TW202331820A - Fabrication method of semiconductor substrate and micro-electro-mechanical system (mems) device - Google Patents

Fabrication method of semiconductor substrate and micro-electro-mechanical system (mems) device Download PDF

Info

Publication number
TW202331820A
TW202331820A TW111102746A TW111102746A TW202331820A TW 202331820 A TW202331820 A TW 202331820A TW 111102746 A TW111102746 A TW 111102746A TW 111102746 A TW111102746 A TW 111102746A TW 202331820 A TW202331820 A TW 202331820A
Authority
TW
Taiwan
Prior art keywords
layer
wafer
polysilicon
insulating layer
semiconductor substrate
Prior art date
Application number
TW111102746A
Other languages
Chinese (zh)
Other versions
TWI824393B (en
Inventor
拉奇許 昌德
穆尼安迪 順穆甘
拉瑪奇德拉瑪爾斯彼拉迪 葉蕾哈卡
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW111102746A priority Critical patent/TWI824393B/en
Publication of TW202331820A publication Critical patent/TW202331820A/en
Application granted granted Critical
Publication of TWI824393B publication Critical patent/TWI824393B/en

Links

Images

Abstract

A method of fabricating a semiconductor substrate includes the following steps. A first wafer is provided and a first surface of the first wafer is etched to form a plurality of cavities. A second wafer is formed on the first surface, where forming the second wafer includes the following steps: providing a core substrate; forming a first insulating layer on the core substrate; and depositing a polysilicon layer on the first insulating layer and the core substrate. In addition, the polysilicon layer is bonded with the first wafer to cover the cavities, where the polysilicon layer is disposed between the first insulating layer and the first wafer. In addition, a MEMS device using the semiconductor substrate is also provided.

Description

半導體基底的製作方法及微機電(MEMS)裝置Fabrication method of semiconductor substrate and microelectromechanical (MEMS) device

本揭露大致關於一種半導體基底,特別是關於一種半導體基底的製作方法,該半導體基底包括設置在具有空腔的晶圓上的多晶矽層,以及關於使用半導體基底的微機電裝置。The present disclosure generally relates to a semiconductor substrate, and more particularly to a method of fabricating a semiconductor substrate including a polysilicon layer disposed on a wafer with a cavity, and to a microelectromechanical device using the semiconductor substrate.

近年來,微機電(micro-electro-mechanical systems, MEMS)裝置為一種賦能技術並已從多個產業日益獲得關注。一微機電裝置可包括可移動部件和至少一其他元件,例如壓力傳感器、致動器或共振器,其使用一微機械製程以選擇性蝕刻晶圓的一些部分。因此,該晶圓可包含附加的結構層,並且可由例如為矽的半導體材料所組成。In recent years, micro-electro-mechanical systems (MEMS) devices have been gaining increasing attention from various industries as an enabling technology. A MEMS device may include movable parts and at least one other element, such as a pressure sensor, actuator or resonator, using a micromechanical process to selectively etch portions of a wafer. Thus, the wafer may contain additional structural layers and may be composed of a semiconductor material such as silicon.

矽覆絕緣(silicon-on-insulator, SOI)晶圓可被用作微機電裝置的基底。一矽覆絕緣晶圓包括一矽層、一承載晶圓以及一埋藏式氧化層。該埋藏式氧化層被該矽層與該承載晶圓包夾,用於物理分離以及電性隔絕該矽層與該承載晶圓。對於使用矽覆絕緣晶圓作為基底的微機電裝置,該矽覆絕緣晶圓的該矽層可被加工以構成該微機電裝置的可移動部件,例如懸臂結構或懸浮薄膜。或者,微機電裝置可使用鍵合晶圓(bonded wafer)以代替矽覆絕緣晶圓作為基底。該鍵合晶圓可以是包括元件晶圓和承載晶圓的堆疊結構,並且可以藉由在該元件晶圓上施行研磨製程來減薄該元件晶圓,直到該減薄的元件晶圓達到所需厚度。該減薄的元件晶圓,可被進一步加工以構成該微機電裝置的可移動部件,例如是懸臂結構或懸掛薄膜。Silicon-on-insulator (SOI) wafers can be used as substrates for MEMS devices. A silicon-on-insulator wafer includes a silicon layer, a carrier wafer, and a buried oxide layer. The buried oxide layer is sandwiched by the silicon layer and the carrier wafer for physically separating and electrically isolating the silicon layer and the carrier wafer. For MEMS devices using a silicon-on-insulator wafer as a substrate, the silicon layer of the silicon-on-insulator wafer can be processed to form movable components of the MEMS device, such as cantilever structures or suspended membranes. Alternatively, MEMS devices can use bonded wafers instead of silicon-on-insulator wafers as substrates. The bonding wafer may be a stacked structure including a component wafer and a carrier wafer, and the component wafer may be thinned by performing a grinding process on the component wafer until the thinned component wafer reaches the desired level. Thickness is required. The thinned device wafer can be further processed to form movable parts of the MEMS device, such as cantilever structures or suspended membranes.

然而,由於難以精確控制SOI晶圓的矽層的厚度或精確控制減薄的元件晶圓的厚度,其負面影響了橫跨整體晶圓的各個微機電裝置的電性表現。此外,SOI晶圓的成本高,且SOI晶圓的製作過程相當耗時。因此,需要一種用於微機電裝置的半導體基底用以克服上述問題。However, it is difficult to precisely control the thickness of the silicon layer of the SOI wafer or precisely control the thickness of the thinned device wafer, which negatively affects the electrical performance of the individual MEMS devices across the entire wafer. In addition, the cost of the SOI wafer is high, and the manufacturing process of the SOI wafer is quite time-consuming. Therefore, there is a need for a semiconductor substrate for MEMS devices to overcome the above-mentioned problems.

有鑑於此,本揭露的半導體基底,其提供了具有精確厚度與電阻率控制的多晶矽元件層。此外,還提供了製作半導體基底的方法,與SOI晶圓相比,該方法較不耗時並且具有更大的製作彈性。此外,本揭露提供了使用該半導體基底的微機電裝置,由於多晶矽元件層的精確厚度與電阻率控制,使其具有更好的元件性能。In view of this, the semiconductor substrate of the present disclosure provides a polysilicon device layer with precise thickness and resistivity control. Furthermore, a method of fabricating a semiconductor substrate is provided which is less time consuming and has greater fabrication flexibility compared to SOI wafers. In addition, the present disclosure provides a MEMS device using the semiconductor substrate, which has better device performance due to the precise thickness and resistivity control of the polysilicon device layer.

根據本揭露一實施例,提供了一種製作半導體基底的方法,包括以下步驟。提供一第一晶圓,並且蝕刻該第一晶圓的一第一表面以形成多個空腔。在該第一表面上形成一第二晶圓,其中形成該第二晶圓包括以下步驟:提供一核心基底;在該核心基底上形成一第一絕緣層;以及在該第一絕緣層和該核心基底上沉積一多晶矽層。此外,鍵合該多晶矽層與該第一晶圓以覆蓋該些空腔,其中該多晶矽層設置於該第一絕緣層與該第一晶圓之間。According to an embodiment of the present disclosure, a method for manufacturing a semiconductor substrate is provided, including the following steps. A first wafer is provided, and a first surface of the first wafer is etched to form a plurality of cavities. Forming a second wafer on the first surface, wherein forming the second wafer includes the following steps: providing a core substrate; forming a first insulating layer on the core substrate; A polysilicon layer is deposited on the core substrate. In addition, bonding the polysilicon layer and the first wafer to cover the cavities, wherein the polysilicon layer is disposed between the first insulating layer and the first wafer.

根據本揭露一實施例,提供了一種微機電(MEMS)裝置,包括一支撐基底、一黏合層、一多晶矽元件層和一微機電結構。該支撐基底在一上部表面上具有一空腔,其中該空腔不貫穿該支撐基底。該黏合層共形地設置於該支撐基底的上部表面以及該空腔的側壁和底表面上。該多晶矽元件層設置於該支撐基底的該上部表面上以覆蓋該空腔。該微機電結構設置於該多晶矽元件層上。According to an embodiment of the present disclosure, a MEMS device is provided, including a support substrate, an adhesive layer, a polysilicon device layer, and a MEMS structure. The support base has a cavity on an upper surface, wherein the cavity does not penetrate the support base. The adhesive layer is conformally disposed on the upper surface of the support substrate and the sidewalls and bottom surface of the cavity. The polysilicon element layer is disposed on the upper surface of the support base to cover the cavity. The MEMS structure is disposed on the polysilicon element layer.

本揭露提供了數個不同的實施例,可用於實現本揭露的不同特徵。為簡化說明起見,本揭露也同時描述了特定構件與佈置的範例。提供這些實施例的目的僅在於示意,而非予以任何限制。舉例而言,本揭露中針對「第一部件形成在第二部件上或上方」的敘述,其可以是指「第一部件與第二部件直接接觸」,也可以是指「第一部件與第二部件之間另存在有其他部件」,致使第一部件與第二部件並不直接接觸。此外,本揭露中的各種實施例可能使用重複的元件符號和/或文字註記。使用這些重複的元件符號與文字註記是為了使敘述更簡潔和明確,而非用以指示不同的實施例及/或配置之間的關聯性。The present disclosure provides several different embodiments, which can be used to realize different features of the present disclosure. For simplicity of illustration, the present disclosure also describes examples of certain components and arrangements. These examples are provided for the purpose of illustration only, without any limitation. For example, the description of "the first component is formed on or over the second component" in this disclosure may refer to "the first component is in direct contact with the second component" or "the first component is in direct contact with the second component." There are other parts between the two parts", so that the first part is not in direct contact with the second part. In addition, various embodiments in the present disclosure may use repeated reference numerals and/or textual notations. The use of these repeated reference numerals and text notations is used to make the description more concise and clear, rather than to indicate the relationship between different embodiments and/or configurations.

另外,針對本揭露中所提及的空間相關的敘述詞彙,例如:「在...之下」、「在...之上」、「低」、「高」、「下方」、「上方」、「之下」、「之上」、「底」、「頂」和類似詞彙時,為便於敘述,其用法均在於描述圖式中一個部件或特徵與另一個(或多個)部件或特徵的相對關係。除了圖式中所顯示的擺向外,這些空間相關詞彙也用來描述半導體裝置在製作過程中、使用中以及操作時的可能擺向。舉例而言,當半導體裝置被旋轉180度時,原先設置於其他部件「上方」的某部件便會變成設置於其他部件「下方」。因此,隨著半導體裝置的擺向的改變(旋轉90度或其它角度),用以描述其擺向的空間相關敘述亦應透過對應的方式予以解釋。In addition, for the space-related descriptive words mentioned in this disclosure, for example: "below", "above", "low", "high", "below", "above ”, “below”, “above”, “bottom”, “top” and similar terms, for the sake of description, are used to describe the relationship between one part or feature and another part (or more) in the drawings. The relative relationship of features. In addition to the orientations shown in the drawings, these space-related terms are also used to describe possible orientations of semiconductor devices during fabrication, use, and operation. For example, when a semiconductor device is rotated by 180 degrees, a component that was originally positioned "above" other components becomes positioned "below" the other components. Therefore, as the swing direction of the semiconductor device is changed (rotated by 90 degrees or other angles), the space-related description used to describe its swing direction should also be interpreted in a corresponding manner.

