal compound in the mixture)/(-COO contained in the polycarboxylic acid in the mixture) The molar number of - base) is preferably 0.10 or more, more preferably 0.13 or more, still more preferably 0.15 or more, still more preferably 0.18 or more, still more preferably 0.20 or more, still more preferably 0.25 or more, still more preferably 0.28 or above. From the same viewpoint, (the mole number of the polyvalent metal compound in the mixture)/(the mole number of the -COO- group contained in the polycarboxylic acid in the mixture) is preferably 0.80 or less, more preferably 0.70 or less, more preferably 0.60 or less, still more preferably 0.55 or less, still more preferably 0.50 or less.
於第五實施方式中,就更進一步提高蒸煮處理後的氣體阻擋性能的觀點而言,(混合物中的多價金屬化合物的莫耳數)/(混合物中的源自多胺化合物的胺基的莫耳數)較佳為0.25以上,更佳為0.35以上,進而佳為0.40以上。 就同樣的觀點而言,(混合物中的多價金屬化合物的莫耳數)/(混合物中的源自多胺化合物的胺基的莫耳數)較佳為0.75以下,更佳為0.65以下,進而佳為0.60以下,進而更佳為0.55以下。 In the fifth embodiment, from the viewpoint of further improving the gas barrier performance after the retort treatment, (the molar number of the polyvalent metal compound in the mixture)/(the number of moles derived from the amine group of the polyamine compound in the mixture Mohr number) is preferably 0.25 or more, more preferably 0.35 or more, and still more preferably 0.40 or more. From the same viewpoint, (the molar number of the polyvalent metal compound in the mixture)/(the molar number of the amine group derived from the polyamine compound in the mixture) is preferably 0.75 or less, more preferably 0.65 or less, More preferably, it is 0.60 or less, and still more preferably, it is 0.55 or less.
硬化前的混合物亦可包含所述成分以外的成分。 例如,混合物較佳為更包含碳酸系銨鹽。碳酸系銨鹽是為了使多價金屬化合物成為碳酸多價金屬銨錯合物的狀態,並提高多價金屬化合物的溶解性,製備包含多價金屬化合物的均勻的溶液而添加者。藉由硬化前的混合物包含碳酸系銨鹽,可增加多價金屬化合物的溶解量,其結果,可使調配有多價金屬化合物的混合物更均質。 作為碳酸系銨鹽,例如可列舉碳酸銨、碳酸氫銨等,就容易揮發、不易殘存於所獲得的氣體阻擋性層的方面而言,較佳為碳酸銨。 就更進一步提高多價金屬化合物的溶解性的觀點而言,(混合物中的碳酸系銨鹽的莫耳數)/(混合物中的多價金屬化合物的莫耳數)較佳為0.05以上,更佳為0.10以上,進而佳為0.25以上,進而更佳為0.50以上,進一步尤佳為0.75以上。 另外,就更進一步提高作為氣體阻擋用塗材的塗敷性的觀點而言,(氣體阻擋用塗材中的碳酸系銨鹽的莫耳數)/(氣體阻擋用塗材中的多價金屬化合物的莫耳數)較佳為10.0以下,更佳為5.0以下,進而佳為2.0以下,進而更佳為1.5以下。 The mixture before hardening may contain components other than the above-mentioned components. For example, the mixture preferably further contains carbonic acid ammonium salt. The carbonate-based ammonium salt is added in order to convert the polyvalent metal compound into the state of a polyvalent metal ammonium carbonate complex, improve the solubility of the polyvalent metal compound, and prepare a uniform solution containing the polyvalent metal compound. By including the ammonium carbonate salt in the mixture before hardening, the dissolved amount of the polyvalent metal compound can be increased. As a result, the mixture prepared with the polyvalent metal compound can be made more homogeneous. Examples of carbonic acid-based ammonium salts include ammonium carbonate and ammonium bicarbonate. Ammonium carbonate is preferred in that it is easily volatilized and is less likely to remain in the obtained gas barrier layer. From the viewpoint of further improving the solubility of the polyvalent metal compound, (the molar number of the carbonic acid ammonium salt in the mixture)/(the molar number of the polyvalent metal compound in the mixture) is preferably 0.05 or more, more preferably Preferably it is 0.10 or more, more preferably 0.25 or more, still more preferably 0.50 or more, still more preferably 0.75 or more. In addition, from the viewpoint of further improving the coating properties of the gas barrier coating material, (moles of the carbonate ammonium salt in the gas barrier coating material)/(polyvalent metal in the gas barrier coating material) The molar number of the compound) is preferably 10.0 or less, more preferably 5.0 or less, still more preferably 2.0 or less, still more preferably 1.5 or less.
另外,就抑制於作為氣體阻擋用塗材塗佈時產生收縮的觀點而言,硬化前的混合物較佳為更包含界面活性劑。 於將混合物的固體成分整體設為100質量%時,界面活性劑的添加量較佳為0.01質量%~3質量%,更佳為0.01質量%~1質量%。 In addition, from the viewpoint of suppressing shrinkage during application as a gas barrier coating material, the mixture before curing preferably further contains a surfactant. When the total solid content of the mixture is 100% by mass, the added amount of the surfactant is preferably 0.01% by mass to 3% by mass, more preferably 0.01% by mass to 1% by mass.
作為界面活性劑,例如可列舉陰離子性界面活性劑、非離子性界面活性劑、陽離子界面活性劑、兩性界面活性劑等,就獲得良好的塗敷性的觀點而言,較佳為非離子性界面活性劑,更佳為聚氧伸烷基烷基醚類,進而佳為聚氧伸乙基烷基醚類。Examples of surfactants include anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, and the like. From the viewpoint of obtaining good coating properties, nonionic surfactants are preferred. As the surfactant, polyoxyalkylene alkyl ethers are more preferred, and polyoxyethylene alkyl ethers are more preferred.
作為非離子性界面活性劑,例如可列舉聚氧伸烷基烷基芳基醚類、聚氧伸烷基烷基醚類、聚氧伸烷基脂肪酸酯類、山梨糖醇酐脂肪酸酯類、矽酮系界面活性劑、乙炔醇系界面活性劑、含氟界面活性劑等。Examples of nonionic surfactants include polyoxyalkylene alkyl aryl ethers, polyoxyalkylene alkyl ethers, polyoxyalkylene fatty acid esters, sorbitan fatty acid esters, Silicone surfactants, acetylenol surfactants, fluorine-containing surfactants, etc.
作為聚氧伸烷基烷基芳基醚類,例如可列舉聚氧伸乙基壬基苯基醚、聚氧伸乙基辛基苯基醚、聚氧伸乙基十二烷基苯基醚等。 作為聚氧伸烷基烷基醚類,例如可列舉聚氧伸乙基油烯基醚、聚氧伸乙基月桂基醚等聚氧伸乙基烷基醚類。 作為聚氧伸烷基脂肪酸酯類,例如可列舉聚氧伸乙基油酸酯、聚氧伸乙基月桂酸酯、聚氧伸乙基二硬脂酸酯等。 作為山梨糖醇酐脂肪酸酯類,例如可列舉山梨糖醇酐月桂酸酯、山梨糖醇酐單硬脂酸酯、山梨糖醇酐單油酸酯、山梨糖醇酐倍半油酸酯、聚氧伸乙基單油酸酯、聚氧伸乙基硬脂酸酯等。 作為矽酮系界面活性劑,例如可列舉二甲基聚矽氧烷等。 作為乙炔醇系界面活性劑,例如可列舉2,4,7,9-四甲基-5-癸炔-4,7-二醇、3,6-二甲基-4-辛炔-3,6-二醇、3,5-二甲基-1-己炔-3醇等。 作為含氟系界面活性劑,例如可列舉氟烷基酯等。 Examples of the polyoxyalkylene alkylaryl ethers include polyoxyethylene nonylphenyl ether, polyoxyethylene octylphenyl ether, and polyoxyethylene dodecylphenyl ether. wait. Examples of the polyoxyalkylene alkyl ethers include polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether and polyoxyethylene lauryl ether. Examples of the polyoxyalkylene fatty acid esters include polyoxyethylene oleate, polyoxyethylene laurate, polyoxyethylene distearate, and the like. Examples of sorbitan fatty acid esters include sorbitan laurate, sorbitan monostearate, sorbitan monooleate, sorbitan sesquioleate, poly Oxyethylene monooleate, polyoxyethyl stearate, etc. Examples of silicone surfactants include dimethylpolysiloxane and the like. Examples of the acetylenic alcohol surfactant include 2,4,7,9-tetramethyl-5-decyne-4,7-diol and 3,6-dimethyl-4-octyne-3. 6-diol, 3,5-dimethyl-1-hexyn-3-ol, etc. Examples of fluorine-containing surfactants include fluoroalkyl esters and the like.
硬化前的混合物亦可包含所述成分以外的添加劑。例如,可添加潤滑劑、增滑劑、防黏連劑、抗靜電劑、防霧劑、顏料、染料、無機或有機的填充劑等各種添加劑。The mixture before hardening may also contain additives other than the above-mentioned components. For example, various additives such as lubricants, slip agents, anti-adhesive agents, antistatic agents, anti-fogging agents, pigments, dyes, and inorganic or organic fillers can be added.
另外,就提高作為氣體阻擋用塗材進行塗敷時的塗敷性的觀點而言,硬化前的混合物的固體成分濃度較佳為設為0.5質量%~15質量%,進而佳為設為1質量%~10質量%。In addition, from the viewpoint of improving the coating properties when applying as a gas barrier coating material, the solid content concentration of the mixture before curing is preferably 0.5 mass % to 15 mass %, and more preferably 1 Mass%~10 mass%.
(氣體阻擋性層的製造方法) 具體而言,氣體阻擋性層103可藉由塗敷硬化前的混合物(氣體阻擋性用塗材)並進行硬化來製造。 混合物可以如下方式獲得。 首先,藉由於多羧酸中適宜加入揮發性鹼來對多羧酸的羧基進行完全或部分中和。進而混合多價金屬鹽化合物及適宜碳酸系銨鹽,在與揮發性鹼中和的所述多羧酸的羧基的全部或一部分、以及未與揮發性鹼中和的多羧酸的羧基中形成金屬鹽。 然後,進一步添加多胺化合物,藉此可獲得硬化前的混合物。藉由按照此種順序混合多羧酸、多價金屬鹽化合物、適宜碳酸系銨鹽及多胺化合物,可抑制凝聚物的生成,可獲得更均勻的混合物。藉此,能夠更有效果地促進多羧酸中所含的-COO-基與多胺化合物中所含的胺基的脫水縮合反應。 (Method for manufacturing gas barrier layer) Specifically, the gas barrier layer 103 can be produced by applying a pre-cured mixture (gas barrier coating material) and curing the mixture. The mixture can be obtained as follows. First, the carboxyl group of the polycarboxylic acid is completely or partially neutralized by appropriately adding a volatile base to the polycarboxylic acid. Furthermore, a polyvalent metal salt compound and a suitable ammonium carbonate salt are mixed to form a mixture of all or part of the carboxyl groups of the polycarboxylic acid neutralized with the volatile base and the carboxyl groups of the polycarboxylic acid not neutralized with the volatile base. Metal salts. Then, a polyamine compound is further added, thereby obtaining a mixture before hardening. By mixing the polycarboxylic acid, the polyvalent metal salt compound, the appropriate carbonic acid ammonium salt, and the polyamine compound in this order, the formation of aggregates can be suppressed and a more uniform mixture can be obtained. Thereby, the dehydration condensation reaction of the -COO- group contained in the polycarboxylic acid and the amine group contained in the polyamine compound can be promoted more effectively.
更詳細而言為如下所述。以下,以於混合物中調配揮發性鹼及碳酸系銨鹽的情況為例進行說明。 首先,製備構成多羧酸的羧基的完全或部分中和溶液。 於多羧酸中添加揮發性鹼,使多羧酸的羧基完全中和或部分中和。藉由中和該多羧酸的羧基,可有效果地防止由於於添加多價金屬化合物或多胺化合物時構成多羧酸的羧基與構成多價金屬化合物或多胺化合物的胺基反應而產生的凝膠化,而獲得更均勻的混合物。 繼而,添加多價金屬鹽化合物及碳酸系銨鹽,使其溶解,利用生成的多價金屬離子形成與構成多羧酸的-COO-基的多價金屬鹽。此時,與多價金屬離子形成鹽的-COO-基是指未與所述鹼中和的羧基及被鹼中和的-COO-基此兩者。在與鹼中和的-COO-基的情況下,所述源自多價金屬化合物的多價金屬離子交換並進行配位而形成-COO-基的多價金屬鹽。然後,於形成多價金屬鹽後,進一步添加多胺化合物,藉此可獲得混合物。 More details are as follows. Hereinafter, the case where a volatile base and a carbonic acid ammonium salt are mixed into a mixture will be demonstrated as an example. First, a completely or partially neutralized solution of the carboxyl groups constituting the polycarboxylic acid is prepared. A volatile base is added to the polycarboxylic acid to completely or partially neutralize the carboxyl groups of the polycarboxylic acid. By neutralizing the carboxyl group of the polycarboxylic acid, it is possible to effectively prevent the carboxyl group constituting the polycarboxylic acid from reacting with the amine group constituting the polyvalent metal compound or polyamine compound when a polyvalent metal compound or polyamine compound is added. of gelation, resulting in a more homogeneous mixture. Next, a polyvalent metal salt compound and a carbonic acid ammonium salt are added and dissolved, and the generated polyvalent metal ions are used to form a polyvalent metal salt with the -COO- group constituting the polycarboxylic acid. In this case, the -COO- group that forms a salt with the polyvalent metal ion refers to both the carboxyl group that is not neutralized with the base and the -COO- group that is neutralized with the base. In the case of a -COO- group neutralized with a base, the multivalent metal ions derived from the multivalent metal compound are exchanged and coordinated to form a multivalent metal salt of the -COO- group. Then, after the polyvalent metal salt is formed, a polyamine compound is further added, whereby a mixture can be obtained.
將以所述方式製造的混合物作為氣體阻擋用塗材塗佈於無機物層102或無機物層102上所形成的與氣體阻擋性層103的中介層上,並使其乾燥、硬化,藉此形成氣體阻擋性層103。此時,構成多羧酸的-COO-基的多價金屬鹽的多價金屬形成金屬交聯,藉由構成多胺的胺基形成醯胺交聯,可獲得具有優異的氣體阻擋性的氣體阻擋性層103。關於氣體阻擋性層103的更詳細的製造方法,將後述。The mixture produced in the above manner is applied as a gas barrier coating material on the inorganic layer 102 or the interlayer formed on the inorganic layer 102 and the gas barrier layer 103, and is dried and hardened to form a gas. Barrier layer 103. In this case, the polyvalent metal constituting the polyvalent metal salt of the -COO- group of the polycarboxylic acid forms metal crosslinks, and the amine group constituting the polyamine forms amide crosslinks, thereby obtaining a gas with excellent gas barrier properties. Barrier layer 103. A more detailed manufacturing method of the gas barrier layer 103 will be described later.
就阻擋性提高的觀點而言,乾燥、硬化後的氣體阻擋性層103的厚度較佳為0.01 μm以上,更佳為0.05 μm以上,進而佳為0.1 μm以上。 另外,就氣體阻擋性積層體整體的薄型化的觀點而言,乾燥、硬化後的氣體阻擋性層103的厚度較佳為15 μm以下,更佳為5 μm以下,進而佳為1 μm以下。 From the viewpoint of improving barrier properties, the thickness of the dried and hardened gas barrier layer 103 is preferably 0.01 μm or more, more preferably 0.05 μm or more, and still more preferably 0.1 μm or more. In addition, from the viewpoint of thinning the entire gas barrier laminate, the thickness of the gas barrier layer 103 after drying and curing is preferably 15 μm or less, more preferably 5 μm or less, and still more preferably 1 μm or less.
(基材層) 基材層101可為單層,亦可為兩種以上的層。基材層101的形狀並無限定,例如可列舉片或膜形狀、托盤、杯、中空體等形狀。 (Substrate layer) The base material layer 101 may be a single layer or two or more layers. The shape of the base material layer 101 is not limited, and examples include a sheet or film shape, a tray, a cup, a hollow body, and the like.
作為基材層101的材料,只要是可於基材層101上穩定地形成無機物層102並且可於無機物層102的上部塗敷氣體阻擋用塗材的溶液者,則可無限定地使用。作為基材層101的材料,例如可列舉:熱硬化性樹脂、熱塑性樹脂等樹脂或紙等有機質材料;玻璃、陶、陶瓷、氧化矽、氮氧化矽、氮化矽、水泥、鋁、氧化鋁、鐵、銅、不鏽鋼等金屬等無機質材料;包含有機質材料彼此或有機質材料與無機質材料的組合的多層結構的基材層等。該些中,例如於包裝材料或面板等各種膜用途的情況下,較佳為使用選自由熱硬化性樹脂及熱塑性樹脂所組成的群組中的至少一種的塑膠膜或紙等有機質材料。The material of the base layer 101 can be used without any limitation as long as it can stably form the inorganic layer 102 on the base layer 101 and apply a solution of the gas barrier coating material on top of the inorganic layer 102 . Examples of materials for the base layer 101 include resins such as thermosetting resins and thermoplastic resins, and organic materials such as paper; glass, pottery, ceramics, silicon oxide, silicon oxynitride, silicon nitride, cement, aluminum, and alumina. , iron, copper, stainless steel and other metals and other inorganic materials; a multi-layer structure base material layer including a combination of organic materials or a combination of organic materials and inorganic materials, etc. Among these, for example, in the case of various film applications such as packaging materials and panels, it is preferable to use at least one organic material such as a plastic film or paper selected from the group consisting of a thermosetting resin and a thermoplastic resin.
作為熱硬化性樹脂,可使用公知的熱硬化性樹脂。例如可列舉:環氧樹脂、不飽和聚酯樹脂、酚樹脂、脲-三聚氰胺樹脂、聚胺基甲酸酯樹脂、矽酮樹脂、聚醯亞胺等。As the thermosetting resin, a known thermosetting resin can be used. Examples include epoxy resin, unsaturated polyester resin, phenol resin, urea-melamine resin, polyurethane resin, silicone resin, polyimide, and the like.
作為熱塑性樹脂,可使用公知的熱塑性樹脂。例如可列舉:聚烯烴(聚乙烯、聚丙烯、聚(4-甲基-1-戊烯)、聚(1-丁烯)等)、聚酯(聚對苯二甲酸乙二酯、聚對苯二甲酸丁二酯、聚萘二甲酸乙二酯等)、聚醯胺(尼龍-6、尼龍-66、聚己二醯間苯二甲胺等)、聚氯乙烯、聚醯亞胺、乙烯-乙酸乙烯酯共聚物或其皂化物、聚乙烯醇、聚丙烯腈、聚碳酸酯、聚苯乙烯、離子聚合物、氟樹脂或該些的混合物等。As the thermoplastic resin, a known thermoplastic resin can be used. Examples include polyolefins (polyethylene, polypropylene, poly(4-methyl-1-pentene), poly(1-butene), etc.), polyesters (polyethylene terephthalate, poly(p-p) Butylene phthalate, polyethylene naphthalate, etc.), polyamide (nylon-6, nylon-66, polyethylene glycol m-phenylenediamine, etc.), polyvinyl chloride, polyimide, Ethylene-vinyl acetate copolymer or its saponified product, polyvinyl alcohol, polyacrylonitrile, polycarbonate, polystyrene, ionomer, fluororesin, or a mixture thereof, etc.
該些中,就使透明性良好的觀點而言,較佳為選自由聚丙烯、聚對苯二甲酸乙二酯(PET)、聚萘二甲酸乙二酯、聚醯胺、聚醯亞胺及聚對苯二甲酸丁二酯所組成的群組中的一種或兩種以上的樹脂。 另外,就耐針孔性、耐破裂性及耐熱性等優異的觀點而言,較佳為選自由聚醯胺、聚對苯二甲酸乙二酯及聚對苯二甲酸丁二酯所組成的群組中的一種或兩種以上的樹脂。就同樣的觀點而言,基材層101較佳為包含選自由聚醯胺、聚對苯二甲酸乙二酯及聚對苯二甲酸丁二酯所組成的群組中的一種或兩種以上的樹脂的層,更佳為該些中的一種或兩種以上的樹脂的層。 Among these, from the viewpoint of improving transparency, it is preferable to be selected from the group consisting of polypropylene, polyethylene terephthalate (PET), polyethylene naphthalate, polyamide, and polyimide. One or more resins in the group consisting of polybutylene terephthalate. In addition, from the viewpoint of excellent pinhole resistance, crack resistance, heat resistance, etc., it is preferably selected from the group consisting of polyamide, polyethylene terephthalate, and polybutylene terephthalate. One or more resins in a group. From the same point of view, the base material layer 101 preferably contains one or more types selected from the group consisting of polyamide, polyethylene terephthalate, and polybutylene terephthalate. The resin layer is preferably a layer of one or more than two of these resins.
另外,於基材層101使用聚醯胺等具有吸濕性的材料的情況下,於氣體阻擋性積層體中,基材層101吸收水分而膨潤,高濕度下的氣體阻擋性能或蒸煮處理後的氣體阻擋性能、填充酸性內容物時的氣體阻擋性能等容易降低,但於第五實施方式中,作為基材層101,即便於使用具有吸濕性的材料的情況下,亦可較佳地抑制氣體阻擋性積層體於高濕度下的氣體阻擋性能或蒸煮處理後的氣體阻擋性能的降低。In addition, when the base material layer 101 uses a hygroscopic material such as polyamide, in the gas barrier laminate, the base material layer 101 absorbs moisture and swells, and the gas barrier performance under high humidity or after retort treatment The gas barrier performance and the gas barrier performance when filling acidic contents are easily reduced. However, in the fifth embodiment, even when a hygroscopic material is used as the base material layer 101, it is better to Suppresses the gas barrier performance of the gas barrier laminate under high humidity or the decrease in gas barrier performance after retort treatment.
另外,亦可將由熱硬化性樹脂或熱塑性樹脂形成的膜在至少一個方向、較佳為雙軸方向上拉伸而製成基材層101。 就透明性、剛性及耐熱性優異的觀點而言,基材層101較佳為由選自由聚丙烯、聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯、聚醯胺、聚醯亞胺及聚對苯二甲酸丁二酯所組成的群組中的一種或兩種以上的熱塑性樹脂形成的雙軸拉伸膜,更佳為由選自由聚醯胺、聚對苯二甲酸乙二酯及聚對苯二甲酸丁二酯所組成的群組中的一種或兩種以上的熱塑性樹脂形成的雙軸拉伸膜。 In addition, the base material layer 101 may be formed by stretching a film made of a thermosetting resin or a thermoplastic resin in at least one direction, preferably in a biaxial direction. From the viewpoint of excellent transparency, rigidity, and heat resistance, the base material layer 101 is preferably made of polypropylene, polyethylene terephthalate, polyethylene naphthalate, polyamide, or polyamide. A biaxially stretched film formed of one or more thermoplastic resins from the group consisting of imine and polybutylene terephthalate, preferably a biaxially stretched film selected from the group consisting of polyamide, polyethylene terephthalate A biaxially stretched film formed of one or more thermoplastic resins from the group consisting of diester and polybutylene terephthalate.
另外,於基材層101的表面亦可塗佈聚偏二氯乙烯、聚乙烯醇、乙烯-乙烯醇共聚物、丙烯酸樹脂、胺基甲酸酯樹脂等。 進而,基材層101為了改良與氣體阻擋性層103的接著性,亦可實施表面處理。具體而言,亦可在與基材層101的氣體阻擋性層103的相向面進行電暈處理、火焰處理、電漿處理、底漆塗佈處理等表面活性化處理。 In addition, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, acrylic resin, urethane resin, etc. may also be coated on the surface of the base material layer 101 . Furthermore, the base material layer 101 may be surface-treated in order to improve the adhesion with the gas barrier layer 103 . Specifically, surface activation treatment such as corona treatment, flame treatment, plasma treatment, and primer coating treatment may be performed on the surface facing the gas barrier layer 103 of the base layer 101 .
