JP4760072B2 - X-ray inspection apparatus and X-ray inspection method - Google Patents

X-ray inspection apparatus and X-ray inspection method Download PDF

Info

Publication number
JP4760072B2
JP4760072B2 JP2005076846A JP2005076846A JP4760072B2 JP 4760072 B2 JP4760072 B2 JP 4760072B2 JP 2005076846 A JP2005076846 A JP 2005076846A JP 2005076846 A JP2005076846 A JP 2005076846A JP 4760072 B2 JP4760072 B2 JP 4760072B2
Authority
JP
Japan
Prior art keywords
ray
distance
measurement object
transmission image
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005076846A
Other languages
Japanese (ja)
Other versions
JP2006258626A (en
Inventor
一生 大内
昇 東
和彦 友保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005076846A priority Critical patent/JP4760072B2/en
Publication of JP2006258626A publication Critical patent/JP2006258626A/en
Application granted granted Critical
Publication of JP4760072B2 publication Critical patent/JP4760072B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はX線検査装置及び検査方法に係り、特に実装済みプリント基板上の部品実装状態の、高精度な検査を行うため、計測される寸法データを補正する方法に関する。   The present invention relates to an X-ray inspection apparatus and an inspection method, and more particularly to a method for correcting measured dimension data in order to perform a high-accuracy inspection of a component mounting state on a mounted printed board.

従来のX線検査装置において、撮影倍率が不明な測定対象の寸法計測を行う方法として、図6に示すように、X線照射手段601とX線撮像手段602を対向して配置し、X線照射手段601から照射されるX線光603の光路上に、測定対象604と、寸法が既知である基準ブロック605を、X線撮像手段602から等しい距離に並べて配置し、測定対象604と基準ブロック605のX線透過画像を同一画面内に撮影する。次に、撮影されたX線透過画像を、画像処理手段606を用いて輪郭抽出等の画像処理を行い、次に、寸法計測手段607を用いて、画像処理された基準ブロック605の透過画像の既知の寸法範囲の画素数を計数し、基準ブロック605の既知の寸法を、計数した画素数で除算して、X線透過画像上での1画素あたりの寸法を算出し、算出された1画素あたりの寸法と、X線透過画像上の距離計測を行う2点間の画素数を積算することで寸法計測を行い、撮影されたX線透過画像及び、寸法計測結果を画像表示手段608に表示することで、撮影倍率が不明な測定対象の高精度な寸法計測を行っている。(特許文献1参照。)。
特開昭63−173907号公報
In a conventional X-ray inspection apparatus, as a method for measuring a dimension of a measurement target whose imaging magnification is unknown, as shown in FIG. 6, an X-ray irradiation unit 601 and an X-ray imaging unit 602 are arranged to face each other, and On the optical path of the X-ray light 603 irradiated from the irradiation unit 601, the measurement object 604 and the reference block 605 whose dimensions are known are arranged at the same distance from the X-ray imaging unit 602, and the measurement object 604 and the reference block are arranged. An X-ray transmission image 605 is taken on the same screen. Next, the photographed X-ray transmission image is subjected to image processing such as contour extraction using the image processing unit 606, and then the transmission unit of the reference block 605 subjected to image processing using the dimension measurement unit 607. Count the number of pixels in the known size range, divide the known size of the reference block 605 by the counted number of pixels to calculate the size per pixel on the X-ray transmission image, and calculate one pixel Dimension measurement is performed by integrating the per-dimension and the number of pixels between two points for distance measurement on the X-ray transmission image, and the photographed X-ray transmission image and the dimension measurement result are displayed on the image display means 608. By doing so, high-accuracy dimension measurement of a measurement object whose shooting magnification is unknown is performed. (See Patent Document 1).
JP-A 63-173907

しかしながら、従来の構成では、図7に示すように、X線照射手段701から照射されるX線光702の光路上に配置された測定対象703が、例えば部品実装により湾曲したプリント基板のように、湾曲領域704を有する場合、寸法が既知である基準ブロック705と測定対象703を、X線撮像手段706から等しい高さに並べて配置しても、測定対象703の湾曲領域704と基準ブロック705では高さが異なるため、撮影されたX線透過画像707上の測定対象画像708の湾曲領域画像709と、基準ブロック画像710の撮影倍率に差が生じ、基準ブロック705の既知の寸法から算出された1画素あたりの寸法データを用いて、測定対象画像708の湾曲領域画像709の寸法計測を行うと、撮影倍率の差による誤差が発生し、高精度な寸法計測が行えないという課題を有していた。   However, in the conventional configuration, as shown in FIG. 7, the measurement object 703 disposed on the optical path of the X-ray light 702 emitted from the X-ray irradiation means 701 is, for example, a printed board curved by component mounting. In the case of having the curved region 704, even if the reference block 705 and the measurement target 703 whose dimensions are known are arranged at the same height from the X-ray imaging unit 706, the curved region 704 and the reference block 705 of the measurement target 703 Since the heights are different, there is a difference in imaging magnification between the curved region image 709 of the measurement target image 708 on the captured X-ray transmission image 707 and the reference block image 710, which is calculated from the known dimensions of the reference block 705. When the dimension measurement of the curved region image 709 of the measurement target image 708 is performed using the dimension data per pixel, an error due to a difference in photographing magnification occurs. And, there is a problem that highly accurate dimension measurement can not be performed.