雖然本揭露使用第一、第二、第三等等用詞,以敘述種種元件、部件、區域、層、及/或區塊(section),但應了解此等元件、部件、區域、層、及/或區塊不應被此等用詞所限制。此等用詞僅是用以區分某一元件、部件、區域、層、及/或區塊與另一個元件、部件、區域、層、及/或區塊,其本身並不意含及代表該元件有任何之前的序數,也不代表某一元件與另一元件的排列順序、或是製造方法上的順序。因此,在不背離本揭露之具體實施例之範疇下,下列所討論之第一元件、部件、區域、層、或區塊亦可以第二元件、部件、區域、層、或區塊之詞稱之。Although the present disclosure uses terms such as first, second, third, etc. to describe various elements, components, regions, layers, and/or sections, it should be understood that these elements, components, regions, layers, and/or blocks should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer, and/or block from another element, component, region, layer, and/or block, and do not imply or represent the element The presence of any preceding ordinal number does not imply an order of arrangement of one element over another, or an order in method of manufacture. Therefore, without departing from the scope of the specific embodiments of the present disclosure, the first element, component, region, layer, or block discussed below may also be referred to as the second element, component, region, layer, or block Of.

本揭露中所提及的「約」或「實質上」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」或「實質上」的情況下,仍可隱含「約」或「實質上」之含義。The terms "about" or "substantially" mentioned in this disclosure usually mean within 20%, preferably within 10%, and more preferably within 5%, of a given value or range Within 3%, or within 2%, or within 1%, or within 0.5%. It should be noted that the quantities provided in the description are approximate quantities, that is, the meaning of "about" or "substantial" may still be implied if "about" or "substantial" is not specified.

本揭露係關於半導體基底及其製造方法,以及使用半導體基底的微機電(MEMS)裝置。半導體元件包括具有多個空腔的第一晶圓以及與第一晶圓鍵合以覆蓋空腔的第二晶圓。第二晶圓包括包覆(wrap)核心基底的多晶矽層以及設置於核心基底與多晶矽層之間的第一絕緣層。第二晶圓的多晶矽層具有精準的厚度與電阻率控制。因此,使用本揭露的半導體基底的微機電裝置相較使用SOI晶圓的微機電裝置具有更好的元件性能。此外,根據本揭露的實施例所製作的半導體基底相較於使用SOI晶圓所製作的半導體基底耗時更少、成本更低、製作參數控制較佳以及更具製作彈性。The present disclosure relates to semiconductor substrates, methods of manufacturing the same, and microelectromechanical (MEMS) devices using semiconductor substrates. The semiconductor element includes a first wafer having a plurality of cavities and a second wafer bonded to the first wafer to cover the cavities. The second wafer includes a polysilicon layer wrapping the core substrate and a first insulating layer disposed between the core substrate and the polysilicon layer. The polysilicon layer of the second wafer has precise thickness and resistivity control. Therefore, the MEMS device using the semiconductor substrate of the present disclosure has better device performance than the MEMS device using the SOI wafer. In addition, compared with semiconductor substrates fabricated using SOI wafers, the semiconductor substrates fabricated according to the embodiments of the present disclosure require less time, lower costs, better control of fabrication parameters, and greater fabrication flexibility.

根據本揭露的一些實施例,提供了製作半導體基底的方法。第1圖是本揭露一實施例的製作半導體基底100和處理用於MEMS裝置的半導體基底100以形成基底201的方法的數個階段的剖面示意圖。參考第1圖,首先,在步驟S101的階段,提供第一晶圓101,例如是矽晶圓或其他合適的半導體材料。第一晶圓101包括單晶半導體材料,例如矽、藍寶石或其他合適的半導體材料,舉例而言,元素半導體(例如鍺)、化合物半導體(例如氮化鎵、碳化矽、砷化鎵、磷化鎵、磷化銦、砷化銦和/或銻化銦)、合金半導體(例如矽鍺、砷化鎵、鋁鎵砷、氮化鋁、砷化鋁鎵、砷化鎵銦、磷化鎵銦、砷磷化鎵銦)、或前述之組合。接著,在步驟S102的階段,蝕刻第一晶圓101以在其上部表面上形成多個空腔103。空腔103的底表面高於第一晶圓101的底表面,此表示空腔不貫穿支撐基底。在一實施例中,空腔103可以具有直角,此表示空腔103的側壁和底表面之間的角度約為90°。在一些實施例中,每個空腔103具有橫截面形狀,例如矩形、梯形、倒梯形或其他合適的形狀。使用半導體基底100的元件可基於實際需求來調整空腔103的深度。此外,圖1所示的空腔103的數量僅用於說明目的,根據實際需求,第一晶圓101的空腔103的實際數量可以超過100個。空腔103可以藉由使用設置於第一晶圓101上的一圖案化遮罩作為一蝕刻遮罩並執行一蝕刻製程以去除由圖案化遮罩的開口暴露的第一晶圓101的部分來形成。蝕刻製程可以是乾蝕刻或濕蝕刻製程。基於微機電裝置的需求,空腔103的形狀和尺寸可藉由蝕刻製程和圖案化遮罩的參數來調整。例如,每個空腔103可以是直徑或對角線長度為約50 µm至2 mm的圓形或多邊形,但不限於此。According to some embodiments of the present disclosure, methods of fabricating a semiconductor substrate are provided. FIG. 1 is a schematic cross-sectional view of several stages of a method for fabricating a semiconductor substrate 100 and processing the semiconductor substrate 100 for MEMS devices to form a substrate 201 according to an embodiment of the present disclosure. Referring to FIG. 1 , firstly, in step S101 , a first wafer 101 is provided, such as a silicon wafer or other suitable semiconductor materials. The first wafer 101 includes a single crystal semiconductor material, such as silicon, sapphire or other suitable semiconductor materials, for example, elemental semiconductors (such as germanium), compound semiconductors (such as gallium nitride, silicon carbide, gallium arsenide, phosphide gallium, indium phosphide, indium arsenide and/or indium antimonide), alloy semiconductors (such as silicon germanium, gallium arsenide, aluminum gallium arsenide, aluminum nitride, aluminum gallium arsenide, gallium indium arsenide, gallium indium phosphide , gallium arsenic indium phosphide), or a combination of the foregoing. Next, at the stage of step S102 , the first wafer 101 is etched to form a plurality of cavities 103 on the upper surface thereof. The bottom surface of the cavity 103 is higher than the bottom surface of the first wafer 101, which means that the cavity does not penetrate through the supporting substrate. In one embodiment, the cavity 103 may have a right angle, which means that the angle between the sidewall and the bottom surface of the cavity 103 is about 90°. In some embodiments, each cavity 103 has a cross-sectional shape, such as a rectangle, a trapezoid, an inverted trapezoid, or other suitable shapes. The elements using the semiconductor substrate 100 can adjust the depth of the cavity 103 based on actual needs. In addition, the number of cavities 103 shown in FIG. 1 is only for illustration purposes, and the actual number of cavities 103 in the first wafer 101 may exceed 100 according to actual needs. The cavity 103 can be removed by using a patterned mask disposed on the first wafer 101 as an etching mask and performing an etching process to remove the portion of the first wafer 101 exposed by the openings of the patterned mask. form. The etching process can be a dry etching or a wet etching process. Based on the requirements of the MEMS device, the shape and size of the cavity 103 can be adjusted by parameters of the etching process and the patterning mask. For example, each cavity 103 may be circular or polygonal with a diameter or a diagonal length of about 50 µm to 2 mm, but is not limited thereto.

接下來,在步驟S103的階段,提供第二晶圓102的核心基底105。核心基底105可以是半導體基底,例如矽晶圓、含矽基底或其他合適的半導體基底。在一些實施例中,核心基底105的材料可以與第一晶圓101相同,但不限於此。隨後,在核心基底105的一表面上形成第一絕緣層107。第一絕緣層107可以是藉由熱氧化或沉積製程形成的氧化矽層。此後,多晶矽層108沉積在第一絕緣層107和核心基底105上。多晶矽層108可以藉由化學氣相沉積(chemical vapor deposition, CVD)製程形成,例如常壓化學氣相沉積製程(atmospheric pressure chemical vapor deposition, APCVD)、低壓化學氣相沉積(low-pressure chemical vapor deposition, LPCVD)製程或其他合適的製程。在一些實施例中,已沉積的多晶矽層108的厚度可以藉由調整製程參數和條件以良好地控制,並且其厚度可以從大約2 µm至大約15 µm或更厚。根據不同的需求,第一絕緣層107和多晶矽層108可以在不同的製程中或者在相同的製程中依序形成。舉例而言,第一絕緣層107可以在形成多晶矽層108的初始階段而被形成於核心基底105上。Next, at the stage of step S103 , the core substrate 105 of the second wafer 102 is provided. The core substrate 105 may be a semiconductor substrate, such as a silicon wafer, a silicon-containing substrate, or other suitable semiconductor substrates. In some embodiments, the material of the core substrate 105 may be the same as that of the first wafer 101 , but is not limited thereto. Subsequently, a first insulating layer 107 is formed on one surface of the core substrate 105 . The first insulating layer 107 may be a silicon oxide layer formed by thermal oxidation or deposition process. Thereafter, a polysilicon layer 108 is deposited on the first insulating layer 107 and the core substrate 105 . The polysilicon layer 108 can be formed by chemical vapor deposition (chemical vapor deposition, CVD) process, such as atmospheric pressure chemical vapor deposition process (atmospheric pressure chemical vapor deposition, APCVD), low-pressure chemical vapor deposition (low-pressure chemical vapor deposition) , LPCVD) process or other suitable process. In some embodiments, the thickness of the deposited polysilicon layer 108 can be well controlled by adjusting process parameters and conditions, and can be from about 2 µm to about 15 µm or thicker. According to different requirements, the first insulating layer 107 and the polysilicon layer 108 can be sequentially formed in different processes or in the same process. For example, the first insulating layer 107 may be formed on the core substrate 105 at the initial stage of forming the polysilicon layer 108 .