就獲得良好的膜特性的觀點而言,基材層101的厚度較佳為1 μm以上,更佳為5 μm以上,進而佳為10 μm以上,另外,較佳為1000 μm以下,更佳為500 μm以下,進而佳為300 μm以下。From the viewpoint of obtaining good film characteristics, the thickness of the base material layer 101 is preferably 1 μm or more, more preferably 5 μm or more, further preferably 10 μm or more, and further preferably 1000 μm or less, more preferably 1000 μm or less, more preferably 500 μm or less, more preferably 300 μm or less.
(無機物層) 構成無機物層102的無機物例如可列舉:可形成具有阻擋性的薄膜的金屬、金屬氧化物、金屬氮化物、金屬氟化物、金屬氮氧化物等。 作為構成無機物層102的無機物,例如可列舉選自鈹、鎂、鈣、鍶、鋇等週期表2A族元素;鈦、鋯、釕、鉿、鉭等週期表過渡元素;鋅等週期表2B族元素;鋁、鎵、銦、鉈等週期表3A族元素;矽、鍺、錫等週期表4A族元素;硒、碲等週期表6A族元素等的單質、氧化物、氮化物、氟化物、或氮氧化物等中的一種或兩種以上。 再者,於第五實施方式中,關於無機物層102的週期表的族名由舊CAS式表示。 (Inorganic layer) Examples of the inorganic substances constituting the inorganic substance layer 102 include metals, metal oxides, metal nitrides, metal fluorides, and metal oxynitrides that can form a barrier thin film. Examples of the inorganic substance constituting the inorganic substance layer 102 include elements selected from Group 2A of the Periodic Table such as beryllium, magnesium, calcium, strontium, and barium; transition elements of the Periodic Table such as titanium, zirconium, ruthenium, hafnium, and tantalum; Group 2B of the Periodic Table such as zinc; Elements; aluminum, gallium, indium, thallium and other periodic table group 3A elements; periodic table group 4A elements such as silicon, germanium and tin; periodic table group 6A elements such as selenium, tellurium and other elements, oxides, nitrides, fluorides, etc. or one or more of nitrogen oxides, etc. Furthermore, in the fifth embodiment, the group name of the periodic table of the inorganic layer 102 is represented by the old CAS formula.
進而,於所述無機物中,就阻擋性、成本等的平衡優異而言,較佳為選自由氧化矽、氧化鋁及鋁所組成的群組中的一種或兩種以上的無機物,更佳為氧化鋁。 再者,於氧化矽中,除了二氧化矽以外,亦可含有一氧化矽、亞氧化矽。 Furthermore, among the inorganic substances, in terms of excellent balance between barrier properties, cost, etc., one or two or more inorganic substances selected from the group consisting of silica, alumina, and aluminum are preferred, and more preferred are aluminum oxide. Furthermore, the silicon oxide may also contain silicon monoxide and silicon suboxide in addition to silicon dioxide.
無機物層102由所述無機物形成。就阻擋性、成本等的平衡優異的觀點而言,無機物層102較佳為包含含有氧化鋁的氧化鋁層。 無機物層102可包含單層的無機物層,亦可包含多個無機物層。另外,於無機物層102包含多個無機物層的情況下,可包含同一種類的無機物層,亦可包含不同種類的無機物層。 The inorganic substance layer 102 is formed of the above-mentioned inorganic substance. From the viewpoint of excellent balance between barrier properties, cost, etc., the inorganic layer 102 preferably includes an aluminum oxide layer containing aluminum oxide. The inorganic layer 102 may include a single inorganic layer or multiple inorganic layers. In addition, when the inorganic layer 102 includes a plurality of inorganic layers, it may include the same type of inorganic layer or may include different types of inorganic layers.
就阻擋性提高及操作性提高的平衡的觀點而言,無機物層102的厚度通常為1 nm以上,較佳為4 nm以上,另外,通常為1000 nm以下,較佳為500 nm以下。 此處,無機物層102的厚度例如可藉由穿透式電子顯微鏡或掃描式電子顯微鏡得到的觀察圖像而求出。 From the viewpoint of a balance between improved barrier properties and improved operability, the thickness of the inorganic layer 102 is usually 1 nm or more, preferably 4 nm or more, and is usually 1000 nm or less, preferably 500 nm or less. Here, the thickness of the inorganic layer 102 can be determined from an observation image obtained by a transmission electron microscope or a scanning electron microscope, for example.
無機物層102的形成方法並無限定,例如可藉由真空蒸鍍法、離子鍍法、濺鍍法、化學氣相沈積法、物理氣相蒸鍍法、化學氣相蒸鍍法(CVD法)、電漿CVD法、溶膠-凝膠法等而於基材層101的單面或兩面形成無機物層102。其中,理想的是濺鍍法、離子鍍法、化學氣相蒸鍍法(CVD)、物理氣相蒸鍍法(PVD)、電漿CVD法等於減壓下的製膜。藉此,預計藉由氮化矽或氮氧化矽等含有矽的化學活性的分子種迅速地反應,而改良無機物層102的表面的平滑性,可使孔變少。為了迅速地進行該些結合反應,理想的是該無機原子或化合物為化學活性的分子種或原子種。 另外,就提高氣體阻擋性積層體的阻擋性與生產性的平衡的觀點而言,無機物層102較佳為蒸鍍膜。 The method of forming the inorganic layer 102 is not limited, and may be, for example, vacuum evaporation, ion plating, sputtering, chemical vapor deposition, physical vapor deposition, or chemical vapor deposition (CVD). , plasma CVD method, sol-gel method, etc. to form the inorganic layer 102 on one or both sides of the base material layer 101 . Among them, sputtering, ion plating, chemical vapor deposition (CVD), physical vapor deposition (PVD), plasma CVD, or film formation under reduced pressure are ideal. Therefore, it is expected that chemically active molecular species containing silicon, such as silicon nitride or silicon oxynitride, react rapidly to improve the smoothness of the surface of the inorganic layer 102 and reduce the number of holes. In order to rapidly carry out these binding reactions, it is ideal that the inorganic atom or compound is a chemically active molecular species or atomic species. In addition, from the viewpoint of improving the balance between the barrier properties and productivity of the gas barrier laminate, the inorganic layer 102 is preferably a vapor-deposited film.
就提高氣體阻擋性積層體的阻擋性與生產性的平衡的觀點而言,無機物層102是設置在基材層101上、或者於在基材層101與無機物層102之間具有中介層時設置在所述中介層上的蒸鍍膜,且包含選自由氧化矽、氧化鋁及鋁所組成的群組中的一種或兩種以上的無機物。From the viewpoint of improving the balance between the barrier properties and productivity of the gas barrier laminate, the inorganic layer 102 is provided on the base material layer 101 or when an intermediary layer is provided between the base material layer 101 and the inorganic layer 102 The evaporated film on the interposer layer includes one or more inorganic substances selected from the group consisting of silicon oxide, aluminum oxide and aluminum.
(底塗層) 亦可在基材層101與無機物層102之間設置底塗層104(圖16),藉由設置底塗層104,可進一步提高該些的接著性,另外,可進一步提高蒸煮處理後的阻擋性。 (base coat) A primer layer 104 can also be provided between the base material layer 101 and the inorganic layer 102 (Fig. 16). By providing the primer layer 104, the adhesion between these layers can be further improved. In addition, the barrier properties after cooking can be further improved. sex.
就基材層101與無機物層102的接著性提高的觀點而言,作為底塗層104的材料,例如可列舉選自由聚胺基甲酸酯樹脂、聚酯樹脂、噁唑啉樹脂、(甲基)丙烯酸樹脂所組成的群組中的一種或兩種以上。From the viewpoint of improving the adhesion between the base layer 101 and the inorganic layer 102, examples of the material of the undercoat layer 104 include polyurethane resin, polyester resin, oxazoline resin, (methane resin), etc. One or more of the group consisting of acrylic resins.
作為聚胺基甲酸酯樹脂,可例示各種聚胺基甲酸酯樹脂、聚胺基甲酸酯聚脲樹脂及該些的預聚物等。作為此種胺基甲酸酯樹脂的具體例,可列舉:甲苯二異氰酸酯、二甲苯二異氰酸酯、二苯基甲烷二異氰酸酯、六亞甲基二異氰酸酯、環己烷二異氰酸酯、異佛爾酮二異氰酸酯、二環己基二異氰酸酯等二異氰酸酯成分與乙二醇、丙二醇、1,4-丁二醇、1,6-己二醇、新戊二醇、環己烷二甲醇、雙酚、聚酯二醇、聚醚二醇、聚碳酸酯二醇、聚乙二醇等二醇成分的反應物;末端具有異氰酸酯基的胺基甲酸酯預聚物與胺基化合物、胺基磺酸鹽、聚羥基羧酸、亞硫酸氫等的反應物等。Examples of the polyurethane resin include various polyurethane resins, polyurethane polyurea resins, and prepolymers thereof. Specific examples of such urethane resins include toluene diisocyanate, xylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, and isophorone diisocyanate. Diisocyanate components such as isocyanate and dicyclohexyl diisocyanate are combined with ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, cyclohexanedimethanol, bisphenol, and polyester Reactants of diol components such as diols, polyether diols, polycarbonate diols, and polyethylene glycols; urethane prepolymers with isocyanate groups at the end and amine compounds, amine sulfonates, Reactants of polyhydroxycarboxylic acid, hydrogen sulfite, etc.
另外,就使蒸煮處理後的阻擋性及基材層101與無機物層102之間的接著性進一步良好的觀點而言,亦較佳為於底塗層104中,聚胺基甲酸酯樹脂包含在主鏈具有芳香族環結構的聚胺基甲酸酯樹脂。於主鏈具有芳香族環結構的聚胺基甲酸酯系樹脂例如可藉由多元醇與有機聚異氰酸酯及鏈伸長劑的反應而作為水分散型聚胺基甲酸酯樹脂獲得。藉此,可於聚胺基甲酸酯系樹脂的主鏈導入芳香族環結構。 作為於主鏈具有芳香族環結構的聚胺基甲酸酯樹脂,更具體而言,可使用日本專利特開2018-171827號公報中記載者。 In addition, from the viewpoint of further improving the barrier properties after the retort treatment and the adhesion between the base layer 101 and the inorganic layer 102 , it is also preferable that the undercoat layer 104 contains a polyurethane resin. Polyurethane resin with an aromatic ring structure in the main chain. A polyurethane resin having an aromatic ring structure in the main chain can be obtained as a water-dispersed polyurethane resin by reacting a polyol with an organic polyisocyanate and a chain extender, for example. Thereby, an aromatic ring structure can be introduced into the main chain of the polyurethane resin. As the polyurethane resin having an aromatic ring structure in the main chain, more specifically, those described in Japanese Patent Application Laid-Open No. 2018-171827 can be used.
另外,就提高耐熱性、耐水性及耐水解性等的觀點而言,亦可於所述水分散型聚胺基甲酸酯樹脂中併用交聯劑。交聯劑可為針對水分散型聚胺基甲酸酯樹脂作為第三成分添加的外部交聯劑,另外,亦可為於水分散型聚胺基甲酸酯樹脂的分子結構內預先導入成為交聯結構的反應點的內部交聯劑。In addition, from the viewpoint of improving heat resistance, water resistance, hydrolysis resistance, etc., a crosslinking agent may be used in combination with the water-dispersed polyurethane resin. The crosslinking agent may be an external crosslinking agent added as a third component to the water-dispersed polyurethane resin, or may be introduced in advance into the molecular structure of the water-dispersed polyurethane resin. Internal cross-linking agent at the reaction site of the cross-linking structure.
作為交聯劑,可較佳地使用具有異氰酸酯基、噁唑啉基、碳二醯亞胺基、環氧基、三聚氰胺樹脂及矽醇基等的化合物,進而佳為具有碳二醯亞胺基的化合物。另外,於使用具有碳二醯亞胺基的化合物作為交聯劑的情況下,具有碳二醯亞胺基的化合物的添加量為相對於聚胺基甲酸酯樹脂中的羧基1.0 mol而言碳二醯亞胺基成為較佳為0.1 mol~3.0 mol、進而佳為0.2 mol~2.0 mol、進而更佳為0.3 mol~1.0 mol的量。As the cross-linking agent, compounds having an isocyanate group, an oxazoline group, a carbodiimide group, an epoxy group, a melamine resin, a silyl alcohol group, etc. are preferably used, and more preferably, a compound having a carbodiimide group is used. compound of. In addition, when using a compound having a carbodiimide group as a cross-linking agent, the amount of the compound having a carbodiimide group is added relative to 1.0 mol of the carboxyl group in the polyurethane resin. The carbodiimide group is preferably in an amount of 0.1 mol to 3.0 mol, more preferably 0.2 mol to 2.0 mol, and still more preferably 0.3 mol to 1.0 mol.
作為底塗層104中使用的聚酯樹脂,可例示各種聚酯樹脂及該些的改質物。作為此種聚酯樹脂的具體例,可列舉:對苯二甲酸、鄰苯二甲酸、間苯二甲酸、偏苯三甲酸、均苯四甲酸、2-磺基間苯二甲酸、5-磺基間苯二甲酸、己二酸、癸二酸、琥珀酸、十二烷二酸等多元羧酸成分與乙二醇、丙二醇、1,4-丁二醇、1,6-己二醇、新戊二醇、環己烷二甲醇、雙酚等二醇成分的反應物,亦包含基於丙烯酸樹脂、環氧樹脂等的改質物。Examples of the polyester resin used in the undercoat layer 104 include various polyester resins and modified products thereof. Specific examples of such polyester resins include terephthalic acid, phthalic acid, isophthalic acid, trimellitic acid, pyromellitic acid, 2-sulfoisophthalic acid, and 5-sulfoisophthalic acid. Polyisophthalic acid, adipic acid, sebacic acid, succinic acid, dodecanedioic acid and other polycarboxylic acid components are combined with ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, The reactants of diol components such as neopentyl glycol, cyclohexanedimethanol, and bisphenol also include modified products based on acrylic resin, epoxy resin, etc.
於底塗層104使用噁唑啉樹脂的情況下,底塗層104較佳為包含噁唑啉系樹脂組成物,所述噁唑啉系樹脂組成物包含含噁唑啉基的水性聚合物、水性(甲基)丙烯酸樹脂及水性聚酯樹脂。 噁唑啉系樹脂組成物例如包含噁唑啉基含量為6.0 mmol/g~9.0 mmol/g的含噁唑啉基的水性聚合物、羧基含量為0.5 mmol/g~3.5 mmol/g的水性(甲基)丙烯酸樹脂及羧基含量為0.5 mmol/g~2.0 mmol/g的水性聚酯樹脂。 另外,關於噁唑啉系樹脂組成物,將含噁唑啉基的水性聚合物、水性(甲基)丙烯酸樹脂及水性聚酯樹脂的合計量設為100質量%,例如含有10質量%~55質量%的含噁唑啉基的水性聚合物、10質量%~80質量%的水性(甲基)丙烯酸樹脂、10質量%~80質量%的水性聚酯樹脂。 另外,於噁唑啉系樹脂組成物中,例如,噁唑啉基的莫耳數與羧基的莫耳數的比率〔由噁唑啉基的莫耳數(x mmol)與羧基的莫耳數(y mmol)的比(x/y)×100[mol%]所表示〕為150 mol%~420 mol%。 作為底塗層104中使用的噁唑啉樹脂,更具體而言,可使用國際公開第2016/186074號中記載者。 When the base coat 104 uses an oxazoline resin, the base coat 104 preferably includes an oxazoline-based resin composition, and the oxazoline-based resin composition includes an oxazoline group-containing aqueous polymer, Water-based (meth)acrylic resin and water-based polyester resin. The oxazoline-based resin composition includes, for example, an oxazoline group-containing aqueous polymer with an oxazoline group content of 6.0 mmol/g to 9.0 mmol/g, and an aqueous polymer with a carboxyl group content of 0.5 mmol/g to 3.5 mmol/g. Meth)acrylic resin and water-based polyester resin with carboxyl content between 0.5 mmol/g and 2.0 mmol/g. In addition, regarding the oxazoline-based resin composition, the total amount of the oxazoline group-containing aqueous polymer, the aqueous (meth)acrylic resin, and the aqueous polyester resin is 100% by mass. For example, the oxazoline-based resin composition contains 10% by mass to 55% by mass. Mass % of the oxazoline group-containing water-based polymer, 10 mass % to 80 mass % of the water-based (meth)acrylic resin, and 10 mass % to 80 mass % of the water-based polyester resin. In addition, in the oxazoline-based resin composition, for example, the ratio of the molar number of the oxazoline group to the molar number of the carboxyl group [from the molar number of the oxazoline group (x mmol) and the molar number of the carboxyl group The ratio (x/y) × 100 [mol%] of (y mmol) is 150 mol% ~ 420 mol%. As the oxazoline resin used in the undercoat layer 104, more specifically, those described in International Publication No. 2016/186074 can be used.
就獲得良好的接著性的觀點而言,底塗層104的厚度較佳為0.001 μm以上,更佳為0.005 μm以上,進而佳為0.01 μm以上,進而更佳為0.05 μm以上,進一步尤佳為0.1 μm以上,進一步更佳為0.2 μm以上。 另外,就經濟性的觀點而言,底塗層104的厚度較佳為1.0 μm以下,更佳為0.6 μm以下,進而佳為0.5 μm以下,另外,例如為0.1 μm以下,或者亦可為例如0.05 μm以下。 From the viewpoint of obtaining good adhesion, the thickness of the primer layer 104 is preferably 0.001 μm or more, more preferably 0.005 μm or more, still more preferably 0.01 μm or more, still more preferably 0.05 μm or more, and still more preferably 0.05 μm or more. 0.1 μm or more, more preferably 0.2 μm or more. In addition, from the viewpoint of economy, the thickness of the undercoat layer 104 is preferably 1.0 μm or less, more preferably 0.6 μm or less, further preferably 0.5 μm or less, and may be, for example, 0.1 μm or less, or may be, for example, Below 0.05 μm.
(接著劑層) 於氣體阻擋性積層體中亦可進一步設置有接著劑層。再者,自接著劑層中去除底塗層104。 接著劑層例如設置於氣體阻擋性層103與氣體阻擋性層103的上層之間。另外,於所述上層由多個層形成時,亦可於多個層之間設置接著層。此處,所謂氣體阻擋性層103的上層,是指積層於氣體阻擋性層103的與無機物層102相向的面為相反側的面的層。 接著劑層只要包含公知的接著劑即可。作為接著劑,可列舉由有機鈦樹脂、聚乙烯亞胺樹脂、胺基甲酸酯樹脂、環氧樹脂、丙烯酸樹脂、聚酯樹脂、含有噁唑啉基的樹脂、改質矽酮樹脂及鈦酸烷基酯、聚酯聚丁二烯等組成的層壓接著劑、或一液型、二液型的多元醇與多元異氰酸酯、水系胺基甲酸酯、離子聚合物等。或者,亦可使用以丙烯酸樹脂、乙酸乙烯酯樹脂、胺基甲酸酯樹脂、聚酯樹脂等為主原料的水性接著劑。 另外,亦可根據氣體阻擋性積層體100的用途,於接著劑中添加硬化劑、矽烷偶合劑等其他添加物。於氣體阻擋性積層體的用途為在蒸煮等熱水處理中使用的情況下,就耐熱性或耐水性的觀點而言,較佳為以聚胺基甲酸酯接著劑為代表的乾式層壓用接著劑,更佳為溶劑系的二液硬化型的聚胺基甲酸酯接著劑。 (adhesive layer) The gas barrier laminated body may further be provided with an adhesive layer. Furthermore, the primer layer 104 is removed from the adhesive layer. The adhesive layer is, for example, provided between the gas barrier layer 103 and the upper layer of the gas barrier layer 103 . In addition, when the upper layer is formed of a plurality of layers, an adhesive layer may be provided between the plurality of layers. Here, the upper layer of the gas barrier layer 103 refers to a layer laminated on the surface of the gas barrier layer 103 opposite to the surface facing the inorganic layer 102 . The adhesive layer only needs to contain a known adhesive. Examples of adhesives include organic titanium resin, polyethyleneimine resin, urethane resin, epoxy resin, acrylic resin, polyester resin, oxazoline group-containing resin, modified silicone resin, and titanium resin. Laminated adhesives composed of alkyl acid esters, polyester polybutadiene, etc., or one-liquid or two-liquid polyols and polyisocyanates, water-based urethanes, ionic polymers, etc. Alternatively, a water-based adhesive whose main raw material is acrylic resin, vinyl acetate resin, urethane resin, polyester resin, etc. can also be used. In addition, other additives such as a hardener and a silane coupling agent may be added to the adhesive according to the use of the gas barrier laminate 100 . When the gas barrier laminate is used for hot water treatment such as steaming, dry lamination represented by a polyurethane adhesive is preferred from the viewpoint of heat resistance or water resistance. Use an adhesive, preferably a solvent-based two-liquid hardening type polyurethane adhesive.
(氣體阻擋性積層體的製造方法) 於第五實施方式中,氣體阻擋性積層體100的製造方法例如包括:準備基材層101的步驟;於基材層101上形成無機物層102的步驟;以及於形成有無機物層102的基材層101的上部形成氣體阻擋性層103的步驟。另外,亦可於形成無機物層102的步驟之後且形成氣體阻擋性層103的步驟之前更包括在無機物層102上形成底塗層104的步驟。 (Method for manufacturing gas barrier laminate) In the fifth embodiment, the manufacturing method of the gas barrier laminate 100 includes, for example: the steps of preparing the base material layer 101; the step of forming the inorganic layer 102 on the base layer 101; and the step of forming the inorganic layer 102 on the base material. A step of forming a gas barrier layer 103 on top of layer 101 . In addition, the step of forming the undercoat layer 104 on the inorganic layer 102 may be further included after the step of forming the inorganic layer 102 and before the step of forming the gas barrier layer 103 .
於基材層101上形成無機物層102的步驟例如可使用所述無機物層102的形成方法。The step of forming the inorganic layer 102 on the base material layer 101 may use, for example, the method for forming the inorganic layer 102 described above.
形成氣體阻擋性層103的步驟例如包括:將硬化前的混合物作為氣體阻擋用塗材塗敷於無機物層102,繼而,藉由進行乾燥而獲得塗敷層的步驟;以及對所述塗敷層進行加熱,使多羧酸中所含的羧基與多胺化合物中所含的胺基進行脫水縮合反應,藉此形成具有醯胺鍵的氣體阻擋性層103的步驟。The step of forming the gas barrier layer 103 includes, for example, applying the uncured mixture as a gas barrier coating material to the inorganic layer 102 and then drying it to obtain a coating layer; and applying the coating layer to the gas barrier layer 103 . A step of heating to cause a dehydration condensation reaction between the carboxyl groups contained in the polycarboxylic acid and the amine groups contained in the polyamine compound, thereby forming the gas barrier layer 103 having a amide bond.
將氣體阻擋用塗材塗佈於無機物層102上的方法並無限定,可使用通常的方法。例如可列舉使用邁爾棒塗佈機、氣刀塗佈機、直接凹版塗佈機、間接凹版、電弧凹版塗佈機、反向凹版及噴射管嘴方式等凹版塗佈機、頂部進料反向塗佈機、底部進料反向塗佈機及管嘴進料反向塗佈機等反向輥塗機、五輥塗佈機、模唇塗佈機、棒式塗佈機、反向棒塗佈機、模具塗佈機等公知的塗敷機進行塗敷的方法。The method of applying the gas barrier coating material to the inorganic layer 102 is not limited, and a common method can be used. For example, gravure coaters using Meyer rod coaters, air knife coaters, direct gravure coaters, indirect gravure, arc gravure coaters, reverse gravure and spray nozzle methods, top feed reverse gravure coaters, etc. Reverse roll coaters such as reverse roll coaters, bottom feed reverse coaters and nozzle feed reverse coaters, five-roller coaters, die lip coaters, rod coaters, reverse The coating method is performed using a known coater such as a bar coater or a die coater.