本発明は、従来の課題を解決するもので、湾曲領域を有する測定対象においても、測定対象の全領域で高精度な寸法計測が可能なX線検査装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an X-ray inspection apparatus capable of measuring a dimension with high accuracy in the entire measurement target region even in a measurement target having a curved region.

従来の課題を解決するために、本発明のX線検査装置は、コーンビーム状のX線を測定対象物に照射するX線照射手段と、前記X線照射手段から既知の距離だけ離れて配置され、前記測定対象物の透過X線を撮像する平坦な受光面を備えたX線撮像手段と、前記測定対象物を前記X線撮像手段の受光面に対して平行に移動させる移動手段と、前記移動手段の移動距離と前記測定対象物に設定された基準領域の前記透過画像上の移動距離を算出する移動距離算出手段と、前記移動距離算出手段にて算出される前記移動手段の移動距離と、前記基準領域の透過画像上の移動距離に基づいて前記測定対象物の透過画像の単位画素ごとの撮影倍率を算出する撮影倍率算出手段と、を備え、前記測定対象物の高さの異なる2点の前記透過画像上の距離を前記算出された単位画素ごとの撮影倍率を用いて補正して、前記X線撮像手段の受光面上に像を形成した前記高さの異なる2点の測定対象物上の距離を求めることを特徴としたものである。 In order to solve the conventional problems, an X-ray inspection apparatus according to the present invention is arranged with an X-ray irradiation means for irradiating a measurement object with cone-beam X-rays, and a known distance from the X-ray irradiation means. is an X-ray imaging means having a flat receiving surface for capturing the transmitted X-ray of the measurement object, a moving means for moving parallel to the measurement object with respect to the light-receiving surface of the X-ray imaging means, and moving distance calculating means for calculating the movement distance on the transmission image of the set reference region with the travel distance between the measurement object of the moving means, the moving distance of the moving means which is calculated by the moving distance calculating unit And a photographing magnification calculating means for calculating a photographing magnification for each unit pixel of the transmission image of the measurement object based on a moving distance of the reference region on the transmission image, and the height of the measurement object is different. The distance on the transparent image of two points Correction is performed using the calculated imaging magnification for each unit pixel, and the distances on the measurement object at two points having different heights that form an image on the light receiving surface of the X-ray imaging unit are obtained. It is what.

本発明のX線検査装置及びX線検査方法によれば、測定対象が湾曲等により測定領域ごとに異なる倍率で撮影される場合においても、それらの領域の撮影倍率を計測し、撮影されたX線透過画像の単位画素ごとの撮影倍率を算出し、単位画素ごとの撮影倍率により、計測を行う寸法データの補正を行うことで、高精度な寸法計測が可能となる。   According to the X-ray inspection apparatus and X-ray inspection method of the present invention, even when the measurement target is imaged at different magnifications for each measurement region due to curvature or the like, the imaging magnification of those regions is measured and the captured X By calculating the imaging magnification for each unit pixel of the line transmission image and correcting the dimension data to be measured based on the imaging magnification for each unit pixel, highly accurate dimension measurement can be performed.

以下に、本発明のX線検査装置の実施の形態を図面とともに詳細に説明する。   Embodiments of the X-ray inspection apparatus of the present invention will be described below in detail with reference to the drawings.

図1は、本発明の実施例1におけるX線検査装置の構成図を示すものである。   FIG. 1 shows a configuration diagram of an X-ray inspection apparatus according to Embodiment 1 of the present invention.

図1において、本発明のX線検査装置はコーンビーム状のX線光101を照射するX線照射手段102と、測定対象103を透過して受光面に入射したX線光101をX線透過画像に変換するX線撮像手段104と、測定対象103をX線撮像手段104の受光面と平行に移動させる移動手段105と、予め測定対象103上の基準領域106の検索を行うための座標及び形状情報等の設定を行う検索領域設定手段107と、撮影されたX線透過画像から基準領域106を抽出する基準領域抽出手段108と、基準領域抽出手段108により抽出された基準領域106の座標を算出する基準領域座標算出手段109と、測定対象103を移動手段105を用いて移動させるための移動制御手段110と、移動手段105で移動された測定対象103の移動距離及びX線撮像手段での基準領域106の移動距離を算出する移動距離算出手段111と、基準領域106の移動距離より、基準領域106の撮影倍率を算出する撮影倍率算出手段112と、算出された撮影倍率を用いて、測定対象103の寸法を計測する寸法計測手段113と、寸法計測結果及びX線透過画像を表示する画像表示手段114を備える。   In FIG. 1, an X-ray inspection apparatus according to the present invention includes an X-ray irradiation means 102 for irradiating cone-beam X-ray light 101, and X-ray light 101 transmitted through a measurement object 103 and incident on a light receiving surface. X-ray imaging means 104 for converting to an image, moving means 105 for moving the measuring object 103 in parallel with the light receiving surface of the X-ray imaging means 104, coordinates for searching for the reference region 106 on the measuring object 103 in advance, The search area setting means 107 for setting shape information and the like, the reference area extraction means 108 for extracting the reference area 106 from the photographed X-ray transmission image, and the coordinates of the reference area 106 extracted by the reference area extraction means 108 Reference area coordinate calculation means 109 to be calculated, movement control means 110 for moving the measurement object 103 using the movement means 105, and measurement object moved by the movement means 105 A moving distance calculating unit 111 that calculates a moving distance of 03 and a moving distance of the reference region 106 in the X-ray imaging unit, and an imaging magnification calculating unit 112 that calculates an imaging magnification of the reference region 106 based on the moving distance of the reference region 106. And a dimension measuring means 113 for measuring the dimension of the measuring object 103 using the calculated imaging magnification, and an image display means 114 for displaying the dimension measurement result and the X-ray transmission image.

