TW202331328A - 光學系統及包括其之相機模組 - Google Patents

光學系統及包括其之相機模組 Download PDF

Info

Publication number
TW202331328A
TW202331328A TW111122720A TW111122720A TW202331328A TW 202331328 A TW202331328 A TW 202331328A TW 111122720 A TW111122720 A TW 111122720A TW 111122720 A TW111122720 A TW 111122720A TW 202331328 A TW202331328 A TW 202331328A
Authority
TW
Taiwan
Prior art keywords
lens
optical axis
optical system
distance
optical
Prior art date
Application number
TW111122720A
Other languages
English (en)
Inventor
申斗植
Original Assignee
韓商Lg伊諾特股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 韓商Lg伊諾特股份有限公司 filed Critical 韓商Lg伊諾特股份有限公司
Publication of TW202331328A publication Critical patent/TW202331328A/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B2003/0093Simple or compound lenses characterised by the shape

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本發明之實施例中所揭示之光學系統包括沿著一光軸在自物件側至感測器側之一方向上安置的第一透鏡至第九透鏡,其中該第二透鏡及該第八透鏡在該光軸上具有正折射能力,且該第三透鏡及該第九透鏡在該光軸上具有一負折射能力,該第九透鏡在該光軸上的一厚度係L9_CT,該第八透鏡與該第九透鏡在該光軸上之一距離係d89_CT,且以下等式可滿足:0.05<L9_CT/d89_CT<1。