就使所獲得的氣體阻擋性積層體的阻擋性能更良好的觀點而言,塗敷量(濕厚度)較佳為0.05 μm,更佳為1 μm以上。 另外,就抑制所獲得的氣體阻擋性積層體捲曲的觀點以及更有效果地促進多羧酸中所含的-COO-基與多胺化合物中所含的胺基的脫水縮合反應的觀點而言,濕厚度較佳為300 μm以下,更佳為200 μm以下,進而佳為100 μm以下。 From the viewpoint of improving the barrier performance of the gas barrier laminate obtained, the coating amount (wet thickness) is preferably 0.05 μm, more preferably 1 μm or more. In addition, from the viewpoint of suppressing curling of the obtained gas barrier laminate and more effectively promoting the dehydration condensation reaction of the -COO- group contained in the polycarboxylic acid and the amine group contained in the polyamine compound , the wet thickness is preferably 300 μm or less, more preferably 200 μm or less, further preferably 100 μm or less.
乾燥及熱處理可於乾燥後進行熱處理,亦可同時進行乾燥與熱處理。 進行乾燥、加熱處理的方法只要是可獲得本發明的效果者,則並無限定,只要是可使氣體阻擋用塗材硬化者、可加熱硬化的氣體阻擋用塗材的方法即可。例如可列舉烘箱、乾燥裝置等利用對流傳熱的裝置,加熱輥等利用傳導傳熱的裝置,紅外線、遠紅外線、近紅外線的加熱器等利用使用電磁波的輻射傳熱的裝置,微波等利用內部發熱的裝置。作為乾燥、加熱處理中使用的裝置,就製造效率的觀點而言,較佳為可進行乾燥與加熱處理兩者的裝置。其中,具體而言,就可在乾燥、加熱、退火等各種用途中利用的觀點而言,較佳為使用熱風烘箱,另外,就對膜的熱傳導效率優異的觀點而言,較佳為使用加熱輥。另外,亦可適宜組合乾燥、加熱處理中使用的方法。具體而言,亦可併用熱風烘箱與加熱輥,例如若在熱風烘箱中乾燥氣體阻擋用塗材後,利用加熱輥進行加熱處理,則加熱處理步驟的時間變短,就製造效率的觀點而言較佳。另外,較佳為僅藉由熱風烘箱進行乾燥與加熱處理。 Drying and heat treatment can be carried out after drying or at the same time. The method of drying and heat treatment is not limited as long as the effects of the present invention can be obtained, as long as the gas barrier coating material can be hardened or the gas barrier coating material can be heat-cured. Examples include devices that utilize convection heat transfer such as ovens and dryers, devices that utilize conductive heat transfer such as heating rollers, devices that utilize radiation heat transfer using electromagnetic waves such as infrared, far-infrared, and near-infrared heaters, and devices that utilize internal heat transfer such as microwaves. Heating device. As an apparatus used for drying and heat treatment, from the viewpoint of manufacturing efficiency, an apparatus capable of performing both drying and heat treatment is preferred. Among them, specifically, it is preferable to use a hot air oven from the viewpoint of being usable in various applications such as drying, heating, and annealing. In addition, from the viewpoint of excellent heat conduction efficiency to the film, it is preferable to use heating. Roller. In addition, methods used for drying and heat treatment may be appropriately combined. Specifically, a hot air oven and a heating roller may be used together. For example, if the gas barrier coating material is dried in a hot air oven and then heated using a heating roller, the time of the heating treatment step will be shortened, and from the viewpoint of manufacturing efficiency Better. In addition, it is preferable to perform drying and heating processing only by a hot air oven.
關於加熱處理條件,例如,加熱處理溫度為80℃~250℃、加熱處理時間為1秒~1分鐘,較佳為加熱處理溫度為120℃~240℃、加熱處理時間為1秒~31分鐘,更佳為加熱處理溫度為170℃~230℃、加熱處理時間為1秒~30秒,進而佳為加熱處理溫度為200℃~220℃、加熱處理時間為1秒~10秒。進而如上所述,藉由併用加熱輥,能夠在短時間內進行加熱處理。 再者,就有效果地促進多羧酸中所含的-COO-基與多胺化合物中所含的胺基的脫水縮合反應的觀點而言,重要的是加熱處理溫度及加熱處理時間根據氣體阻擋用塗材的濕厚度進行調整。 Regarding the heat treatment conditions, for example, the heat treatment temperature is 80°C to 250°C and the heat treatment time is 1 second to 1 minute. Preferably, the heat treatment temperature is 120°C to 240°C and the heat treatment time is 1 second to 31 minutes. More preferably, the heat treatment temperature is 170°C to 230°C and the heat treatment time is 1 second to 30 seconds. Still more preferably, the heat treatment temperature is 200°C to 220°C and the heat treatment time is 1 second to 10 seconds. Furthermore, as mentioned above, by using a heating roller together, heat processing can be performed in a short time. Furthermore, from the viewpoint of effectively promoting the dehydration condensation reaction between the -COO- group contained in the polycarboxylic acid and the amine group contained in the polyamine compound, it is important that the heat treatment temperature and heat treatment time are adjusted according to the gas The wet thickness of the barrier coating is adjusted.
藉由對氣體阻擋用塗材進行乾燥、熱處理,多羧酸的羧基與多胺或多價金屬化合物反應,進行共價鍵以及離子交聯,藉此形成即便於蒸煮處理後亦具有良好的氣體阻擋性的氣體阻擋性層103。By drying and heat-treating the gas barrier coating material, the carboxyl group of the polycarboxylic acid reacts with the polyamine or polyvalent metal compound to form covalent bonds and ionic cross-linking, thereby forming a gas that has good properties even after retort treatment. Barrier gas barrier layer 103 .
於第五實施方式中,氣體阻擋性積層體的氣體阻擋性能優異,例如以包裝材料、其中要求高氣體阻擋性的內容物的食品包裝材料為代表,可適宜用作醫療用途、工業用途、日常雜貨用途等各種包裝材料。In the fifth embodiment, the gas barrier laminate has excellent gas barrier properties and can be suitably used in medical applications, industrial applications, and daily life as represented by packaging materials and food packaging materials for contents requiring high gas barrier properties. Various packaging materials for groceries and other purposes.
另外,第五實施方式的氣體阻擋性積層體例如可適宜用作:要求高阻擋性能的真空隔熱用膜;用於密封電致發光元件、太陽電池等的密封用膜等。In addition, the gas barrier laminate of the fifth embodiment can be suitably used as, for example, a vacuum heat-insulating film requiring high barrier performance; a sealing film for sealing electroluminescent elements, solar cells, and the like.
以下示出於第五實施方式中包含氣體阻擋性積層體而構成的積層結構的具體例。 (積層結構例1)基材層101(PET基材)/無機物層102(氧化鋁蒸鍍層)/氣體阻擋性層103/接著劑層/聚烯烴層 (積層結構例2)基材層101(PET基材)/底塗層104/無機物層102(氧化鋁蒸鍍層)/氣體阻擋性層103/接著劑層/聚烯烴層 (積層結構例3)基材層101(PET基材)/無機物層102(氧化鋁蒸鍍層)/氣體阻擋性層103/接著劑層/聚醯胺層/接著劑層/聚烯烴層 (積層結構例4)基材層101(PET基材)/底塗層104/無機物層102(氧化鋁蒸鍍層)/氣體阻擋性層103/接著劑層/聚醯胺層/接著劑層/聚烯烴層 此處,藉由於積層結構中包含含有聚乙烯、聚丙烯、聚(4-甲基-1-戊烯)、聚(1-丁烯)等聚烯烴的聚烯烴層,於氣體阻擋性積層體中,可使耐針孔性、耐破裂性及耐熱性等良好,並且更進一步抑制高濕度下的氣體阻擋性能或蒸煮處理後的氣體阻擋性能的降低。 Specific examples of the laminated structure including the gas barrier laminated body in the fifth embodiment are shown below. (Laminated structure example 1) Base material layer 101 (PET base material)/inorganic layer 102 (aluminum oxide vapor deposition layer)/gas barrier layer 103/adhesive layer/polyolefin layer (Laminated structure example 2) Base material layer 101 (PET base material)/undercoat layer 104/inorganic layer 102 (aluminum oxide vapor deposition layer)/gas barrier layer 103/adhesive layer/polyolefin layer (Laminated structure example 3) Base material layer 101 (PET base material)/inorganic layer 102 (aluminum oxide vapor deposition layer)/gas barrier layer 103/adhesive layer/polyamide layer/adhesive layer/polyolefin layer (Laminated structure example 4) Base material layer 101 (PET base material)/undercoat layer 104/inorganic layer 102 (aluminum oxide vapor deposition layer)/gas barrier layer 103/adhesive layer/polyamide layer/adhesive layer/ polyolefin layer Here, since the laminated structure includes a polyolefin layer containing polyolefins such as polyethylene, polypropylene, poly(4-methyl-1-pentene), and poly(1-butene), the gas barrier laminated body Medium can improve pinhole resistance, crack resistance, heat resistance, etc., and further suppress the decrease in gas barrier performance under high humidity or gas barrier performance after retort processing.
以上,參照圖式對第一實施方式~第五實施方式進行了敘述,但該些為第一發明~第五發明的例示,亦可採用所述以外的各種結構。 [實施例] The first to fifth embodiments have been described above with reference to the drawings. However, these are examples of the first to fifth inventions, and various structures other than those described above may be adopted. [Example]
*表編號全面修正 實施例前亦有表 以下,參照實施例、比較例來詳細說明第一實施方式~第五實施方式。再者,第一實施方式~第五實施方式並不受該些實施例的記載的任何限定。 *The table numbers have been completely revised. There are also tables before the embodiment. Hereinafter, the first to fifth embodiments will be described in detail with reference to Examples and Comparative Examples. In addition, the first to fifth embodiments are not limited at all by the description of these Examples.
<第一實施方式的實施例> (實施例1) (1)氣體阻擋用塗材的製作 利用精製水對聚丙烯酸(Polyacrylic acid,PPA)水溶液(東亞合成公司製造,製品名:AC-10H,重量平均分子量:800,000)進行稀釋,製作PPA的濃度10%的水溶液,添加10%的氨水,以使相對於羧基1 mol%成為1.5 mol的氨,獲得PPA的濃度為7.38%的聚丙烯酸銨水溶液。 繼而,向所獲得的聚丙烯酸銨水溶液中添加氧化鋅(ZnO:關東化學公司製造)及碳酸銨(關東化學公司製造)並進行混合攪拌。此處,氧化鋅的添加量設為(氧化鋅)/(PPA的羧基)為以mol比計成為0.3的量。另外,碳酸銨設為相對於PPA的羧基而言以mol比計成為0.3的量。以如上方式製作混合液(A)。 繼而,向聚乙烯亞胺(PEI(polyethylene imine):日本觸媒製造,製品名:SP-200,數量平均分子量:10,000)中添加精製水,獲得製成PEI的濃度10%的水溶液的聚乙烯亞胺水溶液。 接著,於所述混合液(A)中將所述聚乙烯亞胺水溶液以(PEI的氮)/(PAA的羧基)以mol比計成為0.55的比例混合,製備混合液(B)。 進而,對於所述混合液(B),以PPA+ZnO+PEI的固體成分濃度成為2%的方式添加精製水,攪拌至成為均勻溶液。進而,以磷酸氫銨((NH 4) 2HPO 4:關東化學公司製造)相對於PPA的羧基1 mol成為1×10 -3mol的方式添加固體成分濃度2%的磷酸氫銨水溶液並進行攪拌後,以使活性劑(花王公司製造,商品名:艾馬吉(Emulgen)120)相對於PPA+ZnO+PEI的固體成分成為0.3質量%的方式混合固體成分濃度1%的活性劑水溶液,調整氣體阻擋用塗材。 <Example of the first embodiment> (Example 1) (1) Preparation of gas barrier coating material Purified water was used to prepare a polyacrylic acid (PPA) aqueous solution (manufactured by Toagosei Co., Ltd., product name: AC-10H, Weight average molecular weight: 800,000) was diluted to prepare an aqueous solution with a concentration of 10% of PPA, and 10% ammonia was added so that 1 mol% of ammonia relative to the carboxyl group became 1.5 mol, thereby obtaining an aqueous solution of ammonium polyacrylate with a concentration of PPA of 7.38%. . Next, zinc oxide (ZnO: manufactured by Kanto Chemical Co., Ltd.) and ammonium carbonate (manufactured by Kanto Chemical Co., Ltd.) were added to the obtained ammonium polyacrylate aqueous solution and mixed and stirred. Here, the addition amount of zinc oxide is an amount such that (zinc oxide)/(carboxyl group of PPA) becomes 0.3 in molar ratio. In addition, the ammonium carbonate is an amount such that the molar ratio becomes 0.3 relative to the carboxyl group of PPA. Prepare mixture (A) as above. Next, purified water was added to polyethylene imine (PEI (polyethylene imine): manufactured by Nippon Shokubai, product name: SP-200, number average molecular weight: 10,000) to obtain polyethylene that was an aqueous solution with a concentration of 10% of PEI. imine aqueous solution. Next, the polyethyleneimine aqueous solution was mixed into the mixed liquid (A) at a molar ratio of (nitrogen of PEI)/(carboxyl group of PAA) of 0.55 to prepare a mixed liquid (B). Furthermore, purified water was added to the mixed liquid (B) so that the solid content concentration of PPA+ZnO+PEI became 2%, and the mixture was stirred until it became a homogeneous solution. Furthermore, an ammonium hydrogenphosphate aqueous solution with a solid content concentration of 2% was added and stirred so that 1 mol of ammonium hydrogenphosphate ((NH 4 ) 2 HPO 4 : manufactured by Kanto Chemical Co., Ltd.) became 1×10 -3 mol with respect to 1 mol of carboxyl groups of PPA. Then, an active agent aqueous solution with a solid content concentration of 1% was mixed and adjusted so that the active agent (manufactured by Kao Corporation, trade name: Emulgen 120) became 0.3 mass % with respect to the solid content of PPA+ZnO+PEI. Gas barrier coating material.
(2)氣體阻擋性積層體的製作 準備於基材層的12 μm PET膜上蒸鍍了氧化鋁作為無機物層的透明蒸鍍膜(三井化學東賽璐(Mitsui Chemicals Tohcello)股份有限公司製造,型號:TL-PET-H)。將該膜黏附於玻璃板上,利用敷料器以乾燥後的膜厚成為0.2 μm的方式塗佈氣體阻擋用塗材。然後,連同玻璃板於120℃下利用熱風乾燥機乾燥5分鐘。於將乾燥後的膜的兩端固定來使膜呈中空狀態的基礎上,於150℃下、1分鐘的條件下利用熱風乾燥器進行熱處理。藉由以上,於透明蒸鍍膜上形成氣體阻擋性層,製作氣體阻擋積層體。 將氣體阻擋性層的製作條件示於表7中。 (2) Production of gas barrier laminate A transparent vapor-deposited film (manufactured by Mitsui Chemicals Tohcello Co., Ltd., model: TL-PET-H) with aluminum oxide as an inorganic layer was vapor-deposited on a 12 μm PET film prepared as a base material layer. The film was adhered to a glass plate, and the gas barrier coating material was applied using an applicator so that the film thickness after drying became 0.2 μm. Then, the glass plate was dried using a hot air dryer at 120° C. for 5 minutes. After fixing both ends of the dried membrane to make the membrane hollow, heat treatment was performed with a hot air dryer at 150° C. for 1 minute. Through the above, a gas barrier layer is formed on the transparent vapor deposition film, and a gas barrier laminate is produced. Table 7 shows the production conditions of the gas barrier layer.
(3)氣體阻擋性層的分析 另外,對所述(2)中獲得的氣體阻擋性積層體的氣體阻擋性層進行XPS分析及TOF-SIMS分析。 (3) Analysis of gas barrier layer In addition, XPS analysis and TOF-SIMS analysis were performed on the gas barrier layer of the gas barrier laminate obtained in the above (2).
XPS分析條件 分析裝置:克拉托斯(KRATOS)公司製造的艾斯諾瓦(AXIS-NOVA) X射線源:單色化Al-Kα X射線源輸出:15 kV、10 mA 分析區域:300 μm×700 μm 分析時:使用帶電校正用中和槍 試樣尺寸:1 cm×1 cm 將XPS分析的結果示於表8中。 XPS analysis conditions Analytical device: AXIS-NOVA manufactured by KRATOS X-ray source: monochromated Al-Kα X-ray source output: 15 kV, 10 mA Analysis area: 300 μm×700 μm During analysis: Use a neutralizing gun for charged calibration Sample size: 1 cm×1 cm The results of XPS analysis are shown in Table 8.
TOF-SIMS分析條件 測定前處理:利用Ar-GCIB進行表面蝕刻 GCIB:5 kV、5 μA GCIB處理時間:TOF-SIMS的光譜圖案不再變化的時間點 分析裝置:日本真空(Ulvac-phi)公司製造的PHI奈米(nano)-TOFII 一次離子:Bi 3 2+一次離子源輸出:30 kV、0.5 μA 分析區域:300 μm×300 μm(一次離子束的掃描區域) 分析時,藉由裝置附帶的低能量電子束及低能量Ar離子照射進行帶電中和。將基於所述方法對藉由TOF-SIMS分析獲得的資料進行解析的結果示於表9中。所謂利用C 3H 3O 2 -的強度標準化的相對質量峰強度,是指各片段的質量峰強度除以C 3H 3O 2 -的強度(I(C 3H 3O 2 -))而得的值。 TOF-SIMS analysis conditions Measurement pre-processing: Surface etching using Ar-GCIB GCIB: 5 kV, 5 μA GCIB processing time: The time point when the TOF-SIMS spectral pattern no longer changes Analysis equipment: Nippon Vacuum (Ulvac-phi) Co., Ltd. Manufactured PHI nano (nano)-TOFII Primary ion: Bi 3 2+ Primary ion source output: 30 kV, 0.5 μA Analysis area: 300 μm × 300 μm (scanning area of primary ion beam) During analysis, use the included device Low-energy electron beam and low-energy Ar ion irradiation for charged neutralization. The results of analyzing the data obtained by TOF-SIMS analysis based on the method are shown in Table 9. The so-called relative mass peak intensity normalized by the intensity of C 3 H 3 O 2 - refers to the mass peak intensity of each fragment divided by the intensity of C 3 H 3 O 2 - (I (C 3 H 3 O 2 - )). Worth it.
(4)兩層層壓結構的氣體阻擋性積層體的製作 於厚度70 μm的未拉伸聚丙烯(三井化學東賽璐(Mitsui Chemicals Tohcello)公司製造,商品名:RXC-22)的電暈放電處理面塗敷接著劑,與所述(2)中獲得的氣體阻擋性積層體的氣體阻擋性面黏合,製作兩層層壓結構的氣體阻擋性積層體。接著劑使用調配有三井化學公司製造的商品名:塔克拉克(Takelac)A525S 9質量份、異氰酸酯系硬化劑(三井化學公司製造,商品名:塔克奈特(Takenate)A50)1質量份及乙酸乙酯7.5質量份而成者。 (4) Production of a gas barrier laminate with a two-layer laminated structure An adhesive was applied to the corona discharge-treated surface of unstretched polypropylene (manufactured by Mitsui Chemicals Tohcello Co., Ltd., trade name: RXC-22) with a thickness of 70 μm, and was obtained in the above (2) The gas barrier surface of the gas barrier laminate is bonded to produce a gas barrier laminate with a two-layer laminated structure. The adhesive used was prepared with 9 parts by mass of Takelac A525S, a product manufactured by Mitsui Chemicals, 1 part by mass of an isocyanate hardener (Takenate A50, a product of Mitsui Chemicals), and acetic acid. It contains 7.5 parts by mass of ethyl ester.
(5)兩層層壓結構的水蒸氣滲透率的評價 對(4)中獲得的氣體阻擋性積層體,以未拉伸聚丙烯成為內表面的方式翻折,將兩邊熱封而製成袋狀後,加入水70 cc作為內容物,藉由熱封另一邊而製作袋,將其利用高溫高壓蒸煮殺菌裝置於130℃下進行30分鐘蒸煮處理。於蒸煮處理後,排出內容物的水,去除密封部,獲得蒸煮處理後(水填充)的膜。 對藉由所述方法而獲得的蒸煮處理後的膜,以未拉伸聚丙烯成為內表面的方式重疊而翻折氣體阻擋性積層膜,將兩邊熱封而製成袋狀後,加入氯化鈣作為內容物,藉由熱封另一邊而以表面積成為0.01 m 2的方式製作袋,於40℃、90%RH的條件下放置300小時,藉由放置前後的重量變化測定水蒸氣滲透率[g/(m 2·day)]。 將蒸煮處理後的氣體阻擋性評價結果示於表10中。 (5) Evaluation of water vapor permeability of a two-layer laminate structure The gas barrier laminate obtained in (4) was folded so that the unstretched polypropylene became the inner surface, and both sides were heat-sealed to make a bag. After the bag is formed, add 70 cc of water as the content, heat-seal the other side to make a bag, and use a high-temperature and high-pressure cooking sterilization device to cook it at 130°C for 30 minutes. After the steaming process, the water in the contents is drained, the sealing part is removed, and the membrane after the steaming process (water-filled) is obtained. The gas barrier laminated film was folded so that the unstretched polypropylene became the inner surface of the retort-treated film obtained by the above method, and both sides were heat-sealed to form a bag, and then chlorinated Calcium is used as the content, and the other side is heat-sealed to make a bag with a surface area of 0.01 m 2 . The bag is left for 300 hours under conditions of 40°C and 90% RH. The water vapor permeability is measured by the change in weight before and after leaving the bag [ g/(m 2 ·day)]. Table 10 shows the gas barrier property evaluation results after the retort treatment.
(實施例2) 除了使磷酸氫銨的濃度相對於聚丙烯酸的羧基1 mol為0.01 mol以外,與實施例1同樣地製作氣體阻擋性層。將製作條件一併示於表3中。另外,對所獲得的氣體阻擋性層進行XPS分析及TOF-SIMS分析。將XPS分析及TOF-SIMS分析的結果示於表8及表9中。另外,將蒸煮處理後的氣體阻擋性評價結果示於表10中。 (Example 2) A gas barrier layer was produced in the same manner as in Example 1, except that the concentration of ammonium hydrogen phosphate was 0.01 mol per mol of carboxyl groups of polyacrylic acid. The production conditions are also shown in Table 3. In addition, the obtained gas barrier layer was subjected to XPS analysis and TOF-SIMS analysis. The results of XPS analysis and TOF-SIMS analysis are shown in Tables 8 and 9. Table 10 shows the gas barrier property evaluation results after the retort treatment.
(實施例3) 除了使磷酸氫銨的濃度相對於聚丙烯酸的羧基1 mol為0.1 mol以外,與實施例1同樣地製作氣體阻擋性積層體。將製作條件一併示於表3中。另外,對所獲得的氣體阻擋性層進行XPS分析及TOF-SIMS分析。將XPS分析及TOF-SIMS分析的結果示於表8及表9中。另外,將蒸煮處理後的氣體阻擋性評價結果示於表10中。 (Example 3) A gas barrier laminate was produced in the same manner as in Example 1 except that the concentration of ammonium hydrogen phosphate was 0.1 mol per mol of carboxyl groups of polyacrylic acid. The production conditions are also shown in Table 3. In addition, the obtained gas barrier layer was subjected to XPS analysis and TOF-SIMS analysis. The results of XPS analysis and TOF-SIMS analysis are shown in Tables 8 and 9. Table 10 shows the gas barrier property evaluation results after the retort treatment.
