TW202339430A - Low propagation delay level shifter - Google Patents

Low propagation delay level shifter Download PDF

Info

Publication number
TW202339430A
TW202339430A TW111111187A TW111111187A TW202339430A TW 202339430 A TW202339430 A TW 202339430A TW 111111187 A TW111111187 A TW 111111187A TW 111111187 A TW111111187 A TW 111111187A TW 202339430 A TW202339430 A TW 202339430A
Authority
TW
Taiwan
Prior art keywords
level
supply voltage
node
signal
transistor
Prior art date
Application number
TW111111187A
Other languages
Chinese (zh)
Other versions
TWI804248B (en
Inventor
宋兆鈞
許哲綸
李昶翰
Original Assignee
大陸商星宸科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商星宸科技股份有限公司 filed Critical 大陸商星宸科技股份有限公司
Priority to TW111111187A priority Critical patent/TWI804248B/en
Application granted granted Critical
Publication of TWI804248B publication Critical patent/TWI804248B/en
Publication of TW202339430A publication Critical patent/TW202339430A/en

Links

Images

Landscapes

  • Logic Circuits (AREA)
  • Transmitters (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Amplifiers (AREA)

Abstract

A level shifter includes a low-level adjustment circuit, a comparator circuit, and a high-level adjustment circuit. The low-level adjustment circuit pulls down a level of one of a first input node and a second input node to a first low supply voltage. The comparator outputs a one having higher level in the level of the first input level and a second low supply voltage to a first output node, in which the second low supply voltage is higher than the first low supply voltage. The high-level adjustment circuit selectively adjusts the level of the first output node according to the level of the first input node and the level of the second input node to generate the output signal.

Description

具有低傳輸延遲的位準轉換器Level converter with low propagation delay

本案是關於位準轉換器,尤其是關於可快速切換訊號位準的位準轉換器。This case is about level converters, especially level converters that can quickly switch signal levels.

電子裝置通常包含數個不同的電路系統。在一些應用中,該些電路系統可能操作在不同的電壓位準。為使該些電路系統可相互傳遞資料或訊號,可在該些電路系統之間設置位準轉換器(level shifter),以確保訊號的位準符合對應電路系統的電壓位準。在一些相關技術中,位準轉換器使用交叉耦合(cross-coupled)的多個反相器來進行位準轉換。然而,由於其它箝位電路的影響以及該些反相器的操作延遲,會使得訊號的位準切換過程中產生較大的傳輸延遲。如此,將會影響訊號的切換過程出現延遲,使得訊號的轉態邊緣產生較高的不確定性。Electronic devices often contain several different circuit systems. In some applications, the circuit systems may operate at different voltage levels. In order to enable these circuit systems to transmit data or signals to each other, a level shifter can be provided between these circuit systems to ensure that the signal level matches the voltage level of the corresponding circuit system. In some related technologies, a level converter uses a plurality of cross-coupled inverters to perform level conversion. However, due to the influence of other clamping circuits and the operation delays of these inverters, a large transmission delay will occur during the signal level switching process. In this way, the switching process of the signal will be delayed, resulting in higher uncertainty at the transition edge of the signal.

於一些實施態樣中,本案的目的之一在於提供一種具有低傳輸延遲之位準轉換器,以改善先前技術的不足。In some implementations, one of the objectives of the present invention is to provide a level converter with low transmission delay to improve the shortcomings of the prior art.

於一些實施態樣中,位準轉換器包含低位準調整電路、第一比較電路以及高位準調整電路。低位準調整電路根據一輸入訊號選擇性地將一第一輸入節點與一第二輸入節點二者中之一的位準拉低至一第一低電源電壓。第一比較電路將該第一輸入節點的位準與一第二低電源電壓中具有較高位準的一者輸出至一第一輸出節點,其中該第二低電源電壓高於該第一低電源電壓。高位準調整電路根據該第一輸入節點的位準與該第二輸入節點的位準選擇性地調整該第一輸出節點的位準,以產生一輸出訊號。In some implementations, the level converter includes a low level adjustment circuit, a first comparison circuit, and a high level adjustment circuit. The low level adjustment circuit selectively pulls down the level of one of a first input node and a second input node to a first low power supply voltage according to an input signal. The first comparison circuit outputs the higher one of the level of the first input node and a second low power supply voltage to a first output node, wherein the second low power supply voltage is higher than the first low power supply voltage. voltage. The high level adjustment circuit selectively adjusts the level of the first output node according to the level of the first input node and the level of the second input node to generate an output signal.

於一些實施態樣中,位準轉換器可提供額外的路徑來快速調整輸出節點的位準,進而降低訊號的位準切換過程中所產生的延遲。如此,可使位準轉換器所產生的輸出訊號具有快速切換的轉態邊緣,進而降低輸出訊號的轉態邊緣的不確定性。In some implementations, the level converter can provide an additional path to quickly adjust the level of the output node, thereby reducing the delay generated during the signal level switching process. In this way, the output signal generated by the level converter can have a fast switching transition edge, thereby reducing the uncertainty of the transition edge of the output signal.

有關本案的特徵、實作與功效,茲配合圖式作較佳實施例詳細說明如下。Regarding the characteristics, implementation and functions of this case, the preferred embodiments are described in detail below with reference to the drawings.

本文所使用的所有詞彙具有其通常的意涵。上述之詞彙在普遍常用之字典中之定義,在本案的內容中包含任一於此討論的詞彙之使用例子僅為示例,不應限制到本案之範圍與意涵。同樣地,本案亦不僅以於此說明書所示出的各種實施例為限。All words used in this article have their ordinary meanings. The definitions of the above words in commonly used dictionaries, and the use examples of any of the words discussed here in the content of this case are only examples and should not limit the scope and meaning of this case. Likewise, this case is not limited to the various embodiments shown in this specification.

關於本文中所使用之『耦接』或『連接』,均可指二或多個元件相互直接作實體或電性接觸,或是相互間接作實體或電性接觸,亦可指二或多個元件相互操作或動作。如本文所用,用語『電路』可為由至少一個電晶體與/或至少一個主被動元件按一定方式連接以處理訊號的裝置。As used in this article, "coupling" or "connection" can refer to two or more components that are in direct physical or electrical contact with each other, or that are in indirect physical or electrical contact with each other. It can also refer to two or more components. Components interact or act with each other. As used herein, the term "circuit" may refer to a device consisting of at least one transistor and/or at least one active and passive component connected in a certain manner to process signals.

圖1為根據本案一些實施例繪製一種位準轉換器100的示意圖。位準轉換器100可用來轉換訊號的位準,以適用於不同功率域(power domain)的電壓範圍。例如,位準轉換器100可自其它數位電路(未示出)接收輸入訊號SIN,其中輸入訊號SIN的位準範圍可為低電源電壓VSSL至高電源電壓VDDL。位準轉換器100可根據輸入訊號SIN產生輸出訊號VO,其中輸出訊號VO的位準之範圍為低電源電壓VSSH至高電源電壓VDDH,其中高電源電壓VDDH高於低電源電壓VSSH,低電源電壓VSSH可高於或相同於高電源電壓VDDL,且高電源電壓VDDL高於低電源電壓VSSL。FIG. 1 is a schematic diagram of a level converter 100 according to some embodiments of the present invention. The level converter 100 can be used to convert the signal level to be suitable for voltage ranges of different power domains. For example, the level converter 100 may receive the input signal SIN from other digital circuits (not shown), where the level of the input signal SIN may range from a low power supply voltage VSSL to a high power supply voltage VDDL. The level converter 100 can generate an output signal VO according to the input signal SIN. The level of the output signal VO ranges from a low power supply voltage VSSH to a high power supply voltage VDDH. The high power supply voltage VDDH is higher than the low power supply voltage VSSH. The low power supply voltage VSSH It can be higher than or the same as the high supply voltage VDDL, and the high supply voltage VDDL is higher than the low supply voltage VSSL.