隨後,在步驟S104的階段,藉由拋光製程處理沉積的多晶矽層108,以獲得鏡面拋光多晶矽層109,拋光製程例如是濕式拋光製程、化學機械研磨(CMP)製程等,但不限於此。在一些實施例中,鏡面拋光多晶矽層109的厚度可以從大約1 µm至大約10 µm。在步驟S104的階段,在一些實施例中,第二晶圓102包括核心基底105、第一絕緣層107和鏡面拋光多晶矽層109。第一絕緣層107和鏡面拋光多晶矽層109形成在核心基底105的同一表面上。拋光製程可以調整鏡面拋光多晶矽層109的表面粗糙度,並為微機電裝置的元件層提供更好的薄膜品質。即使藉由拋光工藝處理沉積的多晶矽層108,鏡面拋光多晶矽層109的平均厚度會相同於或略小於沉積的多晶矽層108的平均厚度(例如,厚度差小於5%)。Subsequently, in step S104, the deposited polysilicon layer 108 is processed by a polishing process to obtain a mirror-polished polysilicon layer 109. The polishing process is, for example, a wet polishing process, a chemical mechanical polishing (CMP) process, etc., but not limited thereto. In some embodiments, the mirror polished polysilicon layer 109 may have a thickness from about 1 µm to about 10 µm. At the stage of step S104 , in some embodiments, the second wafer 102 includes a core substrate 105 , a first insulating layer 107 and a mirror-polished polysilicon layer 109 . The first insulating layer 107 and the mirror-polished polysilicon layer 109 are formed on the same surface of the core substrate 105 . The polishing process can adjust the surface roughness of the mirror-polished polysilicon layer 109 and provide better film quality for the component layers of the MEMS device. Even though the deposited polysilicon layer 108 is processed by a polishing process, the average thickness of the mirror polished polysilicon layer 109 may be the same as or slightly smaller than the average thickness of the deposited polysilicon layer 108 (eg, the thickness difference is less than 5%).

接下來,在步驟S105的階段,第二晶圓102與第一晶圓101鍵合以覆蓋空腔103,從而獲得半導體基底100,其中鏡面拋光多晶矽層109設置在第一絕緣層107和第一晶圓101之間。隨後,在步驟S106的階段,處理半導體基底100以完全去除核心基底105和第一絕緣層107。在一些實施例中,核心基底105和第一絕緣層107可以藉由背面研磨製程(back grinding, BG)或化學機械研磨製程去除。因此,延伸越過整個第一晶圓101的鏡面拋光多晶矽層109會被保留在第一晶圓101上,成為覆蓋空腔103的多晶矽元件層110,而後以獲得用於製作微機電裝置的基底201。Next, at the stage of step S105, the second wafer 102 is bonded to the first wafer 101 to cover the cavity 103, thereby obtaining the semiconductor substrate 100, wherein the mirror polished polysilicon layer 109 is disposed on the first insulating layer 107 and the first between wafers 101. Subsequently, at the stage of step S106 , the semiconductor substrate 100 is processed to completely remove the core substrate 105 and the first insulating layer 107 . In some embodiments, the core substrate 105 and the first insulating layer 107 may be removed by back grinding (BG) or chemical mechanical polishing. Therefore, the mirror-polished polysilicon layer 109 extending across the entire first wafer 101 will remain on the first wafer 101, becoming the polysilicon element layer 110 covering the cavity 103, and then obtaining the substrate 201 for fabricating MEMS devices. .

根據本揭露的一些實施例,用於微機電裝置的多晶矽元件層110藉由沉積和拋光多晶矽層來形成,用以精確控制多晶矽元件層110的厚度。此外,在形成多晶矽層108的沉積製程的過程間或之後,也可藉由調整多晶矽層的摻雜水準,以精確控制多晶矽元件層110的電阻率。因此,可改善由多晶矽元件層110形成的微機電裝置的機械或電性表現。According to some embodiments of the present disclosure, the polysilicon device layer 110 for MEMS devices is formed by depositing and polishing the polysilicon layer to precisely control the thickness of the polysilicon device layer 110 . In addition, during or after the deposition process for forming the polysilicon layer 108 , the resistivity of the polysilicon device layer 110 can be precisely controlled by adjusting the doping level of the polysilicon layer. Therefore, the mechanical or electrical performance of the MEMS device formed by the polysilicon element layer 110 can be improved.

此外,根據本揭露的一些實施例,用於微機電裝置的半導體基底是在不使用SOI晶圓的情況下所製作的,因此,半導體基底的製作成本和周期得以降低。此外,本揭露的半導體基底的製作彈性和製程參數控制亦會被提昇。Furthermore, according to some embodiments of the present disclosure, the semiconductor substrate for the MEMS device is fabricated without using an SOI wafer, thus reducing the fabrication cost and cycle time of the semiconductor substrate. In addition, the manufacturing flexibility and process parameter control of the disclosed semiconductor substrate will also be improved.

在以下說明書段落中,揭露了本揭露的替代實施例的半導體基底的製作方法。In the following paragraphs of the description, methods for fabricating a semiconductor substrate of alternative embodiments of the present disclosure are disclosed.

第2圖是本揭露另一實施例的製作半導體基底100A和處理用於MEMS裝置的半導體基底100A以形成基底201的方法的數個階段的剖面示意圖。在本揭露的實施例中,第2圖的步驟S201和步驟S202的第一晶圓101和形成多個空腔103的細節可以與第1圖的步驟S101和步驟S102所對應的該些說明相同,並且在此不再重複。FIG. 2 is a schematic cross-sectional view of several stages of a method for fabricating a semiconductor substrate 100A and processing the semiconductor substrate 100A for MEMS devices to form a substrate 201 according to another embodiment of the present disclosure. In the embodiment of the present disclosure, the details of the first wafer 101 and the formation of multiple cavities 103 in step S201 and step S202 in FIG. 2 may be the same as those corresponding to the descriptions in step S101 and step S102 in FIG. 1 , and will not be repeated here.

在步驟S203的階段,在一些實施例中,提供諸如矽晶圓或含矽晶圓的核心基底105,然後在核心基底105的前表面、後表面和側壁上形成第一絕緣層107以包覆核心基底105。第一絕緣層107可以是藉由熱氧化或沉積製程形成的氧化矽層。此後,在第一絕緣層107上以及核心基底105的前表面、後表面和側壁上沉積多晶矽層108。多晶矽層108圍繞第一絕緣層107和核心基底105。多晶矽層108可以通過化學氣相沉積製程形成,例如常壓化學氣相沉積製程、低壓化學氣相沉積製程或其他合適的製程。在一些實施例中,沉積的多晶矽層108的厚度可以從大約2 µm至大約15 µm或更厚。At the stage of step S203, in some embodiments, a core substrate 105 such as a silicon wafer or a silicon-containing wafer is provided, and then a first insulating layer 107 is formed on the front surface, rear surface and sidewalls of the core substrate 105 to cover core substrate 105 . The first insulating layer 107 may be a silicon oxide layer formed by thermal oxidation or deposition process. Thereafter, a polysilicon layer 108 is deposited on the first insulating layer 107 and on the front surface, rear surface and sidewalls of the core substrate 105 . The polysilicon layer 108 surrounds the first insulating layer 107 and the core substrate 105 . The polysilicon layer 108 can be formed by a chemical vapor deposition process, such as an atmospheric pressure chemical vapor deposition process, a low pressure chemical vapor deposition process, or other suitable processes. In some embodiments, the deposited polysilicon layer 108 may have a thickness from about 2 µm to about 15 µm or more.

之後,在步驟S204的階段,藉由一拋光製程處理沉積的多晶矽層108,以獲得鏡面拋光多晶矽層109,其中鏡面拋光多晶矽層109包覆第一絕緣層107和核心基底105。在一些實施例中,鏡面拋光多晶矽層109的厚度可以從大約1 µm至大約10 µm。在步驟S204的階段,在一些實施例中,第二晶圓102包括核心基底105、第一絕緣層107和鏡面拋光多晶矽層109。第一絕緣層107和鏡面拋光多晶矽層109包覆核心基底105。拋光製程可以調整鏡面拋光多晶矽層109的表面粗糙度,並為微機電裝置的元件層提供更好的薄膜品質。Afterwards, in step S204 , the deposited polysilicon layer 108 is processed by a polishing process to obtain a mirror-polished polysilicon layer 109 , wherein the mirror-polished polysilicon layer 109 covers the first insulating layer 107 and the core substrate 105 . In some embodiments, the mirror polished polysilicon layer 109 may have a thickness from about 1 µm to about 10 µm. At the stage of step S204 , in some embodiments, the second wafer 102 includes a core substrate 105 , a first insulating layer 107 and a mirror-polished polysilicon layer 109 . The first insulating layer 107 and the mirror polished polysilicon layer 109 cover the core substrate 105 . The polishing process can adjust the surface roughness of the mirror-polished polysilicon layer 109 and provide better film quality for the component layers of the MEMS device.

接下來,在步驟S205的階段,第二晶圓102會與第一晶圓101鍵合以覆蓋多個空腔103,而獲得半導體基底100A,其中鏡面拋光多晶矽層109會被設置在第一絕緣層107和第一晶圓101之間。半導體基底100A包括第一晶圓101,且第一晶圓101包括設置在其上部表面的多個空腔103。Next, at the stage of step S205, the second wafer 102 will be bonded to the first wafer 101 to cover the plurality of cavities 103 to obtain the semiconductor substrate 100A, wherein the mirror polished polysilicon layer 109 will be disposed on the first insulating layer 107 and the first wafer 101. The semiconductor substrate 100A includes a first wafer 101, and the first wafer 101 includes a plurality of cavities 103 disposed on an upper surface thereof.

半導體基底100A還包括與第一晶圓101鍵合以覆蓋多個空腔103的第二晶圓102。在一實施例中,第二晶圓102包括核心基底105、包覆核心基底105的多晶矽層109以及設置在核心基底105和多晶矽層109之間的第一絕緣層107。第一絕緣層107包覆核心基底105,並且可以由氧化矽、氮化矽、氮氧化矽或其組合組成。在一些實施例中,第一絕緣層107是藉由熱氧化核心基底105所形成的氧化矽層。第一絕緣層107會被形成以用於覆蓋核心基板105的前表面、後表面和側壁。此外,在本揭露的一些實施例中,多晶矽層109也被稱為鏡面拋光多晶矽層,並且包覆第一絕緣層107和核心基底105。相較於沉積的多晶矽層(即上述多晶矽層108),鏡面拋光多晶矽層109具有更低的表面粗糙度,藉此為微機電裝置提供具有更好薄膜品質的元件層。在一些實施例中,鏡面拋光多晶矽層109的厚度可以從大約1 µm至大約10 µm。多晶矽層109會被形成在第一絕緣層107上,用以覆蓋核心基底105的前表面、後表面和側壁。The semiconductor substrate 100A further includes a second wafer 102 bonded to the first wafer 101 to cover the plurality of cavities 103 . In one embodiment, the second wafer 102 includes a core substrate 105 , a polysilicon layer 109 covering the core substrate 105 , and a first insulating layer 107 disposed between the core substrate 105 and the polysilicon layer 109 . The first insulating layer 107 covers the core substrate 105 and may be composed of silicon oxide, silicon nitride, silicon oxynitride or a combination thereof. In some embodiments, the first insulating layer 107 is a silicon oxide layer formed by thermally oxidizing the core substrate 105 . A first insulating layer 107 is formed to cover the front surface, rear surface and sidewalls of the core substrate 105 . In addition, in some embodiments of the present disclosure, the polysilicon layer 109 is also called a mirror polished polysilicon layer, and covers the first insulating layer 107 and the core substrate 105 . Compared with the deposited polysilicon layer (ie, the polysilicon layer 108 ), the mirror-polished polysilicon layer 109 has a lower surface roughness, thereby providing a component layer with better film quality for MEMS devices. In some embodiments, the mirror polished polysilicon layer 109 may have a thickness from about 1 µm to about 10 µm. A polysilicon layer 109 is formed on the first insulating layer 107 to cover the front surface, rear surface and sidewalls of the core substrate 105 .