そして、測定対象103を移動して撮影された複数のX線透過画像より、測定対象103上の基準領域106の撮影倍率からX線透過画像のそれぞれの単位画素の撮影倍率を算出し、算出された撮影倍率を用いてX線透過画像の寸法補正を行うことで高精度な寸法計測を行うX線検査装置である。   Then, the imaging magnification of each unit pixel of the X-ray transmission image is calculated from the imaging magnification of the reference region 106 on the measurement object 103 from a plurality of X-ray transmission images acquired by moving the measurement object 103. The X-ray inspection apparatus performs highly accurate dimension measurement by correcting the dimension of the X-ray transmission image using the imaging magnification.

なお、本実施例の移動装置105について、X線照射装置102及びX線撮像装置104を移動させることにより、測定対象103の移動と同様の効果が得られる。   Note that, by moving the X-ray irradiation apparatus 102 and the X-ray imaging apparatus 104 in the moving apparatus 105 of the present embodiment, the same effect as the movement of the measurement target 103 can be obtained.

次に、図2を用いて、測定対象の撮影倍率算出方法について説明を行う。   Next, a method for calculating the imaging magnification of the measurement object will be described with reference to FIG.

図2において、X線撮像手段201の受光面202から距離L2離れた位置にあるX線照射手段203の発光点204から、X線撮像手段201の方向に照射されるコーンビーム状のX線光205は、X線撮像手段201の受光面202から距離L1の位置にある測定対象206を透過した後、受光面202に入射し、X線撮像装置201においてX線透過画像207が撮像される。その際、測定対象206上の、例えばプリント基板の配線パターンのような、周辺領域とX線透過率が異なる材質で形成された領域を基準領域208とすると、基準領域208は周辺領域とX線透過率が異なるためX線透過画像207上で基準領域画像209のように画像輝度が異なる領域として画像化されるため、X線透過画像207を画像処理し基準領域画像209を抽出することで、X線透過画像207上での基準領域画像209の座標が計測される。次に、測定対象206を受光面202と平行に距離D1移動し、X線透過画像を撮影すると、移動後に撮影された基準領域画像210は移動前の基準領域画像209の位置から距離D2離れた位置で撮影されるため、受光面202から測定対象206までの距離L1と、受光面202から発光点204までの距離L2、測定対象206の移動距離D1、X線透過画像上での基準領域画像209から210への移動距離D2の関係は、数式1で表わされ、
(L2−L1):L2=D1:D2・・・(数式1)
数式1より、受光面202から測定対象206までの距離L1は、数式2で算出される。
In FIG. 2, cone beam-shaped X-ray light irradiated in the direction of the X-ray imaging unit 201 from the light emitting point 204 of the X-ray irradiation unit 203 located at a distance L2 from the light receiving surface 202 of the X-ray imaging unit 201. 205 is transmitted through the measuring object 206 at a distance L1 from the light receiving surface 202 of the X-ray imaging means 201 and then enters the light receiving surface 202, and the X-ray imaging apparatus 201 captures an X-ray transmission image 207. At this time, if a region formed of a material having a different X-ray transmittance from the peripheral region, such as a printed circuit board wiring pattern, on the measurement target 206 is defined as a reference region 208, the reference region 208 is defined as the peripheral region and the X-ray. Since the transmittance is different, the X-ray transmission image 207 is imaged as a region having a different image brightness like the reference region image 209. Therefore, by processing the X-ray transmission image 207 and extracting the reference region image 209, The coordinates of the reference area image 209 on the X-ray transmission image 207 are measured. Next, when the measurement object 206 is moved by a distance D1 parallel to the light receiving surface 202 and an X-ray transmission image is taken, the reference area image 210 taken after the movement is separated from the position of the reference area image 209 before the movement by a distance D2. Since the image is taken at the position, the distance L1 from the light receiving surface 202 to the measuring object 206, the distance L2 from the light receiving surface 202 to the light emitting point 204, the moving distance D1 of the measuring object 206, the reference region image on the X-ray transmission image The relationship of the movement distance D2 from 209 to 210 is expressed by Equation 1.
(L2−L1): L2 = D1: D2 (Equation 1)
From Equation 1, the distance L1 from the light receiving surface 202 to the measurement object 206 is calculated by Equation 2.

L1=L2(1−D1/D2)・・・(数式2)
よって、数式2より、測定対象がプリント基板のように湾曲した領域を有する場合においても、距離L2、D1及びD2を計測することで測定対象206上の基準領域208までの距離L1の算出が可能となり、基準領域208の撮影倍率Mは、数式3で表わされる。
L1 = L2 (1-D1 / D2) (Formula 2)
Therefore, even when the measurement target has a curved region such as a printed circuit board, the distance L1 to the reference region 208 on the measurement target 206 can be calculated by measuring the distances L2, D1, and D2. Thus, the photographing magnification M of the reference area 208 is expressed by Equation 3.