位準轉換器100包含低位準調整電路110、比較電路120、比較電路130以及高位準調整電路140。低位準調整電路110根據輸入訊號SIN選擇性地拉低輸入節點I1與輸入節點I2二者之一的位準至高電源電壓VDDL。比較電路120將輸入節點I1的位準與低電源電壓VSSH中具有較高位準的一者輸出至輸出節點O1。比較電路130將輸入節點I2的位準與低電源電壓VSSH中具有較高位準的一者輸出至輸出節點O2。高位準調整電路140根據輸入節點I1的位準以及輸入節點I2的位準選擇性地調整輸出節點O1的位準以及輸出節點O2的位準,並根據輸出節點O2的位準產生輸出訊號VO。The level converter 100 includes a low level adjustment circuit 110 , a comparison circuit 120 , a comparison circuit 130 and a high level adjustment circuit 140 . The low level adjustment circuit 110 selectively pulls down the level of one of the input node I1 and the input node I2 to the high power supply voltage VDDL according to the input signal SIN. The comparison circuit 120 outputs the higher one of the level of the input node I1 and the low power supply voltage VSSH to the output node O1. The comparison circuit 130 outputs the higher one of the level of the input node I2 and the low power supply voltage VSSH to the output node O2. The high level adjustment circuit 140 selectively adjusts the level of the output node O1 and the level of the output node O2 according to the level of the input node I1 and the level of the input node I2, and generates the output signal VO according to the level of the output node O2.

於此例中,低位準調整電路110操作於第一功率域,其由低電源電壓VSSL以及高電源電壓VDDL定義。低位準調整電路110可將輸入訊號SIN的振幅拉高至高電源電壓VDDL或拉低至低電源電壓VSSL,並據此調整輸入節點I1的位準以及輸入節點I2的位準。高位準調整電路140操作於第二功率域,其由低電源電壓VSSH以及高電源電壓VDDH定義。高位準調整電路140可進一步地根據輸入節點I1的位準以及輸入節點I2的位準將輸出節點O1(以及輸出節點O2)的位準拉升至高電源電壓VDDH或低電源電壓VSSH,並據此產生輸出訊號VO。In this example, the low level adjustment circuit 110 operates in the first power domain, which is defined by the low supply voltage VSSL and the high supply voltage VDDL. The low level adjustment circuit 110 can pull the amplitude of the input signal SIN up to the high power supply voltage VDDL or down to the low power supply voltage VSSL, and adjust the levels of the input node I1 and the level of the input node I2 accordingly. The high level adjustment circuit 140 operates in the second power domain, which is defined by the low supply voltage VSSH and the high supply voltage VDDH. The high level adjustment circuit 140 can further raise the level of the output node O1 (and the output node O2) to the high power supply voltage VDDH or the low power supply voltage VSSH according to the level of the input node I1 and the level of the input node I2, and generate a signal therefrom. Output signal VO.

如後說明,比較電路120可協助將輸出節點O1的位準加速拉低至低電源電壓VSSH,且比較電路130可協助將輸出節點O2的位準加速拉低至低電源電壓VSSH。如此,可使輸出訊號VO在位準轉換的過程中快速地切換至低電源電壓VSSH的位準,進而降低輸出訊號VO的下降邊緣的暫態延遲以及不確定性。As described later, the comparison circuit 120 can assist in accelerating the level of the output node O1 to be pulled down to the low power supply voltage VSSH, and the comparison circuit 130 can assist in accelerating the level of the output node O2 being pulled down to the low power supply voltage VSSH. In this way, the output signal VO can be quickly switched to the level of the low power supply voltage VSSH during the level conversion process, thereby reducing the transient delay and uncertainty of the falling edge of the output signal VO.

圖2為根據本案一些實施例繪製圖1的位準轉換器100的電路示意圖。於此例中,低位準調整電路110包含反相器112、反相器114、電晶體N1與電晶體N2。反相器112根據輸入訊號SIN產生訊號S1。反相器114根據訊號S1產生訊號S2。電晶體N1的第一端(例如為汲極)耦接至輸入節點I2,電晶體N1的第二端(例如為源極)接收訊號S1,且電晶體N1的控制端(例如為閘極)接收高電源電壓VDDL。電晶體N2的第一端耦接至輸入節點I1,電晶體N2的第二端接收訊號S2,且電晶體N2的控制端接收高電源電壓VDDL。FIG. 2 is a schematic circuit diagram of the level converter 100 of FIG. 1 according to some embodiments of the present invention. In this example, the low level adjustment circuit 110 includes an inverter 112, an inverter 114, a transistor N1 and a transistor N2. The inverter 112 generates the signal S1 according to the input signal SIN. The inverter 114 generates the signal S2 based on the signal S1. The first terminal (for example, the drain) of the transistor N1 is coupled to the input node I2, the second terminal (for example, the source) of the transistor N1 receives the signal S1, and the control terminal (for example, the gate) of the transistor N1 Receives the high supply voltage VDDL. The first terminal of the transistor N2 is coupled to the input node I1, the second terminal of the transistor N2 receives the signal S2, and the control terminal of the transistor N2 receives the high power supply voltage VDDL.

藉由上述設置方式,電晶體N1與電晶體N2可經由高電源電壓VDDL偏壓,電晶體N1可根據訊號S1選擇性地將輸入節點I2的位準拉低至低電源電壓VSSL,且電晶體N2可根據訊號S2選擇性地將輸入節點I1的位準拉低至低電源電壓VSSL。例如,當輸入訊號SIN為邏輯值0時,訊號S1的位準為高電源電壓VDDL,且訊號S2的位準為低電源電壓VSSL。於此條件下,電晶體N1關斷且電晶體N2導通,以將輸入節點I1的位準拉低至低電源電壓VSSL。或者,當輸入訊號SIN為邏輯值1時,訊號S1的位準為低電源電壓VSSL,且訊號S2的位準為高電源電壓VDDL。於此條件下,電晶體N2關斷且電晶體N1導通,以將輸入節點I2的位準拉低至低電源電壓VSSL。Through the above arrangement, the transistor N1 and the transistor N2 can be biased by the high power supply voltage VDDL, the transistor N1 can selectively pull the level of the input node I2 down to the low power supply voltage VSSL according to the signal S1, and the transistor N2 can selectively pull down the level of the input node I1 to the low power supply voltage VSSL according to the signal S2. For example, when the input signal SIN is a logic value 0, the level of the signal S1 is the high power supply voltage VDDL, and the level of the signal S2 is the low power supply voltage VSSL. Under this condition, the transistor N1 is turned off and the transistor N2 is turned on to pull the level of the input node I1 down to the low supply voltage VSSL. Or, when the input signal SIN is a logic value 1, the level of the signal S1 is the low power supply voltage VSSL, and the level of the signal S2 is the high power supply voltage VDDL. Under this condition, transistor N2 is turned off and transistor N1 is turned on to pull the level of input node I2 down to the low supply voltage VSSL.