之後,在步驟S206的階段,半導體基底100A會被處理,以去除第二晶圓102的一些部分。在本製程階段,部分的核心基底105、部分的第一絕緣層107和部分的鏡面拋光多晶矽層109會被保留在第一晶圓101上,而作為中間結構112。隨後,在步驟S207的階段,中間結構112會被處理以完全去除核心基底105和第一絕緣層107。在一些實施例中,核心基底105、第一絕緣層107和鏡面拋光多晶矽層109可以藉由背面研磨製程或化學機械研磨製程去除。因此,鏡面拋光多晶矽層109的下部會被保留於第一晶圓101上,成為覆蓋多個空腔103的多晶矽元件層110,而獲得用於製作微機電裝置的基底201。Afterwards, in step S206 , the semiconductor substrate 100A is processed to remove some portions of the second wafer 102 . At this process stage, part of the core substrate 105 , part of the first insulating layer 107 and part of the mirror-polished polysilicon layer 109 are left on the first wafer 101 as the intermediate structure 112 . Subsequently, in step S207 , the intermediate structure 112 is processed to completely remove the core substrate 105 and the first insulating layer 107 . In some embodiments, the core substrate 105 , the first insulating layer 107 and the mirror polished polysilicon layer 109 may be removed by a back grinding process or a chemical mechanical polishing process. Therefore, the lower portion of the mirror-polished polysilicon layer 109 remains on the first wafer 101 to become the polysilicon device layer 110 covering the cavities 103 to obtain the substrate 201 for fabricating MEMS devices.

第3圖是本揭露另一實施例的製作半導體基底100B和處理用於MEMS裝置的半導體基底100B以形成基底202的方法的數個階段的剖面示意圖。第3圖中的步驟S301和步驟S302的第一晶圓101和形成空腔103的細節可以與第1圖中的步驟S101和步驟S102的對應說明相同,並且在此不再重複。第3圖中的步驟S303的核心基底105、第一絕緣層107和沉積的多晶矽層108的細節可以與第2圖中的步驟S203對應的說明相同,並且在此不再重複。FIG. 3 is a schematic cross-sectional view of several stages of a method for fabricating a semiconductor substrate 100B and processing the semiconductor substrate 100B for MEMS devices to form a substrate 202 according to another embodiment of the present disclosure. Details of the first wafer 101 and the cavity 103 formed in step S301 and step S302 in FIG. 3 may be the same as the corresponding descriptions of step S101 and step S102 in FIG. 1 , and will not be repeated here. Details of the core substrate 105 , the first insulating layer 107 and the deposited polysilicon layer 108 in step S303 in FIG. 3 may be the same as those corresponding to step S203 in FIG. 2 , and will not be repeated here.

接下來,在步驟S304的階段,沉積的多晶矽層108會被拋光製程處理,以獲得鏡面拋光多晶矽層109,其中鏡面拋光多晶矽層109包覆第一絕緣層107和核心基底105。在一些實施例中,鏡面拋光多晶矽層109的厚度可以從大約1 µm至大約10 µm。之後,第二絕緣層111會被形成於鏡面拋光多晶矽層109上,以包覆鏡面拋光多晶矽層109、第一絕緣層107和核心基底105。在步驟S304的階段,在一些實施例中,第二晶圓102包括核心基底105、第一絕緣層107、鏡面拋光多晶矽層109和第二絕緣層111。Next, in step S304 , the deposited polysilicon layer 108 is polished to obtain a mirror-polished polysilicon layer 109 , wherein the mirror-polished polysilicon layer 109 covers the first insulating layer 107 and the core substrate 105 . In some embodiments, the mirror polished polysilicon layer 109 may have a thickness from about 1 µm to about 10 µm. Afterwards, a second insulating layer 111 is formed on the mirror-polished polysilicon layer 109 to cover the mirror-polished polysilicon layer 109 , the first insulating layer 107 and the core substrate 105 . At the stage of step S304 , in some embodiments, the second wafer 102 includes the core substrate 105 , the first insulating layer 107 , the mirror-polished polysilicon layer 109 and the second insulating layer 111 .

之後,在步驟S305的階段,第二晶圓102會與第一晶圓101鍵合以覆蓋多個空腔103而獲得半導體基底100B,其中鏡面拋光多晶矽層109設置在第一絕緣層107和第一晶圓101之間。此外,第二絕緣層111設置在鏡面拋光多晶矽層109和第一晶圓101之間。半導體基底100B包括第一晶圓101,且第一晶圓101包括設置在其上部表面的多個空腔103。此外,半導體基底100B還包括與第一晶圓101鍵合以覆蓋多個空腔103的第二晶圓102。第3圖中的步驟S305的半導體基底100B和第2圖中的步驟S205的半導體基底100A之間的區別在於,半導體基底100B的第二晶圓102還包括包覆多晶矽層109並設置在第一晶圓101和多晶矽層109之間的第二絕緣層111。第二絕緣層111可以由氧化矽、氮化矽、氮氧化矽或其組合組成。在一些實施例中,第二絕緣層111是藉由熱氧化多晶矽層109而形成的氧化矽層。第二絕緣層111會被形成在多晶矽層109上,以覆蓋核心基底105的前表面、後表面和側壁。此外,第二絕緣層111也可以覆蓋第一晶圓101的多個空腔103。半導體基底100B的其他細節可以參考半導體基底100A的前述說明,並且在此不再重複。Afterwards, in step S305, the second wafer 102 is bonded to the first wafer 101 to cover a plurality of cavities 103 to obtain a semiconductor substrate 100B, wherein the mirror polished polysilicon layer 109 is disposed on the first insulating layer 107 and the second insulating layer 107. Between one wafer 101. In addition, the second insulating layer 111 is disposed between the mirror-polished polysilicon layer 109 and the first wafer 101 . The semiconductor substrate 100B includes a first wafer 101, and the first wafer 101 includes a plurality of cavities 103 disposed on an upper surface thereof. In addition, the semiconductor substrate 100B further includes a second wafer 102 bonded to the first wafer 101 to cover the plurality of cavities 103 . The difference between the semiconductor substrate 100B in step S305 in FIG. 3 and the semiconductor substrate 100A in step S205 in FIG. The second insulating layer 111 between the wafer 101 and the polysilicon layer 109 . The second insulating layer 111 may be composed of silicon oxide, silicon nitride, silicon oxynitride or a combination thereof. In some embodiments, the second insulating layer 111 is a silicon oxide layer formed by thermally oxidizing the polysilicon layer 109 . The second insulating layer 111 is formed on the polysilicon layer 109 to cover the front surface, the rear surface and the sidewall of the core substrate 105 . In addition, the second insulating layer 111 may also cover the cavities 103 of the first wafer 101 . For other details of the semiconductor substrate 100B, reference may be made to the foregoing description of the semiconductor substrate 100A, and will not be repeated here.

接下來,在步驟S306的階段,半導體基底100B會被處理,以去除第二晶圓102的一些部分。在本製程階段,部分的核心基底105、部分的第一絕緣層107、部分的鏡面拋光多晶矽層109和部分的第二絕緣層111會被保留在第一晶圓101上,以作為中間結構112。Next, in step S306 , the semiconductor substrate 100B is processed to remove some portions of the second wafer 102 . At this process stage, part of the core substrate 105 , part of the first insulating layer 107 , part of the mirror-polished polysilicon layer 109 and part of the second insulating layer 111 will remain on the first wafer 101 as an intermediate structure 112 .

隨後,在步驟S307的階段,中間結構112會被處理,以完全去除核心基底105和第一絕緣層107。在一些實施例中,核心基底105、第一絕緣層107、鏡面拋光多晶矽層109和第二絕緣層111可以藉由背面研磨製程或化學機械研磨製程去除。因此,鏡面拋光多晶矽層109的下部和第二絕緣層111的下部會被保留在第一晶圓101上以覆蓋多個空腔103,而獲得用於製作微機電裝置的基底202。第一晶圓101上的鏡面拋光多晶矽層109的剩餘部分會被用作微機電裝置的多晶矽元件層110。第二絕緣層111的剩餘部分會被設置在多晶矽元件層110和第一晶圓101之間。Subsequently, in step S307 , the intermediate structure 112 is processed to completely remove the core substrate 105 and the first insulating layer 107 . In some embodiments, the core substrate 105 , the first insulating layer 107 , the mirror-polished polysilicon layer 109 and the second insulating layer 111 may be removed by a back grinding process or a chemical mechanical polishing process. Therefore, the lower portion of the mirror-polished polysilicon layer 109 and the lower portion of the second insulating layer 111 are left on the first wafer 101 to cover the plurality of cavities 103 to obtain the substrate 202 for fabricating MEMS devices. The remaining portion of the mirror-polished polysilicon layer 109 on the first wafer 101 is used as the polysilicon device layer 110 of the MEMS device. The rest of the second insulating layer 111 is disposed between the polysilicon device layer 110 and the first wafer 101 .

第4圖是本揭露另一實施例的製作半導體基底100C和處理用於MEMS裝置的半導體基底100C以形成基底203的方法的數個階段的剖面示意圖。第4圖中的步驟S401和步驟S402的第一晶圓101和形成多個空腔103的細節可以與第1圖中的步驟S101和步驟S102對應的說明相同,並且在此不再重複。FIG. 4 is a schematic cross-sectional view of several stages of a method for fabricating a semiconductor substrate 100C and processing the semiconductor substrate 100C for MEMS devices to form a substrate 203 according to another embodiment of the present disclosure. The details of the first wafer 101 and the formation of multiple cavities 103 in step S401 and step S402 in FIG. 4 may be the same as those corresponding to step S101 and step S102 in FIG. 1 , and will not be repeated here.

隨後,在步驟S403的階段,在一些實施例中,黏合層113會被形成以包覆第一晶圓101,並且黏合層113還共形地形成於多個空腔103的側壁和底表面上。黏合層113可以是藉由熱氧化或沉積製程而形成的氧化矽層。Subsequently, at the stage of step S403, in some embodiments, an adhesive layer 113 is formed to cover the first wafer 101, and the adhesive layer 113 is also conformally formed on the sidewalls and bottom surfaces of the plurality of cavities 103 . The adhesive layer 113 may be a silicon oxide layer formed by thermal oxidation or deposition process.