(實施例4) 除了使磷酸氫銨的濃度相對於聚丙烯酸的羧基1 mol為0.2 mol以外,與實施例1同樣地製作氣體阻擋性積層體。將製作條件一併示於表3中。另外,對所獲得的氣體阻擋性層進行XPS分析及TOF-SIMS分析。將XPS分析及TOF-SIMS分析的結果示於表8及表9中。另外,將蒸煮處理後的氣體阻擋性評價結果示於表10中。 (Example 4) A gas barrier laminate was produced in the same manner as in Example 1, except that the concentration of ammonium hydrogen phosphate was 0.2 mol per mol of carboxyl groups of polyacrylic acid. The production conditions are also shown in Table 3. In addition, the obtained gas barrier layer was subjected to XPS analysis and TOF-SIMS analysis. The results of XPS analysis and TOF-SIMS analysis are shown in Tables 8 and 9. Table 10 shows the gas barrier property evaluation results after the retort treatment.
(實施例5) 除了代替實施例1的固體成分濃度2%的磷酸氫銨((NH 4) 2HPO 4)水溶液,而準備利用銨水中和膦酸(別名,亞磷酸)(關東化學公司製造,H 3PO 3)的、固體濃度2%的膦酸銨鹽((NH 4) 2HPO 3)水溶液,且使膦酸銨鹽的濃度相對於聚丙烯酸的羧基1 mol為0.01 mol以外,與實施例1同樣地製作氣體阻擋性積層體。將製作條件一併示於表3中。另外,對所獲得的氣體阻擋性積層體的氣體阻擋性層進行XPS分析及TOF-SIMS分析。將XPS分析及TOF-SIMS分析的結果示於表8及表9中。另外,將蒸煮處理後的氣體阻擋性評價結果示於表10中。 (Example 5) In place of the aqueous solution of ammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) with a solid content concentration of 2% in Example 1, ammonium water was used to neutralize phosphonic acid (also known as phosphorous acid) (manufactured by Kanto Chemical Co., Ltd. , H 3 PO 3 ), an aqueous solution of ammonium phosphonate salt ((NH 4 ) 2 HPO 3 ) with a solid concentration of 2%, and the concentration of the ammonium phosphonate salt is 0.01 mol relative to 1 mol of carboxyl groups of polyacrylic acid, and A gas barrier laminate was produced in the same manner as in Example 1. The production conditions are also shown in Table 3. In addition, XPS analysis and TOF-SIMS analysis were performed on the gas barrier layer of the obtained gas barrier laminate. The results of XPS analysis and TOF-SIMS analysis are shown in Tables 8 and 9. Table 10 shows the gas barrier property evaluation results after the retort treatment.
(比較例1) 除了使磷酸氫銨的濃度相對於聚丙烯酸的羧基1 mol為0.0001 mol以外,與實施例1同樣地製作氣體阻擋性積層體。將製作條件一併示於表3中。另外,對所獲得的氣體阻擋性積層體的氣體阻擋性層進行XPS分析及TOF-SIMS分析。將XPS分析及TOF-SIMS分析的結果示於表8及表9中。另外,將蒸煮處理後的氣體阻擋性評價結果示於表10中。 (Comparative example 1) A gas barrier laminate was produced in the same manner as in Example 1 except that the concentration of ammonium hydrogen phosphate was 0.0001 mol per mol of carboxyl groups of polyacrylic acid. The production conditions are also shown in Table 3. In addition, XPS analysis and TOF-SIMS analysis were performed on the gas barrier layer of the obtained gas barrier laminate. The results of XPS analysis and TOF-SIMS analysis are shown in Tables 8 and 9. Table 10 shows the gas barrier property evaluation results after the retort treatment.
[表7]
[表8]
[表9]
[表10]
於TOF-SIMS分析中,於表示作為耐水性高的鍵的磷酸-鋅鍵的存在的片段即 64ZnPO 4H -的質量峰強度小的比較例中,兩層層壓結構的蒸煮處理後的水蒸氣阻擋性低。另一方面,若為第一實施方式的氣體阻擋性積層體,則可製成於蒸煮處理後顯示出高氣體阻擋性的氣體阻擋性積層體。 In the TOF-SIMS analysis, in the comparative example where the mass peak intensity of 64 ZnPO 4 H - , which is a fragment indicating the presence of a phosphate-zinc bond that is a highly water-resistant bond, was small, the two-layer laminate structure was boiled. Low water vapor barrier. On the other hand, according to the gas barrier laminate of the first embodiment, a gas barrier laminate showing high gas barrier properties after the retort treatment can be produced.
<第一實施方式的追加實施例:兩層層壓結構> 於所述實施例1~實施例5、比較例中,對兩層層壓結構的水蒸氣滲透率進行評價。除該些以外,亦以如下方式進行兩層層壓結構的氧滲透率、三層層壓結構的氣體阻擋性積層體的製作及評價(氧滲透率及水蒸氣滲透率)。 <Additional example of the first embodiment: two-layer laminate structure> In the above-mentioned Examples 1 to 5 and Comparative Examples, the water vapor permeability of the two-layer laminate structure was evaluated. In addition to these, the oxygen permeability of a two-layer laminated structure and the gas barrier laminate of a three-layer laminated structure were also produced and evaluated (oxygen permeability and water vapor permeability) in the following manner.
(實施例1') (1)氣體阻擋用塗材的製作 與實施例1同樣地,首先,製作氣體阻擋用塗材。 (Example 1') (1) Production of gas barrier coating materials In the same manner as in Example 1, first, a gas barrier coating material was produced.
(2)氣體阻擋性積層體的製作 作為氣體阻擋用塗材,使用上述者,與實施例1同樣地獲得兩層層壓結構蒸煮處理後的膜。 (2) Production of gas barrier laminate As the gas barrier coating material, the above-mentioned ones were used, and a two-layer laminate structure retort-processed film was obtained in the same manner as in Example 1.
(3)兩層層壓結構的水蒸氣滲透率的評價 使用膜康(MOCON)公司製造的OX-TRAN2/1,依據日本工業標準(Japanese Industrial Standards,JIS)K 7126,於20℃、90%RH的條件下測定所獲得的兩層層壓結構蒸煮處理後的膜的氧滲透率[mL/(m 2·day·MPa)]。 (3) The water vapor permeability of the two-layer laminated structure was evaluated using OX-TRAN2/1 manufactured by MOCON, in accordance with Japanese Industrial Standards (JIS) K 7126, at 20°C, 90% The oxygen permeability [mL/(m 2 ·day·MPa)] of the obtained two-layer laminated structure steamed membrane was measured under RH conditions.
(4)三層層壓結構的氣體阻擋性積層體的製作 首先,準備於厚度60 μm的未拉伸聚丙烯(三井化學東賽璐(Mitsui Chemicals Tohcello)公司製造,商品名:RXC-22)的電暈放電處理面塗敷接著劑且貼合有厚度15 μm的尼龍膜(尤尼吉可(Unitika)公司製造,商品名:恩布萊姆(Emblem)ONBC)的積層體。 於所述積層體的尼龍膜面塗敷接著劑,與實施例1'的(2)中獲得的氣體阻擋性積層體的氣體阻擋性面貼合,製作三層層壓結構的氣體阻擋性積層體。所使用的接著劑與實施例1的(4)相同。對所獲得的氣體阻擋性積層體,以未拉伸聚丙烯成為內表面的方式翻折,將兩邊熱封而製成袋狀後,加入水70 cc作為內容物,藉由熱封另一邊而製作袋,將其利用高溫高壓蒸煮殺菌裝置於130℃下進行30分鐘蒸煮處理。於蒸煮處理後,排出內容物的水,去除密封部,獲得蒸煮處理後(水填充)的膜。 (4) Production of gas barrier laminate with three-layer laminated structure First, an adhesive was applied to the corona discharge-treated surface of unstretched polypropylene (manufactured by Mitsui Chemicals Tohcello Co., Ltd., trade name: RXC-22) with a thickness of 60 μm, and a thickness of 15 μm was attached. A laminated body of a μm nylon film (manufactured by Unitika, trade name: Emblem ONBC). An adhesive is applied to the nylon film surface of the laminate and bonded to the gas barrier surface of the gas barrier laminate obtained in (2) of Example 1' to produce a gas barrier laminate with a three-layer laminate structure. body. The adhesive used is the same as (4) of Example 1. The obtained gas barrier laminate was folded so that the unstretched polypropylene became the inner surface, and both sides were heat-sealed to form a bag shape. 70 cc of water was added as the content, and the other side was heat-sealed. Make a bag and steam it for 30 minutes using a high-temperature and high-pressure cooking sterilization device at 130°C. After the steaming process, the water in the contents is drained, the sealing part is removed, and the membrane after the steaming process (water-filled) is obtained.
(5)三層層壓結構的氣體阻擋性的評價 利用與實施例1的水蒸氣滲透率同樣的方法評價實施例1'中獲得的三層層壓結構的氣體阻擋性積層體的水蒸氣滲透率。另外,利用與實施例1'的(1)同樣的方法評價氧滲透率。將蒸煮處理後的氣體阻擋性評價結果示於表11中。 (5) Evaluation of gas barrier properties of three-layer laminate structures The water vapor permeability of the gas barrier laminate of the three-layer laminated structure obtained in Example 1' was evaluated by the same method as the water vapor permeability of Example 1. In addition, the oxygen permeability was evaluated by the same method as (1) of Example 1'. Table 11 shows the gas barrier property evaluation results after the retort treatment.
(實施例2') 除了使用實施例2中製作者作為氣體阻擋用塗材以外,與實施例1'同樣地製作氣體阻擋性積層體。而且,與實施例1'同樣地評價蒸煮處理後的氣體阻擋性(兩層層壓結構的氧滲透率、三層層壓結構的氧滲透率及水蒸氣滲透率)。將蒸煮處理後的氣體阻擋性評價結果示於表11中。 (Example 2') A gas barrier laminated body was produced in the same manner as in Example 1', except that the manufacturer in Example 2 was used as the gas barrier coating material. Furthermore, the gas barrier properties after the retort treatment (oxygen permeability of the two-layer laminated structure, oxygen permeability and water vapor permeability of the three-layer laminated structure) were evaluated in the same manner as in Example 1'. Table 11 shows the gas barrier property evaluation results after the retort treatment.
(實施例3') 除了使用實施例3中製作者作為氣體阻擋用塗材以外,與實施例1'同樣地製作氣體阻擋性積層體。而且,與實施例1'同樣地評價蒸煮處理後的氣體阻擋性(兩層層壓結構的氧滲透率)。將蒸煮處理後的氣體阻擋性評價結果示於表11中。 (Example 3') A gas barrier laminate was produced in the same manner as in Example 1', except that the manufacturer in Example 3 was used as the gas barrier coating material. Furthermore, the gas barrier properties (oxygen permeability of the two-layer laminated structure) after the retort treatment were evaluated in the same manner as in Example 1'. Table 11 shows the gas barrier property evaluation results after the retort treatment.
(實施例4') 除了使用實施例5中製作者作為氣體阻擋用塗材以外,與實施例1'同樣地製作氣體阻擋性積層體。而且,與實施例1'同樣地評價蒸煮處理後的氣體阻擋性(兩層層壓結構的氧滲透率、三層層壓結構的氧滲透率及水蒸氣滲透率)。將蒸煮處理後的氣體阻擋性評價結果示於表11中。 (Example 4') A gas barrier laminated body was produced in the same manner as in Example 1', except that the manufacturer in Example 5 was used as the gas barrier coating material. Furthermore, the gas barrier properties after the retort treatment (oxygen permeability of the two-layer laminated structure, oxygen permeability and water vapor permeability of the three-layer laminated structure) were evaluated in the same manner as in Example 1'. Table 11 shows the gas barrier property evaluation results after the retort treatment.
(比較例') 除了使用比較例中製作者作為氣體阻擋用塗材以外,與實施例1'同樣地製作氣體阻擋性積層體。而且,與實施例1'同樣地評價蒸煮處理後的氣體阻擋性(兩層層壓結構的氧滲透率、三層層壓結構的氧滲透率及水蒸氣滲透率)。將蒸煮處理後的氣體阻擋性評價結果示於表11中。 (Comparative example') A gas barrier laminate was produced in the same manner as in Example 1', except that the manufacturer in the comparative example was used as the gas barrier coating material. Furthermore, the gas barrier properties after the retort treatment (oxygen permeability of the two-layer laminated structure, oxygen permeability and water vapor permeability of the three-layer laminated structure) were evaluated in the same manner as in Example 1'. Table 11 shows the gas barrier property evaluation results after the retort treatment.
[表11]
如表11所示,於實施例1'~實施例4'中,亦可確認到高氣體阻擋性。As shown in Table 11, high gas barrier properties were also confirmed in Examples 1' to 4'.
<第二實施方式的實施例> (實施例1) (1)氣體阻擋用塗材的製作 利用精製水對聚丙烯酸(PAA)水溶液(東亞合成公司製造,製品名:AC-10H,重量平均分子量:800,000)進行稀釋,製成PAA的濃度10%的水溶液。於該水溶液中添加10%的氨水。氨的量設為相對於PAA的羧基1 mol成為1.5 mol的氨。如此,獲得PAA的濃度為7.38%的聚丙烯酸銨水溶液。 繼而,向所獲得的聚丙烯酸銨水溶液中添加氧化鋅(ZnO:關東化學公司製造)及碳酸銨(關東化學公司製造)並進行混合攪拌。此處,氧化鋅的添加量設為(氧化鋅)/(PAA的羧基)為以mol比計成為0.3的量。另外,碳酸銨設為相對於PAA的羧基而言以mol比計成為0.3的量。以如上方式製作混合液(A)。 繼而,向聚乙烯亞胺(PEI:日本觸媒公司製造,製品名:SP-200,數量平均分子量:10,000)中添加精製水,獲得PEI的濃度10%的聚乙烯亞胺水溶液。 接著,將所述混合液(A)與所述聚乙烯亞胺水溶液以(PEI的氮)/(PAA的羧基)以mol比計成為0.55的比例混合,製備混合液(B)。 進而,於所述混合液(B)中,以PAA+ZnO+PEI的固體成分濃度成為2%的方式添加精製水,攪拌至成為均勻溶液。 進而,以磷酸氫銨(關東化學公司製造,(NH 4) 2HPO 4)的量相對於PAA的羧基1 mol成為1×10 -3mol的方式添加固體成分濃度2%的磷酸氫銨水溶液並進行攪拌。 然後,以使活性劑(花王公司製造,商品名:艾馬吉(Emulgen)120)的量相對於PAA+ZnO+PEI的固體成分成為0.3質量%的方式混合固體成分濃度1%的活性劑水溶液。 如此,製備氣體阻擋用塗材。 <Example of the second embodiment> (Example 1) (1) Preparation of gas barrier coating material Purified water was used to prepare a polyacrylic acid (PAA) aqueous solution (manufactured by Toagosei Co., Ltd., product name: AC-10H, weight average molecular weight : 800,000) to prepare a 10% aqueous solution of PAA. Add 10% ammonia water to this aqueous solution. The amount of ammonia was set to 1.5 mol of ammonia per 1 mol of carboxyl groups of PAA. In this way, a polyacrylic ammonium aqueous solution with a PAA concentration of 7.38% was obtained. Next, zinc oxide (ZnO: manufactured by Kanto Chemical Co., Ltd.) and ammonium carbonate (manufactured by Kanto Chemical Co., Ltd.) were added to the obtained ammonium polyacrylate aqueous solution and mixed and stirred. Here, the addition amount of zinc oxide is an amount such that (zinc oxide)/(carboxyl group of PAA) becomes 0.3 in molar ratio. In addition, the ammonium carbonate is an amount such that the molar ratio becomes 0.3 relative to the carboxyl group of PAA. Prepare mixture (A) as above. Next, purified water was added to polyethyleneimine (PEI: manufactured by Nippon Shokubai Co., Ltd., product name: SP-200, number average molecular weight: 10,000) to obtain a polyethyleneimine aqueous solution with a PEI concentration of 10%. Next, the mixed liquid (A) and the polyethyleneimine aqueous solution were mixed at a molar ratio of (nitrogen of PEI)/(carboxyl group of PAA) of 0.55 to prepare a mixed liquid (B). Furthermore, purified water was added to the mixed liquid (B) so that the solid content concentration of PAA+ZnO+PEI became 2%, and the mixture was stirred until a uniform solution was obtained. Furthermore, an ammonium hydrogenphosphate aqueous solution with a solid content concentration of 2% was added so that the amount of ammonium hydrogenphosphate ((NH 4 ) 2 HPO 4 manufactured by Kanto Chemical Co., Ltd.) became 1×10 -3 mol based on 1 mol of carboxyl groups of PAA. Stir. Then, an active agent aqueous solution with a solid content concentration of 1% was mixed so that the amount of the active agent (manufactured by Kao Corporation, brand name: Emulgen 120) became 0.3% by mass relative to the solid content of PAA+ZnO+PEI. . In this way, a gas barrier coating material is prepared.
(2)氣體阻擋性積層體的製作 將於基材層的12 μm PET膜上蒸鍍了氧化鋁作為無機物層的透明蒸鍍膜(三井化學東賽璐(Mitsui Chemicals Tohcello)股份有限公司製造,型號:TL-PET-H)黏附於玻璃板。利用敷料器以乾燥後的膜厚成為0.2 μm的方式將氣體阻擋用塗材塗佈於該透明蒸鍍膜的蒸鍍面。於塗佈後,連同玻璃板於120℃下利用熱風乾燥器乾燥5分鐘。 於將乾燥後的膜的兩端固定使膜呈中空狀態的基礎上,於150℃下、時間1分鐘的條件下利用熱風乾燥器進行熱處理,於透明蒸鍍膜上形成氣體阻擋性層。如此,製作氣體阻擋性積層體。 將氣體阻擋性層的製作條件示於表12中。 (2) Production of gas barrier laminate A transparent vapor-deposited film (manufactured by Mitsui Chemicals Tohcello Co., Ltd., model: TL-PET-H) with aluminum oxide as an inorganic layer vapor-deposited on the 12 μm PET film of the base layer was adhered to the glass. plate. The gas barrier coating material was applied to the vapor deposition surface of the transparent vapor deposition film using an applicator so that the film thickness after drying would be 0.2 μm. After coating, the glass plate was dried using a hot air dryer at 120°C for 5 minutes. After fixing both ends of the dried film so that the film is in a hollow state, heat treatment is performed using a hot air dryer at 150° C. for 1 minute to form a gas barrier layer on the transparent evaporated film. In this way, a gas barrier laminate is produced. Table 12 shows the production conditions of the gas barrier layer.
(3)氣體阻擋性層的分析 對所述(2)中獲得的氣體阻擋性積層體的氣體阻擋性層進行ATR-IR分析、XPS分析及TOF-SIMS分析。 (3) Analysis of gas barrier layer The gas barrier layer of the gas barrier laminate obtained in the above (2) was subjected to ATR-IR analysis, XPS analysis, and TOF-SIMS analysis.
(3-1)ATR-IR分析 如所述記載般,獲得去除了基材(PET)的影響的光譜。然後,基於其光譜,求出峰面積比率D/A。將結果示於表13中。 (3-1)ATR-IR analysis As described above, a spectrum without the influence of the base material (PET) was obtained. Then, based on the spectrum, the peak area ratio D/A is calculated. The results are shown in Table 13.
(3-2)XPS分析 使用將氣體阻擋性積層體切斷為1 cm×1 cm的樣品來進行分析。具體的分析條件如上所述。將結果示於表13中。 (3-2) XPS analysis The gas barrier laminate was analyzed using a sample cut into 1 cm×1 cm. Specific analysis conditions are as described above. The results are shown in Table 13.
(3-3)TOF-SIMS分析 首先,作為預處理,藉由Ar-GCIB蝕刻,使氣體阻擋性層的內部露出。Ar-GCIB蝕刻的具體條件如上所述。 然後,進行TOF-SIMS分析。具體的條件如上所述。 將基於所述方法對藉由TOF-SIMS分析獲得的資料進行解析的結果示於表14中。於表14中,所謂利用C 3H 3O 2 -的強度標準化的相對質量峰強度,是指各片段的質量峰強度除以C 3H 3O 2 -的強度:I(C 3H 3O 2 -)而得的值。 (3-3) TOF-SIMS analysis First, as a pretreatment, Ar-GCIB etching was performed to expose the inside of the gas barrier layer. The specific conditions for Ar-GCIB etching are as described above. Then, TOF-SIMS analysis was performed. The specific conditions are as described above. The results of analyzing the data obtained by TOF-SIMS analysis based on the method are shown in Table 14. In Table 14, the relative mass peak intensity normalized by the intensity of C 3 H 3 O 2 - refers to the mass peak intensity of each fragment divided by the intensity of C 3 H 3 O 2 - : I (C 3 H 3 O 2- ) .
(4)兩層層壓結構的氣體阻擋性積層體的製作 於厚度70 μm的未拉伸聚丙烯(三井化學東賽璐(Mitsui Chemicals Tohcello)公司製造,商品名:RXC-22)的電暈放電處理面塗敷接著劑,與所述(2)中獲得的氣體阻擋性積層體的氣體阻擋性面黏合,製作兩層層壓結構的氣體阻擋性積層體。作為接著劑,使用調配有三井化學公司製造的商品名:塔克拉克(Takelac)A525S:9質量份、異氰酸酯系硬化劑(三井化學公司製造,商品名:塔克奈特(Takenate)A50):1質量份及乙酸乙酯:7.5質量份而成者。 (4) Production of a gas barrier laminate with a two-layer laminated structure An adhesive was applied to the corona discharge-treated surface of unstretched polypropylene (manufactured by Mitsui Chemicals Tohcello Co., Ltd., trade name: RXC-22) with a thickness of 70 μm, and was obtained in the above (2) The gas barrier surface of the gas barrier laminate is bonded to produce a gas barrier laminate with a two-layer laminated structure. As an adhesive, a mix of 9 parts by mass of Takelac A525S, a product manufactured by Mitsui Chemicals, and 1 part of an isocyanate-based hardener (Takenate A50, a product of Mitsui Chemicals) were used. Parts by mass and ethyl acetate: 7.5 parts by mass.
(5)蒸煮處理後的氣體阻擋性評價 對(4)中獲得的氣體阻擋性積層體,以未拉伸聚丙烯成為內表面的方式翻折,將兩邊熱封而製成袋狀。然後,加入水70 cc作為內容物,藉由熱封另一邊而製作袋。使用高溫高壓蒸煮殺菌裝置,於130℃下對該袋進行30分鐘蒸煮處理。於蒸煮處理後,排出內容物的水,去除密封部,獲得蒸煮處理後(水填充)的膜。 對藉由所述方法而獲得的蒸煮處理後的膜,以未拉伸聚丙烯成為內表面的方式重疊而翻折氣體阻擋性積層膜,將兩邊熱封而製成袋狀。然後,加入氯化鈣作為內容物,藉由熱封另一邊而以表面積成為0.01 m 2的方式製作袋。於40℃、90%RH的條件下將該袋放置300小時。藉由放置前後的重量變化,測定水蒸氣滲透率[g/(m 2·day)]。 將蒸煮處理後的氣體阻擋性評價結果示於表15中。 (5) Evaluation of gas barrier properties after retort treatment The gas barrier laminate obtained in (4) was folded so that the unstretched polypropylene became the inner surface, and both sides were heat-sealed to form a bag. Then, add 70 cc of water as the content, and make a bag by heat-sealing the other side. Use a high-temperature and high-pressure cooking sterilization device to steam the bag at 130°C for 30 minutes. After the steaming process, the water in the contents is drained, the sealing part is removed, and the membrane after the steaming process (water-filled) is obtained. The retort-processed film obtained by the above method was stacked so that the unstretched polypropylene became the inner surface, the gas barrier laminated film was folded, and both sides were heat-sealed to form a bag. Then, calcium chloride is added as the content, and the other side is heat-sealed to create a bag so that the surface area becomes 0.01 m 2 . The bag was placed for 300 hours at 40°C and 90%RH. The water vapor permeability [g/(m 2 ·day)] was measured based on the weight change before and after standing. Table 15 shows the gas barrier property evaluation results after the retort treatment.