高位準調整電路140包含多個電晶體P1~P4、多個電晶體N3~N4以及多個反相器142與144。電晶體P1的第一端(例如為源極)接收高電源電壓VDDH,電晶體P1的第二端(例如為汲極)耦接至控制節點A,且電晶體P1的控制端(例如為閘極)耦接至輸出節點O2。電晶體P1可根據輸出節點O2的位準選擇性地拉升控制節點A的位準到高電源電壓VDDH。電晶體P2的第一端接收高電源電壓VDDH,電晶體P1的第二端耦接至控制節點B,且電晶體P2的控制端耦接至輸出節點O1。電晶體P2可根據輸出節點O1的位準選擇性拉升控制節點B的位準至高電源電壓VDDH。電晶體N3的第一端耦接至控制節點A,電晶體N3的第二端接收低電源電壓VSSH,且電晶體N3的控制端耦接至控制節點B。電晶體N3可根據控制節點B的位準選擇性地拉低控制節點A的位準到低電源電壓VSSH。電晶體N4的第一端耦接至控制節點B,電晶體N4的第二端接收低電源電壓VSSH,且電晶體N4的控制端耦接至控制節點A。電晶體N4可根據控制節點A的位準選擇性地拉低控制節點B的位準到低電源電壓VSSH。電晶體P3的第一端耦接至控制節點A,電晶體P3的第二端耦接至輸入節點I1,且電晶體P3的控制端接收低電源電壓VSSH。電晶體P3可經由低電源電壓VSSH偏壓,並根據控制節點A的位準選擇性地導通,以調整輸入節點I1的位準。電晶體P4的第一端耦接至控制節點B,電晶體P4的第二端耦接至輸入節點I2,且電晶體P4的控制端接收低電源電壓VSSH。電晶體P4可經由低電源電壓VSSH偏壓,並根據控制節點B的位準選擇性地導通,以調整輸入節點I2的位準。The high-level adjustment circuit 140 includes a plurality of transistors P1 to P4, a plurality of transistors N3 to N4, and a plurality of inverters 142 and 144. The first terminal of the transistor P1 (for example, the source) receives the high power supply voltage VDDH, the second terminal of the transistor P1 (for example, the drain) is coupled to the control node A, and the control terminal of the transistor P1 (for example, the gate pole) coupled to output node O2. The transistor P1 can selectively raise the level of the control node A to the high power supply voltage VDDH according to the level of the output node O2. The first terminal of the transistor P2 receives the high power supply voltage VDDH, the second terminal of the transistor P1 is coupled to the control node B, and the control terminal of the transistor P2 is coupled to the output node O1. The transistor P2 can selectively raise the level of the control node B to the high power supply voltage VDDH according to the level of the output node O1. The first terminal of the transistor N3 is coupled to the control node A, the second terminal of the transistor N3 receives the low power supply voltage VSSH, and the control terminal of the transistor N3 is coupled to the control node B. The transistor N3 can selectively pull down the level of the control node A to the low power supply voltage VSSH according to the level of the control node B. The first terminal of the transistor N4 is coupled to the control node B, the second terminal of the transistor N4 receives the low power supply voltage VSSH, and the control terminal of the transistor N4 is coupled to the control node A. The transistor N4 can selectively pull down the level of the control node B to the low power supply voltage VSSH according to the level of the control node A. The first terminal of the transistor P3 is coupled to the control node A, the second terminal of the transistor P3 is coupled to the input node I1, and the control terminal of the transistor P3 receives the low power supply voltage VSSH. The transistor P3 can be biased by the low supply voltage VSSH and selectively turned on according to the level of the control node A to adjust the level of the input node I1. The first terminal of the transistor P4 is coupled to the control node B, the second terminal of the transistor P4 is coupled to the input node I2, and the control terminal of the transistor P4 receives the low power supply voltage VSSH. The transistor P4 can be biased by the low supply voltage VSSH and selectively turned on according to the level of the control node B to adjust the level of the input node I2.

多個反相器142與144經由高電源電壓VDDH與低電源電壓VSSL供電,並串聯耦接以操作為一緩衝器,其可根據輸出節點O1的位準產生輸出訊號VO。The plurality of inverters 142 and 144 are powered by the high power supply voltage VDDH and the low power supply voltage VSSL, and are coupled in series to operate as a buffer, which can generate the output signal VO according to the level of the output node O1.

比較電路120包含多個電晶體P5與P6。電晶體P5的第一端耦接至輸出節點O1,電晶體P5的第二端接收低電源電壓VSSH,且電晶體P5的控制端耦接至輸入節點I1。電晶體P6的第一端耦接至輸出節點O1,電晶體P6的第二端耦接至輸入節點I1,且電晶體P6的控制端接收低電源電壓VSSH。藉由上述設置方式,電晶體P5可根據輸入節點I1的位準選擇性地導通以傳輸低電源電壓VSSH到輸出節點O1,且電晶體P6可根據輸入節點I1的位準選擇性地導通以連接輸入節點I1至輸出節點O1。例如,當低電源電壓VSSH高於輸入節點I1的位準時,電晶體P5為導通且電晶體P6會關閉,以傳輸低電源電壓VSSH至輸出節點O1。或者,當輸入節點I1的位準高於低電源電壓VSSH時,電晶體P6為導通且電晶體P5會關閉,以連接輸入節點I1至輸出節點O1。The comparison circuit 120 includes a plurality of transistors P5 and P6. The first terminal of the transistor P5 is coupled to the output node O1, the second terminal of the transistor P5 receives the low power supply voltage VSSH, and the control terminal of the transistor P5 is coupled to the input node I1. The first terminal of the transistor P6 is coupled to the output node O1, the second terminal of the transistor P6 is coupled to the input node I1, and the control terminal of the transistor P6 receives the low power supply voltage VSSH. With the above arrangement, the transistor P5 can be selectively turned on according to the level of the input node I1 to transmit the low power supply voltage VSSH to the output node O1, and the transistor P6 can be selectively turned on according to the level of the input node I1 to connect. Input node I1 to output node O1. For example, when the low supply voltage VSSH is higher than the level of the input node I1, the transistor P5 is turned on and the transistor P6 is turned off to transmit the low supply voltage VSSH to the output node O1. Alternatively, when the level of the input node I1 is higher than the low power supply voltage VSSH, the transistor P6 is turned on and the transistor P5 is turned off to connect the input node I1 to the output node O1.

比較電路130包含多個電晶體P7與P8。電晶體P7的第一端耦接至輸出節點O2,電晶體P7的第二端接收低電源電壓VSSH,且電晶體P7的控制端耦接至輸入節點I2。電晶體P8的第一端耦接至輸出節點O2,電晶體P8的第二端耦接至輸入節點I2,且電晶體P8的控制端接收低電源電壓VSSH。藉由上述設置方式,電晶體P7可根據輸入節點I2的位準選擇性地導通以傳輸低電源電壓VSSH到輸出節點O2,且電晶體P8可根據輸入節點I2的位準選擇性地導通以連接輸入節點I2至輸出節點O2。例如,當低電源電壓VSSH高於輸入節點I2的位準時,電晶體P7為導通且電晶體P8會關閉,以傳輸低電源電壓VSSH至輸出節點O2。或者,當輸入節點I2的位準高於低電源電壓VSSH時,電晶體P8為導通且電晶體P7會關閉,以連接輸入節點I2至輸出節點O2。The comparison circuit 130 includes a plurality of transistors P7 and P8. The first terminal of the transistor P7 is coupled to the output node O2, the second terminal of the transistor P7 receives the low power supply voltage VSSH, and the control terminal of the transistor P7 is coupled to the input node I2. The first terminal of the transistor P8 is coupled to the output node O2, the second terminal of the transistor P8 is coupled to the input node I2, and the control terminal of the transistor P8 receives the low power supply voltage VSSH. With the above arrangement, the transistor P7 can be selectively turned on according to the level of the input node I2 to transmit the low power supply voltage VSSH to the output node O2, and the transistor P8 can be selectively turned on according to the level of the input node I2 to connect. Input node I2 to output node O2. For example, when the low supply voltage VSSH is higher than the level of the input node I2, the transistor P7 is turned on and the transistor P8 is turned off to transmit the low supply voltage VSSH to the output node O2. Alternatively, when the level of the input node I2 is higher than the low power supply voltage VSSH, the transistor P8 is turned on and the transistor P7 is turned off to connect the input node I2 to the output node O2.