接下來,在步驟S404的階段,在一些實施例中,提供諸如矽晶圓或含矽晶圓的核心基底105。隨後,將第一絕緣層107形成於核心基板105的前表面、後表面和側壁上,以包覆核心基板105。第一絕緣層107可以是藉由熱氧化或沉積製程而形成的氧化矽層。此後,在第一絕緣層107上沉積多晶矽層,以包覆第一絕緣層107和核心基底105。然後,藉由拋光製程處理沉積的多晶矽層,以獲得鏡面拋光多晶矽層109,其中鏡面拋光多晶矽層109包覆第一絕緣層107和核心基底105。在一些實施例中,鏡面拋光多晶矽層109的厚度可以從大約1 µm至大約10 µm。在步驟S404的階段,在一些實施例中,第二晶圓102包括核心基底105、第一絕緣層107和鏡面拋光多晶矽層109。第一絕緣層107和鏡面拋光多晶矽層109皆包覆核心基底105。鏡面拋光製程可以調整鏡面拋光多晶矽層109的表面粗糙度,並為微機電裝置的元件層提供更好的薄膜品質。Next, at the stage of step S404 , in some embodiments, a core substrate 105 such as a silicon wafer or a silicon-containing wafer is provided. Subsequently, a first insulating layer 107 is formed on the front surface, rear surface and sidewalls of the core substrate 105 to cover the core substrate 105 . The first insulating layer 107 may be a silicon oxide layer formed by thermal oxidation or deposition process. Thereafter, a polysilicon layer is deposited on the first insulating layer 107 to cover the first insulating layer 107 and the core substrate 105 . Then, the deposited polysilicon layer is processed by a polishing process to obtain a mirror-polished polysilicon layer 109 , wherein the mirror-polished polysilicon layer 109 covers the first insulating layer 107 and the core substrate 105 . In some embodiments, the mirror polished polysilicon layer 109 may have a thickness from about 1 µm to about 10 µm. At the stage of step S404 , in some embodiments, the second wafer 102 includes a core substrate 105 , a first insulating layer 107 and a mirror-polished polysilicon layer 109 . Both the first insulating layer 107 and the mirror polished polysilicon layer 109 cover the core substrate 105 . The mirror polishing process can adjust the surface roughness of the mirror polished polysilicon layer 109 and provide better film quality for the element layer of the MEMS device.

此後,在步驟S405的階段,第二晶圓102會與第一晶圓101鍵合,以覆蓋多個空腔103,而獲得半導體基底100C,其中鏡面拋光多晶矽層109會被設置在第一絕緣層107和第一晶圓101之間。此外,鏡面拋光多晶矽層109會被設置在第一絕緣層107和黏合層113之間。熔融鍵合(fusion bonding)發生在黏合層113和多個空腔103的接觸面,也發生在黏合層113和鏡面拋光多晶矽層109的接觸面,其增進了鏡面拋光多晶矽層109的黏合。Thereafter, at the stage of step S405, the second wafer 102 will be bonded to the first wafer 101 to cover the plurality of cavities 103 to obtain the semiconductor substrate 100C, wherein the mirror polished polysilicon layer 109 will be disposed on the first insulating layer 107 and the first wafer 101. In addition, a mirror-polished polysilicon layer 109 is disposed between the first insulating layer 107 and the adhesive layer 113 . Fusion bonding occurs at the interface between the adhesive layer 113 and the plurality of cavities 103 , and also at the interface between the adhesive layer 113 and the mirror-polished polysilicon layer 109 , which enhances the adhesion of the mirror-polished polysilicon layer 109 .

半導體基底100C包括第一晶圓101,且第一晶圓101包括設置在其上部表面的多個空腔103。此外,半導體基底100C還包括與第一晶圓101鍵合以覆蓋多個空腔103的第二晶圓102。第4圖中的步驟S405的半導體基底100C和第2圖中的步驟S205的半導體基底100A之間的區別在於,半導體基底100C還包括包覆第一晶圓101並且共形地設置在多個空腔103的側壁和底表面上的黏合層113。黏合層113可以由氧化矽、氮化矽、氮氧化矽或其組合組成。在一些實施例中,黏合層113是藉由熱氧化第一晶圓101所形成的氧化矽層。黏合層113形成於第一晶圓101的上部表面、底表面和側壁上,以及形成於每個空腔103的側壁和底表面上。半導體基底100C的其他細節可以參考半導體基底100A的前述說明,並且在此不再重複。The semiconductor substrate 100C includes a first wafer 101, and the first wafer 101 includes a plurality of cavities 103 disposed on an upper surface thereof. In addition, the semiconductor substrate 100C further includes a second wafer 102 bonded to the first wafer 101 to cover the plurality of cavities 103 . The difference between the semiconductor substrate 100C of step S405 in FIG. 4 and the semiconductor substrate 100A of step S205 in FIG. Adhesive layer 113 on the sidewall and bottom surface of cavity 103 . The adhesive layer 113 may be composed of silicon oxide, silicon nitride, silicon oxynitride or a combination thereof. In some embodiments, the adhesive layer 113 is a silicon oxide layer formed by thermally oxidizing the first wafer 101 . The adhesive layer 113 is formed on the upper surface, the bottom surface and the sidewall of the first wafer 101 , and is formed on the sidewall and the bottom surface of each cavity 103 . For other details of the semiconductor substrate 100C, reference may be made to the foregoing description of the semiconductor substrate 100A, and will not be repeated here.

接下來,在步驟S406的階段,半導體基底100C會被處理,以去除部分的第二晶圓102。在本製程階段,部分的核心基底105、部分的第一絕緣層107和部分的鏡面拋光多晶矽層109會被保留在第一晶圓101上,作為中間結構112。Next, in step S406 , the semiconductor substrate 100C is processed to remove part of the second wafer 102 . At this process stage, part of the core substrate 105 , part of the first insulating layer 107 and part of the mirror-polished polysilicon layer 109 are left on the first wafer 101 as the intermediate structure 112 .

隨後,在步驟S407的階段,中間結構112會被處理以完全去除核心基底105和第一絕緣層107。在一些實施例中,核心基底105、第一絕緣層107和鏡面拋光多晶矽層109可以藉由背面研磨製程或化學機械研磨製程去除。因此,鏡面拋光多晶矽層109的下部會被保留在第一晶圓101上,成為多晶矽元件層110,而獲得用於製作微機電裝置的基底203。基底203包括多晶矽元件層110、黏合層113和第一晶圓101。多晶矽元件層110覆蓋第一晶圓101的多個空腔103。黏合層113會被設置在多晶矽元件層110和第一晶圓101之間,並且共形地被設置在多個空腔103的側壁和底表面上,並且還包覆第一晶圓101。Subsequently, in step S407 , the intermediate structure 112 is processed to completely remove the core substrate 105 and the first insulating layer 107 . In some embodiments, the core substrate 105 , the first insulating layer 107 and the mirror polished polysilicon layer 109 may be removed by a back grinding process or a chemical mechanical polishing process. Therefore, the lower portion of the mirror-polished polysilicon layer 109 remains on the first wafer 101 to become the polysilicon device layer 110 , thereby obtaining the substrate 203 for fabricating MEMS devices. The base 203 includes a polysilicon device layer 110 , an adhesive layer 113 and a first wafer 101 . The polysilicon device layer 110 covers the cavities 103 of the first wafer 101 . The adhesive layer 113 is disposed between the polysilicon device layer 110 and the first wafer 101 , and is conformally disposed on the sidewalls and bottom surfaces of the plurality of cavities 103 , and also covers the first wafer 101 .

第5圖是本揭露另一實施例的製作半導體基底100D和處理用於MEMS裝置的半導體基底100D以形成基底204的方法的數個階段的剖面示意圖。第5圖中的步驟S501和步驟S502的第一晶圓101和形成空腔103的細節可以與圖1中的步驟S101和步驟S102對應的說明相同,並且在此不再重複。此外,在第5圖中的步驟S503形成黏合層113的細節可以與在第4圖中的步驟S403對應的說明相同,並且在此不再重複。FIG. 5 is a schematic cross-sectional view of several stages of a method for fabricating a semiconductor substrate 100D and processing the semiconductor substrate 100D for MEMS devices to form a substrate 204 according to another embodiment of the present disclosure. Details of the first wafer 101 and the cavity 103 formed in step S501 and step S502 in FIG. 5 may be the same as those corresponding to step S101 and step S102 in FIG. 1 , and will not be repeated here. In addition, the details of forming the adhesive layer 113 in step S503 in FIG. 5 may be the same as the description corresponding to step S403 in FIG. 4 , and will not be repeated here.

接下來,在步驟S504的階段,在一些實施例中,提供諸如矽晶圓或含矽晶圓的核心基底105。隨後,形成第一絕緣層107在核心基板105的前表面、後表面和側壁上,以包覆核心基板105。第一絕緣層107可以是藉由熱氧化或沉積製程形成的氧化矽層。此後,在第一絕緣層107上沉積多晶矽層,以包覆第一絕緣層107和核心基底105。然後,藉由拋光製程處理沉積的多晶矽層,以獲得鏡面拋光多晶矽層109,其中鏡面拋光多晶矽層109包覆第一絕緣層107和核心基底105。在一些實施例中,鏡面拋光多晶矽層109的厚度可以從大約1 µm至大約10 µm。隨後,在鏡面拋光多晶矽層109上形成第二絕緣層111,以包覆鏡面拋光多晶矽層109、第一絕緣層107和核心基底105。在步驟S504的階段,在一些實施例中,第二晶圓102包括核心基底105、第一絕緣層107、鏡面拋光多晶矽層109和第二絕緣層111。鏡面拋光製程可以調整鏡面拋光多晶矽層109的表面粗糙度,並為微機電裝置的元件層提供更好的薄膜品質。Next, at the stage of step S504 , in some embodiments, a core substrate 105 such as a silicon wafer or a silicon-containing wafer is provided. Subsequently, a first insulating layer 107 is formed on the front surface, rear surface and sidewalls of the core substrate 105 to cover the core substrate 105 . The first insulating layer 107 may be a silicon oxide layer formed by thermal oxidation or deposition process. Thereafter, a polysilicon layer is deposited on the first insulating layer 107 to cover the first insulating layer 107 and the core substrate 105 . Then, the deposited polysilicon layer is processed by a polishing process to obtain a mirror-polished polysilicon layer 109 , wherein the mirror-polished polysilicon layer 109 covers the first insulating layer 107 and the core substrate 105 . In some embodiments, the mirror polished polysilicon layer 109 may have a thickness from about 1 µm to about 10 µm. Subsequently, a second insulating layer 111 is formed on the mirror-polished polysilicon layer 109 to cover the mirror-polished polysilicon layer 109 , the first insulating layer 107 and the core substrate 105 . At the stage of step S504 , in some embodiments, the second wafer 102 includes the core substrate 105 , the first insulating layer 107 , the mirror-polished polysilicon layer 109 and the second insulating layer 111 . The mirror polishing process can adjust the surface roughness of the mirror polished polysilicon layer 109 and provide better film quality for the component layers of the MEMS device.