M=L2/(L2−L1)=D2/D1・・・(数式3)
なお、本実施例の測定対象の高さ計測方法において、レーザー光を測定対象に照射し、3角測量の原理により高さ計測を行う手法や、カメラ等の外観撮像手段を用いて撮影された複数の方向からの外観画像を用いた立体視法により高さ計測を行う手法等を用いて、測定対象の高さ計測を行い、計測された高さデータより、X線透過画像の撮影倍率を算出することが可能である。
M = L2 / (L2-L1) = D2 / D1 (Formula 3)
In addition, in the height measurement method of the measurement target of this example, the measurement target was irradiated with a laser beam and the height was measured based on the principle of triangulation, or the image was taken using an external imaging means such as a camera. Measure the height of the object to be measured using a method of measuring the height by stereoscopic viewing using appearance images from multiple directions, and determine the imaging magnification of the X-ray transmission image from the measured height data. It is possible to calculate.

次に、図3を用いて、測定対象が実装済みプリント基板の場合を例に、測定対象上に設定される基準領域について説明を行う。   Next, the reference region set on the measurement target will be described with reference to FIG. 3 using the case where the measurement target is a mounted printed board as an example.

図3において、プリント基板301上には抵抗やコンデンサ等のチップ部品302や、QFP(Quad Flat Package)303等のIC部品が実装されており、プリント基板301上にはこれらの部品の回路接続を行うための配線パターン304や、QFP303等のIC部品を高精度に実装するための補正マーク305が銅箔により形成されている。これらの銅箔で形成された配線パターン304及び補正マーク305は、プリント基板301の基材を構成するガラス繊維に較べ、X線透過率が1〜10%低いため、プリント基板301のX線透過画像306を撮影すると、プリント基板301上の配線パターン304及び補正マーク305は、X線透過画像306上で、配線パターン画像307及び補正マーク画像308のように、周辺領域に較べ輝度が低く撮影される。このように、X線透過画像306上に輝度分布の変化が生じる領域を基準領域とし、予めその周辺領域の座標及び形状情報等を検索領域309として設定し、撮影されたX線透過画像306上の検索領域309を検索し、その領域内の配線パターン304及び補正マーク305等の基準領域を画像処理することで、基準領域の座標の算出が可能となる。   In FIG. 3, chip components 302 such as resistors and capacitors, and IC components such as a QFP (Quad Flat Package) 303 are mounted on a printed circuit board 301, and circuit connection of these components is performed on the printed circuit board 301. The wiring pattern 304 for performing and the correction mark 305 for mounting IC components, such as QFP303, with high precision are formed with copper foil. Since the wiring pattern 304 and the correction mark 305 formed of these copper foils have an X-ray transmittance of 1 to 10% lower than the glass fiber constituting the base material of the printed board 301, the X-ray transmission of the printed board 301 is reduced. When the image 306 is photographed, the wiring pattern 304 and the correction mark 305 on the printed circuit board 301 are photographed on the X-ray transmission image 306 with lower brightness than the surrounding area like the wiring pattern image 307 and the correction mark image 308. The As described above, an area where the luminance distribution changes on the X-ray transmission image 306 is set as a reference area, and coordinates and shape information of the surrounding area are set as the search area 309 in advance, and the X-ray transmission image 306 is captured. By searching the search area 309 and image-processing the reference areas such as the wiring pattern 304 and the correction mark 305 in the area, the coordinates of the reference area can be calculated.

なお、本実施例で設定される検索領域309について、例えばQFP303のICリード310等の、銅箔以外の材料で構成される領域についても設定を行うことで、基準領域の座標の算出が可能となる。   For the search area 309 set in this embodiment, for example, an area made of a material other than copper foil, such as the IC lead 310 of the QFP 303, can also be set to calculate the coordinates of the reference area. Become.

また、プリント基板301の検索領域309の設定は、プリント基板301の設計データや、予め寸法計測を行って取得したプリント基板301の座標及び形状情報を用いて設定を行うことが可能であり、また、寸法計測を行う際、撮影されたX線透過画像上に領域設定を行うことでも検索領域309の設定が可能である。   The setting of the search area 309 of the printed circuit board 301 can be performed by using the design data of the printed circuit board 301 and the coordinate and shape information of the printed circuit board 301 acquired by performing dimension measurement in advance. When performing dimension measurement, the search area 309 can also be set by setting an area on the photographed X-ray transmission image.

次に、図4を用いてX線検査装置について、その動作を説明する。   Next, the operation of the X-ray inspection apparatus will be described with reference to FIG.

図4は、本発明の実施例1におけるX線検査装置のフローチャートを示すものである。   FIG. 4 shows a flowchart of the X-ray inspection apparatus in Embodiment 1 of the present invention.