應當理解,比較電路120與比較電路130相當於高電壓選擇電路,且本案並不以上述的設置方式為限。各種可輸出較高電壓的比較電路皆為本案所涵蓋的範圍。It should be understood that the comparison circuit 120 and the comparison circuit 130 are equivalent to high voltage selection circuits, and this case is not limited to the above arrangement. Various comparison circuits that can output higher voltages are covered by this case.

圖3A為根據本案一些實施例繪製當圖2中的輸入訊號SIN具有低邏輯值時位準轉換器100的操作示意圖。在圖3A的例子中,當輸入訊號SIN自高位準切換至低位準(即輸入訊號SIN具有低邏輯值)時,訊號S1具有高位準且訊號S2具有低位準。於此條件下,電晶體N1關斷且電晶體N2導通而下拉輸入節點I1的位準至低電源電壓VSSL。由於低電源電壓VSSH高於輸入節點I1的位準(相當於低電源電壓VSSL),電晶體P6關斷且電晶體P5導通以傳輸低電源電壓VSSH到輸出節點O1。如此一來,輸出節點O1的位準可快速地下拉至低電源電壓VSSH,以產生具有相應低位準的輸出訊號VO。FIG. 3A is a schematic diagram illustrating the operation of the level converter 100 when the input signal SIN in FIG. 2 has a low logic value according to some embodiments of the present invention. In the example of FIG. 3A , when the input signal SIN switches from a high level to a low level (ie, the input signal SIN has a low logic value), the signal S1 has a high level and the signal S2 has a low level. Under this condition, transistor N1 is turned off and transistor N2 is turned on to pull down the level of input node I1 to the low supply voltage VSSL. Since the low supply voltage VSSH is higher than the level of the input node I1 (equivalent to the low supply voltage VSSL), the transistor P6 is turned off and the transistor P5 is turned on to transmit the low supply voltage VSSH to the output node O1. In this way, the level of the output node O1 can be quickly pulled down to the low power supply voltage VSSH to generate the output signal VO with a corresponding low level.

此外,由於輸出節點O1為低位準,電晶體P2導通以上拉控制節點B的位準至高電源電壓VDDH。於此條件下,電晶體N4關斷,電晶體N3導通以將控制節點A的位準下拉至低電源電壓VSSH進而關斷電晶體P3,且電晶體P4導通以將控制節點B連接至輸入節點I2。如此一來,輸入節點I2的位準可經電晶體P4與電晶體P2上拉至高電源電壓VDDH。由於輸入節點I2的位準高於低電源電壓VSSH,電晶體P7關斷且電晶體P8導通以連接輸入節點I2至輸出節點O2,進而關斷電晶體P1。In addition, since the output node O1 is at a low level, the transistor P2 is turned on to pull the level of the control node B to the high power supply voltage VDDH. Under this condition, transistor N4 is turned off, transistor N3 is turned on to pull down the level of control node A to the low supply voltage VSSH and thereby turns off transistor P3, and transistor P4 is turned on to connect control node B to the input node. I2. In this way, the level of the input node I2 can be pulled up to the high power supply voltage VDDH via the transistor P4 and the transistor P2. Since the level of the input node I2 is higher than the low supply voltage VSSH, the transistor P7 is turned off and the transistor P8 is turned on to connect the input node I2 to the output node O2, thereby turning off the transistor P1.

圖3B為根據本案一些實施例繪製當圖2中的輸入訊號SIN具有高邏輯值時位準轉換器100的操作示意圖。在圖3B的例子中,當輸入訊號SIN自低位準切換至高位準(即輸入訊號SIN具有高邏輯值)時,訊號S2具有高位準且訊號S1具有低位準。於此條件下,電晶體N2關斷且電晶體N1導通而下拉輸入節點I2的位準至低電源電壓VSSL。由於低電源電壓VSSH高於輸入節點I2的位準(相當於低電源電壓VSSL),電晶體P8關斷且電晶體P7導通以傳輸低電源電壓VSSH到輸出節點O2。如此一來,輸出節點O2的位準可快速地下拉至低電源電壓VSSH。FIG. 3B is a schematic diagram illustrating the operation of the level converter 100 when the input signal SIN in FIG. 2 has a high logic value according to some embodiments of the present invention. In the example of FIG. 3B , when the input signal SIN switches from a low level to a high level (ie, the input signal SIN has a high logic value), the signal S2 has a high level and the signal S1 has a low level. Under this condition, transistor N2 is turned off and transistor N1 is turned on to pull down the level of input node I2 to the low supply voltage VSSL. Since the low supply voltage VSSH is higher than the level of the input node I2 (equivalent to the low supply voltage VSSL), the transistor P8 is turned off and the transistor P7 is turned on to transmit the low supply voltage VSSH to the output node O2. In this way, the level of the output node O2 can be quickly pulled down to the low power supply voltage VSSH.

此外,由於輸出節點O2為低位準,電晶體P1導通以上拉控制節點A的位準至高電源電壓VDDH。於此條件下,電晶體N3關斷,電晶體N4導通以將控制節點B的位準下拉至低電源電壓VSSH進而關斷電晶體P4,且電晶體P3導通以將控制節點A連接至輸入節點I1。如此一來,輸入節點I1的位準可經電晶體P3與電晶體P1上拉至高電源電壓VDDH。由於輸入節點I1的位準高於低電源電壓VSSH,電晶體P5關斷且電晶體P6導通以連接輸入節點I1至輸出節點O1,進而關斷電晶體P2。如此一來,輸入節點I1的位準可上拉至高電源電壓VDDH,以產生具有相應高位準的輸出訊號VO。In addition, since the output node O2 is at a low level, the transistor P1 is turned on to pull the level of the control node A to the high power supply voltage VDDH. Under this condition, transistor N3 is turned off, transistor N4 is turned on to pull down the level of control node B to the low supply voltage VSSH and thereby turns off transistor P4, and transistor P3 is turned on to connect control node A to the input node. I1. In this way, the level of the input node I1 can be pulled up to the high power supply voltage VDDH via the transistor P3 and the transistor P1. Since the level of the input node I1 is higher than the low supply voltage VSSH, the transistor P5 is turned off and the transistor P6 is turned on to connect the input node I1 to the output node O1, thereby turning off the transistor P2. In this way, the level of the input node I1 can be pulled up to the high power supply voltage VDDH to generate the output signal VO with a corresponding high level.

