TW202325990A - Electronic system and method of dynamically adjusting fan speed - Google Patents

Electronic system and method of dynamically adjusting fan speed Download PDF

Info

Publication number
TW202325990A
TW202325990A TW110148697A TW110148697A TW202325990A TW 202325990 A TW202325990 A TW 202325990A TW 110148697 A TW110148697 A TW 110148697A TW 110148697 A TW110148697 A TW 110148697A TW 202325990 A TW202325990 A TW 202325990A
Authority
TW
Taiwan
Prior art keywords
noise signal
fan
probability distribution
rotational speed
sample
Prior art date
Application number
TW110148697A
Other languages
Chinese (zh)
Other versions
TWI817298B (en
Inventor
杜博仁
徐瑞慶
張嘉仁
曾凱盟
Original Assignee
宏碁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏碁股份有限公司 filed Critical 宏碁股份有限公司
Priority to TW110148697A priority Critical patent/TWI817298B/en
Publication of TW202325990A publication Critical patent/TW202325990A/en
Application granted granted Critical
Publication of TWI817298B publication Critical patent/TWI817298B/en

Links

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

A sample noise signal is measured when a fan operates at a predetermined speed in an anechoic environment. An overall environmental noise signal is measured when the fan operates at the predetermined speed in an echoic environment. A probability distribution value associated with the similarity between the sample noise signal and the overall environmental noise signal is acquired by analyzing the sample noise signal and the overall environmental noise signal. The speed of the fan is then adjusted based on the relationship between the probability distribution value and a threshold value.

Description

動態調整風扇轉速之電子系統和方法Electronic system and method for dynamically adjusting fan speed

本發明相關於一種動態調整風扇轉速之電子系統和方法,尤指一種能根據當下環境聲音特性來動態調整風扇轉速之電子系統和方法。The present invention relates to an electronic system and method for dynamically adjusting fan speed, in particular to an electronic system and method for dynamically adjusting fan speed according to the current environmental sound characteristics.

在現代化的資訊社會,電腦系統已經成為多數人不可或缺的資訊工具。為了避免元件因過熱而發生功率降低或是毀損,電腦系統一般會使用風扇來提供散熱功能,以將裝置內部所產生的熱量排出或是將裝置外部之冷空氣吸入。風扇的轉速和靜壓決定了風扇的空氣流量,風扇運轉時的噪音大約和其轉速的五次方根成正比,轉速越快散熱能力越強,但造成的噪音越大。In the modern information society, computer systems have become an indispensable information tool for most people. In order to avoid power reduction or damage to components due to overheating, computer systems generally use fans to provide heat dissipation to dissipate the heat generated inside the device or suck in cold air from the outside of the device. The speed and static pressure of the fan determine the air flow of the fan. The noise when the fan is running is approximately proportional to the fifth root of its speed. The faster the speed, the stronger the heat dissipation capability, but the greater the noise.

在安靜環境的應用中,風扇通常會以最低轉速來運作。一般來說,大部分使用者能接受風扇噪音小於環境噪音超過3dB,因此先前技術會依據收音器接收的環境聲音訊號功率來控制風扇轉速:當整體功率大於臨界值時,可容許的風扇噪音較大,因此會加快風扇轉速以提昇散熱效率;當整體功率小於臨界值時,可容許的風扇噪音較小,因此會降低風扇轉速以避免影響使用者觀感。然而,先前技術的運作前提是假設風扇的噪音訊號對應於收音器的影響為固定的功率,但實際上當風扇設置於行動裝置時,在運作期間可能會不停地移動,而在不同的環境中風扇的噪音訊號對應於收音器的影響會不停變化,尤其是當靠近牆壁時造成聲波反射的情境。In quiet environment applications, the fan will usually run at the lowest speed. Generally speaking, most users can accept that the fan noise is more than 3dB lower than the ambient noise, so the previous technology will control the fan speed according to the ambient sound signal power received by the receiver: when the overall power is greater than the critical value, the allowable fan noise is lower When the overall power is lower than the critical value, the allowable fan noise is lower, so the fan speed will be reduced to avoid affecting the user's perception. However, the premise of the operation of the prior art is to assume that the noise signal of the fan corresponds to the influence of the receiver as a fixed power, but in fact, when the fan is installed on a mobile device, it may move continuously during operation, and in different environments The noise signal of the fan is constantly changing relative to the influence of the receiver, especially when it is close to the wall and causes the sound wave to reflect.