図4において、まず、測定対象であるプリント基板上の基準領域となる配線パターンや、補正マーク等の基準領域の座標及び形状抽出を行うため、ステップ401において検索領域を設定し、設定されたプリント基板の検索領域が撮影視野に入るように、ステップ402でプリント基板を移動し、ステップ403において1枚目のX線透過画像を撮影する。次に、検索領域が撮影視野に入るように、ステップ402を用いてプリント基板をX線撮像手段の受光面と平行なXY平面上を移動させ、ステップ403において2枚目のX線透過画像の撮影を行う。次に、ステップ404において2枚目の撮影が完了を確認した後、撮影された1枚目及び2枚目のX線透過画像について、ステップ405においてエッジ抽出、及び、2値化処理等の画像処理を行い、ステップ406において配線パターンや、補正マーク等の基準領域のエッジ部、または、中心のXY座標を算出する。次に、1枚目及び2枚目のX線透過画像から算出した基準領域のXY座標より、ステップ407においてそれぞれの基準領域ごとにX線透過画像上の相対位置から移動距離D2を算出し、2枚目のX線透過画像を撮影する際のプリント基板の移動距離D1と、この移動距離D2を式3に代入することで、ステップ408において設定された各基準領域の撮影倍率が算出される。次に、ステップ409において各基準領域のXY座標データと、算出された撮影倍率を用いて、線形補間、または、2次スプライン補間、3次スプライン補間等のデータ補間処理を行い、X線透過画像全面のそれぞれの単位画素の撮影倍率を算出する。次に、ステップ410において、寸法計測を行うX線透過画像上の任意の2点間の寸法について、算出されたX線透過画像の撮影倍率データを用いて寸法補正処理を行い、次に、撮影されたX線透過画像と、ステップ410で補正処理された寸法計測結果をステップ411において表示することで、本発明におけるX線検査装置において、高精度な寸法計測が可能となる。 In FIG. 4, first, in order to extract the wiring pattern serving as a reference area on the printed circuit board to be measured and the coordinates and shape of the reference area such as correction marks, a search area is set in step 401 and the set print is set. In step 402, the printed circuit board is moved so that the board search area is within the field of view, and in step 403, the first X-ray transmission image is taken. Next, the printed circuit board is moved on the XY plane parallel to the light receiving surface of the X-ray imaging means using Step 402 so that the search area falls within the imaging field of view. In Step 403, the second X-ray transmission image is scanned. Take a picture. Next, after confirming the completion of the second imaging in step 404, the images of the first and second X-ray transmission images that have been acquired, such as edge extraction and binarization processing in step 405, are obtained. In step 406, the XY coordinates of the wiring pattern, the edge portion of the reference region such as the correction mark, or the center are calculated. Next, from the XY coordinates of the reference area calculated from the first and second X-ray transmission images, the movement distance D2 is calculated from the relative position on the X-ray transmission image for each reference area in Step 407, By substituting the movement distance D1 of the printed circuit board when photographing the second X-ray transmission image and this movement distance D2 into Equation 3, the imaging magnification of each reference region set in step 408 is calculated. . Next, in step 409, data interpolation processing such as linear interpolation, quadratic spline interpolation, and cubic spline interpolation is performed using the XY coordinate data of each reference region and the calculated imaging magnification, and an X-ray transmission image is obtained. The photographing magnification of each unit pixel on the entire surface is calculated. Next, in step 410, dimension correction processing is performed on the dimension between any two points on the X-ray transmission image on which the dimension measurement is performed using the calculated imaging magnification data of the X-ray transmission image. By displaying the obtained X-ray transmission image and the dimension measurement result corrected in step 410 in step 411, the X-ray inspection apparatus according to the present invention enables highly accurate dimension measurement.

次に、図5を用いて、撮影倍率が算出されたX線透過画像を用いた寸法計測の補正方法について説明を行う。   Next, a dimensional measurement correction method using an X-ray transmission image whose imaging magnification is calculated will be described with reference to FIG.

測定対象がプリント基板のような湾曲領域を有する場合、湾曲したプリント基板はその表面の位置ごとに受光面からの距離が変化するため、撮影されたプリント基板のX線透過画像それぞれの単位画素ごとに撮影倍率が異なり、プリント基板のX線透過画像上の高さの異なる2点間の寸法を高精度に計測するためには、それら2点を結ぶ直線が通過する単位画素の撮影倍率を算出し寸法補正処理を行う必要がある。そのため、図4のステップ409において算出された、X線透過画像全面の撮影倍率について、X線透過画像のXY方向のそれぞれの単位画素ごとの撮影倍率がMxyであるとすると、これらのX線透過画像の各画素の撮影倍率Mxyを、倍率補正を行うための倍率補正テーブル501とし、また、撮影されたX線透過画像画素サイズ502は、X線撮像手段の画素サイズに等しいものとすると、指定された寸法計測開始位置503:aの座標(x,y)と寸法計測終了位置504:bの座標(x,y)間の寸法を計測する場合、2点a,bを結ぶ直線と、X線透過画像画素の境界との交点を、距離計測開始位置503:aに近い順に、交点座標505:(x,y)、交点座標506:(x,y)、交点座標507:(x,y)としてその座標を算出し、(数式4)を用いてX線透過画像の各画素を通過する直線の寸法を算出する。

Figure 0004760072

次に、測定対象はそれぞれの単位画素ごとに撮影倍率で拡大され、X線撮像手段の受光面上に像を形成しているため、X線透過画像上で計測された2点間の寸法を撮影倍率で除算することにより、測定対象における2点間距離が求まるので、(数式5)のように、各画素を通過する直線の寸法を、直線が通過する領域の各単位画素の撮影倍率Mxyで除算する。
Figure 0004760072