基於圖3A與圖3B的說明,應可理解,當輸入訊號SIN切換至低位準時,比較電路120可快速地下拉輸出節點O1的位準至低電源電壓VSSH。如此,當輸入訊號SIN自高位準切換到低位準時,輸出訊號VO可具有低延遲的位準切換以具有快速下降的轉態邊緣(即下降邊緣)。相對地,當輸入訊號SIN切換至高位準時,是透過比較電路130以及高位準調整電路140的協同運作來拉升輸入節點I1的位準,進而拉升輸出訊號VO的位準至高電源電壓VDDH。於一些實施例中,在實際應用中,輸出訊號VO從低位準切換至高位準的暫態時間可能久於輸出訊號VO從高位準切換至低位準的暫態時間。Based on the description of FIG. 3A and FIG. 3B , it should be understood that when the input signal SIN switches to a low level, the comparison circuit 120 can quickly pull down the level of the output node O1 to the low power supply voltage VSSH. In this way, when the input signal SIN switches from a high level to a low level, the output signal VO can have a low-latency level switching with a fast falling transition edge (i.e., a falling edge). Correspondingly, when the input signal SIN switches to a high level, the level of the input node I1 is raised through the cooperative operation of the comparison circuit 130 and the high level adjustment circuit 140, thereby raising the level of the output signal VO to the high power supply voltage VDDH. In some embodiments, in practical applications, the transient time of the output signal VO switching from a low level to a high level may be longer than the transient time of the output signal VO switching from a high level to a low level.

圖4A為根據本案一些實施例繪製一種位準轉換器400的示意圖。相較於圖2,於此例中,位準轉換器400更包含選擇電路410,且高位準調整電路140不包含多個反相器142與144,並經由選擇電路410產生輸出訊號VO。如前所述,在前述的例子中,輸出訊號VO從低位準切換至高位準的暫態時間可能久於輸出訊號VO從高位準切換至低位準的暫態時間。為了進一步確保輸出訊號VO可具有快速上升的轉態邊緣(即上升邊緣),可利用選擇電路410進一步地根據輸出節點O2的位準產生輸出訊號VO。FIG. 4A is a schematic diagram of a level converter 400 according to some embodiments of the present invention. Compared with FIG. 2 , in this example, the level converter 400 further includes a selection circuit 410 , and the high level adjustment circuit 140 does not include a plurality of inverters 142 and 144 , and generates the output signal VO through the selection circuit 410 . As mentioned above, in the above example, the transient time of the output signal VO switching from the low level to the high level may be longer than the transient time of the output signal VO switching from the high level to the low level. In order to further ensure that the output signal VO can have a fast rising transition edge (ie, a rising edge), the selection circuit 410 can be used to further generate the output signal VO according to the level of the output node O2.

詳細而言,選擇電路410根據輸出節點O1的位準與輸出節點O2的位準自輸出節點O1與輸出節點O2中選擇一對應節點,並根據此對應節點的位準產生輸出訊號VO。例如,選擇電路410包含反相器411、反相器412、邏輯閘413、邏輯閘414以及多工器415。反相器411根據輸出節點O1的位準產生訊號S3。反相器412根據輸出節點O2的位準產生訊號S4。邏輯閘413根據訊號S3以及選擇訊號SEL產生訊號S5。邏輯閘414根據訊號S4以及訊號S5產生選擇訊號SEL。於此例中,邏輯閘413與邏輯閘414可為(但不限於)非及閘,並可操作為SR正反器。多工器415根據選擇訊號SEL輸出訊號S4為輸出訊號VO,或是根據輸出節點O1的位準產生輸出訊號VO。Specifically, the selection circuit 410 selects a corresponding node from the output node O1 and the output node O2 according to the level of the output node O1 and the level of the output node O2, and generates the output signal VO according to the level of the corresponding node. For example, the selection circuit 410 includes an inverter 411, an inverter 412, a logic gate 413, a logic gate 414, and a multiplexer 415. The inverter 411 generates the signal S3 according to the level of the output node O1. The inverter 412 generates the signal S4 according to the level of the output node O2. The logic gate 413 generates the signal S5 according to the signal S3 and the selection signal SEL. The logic gate 414 generates the selection signal SEL according to the signal S4 and the signal S5. In this example, the logic gate 413 and the logic gate 414 may be (but are not limited to) NAND gates and may operate as SR flip-flops. The multiplexer 415 outputs the signal S4 as the output signal VO according to the selection signal SEL, or generates the output signal VO according to the level of the output node O1.

圖4B為根據本案一些實施例繪製圖4A中的相關訊號的波形圖。當輸入訊號SIN具有高位準時,輸出節點O1具有高位準,且輸出節點O2具有低位準。於此條件下,選擇訊號SEL具有低位準,故多工器415根據輸出節點O1的位準產生輸出訊號VO。當輸入訊號SIN自高位準切換至低位準時,輸出節點O1的位準經比較電路120快速地下拉至低電源電壓VSSL,故多工器415可根據輸出節點O1的位準產生相應的輸出訊號VO。接著,當輸出節點O2的位準經由高位準調整電路140以及比較電路130的協同運作拉升至高電源電壓VDDH(可參照圖3A),選擇訊號SEL具有高位準。於此條件下,多工器415輸出訊號S4為輸出訊號VO。當輸入訊號SIN由低位準切換到高位準時,輸出節點O2的位準可經由比較電路130快速下拉至低電源電壓VSSL(可參照圖3B),使得訊號S4可具有快速上升的轉態邊緣。如此,多工器415可輸出此訊號S4為輸出訊號VO。Figure 4B is a waveform diagram of the relevant signals in Figure 4A according to some embodiments of the present case. When the input signal SIN has a high level, the output node O1 has a high level, and the output node O2 has a low level. Under this condition, the selection signal SEL has a low level, so the multiplexer 415 generates the output signal VO according to the level of the output node O1. When the input signal SIN switches from a high level to a low level, the level of the output node O1 is quickly pulled down to the low power supply voltage VSSL through the comparison circuit 120, so the multiplexer 415 can generate the corresponding output signal VO according to the level of the output node O1. . Then, when the level of the output node O2 is raised to the high power supply voltage VDDH (refer to FIG. 3A ) through the cooperative operation of the high level adjustment circuit 140 and the comparison circuit 130 , the selection signal SEL has a high level. Under this condition, the output signal S4 of the multiplexer 415 is the output signal VO. When the input signal SIN switches from a low level to a high level, the level of the output node O2 can be quickly pulled down to the low power supply voltage VSSL through the comparison circuit 130 (refer to FIG. 3B ), so that the signal S4 can have a fast rising transition edge. In this way, the multiplexer 415 can output the signal S4 as the output signal VO.

等效而言,選擇電路410可根據輸出節點O1的位準以及輸出節點O2的位準自輸出節點O1與輸出節點O2中選出一對應節點,其中當對應節點的位準從高位準(例如為高電源電壓VDDH)切換至低位準(例如為低電源電壓VSSL)時,選擇電路410根據此對應節點的位準產生輸出訊號VO。如此,可確保選擇電路410是根據具有快速下降的位準產生輸出訊號VO,進而降低輸出訊號VO的位準切換的延遲時間。Equivalently speaking, the selection circuit 410 can select a corresponding node from the output node O1 and the output node O2 according to the level of the output node O1 and the level of the output node O2, wherein when the level of the corresponding node is from a high level (for example, When the high power supply voltage VDDH) switches to a low level (for example, the low power supply voltage VSSL), the selection circuit 410 generates the output signal VO according to the level of the corresponding node. In this way, it can be ensured that the selection circuit 410 generates the output signal VO according to the level with a fast falling level, thereby reducing the delay time of the level switching of the output signal VO.