(實施例2) 除了使磷酸氫銨的濃度相對於聚丙烯酸的羧基1 mol為0.01 mol以外,與實施例1同樣地製作氣體阻擋用塗材,而且製作氣體阻擋性積層體。將製作條件示於表12中。 與實施例1同樣地,將對所獲得的氣體阻擋積層體的氣體阻擋性層進行分析的結果示於表13及表14中。另外,將蒸煮處理後的氣體阻擋性評價結果示於表15中。 (Example 2) A gas barrier coating material was produced in the same manner as in Example 1, except that the concentration of ammonium hydrogen phosphate was 0.01 mol per mol of carboxyl groups of polyacrylic acid, and a gas barrier laminate was also produced. The production conditions are shown in Table 12. Similar to Example 1, the results of analyzing the gas barrier layer of the obtained gas barrier laminate are shown in Tables 13 and 14. In addition, the gas barrier property evaluation results after the retort treatment are shown in Table 15.
(實施例3) 除了使磷酸氫銨的濃度相對於聚丙烯酸的羧基1 mol為0.1 mol以外,與實施例1同樣地製作氣體阻擋用塗材,而且製作氣體阻擋性積層體。將製作條件示於表12中。 與實施例1同樣地,將對所獲得的氣體阻擋積層體的氣體阻擋性層進行分析的結果示於表13及表14中。另外,將蒸煮處理後的氣體阻擋性評價結果示於表15中。 (Example 3) A gas barrier coating material was produced in the same manner as in Example 1, except that the concentration of ammonium hydrogen phosphate was 0.1 mol per mol of carboxyl groups of polyacrylic acid, and a gas barrier laminate was also produced. The production conditions are shown in Table 12. Similar to Example 1, the results of analyzing the gas barrier layer of the obtained gas barrier laminate are shown in Tables 13 and 14. In addition, the gas barrier property evaluation results after the retort treatment are shown in Table 15.
(實施例4) 除了使磷酸氫銨的濃度相對於聚丙烯酸的羧基1 mol為0.2 mol以外,與實施例1同樣地製作氣體阻擋用塗材,而且製作氣體阻擋性積層體。將製作條件示於表12中。 與實施例1同樣地,將對所獲得的氣體阻擋積層體的氣體阻擋性層進行分析的結果示於表13及表14中。另外,將蒸煮處理後的氣體阻擋性評價結果示於表15中。 (Example 4) A gas barrier coating material was produced in the same manner as in Example 1, except that the concentration of ammonium hydrogen phosphate was 0.2 mol per mol of carboxyl groups of polyacrylic acid, and a gas barrier laminate was also produced. The production conditions are shown in Table 12. Similar to Example 1, the results of analyzing the gas barrier layer of the obtained gas barrier laminate are shown in Tables 13 and 14. In addition, the gas barrier property evaluation results after the retort treatment are shown in Table 15.
(實施例5) 除了代替實施例1的固體成分濃度2%的磷酸氫銨((NH 4) 2HPO 4)水溶液,而使用利用氨水中和膦酸(別名,亞磷酸)(關東化學公司製造,H 3PO 3)的、固體成分濃度2%的膦酸銨鹽((NH 4) 2HPO 3)水溶液,且使膦酸銨鹽的濃度相對於聚丙烯酸的羧基1 mol為0.01 mol以外,與實施例1同樣地製作氣體阻擋用塗材,而且製作氣體阻擋性積層體。將製作條件示於表12中。 與實施例1同樣地,將對所獲得的氣體阻擋積層體的氣體阻擋性層進行分析的結果示於表13及表14中。另外,將蒸煮處理後的氣體阻擋性評價結果示於表15中。 (Example 5) Instead of the aqueous solution of ammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) with a solid content concentration of 2% in Example 1, phosphonic acid (also known as phosphorous acid) neutralized with ammonia water (manufactured by Kanto Chemical Co., Ltd. , H 3 PO 3 ), an aqueous solution of an ammonium phosphonate salt ((NH 4 ) 2 HPO 3 ) with a solid content concentration of 2%, such that the concentration of the ammonium phosphonate salt is 0.01 mol relative to 1 mol of the carboxyl group of the polyacrylic acid, A gas barrier coating material was produced in the same manner as in Example 1, and a gas barrier laminated body was also produced. The production conditions are shown in Table 12. Similar to Example 1, the results of analyzing the gas barrier layer of the obtained gas barrier laminate are shown in Tables 13 and 14. In addition, the gas barrier property evaluation results after the retort treatment are shown in Table 15.
(實施例6) 除了代替實施例1的固體成分濃度2%的磷酸氫銨((NH 4) 2HPO 4)水溶液,而使用利用氨水中和次膦酸(別名,次磷酸)(關東化學公司製造,H 3PO 2)的、固體成分濃度2%的次膦酸銨鹽((NH 4)H 2PO 2)水溶液,且使次膦酸銨鹽的濃度相對於聚丙烯酸的羧基1 mol為0.01 mol以外,與實施例1同樣地製作氣體阻擋用塗材,而且製作氣體阻擋性積層體。將製作條件示於表12中。 與實施例1同樣地,將對所獲得的氣體阻擋積層體的氣體阻擋性層進行分析的結果示於表13及表14中。另外,將蒸煮處理後的氣體阻擋性評價結果示於表6中。 (Example 6) Instead of the aqueous solution of ammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) with a solid content concentration of 2% in Example 1, phosphinic acid (alias, hypophosphorous acid) neutralized with ammonia water was used (Kanto Chemical Co., Ltd. An aqueous solution of ammonium phosphinic acid salt ((NH 4 )H 2 PO 2 ) with a solid content concentration of 2% (H 3 PO 2 ) was produced, and the concentration of ammonium phosphinic acid salt was adjusted to 1 mol of carboxyl groups of polyacrylic acid. Except for 0.01 mol, a gas barrier coating material was produced in the same manner as in Example 1, and a gas barrier laminated body was also produced. The production conditions are shown in Table 12. Similar to Example 1, the results of analyzing the gas barrier layer of the obtained gas barrier laminate are shown in Tables 13 and 14. Table 6 shows the gas barrier property evaluation results after the retort treatment.
(比較例1) 除了使磷酸氫銨的濃度相對於聚丙烯酸的羧基1 mol為0.0001 mol以外,與實施例1同樣地製作氣體阻擋用塗材,而且製作氣體阻擋性積層體。將製作條件示於表3中。 與實施例1同樣地,將對所獲得的氣體阻擋積層體的氣體阻擋性層進行分析的結果示於表4及表5中。另外,將蒸煮處理後的氣體阻擋性評價結果示於表15中。 (Comparative example 1) A gas barrier coating material was produced in the same manner as in Example 1, except that the concentration of ammonium hydrogen phosphate was 0.0001 mol based on 1 mol of carboxyl groups of polyacrylic acid, and a gas barrier laminate was also produced. The production conditions are shown in Table 3. Similar to Example 1, the results of analyzing the gas barrier layer of the obtained gas barrier laminate are shown in Tables 4 and 5. In addition, the gas barrier property evaluation results after the retort treatment are shown in Table 15.
(實施例7) (1)氣體阻擋用塗材的製作 首先,添加10%氨水(和光純藥工業公司製造)以使該10%氨水的氨相對於聚丙烯酸(東亞合成公司製造,製品名:AC-10H,重量平均分子量:800,000)的羧基而成為150當量%,進而添加精製水,獲得濃度為7.29質量%的聚丙烯酸銨水溶液。 繼而,向所獲得的聚丙烯酸銨水溶液中添加氧化鋅(關東化學公司製造)及碳酸銨並進行混合攪拌,製成混合液(A)。此處,氧化鋅的添加量設為(氣體阻擋用塗材中的氧化鋅的莫耳數)/(氣體阻擋用塗材中的聚丙烯酸中所含的-COO-基的莫耳數)為0.225的量。另外,碳酸銨設為(氣體阻擋用塗材中的碳酸系銨鹽的莫耳數)/(氣體阻擋用塗材中的氧化鋅的莫耳數)為1.0的量。 繼而,向聚乙烯亞胺(日本觸媒公司製造,製品名:SP-200,數量平均分子量:10,000)中添加精製水,獲得製成10%溶液的聚乙烯亞胺水溶液。 另外,向磷酸氫二銨(關東化學公司製造的(NH 4) 2HPO 4)中添加精製水,製備10%水溶液。 接著,將所述混合液(A)、所述聚乙烯亞胺水溶液及所述磷酸氫二銨溶液以(氣體阻擋用塗材中的聚乙烯亞胺中所含的胺基的莫耳數)/(氣體阻擋用塗材中的聚丙烯酸中所含的-COO-基的莫耳數)成為0.55且((NH 4) 2HPO 4的莫耳數)/(聚丙烯酸中所含的-COO-基的莫耳數)成為0.01的比例進行混合,而製備混合液(B)。 進而,以所述混合液(B)的固體成分濃度成為1.5%的方式添加精製水,攪拌至成為均勻溶液。然後,以使活性劑(花王公司製造,商品名:艾馬吉(Emulgen)120)相對於混合液(B)的固體成分成為0.3質量%的方式添加、混合。如此,製備氣體阻擋用塗材。 (Example 7) (1) Preparation of gas barrier coating material First, 10% ammonia water (manufactured by Wako Pure Chemical Industries, Ltd.) was added so that the ammonia content of the 10% ammonia water was relative to polyacrylic acid (manufactured by Toagosei Co., Ltd., product name: AC-10H, weight average molecular weight: 800,000) carboxyl group to 150 equivalent%, and purified water was added to obtain an ammonium polyacrylate aqueous solution with a concentration of 7.29 mass%. Next, zinc oxide (manufactured by Kanto Chemical Co., Ltd.) and ammonium carbonate were added to the obtained ammonium polyacrylate aqueous solution and mixed and stirred to prepare a mixed liquid (A). Here, the amount of zinc oxide added is (the mole number of zinc oxide in the gas barrier coating material)/(the mole number of -COO- groups contained in the polyacrylic acid in the gas barrier coating material). Amount of 0.225. In addition, ammonium carbonate is an amount such that (the mole number of the carbonic acid ammonium salt in the gas barrier coating material)/(the mole number of the zinc oxide in the gas barrier coating material) is 1.0. Next, purified water was added to polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd., product name: SP-200, number average molecular weight: 10,000) to obtain a polyethyleneimine aqueous solution that was a 10% solution. Separately, purified water was added to diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 manufactured by Kanto Chemical Co., Ltd.) to prepare a 10% aqueous solution. Next, the mixed liquid (A), the polyethyleneimine aqueous solution, and the diammonium hydrogen phosphate solution are mixed with (the number of moles of amine groups contained in the polyethyleneimine in the gas barrier coating material) / (the mole number of -COO- groups contained in the polyacrylic acid in the gas barrier coating material) becomes 0.55 and (the mole number of (NH 4 ) 2 HPO 4 ) / (the -COO contained in the polyacrylic acid -based molar number) were mixed at a ratio of 0.01 to prepare a mixed liquid (B). Furthermore, purified water was added so that the solid content concentration of the mixed liquid (B) became 1.5%, and it was stirred until it became a homogeneous solution. Then, the active agent (manufactured by Kao Corporation, trade name: Emulgen 120) was added and mixed so that the solid content of the mixed liquid (B) became 0.3 mass %. In this way, a gas barrier coating material is prepared.
(2)氣體阻擋性積層體的製作 利用以下方法於厚度12 μm的雙軸拉伸聚對苯二甲酸乙二酯膜(尤尼吉可(Unitika)公司製造,PET12)的電暈處理面形成底塗(UC)層。 將厚度12 μm的雙軸拉伸聚對苯二甲酸乙二酯膜(尤尼吉可(Unitika)公司製造,PET12)作為基材,於該單面利用邁爾棒塗佈下述組成的樹脂組成物並進行乾燥。藉此,形成乾燥後的厚度為0.20 μm的底塗(UC)層。 (組成) 主劑:聚胺基甲酸酯樹脂水分散液(三井化學公司製造,製品名:塔克拉克(Takelac)WS-4033,芳香族聚酯型聚胺基甲酸酯樹脂) 交聯劑:具有碳二醯亞胺基的化合物(日清紡化學(Nisshinbo Chemical)公司製造,製品名:卡伯萊特(Carbodilite)SV-02) 調配比:以相對於主劑中的聚胺基甲酸酯樹脂的羧基1.0 mol而言交聯劑中的碳二醯亞胺基成為0.4 mol的方式於主劑中調配交聯劑。 (2) Production of gas barrier laminate An undercoat (UC) layer was formed on the corona-treated surface of a 12-μm-thick biaxially stretched polyethylene terephthalate film (PET12 manufactured by Unitika) using the following method. A biaxially stretched polyethylene terephthalate film (PET12 manufactured by Unitika) with a thickness of 12 μm was used as the base material, and the resin of the following composition was coated on this single side using a Meyer rod. composition and dried. Thereby, a dry undercoat (UC) layer with a thickness of 0.20 μm is formed. (composition) Main agent: polyurethane resin aqueous dispersion (manufactured by Mitsui Chemicals, product name: Takelac WS-4033, aromatic polyester type polyurethane resin) Cross-linking agent: Compound having a carbodiimide group (manufactured by Nisshinbo Chemical Co., Ltd., product name: Carbodilite SV-02) Preparation ratio: The cross-linking agent is prepared in the main agent so that the carbodiimide group in the cross-linking agent becomes 0.4 mol relative to 1.0 mol of the carboxyl group of the polyurethane resin in the main agent.
接著,利用以下方法於底塗層上形成氧化鋁蒸鍍層。 於UC層上藉由高頻感應加熱方式,使鋁加熱蒸發,一邊導入氧一邊進行蒸鍍,藉此形成厚度7 nm的氧化鋁膜。藉此獲得氧化鋁蒸鍍PET膜。該氧化鋁蒸鍍PET膜的水蒸氣滲透度為1.5 g/(m 2·24 h)。 然後,於蒸鍍層上,以乾燥後的塗敷量成為0.2 μm的方式利用邁爾棒塗佈所述(1)中製作的氣體阻擋用塗材,使用熱風乾燥器,於溫度:130℃、時間:6.5秒的條件下進行熱處理。將製作條件示於表12中。 Next, an aluminum oxide evaporation layer was formed on the undercoat layer using the following method. Aluminum is heated and evaporated on the UC layer through high-frequency induction heating, and oxygen is introduced while evaporating to form an aluminum oxide film with a thickness of 7 nm. Thereby, an alumina vapor-deposited PET film is obtained. The water vapor permeability of the alumina evaporated PET film is 1.5 g/(m 2 ·24 h). Then, apply the gas barrier coating material produced in the above (1) on the vapor deposition layer using a Meyer rod so that the coating amount after drying becomes 0.2 μm, and use a hot air dryer at a temperature of: 130°C. Time: 6.5 seconds for heat treatment. The production conditions are shown in Table 12.
(3)氣體阻擋性層的分析 對所述(2)中獲得的氣體阻擋積層體的氣體阻擋性層進行與實施例1的(3)相同的分析。將分析結果示於表13及表14中。 (3) Analysis of gas barrier layer The gas barrier layer of the gas barrier laminate obtained in the above (2) was subjected to the same analysis as in (3) of Example 1. The analysis results are shown in Table 13 and Table 14.
(4)兩層層壓結構的氣體阻擋性積層體的製作 針對所述(2)中獲得的氣體阻擋積層體的氣體阻擋性層,與實施例1的(4)同樣地製作兩層層壓結構的氣體阻擋性積層體。 (4) Production of a gas barrier laminate with a two-layer laminated structure Regarding the gas barrier layer of the gas barrier laminate obtained in the above (2), a gas barrier laminate having a two-layer laminated structure was produced in the same manner as in (4) of Example 1.
(5)蒸煮處理後的氣體阻擋性評價 與實施例1的(6)同樣地對所述(4)中獲得的氣體阻擋性積層體進行蒸煮處理後的氣體阻擋性評價。將結果示於表15中。 (5) Evaluation of gas barrier properties after cooking treatment In the same manner as (6) of Example 1, the gas barrier layered body obtained in the above (4) was evaluated for gas barrier properties after the retort treatment. The results are shown in Table 15.
(實施例8) 除了使磷酸氫二銨的濃度相對於聚丙烯酸的羧基1 mol為0.03 mol以外,與實施例7同樣地製作氣體阻擋用塗材,而且製作氣體阻擋性積層體。將製作條件示於表12中。 與實施例7同樣地,將對所獲得的氣體阻擋積層體的氣體阻擋性層進行分析的結果示於表13及表14中。另外,將蒸煮處理後的氣體阻擋性評價結果示於表15中。 (Example 8) A gas barrier coating material was produced in the same manner as in Example 7, except that the concentration of diammonium hydrogen phosphate was 0.03 mol per mol of carboxyl groups of polyacrylic acid, and a gas barrier laminate was also produced. The production conditions are shown in Table 12. Similar to Example 7, the results of analyzing the gas barrier layer of the obtained gas barrier laminate are shown in Tables 13 and 14. In addition, the gas barrier property evaluation results after the retort treatment are shown in Table 15.
[表12]
[表13]
[表14]
[表15]
根據各表所示的資訊,包括(I(PO 2 -)+I(PO 3 -))/I(C 3H 3O 2 -)的值(利用C 3H 3O 2 -的強度標準化的PO 2 -+PO 3 -的強度)在某種程度上大且金屬元素(Zn)的組成比率為1原子%~15原子%的氣體阻擋性層的氣體阻擋性積層體(實施例1~實施例8)於蒸煮處理後,亦顯示出較小的水蒸氣滲透率。 Based on the information shown in each table, including the value of (I(PO 2 - ) + I (PO 3 - ))/I (C 3 H 3 O 2 - ) (normalized by the intensity of C 3 H 3 O 2 - The strength of PO 2 - +PO 3 - ) is large to some extent and the composition ratio of the metal element (Zn) is 1 atomic % to 15 atomic % (Example 1 to Implementation) Example 8) also showed smaller water vapor permeability after cooking treatment.
<第二實施方式的追加實施例:三層層壓結構的氣體阻擋性積層體的製作與評價> 所述實施例1~實施例8中,製作兩層層壓結構的氣體阻擋性積層體,並進行評價。 除該些以外,亦以如下方式進行三層層壓結構的氣體阻擋性積層體的製作、評價。 <Additional example of the second embodiment: Preparation and evaluation of a gas barrier laminate with a three-layer laminate structure> In Examples 1 to 8 described above, a gas barrier laminate having a two-layer laminated structure was produced and evaluated. In addition to these, a gas barrier laminate having a three-layer laminated structure was also produced and evaluated in the following manner.
(實施例2') (1)氣體阻擋用塗材的製作 與實施例2同樣地,首先,製作氣體阻擋用塗材。 (Example 2') (1) Preparation of gas barrier coating materials In the same manner as in Example 2, first, a gas barrier coating material was produced.
(2)氣體阻擋性積層體的製作 除了使用上述者作為氣體阻擋用塗材以外,與實施例1的(2)同樣地製作氣體阻擋性積層體。 (2) Production of gas barrier laminate A gas barrier laminated body was produced in the same manner as in (2) of Example 1, except that the above-mentioned ones were used as the gas barrier coating material.
(3)三層層壓結構的氣體阻擋性積層體的製作 首先,準備於厚度60 μm的未拉伸聚丙烯(三井化學東賽璐(Mitsui Chemicals Tohcello)公司製造,商品名:RXC-22)的電暈放電處理面塗敷接著劑且黏合有厚度15 μm的尼龍膜(尤尼吉可(Unitika)公司製造,商品名:恩布萊姆(Emblem)ONBC)的積層體。 於所述積層體的尼龍膜面塗敷接著劑,與(2)中獲得的氣體阻擋性積層體的氣體阻擋性面黏合,製作三層層壓結構的氣體阻擋性積層體。所使用的接著劑與實施例1的(4)相同。 (3) Production of gas barrier laminate with three-layer laminated structure First, an adhesive was applied to the corona discharge-treated surface of unstretched polypropylene (manufactured by Mitsui Chemicals Tohcello Co., Ltd., trade name: RXC-22) with a thickness of 60 μm, and a thickness of 15 μm was adhered. A laminated body of nylon membrane (manufactured by Unitika, trade name: Emblem ONBC). An adhesive is applied to the nylon film surface of the laminated body and bonded to the gas barrier surface of the gas barrier laminated body obtained in (2) to prepare a gas barrier laminated body with a three-layer laminated structure. The adhesive used is the same as (4) of Example 1.
(4)蒸煮處理後的氣體阻擋性評價 對(3)中獲得的氣體阻擋性積層體,以未拉伸聚丙烯成為內表面的方式翻折,將兩邊熱封而製成袋狀。然後,加入水70 cc作為內容物,藉由熱封另一邊而製作袋。使用高溫高壓蒸煮殺菌裝置,於130℃下對該袋進行30分鐘蒸煮處理。於蒸煮處理後,排出內容物的水,去除密封部,獲得蒸煮處理後(水填充)的膜。 使用膜康(MOCON)公司製造的OX-TRAN2/21,依據JIS K 7126,於20℃、90%RH的條件下測定利用所述方法獲得的蒸煮處理後的膜的氧滲透率[mL/(m 2·day·MPa)]。 另外,對藉由所述方法而獲得的蒸煮處理後的膜,以未拉伸聚丙烯成為內表面的方式重疊而翻折氣體阻擋性積層膜,將兩邊熱封而製成袋狀。然後,加入氯化鈣作為內容物,藉由熱封另一邊而以表面積成為0.01 m 2的方式製作袋。於40℃、90%RH的條件下將該袋放置300小時。藉由放置前後的重量變化,測定水蒸氣滲透率[g/(m 2·day)]。 將蒸煮處理後的氣體阻擋性評價結果示於表16中。 (4) Evaluation of gas barrier properties after retort treatment The gas barrier laminate obtained in (3) was folded so that the unstretched polypropylene became the inner surface, and both sides were heat-sealed to form a bag. Then, add 70 cc of water as the content, and make a bag by heat-sealing the other side. Use a high-temperature and high-pressure cooking sterilization device to steam the bag at 130°C for 30 minutes. After the steaming process, the water in the contents is drained, the sealing part is removed, and the membrane after the steaming process (water-filled) is obtained. Using OX-TRAN2/21 manufactured by MOCON, the oxygen permeability [mL/( m 2 ·day·MPa)]. In addition, the gas barrier laminated film was folded so that the unstretched polypropylene became the inner surface of the retort-processed film obtained by the above method, and both sides were heat-sealed to form a bag shape. Then, calcium chloride is added as the content, and the other side is heat-sealed to create a bag so that the surface area becomes 0.01 m 2 . The bag was placed for 300 hours at 40°C and 90%RH. The water vapor permeability [g/(m 2 ·day)] was measured based on the weight change before and after standing. Table 16 shows the gas barrier property evaluation results after the retort treatment.
(實施例5') 除了使用實施例5中製作者作為氣體阻擋用塗材以外,與實施例2'同樣地製作氣體阻擋性積層體。而且,與實施例2'同樣地評價蒸煮處理後的氣體阻擋性。將評價結果示於表16中。 (Example 5') A gas barrier laminated body was produced in the same manner as in Example 2', except that the manufacturer in Example 5 was used as the gas barrier coating material. Furthermore, the gas barrier properties after the retort treatment were evaluated in the same manner as in Example 2'. The evaluation results are shown in Table 16.