そして、単位画素ごとに補正されたそれらの距離の値を加算することで、撮影倍率Mxyで補正されたa,b間の寸法が算出され、プリント基板のような湾曲領域を有する測定対象についても、撮影倍率により寸法補正することで測定誤差の小さい高精度な寸法計測が可能になる。 When the measurement target has a curved region such as a printed circuit board, the distance from the light receiving surface of the curved printed circuit board varies depending on the position of the surface. Therefore, for each unit pixel of the X-ray transmission image of the photographed printed circuit board In order to measure the dimension between two points with different heights on the X-ray transmission image of the printed circuit board with high accuracy, calculate the shooting magnification of the unit pixel through which the straight line connecting these two points passes. It is necessary to perform dimension correction processing. Therefore, regarding the imaging magnification of the entire X-ray transmission image calculated in step 409 of FIG. 4, assuming that the imaging magnification for each unit pixel in the XY direction of the X-ray transmission image is M xy , these X-rays The imaging magnification M xy of each pixel of the transmission image is set as a magnification correction table 501 for performing magnification correction, and the captured X-ray transmission image pixel size 502 is assumed to be equal to the pixel size of the X-ray imaging unit. When measuring the dimension between the coordinate (x 1 , y 1 ) of the designated dimension measurement start position 503: a and the coordinate (x 5 , y 5 ) of the dimension measurement end position 504: b, two points a and b , And the boundary of the X-ray transmission image pixel, the intersection coordinates 505: (x 2 , y 2 ) and the intersection coordinates 506: (x 3 , y 3 ) in order from the distance measurement start position 503: a. ), Intersection coordinates 5 7: (x 4, y 4) as to calculate the coordinates, to calculate the size of the straight line passing through each pixel of the X-ray transmission image by using the (Equation 4).
Figure 0004760072

Next, since the measurement object is magnified by the photographing magnification for each unit pixel and an image is formed on the light receiving surface of the X-ray imaging means, the dimension between the two points measured on the X-ray transmission image is set. By dividing by the shooting magnification, the distance between the two points in the measurement object is obtained, so that the size of the straight line passing through each pixel is set as the shooting magnification M of each unit pixel in the area through which the straight line passes as shown in (Formula 5). Divide by xy .
Figure 0004760072

Then, by adding the distance values corrected for each unit pixel, the dimension between a and b corrected with the photographing magnification M xy is calculated, and the measurement target having a curved region such as a printed circuit board is calculated. In addition, it is possible to perform highly accurate dimension measurement with a small measurement error by correcting the dimension according to the photographing magnification.

本発明にかかるX線検査装置及びX線検査方法は、測定対象が湾曲等により測定領域ごとに異なる撮影倍率を有する場合においても、それらの領域の撮影倍率を計測し、撮影されたX線透過画像のそれぞれの単位画素ごとの撮影倍率を算出して、撮影倍率による寸法補正を行うことで、測定誤差の小さい高精度な寸法計測が可能であり、特に実装済みプリント基板の部品実装状態の高精度な検査を行うため、計測される寸法データを補正する方法等として有用である。   The X-ray inspection apparatus and X-ray inspection method according to the present invention measure the imaging magnification of each region and measure the X-ray transmission of the image even when the measurement object has different imaging magnifications for each measurement region due to curvature or the like. By calculating the shooting magnification for each unit pixel of the image and performing dimension correction based on the shooting magnification, high-accuracy dimension measurement with small measurement error is possible. In order to perform an accurate inspection, it is useful as a method for correcting measured dimension data.

本発明の実施例1におけるX線検査装置の全体構成図1 is an overall configuration diagram of an X-ray inspection apparatus according to Embodiment 1 of the present invention. 本発明の実施例1におけるX線検査装置の撮像倍率算出方法を説明するための図The figure for demonstrating the imaging magnification calculation method of the X-ray inspection apparatus in Example 1 of this invention 本発明の実施例1におけるX線検査装置の実装済みプリント基板上の基準領域及び検索領域の設定方法を説明するための図The figure for demonstrating the setting method of the reference | standard area | region and search area | region on the printed circuit board with which the X-ray inspection apparatus in Example 1 of this invention was mounted. 本発明の実施例1におけるX線検査装置の動作を説明するためのフローチャートThe flowchart for demonstrating operation | movement of the X-ray inspection apparatus in Example 1 of this invention. 本発明の実施例1におけるX線検査装置の寸法補正方法を説明するための図The figure for demonstrating the dimension correction method of the X-ray inspection apparatus in Example 1 of this invention 従来の寸法計測を行うX線検査装置の構成図Configuration diagram of a conventional X-ray inspection device for measuring dimensions 従来の寸法計測を行うX線検査装置の課題を説明するための図The figure for demonstrating the subject of the X-ray inspection apparatus which performs the conventional dimension measurement

符号の説明Explanation of symbols

101 X線光
102 X線照射手段
103 測定対象
104 X線撮像手段
105 移動手段
106 基準領域
107 検索領域設定手段
108 基準領域抽出手段
109 基準領域座標算出手段
110 移動制御手段
111 移動距離算出手段
112 撮影倍率算出手段
113 寸法計測手段
114 画像表示手段
201 X線撮像手段
202 受光面
203 X線照射手段
204 発光点
205 X線光
206 測定対象
207 X線透過画像
208 基準領域
209、210 基準領域画像
301 プリント基板
302 チップ部品
303 QFP
304 配線パターン
305 補正マーク
306 X線透過画像
307 配線パターン画像
308 補正マーク画像
309 検索領域
310 ICリード
401 検索領域設定
402 測定対象移動
403 X線透過画像撮影
404 撮影完了
405 画像処理
406 基準領域座標算出
407 基準領域移動距離算出
408 基準領域撮影倍率算出
409 画像全面撮影倍率算出
410 寸法補正処理
411 計測結果表示
501 倍率補正テーブル
502 X線透過画像画素サイズ
503 寸法計測開始位置
504 寸法計測終了位置
505 交点座標1
506 交点座標2
507 交点座標3
601 X線照射手段
602 X線撮像手段
603 X線光
604 測定対象
605 基準ブロック
606 画像処理手段
607 寸法計測手段
608 画像表示手段
701 X線照射手段
702 X線光
703 測定対象
704 湾曲領域
705 基準ブロック
706 X線撮像手段
707 X線透過画像
708 測定対象画像
709 湾曲領域画像
710 基準ブロック画像