一般而言,隨著電路的使用時間越長,電路的操作速度會逐漸變慢。由於選擇電路410可選擇經由比較電路120的輸出節點O1或是經由比較電路130的輸出節點O2來產生輸出訊號VO,且下拉輸出節點O1或輸出節點O2的路徑所使用的電晶體個數不多,故受到使用時間的影響相對較低。換言之,藉由選擇電路410,可進一步提高位準轉換器400的耐用度。Generally speaking, the operation speed of a circuit will gradually slow down the longer it is used. Since the selection circuit 410 can choose to generate the output signal VO through the output node O1 of the comparison circuit 120 or through the output node O2 of the comparison circuit 130, and the number of transistors used in the path of pulling down the output node O1 or the output node O2 is not large. , so the impact of usage time is relatively low. In other words, through the selection circuit 410, the durability of the level converter 400 can be further improved.

在上述各實施例中,多個電晶體N1~N4為N型電晶體,且多個電晶體P1~P8為P型電晶體。上述各個電晶體可由金屬氧化物場效電晶體(MOSFET)實施,但本案並不以此為限。可實施類似操作的各種類型或導電型式之電晶體皆為本案所涵蓋的範圍。In the above embodiments, the plurality of transistors N1 to N4 are N-type transistors, and the plurality of transistors P1 to P8 are P-type transistors. Each of the above transistors can be implemented by a metal oxide field effect transistor (MOSFET), but this case is not limited to this. Various types or conductivity types of transistors that can perform similar operations are within the scope of this case.

圖5為根據本案一些實施例繪製的輸入輸出驅動器500的示意圖。輸入輸出驅動器500包含位準轉換器510、延遲匹配電路520、非重疊(non-overlapping)電路530以及保護電路540。位準轉換器510可由圖1或圖2的位準轉換器100或是圖4的位準轉換器400實施。位準轉換器510可根據輸入訊號SIN產生輸出訊號VO。延遲匹配電路520根據輸入訊號SIN產生輸出訊號VO’,其中延遲匹配電路520對輸入訊號SIN引入的延遲時間相同於(或接近於)位準轉換器510對輸入訊號SIN引入的延遲時間。換言之,非重疊(non-overlapping)電路530是在相同(或相近)的時間接收到輸出訊號VO與輸出訊號VO’。於一些實施例中,延遲匹配電路520可(但不限於)具有類似於位準轉換器510的電路結構(但操作於不同功率域),以達成相近的延遲時間。非重疊電路530根據輸出訊號VO產生控制訊號SC1,並根據輸出訊號VO’產生控制訊號SC2。非重疊電路530可延遲輸出訊號VO以產生控制訊號SC1,並延遲輸出訊號VO’以產生控制訊號SC2,其中控制訊號SC1與控制訊號SC2之間具有一非重疊期間(例如為控制訊號SC1的轉態邊緣與控制訊號SC1的轉態邊緣之間存在的間隔時間)。FIG. 5 is a schematic diagram of an input-output driver 500 according to some embodiments of the present invention. The input-output driver 500 includes a level converter 510 , a delay matching circuit 520 , a non-overlapping circuit 530 and a protection circuit 540 . The level converter 510 may be implemented by the level converter 100 of FIG. 1 or FIG. 2 or the level converter 400 of FIG. 4 . The level converter 510 can generate the output signal VO according to the input signal SIN. The delay matching circuit 520 generates the output signal VO' according to the input signal SIN, wherein the delay time introduced by the delay matching circuit 520 to the input signal SIN is the same as (or close to) the delay time introduced by the level converter 510 to the input signal SIN. In other words, the non-overlapping circuit 530 receives the output signal VO and the output signal VO' at the same (or similar) time. In some embodiments, the delay matching circuit 520 may (but is not limited to) have a circuit structure similar to the level shifter 510 (but operates in a different power domain) to achieve similar delay times. The non-overlapping circuit 530 generates the control signal SC1 according to the output signal VO, and generates the control signal SC2 according to the output signal VO'. The non-overlapping circuit 530 can delay the output signal VO to generate the control signal SC1, and delay the output signal VO' to generate the control signal SC2, wherein there is a non-overlapping period between the control signal SC1 and the control signal SC2 (for example, for the conversion of the control signal SC1 The interval between the state edge and the transition edge of the control signal SC1).

保護電路540包含多個電晶體MP1、MP2、MN1與電晶體MN2以及多個二極體D1與D2。多個電晶體MP1~MP4以及多個二極體D1與D2可操作電壓保護電路,以提供基本電壓保護給輸入輸出墊501。電晶體MP1接收高電源電壓VDDH,並根據控制訊號SC1選擇性導通。電晶體MP2經由箝位訊號VP控制,並耦接至輸入輸出墊501。電晶體MN2經由箝位訊號VN控制,並耦接至輸入輸出墊501。電晶體MN1接收低電源電壓VSS,並根據控制訊號SC2選擇性導通。The protection circuit 540 includes a plurality of transistors MP1, MP2, MN1 and a transistor MN2 as well as a plurality of diodes D1 and D2. A plurality of transistors MP1 - MP4 and a plurality of diodes D1 and D2 may operate a voltage protection circuit to provide basic voltage protection to the input and output pad 501 . The transistor MP1 receives the high power supply voltage VDDH and is selectively turned on according to the control signal SC1. Transistor MP2 is controlled by clamp signal VP and coupled to input-output pad 501 . Transistor MN2 is controlled by clamp signal VN and coupled to input-output pad 501 . The transistor MN1 receives the low power supply voltage VSS and is selectively turned on according to the control signal SC2.

藉由設定控制訊號SC1與控制訊號SC2之間的非重疊期間,可確保電晶體MP1與電晶體MN1不會同時導通,進而避免保護電路540產生短路電流。如前所述,在一些相關技術中,位準轉換器存在操作延遲,使得訊號的轉態邊緣產生較高的不確定性。若使用該些技術的位準轉換器來產生輸出訊號VO,非重疊電路530所產生的控制訊號SC1的轉態邊緣也會出現不確定性(即,無法精確控制控制訊號SC1的轉態時間點)。如此一來,控制訊號SC1與控制訊號SC2之間的非重疊期間可能過長而降低了輸入輸出驅動器500的效能。或者,在一些極端情形中,電晶體MP1與電晶體MN1可能會根據控制訊號SC1與控制訊號SC2同時導通,而誤產生短路電流。相較於上述技術,利用本案一些實施例提供的位準轉換器100或位準轉換器400,非重疊電路530可精確控制控制訊號SC1的轉態時間點,以確保控制訊號SC1與控制訊號SC2之間具有一定的非重疊期間,並可精確地控制該非重疊期間具有較短的時間長度,以改善輸入輸出驅動器500的效能。By setting the non-overlapping period between the control signal SC1 and the control signal SC2, it can be ensured that the transistor MP1 and the transistor MN1 will not be turned on at the same time, thereby preventing the protection circuit 540 from generating a short-circuit current. As mentioned above, in some related technologies, there is an operation delay in the level converter, which causes higher uncertainty at the transition edge of the signal. If a level converter using these technologies is used to generate the output signal VO, uncertainty will also occur in the transition edge of the control signal SC1 generated by the non-overlapping circuit 530 (that is, the transition time point of the control signal SC1 cannot be accurately controlled. ). As a result, the non-overlapping period between the control signal SC1 and the control signal SC2 may be too long, thereby reducing the performance of the input-output driver 500 . Or, in some extreme cases, the transistor MP1 and the transistor MN1 may be turned on at the same time according to the control signal SC1 and the control signal SC2, thereby erroneously generating a short-circuit current. Compared with the above technology, using the level converter 100 or the level converter 400 provided in some embodiments of the present application, the non-overlapping circuit 530 can accurately control the transition time point of the control signal SC1 to ensure that the control signal SC1 and the control signal SC2 There is a certain non-overlapping period between them, and the non-overlapping period can be accurately controlled to have a short length to improve the performance of the input and output driver 500 .