Description

光學系統及包括其之相機模組
實施例係關於一種用於經改善光學效能之光學系統及一種包括該光學系統之相機模組。
相機模組捕獲物件且將其儲存為影像或視訊,並且相機模組安裝在各種應用中。詳言之,相機模組以極小大小生產,且不僅應用於諸如智慧型手機、平板PC及膝上型電腦之攜帶型裝置,且亦應用於無人機及交通工具以提供各種功能。舉例而言,相機模組之光學系統可包括用於形成影像之成像透鏡,以及用於將所形成影像轉化成電信號之影像感測器。在此狀況下,相機模組可藉由自動地調整影像感測器與成像透鏡之間的距離來執行對準透鏡之焦距的自動聚焦(AF)功能,且可藉由經由變焦透鏡增加或減小遠端物件之放大率來執行放大或縮小之變焦功能。另外,相機模組採用影像穩定(IS)技術,以校正或避免由於不穩定的固定裝置或由使用者移動引起之相機移動而導致的影像穩定問題。
用於此相機模組獲得影像之最重要元件係形成影像之成像透鏡。近來,對諸如高影像品質及高解析度之高效率的關注正在增加,且正在進行對包括複數個透鏡之光學系統的研究以便實現此高效率。舉例而言,正進行使用具有正(+)及/或負(-)折射能力之複數個成像透鏡以實施高效率光學系統的研究。然而,在包括複數個透鏡時,存在難以導出極佳光學性質及像差性質之問題。另外,當包括複數個透鏡時,總長度、高度等可能由於複數個透鏡之厚度、間隔、大小等而增加,藉此增加包括複數個透鏡之模組之整體大小。另外,影像感測器之大小增加以實現高解析度及高清晰度。然而,當影像感測器之大小增加時,包括複數個透鏡之光學系統的總徑跡長 度(TTL)亦增加,藉此增加相機及包括光學系統之行動終端之厚度。因此,需要能夠解決上述問題之新光學系統。
本發明之實施例將提供一種具有經改善光學性質之光學系統。實施例意欲提供一種在視角之中心及周邊處具有極佳光學效能之光學系統。實施例意欲提供一種能夠具有較薄結構之光學系統。
一種根據本發明之實施例的光學系統包含第一透鏡至第九透鏡,其沿著光軸在自物件側至感測器側之方向上安置,其中第二透鏡在光軸上具有正(+)折射能力,且第三透鏡在光軸上具有負(-)折射能力,第八透鏡在光軸上具有正(+)折射能力,第九透鏡在光軸上具有負(-)折射能力,第九透鏡在光軸上的厚度係L9_CT,第八透鏡與第九透鏡之間在光軸上的距離係d89_CT且滿足以下等式:0.05<L9_CT/d89_CT<1。
根據本發明之實施例,第八透鏡在光軸上的厚度係L8_CT,且滿足以下等式:1<L8_CT/L9_CT<10。根據本發明之實施例,第七透鏡在光軸上具有正(+)折射能力。第七透鏡具有自光軸朝向感測器側凸出之彎液面形狀。
根據本發明之實施例,第六透鏡在光軸上的厚度係L6_CT,第七透鏡在光軸上的厚度係L7_CT,且滿足以下等式:3<L7_CT/L6_CT<1。根據本發明之實施例,第七透鏡在光軸上的厚度係L7_CT,第八透鏡在光軸上的厚度係L8_CT,且滿足以下等式:0.1<L7_CT/L8_CT<0.95。
一種根據本發明之實施例的光學系統包括第一透鏡至第九透鏡,其沿著光軸在自物件側至感測器側之方向上安置,第二透鏡在光軸上具有正(+)折射能力,第三透鏡在光軸上具有負(-)折射能力,第八透鏡在光軸上具有正(+)折射能力,第九透鏡在光軸上具有負(-)折射能力,其中第九透鏡包括安置於第九透鏡之物件側表面上的第二臨界點,其中第二臨界點位於第九透鏡之物件側表面相對於光軸之有效半徑的70%至95%的範圍內。
根據本發明之實施例,第九透鏡包括安置於第九透鏡之感測器側表面上的第三臨界點,且第三臨界點安置於第九透鏡相對於光軸之有效半徑的15%至40%之範圍內。
根據本發明之實施例,第八透鏡包括安置於第八透鏡之物件側表面上的第一臨界點,且第一臨界點安置於第八透鏡之物件側表面相對於光軸之有效半徑的45%至70%的範圍內。
一種根據本發明之實施例的光學系統包括第一透鏡至第九透鏡,其沿著光軸在自物件側至感測器側之方向上安置,第二透鏡在光軸上具有正(+)折射能力,且第三透鏡在光軸上具有負(-)折射能力,第八透鏡在光軸上具有正(+)折射能力,且第九透鏡在光軸上具有負(-)折射能力,L9_CT係第九透鏡在光軸上的厚度,L9_ET係第九透鏡之物件側表面之有效區的末端與第九透鏡之感測器側表面之有效區的末端之間在光軸之方向上的距離,且以下等式滿足:1<L9_ET/L9_CT<4。
根據本發明之實施例,在垂直於光軸之方向上,第八透鏡與第九透鏡之間在光軸之方向上的距離自光軸朝向位於第八透鏡之感測器側表面上的第一點增加,自第一點朝向位於第八透鏡之感測器側表面上的第二點減小,且自第二點朝向第八透鏡之感測器側表面之有效區的末端增加,其中第二點安置於第一點與第八透鏡之感測器側表面之有效區的末端之間。
根據本發明之實施例,第一點安置於第八透鏡之感測器側表面相對於光軸之有效半徑的5%至15%的範圍內。第二點安置於第八透鏡之感測器側表面相對於光軸之有效半徑的60%至80%的範圍內。第八透鏡與第九透鏡之間在光軸方向上的距離在第一點處最大且在第二點處最小。
根據本發明之實施例,d89_CT係第八透鏡之感測器側表面與第九透鏡之物件側表面之間在光軸上的距離,且d89_min係第八透鏡之感測器側表面與第九透鏡之物件側表面之間在光軸方向上的距離當中的最小值,且以下等式滿足:1<d89_CT/d89_min<40。
一種根據本發明之實施例之相機模組包括光學系統及影像感測器,光學系統可包括上文所揭示之光學系統,以下等式滿足:2<TTL <20,且總徑跡長度(TTL)意謂自第一透鏡之物件側表面至影像感測器影像表面在光軸上的距離(mm)。
根據實施例之光學系統及相機模組可具有經改善光學性質。詳言之,光學系統可具有經改善解析度,此係因為複數個透鏡具有設定形狀、焦距及類似者。根據實施例之光學系統及相機模組可具有經改善失真及像差特性,且可在視場(FOV)之中心及周邊處具有良好光學效能。根據實施例之光學系統可具有經改善光學特性及較小總徑跡長度(TTL),使得光學系統及包括其之相機模組可設置於較薄且緊密的結構中。
1:行動終端
10:相機模組
10A:第一相機模組
10B:第二相機模組
31:自動聚焦裝置
33:閃光燈模組
100:透鏡
110:第一透鏡
120:第二透鏡
130:第三透鏡
140:第四透鏡
150:第五透鏡
160:第六透鏡
170:第七透鏡
180:第八透鏡
190:第九透鏡
300:影像感測器
500:濾光片
1000:光學系統
OA:光軸
P1:第一臨界點
P2:第二臨界點
P3:第三臨界點
S1:第一表面
S2:第二表面
S3:第三表面
S4:第四表面
S5:第五表面
S6:第六表面
S7:第七表面
S8:第八表面
S9:第九表面
S10:第十表面
S11:第十一表面
S12:第十二表面
S13:第十三表面
S14:第十四表面
S15:第十五表面
S16:第十六表面
S17:第十七表面
S18:第十八表面
圖1係根據實施例之光學系統的組態圖。
圖2係說明根據實施例之光學系統之像差圖的曲線圖。
圖3係說明根據實施例之相機模組應用於行動終端的圖。
在下文中,將參看隨附圖式詳細地描述本發明之較佳實施例。本發明之技術精神不限於待描述之一些實施例,且可以各種其他形式實施,且組件中之一或多者可選擇性地組合及取代以在本發明之技術精神範疇內使用。另外,除非特定定義且明確地描述,否則本發明之實施例中使用的術語(包括技術及科學術語)可以一般熟習本發明所屬的技術者可通常理解的含義加以解釋,且諸如在辭典中定義的術語之常用術語的含義應能夠考慮到相關技術之背景含義來加以解釋。此外,本發明之實施例中使用的術語係用於解釋該等實施例,且並不意欲限制本發明。在本說明書中,除非片語中另外特定陳述,否則單數形式亦可包括複數形式,且在其中陳述A及(及)B、C中之至少一者(或一或多者)之狀況下,其可包括可與A、B及C組合的所有組合中之一或多者。在描述本發明之實施例之組件時,可使用諸如第一、第二、A、B、(a)及(b)等術語。此類術語僅用於區分組件與另一組件,且可不藉由該術語根據對應組成元件之性質、序列或程序等來判定。並且在描述組件「連接」、「耦接」或「接合」至另一組件時,描述可不僅包括直接連接、耦接或接合至另一組件,且亦包括藉由該組件與另一組件 之間的又一組件「連接」、「耦接」或「接合」。另外,在描述為形成或安置於各組件「上方(上)」或「下方(下)」之狀況下,描述不僅包括在兩個組件彼此直接接觸時,且亦包括在一或多個其他組件形成或安置於兩個組件之間時。另外,在表達為「上方(上)」或「下方(下)」時,其可指相對於一個元件之向下方向以及向上方向。
「物件側表面」可指透鏡之相對於光軸面向物件側表面的表面,且「感測器側表面」可指透鏡之相對於光軸面向成像表面(影像感測器)的表面。透鏡之凸表面可意謂透鏡表面在光軸上具有凸面形狀,且透鏡之凹表面可意謂透鏡表面在光軸上具有凹面形狀。描述於透鏡資料表中之曲率半徑、中心厚度及透鏡之間的距離可意謂光軸上的值,且單位係mm。垂直方向可意謂垂直於光軸的方向,且透鏡或透鏡表面的末端可意謂入射光穿過之透鏡的有效區的末端或邊緣。
根據實施例之光學系統1000可包括複數個透鏡100及影像感測器300。舉例而言,光學系統1000可包括五個或多於五個透鏡。詳言之,光學系統1000可包括八個或多於八個透鏡。光學系統1000可包括九個元件透鏡。光學系統1000可包括自物件側至感測器側依序配置的第一透鏡110至第九透鏡190及影像感測器300。第一透鏡至第九透鏡110、120、130、140、150、160、170、180及190可沿著光學系統1000之光軸OA依序安置。對應於物件資訊之光可穿過第一透鏡110至第九透鏡190且入射於影像感測器300上。複數個透鏡100中之各者可包括有效區及無效區。有效區可為射於第一透鏡至第九透鏡110、120、130、140、150、160、170、180及190中之各者上之光穿過的區。亦即,有效區可為入射光經折射以實現光學性質的區,且可表達為有效直徑。無效區可安置於有效區周圍。無效區可為光自複數個透鏡100未入射至的區。亦即,無效區可為獨立於光學特性之區。並且,無效區可為固定至用於容納透鏡之鏡筒(圖中未示)的區。
影像感測器300可偵測光。詳言之,影像感測器300可偵測依序穿過複數個透鏡100(詳言之,複數個透鏡100)之光。影像感測器300可包括能夠偵測入射光之裝置,諸如電荷耦合裝置(CCD)或互補金屬氧化物半導體(CMOS)。
根據實施例之光學系統1000可進一步包括濾光片500。濾光片500可安置於複數個透鏡100與影像感測器300之間。濾光片500可安置於影像感測器300與複數個透鏡100當中最接近影像感測器300安置之最後一個透鏡之間。舉例而言,當光學系統1000包括九個透鏡時,濾光片500可安置於第九透鏡190與影像感測器300之間。濾光片500可包括紅外濾光片及諸如防護玻璃罩之光學濾光片中之至少一者。濾光片500可使設定波長帶之光穿過且過濾不同波長帶之光。在濾光片500包括紅外濾光片時,可阻止自外部光發射之輻射熱傳輸至影像感測器300。另外,濾光片500可透射可見光且反射紅外光。
根據實施例之光學系統1000可包括孔徑光闌(圖中未示)。孔徑光闌可控制入射於光學系統1000上之光的量。孔徑光闌可安置於設定位置處。舉例而言,孔徑光闌可位於第一透鏡110之前側或可位於第一透鏡110之後側。並且,孔徑光闌可安置於選自複數個透鏡100中之兩個透鏡之間。舉例而言,孔徑光闌可定位於第一透鏡110與第二透鏡120之間。替代地,選自複數個透鏡100中之至少一個透鏡可用作孔徑光闌。詳言之,選自第一透鏡至第九透鏡110、120、130、140、150、160、170、180及190的一者之物件側或感測器側可用作用於控制光的量之孔徑光闌。舉例而言,第一透鏡110之感測器側表面(第二表面S2)或第二透鏡120之物件側表面(第三表面S3)可用作孔徑光闌。
光學系統1000可包括至少一個光路改變部件(圖中未示)。光路改變部件可藉由反射自外部入射之光來改變光的路徑。光路改變部件可包括反射器及稜鏡。舉例而言,光路改變部件可包括直角稜鏡。當光路改變部件包括直角稜鏡時,光路改變部件可藉由以90度之角度反射入射光的路徑來改變光之路徑。光路改變部件可安置成比複數個透鏡100更靠近物件側。亦即,當光學系統1000包括一個光路改變部件時,光路改變部件、第一透鏡110、第二透鏡120及第三透鏡130、第四透鏡140、第五透鏡150、第六透鏡160、第七透鏡170、第八透鏡180、第九透鏡190、濾光片500及影像感測器300可自物件側至感測器方向依次配置。替代地,光路改變部件可安置於複數個透鏡100之間。舉例而言,光路改變部件可安置於第n個 透鏡與第n+1個透鏡之間。替代地,光路改變部件可安置於複數個透鏡100與影像感測器300之間。光路改變部件可改變在設定方向上自外部入射之光的路徑。舉例而言,當光路改變部件安置成比複數個透鏡100更接近物件側時,光路改變部件可將在第一方向上入射於光路改變部件上至複數個透鏡之光的路徑改變為作為複數個透鏡100之配置方向的第二方向(圖式之光軸OA在複數個透鏡100間隔開之方向上的方向)。在光學系統1000包括光路改變部件時,光學系統可應用於能夠減小相機之厚度的摺疊式相機。