因此,需要一種能根據當下環境聲音特性來動態調整風扇轉速之電子系統和方法,進而同時兼顧散熱和降噪。Therefore, there is a need for an electronic system and method that can dynamically adjust the fan speed according to the characteristics of the current ambient sound, thereby taking heat dissipation and noise reduction into consideration.

本發明提供一種動態調整風扇轉速之電子系統,其包含一風扇、一收音裝置和一控制器。該風扇依據一風扇控制訊號來運作以提供散熱功能。該收音裝置用來在一無響環境中偵測該風扇以一第一轉速運作時的一第一樣本噪音訊號,以及在一有響環境中偵測該風扇以該第一轉速運作時所產生的噪音,以提供該電子系統之一第一整體環境噪音訊號。該控制器用來依據一模式訊號來提供該風扇控制訊號,分析該第一樣本噪音訊號和該第一整體環境噪音訊號以求出相關該第一樣本噪音訊號和該第一整體環境噪音訊號之間相似程度的一第一機率分佈,以及依據該第一機率分佈和一第一臨界值之大小關係來動態地調整該風扇之轉速。The invention provides an electronic system for dynamically adjusting the fan speed, which includes a fan, a sound receiving device and a controller. The fan operates according to a fan control signal to provide heat dissipation. The radio device is used to detect a first sample noise signal when the fan operates at a first rotational speed in a silent environment, and to detect a noise signal when the fan operates at the first rotational speed in a noisy environment Generated noise to provide a first overall ambient noise signal for the electronic system. The controller is used to provide the fan control signal according to a mode signal, analyze the first sample noise signal and the first overall ambient noise signal to obtain a correlation between the first sample noise signal and the first overall ambient noise signal A first probability distribution of the degree of similarity between them, and dynamically adjust the rotational speed of the fan according to the magnitude relationship between the first probability distribution and a first critical value.

本發明另提供一種動態調整風扇轉速之方法,其包含在一無響環境中偵測一電子系統中一風扇以一第一轉速運作時的一第一樣本噪音訊號;在一有響環境中偵測該風扇以該第一轉速運作時所產生的噪音,以提供該電子系統之一第一整體環境噪音訊號;分析該第一樣本噪音訊號和該第一整體環境噪音訊號以求出相關該第一樣本噪音訊號和該第一整體環境噪音訊號之間相似程度的一第一機率分佈;以及依據該第一機率分佈和一第一臨界值之大小關係來動態地調整該風扇之轉速。The present invention also provides a method for dynamically adjusting the speed of a fan, which includes detecting a first sample noise signal when a fan in an electronic system operates at a first speed in a silent environment; in a noisy environment Detecting the noise generated when the fan operates at the first speed to provide a first overall environmental noise signal of the electronic system; analyzing the first sample noise signal and the first overall environmental noise signal to obtain a correlation A first probability distribution of similarity between the first sample noise signal and the first overall ambient noise signal; and dynamically adjusting the fan speed according to the magnitude relationship between the first probability distribution and a first critical value .

第1圖為本發明實施例中一種根據當下環境聲音特性來動態調整風扇轉速之電子系統100的功能方塊圖。電子系統100包含一處理器10、一風扇20、一收音裝置30、一控制器40,以及一記憶單元50。FIG. 1 is a functional block diagram of an electronic system 100 that dynamically adjusts the fan speed according to the characteristics of the current ambient sound in an embodiment of the present invention. The electronic system 100 includes a processor 10 , a fan 20 , a radio device 30 , a controller 40 , and a memory unit 50 .

處理器10可為一中央處理器(central processing unit, CPU)或一圖形處理器(graphics processing unit, GPU),其為電子系統100中關鍵的運算引擎,負責執行作業系統所需的指令與程序,也是電子系統100中廢熱的主要來源。The processor 10 can be a central processing unit (central processing unit, CPU) or a graphics processing unit (graphics processing unit, GPU), which is a key computing engine in the electronic system 100, responsible for executing instructions and programs required by the operating system , is also the main source of waste heat in the electronic system 100 .