綜上所述,本案一些實施例中的位準轉換器可提供額外的路徑來快速調整輸出節點的位準,進而降低訊號的位準切換過程中所產生的延遲。如此,可使位準轉換器所產生的輸出訊號具有快速切換的轉態邊緣,進而降低輸出訊號的轉態邊緣的不確定性。In summary, the level converter in some embodiments of the present invention can provide an additional path to quickly adjust the level of the output node, thereby reducing the delay generated during the level switching process of the signal. In this way, the output signal generated by the level converter can have a fast switching transition edge, thereby reducing the uncertainty of the transition edge of the output signal.

雖然本案之實施例如上所述,然而該些實施例並非用來限定本案,本技術領域具有通常知識者可依據本案之明示或隱含之內容對本案之技術特徵施以變化,凡此種種變化均可能屬於本案所尋求之專利保護範疇,換言之,本案之專利保護範圍須視本說明書之申請專利範圍所界定者為準。Although the embodiments of this case are as described above, these embodiments are not intended to limit this case. Those with ordinary knowledge in the technical field can make changes to the technical features of this case based on the explicit or implicit contents of this case. All these changes All may fall within the scope of patent protection sought in this case. In other words, the scope of patent protection in this case must be determined by the scope of the patent application in this specification.

100:位準轉換器 110:低位準調整電路 112, 114:反相器 120, 130:比較電路 140:高位準調整電路 142, 144:反相器 400:位準轉換器 410:選擇電路 411, 412:反相器 413, 414:邏輯閘 415:多工器 500:輸入輸出驅動器 501:輸入輸出墊 510:位準轉換器 520:延遲匹配電路 530:非重疊電路 540:保護電路 A, B:控制節點 D1, D2:二極體 I1, I2:輸入節點 MN1, MN2, MP1, MP2, N1~N4, P1~P8:電晶體 O1, O2:輸出節點 S1~S5:訊號 SC1, SC2:控制訊號 SEL:選擇訊號 SIN:輸入訊號 VDDH, VDDL:高電源電壓 VN, VP:箝位訊號 VO, VO’:輸出訊號 VSS, VSSH, VSSL:低電源電壓 100:Level converter 110: Low level adjustment circuit 112, 114:Inverter 120, 130: Comparison circuit 140: High level adjustment circuit 142, 144:Inverter 400:Level converter 410: Select circuit 411, 412:Inverter 413, 414: Logic gate 415:Multiplexer 500: Input and output driver 501: Input and output pad 510:Level converter 520: Delay matching circuit 530: Non-overlapping circuit 540: Protection circuit A, B: control node D1, D2: Diode I1, I2: input nodes MN1, MN2, MP1, MP2, N1~N4, P1~P8: transistor O1, O2: output nodes S1~S5: signal SC1, SC2: control signal SEL: select signal SIN: input signal VDDH, VDDL: high supply voltage VN, VP: clamp signal VO, VO’: output signal VSS, VSSH, VSSL: low supply voltage

[圖1]為根據本案一些實施例繪製一種位準轉換器的示意圖; [圖2]為根據本案一些實施例繪製圖1的位準轉換器的電路示意圖; [圖3A]為根據本案一些實施例繪製當圖2中的輸入訊號具有低邏輯值時位準轉換器的操作示意圖; [圖3B]為根據本案一些實施例繪製當圖2中的輸入訊號具有高邏輯值時位準轉換器的操作示意圖; [圖4A]為根據本案一些實施例繪製一種位準轉換器的示意圖; [圖4B]為根據本案一些實施例繪製圖4A中的相關訊號的波形圖;以及 [圖5]為根據本案一些實施例繪製的輸入輸出驅動器的示意圖。 [Figure 1] is a schematic diagram of a level converter according to some embodiments of this case; [Figure 2] is a schematic circuit diagram of the level converter in Figure 1 according to some embodiments of this case; [Figure 3A] is a schematic diagram of the operation of the level converter when the input signal in Figure 2 has a low logic value according to some embodiments of this case; [Figure 3B] is a schematic diagram of the operation of the level converter when the input signal in Figure 2 has a high logic value according to some embodiments of this case; [Figure 4A] is a schematic diagram of a level converter according to some embodiments of this case; [Figure 4B] is a waveform diagram of the relevant signals in Figure 4A according to some embodiments of this case; and [Figure 5] is a schematic diagram of an input and output driver drawn according to some embodiments of this case.

100:位準轉換器 100:Level converter

110:低位準調整電路 110: Low level adjustment circuit

120,130:比較電路 120,130: Comparison circuit

140:高位準調整電路 140: High level adjustment circuit

I1,I2:輸入節點 I1,I2: input nodes

O1,O2:輸出節點 O1,O2: output nodes

SIN:輸入訊號 SIN: input signal

VDDH,VDDL:高電源電壓 VDDH, VDDL: high power supply voltage

VO:輸出訊號 VO: output signal

VSSH,VSSL:低電源電壓 VSSH, VSSL: low supply voltage

Claims (10)