(實施例6') 除了使用實施例6中製作者作為氣體阻擋用塗材以外,與實施例2'同樣地製作氣體阻擋性積層體。而且,與實施例2'同樣地評價蒸煮處理後的氣體阻擋性。將評價結果示於表16中。 (Example 6') A gas barrier laminate was produced in the same manner as in Example 2', except that the manufacturer in Example 6 was used as the gas barrier coating material. Furthermore, the gas barrier properties after the retort treatment were evaluated in the same manner as in Example 2'. The evaluation results are shown in Table 16.
[表16]
如表16所示,即便於層結構與實施例1~實施例8不同的情況下,蒸煮後的氣體阻擋性亦良好。As shown in Table 16, even when the layer structure is different from Examples 1 to 8, the gas barrier properties after retort are good.
<第三實施方式的實施例> (實施例1) (1)氣體阻擋用塗材的製作 利用精製水對聚丙烯酸(PPA)水溶液(東亞合成公司製造,製品名:AC-10H,重量平均分子量:800,000)進行稀釋,製作PPA的濃度10%的水溶液。向該水溶液中添加濃度10%的氨水,以使相對於PPA中的羧基1 mol而成為1.5 mol的氨,獲得PPA的濃度為7.38%的聚丙烯酸銨水溶液。 繼而,向所獲得的聚丙烯酸銨水溶液中添加氧化鋅(ZnO)(關東化學公司製造)及碳酸銨(關東化學公司製造)並進行混合攪拌而獲得混合液。此處,氧化鋅的添加量設為(氧化鋅)/(聚丙烯酸的羧基)為以mol比計成為0.3的量。另外,碳酸銨設為相對於聚丙烯酸的羧基而言以mol比計成為0.3的量。 進而,向所述混合液中,以PPA+ZnO的固體成分濃度成為2%的方式添加精製水,攪拌至成為均勻溶液。進而,以磷酸氫銨((NH 4) 2HPO 4)(關東化學公司製造)相對於PPA的羧基1 mol成為0.01 mol的方式添加固體成分濃度2%的磷酸氫銨水溶液並進行攪拌。進而,然後,以使活性劑(花王公司製造,製品名:艾馬吉(Emulgen)120)相對於PPA+ZnO的固體成分成為0.3質量%的方式混合固體成分濃度1%的活性劑水溶液,製備氣體阻擋用塗材。 <Example of the third embodiment> (Example 1) (1) Preparation of gas barrier coating material Using purified water, polyacrylic acid (PPA) aqueous solution (manufactured by Toagosei Co., Ltd., product name: AC-10H, weight average molecular weight : 800,000) to prepare a 10% aqueous solution of PPA. Aqueous ammonia with a concentration of 10% was added to this aqueous solution so that it became 1.5 mol of ammonia relative to 1 mol of carboxyl groups in PPA, thereby obtaining an aqueous ammonium polyacrylate solution with a concentration of PPA of 7.38%. Next, zinc oxide (ZnO) (manufactured by Kanto Chemical Co., Ltd.) and ammonium carbonate (manufactured by Kanto Chemical Co., Ltd.) were added to the obtained ammonium polyacrylate aqueous solution and mixed and stirred to obtain a mixed liquid. Here, the addition amount of zinc oxide is an amount such that (zinc oxide)/(carboxyl group of polyacrylic acid) becomes 0.3 in molar ratio. In addition, ammonium carbonate is an amount such that the molar ratio becomes 0.3 relative to the carboxyl group of polyacrylic acid. Furthermore, purified water was added to the mixed liquid so that the solid content concentration of PPA+ZnO became 2%, and the mixture was stirred until a uniform solution was obtained. Furthermore, an ammonium hydrogenphosphate aqueous solution with a solid content concentration of 2% was added and stirred so that ammonium hydrogenphosphate ((NH 4 ) 2 HPO 4 ) (manufactured by Kanto Chemical Co., Ltd.) became 0.01 mol based on 1 mol of carboxyl groups of PPA. Furthermore, an active agent aqueous solution with a solid content concentration of 1% was mixed so that the active agent (manufactured by Kao Corporation, product name: Emulgen 120) became 0.3 mass % with respect to the solid content of PPA+ZnO, and was prepared. Gas barrier coating material.
(2)氣體阻擋性積層體的製作 準備於基材層的12 μm PET膜上蒸鍍了氧化鋁作為無機物層的透明蒸鍍膜(三井化學東賽璐(Mitsui Chemicals Tohcello)股份有限公司,型號:TL-PET-H)。將該膜以無機蒸鍍層為上表面貼附於玻璃板,利用敷料器以乾燥後的膜厚成為0.2 μm的方式塗佈氣體阻擋用塗材。然後,連同玻璃板於120℃下利用熱風乾燥器乾燥5分鐘。於將乾燥後的膜的兩端固定來使膜呈中空狀態的基礎上,於150℃下、時間1分鐘的條件下利用熱風乾燥器進行熱處理。藉此,製作於透明蒸鍍膜上形成有氣體阻擋性層的氣體阻擋性積層體。 將製作條件彙總示於表17中。 (2) Production of gas barrier laminate A transparent vapor-deposited film (Mitsui Chemicals Tohcello Co., Ltd., model: TL-PET-H) with aluminum oxide as an inorganic layer was vapor-deposited on a 12 μm PET film prepared as a base material layer. This film was attached to a glass plate with the inorganic vapor deposition layer as the upper surface, and a gas barrier coating material was applied using an applicator so that the film thickness after drying became 0.2 μm. Then, the glass plate was dried using a hot air dryer at 120° C. for 5 minutes. After fixing both ends of the dried membrane to make the membrane hollow, heat treatment was performed with a hot air dryer at 150° C. for 1 minute. Thereby, a gas barrier laminate in which the gas barrier layer is formed on the transparent vapor deposition film is produced. The production conditions are summarized in Table 17.
(3)氣體阻擋性層的分析 另外,對所述(2)中獲得的氣體阻擋性積層體的氣體阻擋性層進行XPS分析及TOF-SIMS分析。 (3) Analysis of gas barrier layer In addition, XPS analysis and TOF-SIMS analysis were performed on the gas barrier layer of the gas barrier laminate obtained in the above (2).
XPS分析條件 分析裝置:克拉托斯(KRATOS)公司製造的艾斯諾瓦(AXIS-NOVA) X射線源:單色化Al-Kα X射線源輸出:15 kV、10 mA 分析區域:300 μm×700 μm 分析時:使用帶電校正用中和槍 試樣尺寸:1 cm×1 cm 將XPS分析的結果示於表18中。 XPS analysis conditions Analytical device: AXIS-NOVA manufactured by KRATOS X-ray source: monochromated Al-Kα X-ray source output: 15 kV, 10 mA Analysis area: 300 μm×700 μm During analysis: Use a neutralizing gun for charged calibration Sample size: 1 cm×1 cm The results of XPS analysis are shown in Table 18.
TOF-SIMS分析條件 測定前處理:利用Ar-GCIB進行表面蝕刻 GCIB:5 kV、5 μA GCIB處理時間:TOF-SIMS的光譜圖案不再變化的時間點 分析裝置:日本真空(Ulvac-phi)公司製造的PHI奈米(nano)-TOFII 一次離子:Bi 3 2+一次離子源輸出:30 kV、0.5 μA 分析區域:300 μm×300 μm(一次離子束的掃描區域) 分析時,藉由裝置附帶的低能量電子束及低能量Ar離子照射進行帶電中和。 將基於所述方法對藉由TOF-SIMS分析獲得的資料進行解析的結果示於表19中。於表19中,所謂利用C 3H 3O 2 -的強度標準化的相對質量峰強度,是指片段的質量峰強度除以C 3H 3O 2 -的強度I(C 3H 3O 2 -)而得的值。 TOF-SIMS analysis conditions Measurement pre-processing: Surface etching using Ar-GCIB GCIB: 5 kV, 5 μA GCIB processing time: The time point when the TOF-SIMS spectral pattern no longer changes Analysis equipment: Nippon Vacuum (Ulvac-phi) Co., Ltd. Manufactured PHI nano (nano)-TOFII Primary ion: Bi 3 2+ Primary ion source output: 30 kV, 0.5 μA Analysis area: 300 μm × 300 μm (scanning area of primary ion beam) During analysis, use the included device Low-energy electron beam and low-energy Ar ion irradiation for charged neutralization. The results of analyzing the data obtained by TOF-SIMS analysis based on the method are shown in Table 19. In Table 19, the relative mass peak intensity normalized by the intensity of C 3 H 3 O 2 - refers to the mass peak intensity of the fragment divided by the intensity of C 3 H 3 O 2 - I (C 3 H 3 O 2 - ).
(4)兩層層壓結構的氣體阻擋性積層體的製作 於厚度70 μm的未拉伸聚丙烯(三井化學東賽璐(Mitsui Chemicals Tohcello)公司製造,商品名:RXC-22)的電暈放電處理面塗敷接著劑,與所述(2)中獲得的氣體阻擋性積層體的氣體阻擋性面貼合,製作兩層層壓結構的氣體阻擋性積層體。接著劑使用調配有三井化學公司製造的商品名:塔克拉克(Takelac)A5252S 9質量份、異氰酸酯系硬化劑(三井化學公司製造,商品名:塔克奈特(Takenate)A50)1質量份及乙酸乙酯7.5質量份而成者。 (4) Production of a gas barrier laminate with a two-layer laminated structure An adhesive was applied to the corona discharge-treated surface of unstretched polypropylene (manufactured by Mitsui Chemicals Tohcello Co., Ltd., trade name: RXC-22) with a thickness of 70 μm, and was obtained in the above (2) The gas barrier surface of the gas barrier laminate is bonded together to produce a gas barrier laminate with a two-layer laminated structure. The adhesive used was prepared by mixing 9 parts by mass of Takelac A5252S, a product manufactured by Mitsui Chemicals, 1 part by mass of an isocyanate hardener (Takenate A50, a product of Mitsui Chemicals), and acetic acid. It contains 7.5 parts by mass of ethyl ester.
(5)三層層壓結構的氣體阻擋性積層體的製作 首先,準備於厚度60 μm的未拉伸聚丙烯(三井化學東賽璐(Mitsui Chemicals Tohcello)公司製造,商品名:RXC-22)的電暈放電處理面塗敷接著劑且貼合有厚度15 μm的尼龍膜(尤尼吉可(Unitika)公司製造,商品名:恩布萊姆(Emblem)ONBC)的積層體。 於所述積層體的尼龍膜面塗敷接著劑,與所述(2)中獲得的氣體阻擋性積層體的氣體阻擋性面貼合,製作三層層壓結構的氣體阻擋性積層體。所使用的接著劑與所述(4)相同。 (5) Production of gas barrier laminate with three-layer laminated structure First, an adhesive was applied to the corona discharge-treated surface of unstretched polypropylene (manufactured by Mitsui Chemicals Tohcello Co., Ltd., trade name: RXC-22) with a thickness of 60 μm, and a thickness of 15 μm was attached. A laminated body of a μm nylon film (manufactured by Unitika, trade name: Emblem ONBC). An adhesive is applied to the nylon film surface of the laminated body and bonded to the gas barrier surface of the gas barrier laminated body obtained in (2) to prepare a gas barrier laminated body with a three-layer laminated structure. The adhesive used is the same as described in (4).
(6)蒸煮處理後的氣體阻擋性評價 對(4)及(5)中獲得的氣體阻擋性積層體,以未拉伸聚丙烯成為內表面的方式翻折,將兩邊熱封而製成袋狀。然後,加入水70 cc作為內容物,藉由熱封另一邊而製作袋。利用高溫高壓蒸煮殺菌裝置,於130℃下對該袋進行30分鐘處理。於蒸煮處理後,排出內容物的水,去除密封部,獲得蒸煮處理後(水填充)的膜。 (6) Evaluation of gas barrier properties after cooking treatment The gas barrier laminate obtained in (4) and (5) was folded so that the unstretched polypropylene became the inner surface, and both sides were heat-sealed to form a bag shape. Then, add 70 cc of water as the content, and make a bag by heat-sealing the other side. Use a high-temperature and high-pressure cooking and sterilization device to process the bag at 130°C for 30 minutes. After the steaming process, the water in the contents is drained, the sealing part is removed, and the membrane after the steaming process (water-filled) is obtained.
使用膜康(MOCON)公司製造的OX-TRAN2/21,依據JIS K 7126,於20℃、90%RH的條件下測定利用所述方法獲得的蒸煮處理後的膜的氧滲透率[mL/(m 2·day·MPa)]。 另外,對藉由所述方法而獲得的蒸煮處理後的膜,以未拉伸聚丙烯成為內表面的方式重疊而翻折氣體阻擋性積層膜,將兩邊熱封而製成袋狀。然後,加入氯化鈣作為內容物,藉由熱封另一邊而以表面積成為0.01 m 2的方式製作袋。然後,於40℃、90%RH的條件下放置300小時。藉由放置前後的重量變化,測定水蒸氣滲透率[g/(m 2·day)]。 將蒸煮處理後的氣體阻擋性評價結果示於表20中。 Using OX-TRAN2/21 manufactured by MOCON, the oxygen permeability [mL/( m 2 ·day·MPa)]. In addition, the gas barrier laminated film was folded so that the unstretched polypropylene became the inner surface of the retort-processed film obtained by the above method, and both sides were heat-sealed to form a bag shape. Then, calcium chloride is added as the content, and the other side is heat-sealed to create a bag so that the surface area becomes 0.01 m 2 . Then, it was left for 300 hours under the conditions of 40°C and 90%RH. The water vapor permeability [g/(m 2 ·day)] was measured based on the weight change before and after standing. Table 20 shows the gas barrier property evaluation results after the retort treatment.
(實施例2) 除了使磷酸氫銨((NH 4) 2HPO 4)相對於聚丙烯酸的羧基1 mol為0.03 mol以外,與實施例1同樣地製作氣體阻擋性積層體。將製作條件示於表17中。另外,對所獲得的氣體阻擋性積層體的氣體阻擋性層進行XPS分析及TOF-SIMS分析。將XPS分析及TOF-SIMS分析的結果示於表18及表19中。另外,將蒸煮處理後的氣體阻擋性評價結果示於表20中。 (Example 2) A gas barrier laminated body was produced in the same manner as in Example 1, except that the ammonium hydrogenphosphate ((NH 4 ) 2 HPO 4 ) was set to 0.03 mol relative to 1 mol of the carboxyl group of the polyacrylic acid. The production conditions are shown in Table 17. In addition, XPS analysis and TOF-SIMS analysis were performed on the gas barrier layer of the obtained gas barrier laminate. The results of XPS analysis and TOF-SIMS analysis are shown in Table 18 and Table 19. Table 20 shows the gas barrier property evaluation results after the retort treatment.
(實施例3) 除了使磷酸氫銨((NH 4) 2HPO 4)相對於聚丙烯酸的羧基1 mol為0.05 mol以外,與實施例1同樣地製作氣體阻擋性積層體。將製作條件示於表17中。另外,對所獲得的氣體阻擋性積層體的氣體阻擋性層進行XPS分析及TOF-SIMS分析。將XPS分析及TOF-SIMS分析的結果示於表18及表19中。另外,將蒸煮處理後的氣體阻擋性評價結果示於表20中。 (Example 3) A gas barrier laminated body was produced in the same manner as in Example 1, except that the ammonium hydrogenphosphate ((NH 4 ) 2 HPO 4 ) was set to 0.05 mol relative to 1 mol of the carboxyl group of the polyacrylic acid. The production conditions are shown in Table 17. In addition, XPS analysis and TOF-SIMS analysis were performed on the gas barrier layer of the obtained gas barrier laminate. The results of XPS analysis and TOF-SIMS analysis are shown in Table 18 and Table 19. Table 20 shows the gas barrier property evaluation results after the retort treatment.
(比較例) 除了不加入磷酸銨以外,與實施例1同樣地製作氣體阻擋性積層體。將製作條件示於17中。另外,對所獲得的氣體阻擋性積層體的氣體阻擋性層進行XPS分析及TOF-SIMS分析。將XPS分析及TOF-SIMS分析的結果示於表18及表19中。另外,將蒸煮處理後的氣體阻擋性評價結果示於表20中。其中,於蒸煮處理後,氣體阻擋性積層體中會產生一部分脫層。 (Comparative example) A gas barrier laminate was produced in the same manner as in Example 1 except that ammonium phosphate was not added. The production conditions are shown in 17. In addition, XPS analysis and TOF-SIMS analysis were performed on the gas barrier layer of the obtained gas barrier laminate. The results of XPS analysis and TOF-SIMS analysis are shown in Table 18 and Table 19. Table 20 shows the gas barrier property evaluation results after the retort treatment. Among them, after the retort treatment, some delamination will occur in the gas barrier laminate.
[表17]
[表18]
[表19]
[表20]
如上所述,不含磷化合物、未檢測出 64ZnPO 4H -片段的質量峰的比較例的氣體阻擋性積層體的蒸煮處理後的氣體阻擋性比實施例1~實施例3低。另外,會產生一部分脫層。 As described above, the gas barrier properties of the gas barrier laminate of the comparative example in which the phosphorus compound was not contained and the mass peak of the 64 ZnPO 4 H - fragment was not detected after the retort treatment was lower than that of Examples 1 to 3. In addition, some delamination will occur.
<第四實施方式的實施例> (實施例1) (1)氣體阻擋用塗材的製作 添加10%氨水(和光純藥工業公司製造)以使該10%氨水的氨相對於聚丙烯酸(東亞合成公司製造,製品名:AC-10H,重量平均分子量:800,000)的羧基而成為150當量%,進而添加精製水,獲得濃度為7.29質量%的聚丙烯酸銨水溶液。 繼而,向所獲得的聚丙烯酸銨水溶液中添加氧化鋅(關東化學公司製造)及碳酸銨並進行混合攪拌,製作混合液(A)。此處,氧化鋅的添加量設為(氣體阻擋用塗材中的氧化鋅的莫耳數)/(氣體阻擋用塗材中的聚丙烯酸中所含的-COO-基的莫耳數)成為表1中的ZnO/PAA的欄中所示的值的量。另外,碳酸銨設為(氣體阻擋用塗材中的碳酸系銨鹽的莫耳數)/(氣體阻擋用塗材中的氧化鋅的莫耳數)成為1.0的量。 繼而,向聚乙烯亞胺(日本觸媒公司製造,製品名:SP-200,數量平均分子量:10,000)中添加精製水,獲得製成10%溶液的聚乙烯亞胺水溶液。 另外,向磷酸氫二銨(關東化學公司製造的(NH 4) 2HPO 4)中添加精製水,製備10%水溶液。 接著,將所述混合液(A)、所述聚乙烯亞胺水溶液及所述磷酸氫二銨溶液以(氣體阻擋用塗材中的聚乙烯亞胺中所含的胺基的莫耳數)/(氣體阻擋用塗材中的聚丙烯酸中所含的-COO-基的莫耳數)成為表1中的PEI/PAA的欄中所示的值及((NH 4) 2HPO 4的莫耳數)/(聚丙烯酸中所含的-COO-基的莫耳數)成為表1中的氧化合物/PAA的欄的添加量中所示的值的比例混合,而製備混合液(B)。 進而以所述混合液(B)的固體成分濃度成為1.5%的方式添加精製水,攪拌至成為均勻溶液後,以使活性劑(花王公司製造,商品名:艾馬吉(Emulgen)120)相對於混合液(B)的固體成分成為0.3質量%的方式進行混合,製備氣體阻擋用塗材。 <Example of the fourth embodiment> (Example 1) (1) Preparation of gas barrier coating material 10% ammonia solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added so that the ammonia content of the 10% ammonia solution would be higher than that of polyacrylic acid (Toa Manufactured by Synthetic Co., Ltd., product name: AC-10H, weight average molecular weight: 800,000) carboxyl group to 150 equivalent%, and then added purified water to obtain a polyacrylic ammonium aqueous solution with a concentration of 7.29 mass%. Next, zinc oxide (manufactured by Kanto Chemical Co., Ltd.) and ammonium carbonate were added to the obtained ammonium polyacrylate aqueous solution and mixed and stirred to prepare a mixed liquid (A). Here, the amount of zinc oxide added is (the mole number of zinc oxide in the gas barrier coating material)/(the mole number of -COO- groups contained in the polyacrylic acid in the gas barrier coating material). The amount of the value shown in the column of ZnO/PAA in Table 1. In addition, ammonium carbonate is an amount such that (the molar number of the carbonic acid ammonium salt in the gas barrier coating material)/(the molar number of zinc oxide in the gas barrier coating material) becomes 1.0. Next, purified water was added to polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd., product name: SP-200, number average molecular weight: 10,000) to obtain a polyethyleneimine aqueous solution that was a 10% solution. Separately, purified water was added to diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 manufactured by Kanto Chemical Co., Ltd.) to prepare a 10% aqueous solution. Next, the mixed liquid (A), the polyethyleneimine aqueous solution, and the diammonium hydrogen phosphate solution are mixed with (the number of moles of amine groups contained in the polyethyleneimine in the gas barrier coating material) / (the mole number of -COO- groups contained in the polyacrylic acid in the gas barrier coating material) becomes the value shown in the column of PEI/PAA in Table 1 and the mole number of ((NH 4 ) 2 HPO 4 The number of ears)/(the number of moles of the -COO- group contained in the polyacrylic acid) are mixed at a ratio such that the value shown in the addition amount of the oxygen compound/PAA column in Table 1 is obtained, and a mixed liquid (B) is prepared. . Furthermore, purified water was added so that the solid content concentration of the mixed liquid (B) became 1.5%, and the mixture was stirred until it became a uniform solution, so that the active agent (manufactured by Kao Corporation, trade name: Emulgen 120) was mixed with each other. Mix the liquid mixture (B) so that the solid content becomes 0.3% by mass, and prepare a gas barrier coating material.
(2)氣體阻擋性積層體的製作 將厚度12 μm的雙軸拉伸聚對苯二甲酸乙二酯膜(尤尼吉可(Unitika)公司製造,PET12)作為基材,於該單面(電暈處理面)利用邁爾棒塗佈以下組成的樹脂組成物並進行乾燥,藉此形成乾燥後的厚度為0.20 μm的底塗(UC)層。 (組成) 主劑:聚胺基甲酸酯樹脂水分散液(三井化學公司製造,製品名:塔克拉克(Takelac)WS-4033,芳香族聚酯型聚胺基甲酸酯樹脂) 交聯劑:具有碳二醯亞胺基的化合物(日清紡化學(Nisshinbo Chemical)公司製造,製品名:卡伯萊特(Carbodilite)SV-02) 調配比:以相對於主劑中的聚胺基甲酸酯樹脂的羧基1.0 mol而言交聯劑中的碳二醯亞胺基成為0.4 mol的方式於主劑中調配交聯劑。 接著,利用以下方法於底塗層上形成氧化鋁蒸鍍層。 於UC層上藉由高頻感應加熱方式,使鋁加熱蒸發,一邊導入氧一邊進行蒸鍍,藉此形成厚度7 nm的氧化鋁膜。藉此獲得氧化鋁蒸鍍PET膜。該氧化鋁蒸鍍PET膜的水蒸氣滲透度為1.5 g/(m 2·24 h)。 然後,於蒸鍍層上,以乾燥後的塗敷量成為0.2 μm的方式利用邁爾棒塗佈順序(1)中獲得的氣體阻擋用塗材,使用熱風乾燥器於表1中的熱處理一欄中所示的條件下進行熱處理,獲得氣體阻擋性積層體。將製作條件的一覽示於表21中。 (2) Preparation of gas barrier laminate A biaxially stretched polyethylene terephthalate film (PET12 manufactured by Unitika) with a thickness of 12 μm was used as the base material, and on this single side ( Corona treated surface) The resin composition of the following composition is applied using a Meyer rod and dried to form a primer (UC) layer with a thickness of 0.20 μm after drying. (Composition) Main ingredient: polyurethane resin aqueous dispersion (manufactured by Mitsui Chemicals, product name: Takelac WS-4033, aromatic polyester polyurethane resin) Cross-linking agent : Compound with carbodiimide group (manufactured by Nisshinbo Chemical Co., Ltd., product name: Carbodilite SV-02) Mixing ratio: relative to the polyurethane resin in the main agent The cross-linking agent is prepared in the main agent so that the carbodiimide group in the cross-linking agent becomes 0.4 mol for 1.0 mol of the carboxyl group. Next, an aluminum oxide evaporation layer was formed on the undercoat layer using the following method. Aluminum is heated and evaporated on the UC layer through high-frequency induction heating, and oxygen is introduced while evaporating to form an aluminum oxide film with a thickness of 7 nm. Thereby, an alumina vapor-deposited PET film is obtained. The water vapor permeability of the alumina evaporated PET film is 1.5 g/(m 2 ·24 h). Then, use the gas barrier coating material obtained in the Meyer bar coating procedure (1) on the vapor deposition layer so that the coating amount after drying becomes 0.2 μm, and use a hot air dryer in the heat treatment column in Table 1 Heat treatment is performed under the conditions shown in to obtain a gas barrier laminate. Table 21 shows a list of production conditions.