此後,在步驟S505的階段,第二晶圓102會與第一晶圓101鍵合以覆蓋多個空腔103,而獲得半導體基底100D,其中鏡面拋光多晶矽層109會被設置在第一絕緣層107和第一晶圓101之間。此外,鏡面拋光多晶矽層109會被設置在第一絕緣層107和第二絕緣層111之間。此外,第二絕緣層111會被設置在鏡面拋光多晶矽層109和黏合層113之間。Thereafter, at the stage of step S505, the second wafer 102 will be bonded to the first wafer 101 to cover the plurality of cavities 103 to obtain the semiconductor substrate 100D, wherein the mirror polished polysilicon layer 109 will be disposed on the first insulating layer 107 and the first wafer 101. In addition, a mirror-polished polysilicon layer 109 is disposed between the first insulating layer 107 and the second insulating layer 111 . In addition, the second insulating layer 111 is disposed between the mirror-polished polysilicon layer 109 and the adhesive layer 113 .

半導體基底100D包括第一晶圓101,且第一晶圓101包括設置在其上部表面的多個空腔103。此外,半導體基底100D還包括與第一晶圓101鍵合以覆蓋多個空腔103的第二晶圓102。第5圖中的步驟S505的半導體基底100D和第4圖中的步驟S405的半導體基底100C之間的區別在於,半導體基底100D的第二晶圓102還包括第二絕緣層111,第二絕緣層111包覆多晶矽層109並設置在第一晶圓101和多晶矽層109之間。第二絕緣層111也被設置在多晶矽層109和黏合層113之間。半導體基底100D的其他細節可以參考半導體基底100B與半導體基底100A的前述說明,並且在此不再重複。The semiconductor substrate 100D includes a first wafer 101, and the first wafer 101 includes a plurality of cavities 103 disposed on an upper surface thereof. In addition, the semiconductor substrate 100D further includes a second wafer 102 bonded to the first wafer 101 to cover the plurality of cavities 103 . The difference between the semiconductor substrate 100D in step S505 in FIG. 5 and the semiconductor substrate 100C in step S405 in FIG. 111 covers the polysilicon layer 109 and is disposed between the first wafer 101 and the polysilicon layer 109 . The second insulating layer 111 is also disposed between the polysilicon layer 109 and the adhesive layer 113 . For other details of the semiconductor substrate 100D, reference may be made to the foregoing descriptions of the semiconductor substrate 100B and the semiconductor substrate 100A, and will not be repeated here.

之後,在步驟S506的階段,半導體基底100D會被處理以去除第二晶圓102的一些部分。在本製程階段,部分的核心基底105、部分的第一絕緣層107、部分的鏡面拋光多晶矽層109和部分的第二絕緣層111會被保留在第一晶圓101上,以作為中間結構112。Afterwards, in step S506 , the semiconductor substrate 100D is processed to remove some portions of the second wafer 102 . At this process stage, part of the core substrate 105 , part of the first insulating layer 107 , part of the mirror-polished polysilicon layer 109 and part of the second insulating layer 111 will remain on the first wafer 101 as an intermediate structure 112 .

接下來,在步驟S507的階段,中間結構112會被處理以完全去除核心基底105和第一絕緣層107。在一些實施例中,核心基底105、第一絕緣層107、鏡面拋光多晶矽層109和第二絕緣層111可以藉由背面研磨製程或化學機械研磨製程去除。結果,鏡面拋光多晶矽層109的下部和第二絕緣層111的下部會被保留在第一晶圓101上以覆蓋多個空腔103,而獲得用於製作微機電裝置的基底204。第一晶圓101上的鏡面拋光多晶矽層109的剩餘部分用作微機電裝置的多晶矽元件層110。第二絕緣層111的剩餘部分會被設置在第一晶圓101上的多晶矽元件層110和黏合層113之間。基底204包括多晶矽元件層110、第二絕緣層111、黏合層113和第一晶圓101。多晶矽元件層110和第二絕緣層111覆蓋第一晶圓101的空腔103。黏合層113被設置在第二絕緣層111和第一晶圓101之間,並且共形地設置在空腔103的側壁和底表面上,並且還還繞第一晶圓101。Next, in step S507 , the intermediate structure 112 is processed to completely remove the core substrate 105 and the first insulating layer 107 . In some embodiments, the core substrate 105 , the first insulating layer 107 , the mirror-polished polysilicon layer 109 and the second insulating layer 111 may be removed by a back grinding process or a chemical mechanical polishing process. As a result, the lower portion of the mirror-polished polysilicon layer 109 and the lower portion of the second insulating layer 111 remain on the first wafer 101 to cover the plurality of cavities 103 to obtain a substrate 204 for fabricating MEMS devices. The remaining portion of the mirror-polished polysilicon layer 109 on the first wafer 101 is used as the polysilicon device layer 110 of the MEMS device. The rest of the second insulating layer 111 is disposed between the polysilicon device layer 110 and the adhesive layer 113 on the first wafer 101 . The base 204 includes a polysilicon device layer 110 , a second insulating layer 111 , an adhesive layer 113 and the first wafer 101 . The polysilicon device layer 110 and the second insulating layer 111 cover the cavity 103 of the first wafer 101 . The adhesive layer 113 is disposed between the second insulating layer 111 and the first wafer 101 , and is conformally disposed on the sidewall and bottom surface of the cavity 103 , and also surrounds the first wafer 101 .

根據本揭露的一些實施例,提供了使用一些前述半導體基底的微機電裝置。第6圖至第8圖是本揭露一些實施例的MEMS裝置200的剖面示意圖。According to some embodiments of the present disclosure, microelectromechanical devices using some of the aforementioned semiconductor substrates are provided. 6 to 8 are schematic cross-sectional views of a MEMS device 200 according to some embodiments of the present disclosure.

參考第6圖,第6圖提供了微機電裝置200,其係藉由使用第1圖中步驟S106的基底201或第2圖中步驟S207的基底201所製作而成。如上所述,微機電裝置200的基底301可以由第1圖中步驟S105的半導體基底100或第2圖中步驟S205的半導體基底100A形成。如第6圖所示,微機電裝置200包括切割後晶圓(singulated wafer)401、多晶矽元件層110和微機電結構211。切割後晶圓401是部分的第一晶圓101,其可以藉由在第一晶圓101上執行分離製程而獲得。切割後晶圓401也被稱為微機電裝置200的支撐基底。切割後晶圓401在其前表面上具有空腔103。多晶矽元件層110設置在切割後晶圓401的前表面上,以覆蓋空腔103。微機電結構211設置在多晶矽元件層110上。在本實施例中,微機電結構211是壓電微機械超聲波換能器(piezoelectric micro-machined ultrasonic transducer, PMUT),其包括設置在上電極層222和下電極層224之間的壓電材料層220。此外,微機電結構211還包括設置在壓電材料層220、上電極層222和下電極層224上的介電層226。介電質層226具有多個開口228,以暴露部分的下電極層224和部分的上電極層222,該些電極層係經由導線230以電連接至外部電路(第6圖中未示出)。在微機電裝置200的操作過程中,懸掛在空腔103上方的薄膜可以一預定頻率振動,此預定頻率會部分地受到多晶矽元件層110的厚度和彈性的影響。Referring to FIG. 6, FIG. 6 provides a MEMS device 200 fabricated by using the substrate 201 in step S106 in FIG. 1 or the substrate 201 in step S207 in FIG. 2 . As described above, the substrate 301 of the MEMS device 200 may be formed from the semiconductor substrate 100 in step S105 in FIG. 1 or the semiconductor substrate 100A in step S205 in FIG. 2 . As shown in FIG. 6 , the MEMS device 200 includes a singulated wafer 401 , a polysilicon device layer 110 and a MEMS structure 211 . The diced wafer 401 is a part of the first wafer 101 which can be obtained by performing a separation process on the first wafer 101 . The diced wafer 401 is also referred to as a supporting substrate of the MEMS device 200 . The diced wafer 401 has cavities 103 on its front surface. The polysilicon device layer 110 is disposed on the front surface of the diced wafer 401 to cover the cavity 103 . The MEMS structure 211 is disposed on the polysilicon device layer 110 . In this embodiment, the MEMS structure 211 is a piezoelectric micro-machined ultrasonic transducer (piezoelectric micro-machined ultrasonic transducer, PMUT), which includes a piezoelectric material layer disposed between the upper electrode layer 222 and the lower electrode layer 224 220. In addition, the MEMS structure 211 further includes a dielectric layer 226 disposed on the piezoelectric material layer 220 , the upper electrode layer 222 and the lower electrode layer 224 . The dielectric layer 226 has a plurality of openings 228 to expose a portion of the lower electrode layer 224 and a portion of the upper electrode layer 222, and these electrode layers are electrically connected to an external circuit (not shown in FIG. 6 ) via wires 230 . During operation of the MEMS device 200 , the membrane suspended above the cavity 103 may vibrate at a predetermined frequency, which is affected in part by the thickness and elasticity of the polysilicon device layer 110 .

參考第7圖,第7圖提供了藉由使用第3圖中步驟S307的基底202所製作的微機電裝置200。如上所述,微機電裝置200的基底302可以由第3圖中步驟S305的半導體基底100B形成。如第7圖所示,微機電裝置200包括切割後晶圓401、多晶矽元件層110、第二絕緣層111和微機電結構212。切割後晶圓401在其前表面上具有多個空腔103。儘管第7圖示出了兩個空腔103,但是切割後晶圓401可以具有一個或多於兩個的空腔103。第二絕緣層111會被設置在多晶矽元件層110和切割後晶圓401之間。微機電結構212會被設置在多晶矽元件層110上。在本實施例中,微機電結構212包括微機電共振器和多個濾波器。微機電結構212還包括設置在上電極層222和下電極層224之間的壓電材料層220。壓電材料層220具有開口225,以暴露部分的下電極層224。導線230共形地設置在開口225的側壁和底表面上,其係用於將下電極層224電連接至外部電路(第7圖中未示出)。保護層227會被設置在上電極層222上,並且具有暴露部分的上電極層222的開口。另一導線230會被設置在部分的上電極層222上,用於電連接至外部電路(第7圖中未示出)。此外,微機電結構212、多晶矽元件層110和第二絕緣層111可以一起被圖案化,以形成與切割後晶圓401的多個空腔103連接的多個通孔232。在微機電裝置200的操作過程中,懸掛在空腔103上方的薄膜可以一預定的共振頻率振動,此共振頻率部分地受到多晶矽元件層110的厚度和彈性的影響。Referring to FIG. 7 , FIG. 7 provides the MEMS device 200 fabricated by using the substrate 202 of step S307 in FIG. 3 . As mentioned above, the substrate 302 of the MEMS device 200 can be formed from the semiconductor substrate 100B in step S305 in FIG. 3 . As shown in FIG. 7 , the MEMS device 200 includes a diced wafer 401 , a polysilicon element layer 110 , a second insulating layer 111 and a MEMS structure 212 . The diced wafer 401 has a plurality of cavities 103 on its front surface. Although two cavities 103 are shown in FIG. 7 , the as-diced wafer 401 may have one or more than two cavities 103 . The second insulating layer 111 is disposed between the polysilicon device layer 110 and the diced wafer 401 . The MEMS structure 212 is disposed on the polysilicon device layer 110 . In this embodiment, the MEMS structure 212 includes a MEMS resonator and a plurality of filters. The microelectromechanical structure 212 also includes a piezoelectric material layer 220 disposed between an upper electrode layer 222 and a lower electrode layer 224 . The piezoelectric material layer 220 has an opening 225 to expose a portion of the lower electrode layer 224 . Wires 230 are conformally disposed on the sidewalls and bottom surface of the opening 225 for electrically connecting the lower electrode layer 224 to an external circuit (not shown in FIG. 7 ). The passivation layer 227 is disposed on the upper electrode layer 222 and has an opening exposing a portion of the upper electrode layer 222 . Another wire 230 is disposed on part of the upper electrode layer 222 for electrical connection to an external circuit (not shown in FIG. 7 ). In addition, the MEMS structure 212 , the polysilicon device layer 110 and the second insulating layer 111 may be patterned together to form a plurality of vias 232 connected to the cavities 103 of the diced wafer 401 . During operation of the MEMS device 200 , the membrane suspended above the cavity 103 can vibrate at a predetermined resonant frequency, which is affected in part by the thickness and elasticity of the polysilicon device layer 110 .