詳言之,當光學系統1000包括光路改變部件時,在垂直於光學系統1000所應用於之裝置的表面之方向上入射的光可在平行於裝置之表面的方向上改變。因此,包括複數個透鏡100之光學系統1000可在裝置中具有較薄厚度,且因此,裝置可設置得較薄。舉例而言,當光學系統1000不包括光路改變部件時,複數個透鏡100可安置成在垂直於裝置中之裝置表面的方向上延伸。因此,包括複數個透鏡100之光學系統1000在垂直於裝置表面之方向上具有較高高度,且因此,可能難以形成光學系統1000及包括該光學系統之裝置的較薄厚度。然而,當光學系統1000包括光路改變部件時,複數個透鏡100可安置成在平行於裝置表面之方向上延伸。亦即,光學系統1000安置成使得光軸OA平行於裝置表面,且可應用於摺疊式相機。因此,包括複數個透鏡100之光學系統1000可在垂直於裝置表面之方向上具有較低高度。因此,包括光學系統1000之相機可在裝置中具有較薄厚度,且裝置之厚度亦可減小。
在下文中,將更詳細地描述根據實施例之光學系統1000。圖1係根據實施例之光學系統之組態圖,且圖2係說明根據實施例之光學系統之像差圖的曲線圖。
參看圖1及圖2,根據實施例之光學系統1000包括自物件側至感測器側依序配置的第一透鏡110至第九透鏡190及影像感測器300。第一透鏡至第九透鏡110、120、130、140、150、160、170、180及190可沿著光學系統1000之光軸OA依序安置。在根據實施例之光學系統100中,孔徑光闌可安置於第一透鏡110與第二透鏡120之間。詳言之,第二透鏡 120的物件側表面可用作孔徑光闌。濾光片500可安置於複數個透鏡100與影像感測器300之間。詳言之,濾光片500可安置於第九透鏡190與影像感測器300之間。
[表1]
Figure 111122720-A0202-12-0008-3
表1展示光軸OA上之曲率半徑、各透鏡之中心厚度及透鏡之間在光軸上之距離、在氦黃線(d-line)處之折射率、阿貝數及根據實施例之第一透鏡至第九透鏡110、120、130、140、150、160、170、180、190之有效直徑(或淨孔徑(CA)之大小)。
第一透鏡110可在光軸OA上具有正(+)或負(-)折射能力。詳言之,第一透鏡110可在光軸OA上具有正(+)折射能力。並且,第一透鏡110可包括塑膠或玻璃材料。舉例而言,第一透鏡110可由塑膠材料製成。第一透鏡110可包括經界定為物件側表面之第一表面S1及經界定為感測器側表面之第二表面S2。第一表面S1可在光軸OA上具有凸面 形狀,且第二表面S2可在光軸OA上具有凹面形狀。亦即,第一透鏡110可具有自光軸OA朝向物件側凸出之彎液面形狀。第一表面S1及第二表面S2中之至少一者可為非球面表面。舉例而言,第一表面S1及第二表面S2兩者可為非球面。第一表面S1及第二表面S2可具有非球面係數,如下表2中所展示。
第二透鏡120可在光軸OA上具有正(+)折射能力。另外,第二透鏡120可包括塑膠或玻璃材料。第二透鏡120可由塑膠材料製成。第二透鏡120可包括經界定為物件側表面之第三表面S3及經界定為感測器側表面之第四表面S4。第三表面S3可在光軸OA上具有凸面形狀,且第四表面S4可在光軸OA上具有凹面形狀。亦即,第二透鏡120可具有自光軸OA朝向物件側凸出之彎液面形狀。替代地,第三表面S3可在光軸OA上具有凸面形狀,且第四表面S4可在光軸OA上具有凸面形狀。亦即,第二透鏡120可具有兩側在光軸OA上均為凸面之形狀。詳言之,參看表1,第二透鏡120可具有在上述形狀當中的兩側在光軸OA上均為凸面之形狀。第三表面S3及第四表面S4中之至少一者可為非球面表面。舉例而言,第三表面S3及第四表面S4兩者可為非球面。第三表面S3及第四表面S4可具有非球面係數,如下表2中所展示。
第三透鏡130可在光軸OA上具有負(-)折射能力。另外,第三透鏡130可包括塑膠或玻璃材料。第三透鏡130可由塑膠材料製成。第三透鏡130可包括經界定為物件側表面之第五表面S5及經界定為感測器側表面之第六表面S6。第五表面S5可在光軸OA上具有凸面形狀,且第六表面S6可在光軸OA上具有凹面形狀。亦即,第三透鏡130可具有自光軸OA朝向物件凸出之彎液面形狀。替代地,第五表面S5可在光軸OA上具有凸面形狀,且第六表面S6可在光軸OA上具有凹面形狀。亦即,第三透鏡130可在光軸OA之兩側上具有凹面形狀。詳言之,參看表1,第三透鏡130可具有上述形狀當中的自光軸OA朝向物件凸起之彎液面形狀。第五表面S5及第六表面S6中之至少一者可為非球面表面。舉例而言,第五表面S5及第六表面S6兩者可為非球面。第五表面S5及第六表面S6可具有非球面係數,如下表2中所展示。
第四透鏡140可在光軸OA上具有正(+)或負(-)折射能力。詳言之,第四透鏡140可在光軸OA上具有正(+)折射能力。另外,第四透鏡140可包括塑膠或玻璃材料。第四透鏡140可由塑膠材料製成。第四透鏡140可包括經界定為物件側表面之第七表面S7及經界定為感測器側表面之第八表面S8。第七表面S7可在光軸OA上具有凸面形狀,且第八表面S8可在光軸OA上具有凹面形狀。亦即,第四透鏡140可具有自光軸OA朝向物件側凸出之彎液面形狀。替代地,第七表面S7可在光軸OA上具有凸面形狀,且第八表面S8可在光軸OA上具有凸面形狀。亦即,第四透鏡140可具有兩側在光軸OA上均為凸面之形狀。替代地,第七表面S7可在光軸OA上具有凹面形狀,且第八表面S8可在光軸OA上具有凸面形狀。亦即,第四透鏡140可具有自光軸OA朝向感測器側凸出之彎液面形狀。替代地,第七表面S7可在光軸OA上具有凹面形狀,且第八表面S8可在光軸OA上具有凹面形狀。亦即,第四透鏡140可具有兩側在光軸OA上均為凹面之形狀。詳言之,參看表1,第四透鏡140可具有上述形狀當中的自光軸OA朝向物件側凸起之彎液面形狀。第七表面S7及第八表面S8中之至少一者可為非球面表面。舉例而言,第七表面S7及第八表面S8兩者可為非球面。第七表面S7及第八表面S8可具有非球面係數,如下表2中所展示。
第五透鏡150可在光軸OA上具有正(+)或負(-)折射能力。詳言之,第五透鏡150可在光軸OA上具有正(+)折射能力。另外,第五透鏡150可包括塑膠或玻璃材料。第五透鏡150可由塑膠材料製成。第五透鏡150可包括經界定為物件側表面之第九表面S9及經界定為感測器側表面之第十表面S10。第九表面S9可在光軸OA上具有凸面形狀,且第十表面S10可在光軸OA上具有凹面形狀。亦即,第五透鏡150可具有自光軸OA朝向物件側凸出之彎液面形狀。替代地,第九表面S9可在光軸OA上具有凸面形狀,且第十表面S10可在光軸OA上具有凸面形狀。亦即,第五透鏡150可具有兩側在光軸OA上均為凸面之形狀。替代地,第九表面S9可在光軸OA上具有凹面形狀,且第十表面S10可在光軸OA上具有凹面形狀。亦即,第五透鏡150可具有兩側在光軸OA上均為凸面之形狀。 替代地,第九表面S9可在光軸OA上具有凹面形狀,且第十表面S10可在光軸OA上具有凸面形狀。亦即,第五透鏡150可具有自光軸OA朝向感測器側凸出之彎液面形狀。詳言之,參看表1,第五透鏡150可具有上述形狀當中的自光軸OA朝向感測器凸出之彎液面形狀。第九表面S9及第十表面S10中之至少一者可為非球面表面。舉例而言,第九表面S9及第十表面S10兩者可為非球面。第九表面S9及第十表面S10可具有非球面係數,如下表2中所展示。
第六透鏡160可在光軸OA上具有正(+)或負(-)折射能力。詳言之,第六透鏡160可在光軸OA上具有負折射能力。另外,第六透鏡160可包括塑膠或玻璃材料。第六透鏡160可由塑膠材料製成。第六透鏡160可包括經界定為物件側表面之第十一表面S11及經界定為感測器側表面之第十二表面S12。第十一表面S11可在光軸OA上具有凸面形狀,且第十二表面S12可在光軸OA上具有凹面形狀。亦即,第六透鏡160可具有自光軸OA朝向物件側凸出之彎液面形狀。替代地,第十一表面S11可在光軸OA上具有凸面形狀,且第十二表面S12可在光軸OA上具有凸面形狀。亦即,第六透鏡160可具有兩側在光軸OA上均為凸面之形狀。替代地,第十一表面S11可在光軸OA上具有凹面形狀,且第十二表面S12可在光軸OA上具有凹面形狀。亦即,第六透鏡160可具有兩側在光軸OA上均為凹面之形狀。替代地,第十一表面S11可在光軸OA上具有凹面形狀,且第十二表面S12可在光軸OA上具有凸面形狀。亦即,第六透鏡160可具有自光軸OA朝向感測器凸出之彎液面形狀。詳言之,參看表1,第六透鏡160可具有上述形狀當中的在光軸OA之兩側均為凹面之形狀。第十一表面S11及第十二表面S12中之至少一者可為非球面表面。舉例而言,第十一表面S11及第十二表面S12兩者可為非球面。第十一表面S11及第十二表面S12可具有非球面係數,如下表2中所展示。
第七透鏡170可在光軸OA上具有正(+)或負(-)折射能力。詳言之,第七透鏡170可在光軸OA上具有正(+)折射能力。另外,第七透鏡170可包括塑膠或玻璃材料。第七透鏡170可由塑膠材料製成。第七透鏡170可包括經界定為物件側表面之第十三表面S13及經界定為感 測器側表面之第十四表面S14。第十三表面S13可在光軸OA上具有凸面形狀,且第十四表面S14可在光軸OA上具有凹面形狀。亦即,第七透鏡170可具有自光軸OA朝向物件側凸出之彎液面形狀。替代地,第十三表面S13可在光軸OA上為凸面,且第十四表面S14可在光軸OA上為凸面。亦即,第七透鏡170可具有兩側在光軸OA上均為凸面之形狀。替代地,第十三表面S13可在光軸OA上為凹面,且第十四表面S14可在光軸OA上為凹面。亦即,第七透鏡170可具有兩側在光軸OA上均為凹面之形狀。替代地,第十三表面S13可在光軸OA上為凹面,且第十四表面S14可在光軸OA上為凸面。亦即,第七透鏡170可具有自光軸OA朝向感測器凸出之彎液面形狀。詳言之,參看表1,第七透鏡170可具有上述形狀當中的自光軸OA朝向感測器側凸出之彎液面形狀。第十一表面S11及第十二表面S12中之至少一者可為非球面表面。舉例而言,第十一表面S11及第十二表面S12兩者可為非球面。第十一表面S11及第十二表面S12可具有非球面係數,如下表2中所展示。
第八透鏡180可在光軸OA上具有正(+)折射能力。另外,第八透鏡180可包括塑膠或玻璃材料。第八透鏡180可由塑膠材料製成。第八透鏡180可包括經界定為物件側表面之第十五表面S15及經界定為感測器側表面之第十六表面S16。第十五表面S15可在光軸OA上具有凸面形狀,且第十六表面S16可在光軸OA上具有凹面形狀。亦即,第八透鏡180可具有自光軸OA朝向物件側凸出之彎液面形狀。替代地,第十五表面S15可在光軸OA上具有凸面形狀,且第十六表面S16可在光軸OA上具有凸面形狀。亦即,第八透鏡180可具有兩側在光軸OA上均為凸面之形狀。特定言之,參看表1,第八透鏡180可具有上述形狀當中的自光軸OA朝向物件凸出之彎液面形狀。第十五表面S15及第十六表面S16中之至少一者可為非球面表面。舉例而言,第十五表面S15及第十六表面S16兩者可為非球面。第十五表面S15及第十六表面S16可具有非球面係數,如下表2中所展示。
第八透鏡180可包括至少一個臨界點。詳言之,第十五表面S15及第十六表面S16中之至少一者可包括臨界點。此處,臨界點可意謂透 鏡表面之切線之斜率為0的點。詳言之,臨界點係相對於光軸OA之傾斜值及垂直於光軸OA之方向的正負號自正(+)改變為負(-)或自負(-)改變為正(+)的點,且可意謂斜率值為0的點。臨界點處之切線可垂直於光軸OA。舉例而言,第十五表面S15可包括經界定為臨界點之第一臨界點P1。當光軸OA係起始點且第八透鏡180之第十五表面S15的有效區末端或邊緣係終點時,第一臨界點P1可安置於相對於光軸之有效半徑的約80%或小於80%之位置處。詳言之,當光軸OA係起始點且第八透鏡180之第十五表面S15的有效區末端或邊緣係終點時,第一臨界點P1可安置於相對於光軸之約45%至約70%之範圍內。此處,第一臨界點P1之位置係相對於垂直於光軸OA之方向設定的位置,且可意謂自光軸OA至第一臨界點P1之直線距離。
第九透鏡190可在光軸OA上具有負折射能力。第九透鏡190可包括塑膠或玻璃材料。第九透鏡190可由塑膠材料製成。第九透鏡190可包括經界定為物件側表面之第十七表面S17及經界定為感測器側表面之第十八表面S18。第十七表面S17可在光軸OA上具有凸面形狀,且第十八表面S18可在光軸OA上具有凹面形狀。亦即,第九透鏡190可具有物件在光軸OA上凸出的彎液面形狀。替代地,第十七表面S17可在光軸OA上具有凹面形狀,且第十八表面S18可在光軸OA上具有凹面形狀。亦即,第九透鏡190可具有在光軸OA之兩側均為凹面之形狀。詳言之,參看表1,第九透鏡190可具有上述形狀當中的自光軸OA朝向物件凸出之彎液面形狀。
第九透鏡190可包括至少一個臨界點。詳言之,第十七表面S17及第十八表面S18中之至少一者可包括臨界點。舉例而言,第十七表面S17可包括經界定為臨界點之第二臨界點P2。當光軸OA係起始點且第九透鏡190之第十七表面S17的有效區末端或邊緣係終點時,第二臨界點P2可安置於相對於光軸之有效半徑的約95%或小於95%之位置處。詳言之,當光軸OA係起始點且第九透鏡190之第十七表面S17的有效區末端或邊緣係終點時,第二臨界點P2可安置於相對於光軸OA的約70%至約95%之範圍內。更詳細言之,當光軸OA係起始點且第九透鏡190之第十七表面 S17的有效區末端或邊緣係終點時,第二臨界點P2可安置於相對於光軸OA的約80%至約95%之範圍內。此處,第二臨界點P2之位置係相對於垂直於光軸OA之方向設定的位置,且可意謂自光軸OA至第二臨界點P2之直線距離。第十八表面S18可包括經界定為臨界點之第三臨界點P3。當光軸OA係起始點且第九透鏡190之第十八表面S18的有效區末端或邊緣係終點時,第三臨界點P3可安置於相對於光軸OA之有效半徑的小於約50%之位置處。詳言之,當光軸OA係起始點且第九透鏡190之第十八表面S18的有效區末端或邊緣係終點時,第三臨界點P3可安置於相對於光軸OA的約15%至約40%之範圍內。更詳細言之,當光軸OA係起始點且第九透鏡190之第十八表面S18的有效區末端或邊緣係終點時,第三臨界點P3可安置於相對於光軸OA的約20%至約35%之範圍內。此處,第三臨界點P3之位置係基於垂直於光軸OA之方向設定的位置,且可意謂自光軸OA至第三臨界點P3之直線距離。