DESCRIPTION OF SYMBOLS 101 X-ray light 102 X-ray irradiation means 103 Measurement object 104 X-ray imaging means 105 Movement means 106 Reference area 107 Search area setting means 108 Reference area extraction means 109 Reference area coordinate calculation means 110 Movement control means 111 Movement distance calculation means 112 Imaging | photography Magnification calculation means 113 Dimension measurement means 114 Image display means 201 X-ray imaging means 202 Light receiving surface 203 X-ray irradiation means 204 Light emitting point 205 X-ray light 206 Measurement object 207 X-ray transmission image 208 Reference area 209, 210 Reference area image 301 Print Substrate 302 Chip component 303 QFP
304 Wiring pattern 305 Correction mark 306 X-ray transmission image 307 Wiring pattern image 308 Correction mark image 309 Search area 310 IC lead 401 Search area setting 402 Measurement object movement 403 X-ray transmission image imaging 404 Imaging completion 405 Image processing 406 Reference area coordinate calculation 407 Reference area moving distance calculation 408 Reference area imaging magnification calculation 409 Image whole area imaging magnification calculation 410 Dimension correction processing 411 Measurement result display 501 Magnification correction table 502 X-ray transmission image pixel size 503 Dimension measurement start position 504 Dimension measurement end position 505 Intersection coordinates 1
506 Intersection coordinates 2
507 Intersection coordinates 3
601 X-ray irradiation means 602 X-ray imaging means 603 X-ray light 604 Measurement object 605 Reference block 606 Image processing means 607 Dimension measurement means 608 Image display means 701 X-ray irradiation means 702 X-ray light 703 Measurement object 704 Curved area 705 Reference block 706 X-ray imaging means 707 X-ray transmission image 708 Measurement target image 709 Curved region image 710 Reference block image

Claims (4)

コーンビーム状のX線を測定対象物に照射するX線照射手段と、
前記X線照射手段から既知の距離だけ離れて配置され、前記測定対象物の透過X線を撮像する平坦な受光面を備えたX線撮像手段と、
前記測定対象物を前記X線撮像手段の受光面に対して平行に移動させる移動手段と、
前記移動手段の移動距離と前記測定対象物に設定された基準領域の前記透過画像上の移動距離を算出する移動距離算出手段と、
前記移動距離算出手段にて算出される前記移動手段の移動距離と、前記基準領域の透過画像上の移動距離に基づいて前記測定対象物の透過画像の単位画素ごとの撮影倍率を算出する撮影倍率算出手段と、
を備え、
前記測定対象物の高さの異なる2点の前記透過画像上の距離を前記算出された単位画素ごとの撮影倍率を用いて補正して、前記X線撮像手段の受光面上に像を形成した前記高さの異なる2点の測定対象物上の距離を求めることを特徴とするX線検査装置。
X-ray irradiation means for irradiating a measurement object with cone-beam X-rays;
An X-ray imaging unit that is arranged at a known distance from the X-ray irradiation unit and includes a flat light receiving surface that images the transmitted X-rays of the measurement object;
Moving means for moving the measurement object parallel to the light receiving surface of the X-ray imaging means;
A moving distance calculating means for calculating a moving distance of the moving means and a moving distance on the transmission image of a reference area set for the measurement object;
An imaging magnification for calculating an imaging magnification for each unit pixel of the transmission image of the measurement object based on the movement distance of the movement unit calculated by the movement distance calculation unit and the movement distance on the transmission image of the reference region A calculation means;
With
An image was formed on the light-receiving surface of the X-ray imaging unit by correcting the distance on the transmission image at two points with different heights of the measurement object using the calculated imaging magnification for each unit pixel. An X-ray inspection apparatus characterized in that a distance on a measurement object at two points having different heights is obtained.
前記撮影倍率Mは、前記基準領域の移動手段の移動距離をD1、前記基準領域の透過画像上の移動距離をD2とすると、M=D2/D1で表されることを特徴とする請求項1に記載のX線検査装置。 2. The imaging magnification M is represented by M = D2 / D1, where D1 is a moving distance of the moving means of the reference area and D2 is a moving distance of the reference area on the transmission image. X-ray inspection apparatus described in 1. コーンビーム状のX線を測定対象物に照射して該測定対象物の透過画像を平坦な受光面を備えたX線撮像手段にて撮像し、
前記測定対象物を前記X線撮像手段の受光面に対して移動手段により平行に移動させて前記測定対象物の透過画像を撮像し、
前記移動手段の移動距離と前記測定対象物に設定された基準領域の前記透過画像上の移動距離を移動距離測定手段にて測定し、
前記移動距離測定手段にて測定される前記移動手段の移動距離と、前記基準領域の透過画像の移動距離に基づいて前記測定対象物の透過画像の単位画素ごとの撮影倍率を算出し、前記測定対象物の高さの異なる2点の前記透過画像上の距離を前記算出された単位画素ごとの撮影倍率を用いて補正して、前記X線撮像手段の受光面上に像を形成した前記高さの異なる2点の測定対象物上の距離を求めることを特徴とするX線検査方法。
A cone beam-shaped X-ray is irradiated onto the measurement object, and a transmission image of the measurement object is imaged by an X-ray imaging means having a flat light receiving surface,
Moving the measurement object parallel to the light receiving surface of the X-ray imaging means by a moving means to capture a transmission image of the measurement object;
The movement distance measuring means measures the movement distance of the movement means and the movement distance on the transmission image of the reference region set in the measurement object,
Based on the movement distance of the movement means measured by the movement distance measurement means and the movement distance on the transmission image of the reference region, the imaging magnification for each unit pixel of the transmission image of the measurement object is calculated, The distance formed on the transmission image at two points having different heights of the measurement object is corrected using the calculated imaging magnification for each unit pixel, and the image is formed on the light receiving surface of the X-ray imaging unit. An X-ray inspection method characterized by obtaining a distance on a measurement object at two points having different heights.
前記撮影倍率Mは、前記基準領域の移動手段の移動距離をD1、前記基準領域の透過画像上の移動距離をD2とすると、M=D2/D1で表されることを特徴とする請求項3に記載のX線検査方法。 4. The imaging magnification M is expressed by M = D2 / D1, where D1 is a moving distance of the moving means of the reference area and D2 is a moving distance of the reference area on the transmission image. X-ray inspection method described in 1.
JP2005076846A 2005-03-17 2005-03-17 X-ray inspection apparatus and X-ray inspection method Expired - Fee Related JP4760072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005076846A JP4760072B2 (en) 2005-03-17 2005-03-17 X-ray inspection apparatus and X-ray inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005076846A JP4760072B2 (en) 2005-03-17 2005-03-17 X-ray inspection apparatus and X-ray inspection method