(3)氣體阻擋性層的分析 另外,對所述順序(2)中獲得的氣體阻擋性積層體的氣體阻擋性層進行以下所示的基於ATR法的紅外線吸收光譜分析。 紅外線吸收光譜的測定(紅外線全反射測定:ATR法)使用日本分光公司製造的IRT-5200裝置,安裝PKM-GE-S(鍺(Germanium))結晶,於入射角度45度、室溫、分解能4 cm -1、累計次數100次的條件下進行測定。利用所述方法對所獲得的吸收光譜進行解析,求出最大峰α及γ,並且計算出總峰面積A~總峰面積D。然後,根據總峰面積A~總峰面積D求出面積比B/A、面積比C/A、面積比D/A。 將基於ATR法的紅外線吸收光譜分析結果示於表22中。 (3) Analysis of Gas Barrier Layer In addition, the gas barrier layer of the gas barrier laminate obtained in the above procedure (2) was subjected to infrared absorption spectrum analysis based on the ATR method shown below. The infrared absorption spectrum was measured (infrared total reflection measurement: ATR method) using an IRT-5200 device manufactured by Nippon Spectroscopic Corporation, equipped with a PKM-GE-S (Germanium) crystal, at an incident angle of 45 degrees, room temperature, and a decomposition energy of 4 cm -1 and the cumulative number is 100 times. The obtained absorption spectrum is analyzed using the above method, the maximum peaks α and γ are obtained, and the total peak area A to total peak area D are calculated. Then, the area ratio B/A, the area ratio C/A, and the area ratio D/A are determined from the total peak area A to the total peak area D. The results of infrared absorption spectrum analysis based on the ATR method are shown in Table 22.
(4)兩層層壓結構體的製作 於厚度70 μm的未拉伸聚丙烯(三井化學東賽璐(Mitsui Chemicals Tohcello)公司製造,商品名:RXC-22)的電暈放電處理面塗敷接著劑,與所述順序(2)中獲得的氣體阻擋性積層體的氣體阻擋性面(氣體阻擋性層側的面,以下相同)黏合,製作兩層層壓結構的層壓結構體。接著劑使用調配有三井化學公司製造的商品名:塔克拉克(Takelac)A525S:9質量份、異氰酸酯系硬化劑(三井化學公司製造,商品名:塔克奈特(Takenate)A50):1質量份及乙酸乙酯:7.5質量份而成者。 (4) Production of two-layer laminated structure Apply an adhesive to the corona discharge-treated surface of unstretched polypropylene (manufactured by Mitsui Chemicals Tohcello Co., Ltd., trade name: RXC-22) with a thickness of 70 μm, and follow the procedure (2) above. The gas barrier surfaces (the surfaces on the gas barrier layer side, the same below) of the obtained gas barrier laminates are bonded together to produce a laminated structure having a two-layer laminated structure. The adhesive used was prepared with Mitsui Chemicals Co., Ltd.'s brand name: Takelac A525S: 9 parts by mass, and an isocyanate-based hardener (Mitsui Chemicals Co., Ltd.'s brand name: Takenate A50): 1 mass part. and ethyl acetate: 7.5 parts by mass.
(5)三層層壓結構體的製作 首先,準備於厚度60 μm的未拉伸聚丙烯(三井化學東賽璐(Mitsui Chemicals Tohcello)公司製造,商品名:RXC-22)的電暈放電處理面塗敷接著劑且黏合有厚度15 μm的尼龍膜(尤尼吉可(Unitika)公司製造,商品名:恩布萊姆(Emblem)ONBC)的積層體。 於所述積層體的尼龍膜面塗敷接著劑,與所述順序(2)中獲得的氣體阻擋性積層體的氣體阻擋性面黏合,製作三層層壓結構的層壓結構體。所使用的接著劑與所述順序(4)相同。 (5) Production of three-layer laminated structure First, an adhesive was applied to the corona discharge-treated surface of unstretched polypropylene (manufactured by Mitsui Chemicals Tohcello Co., Ltd., trade name: RXC-22) with a thickness of 60 μm, and a thickness of 15 μm was adhered. A laminated body of nylon membrane (manufactured by Unitika, trade name: Emblem ONBC). An adhesive is applied to the nylon film surface of the laminated body and adhered to the gas barrier surface of the gas barrier laminated body obtained in step (2) to prepare a laminated structure of a three-layer laminated structure. The adhesive used is the same as in sequence (4).
(6)蒸煮處理後的氣體阻擋性評價 對順序(4)及順序(5)中獲得的層壓結構體,以未拉伸聚丙烯成為內表面的方式翻折,將兩邊熱封而製成袋狀後,加入水70 mL作為內容物,藉由熱封另一邊而製作袋,將其利用高溫高壓蒸煮殺菌裝置於130℃下進行30分鐘蒸煮處理。於蒸煮處理後,排出內容物的水,去除密封部,獲得蒸煮處理後(水填充)的膜。 使用膜康(MOCON)公司製造的OX-TRAN2/21,依據JIS K 7126,於20℃、90%RH的條件下測定利用所述方法獲得的蒸煮處理後的膜的氧滲透率[ml/(m 2·day·MPa)]。 另外,對藉由所述方法而獲得的蒸煮處理後的膜,以未拉伸聚丙烯成為內表面的方式重疊而翻折層壓結構體,將兩邊熱封而製成袋狀後,加入氯化鈣作為內容物,藉由熱封另一邊而以表面積成為0.01 m 2的方式製作袋,於40℃、90%RH的條件下放置300小時,藉由放置前後的重量變化,測定水蒸氣滲透率[g/(m 2·day)]。 將蒸煮處理後的氣體阻擋性評價結果示於表23中。 (6) Evaluation of gas barrier properties after retort treatment. The laminated structure obtained in procedures (4) and (5) was folded so that the unstretched polypropylene became the inner surface, and both sides were heat-sealed. After the bag is formed, add 70 mL of water as the content, heat-seal the other side to make a bag, and use a high-temperature and high-pressure cooking sterilization device to cook it at 130°C for 30 minutes. After the steaming process, the water in the contents is drained, the sealing part is removed, and the membrane after the steaming process (water-filled) is obtained. Oxygen permeability [ml/( m 2 ·day·MPa)]. In addition, the retort-treated film obtained by the above method was folded so that the unstretched polypropylene became the inner surface, and the laminated structure was folded, and both sides were heat-sealed to form a bag, and then chlorine was added. Calcium oxide is used as the content, and the other side is heat-sealed to make a bag with a surface area of 0.01 m 2 . The bag is left for 300 hours at 40°C and 90% RH. The water vapor permeability is measured by measuring the weight change before and after being left. Rate [g/(m 2 ·day)]. Table 23 shows the gas barrier property evaluation results after the retort treatment.
(實施例2~實施例8) 關於各實施例,除了將原料的調配及製作條件分別變更為表21所示的數值以外,依據實施例1獲得氣體阻擋性積層體及各層壓結構體。 依據實施例1,將對所獲得的氣體阻擋積層體的氣體阻擋性層進行分析的結果示於表22中。另外,將蒸煮處理後的氣體阻擋性評價結果示於表23中。 (Example 2 to Example 8) Regarding each Example, a gas barrier laminated body and each laminated structure were obtained according to Example 1, except that the preparation of raw materials and the production conditions were respectively changed to the numerical values shown in Table 21. The results of analyzing the gas barrier layer of the gas barrier laminate obtained according to Example 1 are shown in Table 22. In addition, the gas barrier property evaluation results after the retort treatment are shown in Table 23.
(比較例1) 除了不使用氧化鋅及碳酸銨、以及不使用磷酸氫二銨溶液以外,依據實施例1獲得氣體阻擋性積層體及三層層壓結構體。 依據實施例1,將對所獲得的氣體阻擋積層體的氣體阻擋性層進行分析的結果示於表22中。另外,將蒸煮處理後的氣體阻擋性評價結果示於表23中。 (Comparative example 1) A gas barrier laminated body and a three-layer laminated structure were obtained according to Example 1 except that zinc oxide and ammonium carbonate were not used, and a diammonium hydrogen phosphate solution was not used. The results of analyzing the gas barrier layer of the gas barrier laminate obtained according to Example 1 are shown in Table 22. In addition, the gas barrier property evaluation results after the retort treatment are shown in Table 23.
(實施例9) (1)氣體阻擋用塗材的製作 利用精製水對聚丙烯酸(PAA)水溶液(東亞合成公司製造,製品名:AC-10H,重量平均分子量:800,000)進行稀釋,製作PAA的濃度10%的水溶液,添加10%的氨水,以使相對於羧基成為1.5 mol的氨,獲得PAA的濃度為7.38%的聚丙烯酸銨水溶液。 繼而,向所獲得的聚丙烯酸銨水溶液中添加氧化鋅(ZnO:關東化學公司製造)及碳酸銨(關東化學公司製造)並進行混合攪拌。此處,氧化鋅的添加量設為(氧化鋅)/(PAA的羧基)為以mol比計成為0.3的量。另外,碳酸銨設為相對於PAA的羧基而言以mol比計成為0.3的量。以如上方式製作混合液(A)。 繼而,向聚乙烯亞胺(PEI:日本觸媒公司製造,製品名:SP-200,數量平均分子量:10,000)中添加精製水,獲得製成PEI的濃度10%的水溶液的聚乙烯亞胺水溶液。 接著,將所述混合液(A)與所述聚乙烯亞胺水溶液以(PEI的氮)/(PAA的羧基)以mol比計成為0.55的比例混合,製備混合液(B)。 進而,針對所述混合液(B),以PAA+ZnO+PEI的固體成分濃度成為2%的方式添加精製水,攪拌至成為均勻溶液。進而,以磷酸氫二銨(關東化學公司製造,(NH 4) 2HPO 4)相對於PAA的羧基1 mol成為1×10 -3mol的方式添加固體成分濃度2%的磷酸氫二銨水溶液並進行攪拌後,以使活性劑(花王公司製造,商品名:艾馬吉(Emulgen)120)相對於PAA+ZnO+PEI的固體成分成為0.3質量%的方式混合固體成分濃度1%的活性劑水溶液,製備氣體阻擋用塗材。 (Example 9) (1) Preparation of gas barrier coating material A polyacrylic acid (PAA) aqueous solution (manufactured by Toagosei Co., Ltd., product name: AC-10H, weight average molecular weight: 800,000) was diluted with purified water to prepare PAA. To an aqueous solution with a concentration of 10%, add 10% ammonia so that it becomes 1.5 mol of ammonia relative to the carboxyl group, and obtain a polyacrylic ammonium aqueous solution with a PAA concentration of 7.38%. Next, zinc oxide (ZnO: manufactured by Kanto Chemical Co., Ltd.) and ammonium carbonate (manufactured by Kanto Chemical Co., Ltd.) were added to the obtained ammonium polyacrylate aqueous solution and mixed and stirred. Here, the addition amount of zinc oxide is an amount such that (zinc oxide)/(carboxyl group of PAA) becomes 0.3 in molar ratio. In addition, the ammonium carbonate is an amount such that the molar ratio becomes 0.3 relative to the carboxyl group of PAA. Prepare mixture (A) as above. Next, purified water was added to polyethyleneimine (PEI: manufactured by Nippon Shokubai Co., Ltd., product name: SP-200, number average molecular weight: 10,000) to obtain a polyethyleneimine aqueous solution having a concentration of 10% of PEI. . Next, the mixed liquid (A) and the polyethyleneimine aqueous solution were mixed at a molar ratio of (nitrogen of PEI)/(carboxyl group of PAA) of 0.55 to prepare a mixed liquid (B). Furthermore, purified water was added to the mixed liquid (B) so that the solid content concentration of PAA+ZnO+PEI became 2%, and the mixture was stirred until it became a homogeneous solution. Furthermore, a diammonium hydrogen phosphate aqueous solution with a solid content concentration of 2% was added so that diammonium hydrogen phosphate (manufactured by Kanto Chemical Co., Ltd., (NH 4 ) 2 HPO 4 ) became 1 × 10 -3 mol with respect to 1 mol of carboxyl groups of PAA. After stirring, an active agent aqueous solution with a solid content concentration of 1% was mixed so that the active agent (manufactured by Kao Corporation, trade name: Emulgen 120) became 0.3 mass % with respect to the solid content of PAA+ZnO+PEI. , to prepare gas barrier coating materials.
(2)氣體阻擋性積層體的製作 將於基材層的12 μm PET膜上蒸鍍了氧化鋁作為無機物層的透明蒸鍍膜(三井化學東賽璐(Mitsui Chemicals Tohcello)公司製造,型號:TL-PET-H)黏附於玻璃板,利用敷料器以乾燥後的膜厚成為0.2 μm的方式塗佈順序(1)中獲得的氣體阻擋用塗材,連同玻璃板於120℃下利用熱風乾燥器乾燥5分鐘。於將乾燥後的膜的兩端固定使膜呈中空狀態的基礎上,於150℃下、時間1分鐘的條件下利用熱風乾燥器進行熱處理,於透明蒸鍍膜上形成氣體阻擋性層而製作氣體阻擋性積層體。 將氣體阻擋性層的製作條件示於表21中。 (2) Production of gas barrier laminate A transparent evaporated film (manufactured by Mitsui Chemicals Tohcello Co., Ltd., model: TL-PET-H) with aluminum oxide as an inorganic layer evaporated on the 12 μm PET film of the base material layer was adhered to the glass plate. The gas barrier coating material obtained in step (1) was applied with an applicator so that the dried film thickness became 0.2 μm, and the glass plate was dried with a hot air dryer at 120° C. for 5 minutes. After fixing both ends of the dried film so that the film becomes hollow, heat treatment is performed with a hot air dryer at 150°C for 1 minute to form a gas barrier layer on the transparent vapor deposition film to produce gas. Barrier laminate. Table 21 shows the production conditions of the gas barrier layer.
(3)氣體阻擋性層的分析 對所述順序(2)中獲得的氣體阻擋積層體的氣體阻擋性層進行與實施例1的順序(3)相同的分析。將分析的結果示於表22中。 (3) Analysis of gas barrier layer The gas barrier layer of the gas barrier laminate obtained in the above procedure (2) was analyzed in the same manner as in the procedure (3) of Example 1. The results of the analysis are shown in Table 22.
(4)兩層層壓結構的氣體阻擋性積層體的製作 使用所述順序(2)中獲得的氣體阻擋積層體的氣體阻擋性層,與實施例1的順序(4)同樣地製作兩層層壓結構體。 (4) Production of a gas barrier laminate with a two-layer laminated structure Using the gas barrier layer of the gas barrier laminate obtained in the above procedure (2), a two-layer laminated structure was produced in the same manner as in the procedure (4) of Example 1.
(5)三層層壓結構的氣體阻擋性積層體的製作 使用所述順序(2)中獲得的氣體阻擋積層體的氣體阻擋性層,與實施例1的順序(5)同樣地製作三層層壓結構體。 (5) Production of gas barrier laminate with three-layer laminated structure Using the gas barrier layer of the gas barrier laminate obtained in the above procedure (2), a three-layer laminated structure was produced in the same manner as in the procedure (5) of Example 1.
(6)蒸煮處理後的氣體阻擋性評價 與實施例1的順序(6)同樣地對所述順序(4)及順序(5)中獲得的層壓結構體進行蒸煮處理後的氣體阻擋性評價。將結果示於表23中。 (6) Evaluation of gas barrier properties after cooking treatment In the same manner as the procedure (6) of Example 1, the gas barrier properties after the retort treatment were evaluated on the laminated structures obtained in the procedures (4) and (5). The results are shown in Table 23.
(實施例10) 除了使磷酸氫二銨的濃度相對於聚丙烯酸的羧基1 mol為0.01 mol以外,依據實施例9製作氣體阻擋性積層體及各層壓結構體。將製作條件一併示於表21中。 依據實施例9,將對所獲得的氣體阻擋積層體的氣體阻擋性層進行分析的結果示於表22中。另外,將蒸煮處理後的氣體阻擋性評價結果示於表23中。 (Example 10) A gas barrier laminated body and each laminated structure were produced according to Example 9 except that the concentration of diammonium hydrogen phosphate was 0.01 mol based on 1 mol of carboxyl groups of polyacrylic acid. The production conditions are also shown in Table 21. The results of analyzing the gas barrier layer of the gas barrier laminate obtained according to Example 9 are shown in Table 22. In addition, the gas barrier property evaluation results after the retort treatment are shown in Table 23.
(實施例11) 除了使磷酸氫二銨的濃度相對於聚丙烯酸的羧基1 mol為0.03 mol以外,依據實施例9製作氣體阻擋性積層體及各層壓結構體。將製作條件一併示於表21中。 依據實施例9,將對所獲得的氣體阻擋積層體的氣體阻擋性層進行分析的結果一併示於表22中。另外,將蒸煮處理後的氣體阻擋性評價結果示於表23中。 (Example 11) A gas barrier laminated body and each laminated structure were produced according to Example 9 except that the concentration of diammonium hydrogen phosphate was 0.03 mol based on 1 mol of carboxyl groups of polyacrylic acid. The production conditions are also shown in Table 21. The results of analyzing the gas barrier layer of the gas barrier laminate obtained according to Example 9 are also shown in Table 22. In addition, the gas barrier property evaluation results after the retort treatment are shown in Table 23.
[表21]
[表22]
[表23]
根據表21~表23,於各實施例中,於製成兩層層壓積層體及三層層壓積層體中的任一者的情況下,亦可生產性良好地獲得蒸煮處理後的阻擋性優異的積層體。According to Tables 21 to 23, in each of the Examples, even when either a two-layer laminated body or a three-layer laminated body is produced, the barrier after the retort treatment can be obtained with good productivity. A laminate with excellent properties.
<第五實施方式的實施例> (實施例1) (1)氣體阻擋用塗材的製作 添加10%氨水(和光純藥工業公司製造)以使該10%氨水的氨相對於聚丙烯酸(東亞合成公司製造,製品名:AC-10H,重量平均分子量:800,000)的羧基而成為150當量%,進而添加精製水,獲得濃度為7.29質量%的聚丙烯酸銨水溶液。 繼而,向所獲得的聚丙烯酸銨水溶液中添加氧化鋅(關東化學公司製造)及碳酸銨並進行混合攪拌,製成混合液(A)。此處,氧化鋅的添加量設為(氣體阻擋用塗材中的氧化鋅的莫耳數)/(氣體阻擋用塗材中的聚丙烯酸中所含的-COO-基的莫耳數)成為表1所示的值的量。另外,碳酸銨設為(氣體阻擋用塗材中的碳酸系銨鹽的莫耳數)/(氣體阻擋用塗材中的氧化鋅的莫耳數)成為1.0的量。 繼而,向聚乙烯亞胺(日本觸媒公司製造,製品名:SP-200,數量平均分子量:10,000)中添加精製水,獲得製成10%溶液的聚乙烯亞胺水溶液。 接著,將所述混合液(A)與所述聚乙烯亞胺水溶液以(氣體阻擋用塗材中的聚乙烯亞胺中所含的胺基的莫耳數)/(氣體阻擋用塗材中的聚丙烯酸中所含的-COO-基的莫耳數)成為表1所示的值的比例混合,而製備混合液(B)。 進而以所述混合液(B)的固體成分濃度成為1.5%的方式添加精製水,攪拌至成為均勻溶液後,以使活性劑(花王公司製造,商品名:艾馬吉(Emulgen)120)相對於混合液(B)的固體成分成為0.3質量%的方式進行混合,製備氣體阻擋用塗材。 <Example of fifth embodiment> (Example 1) (1) Production of gas barrier coating materials 10% ammonia water (manufactured by Wako Pure Chemical Industries, Ltd.) was added so that the ammonia content of the 10% ammonia water became 150 equivalent % relative to the carboxyl group of polyacrylic acid (manufactured by Toagosei Co., Ltd., product name: AC-10H, weight average molecular weight: 800,000) , and then added purified water to obtain an ammonium polyacrylate aqueous solution with a concentration of 7.29 mass%. Next, zinc oxide (manufactured by Kanto Chemical Co., Ltd.) and ammonium carbonate were added to the obtained ammonium polyacrylate aqueous solution and mixed and stirred to prepare a mixed liquid (A). Here, the amount of zinc oxide added is (the mole number of zinc oxide in the gas barrier coating material)/(the mole number of -COO- groups contained in the polyacrylic acid in the gas barrier coating material). Amounts of values shown in Table 1. In addition, ammonium carbonate is an amount such that (the molar number of the carbonic acid ammonium salt in the gas barrier coating material)/(the molar number of zinc oxide in the gas barrier coating material) becomes 1.0. Next, purified water was added to polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd., product name: SP-200, number average molecular weight: 10,000) to obtain a polyethyleneimine aqueous solution that was a 10% solution. Next, the mixed solution (A) and the polyethyleneimine aqueous solution are mixed at the ratio of (the number of moles of amine groups contained in the polyethyleneimine in the gas barrier coating material)/(the number of moles in the polyethyleneimine in the gas barrier coating material). The molar number of -COO- groups contained in the polyacrylic acid) were mixed at a ratio such that the values shown in Table 1 become the values shown in Table 1, to prepare a mixed liquid (B). Furthermore, purified water was added so that the solid content concentration of the mixed liquid (B) became 1.5%, and the mixture was stirred until it became a uniform solution, so that the active agent (manufactured by Kao Corporation, trade name: Emulgen 120) was mixed with each other. Mix the liquid mixture (B) so that the solid content becomes 0.3% by mass, and prepare a gas barrier coating material.
(2)氣體阻擋性積層膜的製作 將厚度12 μm的雙軸拉伸聚對苯二甲酸乙二酯膜(尤尼吉可(Unitika)公司製造,PET12)作為基材,於該經電暈處理的面藉由高頻感應加熱方式,使鋁加熱蒸發,一邊導入氧一邊進行蒸鍍,藉此形成厚度7 nm的氧化鋁膜。藉此獲得氧化鋁蒸鍍PET膜。該氧化鋁蒸鍍PET膜的水蒸氣滲透度為1.5 g/(m 2·24 h)。 接著,於蒸鍍層上,以乾燥後的塗敷量成為0.3 μm的方式利用邁爾棒塗佈氣體阻擋用塗材,進行熱風乾燥裝置:130℃、時間:約6.5秒的熱處理,獲得氣體阻擋性積層膜。 對所獲得的氣體阻擋性積層膜進行以下的評價。將結果示於表24中。 (2) Preparation of gas barrier laminated film A biaxially stretched polyethylene terephthalate film (manufactured by Unitika, PET12) with a thickness of 12 μm was used as the base material. The treated surface is heated and evaporated by high-frequency induction heating, and oxygen is introduced while evaporation is performed, thereby forming an aluminum oxide film with a thickness of 7 nm. Thereby, an alumina vapor-deposited PET film is obtained. The water vapor permeability of the alumina evaporated PET film is 1.5 g/(m 2 ·24 h). Next, a gas barrier coating material was applied on the vapor deposition layer using a Meyer rod so that the coating amount after drying would be 0.3 μm, and heat treatment was performed with a hot air drying device: 130°C, time: about 6.5 seconds, to obtain a gas barrier. Sexual laminated membrane. The following evaluation was performed on the obtained gas barrier laminated film. The results are shown in Table 24.