根據實施例之光學系統1000中之各透鏡表面的非球面係數之值展示於下表2中。
[表2]
Figure 111122720-A0202-12-0015-4
在根據實施例之光學系統1000中,各透鏡表面之下陷值可滿足以下等式。
[等式]
Figure 111122720-A0202-12-0015-5
上述等式中之各項的含義如下。
Z:平行於Z軸之表面的下陷(以透鏡單位)
c:頂點曲率(CUY)
k:圓錐常數
r:徑向距離
rn:正規化半徑(NRADIUS)
u:r/rn
am:mthQcon係數,其與表面下陷偏離相關
Qm con:mthQcon多項式
如上文所描述,根據實施例之複數個透鏡100之至少一個透鏡表面可包括具有30階非球面係數之非球面表面。舉例而言,在實施例中,除第七透鏡170之外的透鏡之透鏡表面可具有30階非球面係數。如上文所描述,由於具有30階非球面係數(除「0」外的值)之非球面表面可顯著改變周邊部分之非球面形狀,因此視場(FOV)之周邊部分之光學效能可經充分校正。根據實施例之光學系統1000可滿足以下等式中之至少一者。因此,根據實施例之光學系統1000可具有經改善解析度。另外,光學系統1000可有效地控制失真及像差特性,且甚至在視場(FOV)之中心及周邊處亦可具有良好光學效能。另外,光學系統1000可具有更薄且更緊密的結構。
[等式1]1<L1_CT/L3_CT<4
在等式1中,L1_CT意謂第一透鏡110在光軸OA上的厚度(mm),且L3_CT意謂第三透鏡130在光軸OA上的厚度(mm)。當根據實施例之光學系統1000滿足等式1時,光學系統1000可改善像差特性。
[等式2]0<L2_CT/L2_ET<1
在等式2中,L2_CT意謂第二透鏡120在光軸OA上的厚度(mm),且L2_ET係在第二透鏡120之有效區的末端處在光軸OA之方向上的厚度(mm)。詳言之,L2_ET意謂在第二透鏡120之物件側表面(第三表面S3)之有效區的末端與第二透鏡120之感測器側表面(第四表面S4)之有效區的末端之間的在光軸(OA)之方向上的距離。當根據實施例之光學系統1000滿足等式2時,光學系統1000可控制入射光且可具有經改善解析度。
[等式3]1<L9_ET/L9_CT<4
在等式3中,L9_CT意謂第九透鏡190在光軸OA上的厚度(mm),且L9_ET意謂在第九透鏡190之有效區的末端處在光軸OA之方向上的厚度(mm)。詳言之,L9_ET意謂在第九透鏡190之物件側表面(第十七表面S17)之有效區的末端與第九透鏡190之感測器側表面(第十八表面S18)之有效區的末端之間的在光軸OA之方向上的距離。當根據實施例之光學系統1000滿足等式3時,光學系統1000可減小失真。
[等式4]1.6<n3
在等式4中,n3意謂在第三透鏡之氦黃線處的折射率。當根據實施例之光學系統1000滿足等式4時,光學系統可減少色像差之發生。
[等式5]1<CA_L1S1/CA_L3S2<2
在等式5中,CA_L1S1意謂第一透鏡110之物件側表面(第一表面S1)之有效直徑(或淨孔徑(CA))(mm),且CA_L3S2意謂第三透鏡130之感測器側表面(第六表面(S6))之有效直徑(或淨孔徑)(mm)。當根據實施例之光學系統1000滿足等式5時,光學系統1000可改善像差特性。
[等式6]1<CA_L9S2/CA_L4S2<5
在等式6中,CA_L4S2意謂第四透鏡140之感測器側表面(第八表面S8)之有效直徑(或淨孔徑(CA))(mm),且CA_L9S2意謂第九透鏡190之感測器側表面(第十八表面S18)之有效直徑(或淨孔徑(CA))(mm)。當根據實施例之光學系統1000滿足等式6時,光學系統1000可改善像差特性。
[等式7]1<d34_CT/d34_ET<5
在等式7中,d34_CT意謂第三透鏡130之感測器側表面(第六表面S6)與第四透鏡140之物件側表面(第七表面S7)之間的在光軸OA上的距離(mm)。d34_ET意謂第三透鏡130之感測器側表面(第六表面S6)的有效區之末端與第四透鏡140之物件側表面(第七表面S7)的有效區之末端之間的在光軸OA方向上的距離(mm)。當根據實施例之光學系統1000滿足等式7時,光學系統1000可減小色像差且可改善光學系統1000的像 差特性。
[等式8]1<d89_CT/d89_min<40
在等式8中,d89_CT意謂第八透鏡180之感測器側表面(第十六表面S16)與第九透鏡190之物件側表面(第十七表面S17)之間在光軸OA上的距離(mm)。D89_min意謂第八透鏡180之感測器側表面(第十六表面(S16))與第九透鏡190之物件側表面(第十七表面(S17))之間的在光軸OA方向上的距離當中的最小距離。當根據實施例之光學系統1000滿足等式8時,光學系統1000可改善失真像差特性。
[等式9]0.2<L9S2臨界點<0.7
在等式9中,L9S2臨界點可意謂位於第九透鏡190之感測器側表面(第十八表面S18)上之臨界點的位置。詳言之,當光軸OA係起始點,第九透鏡190之第十八表面S18之有效區的末端係終點,且自光軸OA至第十八表面S18之有效區的末端的光軸OA之垂直長度係1時,L9S2臨界點可意謂位於第十八表面S18上之臨界點(例如,第三臨界點P3)之位置。當根據實施例之光學系統1000滿足等式9時,光學系統1000可改善失真像差特性。
[等式10]5<CA_L3S2/L3_CT<10
在等式10中,CA_L3S2意謂第三透鏡130之感測器側表面(第六表面S6)的有效直徑(CA,mm),且L3_CT意謂第三透鏡130在光軸OA上的厚度(mm)。當根據實施例之光學系統1000滿足等式10時,光學系統1000可防止或最小化視場(FOV)之周邊部分中之光量減少之發生,藉此控制漸暈特性。
[等式11]0.4<L1R1/L2R1<0.9
在等式11中,L1R1意謂第一透鏡110之物件側表面(第一表面S1)的曲率半徑(mm),且L2R1意謂第二透鏡120之物件側表面(第三表面(S3))的曲率半徑(mm)。當根據實施例之光學系統1000滿足等式11時,光學系統1000可控制入射光以改善光學效能。
[等式12]1<L7R1/L7R2<3
在等式12中,L7R1意謂第七透鏡170之物件側表面(第十 三表面S13)之曲率半徑(mm),且L7R2意謂第七透鏡170之感測器側表面(第十四表面S14)之曲率半徑(mm)。當根據實施例之光學系統1000滿足等式12時,光學系統1000可改善失真像差特性。
[等式13]1<L4_CT/L4_ET<1.5
在等式13中,L4_CT意謂第四透鏡140在光軸OA上的厚度(mm),且L4_ET意謂在第四透鏡140之有效區的末端處在光軸OA之方向上的厚度(mm)。詳言之,L4_ET意謂在第四透鏡140之物件側表面(第七表面S7)的有效區之末端與第四透鏡140之感測器側表面(第八表面S8)的有效區之末端之間在光軸OA之方向上的距離(mm)。當根據實施例之光學系統1000滿足等式13時,光學系統1000可控制入射光且改善視角之周邊部分的光學效能。並且,光學系統1000可最小化或防止發生漸暈。
[等式14]1<L4_CT/d45_CT<2.5
在等式14中,L4_CT意謂第四透鏡140在光軸OA上的厚度(mm),且d45_CT意謂第四透鏡140與第五透鏡150之間在光軸OA上的距離。詳言之,d45_CT意謂第四透鏡140之感測器側表面(第八表面S8)與第五透鏡150之物件側表面(第九表面S9)之間的在光軸OA上的距離。當根據實施例之光學系統1000滿足等式14時,光學系統1000可改善像差特性。
[等式15]1<d34_CT/d45_CT<3
在等式15中,d34_CT意謂第三透鏡130與第四透鏡140之間在光軸OA上的距離,且d45_CT意謂第四透鏡140與第五透鏡150之間在光軸OA上的距離。詳言之,d34_CT意謂第三透鏡130之感測器側表面(第六表面S6)與第四透鏡140之物件側表面(第七表面S7)之間在光軸OA上的距離,且d45_CT意謂第四透鏡140之感測器側表面(第八表面S8)與第五透鏡150之物件側表面(第九表面S9)之間在光軸OA上的距離。當根據實施例之光學系統1000滿足等式15時,光學系統1000可改善像差特性。
[等式16]1<d45_CT/d56_CT<3
在等式16中,d45_CT意謂第四透鏡140與第五透鏡150之 間在光軸OA上的距離,且d56_CT意謂第五透鏡150與第六透鏡160之間在光軸OA上的距離。詳言之,d45_CT意謂第四透鏡140之感測器側表面(第八表面S8)與第五透鏡150之物件側表面(第九表面S9)之間在光軸OA上的距離,且d56_CT意謂第五透鏡150之感測器側表面(第十表面S10)與第六透鏡160之物件側表面(第十一表面S11)之間在光軸OA上的距離。當根據實施例之光學系統1000滿足等式16時,光學系統1000可改善像差特性。
[等式17]0.3<L7_CT/L6_CT<1
在等式17中,L6_CT意謂第六透鏡160在光軸OA上的厚度(mm),且L7_CT意謂第七透鏡170在光軸OA上的厚度(mm)。當根據實施例之光學系統1000滿足等式17時,光學系統1000可改善像差特性且可改善視角FOV之周邊部分的像差特性。
[等式18]0.1<L7_CT/L8_CT<0.95
在等式18中,L7_CT意謂第七透鏡170在光軸OA上的厚度(mm),且L8_CT意謂第八透鏡180在光軸OA上的厚度(mm)。當根據實施例之光學系統1000滿足等式18時,光學系統1000可改善像差特性,且詳言之,可改善視場(FOV)之周邊部分的像差特性。
[等式19]2<L7_CT/d78_CT<8
在等式19中,L7_CT意謂第七透鏡170在光軸OA上的厚度(mm),且d78_CT意謂第七透鏡170與第八透鏡180之間在光軸OA上的距離。詳言之,d78_CT意謂第七透鏡170之感測器側表面(第十四表面S14)與第八透鏡180之物件側表面(第十五表面S15)之間在光軸OA上的距離。當根據實施例之光學系統1000滿足等式19時,光學系統1000可減小第七透鏡170與第八透鏡180之間在光軸OA上的距離,且改善視場(FOV)之中心部分的效能。
[等式20]10<L8_CT/d78_CT<50
在等式20中,L8_CT意謂第八透鏡180在光軸OA上的厚度(mm),且d78_CT意謂第七透鏡170與第八透鏡180之間在光軸OA上的距離。詳言之,d78_CT意謂第七透鏡170之感測器側表面(第十四表面 S14)與第八透鏡180之物件側表面(第十五表面S15)之間在光軸OA上的距離。當根據實施例之光學系統1000滿足等式20時,光學系統1000可減小第七透鏡170與第八透鏡180之間在光軸OA上的距離,且改善視場(FOV)之中心部分的效能。
[等式21]0.5<L7_ET/L6_ET<1
在等式21中,L6_ET意謂第六透鏡160之有效區的末端處在光軸OA之方向上的厚度(mm)。詳言之,L6_ET意謂第六透鏡160之物件側表面(第十一表面S11)的有效區的末端與第六透鏡160之感測器側表面(第十二表面S12)的有效區的末端之間在光軸OA之方向上的距離(mm)。L7_ET意謂第七透鏡170之有效區的末端處在光軸OA之方向上的厚度(mm)。詳言之,L7_ET意謂第七透鏡170之物件側表面(第十三表面S13)之有效區的末端與第七透鏡170之感測器側表面(第十四表面S14)之有效區的末端之間在光軸OA之方向上的距離(mm)。當根據實施例之光學系統1000滿足等式21時,光學系統1000可在視場(FOV)之周邊中具有良好光學效能。
[等式22]0.1<L7_ET/L8_ET<1
在等式22中,L7_ET意謂第七透鏡170之有效區的末端處在光軸OA之方向上的厚度(mm)。詳言之,L7_ET意謂第七透鏡170之物件側表面(第十三表面S13)之有效區的末端與第七透鏡170之感測器側表面(第十四表面S14)之有效區的末端之間在光軸OA之方向上的距離。L8_ET意謂第八透鏡180之有效區的末端處在光軸OA之方向上的厚度(mm)。詳言之,L8_ET意謂第八透鏡180之物件側表面(第十五表面S15)之有效區的末端與第八透鏡180之感測器側表面(第十六表面S16)之有效區的末端之間在光軸OA之方向上的距離(mm)。當根據實施例之光學系統1000滿足等式22時,光學系統1000可控制視場FOV之周邊部分之失真像差特性,且可在視場FOV之中心部分及周邊部分處具有良好光學效能。
[等式23]1<L8_CT/L9_CT<10