風扇20視其類型可具備不同結構,主要都是利用馬達帶動扇葉轉動,以將較冷的空氣帶到機箱內部,並將內部較熱的空氣排出,進而達到散熱效果。在本發明中,風扇20會依據控制器40提供之一風扇控制訊號S FG來運作,風扇控制訊號S FG之值越大,風扇20中的馬達轉速越快,散熱效果越強,但也會產生較大噪音。在電子系統100的運作期間,風扇20通常會是主要的噪音來源。在一實施例中,風扇控制訊號S FG可為一脈波頻寬調變(pulse width modulation, PWM)之方波訊號,透過改變其工作週期(duty cycle)來調整風扇20中的馬達轉速。在一實施例中,風扇20可為軸流式風扇或離心式風扇。然而,風扇20的類型和驅動方式並不限定本發明之範疇。 The fan 20 can have different structures depending on its type, mainly using a motor to drive the fan blades to rotate, so as to bring cooler air to the inside of the chassis and discharge hotter air inside to achieve heat dissipation. In the present invention, the fan 20 will operate according to a fan control signal S FG provided by the controller 40. The larger the value of the fan control signal S FG , the faster the motor speed in the fan 20 and the stronger the heat dissipation effect. Makes a lot of noise. During operation of the electronic system 100 , the fan 20 is usually the main source of noise. In one embodiment, the fan control signal S FG can be a pulse width modulation (PWM) square wave signal, which adjusts the motor speed of the fan 20 by changing its duty cycle. In one embodiment, the fan 20 can be an axial fan or a centrifugal fan. However, the type and driving method of the fan 20 do not limit the scope of the present invention.

收音裝置30用來在電子系統100運作時擷取噪音,並輸出相對應之噪音訊號至控制器40。在一實施例中,收音裝置30可為一數位式微機電系統(Micro Electro Mechanical System, MEMS)麥克風,其具備高耐熱、高抗振和高抗射頻干擾等性能。然而,收音裝置30之種類並不限定本發明之範疇。The sound receiving device 30 is used to pick up noise when the electronic system 100 is running, and output a corresponding noise signal to the controller 40 . In one embodiment, the sound receiving device 30 may be a digital Micro Electro Mechanical System (MEMS) microphone, which has performances such as high heat resistance, high vibration resistance and high resistance to radio frequency interference. However, the type of the sound receiving device 30 does not limit the scope of the present invention.

控制器40可依據一模式訊號S MODE來控制處理器10和風扇20的運作。模式訊號S MODE之值可決定風扇20之運作模式,例如在高效能模式(performance mode)、最佳化模式(optimal mode)和安靜模式(silence mode)下運作。在高效能模式下,風扇20會以較高轉速運作,此時散熱效果越強,但也會產生較大噪音。在最佳化模式下,風扇20的轉速會根據處理器10溫度來自動調整。在安靜模式下,風扇20會以較低轉速運作,此時產生的噪音最小,但散熱效果有限。 The controller 40 can control the operation of the processor 10 and the fan 20 according to a mode signal S MODE . The value of the mode signal S MODE can determine the operation mode of the fan 20 , such as operating in a performance mode, an optimal mode and a silence mode. In the high-efficiency mode, the fan 20 will operate at a higher speed, and at this time, the heat dissipation effect is stronger, but it will also generate greater noise. In the optimization mode, the speed of the fan 20 is automatically adjusted according to the temperature of the processor 10 . In the quiet mode, the fan 20 will operate at a lower speed, and the noise generated at this time is the smallest, but the heat dissipation effect is limited.

記憶單元50可用來儲存電子系統100運作所需之資料,以及在運作期間取得的資料。記憶單元50可為隨機存取記憶體(random access memory, RAM)、快閃記憶體(flash)或各形式的硬碟。然而,記憶單元50之實作方式並不限定本發明之範疇。The memory unit 50 can be used to store the data required for the operation of the electronic system 100 and the data obtained during the operation. The memory unit 50 can be a random access memory (random access memory, RAM), a flash memory (flash), or various forms of hard disks. However, the implementation of the memory unit 50 does not limit the scope of the present invention.