Publications (2)

Publication Number Publication Date
JP2006258626A JP2006258626A (en) 2006-09-28
JP4760072B2 true JP4760072B2 (en) 2011-08-31

Family

ID=37098054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005076846A Expired - Fee Related JP4760072B2 (en) 2005-03-17 2005-03-17 X-ray inspection apparatus and X-ray inspection method

Country Status (1)

Country Link
JP (1) JP4760072B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111044039B (en) * 2019-12-25 2024-03-19 中航华东光电有限公司 Monocular target area self-adaptive high-precision distance measurement device and method based on IMU

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4727777B2 (en) * 1999-05-24 2011-07-20 株式会社日立製作所 Measuring method by scanning electron microscope
JP2001004345A (en) * 1999-06-18 2001-01-12 Hitachi Koki Co Ltd Image measuring device
JP4396796B2 (en) * 2000-10-25 2010-01-13 株式会社島津製作所 Calibration method of imaging magnification in X-ray imaging apparatus
JP3487292B2 (en) * 2001-02-09 2004-01-13 株式会社島津製作所 X-ray fluoroscope
JP2004275362A (en) * 2003-03-14 2004-10-07 Fuji Photo Film Co Ltd Method of calculating actual size of image, method of measuring image and method of outputting image, and device thereof
JP4133657B2 (en) * 2003-07-03 2008-08-13 株式会社島津製作所 X-ray fluoroscope for precision measurement

Also Published As

Publication number Publication date
JP2006258626A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
US8233041B2 (en) Image processing device and image processing method for performing three dimensional measurements
KR100686244B1 (en) Three-dimensional measuring instrument
JP4901903B2 (en) 3D inspection system
JP6209833B2 (en) Inspection tool, inspection method, stereo camera production method and system
KR101371376B1 (en) Three dimensional shape measurment apparatus
JP4776197B2 (en) Wiring board inspection equipment
US9157874B2 (en) System and method for automated x-ray inspection
JP2013174547A (en) Stereo three-dimensional measuring instrument
KR20120087680A (en) The measurement method of PCB bump height by using three dimensional shape detector using optical triangulation method
US10841561B2 (en) Apparatus and method for three-dimensional inspection
JP5787258B2 (en) Method and apparatus for measuring the position of a contact element of an electronic component
KR101215083B1 (en) Method for generating height information of board inspection apparatus
JP4760072B2 (en) X-ray inspection apparatus and X-ray inspection method
KR20140113449A (en) Drawing data generating method, drawing method, drawing data generating apparatus and drawing apparatus
TW201940840A (en) Appearance inspection device
JP6792369B2 (en) Circuit board inspection method and inspection equipment
JP4449596B2 (en) Mounting board inspection equipment
JP2013015413A (en) Three-dimensional shape measurement apparatus and three-dimensional shape measurement method
JP2007205868A (en) Device and method for optical shape inspection
KR101409803B1 (en) Method and apparatus for measuring surface profile capable of measuring warpage of substrate
CN112710662A (en) Generation method and device, generation system and storage medium
JP2021081222A (en) Device and method for measurement
JP2007033039A (en) Method and device for calibrating optical head part in three-dimensional shape measuring instrument by optical cutting method
EP3244198A1 (en) Method and apparatus for inspecting a solder paste deposit with a digital mirror device
CN113063352B (en) Detection method and device, detection equipment and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080205

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080312

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees