TW202328813A - A compensation method and system using for an etching process, and deep learning system - Google Patents
A compensation method and system using for an etching process, and deep learning system Download PDFInfo
- Publication number
- TW202328813A TW202328813A TW111100968A TW111100968A TW202328813A TW 202328813 A TW202328813 A TW 202328813A TW 111100968 A TW111100968 A TW 111100968A TW 111100968 A TW111100968 A TW 111100968A TW 202328813 A TW202328813 A TW 202328813A
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- etching
- compensation
- line
- exposure
- Prior art date
Links
- 238000005530 etching Methods 0.000 title claims abstract description 140
- 238000000034 method Methods 0.000 title claims abstract description 82
- 238000013135 deep learning Methods 0.000 title claims description 19
- 238000005259 measurement Methods 0.000 claims abstract description 61
- 238000012545 processing Methods 0.000 claims description 26
- 238000013528 artificial neural network Methods 0.000 claims description 15
- 238000001514 detection method Methods 0.000 claims description 13
- 238000013500 data storage Methods 0.000 claims description 12
- 238000003384 imaging method Methods 0.000 claims description 11
- 230000007547 defect Effects 0.000 claims description 9
- 238000012549 training Methods 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 3
- 238000003466 welding Methods 0.000 claims 2
- 238000012360 testing method Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 7
- 238000012937 correction Methods 0.000 description 6
- 238000007689 inspection Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000010801 machine learning Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000004441 surface measurement Methods 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011410 subtraction method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0011—Working of insulating substrates or insulating layers
- H05K3/0017—Etching of the substrate by chemical or physical means
- H05K3/0023—Etching of the substrate by chemical or physical means by exposure and development of a photosensitive insulating layer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/16—Inspection; Monitoring; Aligning
- H05K2203/163—Monitoring a manufacturing process
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Manufacturing Of Printed Circuit Boards (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
Abstract
Description
本發明係有關於一種補償方法及補償系統及深度學習系統,尤指一種用於蝕刻製程的補償方法及補償系統及深度學習系統。The present invention relates to a compensation method, a compensation system and a deep learning system, in particular to a compensation method, a compensation system and a deep learning system for an etching process.
在現代製程中,隨著電子產品逐漸小型化、集成化,電路訊號的頻率隨之日益提高,電路板線路及積體電路的線路也隨之日趨細線化。由於線路越來越細,線路的截面積一致性對電阻、阻抗等電路特性的影像就越來越關鍵,些微的變動都會導致最終電器表現不如預期。In the modern manufacturing process, with the gradual miniaturization and integration of electronic products, the frequency of circuit signals increases day by day, and the lines of circuit boards and integrated circuits become thinner and thinner. As the lines become thinner and thinner, the consistency of the cross-sectional area of the lines becomes more and more critical to the image of circuit characteristics such as resistance and impedance. Slight changes will cause the final electrical performance not to be as expected.
由於線路蝕刻的過程中,原始設計的線路佈局密度,線路形狀…等因素,會造成蝕刻液的流動與接觸狀況有所不同,也造成不同的蝕刻速率,因此製作底片(或LDI程式時),須納入上述考慮,針對不同特性的區域線路,製作合適的形狀或寬窄調整。During the circuit etching process, the original design circuit layout density, circuit shape... and other factors will cause the flow and contact conditions of the etching solution to be different, and also cause different etching rates. Therefore, when making negatives (or LDI programs), The above considerations must be taken into account to make appropriate shape or width adjustments for regional lines with different characteristics.
傳統上,生產人員依據經驗作線路蝕刻的初始設定,並經由實際量測蝕刻結果進行參數調整。傳統作法受限於量測效率以及生產壓力,導致量測的位置不夠充足,以及參數驗證不夠完善,導致線路生產品質不如預期。Traditionally, production personnel make initial settings for line etching based on experience, and adjust parameters by actually measuring etching results. The traditional method is limited by the measurement efficiency and production pressure, resulting in insufficient measurement locations and insufficient parameter verification, resulting in lower-than-expected line production quality.
本發明的主要目的,在於提供一種用於蝕刻製程的補償方法,包括:拍攝經一蝕刻製程的一工件,以獲得一蝕刻影像;根據該蝕刻影像量測該工件,以獲得該工件的一線路量測資訊;根據該線路量測資訊,計算一蝕刻補償資訊;依據該蝕刻補償資訊產生欲成像的一曝光影像;以及傳送欲成像的該曝光影像至一曝光裝置,以更新該蝕刻製程的曝光底片。The main purpose of the present invention is to provide a compensation method for etching process, comprising: photographing a workpiece through an etching process to obtain an etching image; measuring the workpiece according to the etching image to obtain a line of the workpiece measuring information; calculating etching compensation information according to the line measuring information; generating an exposure image to be imaged according to the etching compensation information; and sending the exposure image to be imaged to an exposure device to update the exposure of the etching process Negatives.
本發明的另一目的,在於提供一種用於蝕刻製程的補償系統,包括量測裝置、補償裝置、以及影像生成裝置。該量測裝置拍攝經一蝕刻製程的一工件,以獲得一蝕刻影像,並分析該蝕刻影像,產生該工件的一線路量測資訊。該補償裝置耦合至該量測裝置,根據該線路量測資訊計算一蝕刻補償資訊。該影像生成裝置耦合至該補償裝置,根據該蝕刻補償資訊產生欲成像的一曝光影像,並提供至一曝光裝置,以更新該蝕刻製程的曝光底片。Another object of the present invention is to provide a compensation system for an etching process, including a measurement device, a compensation device, and an image generation device. The measurement device photographs a workpiece that has undergone an etching process to obtain an etching image, and analyzes the etching image to generate a line measurement information of the workpiece. The compensation device is coupled to the measurement device, and calculates etching compensation information according to the line measurement information. The image generation device is coupled to the compensation device, generates an exposure image to be imaged according to the etching compensation information, and provides it to an exposure device to update the exposure film of the etching process.
本發明的另一目的,在於提供一種深度學習系統,用以配合如上所述的用於蝕刻製程的補償系統設置,該深度學習系統包括資料儲存裝置、以及處理裝置。該資料儲存裝置連接至該影像生成裝置,由該影像生成裝置接收該蝕刻影像以及該曝光影像以建立樣本資料庫。該處理裝置連接至該資料儲存裝置以存取該樣本資料庫,其中該處理裝置包括一深度類神經網路,利用該樣本資料庫所儲存的該蝕刻影像以及該曝光影像訓練該深度類神經網路。Another object of the present invention is to provide a deep learning system for setting up the above-mentioned compensation system for the etching process, the deep learning system includes a data storage device and a processing device. The data storage device is connected to the image generation device, and the image generation device receives the etching image and the exposure image to establish a sample database. The processing device is connected to the data storage device to access the sample database, wherein the processing device includes a deep neural network, and the deep neural network is trained using the etching image and the exposure image stored in the sample database road.
是以,本發明可以進行全版及全面性的量測,藉此通過全自動快速補償值設定、以及全自動生產中間監控以及即時回饋調整的功能,達到快速進入量產、快速達到最佳補償值設定、智慧生產中監控、以及提升及穩定品質的效果。Therefore, the present invention can carry out full-scale and comprehensive measurement, so as to quickly enter mass production and quickly achieve the best compensation through the functions of fully automatic fast compensation value setting, fully automatic production intermediate monitoring and real-time feedback adjustment. Value setting, monitoring in smart production, and the effect of improving and stabilizing quality.
有關本發明之詳細說明及技術內容,現就配合圖式說明如下。再者,本發明中之圖式,為說明方便,其比例未必按實際比例繪製,而有誇大之情況,該等圖式及其比例非用以限制本發明之範圍。The detailed description and technical contents of the present invention are described as follows with respect to the accompanying drawings. Furthermore, for the convenience of explanation, the proportions of the drawings in the present invention are not necessarily drawn according to the actual scale, but are exaggerated. These drawings and their proportions are not intended to limit the scope of the present invention.
本發明可以用於工件線路蝕刻流程,在線路蝕刻完成時,通過自動光學檢測確認線路蝕刻後的形態回授補償值,以修正曝光影像,藉以在製程中即時且全面性的修正蝕刻製程,確保製程中產出的工件可以標準化。另一方面亦可以避免大量製程中受環境變化影響所導致的誤差。本發明中的工件例如可以包含但不限於,印刷電路板(PCB)、電路軟性電路板(FPC)、陶瓷基板、積體電路晶圓或積體電路晶片,該等實施例的變化非屬本發明所欲限制的範圍。The present invention can be used in the etching process of the workpiece line. When the line etching is completed, the form feedback compensation value after the line etching is confirmed by automatic optical detection to correct the exposure image, so as to correct the etching process in an instant and comprehensively during the process, ensuring The workpieces produced in the process can be standardized. On the other hand, errors caused by environmental changes in a large number of manufacturing processes can also be avoided. Workpieces in the present invention may include, but are not limited to, printed circuit boards (PCBs), flexible circuit boards (FPCs), ceramic substrates, integrated circuit wafers or integrated circuit wafers, and changes in these embodiments are not part of this invention. The scope of the invention is intended to be limited.
以下針對本發明的其中一實施例進行說明,請先參閱「圖1」,係為本發明用於蝕刻製程的補償系統的方塊示意圖,如圖所示。One of the embodiments of the present invention will be described below. Please refer to FIG. 1 , which is a schematic block diagram of the compensation system used in the etching process of the present invention, as shown in the figure.
本實施例提供一種用於蝕刻製程的補償系統100,用以量測工件蝕刻後線路的各項數據,例如包括線路長度、寬度、形狀、以及截面積等資訊。用於蝕刻製程的補償系統100主要包括量測裝置10、耦合至量測裝置10的補償裝置20、以及耦合至補償裝置20的影像生成裝置30。The present embodiment provides a
量測裝置10拍攝經一蝕刻製程的工件W,以獲得一蝕刻影像,並分析蝕刻影像,產生工件W的線路量測資訊。於一實施例中,量測裝置10包括影像擷取裝置11、以及連接或耦合至影像擷取裝置11的影像處理裝置12。The
影像擷取裝置11例如可以包括但不限定於線掃描攝影機(Line Scan Camera)或面掃描攝影機(Area Scan Camera)。於另一實施例中,量測裝置10的影像擷取裝置11可以包括雙鏡頭裝置(例如包括上視鏡頭以及側視鏡頭),在上視方向上拍攝並獲得線路上幅寬度以及線路下幅寬度,經由側視方向上拍攝獲取線路高度,並經由該等資訊計算並獲得線路截面積。於另一實施例中,量測裝置10可以包括三維影像攝影機,透過3D掃描技術(例如飛時測距(Time of Fight, TOF)、三角測距(Triangulation)、立體視覺法)產生線路量測資訊,該等獲取線路量測資訊的方式非屬本發明所欲限制的範圍。The image capturing
影像處理裝置12連接至影像擷取裝置11以獲得工件W的蝕刻影像,並產生工件W的線路量測資訊。於一實施例中,線路量測資訊包括線寬、線距、線路方向、線路厚度、線路體積或線路類型。於一實施例中,量測裝置10的影像處理裝置12可以根據蝕刻線路影像,全板面量測工件W,以獲得工件W上全部線路的線路量測資訊。The
補償裝置20耦合至量測裝置10,根據線路量測資訊計算一蝕刻補償資訊。具體而言,補償裝置20係根據線路量測資訊與一預設資訊之間的差距值,計算蝕刻補償資訊。預設資訊例如是母板或良品的線路資訊,蝕刻補償資訊例如是曝光影像上各遮罩對應於差距值所在線路位置上所應修正的補償數值,該等補償數值的轉換(由差距值修正為補償數值)係依據蝕刻環境代入修正參數進行轉換,修正參數例如可以是機器參數(例如LDI精準度、入射角、輸出功率等)、光罩配準誤差、材料特性及均勻性、環境參數(例如環境溫度、溼度等)等或其他任意可能會影響到最終蝕刻結果的條件,將該等變化參數全部或一部分代入後生成補償值。The
所述的影像生成裝置30耦合至補償裝置20,根據蝕刻補償資訊產生欲成像的曝光影像,並提供至曝光裝置40,以更新蝕刻製程的曝光底片。具體而言,影像生成裝置30可以預先保存或是由外部裝置獲取原始曝光影像,在此所指的原始曝光影像為執行對應工件蝕刻時所使用的曝光底片,藉以基於原始曝光影像為標準影像,依據對應的蝕刻補償資訊補償原始曝光影像,並輸出更新後的曝光影像。例如,蝕刻補償資訊為座標(x,y)、且補償值為+2μm時,當座標(x,y)上原始遮罩為10μm,則將其曝光影像上的對應遮罩修改為12μm以進行補償;於實務上,補償值亦可以區分成對應座標的左側及右側兩個區塊,以分別對遮罩的兩側邊界個別進行補償修正。The
曝光裝置40由影像生成裝置30接收曝光影像,將所接收到的曝光影像更新資料庫中的曝光底片,以依據更新後的曝光底片進行曝光顯影,例如可以但不限定於包括數位直接成像曝光機、雷射直接成像裝置(Laser Direct Imaging Device, LDI)、內層曝光機、外層曝光機、防焊曝光機、平行光曝光機或非平行光曝光機。The
於一實施例中,本發明的補償系統100可以整合於自動光學檢測設備上,在進行自動光學檢測的同時依據成品即時修正曝光底片,並將曝光底片傳送至產線前端的曝光裝置40,即時修正蝕刻製程。於所述的實施例中,本發明的補償系統100可以進一步包括影像檢測裝置50連接或耦合至量測裝置10,根據蝕刻影像,瑕疵檢測工件W,以獲得工件W的瑕疵檢測資訊。所述的瑕疵檢測可以經由傳統演算法將蝕刻影像與母片影像(或良品影像)進行比對(例如影像相減法),以確認瑕疵的位置,抑或是通過訓練過後的類神經網路(例如深度學習模型、或機器學習模型)將工件W輸入後進行瑕疵辨識,該等實施例的變化非屬本發明所欲限制的範圍。於另一實施例中,本發明的補償系統100亦可以做為獨立的檢測設備實施,例如設置於自動光學檢測的前端或後端,該等實施例的變化非屬本發明所欲限制的範圍。In one embodiment, the
於一實施例中,所述的影像處理裝置12、補償裝置20、以及影像生成裝置30可以由不同的電腦、伺服器、PLC或類此的獨立裝置實施。於另一實施例中,影像處理裝置12、補償裝置20、以及影像生成裝置30可以共構為單一電腦、伺服器、PLC或類此的獨立裝置,通過處理器載入儲存單元後執行儲存單元內所儲存的程式。處理器例如可以是中央處理器(Central Processing Unit, CPU),或是其他可程式化之一般用途或特殊用途的微處理器(Microprocessor)、數位訊號處理器(Digital Signal Processor, DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits, ASIC)、可程式化邏輯裝置(Programmable Logic Device, PLD)或其他類似裝置或這些裝置的組合。於一實施例中,本發明可以與自動光學檢測設備(AOI)合併實施,並由自動光學檢測設備將量測的線路量測資訊與預設資訊進行比較,以產生待測工件W的蝕刻補償資訊,並根據此補償資訊,調整原始曝光影像/底片的計算機輔助製造軟體(Computer Aided Manufacturing, CAM)檔案,以產生更新的曝光影像/底片,並提供給曝光裝置40。In an embodiment, the