參考第8圖,第8圖提供了藉由使用第4圖中步驟S407的基底203所製作的微機電裝置200。如上所述,微機電裝置200的基底303可以由第4圖中步驟S405的半導體基底100C形成。如第8圖所示,微機電裝置200包括切割後晶圓401、多晶矽元件層110、黏合層113和微機電結構213,其中微機電結構213由多晶矽元件層110形成,並且切割後晶圓401在其前表面上具有多個空腔103。在形成微機電結構213之後,第4圖中步驟S407的基底203會被薄化,且接著被切割成數塊。因此,如第8圖所示,黏合層113會被共形地設置在切割後晶圓401的前表面以及多個空腔103的側壁和底表面上。多晶矽元件層110被設置在黏合層113上。在本實施例中,微機電結構213是微機電加速度器及/或陀螺儀,其藉由圖案化多晶矽元件層110以形成多個突出部分207和多個通孔205而被形成,且多個通孔205與切割後晶圓401的多個空腔103連接。此外,微機電結構213還包括多條導線206,其形成在圖案化多晶矽元件層110的多個突出部分207上。在微機電裝置200是加速計或陀螺儀的情況下,懸掛在空腔103上的部份的多晶矽元件層110可用作可移動的驗證質量(proof mass)。在微機電系統裝置200的操作過程中,當外力施加到微機電系統裝置200時,可移動的驗證質量可從其原始位置移位。由多晶矽元件層110形成的可移動的驗證質量的位移程度會部分地受到可移動的驗證質量的質量的影響。Referring to FIG. 8 , FIG. 8 provides the MEMS device 200 fabricated by using the substrate 203 of step S407 in FIG. 4 . As described above, the substrate 303 of the MEMS device 200 may be formed from the semiconductor substrate 100C in step S405 in FIG. 4 . As shown in FIG. 8, the MEMS device 200 includes a diced wafer 401, a polysilicon element layer 110, an adhesive layer 113, and a MEMS structure 213, wherein the MEMS structure 213 is formed by the polysilicon element layer 110, and the diced wafer 401 It has a plurality of cavities 103 on its front surface. After the MEMS structure 213 is formed, the substrate 203 in step S407 in FIG. 4 is thinned and then cut into several pieces. Therefore, as shown in FIG. 8 , the adhesive layer 113 is conformally disposed on the front surface of the diced wafer 401 and the sidewalls and bottom surfaces of the plurality of cavities 103 . The polysilicon device layer 110 is disposed on the adhesive layer 113 . In this embodiment, the microelectromechanical structure 213 is a microelectromechanical accelerometer and/or gyroscope, which is formed by patterning the polysilicon element layer 110 to form a plurality of protrusions 207 and a plurality of through holes 205, and a plurality of The vias 205 are connected to the plurality of cavities 103 of the diced wafer 401 . In addition, the MEMS structure 213 further includes a plurality of wires 206 formed on the plurality of protrusions 207 of the patterned polysilicon device layer 110 . In the case where the MEMS device 200 is an accelerometer or a gyroscope, the portion of the polysilicon device layer 110 suspended above the cavity 103 may serve as a movable proof mass. During operation of the MEMS device 200, when an external force is applied to the MEMS device 200, the movable proof mass may be displaced from its original position. The degree of displacement of the movable proof mass formed by the polysilicon device layer 110 is affected in part by the mass of the movable proof mass.

本案的微機電結構和微機電裝置200的基底可以是第6圖至第8圖所示的實施例,但不限於此。微機電裝置200的微機電結構包括微機電共振器(resonator)和濾波器、電容微機械超聲波換能器(capacitive micro-machined ultrasonic transducer, CMUT)、壓電微機械超聲波換能器(piezoelectric micro-machined ultrasonic transducer, PMUT)、微機電加速度器、微機電陀螺儀、慣性感測器、壓力感測器、微流體元件、其他微型元件或其組合。此外,微機電裝置200的基底可以取自本揭露實施例的任何一個半導體基底。The MEMS structure and the substrate of the MEMS device 200 of this application may be the embodiments shown in FIG. 6 to FIG. 8 , but are not limited thereto. The MEMS structure of the MEMS device 200 includes a MEMS resonator (resonator) and a filter, a capacitive micro-machined ultrasonic transducer (CMUT), a piezoelectric micro-machined ultrasonic transducer (piezoelectric micro- machined ultrasonic transducer, PMUT), MEMS accelerometers, MEMS gyroscopes, inertial sensors, pressure sensors, microfluidic components, other micro components or combinations thereof. In addition, the substrate of the MEMS device 200 can be taken from any semiconductor substrate of the disclosed embodiments.

根據本揭露的實施例,半導體基底的第二晶圓提供用於製造微機電裝置的多晶矽元件層。微機電裝置的多晶矽元件層藉由對多晶矽層進行沉積製程和鏡面拋光製程而形成,使得多晶矽元件層可被精確控制其厚度,以提高微機電裝置的性能。此外,可藉由調整多晶矽層的摻雜水準來精確控制多晶矽元件層的電阻率。因此,使用多晶矽元件層的微機電裝置的電性表現也得到增強。According to an embodiment of the present disclosure, the second wafer of semiconductor substrate provides a layer of polysilicon devices for fabricating MEMS devices. The polysilicon element layer of the MEMS device is formed by performing a deposition process and a mirror polishing process on the polysilicon layer, so that the thickness of the polysilicon element layer can be precisely controlled to improve the performance of the MEMS device. In addition, the resistivity of the polysilicon device layer can be precisely controlled by adjusting the doping level of the polysilicon layer. Therefore, the electrical performance of the MEMS device using the polysilicon device layer is also enhanced.

此外,根據本揭露的實施例,用於微機電裝置的半導體基底是在不使用SOI晶圓的情況下而被製作。因此,與習知藉由使用SOI晶圓所製作的微機電裝置的基底相比,本揭露的半導體基底的製作過程具有耗時更少且成本更低的效果。Furthermore, according to embodiments of the present disclosure, semiconductor substrates for MEMS devices are fabricated without using SOI wafers. Therefore, compared with conventional MEMS device substrates fabricated by using SOI wafers, the fabrication process of the semiconductor substrate of the present disclosure has the effect of less time-consuming and lower cost.

此外,根據本揭露的實施例,在製作半導體基底的過程,可基於微機電裝置的需求來調整多晶矽元件層的厚度和空腔的尺寸。因此,與習知藉由使用SOI晶圓所製作的微機電裝置的基底相比,本揭露的半導體基底的製作過程可較佳地控制製程參數並具有更大的製作彈性。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 In addition, according to the embodiments of the present disclosure, in the process of manufacturing the semiconductor substrate, the thickness of the polysilicon device layer and the size of the cavity can be adjusted based on the requirements of the MEMS device. Therefore, compared with conventional MEMS device substrates manufactured by using SOI wafers, the semiconductor substrate manufacturing process of the present disclosure can better control process parameters and have greater manufacturing flexibility. The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

100:半導體基底 101:第一晶圓 102:第二晶圓 103:空腔 105:核心基底 107:第一絕緣層 108:多晶矽層 109:鏡面拋光多晶矽層 110:多晶矽元件層 111:第二絕緣層 112:中間結構 113:黏合層 200:微機電裝置 205:通孔 206:導電線路 207:突出部 211、212、213:微機電結構 220:壓電材料層 222:上電極層 224:下電極層 225、228:開口 226:介電層 227:保護層 230:導電線路 232:通孔 303:基底 401:切割後晶圓 S101~S106:步驟 S201~S207:步驟 S301~S307:步驟 S401~S407:步驟 S501~S507:步驟 100: Semiconductor substrate 101:First Wafer 102:Second wafer 103: cavity 105: core substrate 107: The first insulating layer 108: polysilicon layer 109:Mirror polished polysilicon layer 110: Polysilicon component layer 111: second insulating layer 112: Intermediate structure 113: Adhesive layer 200: MEMS devices 205: through hole 206: conductive line 207: protrusion 211, 212, 213: MEMS structures 220: piezoelectric material layer 222: Upper electrode layer 224: Lower electrode layer 225, 228: opening 226: dielectric layer 227: protective layer 230: conductive line 232: Through hole 303: Base 401: Wafer after dicing S101~S106: steps S201~S207: steps S301~S307: steps S401~S407: steps S501~S507: steps

為了使下文更容易被理解,在閱讀本揭露時可同時參考圖式及其詳細文字說明。透過本文中之具體實施例並參考相對應的圖式,俾以詳細解說本揭露之具體實施例,並用以闡述本揭露之具體實施例之作用原理。 第1圖是本揭露一實施例的製作半導體基底和處理用於MEMS裝置的半導體基底的方法的數個階段的剖面示意圖。 第2圖是本揭露另一實施例的製作半導體基底和處理用於MEMS裝置的半導體基底的方法的數個階段的剖面示意圖。 第3圖是本揭露另一實施例的製作半導體基底和處理用於MEMS裝置的半導體基底的方法的數個階段的剖面示意圖。 第4圖是本揭露另一實施例的製作半導體基底和處理用於MEMS裝置的半導體基底的方法的數個階段的剖面示意圖。 第5圖是本揭露另一實施例的製作半導體基底和處理用於MEMS裝置的半導體基底的方法的數個階段的剖面示意圖。 第6圖是本揭露一實施例的MEMS裝置的剖面示意圖。 第7圖是本揭露另一實施例的MEMS裝置的剖面示意圖。 第8圖是本揭露另一實施例的MEMS裝置的剖面示意圖。 In order to make the following easier to understand, you can refer to the drawings and their detailed descriptions at the same time when reading this disclosure. Through the specific embodiments herein and referring to the corresponding drawings, the specific embodiments of the present disclosure are explained in detail, and the working principle of the specific embodiments of the present disclosure is explained. FIG. 1 is a schematic cross-sectional view of several stages of a method for fabricating a semiconductor substrate and processing a semiconductor substrate for a MEMS device according to an embodiment of the present disclosure. FIG. 2 is a schematic cross-sectional view of several stages of a method for fabricating a semiconductor substrate and processing the semiconductor substrate for MEMS devices according to another embodiment of the present disclosure. FIG. 3 is a schematic cross-sectional view of several stages of a method for fabricating a semiconductor substrate and processing the semiconductor substrate for MEMS devices according to another embodiment of the present disclosure. FIG. 4 is a schematic cross-sectional view of several stages of a method for fabricating a semiconductor substrate and processing the semiconductor substrate for MEMS devices according to another embodiment of the present disclosure. FIG. 5 is a schematic cross-sectional view of several stages of a method for fabricating a semiconductor substrate and processing the semiconductor substrate for MEMS devices according to another embodiment of the present disclosure. FIG. 6 is a schematic cross-sectional view of a MEMS device according to an embodiment of the present disclosure. FIG. 7 is a schematic cross-sectional view of a MEMS device according to another embodiment of the present disclosure. FIG. 8 is a schematic cross-sectional view of a MEMS device according to another embodiment of the present disclosure.