一種位準轉換器,包含: 一低位準調整電路,根據一輸入訊號選擇性地將一第一輸入節點與一第二輸入節點二者中之一的位準拉低至一第一低電源電壓; 一第一比較電路,將該第一輸入節點的位準與一第二低電源電壓中具有較高位準的一者輸出至一第一輸出節點,其中該第二低電源電壓高於該第一低電源電壓;以及 一高位準調整電路,根據該第一輸入節點的位準與該第二輸入節點的位準選擇性地調整該第一輸出節點的位準,以產生一輸出訊號。 A level converter containing: a low level adjustment circuit that selectively pulls down the level of one of a first input node and a second input node to a first low power supply voltage according to an input signal; A first comparison circuit outputs a higher level of the first input node level and a second low power supply voltage to a first output node, wherein the second low power supply voltage is higher than the first Low supply voltage; and A high level adjustment circuit selectively adjusts the level of the first output node according to the level of the first input node and the level of the second input node to generate an output signal. 如請求項1之位準轉換器,其中該低位準調整電路操作於一第一功率域,該高位準調整電路操作於一第二功率域,該第一功率域由該第一低電源電壓與一第一高電源電壓定義,該第二功率域由該第二低電源電壓與一第二高電源電壓定義,且該第二高電源電壓高於該第一高電源電壓。The level converter of claim 1, wherein the low level adjustment circuit operates in a first power domain, the high level adjustment circuit operates in a second power domain, and the first power domain is composed of the first low power supply voltage and A first high power supply voltage is defined, the second power domain is defined by the second low power supply voltage and a second high power supply voltage, and the second high power supply voltage is higher than the first high power supply voltage. 如請求項1之位準轉換器,其中該低位準調整電路包含: 一第一反相器,根據該輸入訊號產生一第一訊號; 一第二反相器,根據該第一訊號產生一第二訊號; 一第一電晶體,經由一高電源電壓偏壓,並根據該第一訊號選擇性地將該第二輸入節點的位準拉低至該第一低電源電壓;以及 一第二電晶體,經由該高電源電壓偏壓,並根據該第二訊號選擇性地將該第一輸入節點的位準拉低至該第一低電源電壓。 For example, the level converter of claim 1, wherein the low level adjustment circuit includes: a first inverter that generates a first signal based on the input signal; a second inverter that generates a second signal based on the first signal; A first transistor is biased by a high supply voltage and selectively pulls the level of the second input node down to the first low supply voltage according to the first signal; and A second transistor is biased by the high supply voltage and selectively pulls the level of the first input node down to the first low supply voltage according to the second signal. 如請求項1之位準轉換器,其中該高位準調整電路包含: 一第一電晶體,根據一第二輸出節點的位準選擇性地拉升一第一控制節點的位準至一高電源電壓; 一第二電晶體,根據該第一輸出節點的位準選擇性地拉升一第二控制節點的位準至該高電源電壓; 一第三電晶體,根據該第二控制節點的位準選擇性地拉低該第一控制節點的位準至該第二低電源電壓; 一第四電晶體,根據該第一控制節點的位準選擇性地拉低該第二控制節點的位準至該第二低電源電壓; 一第五電晶體,經由該第二低電源電壓偏壓,並根據該第一控制節點的位準選擇性導通以調整該第一輸入節點的位準;以及 一第六電晶體,經由該第二低電源電壓偏壓,並根據該第二控制節點的位準選擇性導通以調整該第二輸入節點的位準。 For example, the level converter of claim 1, wherein the high level adjustment circuit includes: a first transistor that selectively pulls up the level of a first control node to a high power supply voltage based on the level of a second output node; a second transistor that selectively pulls up the level of a second control node to the high power supply voltage based on the level of the first output node; a third transistor that selectively pulls down the level of the first control node to the second low supply voltage according to the level of the second control node; a fourth transistor that selectively pulls down the level of the second control node to the second low power supply voltage according to the level of the first control node; a fifth transistor biased by the second low supply voltage and selectively turned on according to the level of the first control node to adjust the level of the first input node; and A sixth transistor is biased by the second low power supply voltage and is selectively turned on according to the level of the second control node to adjust the level of the second input node. 如請求項1之位準轉換器,其中該第一比較電路包含: 一第一電晶體,根據該第一輸入節點的位準選擇性地導通以傳輸該第二低電源電壓至該第一輸出節點;以及 一第二電晶體,根據該第一輸入節點的位準選擇性地導通以連接該第一輸入節點至該第一輸出節點。 The level converter of claim 1, wherein the first comparison circuit includes: a first transistor selectively turned on according to the level of the first input node to transmit the second low supply voltage to the first output node; and A second transistor is selectively turned on according to the level of the first input node to connect the first input node to the first output node. 如請求項1之位準轉換器,更包含: 一第二比較電路,將該第二輸入節點的位準與該第二低電源電壓中具有較高位準的一者輸出至一第二輸出節點, 其中該高位準調整電路更根據該第一輸入節點的位準與該第二輸入節點的位準選擇性地調整該第二輸出節點的位準。 For example, the level converter of claim 1 further includes: a second comparison circuit that outputs the higher level of the level of the second input node and the second low power supply voltage to a second output node, The high level adjustment circuit further selectively adjusts the level of the second output node according to the level of the first input node and the level of the second input node. 如請求項6之位準轉換器,更包含: 一選擇電路,根據該第一輸出節點的位準以及該第二輸出節點的位準自該第一輸出節點與該第二輸出節點中選出一對應節點,並根據該對應節點的位準產生該輸出訊號。 For example, the level converter of claim 6 further includes: A selection circuit selects a corresponding node from the first output node and the second output node according to the level of the first output node and the level of the second output node, and generates the corresponding node according to the level of the corresponding node. output signal. 如請求項7之位準轉換器,其中當該對應節點的位準從一第一位準切換至一第二位準時,該選擇電路根據該對應節點的位準產生該輸出訊號,且該第一位準高於該第二位準。The level converter of claim 7, wherein when the level of the corresponding node switches from a first level to a second level, the selection circuit generates the output signal according to the level of the corresponding node, and the third One level is higher than the second level. 如請求項7之位準轉換器,其中該選擇電路包含: 一第一反相器,根據該第一輸出節點的位準產生一第一訊號; 一第二反相器,根據該第二輸出節點的位準產生一第二訊號; 一第一邏輯閘,根據該第一訊號以及一選擇訊號產生一第三訊號; 一第二邏輯閘,根據該第二訊號以及該第三訊號產生該選擇訊號;以及 一多工器,根據該選擇訊號輸出第二訊號為該輸出訊號或是根據該第一輸出節點的位準產生該輸出訊號。 For example, the level converter of claim 7, wherein the selection circuit includes: a first inverter that generates a first signal according to the level of the first output node; a second inverter that generates a second signal according to the level of the second output node; a first logic gate that generates a third signal based on the first signal and a selection signal; a second logic gate that generates the selection signal based on the second signal and the third signal; and A multiplexer outputs a second signal as the output signal according to the selection signal or generates the output signal according to the level of the first output node. 如請求項1之位準轉換器,其中當該輸入訊號自一第一位準切換到一第二位準時,該第一比較電路用以協助將該第一輸出節點的位準加速拉低至該第二低電源電壓,且該第一位準高於該第二位準。The level converter of claim 1, wherein when the input signal switches from a first level to a second level, the first comparison circuit is used to assist in accelerating the level of the first output node to be pulled down to The second low power supply voltage, and the first level is higher than the second level.
TW111111187A 2022-03-24 2022-03-24 Low propagation delay level shifter TWI804248B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111111187A TWI804248B (en) 2022-03-24 2022-03-24 Low propagation delay level shifter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111111187A TWI804248B (en) 2022-03-24 2022-03-24 Low propagation delay level shifter

Publications (2)

Publication Number Publication Date
TWI804248B TWI804248B (en) 2023-06-01
TW202339430A true TW202339430A (en) 2023-10-01

Family

ID=87803342

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111111187A TWI804248B (en) 2022-03-24 2022-03-24 Low propagation delay level shifter

Country Status (1)

Country Link
TW (1) TWI804248B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9432022B2 (en) * 2014-04-21 2016-08-30 Qualcomm Incorporated Wide-range level-shifter
US10284201B1 (en) * 2018-01-23 2019-05-07 Stmicroelectronics International N.V. High range positive voltage level shifter using low voltage devices

Also Published As

Publication number Publication date
TWI804248B (en) 2023-06-01

Similar Documents

Publication Publication Date Title
US8643426B2 (en) Voltage level shifter
KR20010049227A (en) Level adjustment circuit and data output circuit thereof
US10243564B2 (en) Input-output receiver
US9374090B2 (en) Circuit arrangement and method of operating the same
US11677400B2 (en) Level shifter circuit and method of operating the same
US10749511B2 (en) IO circuit and access control signal generation circuit for IO circuit
US11632101B1 (en) Voltage level shifter applicable to very-low voltages
US20200052703A1 (en) Level shifter
US7961013B2 (en) Inverter circuit
CN112671391B (en) Level conversion circuit
TWI804248B (en) Low propagation delay level shifter
US10164615B2 (en) Level conversion device and method
WO2023035513A1 (en) Level conversion circuit and chip
WO2022116415A1 (en) Level conversion circuit
US20150207508A1 (en) Level conversion circuit
US20230308101A1 (en) Level shifter with low propagation delay
WO2018193724A1 (en) Output circuit
US20230327671A1 (en) Voltage level shifter and operation method thereof
US8502559B2 (en) Level translator
TWM565921U (en) Voltage level shifter
TWI707541B (en) Voltage level conversion circuit
TWI751363B (en) Buffer circuit
US20230060082A1 (en) Wide voltage range level shifter circuit
TWM629687U (en) High performance voltage level shifter
TWM626414U (en) Voltage level converter with stack transistors