於另一實施例中,亦可以是自動光學檢測設備量測工件W並獲得線路量測資訊後,將線路量測資訊提供給外部電腦(圖式未顯示),以調整原始曝光影像/底片的CAM檔案,使外部電腦產生更新的曝光影像/底片,以提供給曝光裝置40;具體而言,例如系統通過訓練的結果統合及分析後製作相應的資料庫(例如查找表)並儲存於外部電腦,當外部電腦接收到線路量測資訊後,依據線路量測資訊所偵測到的數值由資料庫中找到對應的數據(例如補償值、或是目標值),並依據該等數據產生曝光影像/底片。In another embodiment, after the automatic optical inspection equipment measures the workpiece W and obtains the line measurement information, it can provide the line measurement information to an external computer (not shown in the figure) to adjust the original exposure image/film The CAM file enables the external computer to generate updated exposure images/negatives to provide to the
關於本發明補償系統執行的過程,請一併參閱「圖2」及「圖3」,係為本發明全板面量測中線路剖面示意圖、以及線路等角示意圖,如圖所示。於一實施例,影像生成裝置20,包含但不限於,可經由以下的補償方法生成曝光影像。Regarding the implementation process of the compensation system of the present invention, please refer to "Fig. 2" and "Fig. 3" together, which are schematic diagrams of the cross-section of the circuit and isometric diagram of the circuit in the measurement of the full board surface of the present invention, as shown in the figure. In one embodiment, the
影像處理裝置12由影像擷取裝置11獲得蝕刻影像後,將蝕刻影像儲存於影像資料庫A1,以準備執行量測。After the
於蝕刻影像進入排程後,量測裝置10係經由蝕刻影像產生工件W的量測資訊。量測資訊係為蝕刻影像中各線路的資訊,包括線寬、線距、線路方向、線路厚度、線路體積或線路類型等。於全板面量測時,線路的識別可以由蝕刻影像中線路的顏色或形態進行搜尋,以分割出蝕刻影像上線路與基板之間的邊界,該等影像分割的方式非屬本發明所欲限定的範圍。本發明中所述的「全板面量測」,是針對整幅待測物進行影像量測具體而言,可以是利用線掃描攝影機掃描待測物,將所有線段影像拼接起來後量測整幅待測物影像,亦或可以是通過面掃描攝影機分次拍攝待測物之局部區域後,以組成整板面的工件影像、或是一次拍攝待測物全板面影像。After the etching image is scheduled, the
具體而言,影像處理裝置12經由以下的方式獲得線路的資訊,影像處理裝置12可以先進行影像前處理程序(例如影像強化、去除雜訊、加強對比、加強邊緣、擷取特徵、影像壓縮、影像轉換等),並將影像前處理程序後的影像進行分割、或邊界擷取,以劃分感興趣區域(Region of Interest, ROI)。感興趣區域擷取的方式例如可以為二值化處理(Binarization)、或是透過機器學習系統(Machine Learning)、深度學習系統(Deep Learning)等類神經網絡,由系統訓練後並將蝕刻影像中的線路區域以及基板區域分割出來。需注意的是,在此所述的蝕刻影像不一定是單獨的一個影像,也可以是二或二個以上的影像,經由複數個蝕刻影像以便後續分析線路於三維空間中的分布資訊。Specifically, the
於一實施例中,線路截面積可以由線路寬度(例如包括線路上幅寬度UW與線路下幅寬度DW等)以及線路厚度SH計算所獲得,例如梯形面積公式。進一步地,於一實施例中,線路體積可以由線路截面積及線路長度SL計算獲得。於一另一實施例中,較為精確的計算方式,線路體積可以由每一取樣的線路截面積以及每一取樣線路長度計算獲得。In one embodiment, the cross-sectional area of the line can be obtained by calculating the line width (for example, including the upper line width UW and the lower line width DW) and the line thickness SH, such as the trapezoidal area formula. Further, in an embodiment, the line volume can be obtained by calculating the line cross-sectional area and the line length SL. In another embodiment, in a more accurate calculation method, the line volume can be obtained by calculating the cross-sectional area of each sampled line and the length of each sampled line.