在等式23中,L8_CT意謂第八透鏡180在光軸OA上的厚度(mm),且L9_CT意謂第九透鏡190在光軸OA上的厚度(mm)。當根 據實施例之光學系統1000滿足等式23時,光學系統1000可縮減第八透鏡180及第九透鏡190之製造精度。
[等式24]0.05<L9_CT/d89_CT<1
在等式24中,L9_CT意謂第九透鏡190在光軸OA上的厚度(mm),且d89_CT意謂第八透鏡180與第九透鏡190之間在光軸OA上的厚度(mm)。詳言之,d89_CT意謂第八透鏡180之感測器側表面(第十六表面S16)與第九透鏡190之物件側表面(第十七表面S17)之間在光軸OA上的距離(mm)。當根據實施例之光學系統1000滿足等式24時,光學系統1000可減小第八透鏡180與第九透鏡190之間在光軸OA上的距離,且可改善視場(FOV)之中心部分的效能。
[等式25]0.1<d67_CT/d67_ET<1
在等式25中,d67_CT意謂第六透鏡160之感測器側表面(第十二表面S12)與第七透鏡170之物件側表面(第十三表面S13)之間在光軸OA上之距離。d67_ET意謂第六透鏡160之感測器側表面(第十二表面S12)之有效區的末端與第七透鏡170之物件側表面(第十三表面S13)之有效區的末端之間在光軸OA之方向上的距離(mm)。當根據實施例之光學系統1000滿足等式25時,光學系統1000可改善視場(FOV)之周邊部分的像差特性。
[等式26]0.1<d78_CT/d78_ET<1
在等式26中,d78_CT意謂第七透鏡170之感測器側表面(第十四表面S14)與第八透鏡180之物件側表面(第十五表面S15)之間在光軸OA上的距離。d78_ET意謂第七透鏡170之感測器側表面(第十四表面S14)之有效區的末端與第八透鏡180之物件側表面(第十五表面S15)之有效區的末端之間在光軸OA之方向上的距離(mm)。當根據實施例之光學系統1000滿足等式26時,光學系統1000可改善視場(FOV)之周邊部分的像差特性。
[等式27]1<d89_CT/d89_ET<5
在等式26中,d89_CT意謂第八透鏡180之感測器側表面(第十六表面S16)與第九透鏡190之物件側表面(第十七表面S17)之間 在光軸OA上的距離。d89_ET意謂第八透鏡180之感測器側表面(第十六表面S16)之有效區的末端與第九透鏡190之物件側表面(第十七表面S17)之有效區的末端之間在光軸OA之方向上的距離(mm)。當根據實施例之光學系統1000滿足等式27時,光學系統1000可控制色像差及失真像差特性,且可在視場(FOV)之中心及周邊部分處具有良好光學效能。
[等式28]1<|f1|/|f3|<4.5
在等式28中,f1意謂第一透鏡110之焦距(mm),且f3意謂第三透鏡130之焦距(mm)。當根據實施例之光學系統1000滿足等式28時,光學系統1000可藉由控制第一透鏡110及第三透鏡130之折射能力而具有經改善解析度。
[等式29]5<|f2|/|f1|<10
在等式29中,f1意謂第一透鏡110之焦距(mm),且f2意謂第二透鏡120之焦距(mm)。當根據實施例之光學系統1000滿足等式29時,光學系統1000可藉由控制第一透鏡110及第二透鏡120之折射能力而具有經改善解析度。
[等式30]5<|f123|<10
在等式29中,f123意謂第一透鏡至第三透鏡110、120及130之複合焦距(mm)。當根據實施例之光學系統1000滿足等式30時,光學系統1000可具有經改善解析度。
[等式31]20<|f49|<100
在等式31中,f49意謂第四透鏡至第九透鏡140、150、160、170、180及190之複合焦距(mm)。當根據實施例之光學系統1000滿足等式31時,光學系統1000可改善像差特性。
[等式32]-1<f123/f49<0
在等式31中,f123意謂第一透鏡至第三透鏡110、120及130之複合焦距(mm),且f49意謂第四透鏡至第九透鏡140、150、160、170、180及190之複合焦距(mm)。當根據實施例之光學系統1000滿足等式32時,光學系統1000可具有經改善解析度及經改善的失真像差控制特性。
[等式33]1.5<CA_max/CA_min<5
在等式33中,CA_max意謂在複數個透鏡100之物件側表面及感測器側表面當中具有最大有效直徑(CA)之透鏡表面的有效直徑(CA,mm)。另外,CA_min意謂在複數個透鏡100中之各者之物件側表面及感測器側表面當中具有最小有效直徑(CA)之透鏡表面的有效直徑(CA,mm)。當根據實施例之光學系統1000滿足等式33時,光學系統1000可具有待設置於較薄且緊密的結構中之適當大小,同時維持光學效能。
[等式34]1.5<CA_max/CA_Aver<2
在等式34中,CA_max意謂在複數個透鏡100之物件側表面及感測器側表面當中具有最大有效直徑(CA)之透鏡表面的有效直徑(CA,mm)。另外,CA_Aver意謂複數個透鏡100之物件側表面及感測器側表面之有效直徑(CA,mm)的平均值。當根據實施例之光學系統1000滿足等式34時,光學系統1000可設置於較薄且緊密的結構中,且可具有用於實現光學效能之適當大小。
[等式35]0.5<CA_min/CA_Aver<1
在等式35中,CA_min意謂複數個透鏡100之物件側表面及感測器側表面當中具有最小有效直徑(CA)之透鏡表面的有效直徑(CA,mm)。另外,CA_Aver意謂複數個透鏡100之物件側表面及感測器側表面之有效直徑(CA,mm)的平均值。當根據實施例之光學系統1000滿足等式35時,光學系統1000可設置於較薄且緊密的結構中,且可具有用於實現光學效能之適當大小。
[等式36]0.5<CA_max/(2*ImgH)<1
在等式36中,CA_max意謂在複數個透鏡100之物件側表面及感測器側表面當中具有最大有效直徑(CA)之透鏡表面的有效直徑(CA,mm)。ImgH意謂自影像感測器300之場0的區至影像感測器300之場1.0的區的相對於光軸OA的垂直距離(mm),場0的區係與光軸OA重疊之影像感測器300的上部表面之中心。亦即,ImgH意謂影像感測器300之有效區的最大對角線長度(mm)的1/2。當根據實施例之光學系統1000滿足等式36時,光學系統1000可設置於較薄且緊密的結構中。
[等式37]2<TTL<20
在等式37中,總徑跡長度(TTL)意謂自第一透鏡110之物件側表面(第一表面S1)的頂點至影像感測器300之上部表面的在光軸OA上的距離(mm)。
[等式38]2<ImgH
在等式38中,ImgH意謂自影像感測器300之場0的區至影像感測器300之場1.0的區的相對於光軸OA的垂直距離(mm),場0的區係與光軸OA重疊之影像感測器300之上部表面的中心。亦即,ImgH意謂影像感測器300之有效區的最大對角線長度(mm)的1/2。
[等式39]BFL<2.5
在等式39中,後焦距(BFL)意謂自最接近影像感測器300之透鏡的感測器側表面之頂點至影像感測器300之上部表面的在光軸OA上的距離(mm)。
[等式40]FOV<120
在等式40中,視場(FOV)意謂光學系統1000之視角(度,°)。
[等式41]0.5<TTL/ImgH<2
在等式41中,可表示總徑跡長度(TTL)與ImgH之間的關係。當根據實施例之光學系統1000滿足等式41時,光學系統1000可確保BFL用於應用具有相對較大大小之影像感測器300,例如具有約1吋大小的影像感測器300,且可具有較小TTL,且因此可具有高清晰度影像品質及較薄結構。
[等式42]0.1<BFL/ImgH<0.5
在等式42中,可建立後焦距(BFL)與ImgH之間的關係。當根據實施例之光學系統1000滿足等式42時,光學系統1000可確保BFL用於應用具有相對較大大小之影像感測器300,例如具有約1吋大小的影像感測器300,且可最小化最後一個透鏡與影像感測器300之間的距離,使得可在視場(FOV)之中心部分及周邊部分中獲得良好光學性質。
[等式43]4<TTL/BFL<10
在等式43中,可建立總徑跡長度(TTL)與後焦距(BFL)之間的關係。當根據實施例之光學系統1000滿足等式43時,光學系統1000可設置於較薄且緊密的結構中,同時確保BFL。
[等式44]0.1<F/TTL<1
在等式44中,F意謂光學系統1000之總焦距(mm)。在等式44中,可建立總焦距與總徑跡長度(TTL)之間的關係。當根據實施例之光學系統1000滿足等式44時,光學系統1000可設置於較薄且緊密的結構中。
[等式45]3<F/BFL<8
在等式45中,可建立光學系統1000之總焦距(mm)與後焦距(BFL)之間的關係。當根據實施例之光學系統1000滿足等式45時,光學系統1000可具有設定視角且可設置於較薄且緊密的結構中。另外,光學系統1000可最小化最後一個透鏡與影像感測器300之間的距離,且因此可在視場(FOV)之周邊部分處具有良好光學特性。
[等式46]1<F/ImgH<3
在等式46中,F意謂光學系統1000的總焦距(mm),且ImgH意謂自影像感測器300之場0的區至影像感測器300之場1.0的區的相對於光軸OA的垂直距離(mm),場0的區係與光軸OA重疊之影像感測器300的上部表面的中心。亦即,ImgH意謂影像感測器300之有效區的最大對角線長度(mm)的1/2。當根據實施例之光學系統1000滿足等式46時,可應用相對較大的影像感測器300,例如具有約1吋大小的影像感測器300,且該影像感測器可具有經改善像差特性。
根據實施例之光學系統1000可滿足等式1至46中之至少一者或兩者或更多者。在此狀況下,光學系統1000可具有經改善光學性質。詳言之,當光學系統1000滿足等式1至46中之至少一者或兩者或更多者時,光學系統1000具有經改善解析度且可改善像差及失真特性。另外,光學系統1000可確保後焦距(BFL)用於應用較大大小之影像感測器300且最小化最後一個透鏡與影像感測器300之間的距離,因此視角(FOV)可在中心部分及周邊部分上具有良好光學效能。另外,當光學系統1000滿足等 式1至46中之至少一者或兩者或更多者時,光學系統1000可包括具有相對較大大小之影像感測器300且具有相對較小TTL值,且光學系統1000及包括其之相機模組可具有更薄且更緊密的結構。
在根據實施例之光學系統1000中,複數個透鏡100之間的距離可具有根據區設定之值。詳言之,第一透鏡110與第二透鏡120可彼此間隔開第一距離。第一距離可為第一透鏡110之感測器側表面與第二透鏡120之物件側表面之間在光軸之方向上的距離。第一距離可根據第一透鏡110與第二透鏡120之間的位置而改變。詳言之,當光軸OA係起始點且第二透鏡120之第三表面S3的有效區末端或邊緣係終點時,第一距離可在垂直於光軸OA之方向上自光軸OA改變。亦即,第一距離可自光軸OA朝向第三表面S3之有效直徑的末端或邊緣改變。根據實施例之光學系統1000中之第一透鏡110與第二透鏡120之間的第一距離d12可如下表3中所展示。由於第一透鏡110之物件側表面的有效半徑與第二透鏡120之感測器側表面的有效半徑之間存在差值,因此第一距離可量測自光軸OA至具有較小有效直徑之透鏡表面的邊緣點的間隔。
[表3]
Figure 111122720-A0202-12-0028-6
參看表3,第一距離可在垂直於光軸OA的方向上自光軸OA增加。詳言之,第一距離可自光軸OA朝向位於第三表面S3上之第一點EG1(亦即邊緣)增加。第一點EG1可為第三表面S3之有效區的末端。此處,第一點EG1的值係第一透鏡110之感測器側第二表面S2及第二透鏡120之物件側第三表面S3(兩個表面面向彼此)中具有較小有效直徑之第三表面S3之有效半徑值,且意謂表1中所展示之第三表面S3之有效直徑值的1/2。第一距離可在位於第三表面S3上的第一點EG1處具有最大值。並且,第一距離可在光軸OA上具有最小值。第一距離的最大值可為最小值的約兩倍或多於兩倍。詳言之,第一距離之最大值可為最小值的約2.2倍至約4倍。更詳細地,第一距離的最大值可為最小值的約2.4倍至約3倍。參看表3,第一距離的最大值可為最小值的約2.72倍。在根據實施例之光學系統1000中,第一透鏡110及第二透鏡120可根據區具有上述第一距離。因此,光學系統1000可有效地控制入射穿過第一透鏡110的光。
第二透鏡120與第三透鏡130可彼此間隔開第二距離。第二距離可為第二透鏡120之感測器側表面與第三透鏡130之物件側表面之 間在光軸之方向上的距離。第二距離可根據第二透鏡120與第三透鏡130之間的位置而變化。詳言之,當光軸OA係起始點且第三透鏡130之物件側表面S5的有效區末端或邊緣係終點時,第二距離可自光軸OA朝向垂直於光軸OA之方向改變。亦即,第二距離可自光軸OA朝向第五表面S5之有效直徑的末端改變。根據實施例之光學系統1000中之第二透鏡120與第三透鏡130之間的第二距離d23可如下表4中所展示。
[表4]
Figure 111122720-A0202-12-0029-7