100:半導體基底 100: Semiconductor substrate

101:第一晶圓 101:First Wafer

102:第二晶圓 102:Second wafer

103:空腔 103: cavity

105:核心基底 105: core substrate

107:第一絕緣層 107: The first insulating layer

108:多晶矽層 108: polysilicon layer

109:鏡面拋光多晶矽層 109:Mirror polished polysilicon layer

110:多晶矽元件層 110: Polysilicon component layer

S101:步驟 S101: step

S102:步驟 S102: step

S103:步驟 S103: step

S104:步驟 S104: step

S105:步驟 S105: step

S106:步驟 S106: step

Claims (13)

一種半導體基底的製作方法,包括: 提供一第一晶圓; 蝕刻該第一晶圓的一第一表面以形成多個空腔; 形成一第二晶圓於該第一表面上,其中形成該第二晶圓包括: 提供一核心基底; 形成一第一絕緣層於該核心基底上; 沉積一多晶矽層於該第一絕緣層以及該核心基底上;以及 鍵合該多晶矽層與該第一晶圓以覆蓋該些空腔,其中該多晶矽層設置於該第一絕緣層以及該第一晶圓之間。 A method of manufacturing a semiconductor substrate, comprising: providing a first wafer; etching a first surface of the first wafer to form cavities; forming a second wafer on the first surface, wherein forming the second wafer includes: provide a core base; forming a first insulating layer on the core substrate; depositing a polysilicon layer on the first insulating layer and the core substrate; and Bonding the polysilicon layer and the first wafer to cover the cavities, wherein the polysilicon layer is disposed between the first insulating layer and the first wafer. 如請求項1所述的半導體基底的製作方法,其中當完成形成該第一絕緣層於該核心基底上時,該第一絕緣層包覆該核心基底。The method for manufacturing a semiconductor substrate as claimed in claim 1, wherein when the first insulating layer is formed on the core substrate, the first insulating layer covers the core substrate. 如請求項1所述的半導體基底的製作方法,其中當完成沉積該多晶矽層於該第一絕緣層層以及該核心基底上時,該多晶矽層包覆該核心基底。The method for manufacturing a semiconductor substrate as claimed in claim 1, wherein when the polysilicon layer is deposited on the first insulating layer and the core substrate, the polysilicon layer covers the core substrate. 如請求項1所述的半導體基底的製作方法,其中形成該第二晶圓更包括拋光該多晶矽層以形成一鏡面拋光多晶矽層。The method for manufacturing a semiconductor substrate as claimed in claim 1, wherein forming the second wafer further includes polishing the polysilicon layer to form a mirror polished polysilicon layer. 如請求項4所述的半導體基底的製作方法,其中形成該第二晶圓更包括形成一第二絕緣層以包覆該鏡面拋光多晶矽層。The method for manufacturing a semiconductor substrate as claimed in claim 4, wherein forming the second wafer further includes forming a second insulating layer to cover the mirror-polished polysilicon layer. 如請求項1所述的半導體基底的製作方法,在鍵合該多晶矽層與該第一晶圓之前,更包括形成一黏合層以包覆該第一晶圓並共形地形成於該些空腔的側壁和底表面。The manufacturing method of the semiconductor substrate according to claim 1, before bonding the polysilicon layer and the first wafer, further includes forming an adhesive layer to cover the first wafer and conformally form in the cavities side walls and bottom surface of the cavity. 如請求項6所述的半導體基底的製作方法,其中該第一晶圓與該核心基底包含矽,且形成該第一絕緣層、形成該第二絕緣層和形成該黏合層包括一熱氧化製程。The method for manufacturing a semiconductor substrate as claimed in claim 6, wherein the first wafer and the core substrate comprise silicon, and forming the first insulating layer, forming the second insulating layer, and forming the adhesive layer include a thermal oxidation process . 如請求項1所述的半導體基底的製作方法,在鍵合該多晶矽層與該第一晶圓之前,更包括形成一黏合層以包覆該第一晶圓並共形地形成於該些空腔的側壁和底表面。The manufacturing method of the semiconductor substrate according to claim 1, before bonding the polysilicon layer and the first wafer, further includes forming an adhesive layer to cover the first wafer and conformally form in the cavities side walls and bottom surface of the cavity. 如請求項1所述的半導體基底的製作方法,在鍵合該多晶矽層與該第一晶圓之後,更包括移除該核心基底與該第一絕緣層以暴露該多晶矽層,其中該多晶矽層係為一多晶矽元件層,該多晶矽元件層設置在該第一晶圓上並且覆蓋該些空腔。The manufacturing method of the semiconductor substrate according to claim 1, after bonding the polysilicon layer and the first wafer, further includes removing the core substrate and the first insulating layer to expose the polysilicon layer, wherein the polysilicon layer It is a polysilicon element layer, and the polysilicon element layer is arranged on the first wafer and covers the cavities. 如請求項9所述的半導體基底的製作方法,其中移除該核心基底及該第一絕緣層包括一背部研磨製程或一化學機械研磨製程。The method of manufacturing a semiconductor substrate as claimed in claim 9, wherein removing the core substrate and the first insulating layer comprises a back grinding process or a chemical mechanical polishing process. 一種微機電裝置,包括: 一支撐基底,在一上部表面上具有一空腔,並且該空腔不貫穿該支撐基底; 一黏合層,共形地設置於該支撐基底的該上部表面上,以及該空腔的側壁和底表面上; 一多晶矽元件層,設置於該支撐基底的該上部表面上以覆蓋該空腔;以及 一微機電結構,設置於該多晶矽元件層上。 A microelectromechanical device comprising: a support base having a cavity on an upper surface and the cavity does not penetrate through the support base; an adhesive layer conformally disposed on the upper surface of the support substrate, and on the sidewalls and bottom surface of the cavity; a polysilicon element layer disposed on the upper surface of the support base to cover the cavity; and A MEMS structure is arranged on the polysilicon element layer. 如請求項11所述的微機電裝置,更包括一絕緣層,設置於該多晶矽元件層與該黏合層之間。The MEMS device as claimed in claim 11 further includes an insulating layer disposed between the polysilicon element layer and the adhesive layer. 如請求項11所述的微機電裝置,其中該微機電結構包括一微機電共振器和多個濾波器、一電容性微機械超聲波換能器、一壓電微機械超聲波換能器、一微機電加速度器、一微機電陀螺儀或其組合。The MEMS device as claimed in claim 11, wherein the MEMS structure includes a MEMS resonator and a plurality of filters, a capacitive MEMS ultrasonic transducer, a piezoelectric MEMS ultrasonic transducer, a micro An electromechanical accelerometer, a microelectromechanical gyroscope or a combination thereof.
TW111102746A 2022-01-22 2022-01-22 Fabrication method of semiconductor substrate and micro-electro-mechanical system (mems) device TWI824393B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111102746A TWI824393B (en) 2022-01-22 2022-01-22 Fabrication method of semiconductor substrate and micro-electro-mechanical system (mems) device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111102746A TWI824393B (en) 2022-01-22 2022-01-22 Fabrication method of semiconductor substrate and micro-electro-mechanical system (mems) device

Publications (2)

Publication Number Publication Date
TW202331820A true TW202331820A (en) 2023-08-01
TWI824393B TWI824393B (en) 2023-12-01

Family

ID=88558980

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111102746A TWI824393B (en) 2022-01-22 2022-01-22 Fabrication method of semiconductor substrate and micro-electro-mechanical system (mems) device

Country Status (1)

Country Link
TW (1) TWI824393B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9040334B2 (en) * 2013-03-14 2015-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS integrated pressure sensor devices and methods of forming same
US10155656B2 (en) * 2015-10-19 2018-12-18 Taiwan Semiconductor Manufacturing Co., Ltd. Inter-poly connection for parasitic capacitor and die size improvement

Also Published As

Publication number Publication date
TWI824393B (en) 2023-12-01

Similar Documents

Publication Publication Date Title
US20230224657A1 (en) Semiconductor devices having a membrane layer with smooth stress-relieving corrugations and methods of fabrication thereof
US9458009B2 (en) Semiconductor devices and methods of forming thereof
JP4908202B2 (en) Micro electromechanical device and sealing method and manufacturing method thereof
US7923278B2 (en) Integrated getter area for wafer level encapsulated microelectromechanical systems
JP5602761B2 (en) Micro-electromechanical system device having separated microstructure and manufacturing method thereof
US8426934B2 (en) Micro-electro-mechanical system device and method for making same
US7932118B2 (en) Method of producing mechanical components of MEMS or NEMS structures made of monocrystalline silicon
US8704317B2 (en) Microstructure device with an improved anchor
TW201123921A (en) Capacitive transducer and fabrication method
US6846724B2 (en) Method for fabricating a microelectromechanical system (MEMS) device using a pre-patterned bridge
US20230370783A1 (en) Mems device with enhanced membrane structure and method of forming the same
EP2256084B1 (en) Method of manufacturing a MEMS element
TWI824393B (en) Fabrication method of semiconductor substrate and micro-electro-mechanical system (mems) device
CN116534792A (en) Method for manufacturing semiconductor substrate and micro-electromechanical device
US10584029B2 (en) Method for producing thin MEMS chips on SOI substrate and micromechanical component
CN109689566B (en) Method for producing a micromechanical component having a suspended pressure sensor device, and micromechanical component
US20230172068A1 (en) SEMICONDUCTOR SUBSTRATES, FABRICATION METHODS THEREOF and MICRO-ELECTRO-MECHANICAL SYSTEM (MEMS) DEVICES
TW202344465A (en) Micro-electro-mechanical system (mems) devices and fabrication methods thereof
TWI775231B (en) Micro-electromechanical system device and method of forming the same
CN112875642B (en) MEMS device and method of manufacturing the same
US20230294980A1 (en) Micro-electro-mechanical system (mems) devices and fabrication methods thereof
CN110366083B (en) MEMS device and preparation method thereof
CN117069051A (en) Microelectromechanical device and method of manufacturing the same
CN114105077A (en) Micro-electromechanical device and method of forming the same
CN112875641A (en) Integrated structure of MEMS device and circuit device and manufacturing method thereof