於一實施例中,影像處理裝置12進行量測時,可以利用像素座標作為索引記錄蝕刻影像上各線路的數值,配合影像處理裝置12的運算效能,至少可以以單一像素作為記錄線路尺寸數值的最小單位;在影像處理裝置12的運算效能有限的情況下,也可以二或以上像素距離為區段記錄所屬區段的線路尺寸數值,該等實施方式非屬本發明所欲限制的範圍;於其他實施例中,亦可以通過自訂義座標記錄作為索引記錄線路量測資訊,於本發明中不予以限制。In one embodiment, when the
影像處理裝置12完成全部量測後,補償裝置20係將量測後的數值與預存於影像資料庫A1的標準片(例如母片)的線路數值進行比對,以確定蝕刻影像與標準片的差異。具體而言,於設備上產線之前,可以先一步將要求的標準片送至本發明的設備以經由量測裝置10先進行全板面量測,藉此先一步取得標準片的各項線路量測資訊,並將該等線路量測資訊依據座標為索引儲存於資料庫作為各線路座標的期望值。當設備進入產線時,補償裝置20將所拍攝到的蝕刻影像的量測值,與標準片對應位置的期望值進行相減,獲得以座標為索引的差距值。於一實施例中,所述的標準片可以是母片或良品片,於本發明中不予以限制。After the
進一步地,補線路量測模組A1獲得各線路座標量測值與期望值之間的差距值時,可以依據差距值計算出曝光影像對座標位置的補償值。所述的補償值具體指曝光影像上線路光罩(例如遮罩、或無遮罩的部分)將線路尺寸修正至期望值所需的補償值,將差距值轉換至補償值的修正參數例如可以是機器參數(例如LDI精準度、入射角、輸出功率等)、光罩配準誤差、材料特性及均勻性、環境參數(例如環境溫度、溼度等)等或其他任意可能會影響到最終蝕刻結果的條件,將該等變化參數全部或一部分代入後生成補償值。於另一實施例中,在環境條件可控的理想狀態下,可以將線路座標量測值與期望值之間的差距值直接輸出為曝光底片上線路的補償值,以獲得蝕刻補償資訊,於本發明中不予以限制。Furthermore, when the supplementary line measurement module A1 obtains the gap value between the coordinate measurement value of each line and the expected value, it can calculate the compensation value of the coordinate position of the exposure image according to the gap value. The compensation value specifically refers to the compensation value required to correct the line size to the expected value by exposing the line mask (such as a mask or a part without a mask) on the exposure image. The correction parameter for converting the gap value to the compensation value can be, for example, Machine parameters (such as LDI accuracy, incident angle, output power, etc.), mask registration errors, material properties and uniformity, environmental parameters (such as ambient temperature, humidity, etc.), or any other factors that may affect the final etching result Conditions, all or part of these variable parameters are substituted to generate compensation values. In another embodiment, in an ideal state where the environmental conditions are controllable, the difference between the measured value of the line coordinates and the expected value can be directly output as the compensation value of the line on the exposure film to obtain etching compensation information. No limitation is intended in the invention.
於獲得全版的補償值後,影像生成裝置30依據原始曝光影像(具體而言,為生成對應工件線路的曝光底片),在補償值對應的映射座標位置上修正線路光罩(例如加寬、縮減線路光罩的寬度),於所有線路光罩修正完成時產生曝光影像,並將曝光影像傳送至產線前端的曝光裝置40以更新蝕刻製程的曝光底片。After obtaining the compensation value of the full version, the
本發明於另一實施例揭示一種深度學習系統,請一併參閱「圖4」及「圖5」,係為本發明深度學習系統與全板面量測用於蝕刻製程的補償系統的組合方塊示意圖以及深度學習系統的訓練流程示意圖,如圖所示。Another embodiment of the present invention discloses a deep learning system, please refer to "Fig. 4" and "Fig. 5" together. It is a combined block of the deep learning system of the present invention and the compensation system for the etching process of the full board measurement A schematic diagram and a schematic diagram of the training process of the deep learning system are shown in the figure.