(實施例2) 除了將(氣體阻擋用塗材中的氧化鋅的莫耳數)/(氣體阻擋用塗材中的聚丙烯酸中所含的-COO-基的莫耳數)及(氣體阻擋用塗材中的聚乙烯亞胺中所含的胺基的莫耳數)/(氣體阻擋用塗材中的聚丙烯酸中所含的-COO-基的莫耳數)分別變更為表1所示的值,以及將熱風乾燥器中的乾燥溫度設為表1所示的溫度以外,依據實施例1獲得氣體阻擋性積層膜。 對所獲得的氣體阻擋性積層膜進行以下的評價。將結果示於表24中。 (Example 2) In addition to (the mole number of zinc oxide in the gas barrier coating material) / (the mole number of -COO- groups contained in the polyacrylic acid in the gas barrier coating material) and (the mole number of the -COO- group in the gas barrier coating material) The molar number of the amine group contained in the polyethyleneimine) / (the molar number of the -COO- group contained in the polyacrylic acid in the gas barrier coating material) are respectively changed to the values shown in Table 1, and The drying temperature in the hot air dryer was set to other than the temperature shown in Table 1, and the gas barrier laminated film was obtained according to Example 1. The following evaluation was performed on the obtained gas barrier laminated film. The results are shown in Table 24.
(比較例1) 除了不使用氧化鋅及碳酸銨以外,依據實施例1獲得氣體阻擋性積層膜。 對所獲得的氣體阻擋性積層膜進行以下的評價。將結果示於表24中。 (Comparative example 1) A gas barrier laminated film was obtained according to Example 1 except that zinc oxide and ammonium carbonate were not used. The following evaluation was performed on the obtained gas barrier laminated film. The results are shown in Table 24.
(實施例3) (1)氣體阻擋用塗材的製作 除了將(氣體阻擋用塗材中的氧化鋅的莫耳數)/(氣體阻擋用塗材中的聚丙烯酸中所含的-COO-基的莫耳數)及(氣體阻擋用塗材中的聚乙烯亞胺中所含的胺基的莫耳數)/(氣體阻擋用塗材中的聚丙烯酸中所含的-COO-基的莫耳數)分別變更為表1所示的值以外,依據實施例1進行。 (2)氣體阻擋性積層膜的製作 將厚度12 μm的雙軸拉伸聚對苯二甲酸乙二酯膜(尤尼吉可(Unitika)公司製造,PET12)作為基材,於該單面利用邁爾棒塗佈以下組成的樹脂組成物並進行乾燥,藉此形成乾燥後的厚度為0.20 μm的底塗(UC)層。 (組成) 主劑:聚胺基甲酸酯樹脂水分散液(三井化學公司製造,製品名:塔克拉克(Takelac)WS-4033,芳香族聚酯型聚胺基甲酸酯樹脂) 交聯劑:具有碳二醯亞胺基的化合物(日清紡化學(Nisshinbo Chemical)公司製造,製品名:卡伯萊特(Carbodilite)SV-02) 調配比:以相對於主劑中的聚胺基甲酸酯樹脂的羧基1.0 mol而言交聯劑中的碳二醯亞胺基成為0.4 mol的方式於主劑中調配交聯劑。 繼而,於UC層上藉由高頻感應加熱方式,使鋁加熱蒸發,一邊導入氧一邊進行蒸鍍,藉此形成厚度7 nm的氧化鋁膜。藉此獲得氧化鋁蒸鍍PET膜。該氧化鋁蒸鍍PET膜的水蒸氣滲透度為1.5 g/(m 2·24 h)。 然後,於蒸鍍層上,以乾燥後的塗敷量成為0.3 μm的方式利用邁爾棒塗佈氣體阻擋用塗材,進行熱風乾燥裝置:210℃、時間:約6.5秒的熱處理,獲得氣體阻擋性積層膜。 對所獲得的氣體阻擋性積層膜進行以下的評價。將結果示於表24中。 (Example 3) (1) Preparation of a gas barrier coating material In addition to (moles of zinc oxide in the gas barrier coating material)/(-COO- contained in the polyacrylic acid in the gas barrier coating material) Molar number of amine groups) and (Molar number of amine groups contained in the polyethyleneimine in the gas barrier coating material) / (Molar number of -COO- groups contained in the polyacrylic acid in the gas barrier coating material molar number) were changed to values other than those shown in Table 1, and the procedure was carried out according to Example 1. (2) Preparation of gas barrier laminated film A biaxially stretched polyethylene terephthalate film (manufactured by Unitika, PET12) with a thickness of 12 μm was used as the base material on this single side. The resin composition of the following composition is coated with a Meyer rod and dried to form an undercoat (UC) layer with a thickness of 0.20 μm after drying. (Composition) Main ingredient: polyurethane resin aqueous dispersion (manufactured by Mitsui Chemicals, product name: Takelac WS-4033, aromatic polyester polyurethane resin) Cross-linking agent : Compound with carbodiimide group (manufactured by Nisshinbo Chemical Co., Ltd., product name: Carbodilite SV-02) Mixing ratio: relative to the polyurethane resin in the main agent The cross-linking agent is prepared in the main agent so that the carbodiimide group in the cross-linking agent becomes 0.4 mol for 1.0 mol of the carboxyl group. Then, aluminum is heated and evaporated on the UC layer by high-frequency induction heating, and oxygen is introduced while evaporation is performed, thereby forming an aluminum oxide film with a thickness of 7 nm. Thereby, an alumina vapor-deposited PET film is obtained. The water vapor permeability of the alumina evaporated PET film is 1.5 g/(m 2 ·24 h). Then, a gas barrier coating material was applied on the vapor deposition layer using a Meyer rod so that the coating amount after drying would become 0.3 μm, and heat treatment was performed with a hot air drying device: 210°C, time: about 6.5 seconds, to obtain a gas barrier. Sexual laminated membrane. The following evaluation was performed on the obtained gas barrier laminated film. The results are shown in Table 24.
(實施例4~實施例11) 除了將(氣體阻擋用塗材中的氧化鋅的莫耳數)/(氣體阻擋用塗材中的聚丙烯酸中所含的-COO-基的莫耳數)及(氣體阻擋用塗材中的聚乙烯亞胺中所含的胺基的莫耳數)/(氣體阻擋用塗材中的聚丙烯酸中所含的-COO-基的莫耳數)分別變更為表1所示的值,以及將熱風乾燥裝置中的乾燥溫度設為表1所示的溫度以外,依據實施例3獲得氣體阻擋性積層膜。 對所獲得的各氣體阻擋性積層膜進行以下的評價,並將結果示於表24中。 (Example 4 to Example 11) In addition to (the mole number of zinc oxide in the gas barrier coating material) / (the mole number of -COO- groups contained in the polyacrylic acid in the gas barrier coating material) and (the mole number of the -COO- group in the gas barrier coating material) The molar number of the amine group contained in the polyethyleneimine) / (the molar number of the -COO- group contained in the polyacrylic acid in the gas barrier coating material) are respectively changed to the values shown in Table 1, and The drying temperature in the hot air drying device was set to a temperature other than the temperature shown in Table 1, and a gas barrier laminated film was obtained according to Example 3. The following evaluations were performed on each of the obtained gas barrier laminated films, and the results are shown in Table 24.
(比較例2) 除了不使用氧化鋅及碳酸銨以外,依據實施例3獲得氣體阻擋性積層膜。 對所獲得的氣體阻擋性積層膜進行以下的評價。將結果示於表24中。 (Comparative example 2) A gas barrier laminated film was obtained according to Example 3 except that zinc oxide and ammonium carbonate were not used. The following evaluation was performed on the obtained gas barrier laminated film. The results are shown in Table 24.
(評價方法) (1)於厚度15 μm的尼龍膜(尤尼吉可(Unitika)公司製造,商品名:恩布萊姆(Emblem)ONBC)的兩面,塗佈酯系接著劑(聚胺基甲酸酯系接著劑(三井化學公司製造,商品名:塔克拉克(Takelac)A525S):9質量份、異氰酸酯系硬化劑(三井化學公司製造,商品名:塔克耐德(Takenate)A50):1質量份及乙酸乙酯:7.5質量份)。繼而,於賦予有接著劑的尼龍膜的兩面,分別貼合實施例及比較例中獲得的氣體阻擋性積層膜的阻隔面(塗佈有氣體阻擋用塗材的面)及厚度60 μm的未拉伸聚丙烯膜(三井化學東賽璐(Mitsui Chemicals Tohcello)公司製造,商品名:RXC-22),獲得蒸煮處理前的膜。 (evaluation method) (1) Apply an ester-based adhesive (polyurethane-based adhesive) to both sides of a nylon film with a thickness of 15 μm (Unitika company, trade name: Emblem ONBC) Adhesive (manufactured by Mitsui Chemicals, brand name: Takelac A525S): 9 parts by mass, isocyanate hardener (manufactured by Mitsui Chemicals, brand name: Takenate A50): 1 part by mass and Ethyl acetate: 7.5 parts by mass). Then, the barrier surface (the surface coated with the gas barrier coating material) of the gas barrier laminated film obtained in the Example and the Comparative Example and the uncoated film with a thickness of 60 μm were bonded to both sides of the nylon film to which the adhesive was provided. A polypropylene film (manufactured by Mitsui Chemicals Tohcello Co., Ltd., trade name: RXC-22) was stretched to obtain a film before retort treatment.
(2)蒸煮處理(水填充) 對所述(1)中獲得的蒸煮處理前的膜以未拉伸聚丙烯膜成為內表面的方式翻折,將兩邊熱封而製成袋狀後,加入水70 mL作為內容物,藉由熱封另一邊而製作袋,利用高溫高壓蒸煮殺菌裝置於130℃、30分鐘的條件下對其進行蒸煮處理。蒸煮處理後,除去內容物的水,獲得蒸煮處理後(水填充)的膜。 (2) Steaming treatment (water filling) The film before retort treatment obtained in the above (1) was folded so that the unstretched polypropylene film became the inner surface, and both sides were heat-sealed to form a bag shape, and then 70 mL of water was added as the content. Heat-seal the other side to make a bag, and cook it using a high-temperature and high-pressure cooking sterilization device at 130°C for 30 minutes. After the retort treatment, the water in the contents is removed to obtain a post-retort treatment (water-filled) membrane.
(3)氧滲透度[mL/(m 2·day·MPa)] 使用膜康(MOCON)公司製造的OX-TRAN2/21,依據JIS K 7126,於溫度20℃、濕度90%RH的條件下分別測定藉由所述方法而獲得的蒸煮處理前的膜及蒸煮處理後(水填充)的膜的氧滲透度。 將蒸煮前或蒸煮後的氧滲透度為6.0 mL/(m 2·day·MPa)以下者設為合格。 (3) Oxygen permeability [mL/(m 2 ·day·MPa)] Using OX-TRAN2/21 manufactured by MOCON, in accordance with JIS K 7126, under the conditions of temperature 20°C and humidity 90%RH The oxygen permeability of the membrane before the retort treatment and the membrane after the retort treatment (water filling) obtained by the above method were measured. Those whose oxygen permeability before cooking or after cooking are 6.0 mL/(m 2 ·day·MPa) or less are considered qualified.
(4)水蒸氣滲透度[g/(m 2·day)] 對藉由所述方法而獲得的蒸煮處理前的膜及蒸煮處理後(水填充)的膜,以未拉伸聚丙烯膜成為內表面的方式重疊而翻折氣體阻擋性積層膜,將三邊熱封而製成袋狀後,加入氯化鈣作為內容物,藉由熱封另一邊而以表面積成為0.01 m 2的方式製作袋,於40℃、90%RH的條件下放置300小時,藉由其重量差分別測定水蒸氣滲透度。 將蒸煮前或蒸煮後的水蒸氣滲透度為5.5 g/(m 2·day)以下者設為合格。 (4) Water vapor permeability [g/(m 2 ·day)] For the film before retort treatment and the film after retort treatment (water filling) obtained by the above method, the unstretched polypropylene film is The gas barrier laminated film is folded so as to overlap the inner surface, and the three sides are heat-sealed to form a bag. Calcium chloride is added as the content, and the other side is heat-sealed to produce a bag with a surface area of 0.01 m2 . The bags were placed at 40°C and 90% RH for 300 hours, and the water vapor permeability was measured based on the difference in weight. Those whose water vapor permeability before cooking or after cooking is 5.5 g/(m 2 ·day) or less are considered qualified.
(5)IR的最大峰、面積比 對各例中獲得的氣體阻擋性積層膜的氣體阻擋性層進行基於ATR法的紅外線吸收光譜分析。 即,紅外線吸收光譜的測定(紅外線全反射測定:ATR法)是使用日本分光公司製造的IRT-5200裝置,安裝PKM-GE-S(鍺(Germanium))結晶而在入射角度45度、室溫、解析度4 cm -1、累計次數100次的條件下進行測定。藉由所述方法對所得的吸收光譜進行解析,求出最大峰α及γ,並且計算出總峰面積A~總峰面積D。然後,根據總峰面積A~總峰面積D求出面積比B/A、面積比C/A、面積比D/A。 (5) Maximum Peak Peak and Area Ratio of IR The gas barrier layer of the gas barrier laminated film obtained in each example was subjected to infrared absorption spectrum analysis based on the ATR method. That is, the infrared absorption spectrum was measured (infrared total reflection measurement: ATR method) using an IRT-5200 device manufactured by JASCO Corporation, with a PKM-GE-S (Germanium) crystal attached, at an incident angle of 45 degrees, at room temperature. , the resolution is 4 cm -1 , and the measurement is carried out under the conditions of 100 cumulative times. The obtained absorption spectrum is analyzed by the above method, the maximum peaks α and γ are obtained, and the total peak area A to total peak area D are calculated. Then, the area ratio B/A, the area ratio C/A, and the area ratio D/A are determined from the total peak area A to the total peak area D.
[表24]
[用於對第一實施方式進行說明的圖1~圖4中所使用的符號的說明] 1:兩層層壓結構阻擋膜 2:基材層 3:底塗層(UC層) 4:無機物層 5:氣體阻擋性層(OC層) 6:接著層 7:未拉伸聚丙烯膜(CCP) 8:阻擋性積層體 9:尼龍膜 10:三層層壓結構阻擋膜 61:第一接著層 62:第二接著層 [用於對第二實施方式進行說明的圖5~圖8中所使用的符號的說明] 10:氣體阻擋性膜 100:氣體阻擋性積層體 101:基材層 102:無機物層 103:氣體阻擋性層 104:底塗層 110:氣體阻擋性積層體 [用於對第三實施方式進行說明的圖9~圖12中所使用的符號的說明] 1:兩層層壓結構阻擋膜 2:基材層 3:底塗層(UC層) 4:無機物層 5:氣體阻擋性層(OC層) 6:接著層 7:未拉伸聚丙烯膜(CCP) 8:阻擋性積層體 9:尼龍膜 10:三層層壓結構阻擋膜 61:第一接著層 62:第二接著層 [用於對第四實施方式進行說明的圖13及圖14中所使用的符號的說明] 10:氣體阻擋性膜 100:氣體阻擋性積層體 101:基材層 102:無機物層 103:氣體阻擋性層 104:底塗層 110:氣體阻擋性積層體 [用於對第五實施方式進行說明的圖15及圖16中所使用的符號的說明] 10:氣體阻擋性膜 100:氣體阻擋性積層體 101:基材層 102:無機物層 103:氣體阻擋性層 104:底塗層 110:氣體阻擋性積層體 [Explanation of symbols used in FIGS. 1 to 4 for describing the first embodiment] 1: Two-layer laminated structure barrier film 2: Base material layer 3: Base coat (UC layer) 4: Inorganic layer 5: Gas barrier layer (OC layer) 6:Add layer 7: Unstretched polypropylene film (CCP) 8: Barrier laminate 9:Nylon membrane 10: Three-layer laminated structure barrier film 61: First bonding layer 62:Second bonding layer [Explanation of symbols used in FIGS. 5 to 8 for describing the second embodiment] 10: Gas barrier film 100: Gas barrier laminate 101:Substrate layer 102:Inorganic layer 103: Gas barrier layer 104: Primer coating 110: Gas barrier laminate [Explanation of symbols used in FIGS. 9 to 12 for describing the third embodiment] 1: Two-layer laminated structure barrier film 2: Base material layer 3: Base coat (UC layer) 4: Inorganic layer 5: Gas barrier layer (OC layer) 6:Add layer 7: Unstretched polypropylene film (CCP) 8: Barrier laminate 9:Nylon membrane 10: Three-layer laminated structure barrier film 61: First bonding layer 62:Second bonding layer [Explanation of symbols used in FIGS. 13 and 14 for describing the fourth embodiment] 10: Gas barrier film 100: Gas barrier laminate 101:Substrate layer 102:Inorganic layer 103: Gas barrier layer 104: Primer coating 110: Gas barrier laminate [Explanation of symbols used in FIGS. 15 and 16 for describing the fifth embodiment] 10: Gas barrier film 100: Gas barrier laminate 101:Substrate layer 102:Inorganic layer 103: Gas barrier layer 104: Primer coating 110: Gas barrier laminate
圖1是示意性地表示第一實施方式中兩層層壓結構氣體阻擋性積層體的結構的一例的剖面圖。 圖2是示意性地表示第一實施方式中三層層壓結構氣體阻擋性積層體的結構的一例的剖面圖。 圖3是用於對第一實施方式中質量分析的資料解析中所使用的三角形形狀函數Y j(m)進行說明的圖(圖表)。 圖4是表示第一實施方式中質量分析的資料的曲線擬合的例子的圖(圖表)。 圖5是示意性地表示第二實施方式中氣體阻擋性積層體的結構的一例的剖面圖。 圖6是示意性地表示第二實施方式中氣體阻擋性積層體的結構的一例的剖面圖。 圖7是用於對第二實施方式中質量分析的資料解析中所使用的三角形形狀函數Y j(m)進行說明的圖(圖表)。 圖8是表示第二實施方式中質量分析的資料的曲線擬合的例子的圖(圖表)。 圖9是示意性地表示第三實施方式中兩層層壓結構氣體阻擋性積層體的結構的一例的剖面圖。 圖10是示意性地表示第三實施方式中三層層壓結構氣體阻擋性積層體的結構的一例的剖面圖。 圖11是用於對第三實施方式中質量分析的資料解析中所使用的三角形形狀函數Y j(m)進行說明的圖(圖表)。 圖12是表示第三實施方式中質量分析的資料的曲線擬合的例子的圖(圖表)。 圖13是示意性地表示第四實施方式中氣體阻擋性積層體的結構的一例的剖面圖。 圖14是示意性地表示第四實施方式中氣體阻擋性積層體的結構的一例的剖面圖。 圖15是示意性地表示第五實施方式中氣體阻擋性積層體的結構的一例的剖面圖。 圖16是示意性地表示第五實施方式中氣體阻擋性積層體的結構的一例的剖面圖。 FIG. 1 is a cross-sectional view schematically showing an example of the structure of a two-layer laminated structure gas barrier laminate in the first embodiment. FIG. 2 is a cross-sectional view schematically showing an example of the structure of a three-layer laminated structure gas barrier laminate in the first embodiment. FIG. 3 is a diagram (graph) for explaining the triangular shape function Y j (m) used in data analysis for mass analysis in the first embodiment. FIG. 4 is a diagram (graph) showing an example of curve fitting of mass analysis data in the first embodiment. FIG. 5 is a cross-sectional view schematically showing an example of the structure of the gas barrier laminate in the second embodiment. 6 is a cross-sectional view schematically showing an example of the structure of the gas barrier laminate in the second embodiment. FIG. 7 is a diagram (graph) for explaining the triangular shape function Y j (m) used in data analysis for mass analysis in the second embodiment. FIG. 8 is a diagram (graph) showing an example of curve fitting of mass analysis data in the second embodiment. 9 is a cross-sectional view schematically showing an example of the structure of a two-layer laminated structure gas barrier laminate in the third embodiment. 10 is a cross-sectional view schematically showing an example of the structure of a three-layer laminated structure gas barrier laminate in the third embodiment. FIG. 11 is a diagram (graph) for explaining the triangular shape function Y j (m) used in data analysis for mass analysis in the third embodiment. FIG. 12 is a diagram (graph) showing an example of curve fitting of mass analysis data in the third embodiment. 13 is a cross-sectional view schematically showing an example of the structure of the gas barrier laminate in the fourth embodiment. 14 is a cross-sectional view schematically showing an example of the structure of the gas barrier laminate in the fourth embodiment. FIG. 15 is a cross-sectional view schematically showing an example of the structure of the gas barrier laminate in the fifth embodiment. FIG. 16 is a cross-sectional view schematically showing an example of the structure of the gas barrier laminate in the fifth embodiment.
1:兩層層壓結構阻擋膜 1: Two-layer laminated structure barrier film
2:基材層 2: Base material layer
3:底塗層(UC層) 3: Base coat (UC layer)
4:無機物層 4: Inorganic layer
5:氣體阻擋性層(OC層) 5: Gas barrier layer (OC layer)
6:接著層 6:Add layer
7:未拉伸聚丙烯膜(CPP膜) 7: Unstretched polypropylene film (CPP film)
8:阻擋性積層體 8: Barrier laminate
Claims (56)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111114297A TW202340400A (en) | 2022-04-14 | 2022-04-14 | Gas barrier laminate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111114297A TW202340400A (en) | 2022-04-14 | 2022-04-14 | Gas barrier laminate |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202340400A true TW202340400A (en) | 2023-10-16 |
Family
ID=89855999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111114297A TW202340400A (en) | 2022-04-14 | 2022-04-14 | Gas barrier laminate |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW202340400A (en) |
-
2022
- 2022-04-14 TW TW111114297A patent/TW202340400A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3228654B1 (en) | Gas barrier polymer, gas barrier film, and gas barrier laminate | |
US20180126696A1 (en) | Gas barrier laminate | |
WO2023199396A1 (en) | Gas barrier laminate | |
JP7519181B2 (en) | Gas barrier film and gas barrier laminate | |
TWI778040B (en) | Barrier laminate film | |
JP7461863B2 (en) | Gas barrier laminate | |
JP7541911B2 (en) | Gas barrier laminate, packaging bag made of gas barrier laminate, and food packaged with gas barrier laminate | |
TW202340400A (en) | Gas barrier laminate | |
CN113226762A (en) | Gas-barrier polymer and gas-barrier laminate using same | |
JP2022090977A (en) | Gas barrier laminate | |
JP7470628B2 (en) | Gas barrier laminate | |
JP2022090976A (en) | Gas barrier laminate | |
JP7389645B2 (en) | Gas barrier coating material, gas barrier film, gas barrier laminate, and method for producing gas barrier laminate | |
JP7372147B2 (en) | Gas barrier films and gas barrier laminates | |
WO2023234344A1 (en) | Gas barrier coating material and gas barrier laminate | |
WO2021132127A1 (en) | Gas barrier coating material, gas barrier film, gas barrier laminate, and method for producing gas barrier laminate | |
JP5087293B2 (en) | Gas barrier film and method for producing the same | |
JP2023177636A (en) | Gas barrier coating material and gas barrier laminate | |
JP2023177621A (en) | Gas barrier coating material and gas barrier laminate | |
JP2023177626A (en) | Gas barrier coating material and gas barrier laminate | |
WO2015022991A1 (en) | Gas barrier material and gas barrier laminate |