參看表4,第二距離可自光軸OA朝向垂直於光軸OA之方向增加。詳言之,第二距離可自光軸OA朝向位於第五表面S5上之第二點EG2增加。第二點EG2可為第五表面S5之有效區的末端。此處,第二點EG2之值係第二透鏡120之感測器側表面(第四表面S4)及第三透鏡130之物件側表面(第五表面S5)(兩個表面面向彼此)中具有較小有效直徑之第五表面S5的有效半徑值,且意謂表1中所描述的第五表面S5之有效直徑值的1/2。第二距離可在位於第五表面S5上的第二點EG2處具有最大值。並且,第二距離可在光軸OA上具有最小值。第二距離的最大值可為最小值的約4倍或多於4倍。詳言之,第二距離之最大值可為最小值的約5倍至約12倍。更詳細地,第二距離的最大值可為最小值的約6倍至約10倍。 參看表4,第二距離的最大值可為最小值的約8.71倍。在根據實施例之光學系統1000中,第二透鏡120及第三透鏡130可根據區域具有上述第二距離。因此,光學系統1000可有效地控制入射穿過第一透鏡110及第二透鏡120的光。
第六透鏡160與第七透鏡170可彼此間隔開第三距離。第三距離可為在第六透鏡160之感測器側表面與第七透鏡170之物件側表面之間在光軸OA之方向上的距離。第三距離可根據第六透鏡160與第七透鏡170之間的位置而變化。詳言之,當光軸OA係起始點且第六透鏡160之感測器側S12的有效區末端或邊緣係終點時,第三距離可自光軸OA朝向光軸OA的垂直方向改變。亦即,第三距離可自光軸OA朝向第十二表面S12之有效直徑的末端改變。根據實施例之光學系統1000中之第六透鏡160與第七透鏡170之間的第三距離d67可如下表5中所展示。
[表5]
Figure 111122720-A0202-12-0030-8
參看表5,第三距離可自光軸OA朝向垂直於光軸OA之方 向減小。詳言之,第三距離可自光軸OA朝向定位於第十二表面S12上的第三點EG3減小。當光軸OA係起始點且第十二表面S12之有效區的末端或邊緣係終點時,第三點EG3可基於光軸OA的垂直方向安置於約40%至約60%的範圍內。此處,有效區之末端或邊緣與起始點之間的距離表示有效半徑,該距離係各透鏡表面的光軸。第三距離可自第三點EG3朝向垂直於光軸OA之方向增加。舉例而言,第三距離可自第三點EG3朝向定位於第十二表面S12上的第四點EG4增加。此處,第四點EG4可為第十二表面S12之有效區的末端。此處,第四點EG4之值係第六透鏡160之感測器側表面(第十二表面S12)及第七透鏡170之物件側表面(第十三表面S13)(兩個表面面向彼此)中具有較小有效直徑之第十二表面S12的有效半徑值,且意謂表1中所描述的第十二表面S12之有效直徑值的1/2。第三距離可在第四點EG4處具有最大值。並且,第三距離可在第三點EG3處具有最小值。第三距離的最大值可為最小值的約1.5倍或多於1.5倍。詳言之,第三距離之最大值可為最小值的約2倍至約5倍。更詳細地,第三距離之最大值可為最小值的約2.5倍至約4倍。參看表3,第三距離的最大值可為最小值的約2.97倍。
在根據實施例之光學系統1000中,第六透鏡160及第七透鏡170可根據區而具有第三距離。因此,光學系統1000可具有經改善光學性質。詳言之,光學系統1000可具有經改善像差控制特性,此係因為第六透鏡160及第七透鏡170具有根據位置設定之間隔。另外,光學系統1000甚至可在視場(FOV)之中心部分及周邊部分處具有良好光學效能。
第七透鏡170與第八透鏡180可彼此間隔開第四距離。第四距離可為第七透鏡170之感測器側表面與第八透鏡180之感測器側表面之間在光軸OA之方向上的距離。第四距離可根據第七透鏡170與第八透鏡180之間的位置而變化。詳言之,當光軸OA係起始點且第七透鏡170之感測器側表面(第十四表面S14)之有效區末端或邊緣係終點時,第四距離可自光軸OA朝向垂直於光軸OA之方向改變。亦即,第四距離可自光軸OA朝向第十四表面S14之有效直徑的末端改變。在根據實施例之光學系統1000中,第七透鏡170與第八透鏡180之間的第四距離d78可如下表6中 所展示。
[表6]
Figure 111122720-A0202-12-0032-9
參看表6,第四距離可自光軸OA朝向垂直於光軸OA之方向增加。詳言之,第四距離可自光軸OA朝向位於第十四表面S14上的第五點EG5增加。當光軸OA係起始點且第十四表面S14之有效區末端或邊緣係終點時,第五點EG5可在垂直於光軸之方向上安置於相對於光軸OA之約60%至約90%之範圍內。第四距離可在朝向光軸OA垂直的方向上自第五點EG5減小。舉例而言,第四距離可自第五點EG5朝向位於第十四表面S14上之第六點EG6減小。此處,第六點EG6可為第十四表面S14之有效區的末端。此處,第六點EG6之值係第七透鏡170之感測器側表面(第十四表面S14)及第八透鏡180之物件側表面(第十五表面S15)(兩個表面面向彼此)中具有較小有效直徑之第十四表面S14之有效半徑,且意謂 表1中所描述之第十四表面S14的有效直徑值的1/2。
第四距離可在第五點EG5處具有最大值。並且,第四距離可在光軸OA上具有最小值。第四距離的最大值可為最小值的約4倍或多於4倍。詳言之,第四距離之最大值可為最小值的約5倍至約12倍。更詳細地,第四距離的最大值可為最小值的約6倍至約10倍。參看表6,第四距離的最大值可為最小值的約8.55倍。在根據實施例之光學系統1000中,第七透鏡170及第八透鏡180可根據區具有上述第四距離。因此,光學系統1000可具有經改善光學性質。詳言之,由於第七透鏡170及第八透鏡180具有根據位置設定的距離,因此可在視場(FOV)的中心部分及周邊部分中獲得經改善光學性質。並且,光學系統1000可藉由改善失真像差特性來防止或最小化失真。
第八透鏡180與第九透鏡190可彼此間隔開第五距離。第五距離可為第八透鏡180之感測器側表面與第九透鏡190之物件側表面之間在光軸OA之方向上的距離。第五距離可根據第八透鏡180與第九透鏡190之間的位置而變化。詳言之,當光軸OA係起始點且第八透鏡180之感測器側表面(第十六表面S16)之有效區末端或邊緣係終點時,第五距離可自光軸OA朝向垂直於光軸OA之方向改變。亦即,第五距離可自光軸OA朝向第十六表面S16之有效區的末端改變。根據實施例之光學系統1000中之第八透鏡180與第九透鏡190之間的第五距離d89可如下表7中所展示。
[表7]
Figure 111122720-A0202-12-0033-10
Figure 111122720-A0202-12-0034-11
參看表7,第五距離可自光軸OA朝向垂直於光軸OA之方向增加。詳言之,第五距離可自光軸OA朝向定位於第十六表面S16上之第七點EG7增加。當光軸OA係起始點且第十六表面S16之有效區末端或邊緣係終點時,第七點EG7可安置於第十六表面S16相對於光軸之有效半徑的約5%至約15%之範圍內。第五距離可自第七點EG7朝向垂直於光軸OA之方向減小。舉例而言,第五距離可自第七點EG7至定位於第十六表面S16上之第八點EG8減小。當光軸OA係起始點且第十六表面S16之有效區末端或邊緣係終點時,第八點EG8可安置於第十六表面S16相對於光軸OA之有效半徑的約60%至約80%之範圍內。
第五距離可自第八點EG8朝向垂直於光軸OA之方向增加。舉例而言,第五距離可自第八點EG8朝向位於第十六表面S16上之第九點EG9增加。此處,第八點EG8可為第十六表面S16之有效區的末端。此處,第九點EG9之值係第八透鏡180之感測器側第十六表面S16及第九透鏡190之物件側第十七表面S17(兩個表面面向彼此)中具有較小有效直徑之第十六表面S16之有效半徑,且意謂表1中所描述之第十六表面S16之有 效直徑值的1/2。
第五距離可在第七點EG7處具有最大值。並且,第五距離可在第八點EG8處具有最小值。第五距離的最大值可為最小值的約5倍或多於5倍。詳言之,第五距離的最大值可為最小值的約6倍至約15倍。更詳細地,第五距離的最大值可為最小值的約8倍至約13倍。參看表7,第五距離的最大值可為最小值的約11.28倍。在根據實施例之光學系統1000中,第八透鏡180及第九透鏡190可根據區具有上述第五距離。因此,光學系統1000可具有經改善光學性質。詳言之,由於第八透鏡180與第九透鏡190具有根據位置設定之距離,因此可在視場(FOV)之中心部分及周邊部分中獲得經改善光學性質。並且,光學系統1000可藉由改善失真像差特性來防止或最小化失真。
在根據實施例之光學系統1000中,複數個透鏡100可具有根據如上文所描述之區設定的在光軸OA之方向上的距離。因此,光學系統1000可具有經改善解析度、控制色像差及失真像差,且可在視場(FOV)之中心部分及周邊部分處具有良好光學效能。
[表8]
Figure 111122720-A0202-12-0035-12
Figure 111122720-A0202-12-0036-13
表8係關於在根據實施例之光學系統1000中的上述等式的項,且在光學系統1000中,其係關於總徑跡長度(TTL)、後焦距(BFL)、F值、ImgH、第一透鏡至第九透鏡110、120、130、140、150、160、170、180及190中之各者的焦距f1、f2、f3、f4、f5、f6、f7、f8及f9、各透鏡之邊緣厚度L1_ET至L9_ET、相鄰透鏡之邊緣距離d12_ET至d89_ET、第八透鏡與第九透鏡之間的最小距離d89_min、各透鏡之透鏡表面當中的最大有效直徑CA_Max、最小有效直徑CA_Min及有效直徑平均值CA_Aver。詳言之,透鏡的邊緣厚度意謂自透鏡的物件側上之有效區的末端至感測器側上之有效區的末端之在光軸OA之方向上的距離。
[表9]
Figure 111122720-A0202-12-0037-14
Figure 111122720-A0202-12-0038-15
表9展示根據實施例之光學系統1000中的上文所描述之等式1至46之結果值。參看表9,可見,根據實施例之光學系統1000滿足等式1至等式46中之至少一者或兩者或多於兩者。詳言之,可見,根據實施例之光學系統1000滿足等式1至46中之全部。因此,根據實施例之光學系統1000可具有如圖2中所展示之良好光學效能及極佳像差特性。
圖2係根據實施例之光學系統1000之像差圖的曲線圖,其中自左至右量測球面像差(縱向球面像差)、像散場曲線及失真。在圖2中,X軸可指示焦距(mm)或失真(%),且Y軸可指示影像之高度。另外,球面像差之曲線圖係約470nm、約510nm、約555nm、約610nm及約650nm之波長帶中之光的曲線圖,且像散及失真像差之曲線圖係555nm之波長帶中之光的曲線圖。
參看圖2,由於複數個透鏡100具有設定形狀、焦距、設定距離等,因此根據實施例之光學系統1000具有經改善解析度,且即使在視場(FOV)之中心部分及周邊部分處亦可具有良好光學效能。
參看圖3,其係說明根據實施例之相機模組應用於行動終端的圖。參看圖3,行動終端1可包括設置於背側上之相機模組10。相機模組10可包括影像擷取功能。並且,相機模組10可包括自動聚焦功能、變焦功能及OIS功能中之至少一者。相機模組10可處理藉由影像感測器300在成像模式或視訊通話模式中獲得之靜止視訊影像或移動影像的影像圖框。經處理影像圖框可顯示在行動終端1之顯示單元(圖中未示)上且可儲存在記憶體(圖中未示)中。另外,雖然圖式中未展示,但相機模組可進一步安置於行動終端1之前部上。舉例而言,相機模組10可包括第一相機模組10A及第二相機模組10B。在此狀況下,第一相機模組10A及第二相機模組10B中之至少一者可包括上文所描述之光學系統1000及影像感測器300。另外,相機模組10可具有較薄結構且可具有經改善的失真及像差特 性。相機模組可因具有較薄結構之光學系統1000而設置得更緊密。另外,相機模組10甚至在視場(FOV)之中心部分及周邊部分處可具有良好光學效能。
行動終端1可進一步包括自動聚焦裝置31。自動聚焦裝置31可包括使用雷射之自動聚焦功能。自動聚焦裝置31可主要用於以下條件中:其中使用相機模組10之影像的自動聚焦功能例如在10m或更小的近程或黑暗環境中劣化。自動聚焦裝置31可包括:發光單元,其包括垂直共振腔面射型雷射(VCSEL)半導體裝置;及光接收單元,其將諸如光電二極體之光能轉化為電能。行動終端1可進一步包括閃光燈模組33。閃光燈模組33可包括在其中發射光之發光裝置。可藉由行動終端之相機操作或藉由使用者控制來操作閃光燈模組33。
以上實施例中所描述之特徵、結構、效應等包括在本發明之至少一個實施例中,且未必限於僅一個實施例。此外,各實施例中所說明之特徵、結構、效應等可由一般熟習實施例所屬技術者組合或修改以用於其他實施例。因此,與此類組合及修改相關之內容應解釋為包括在本發明之範疇中。另外,雖然上文已描述實施例,但其僅為一實例,且不限制本發明,並且一般熟習本發明所屬之此項技術者在不脫離本實施例之基本特性的範圍內在上文進行了例示。可見,尚未進行之各種修改及應用係有可能的。舉例而言,可藉由修改來實施實施例中特定展示之各組件。並且,與此等修改及應用相關之差異應解釋為包括在界定於所附申請專利範圍中的本發明之範疇中。
100:透鏡
110:第一透鏡
120:第二透鏡
130:第三透鏡
140:第四透鏡
150:第五透鏡
160:第六透鏡
170:第七透鏡
180:第八透鏡
190:第九透鏡
300:影像感測器
500:濾光片
1000:光學系統
OA:光軸
P1:第一臨界點
P2:第二臨界點
P3:第三臨界點
S1:第一表面
S2:第二表面
S3:第三表面
S4:第四表面
S5:第五表面
S6:第六表面
S7:第七表面
S8:第八表面
S9:第九表面
S10:第十表面
S11:第十一表面
S12:第十二表面
S13:第十三表面
S14:第十四表面
S15:第十五表面
S16:第十六表面
S17:第十七表面
S18:第十八表面

Claims (15)

  1. 一種光學系統,其包含:
    第一透鏡至第九透鏡,其沿著一光軸在自一物件側至一感測器側之一方向上安置,
    其中該第二透鏡在該光軸上具有一正(+)折射能力,
    其中該第三透鏡在該光軸上具有一負(-)折射能力,
    其中該第八透鏡在該光軸上具有一正(+)折射能力,
    其中該第九透鏡在該光軸上具有一負(-)折射能力,
    其中該第九透鏡在該光軸上的一厚度係L9_CT,
    其中該第八透鏡與該第九透鏡之間在該光軸上之一距離係d89_CT,且其中以下等式滿足:
    0.05<L9_CT/d89_CT<1。
  2. 如請求項1之光學系統,
    其中該第八透鏡在該光軸上的一厚度係L8_CT,
    其中以下等式滿足:
    1<L8_CT/L9_CT<10。
  3. 如請求項1之光學系統,
    其中該第七透鏡在該光軸上具有一正(+)折射能力。
  4. 如請求項1之光學系統,
    其中該第七透鏡具有自該光軸向該感測器側凸出之一彎液面形狀。
  5. 如請求項1至4中任一項之光學系統,
    其中該第六透鏡在該光軸上的一厚度係L6_CT,
    其中該第七透鏡在該光軸上的一厚度係L7_CT,且
    其中以下等式滿足:
    3<L7_CT/L6_CT<1。
  6. 如請求項1至4中任一項之光學系統,
    其中該第七透鏡在該光軸上的一厚度係L7_CT,
    其中該第八透鏡在該光軸上的一厚度係L8_CT,且
    其中以下等式滿足:
    0.1<L7_CT/L8_CT<0.95。
  7. 一種光學系統,其包含:
    第一透鏡至第九透鏡,其沿著一光軸在自一物件側至一感測器側之一方向上安置,
    其中該第二透鏡在該光軸上具有一正(+)折射能力,
    其中該第三透鏡在該光軸上具有一負(-)折射能力,
    其中該第八透鏡在該光軸上具有一正(+)折射能力,
    其中該第九透鏡在該光軸上具有一負(-)折射能力,
    其中該第九透鏡包括安置於該第九透鏡之一物件側表面上的一第二臨界點,且
    其中該第二臨界點位於該第九透鏡之該物件側表面相對於該光軸之一有效半徑的70%至95%之一範圍內。
  8. 如請求項7之光學系統,
    其中該第九透鏡包括安置於該第九透鏡之一感測器側表面上的一第三臨界點,且
    其中該第三臨界點安置於該第九透鏡相對於該光軸之一有效半徑的15%至40%之一範圍內。
  9. 如請求項7或8之光學系統,
    其中該第八透鏡包括安置於該第八透鏡之該物件側表面上的一第一臨界點,且
    其中該第一臨界點安置於該第八透鏡之該物件側表面相對於該光軸之一有效半徑的45%至70%之一範圍內。
  10. 一種光學系統,其包含:
    第一透鏡至第九透鏡,其沿著一光軸在自一物件側至一感測器側之一方向上安置,
    其中該第二透鏡在該光軸上具有一正(+)折射能力,
    其中該第三透鏡在該光軸上具有一負(-)折射能力,
    其中該第八透鏡在該光軸上具有一正(+)折射能力,
    其中該第九透鏡在該光軸上具有一負(-)折射能力,
    L9_CT係該第九透鏡在該光軸上的一厚度,
    L9_ET係該第九透鏡之一物件側表面之一有效區的一末端與該第九透鏡之感測器側表面之一有效區的一末端之間在該光軸之一方向上的一距離,
    其中以下等式滿足:
    1<L9_ET/L9_CT<4。
  11. 如請求項10之光學系統,
    其中在垂直於該光軸的一方向上,該第八透鏡與該第九透鏡之間在該光軸之該方向上的一距離自該光軸朝向位於該第八透鏡之一感測器側表面上的一第一點增加,自該第一點朝向該第八透鏡之該感測器側表面上的一第二位置減小,且自第二點朝向該第八透鏡之該感測器側表面之該有效區的一末端增加,且
    其中該第二點安置於該第一點與該第八透鏡之該感測器側表面之該有效區的該末端之間。
  12. 如請求項11之光學系統,
    其中該第一點安置於該第八透鏡之該感測器側表面相對於該光軸之一有效半徑的5%至15%的一範圍內。
  13. 如請求項12之光學系統,
    其中該第二點安置於該第八透鏡之該感測器側表面相對於該光軸之該有效半徑的60%至80%的一範圍內。
  14. 如請求項13之光學系統,
    其中該第八透鏡與該第九透鏡之間在該光軸之該方向上的該距離在該第一點處係一最大值且在該第二點處係一最小值。
  15. 如請求項10至14中任一項之光學系統,
    d89_CT係該第八透鏡之一感測器側表面與該第九透鏡之一物件側表面之間在該光軸上的一距離,
    d89_min係該第八透鏡之該感測器側表面與該第九透鏡之該物件側表面之間在該光軸之一方向上的一距離當中的一最小值,
    其中以下等式滿足:
    1<d89_CT/d89_min<40。
TW111122720A 2021-06-18 2022-06-17 光學系統及包括其之相機模組 TW202331328A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210079357A KR20220169216A (ko) 2021-06-18 2021-06-18 광학계 및 이를 포함하는 카메라 모듈
KR10-2021-0079357 2021-06-18

Publications (1)

Publication Number Publication Date
TW202331328A true TW202331328A (zh) 2023-08-01

Family

ID=84526716

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111122720A TW202331328A (zh) 2021-06-18 2022-06-17 光學系統及包括其之相機模組

Country Status (4)

Country Link
KR (1) KR20220169216A (zh)
CN (1) CN117501163A (zh)
TW (1) TW202331328A (zh)
WO (1) WO2022265450A2 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6864969B2 (ja) * 2019-02-06 2021-04-28 カンタツ株式会社 撮像レンズ
JP6854575B2 (ja) * 2019-03-08 2021-04-07 カンタツ株式会社 撮像レンズ
CN111812825B (zh) * 2020-09-15 2020-11-27 瑞泰光学(常州)有限公司 摄像光学镜头
CN111929852B (zh) * 2020-10-12 2020-12-15 瑞泰光学(常州)有限公司 摄像光学镜头
CN112014953B (zh) * 2020-10-13 2021-01-01 瑞泰光学(常州)有限公司 摄像光学镜头

Also Published As

Publication number Publication date
CN117501163A (zh) 2024-02-02
WO2022265450A2 (ko) 2022-12-22
KR20220169216A (ko) 2022-12-27
WO2022265450A3 (ko) 2023-02-16

Similar Documents

Publication Publication Date Title
TW202235948A (zh) 光學系統及具有該光學系統之攝影機模組
TW202328750A (zh) 光學系統及具該光學系統的攝像模組
TW202246830A (zh) 光學系統及包括該光學系統之相機模組
TW202331328A (zh) 光學系統及包括其之相機模組
TW202321768A (zh) 光學系統及包括該光學系統之攝影機模組
TW202318058A (zh) 光學系統及包括該光學系統之相機模組
TW202235949A (zh) 光學系統及具有該光學系統之攝影機模組
TW202316166A (zh) 光學系統及具有光學系統的攝像模組
TW202235950A (zh) 光學系統及具有該光學系統之攝影機模組
US20240231052A1 (en) Optical system and camera module comprising same
US20240094509A1 (en) Optical system
TW202238207A (zh) 光學系統及具有該光學系統之攝影機模組
KR20230158177A (ko) 광학계 및 이를 포함하는 카메라 모듈
TW202238208A (zh) 光學系統及具有該光學系統之攝影機模組
KR20230162391A (ko) 광학계 및 이를 포함하는 카메라 모듈
CN117677883A (zh) 光学系统及包括其的相机模块
TW202334695A (zh) 光學系統及包括其之攝像模組
KR20230172309A (ko) 광학계 및 이를 포함하는 카메라 모듈
KR20230105259A (ko) 광학계 및 이를 포함하는 카메라 모듈
TW202235944A (zh) 光學系統
KR20230120938A (ko) 광학계 및 이를 포함하는 카메라 모듈
TW202238206A (zh) 光學系統
TW202409632A (zh) 光學系統及包含該光學系統之攝影機模組
KR20220148028A (ko) 광학계
KR20230105260A (ko) 광학계 및 이를 포함하는 카메라 모듈