本實施例係揭示一種深度學習系統200,用以配合前面所述的補償系統100設置。於本實施例中,深度學習系統200包括一資料儲存裝置60、以及一連接至資料儲存裝置60的處理裝置70。This embodiment discloses a
所述的資料儲存裝置60係連接至補償系統100,由補償系統100接收蝕刻影像以及曝光影像以建立樣本資料庫。具體而言,補償系統100於每一次執行線路光罩修正時,將對應料號的蝕刻影像的對應數值傳送至資料儲存裝置60備存於樣本資料庫。其中,所述的對應數值可以包括蝕刻影像、工件全版線路尺寸的線路量測資訊(包括座標位置)、曝光底片的全版補償值(包括座標位置)、以及更新後的曝光底片。The
所述的處理裝置70連接至資料儲存裝置60以存取資料儲存裝置60的樣本資料庫,處理裝置70包括深度類神經網路,利用樣本資料庫所儲存的蝕刻影像以及曝光底片訓練深度類神經網路。The
本發明中的深度類神經網路例如可以是但不限定於LeNet模型、AlexNet模型、GoogleNet模型或VGG模型(Visual Geometry Group)等,於本發明中不予以限制。具體而言,所述的深度類神經網路可以訓練成將蝕刻影像轉換成曝光底片的技能,以蝕刻影像作為深度類神經網路的輸入,並依據蝕刻影像輸出對應的曝光影像;本發明的深度類神經網路用以將蝕刻影像輸入至深度類神經網路進行前向傳播以獲得激勵響應,並將激勵響應結果與經線路修正後的曝光影像求差,從而獲得其中的響應誤差並將其進行反向傳播(Backpropagation) 以進行權重更新,經由上述兩步驟反覆迭代,直到深度類神經網路對輸入的響應達到目標範圍。The deep neural network in the present invention can be, for example, but not limited to LeNet model, AlexNet model, GoogleNet model or VGG model (Visual Geometry Group), etc., which are not limited in the present invention. Specifically, the deep neural network can be trained to convert etching images into exposure negatives, use the etching images as the input of the deep neural network, and output corresponding exposure images based on the etching images; the present invention The deep neural network is used to input the etching image to the deep neural network for forward propagation to obtain the stimulus response, and calculate the difference between the stimulus response result and the exposure image after circuit correction, so as to obtain the response error and It performs backpropagation (Backpropagation) to update the weight, and iterates through the above two steps until the response of the deep neural network to the input reaches the target range.
於一實施例中,本發明中深度學習系統的訓練流程如下所示,請一併參閱「圖5」:首先將工件W傳送至曝光裝置40,曝光裝置40依據曝光影像EP1所生成的光罩AH對工件W進行曝光製程,藉以於工件W上移轉光罩圖案。接續,將生成光罩圖案的工件W傳送至顯影裝置80及蝕刻裝置90,先由顯影裝置80對工件W進行顯影以生成蝕刻窗口後,再經由蝕刻裝置90對工件W進行蝕刻;蝕刻完成後的工件W傳送至補償系統100,通過補償系統100獲得蝕刻影像CP1,並依據蝕刻影像CP1進行全板面量測以獲得線路量測資訊。經由全板面量測的結果,補償系統100經由線路量測資訊計算蝕刻補償資訊,依據蝕刻補償資訊產生欲成像的曝光影像EP2。例如,於一實施例,可依據蝕刻補償資訊調整調整原始曝光影像/底片的CAM檔案,以產生欲成像的曝光影像EP2。隨後,將曝光影像EP2傳送至曝光裝置40,以更新曝光裝置40的曝光底片/影像。In one embodiment, the training process of the deep learning system in the present invention is as follows, please refer to "Fig. 5" together: first, the workpiece W is sent to the
另一方面,於一實施例,補償系統100可將所拍攝到的蝕刻影像CP1以及對應於蝕刻影像CP1的曝光影像EP1,傳送至深度學習系統200進行訓練(需特別注意,在此用於訓練深度學習系統200的曝光影像必須是用於生成蝕刻影像CP1所使用的曝光影像(EP1))。On the other hand, in one embodiment, the
經由上面訓練的結果,將使得訓練過後的深度類神經網路獲得將蝕刻影像轉換成曝光影像的技能,以獲得一個工件蝕刻量測人工智慧模型。Through the above training results, the trained deep neural network will acquire the ability to convert etching images into exposure images, so as to obtain an artificial intelligence model for workpiece etching measurement.
本發明的另一實施例,係揭示一種工件蝕刻製程的線路補償方法,請一併參閱「圖6」,係為本發明工件蝕刻製程線路補償方法的流程示意圖,如圖所示。Another embodiment of the present invention discloses a circuit compensation method for the workpiece etching process. Please refer to FIG. 6 , which is a schematic flow chart of the circuit compensation method for the workpiece etching process of the present invention, as shown in the figure.
本發明於另一實施例中係揭示一種工件蝕刻製程的線路補償方法,所述的線路補償方法包括以下的執行步驟。In another embodiment, the present invention discloses a line compensation method for a workpiece etching process, and the line compensation method includes the following steps.
首先,拍攝經蝕刻製程的工件,以獲得蝕刻影像(步驟S01);於一實施例中,工件包括印刷電路板、軟性電路板、高密度互連技術電路板、觸碰面板或積體電路晶片等類似基板,該等實施例非屬本發明所欲限制的範圍。First, photograph the workpiece undergoing the etching process to obtain an etching image (step S01); in one embodiment, the workpiece includes a printed circuit board, a flexible circuit board, a high-density interconnection technology circuit board, a touch panel or an integrated circuit chip and other similar substrates, these embodiments are not within the scope of the present invention.
接續,根據蝕刻影像量測工件,以獲得工件的線路量測資訊(步驟S02);於一實施例中,在進一步包括影像檢測裝置的實施例中,影像處理裝置對蝕刻影像進行工件量測的同時,可以同時對蝕刻影像進行瑕疵檢測。Next, measure the workpiece according to the etching image to obtain line measurement information of the workpiece (step S02); in one embodiment, in an embodiment further comprising an image detection device, the image processing device performs workpiece measurement on the etching image At the same time, flaw detection can be performed on the etched image at the same time.
接續,根據線路量測資訊,計算蝕刻補償資訊(步驟S03);於本實施例中,所述的蝕刻補償資訊包括線路的座標值以及相對應於座標值位置的補償值。Next, calculate etching compensation information according to the measurement information of the line (step S03 ); in this embodiment, the etching compensation information includes the coordinate value of the line and the compensation value corresponding to the position of the coordinate value.
接續,依據蝕刻補償資訊產生欲成像的曝光影像(步驟S04);蝕刻補償資訊係用於修改原始曝光影像(生成對應工件線路的曝光底片),依據補償值在對應的映射座標位置上修正線路以生成更新的曝光影像。Next, generate an exposure image to be imaged according to the etching compensation information (step S04); the etching compensation information is used to modify the original exposure image (to generate an exposure film corresponding to the workpiece circuit), and correct the circuit at the corresponding mapped coordinate position according to the compensation value. An updated exposure image is generated.
最終傳送欲成像的曝光影像至曝光裝置,以更新蝕刻製程的曝光底片(步驟S05)。曝光裝置包含但不限於,可為數位直接成像曝光機、雷射直接成像裝置(Laser Direct Imaging Device, LDI)、內層曝光機、外層曝光機、防焊曝光機、平行光曝光機或非平行光曝光機。Finally, the exposure image to be imaged is sent to the exposure device, so as to update the exposure film of the etching process (step S05 ). Exposure devices include, but are not limited to, digital direct imaging exposure machines, laser direct imaging devices (Laser Direct Imaging Device, LDI), inner layer exposure machines, outer layer exposure machines, solder mask exposure machines, parallel light exposure machines or non-parallel Light exposure machine.
綜上所述,本發明可以進行全版及全面性的量測,藉此通過全自動快速補償值設定、以及全自動生產中間監控以及即時回饋調整的功能,達到快速進入量產、快速達到最佳補償值設定、智慧生產中監控、以及提升及穩定品質的效果。To sum up, the present invention can carry out full-scale and comprehensive measurement, so as to quickly enter mass production and quickly reach the optimum level through the functions of fully automatic fast compensation value setting, fully automatic production intermediate monitoring, and real-time feedback adjustment. Optimum compensation value setting, monitoring in intelligent production, and the effect of improving and stabilizing quality.
以上已將本發明做一詳細說明,惟以上所述者,僅為本發明之一較佳實施例而已,當不能以此限定本發明實施之範圍,即凡依本發明申請專利範圍所作之均等變化與修飾,皆應仍屬本發明之專利涵蓋範圍內。The present invention has been described in detail above, but the above is only one of the preferred embodiments of the present invention, and should not limit the scope of the present invention with this, that is, all equivalents made according to the patent scope of the present invention Changes and modifications should still fall within the scope of the patent coverage of the present invention.
100:補償系統 10:量測裝置 11:影像擷取裝置 12:影像處理裝置 20:補償裝置 30:影像生成裝置 40:曝光裝置 50:影像檢測裝置 W:工件 A1:影像資料庫 UW:線路上幅寬度 DW:線路下幅寬度 SH:線路厚度 SL:線路長度 200:深度學習系統 60:資料儲存裝置 70:處理裝置 80:顯影裝置 90:蝕刻裝置 EP1:曝光影像 EP2:更新曝光影像 CP1:蝕刻影像 AH:光罩 S01~S05:步驟 100: Compensation system 10: Measuring device 11: Image capture device 12: Image processing device 20: Compensation device 30: Image generation device 40: Exposure device 50: Image detection device W: Workpiece A1: Image database UW: line width DW: line lower width SH: line thickness SL: line length 200: Deep Learning Systems 60: data storage device 70: Processing device 80: Developing device 90: Etching device EP1: Exposure Image EP2: Update exposure image CP1: Etched Image AH: mask S01~S05: Steps
圖1,本發明用於蝕刻製程的補償系統的方塊示意圖。FIG. 1 is a schematic block diagram of a compensation system used in an etching process according to the present invention.
圖2,本發明中線路剖面示意圖。Fig. 2 is a schematic cross-sectional view of the circuit in the present invention.
圖3,本發明中線路等角示意圖。Fig. 3 is an isometric schematic diagram of the circuit in the present invention.
圖4,本發明深度學習系統與用於蝕刻製程的補償系統的組合方塊示意圖。Fig. 4 is a combined block diagram of the deep learning system of the present invention and the compensation system for etching process.
圖5,本發明中深度學習系統的訓練流程示意圖。Fig. 5 is a schematic diagram of the training process of the deep learning system in the present invention.
圖6,本發明工件蝕刻製程線路補償方法的流程示意圖。FIG. 6 is a schematic flow chart of the method for compensating lines in the etching process of a workpiece according to the present invention.
100:補償系統 100: Compensation system
10:量測裝置 10: Measuring device
11:影像擷取裝置 11: Image capture device
12:影像處理裝置 12: Image processing device
20:補償裝置 20: Compensation device
30:影像生成裝置 30: Image generation device
40:曝光裝置 40: Exposure device
50:影像檢測裝置 50: Image detection device
W:工件 W: Workpiece
A1:影像資料庫 A1: Image database
Claims (15)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111100968A TWI805181B (en) | 2022-01-10 | 2022-01-10 | A compensation method and system using for an etching process, and deep learning system |
CN202210835651.7A CN116469789A (en) | 2022-01-10 | 2022-07-15 | Compensation method, compensation system and deep learning system for etching process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111100968A TWI805181B (en) | 2022-01-10 | 2022-01-10 | A compensation method and system using for an etching process, and deep learning system |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI805181B TWI805181B (en) | 2023-06-11 |
TW202328813A true TW202328813A (en) | 2023-07-16 |
Family
ID=87174033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111100968A TWI805181B (en) | 2022-01-10 | 2022-01-10 | A compensation method and system using for an etching process, and deep learning system |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116469789A (en) |
TW (1) | TWI805181B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117794089B (en) * | 2024-01-24 | 2024-06-28 | 深圳市常丰激光刀模有限公司 | Dynamic etching compensation method for printed circuit board circuit |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI326012B (en) * | 2006-02-22 | 2010-06-11 | Republican Unitary Scient & Production Entpr Kbtem Omo | |
US10394984B2 (en) * | 2015-11-25 | 2019-08-27 | International Business Machines Corporation | Tool to provide integrated circuit masks with accurate dimensional compensation of patterns |
WO2019145278A1 (en) * | 2018-01-26 | 2019-08-01 | Asml Netherlands B.V. | Pre-scan feature determination methods and systems |
WO2021160365A1 (en) * | 2020-02-12 | 2021-08-19 | Asml Netherlands B.V. | Method for controlling a manufacturing process and associated apparatuses |
US20230100578A1 (en) * | 2020-02-12 | 2023-03-30 | Asml Netherlands B.V. | Method for determining a mask pattern comprising optical proximity corrections using a trained machine learning model |
-
2022
- 2022-01-10 TW TW111100968A patent/TWI805181B/en active
- 2022-07-15 CN CN202210835651.7A patent/CN116469789A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN116469789A (en) | 2023-07-21 |
TWI805181B (en) | 2023-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6151406B2 (en) | Board inspection method | |
US5134575A (en) | Method of producing numerical control data for inspecting assembled printed circuit board | |
CN113240674B (en) | Coplanarity detection method based on three-dimensional point cloud and two-dimensional image fusion | |
US20060002510A1 (en) | Inspection method and system for and method of producing component mounting substrate | |
WO2001061275A1 (en) | Method and system for automatically generating reference height data for use in a three-dimensional inspection system | |
TWI805181B (en) | A compensation method and system using for an etching process, and deep learning system | |
US11460785B2 (en) | Method for the qualification of a mask for microlithography | |
JP2008185514A (en) | Substrate visual inspection apparatus | |
CN108596829A (en) | A kind of PCB bare boards picture method for registering and device | |
KR20240040708A (en) | Board measurement system and method thereof | |
WO2023060927A1 (en) | 3d grating detection method and apparatus, computer device, and readable storage medium | |
CN116051582A (en) | High-precision scanning electron microscope image contour extraction method, device and equipment | |
TWI639013B (en) | Circuit board detection method | |
CN117452347A (en) | Precision testing method of depth camera, related device and storage medium | |
TWI772989B (en) | Board information analyzing system and method | |
JP4629086B2 (en) | Image defect inspection method and image defect inspection apparatus | |
CN106373161B (en) | A kind of localization method based on SIFT feature | |
JP2010025803A (en) | Inspection device having positioning function, program therefor, inspection method of inspection device having positioning function | |
TWI773035B (en) | System and method for image recognition | |
JPWO2022003919A5 (en) | ||
TWM614235U (en) | Position and size measurement system for real-time correction of the object to be processed on the measuring machine | |
JPH0674714A (en) | Substrate position detecting method | |
CN117115233B (en) | Dimension measurement method and device based on machine vision and electronic equipment | |
JP2005030893A (en) | Positioning method of pattern | |
JP4760072B2 (en) | X-ray inspection apparatus and X-ray inspection method |