第2圖為本發明實施例中電子系統100實作方式之示意圖。在第2圖所示之實施例中,電子系統100可為一筆記型電腦,收音裝置30設置在上殼體上且位於螢幕的上方,而處理器10、風扇20、控制器40和記憶單元50設置在下殼體內。然而,電子系統100之實作方式並不限定本發明之範疇。FIG. 2 is a schematic diagram of the implementation of the electronic system 100 in the embodiment of the present invention. In the embodiment shown in Fig. 2, the electronic system 100 can be a notebook computer, the sound receiving device 30 is arranged on the upper casing and is positioned above the screen, and the processor 10, the fan 20, the controller 40 and the memory unit 50 is set in the lower case. However, the implementation of the electronic system 100 does not limit the scope of the present invention.

第3圖為本發明實施例中電子系統100根據當下環境聲音特性來進行動態調整風扇轉速運作時之流程圖,其包含下列步驟:FIG. 3 is a flow chart of the electronic system 100 in the embodiment of the present invention when dynamically adjusting the fan speed according to the current environmental sound characteristics, which includes the following steps:

步驟310: 在無響環境中,收音裝置30偵測風扇20以N個轉速SP 1-SP N運作時的樣本噪音訊號S X1-S XNStep 310: In a silent environment, the sound receiving device 30 detects the sample noise signals S X1 -S XN when the fan 20 operates at N speeds SP 1 -SP N.

步驟320: 在一般環境中,控制器40依據模式訊號S MODE來提供風扇控制訊號S FGStep 320: In normal circumstances, the controller 40 provides the fan control signal S FG according to the mode signal S MODE .

步驟330: 在一般環境中,當風扇20依據風扇控制訊號S FG以第一轉速SP 1運作時,收音裝置30偵測電子系統100的整體環境噪音訊號S Y1Step 330: In a normal environment, when the fan 20 operates at the first speed SP 1 according to the fan control signal S FG , the audio receiving device 30 detects the overall environmental noise signal S Y1 of the electronic system 100 .

步驟340: 控制器40分析對應第一轉速SP 1之樣本噪音訊號S X1和整體環境噪音訊號S Y1,以求出相關樣本噪音訊號S X1和整體環境噪音訊號S Y1之間相似程度的機率分佈P XY1Step 340: The controller 40 analyzes the sample noise signal S X1 corresponding to the first rotational speed SP 1 and the overall environmental noise signal S Y1 to obtain the probability distribution of the similarity between the relevant sample noise signal S X1 and the overall environmental noise signal S Y1 P XY1 .

步驟350: 控制器40依據機率分佈P XY1和一第一臨界值TH1之大小關係來動態地調整風扇20之轉速。 Step 350: The controller 40 dynamically adjusts the speed of the fan 20 according to the relationship between the probability distribution P XY1 and a first threshold TH1.

步驟360: 在一般環境中,當風扇20依據風扇控制訊號S FG以第n轉速SP n運作時,收音裝置30偵測電子系統100的整體環境噪音訊號S YnStep 360: In a normal environment, when the fan 20 operates at the n-th speed SP n according to the fan control signal S FG , the audio receiving device 30 detects the overall environmental noise signal S Yn of the electronic system 100 .

步驟370: 控制器40分析對應第n轉速SP n之樣本噪音訊號S Xn和整體環境噪音訊號S Yn,以求出相關樣本噪音訊號S Xn和整體環境噪音訊號S Yn之間相似程度的機率分佈P XYnStep 370: The controller 40 analyzes the sample noise signal S Xn and the overall environmental noise signal S Yn corresponding to the nth rotational speed SP n to obtain the probability distribution of the similarity between the relevant sample noise signal S Xn and the overall environmental noise signal S Yn P XYn .

步驟380: 當機率分佈P XYn小於一第二臨界值TH2超過一預定時間時,將整體環境噪音訊號S Yn儲存至記憶單元50內。 Step 380: When the probability distribution P XYn is smaller than a second threshold TH2 for more than a predetermined time, store the overall environmental noise signal S Yn into the memory unit 50 .

步驟390: 控制器40判斷風扇20在一般環境中是否已運作超過一預定期間?若是,執行步驟400;若否,執行步驟320。Step 390: The controller 40 judges whether the fan 20 has been operating for more than a predetermined period in a normal environment? If yes, go to step 400 ; if not, go to step 320 .

步驟400: 依據所有被儲存之整體環境噪音訊號來更新樣本噪音訊號S X1-S XN;執行步驟320。 Step 400 : Update the sample noise signals S X1 -S XN according to all the stored overall environmental noise signals; go to step 320 .

在步驟310中,風扇20會在無響環境中以不同轉速運作,並由收音裝置30取得風扇20以N個轉速SP 1-SP N運作時的樣本噪音訊號S X1-S XN,其中N為大於1之整數。風扇20之轉速只會影響窄頻的噪音頻率,風扇20之轉速越快,樣本噪音訊號S X1-S XN中寬頻噪音的頻率響應特性不變,但震幅會增大。因此,在無響環境中當風扇20以不同轉速下運作時,所得到相關N個轉速的樣本噪音訊號S X1-S XN之特徵值可作為初期內建樣本。在一實施例中,無響環境可為無響室、無響箱,或任何無反射聲場的實驗環境,但不限定本發明之範疇。 In step 310, the fan 20 operates at different speeds in a silent environment, and the sound receiving device 30 obtains sample noise signals S X1 -S XN when the fan 20 operates at N speeds SP 1 -SP N , where N is An integer greater than 1. The rotation speed of the fan 20 will only affect the narrow-band noise frequency. The faster the rotation speed of the fan 20 , the frequency response characteristics of the broadband noise in the sample noise signals S X1 -S XN will remain the same, but the amplitude will increase. Therefore, when the fan 20 operates at different speeds in an audible environment, the obtained eigenvalues of the sample noise signals S X1 -S XN related to N speeds can be used as initial built-in samples. In one embodiment, the anechoic environment can be an anechoic room, an anechoic box, or any experimental environment without a reflection field, but the scope of the present invention is not limited.

在步驟320,當電子系統100在一般環境中運作時,控制器40會依據模式訊號S MODE來提供風扇控制訊號S FG。如前所述,模式訊號S MODE之值可決定風扇20之運作模式,例如在高效能模式、最佳化模式和安靜模式下運作。 In step 320, when the electronic system 100 operates in a normal environment, the controller 40 provides a fan control signal S FG according to the mode signal S MODE . As mentioned above, the value of the mode signal S MODE can determine the operation mode of the fan 20 , for example, operate in the high-efficiency mode, the optimization mode and the quiet mode.

在步驟330,當風扇20在一般環境中依據風扇控制訊號S FG以第一轉速SP 1運作時,收音裝置30會偵測電子系統100的整體環境噪音訊號S Y1。當電子系統100在不同的環境中運作時,風扇20的噪音訊號對應於收音裝置30的影響會不停變化,尤其是當靠近牆壁時造成聲波反射的情境。由於整體環境噪音訊號S Y1可能同時來自風扇20之運作和背景環境的貢獻,因此控制器40在步驟340中會分析對應第一轉速SP 1之樣本噪音訊號S X1和整體環境噪音訊號S Y1,以求出相關對應第一轉速SP 1之樣本噪音訊號S X1和整體環境噪音訊號S Y1之間相似程度的機率分佈P XY1In step 330 , when the fan 20 operates at the first rotational speed SP1 according to the fan control signal S FG in a normal environment, the audio receiving device 30 detects the overall environmental noise signal S Y1 of the electronic system 100 . When the electronic system 100 operates in different environments, the noise signal of the fan 20 corresponding to the influence of the sound receiving device 30 will constantly change, especially when the sound wave is reflected when it is close to the wall. Since the overall ambient noise signal S Y1 may come from both the operation of the fan 20 and the background environment, the controller 40 analyzes the sample noise signal S X1 corresponding to the first rotational speed SP 1 and the overall ambient noise signal S Y1 in step 340 , In order to obtain the probability distribution P XY1 of the similarity between the sample noise signal S X1 corresponding to the first rotational speed SP 1 and the overall environmental noise signal S Y1 .

在一實施例中,控制器40會透過深度學習(deep learning)來比較樣本噪音訊號S X1和整體環境噪音訊號S Y1之間的特徵值差異,若對應第一轉速SP 1之樣本噪音訊號S X1和整體環境噪音訊號S Y1之特徵值越相似,機率分佈P XY1之值越大。同理,若對應第一轉速SP 1之樣本噪音訊號S X1和整體環境噪音訊號S Y1之特徵值越不同,機率分佈P XY1之值越小。 In one embodiment, the controller 40 uses deep learning to compare the difference in eigenvalues between the sample noise signal S X1 and the overall environmental noise signal S Y1 , if the sample noise signal S corresponding to the first rotational speed SP 1 The more similar the eigenvalues of X1 and the overall environmental noise signal S Y1 are, the larger the value of the probability distribution P XY1 is. Similarly, if the characteristic values of the sample noise signal S X1 corresponding to the first rotational speed SP1 and the overall environmental noise signal S Y1 are different, the value of the probability distribution P XY1 is smaller.

在步驟350中,控制器40會依據機率分佈P XY1和第一臨界值TH1之大小關係來動態地調整風扇20之轉速。當機率分佈P XY1之值大於第一臨界值TH1時,代表此時整體環境噪音訊號S Y1主要來自風扇20的運作(可容許的風扇噪音較小),因此控制器40會調整風扇控制訊號S FG以降低風扇20之轉速;當機率分佈P XY1之值不大於第一臨界值TH1時,代表此時整體環境噪音訊號S Y1主要來自背景環境(可容許的風扇噪音較大),因此控制器40會調整風扇控制訊號S FG以增加風扇20之轉速。 In step 350 , the controller 40 dynamically adjusts the speed of the fan 20 according to the relationship between the probability distribution P XY1 and the first threshold TH1 . When the value of the probability distribution P XY1 is greater than the first critical value TH1, it means that the overall environmental noise signal S Y1 mainly comes from the operation of the fan 20 (the allowable fan noise is relatively small), so the controller 40 will adjust the fan control signal S FG to reduce the speed of the fan 20; when the value of the probability distribution P XY1 is not greater than the first critical value TH1, it means that the overall environmental noise signal S Y1 mainly comes from the background environment (the allowable fan noise is relatively large), so the controller 40 adjusts the fan control signal S FG to increase the speed of the fan 20 .

在長時間使用後,風扇20運作時所產生的雜訊聲音特性可能會改變,使得在步驟310所取得的樣本噪音訊號S X1-S XN不再準確。因此,本發明在步驟360-400中會依據風扇20在預定期間內的運作狀況來更新樣本噪音訊號S X1-S XNAfter a long time of use, the sound characteristics of the noise generated by the fan 20 may change, so that the sample noise signals S X1 -S XN obtained in step 310 are no longer accurate. Therefore, in the steps 360-400 of the present invention, the sample noise signals S X1 -S XN are updated according to the operation status of the fan 20 within a predetermined period.

在步驟360中,在一般環境中當風扇20依據風扇控制訊號S FG以第n轉速SP n運作時,收音裝置30會偵測電子系統100的整體環境噪音訊號S Yn,其中n為大於1且不大於N之整數。在步驟370中,控制器40會分析對應第n轉速SP n之樣本噪音訊號S Xn和整體環境噪音訊號S Yn,以求出相關樣本噪音訊號S Xn和整體環境噪音訊號S Yn之間相似程度的機率分佈P XYnIn step 360, in a general environment, when the fan 20 is operating at the nth speed SP n according to the fan control signal S FG , the audio receiving device 30 will detect the overall environmental noise signal S Yn of the electronic system 100, where n is greater than 1 and An integer not greater than N. In step 370, the controller 40 analyzes the sample noise signal S Xn corresponding to the nth rotational speed SP n and the overall environmental noise signal S Yn to obtain the similarity between the relevant sample noise signal S Xn and the overall environmental noise signal S Yn The probability distribution P XYn .

在一實施例中,控制器40會透過深度學習來比較樣本噪音訊號S Xn和整體環境噪音訊號S Yn之間的特徵值差異,若對應第n轉速SP n之樣本噪音訊號S Xn和整體環境噪音訊號S Yn之特徵值越相似,機率分佈P XYn之值越大。同理,若對應第n轉速SP n之樣本噪音訊號S Xn和整體環境噪音訊號S Yn之特徵值越不同,機率分佈P XYn之值越小。 In one embodiment, the controller 40 will use deep learning to compare the feature value difference between the sample noise signal S Xn and the overall environmental noise signal S Yn , if the sample noise signal S Xn corresponding to the nth rotational speed SP n and the overall environment The more similar the eigenvalues of the noise signal S Yn are , the larger the value of the probability distribution P XYn is. Similarly, if the characteristic values of the sample noise signal S Xn corresponding to the nth rotational speed SP n are different from the overall environmental noise signal S Yn , the value of the probability distribution P XYn is smaller.

在步驟380中,當控制器40判定機率分佈P XYn之值不小於第二臨界值TH2時,代表步驟310所取得的樣本噪音訊號S X1-S XN依舊能準確反應風扇20之運作特性,此時將不會紀錄對應第n轉速SP n之整體環境噪音訊號S Yn;當控制器40判定機率分佈P XYn之值小於第二臨界值TH2不超過預定時間時,代表可能是外在噪音的短期影響,而步驟310所取得的樣本噪音訊號S X1-S XN依舊能準確反應風扇20之運作特性,此時將不會紀錄對應第n轉速SP n之整體環境噪音訊號S Yn;當控制器40判定機率分佈P XYn之值小於第二臨界值TH2超過預定時間時,代表步驟310所取得的樣本噪音訊號S X1-S XN已無法準確反應風扇20之運作特性,此時會紀錄對應第n轉速SP n之整體環境噪音訊號S YnIn step 380, when the controller 40 determines that the value of the probability distribution P XYn is not less than the second critical value TH2, it means that the sample noise signals S X1 -S XN obtained in step 310 can still accurately reflect the operating characteristics of the fan 20. will not record the overall environmental noise signal S Yn corresponding to the nth speed SP n ; when the controller 40 determines that the value of the probability distribution P XYn is less than the second critical value TH2 and does not exceed the predetermined time, it means that it may be a short-term external noise influence, and the sample noise signals S X1 -S XN obtained in step 310 can still accurately reflect the operating characteristics of the fan 20, and will not record the overall environmental noise signal S Yn corresponding to the nth speed SP n at this time; when the controller 40 When the value of the probability distribution P XYn is determined to be less than the second critical value TH2 for more than a predetermined time, it means that the sample noise signals S X1 -S XN obtained in step 310 can no longer accurately reflect the operating characteristics of the fan 20, and the corresponding nth rotation speed will be recorded at this time The overall ambient noise signal S Yn of SP n .

如前所述,風扇20之轉速只會影響窄頻的噪音頻率,風扇20之轉速越快,樣本噪音訊號S X1-S XN中寬頻噪音的頻率響應特性不變,但震幅會增大。因此在本發明中,第二臨界值TH2遠小於第一臨界值TH1。 As mentioned above, the rotation speed of the fan 20 only affects the narrow-band noise frequency. The faster the rotation speed of the fan 20 , the frequency response characteristic of the broadband noise in the sample noise signals S X1 -S XN remains unchanged, but the amplitude increases. Therefore, in the present invention, the second threshold TH2 is much smaller than the first threshold TH1.

在本發明中,第一轉速SP 1對應至風扇20之安靜模式,而第n轉速SP n對應至風扇20之高效能模式或最佳化模式。也就是說,第一轉速SP 1之值小於第n轉速SP n之值。 In the present invention, the first rotation speed SP 1 corresponds to the quiet mode of the fan 20 , and the nth rotation speed SP n corresponds to the high-efficiency mode or the optimization mode of the fan 20 . That is, the value of the first rotational speed SP1 is smaller than the value of the nth rotational speed SPn .

在步驟390中,控制器40會判斷風扇20在一般環境中是否已運作超過預定期間。當風扇20在一般環境中尚未運作超過預定期間時,可能會多次執行步驟360-380,並儲存多個整體環境噪音訊號。當風扇20在一般環境中運作超過預定期間後,風扇20運作時所產生的雜訊聲音特性可能會改變,此時會在步驟400中依據所有被儲存之整體環境噪音訊號來更新樣本噪音訊號S X1-S XN,使得更新後之樣本噪音訊號S X1-S XN能準確反應風扇20在運作超過預定期間後之運作特性。 In step 390, the controller 40 determines whether the fan 20 has been operating for more than a predetermined period in a normal environment. When the fan 20 has not been operated for more than a predetermined period in a general environment, steps 360-380 may be executed multiple times, and multiple overall environmental noise signals are stored. When the fan 20 operates in a normal environment for more than a predetermined period, the sound characteristics of the noise generated by the fan 20 may change. At this time, in step 400, the sample noise signal S will be updated according to all the stored overall environmental noise signals. X1 -S XN , so that the updated sample noise signals S X1 -S XN can accurately reflect the operation characteristics of the fan 20 after the operation exceeds a predetermined period.

綜上所述,本發明利用深度學習的方式來判斷當下整體環境噪音訊號是由風扇造成的機率,再依此調整風扇轉速。因此,本發明能提供一種根據當下環境聲音特性來動態調整風扇轉速之電子系統和方法,進而同時兼顧環境變化、散熱和降噪的課題。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 To sum up, the present invention uses deep learning to determine the probability that the current overall environmental noise signal is caused by the fan, and then adjusts the fan speed accordingly. Therefore, the present invention can provide an electronic system and method for dynamically adjusting the rotation speed of the fan according to the characteristics of the current ambient sound, thereby taking into account environmental changes, heat dissipation, and noise reduction at the same time. The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

10:處理器 20:風扇 30:收音裝置 40:控制器 50:記憶單元 100: 電子系統 310-400:步驟 S FG:風扇控制訊號 S MODE:模式訊號 10: Processor 20: Fan 30: Radio device 40: Controller 50: Memory unit 100: Electronic system 310-400: Step S FG : Fan control signal S MODE : Mode signal

第1圖為本發明實施例中一種根據當下環境聲音特性來動態調整風扇轉速之電子系統的功能方塊圖。 第2圖為本發明實施例中電子系統實作方式之示意圖。 第3圖為本發明實施例中電子系統根據當下環境聲音特性來進行動態調整風扇轉速運作時之流程圖。 FIG. 1 is a functional block diagram of an electronic system that dynamically adjusts the fan speed according to the characteristics of the current ambient sound in an embodiment of the present invention. Fig. 2 is a schematic diagram of the implementation of the electronic system in the embodiment of the present invention. FIG. 3 is a flow chart of the electronic system dynamically adjusting the fan speed according to the current environmental sound characteristics in the embodiment of the present invention.

310-400:步驟 310-400: Steps

Claims (10)

一種動態調整風扇轉速之電子系統,其包含: 一風扇,用來依據一風扇控制訊號來運作以提供散熱功能; 一收音裝置,用來: 在一無響環境中偵測該風扇以一第一轉速運作時的一第一樣本噪音訊號;以及 在一有響環境中偵測該風扇以該第一轉速運作時所產生的噪音,以提供該電子系統之一第一整體環境噪音訊號; 一控制器,用來: 依據一模式訊號來提供該風扇控制訊號; 分析該第一樣本噪音訊號和該第一整體環境噪音訊號以求出相關該第一樣本噪音訊號和該第一整體環境噪音訊號之間相似程度的一第一機率分佈;以及 依據該第一機率分佈和一第一臨界值之大小關係來動態地調整該風扇之轉速。 An electronic system for dynamically adjusting fan speed, which includes: A fan is used to operate according to a fan control signal to provide heat dissipation; A radio device for: detecting a first sample noise signal when the fan is operating at a first speed in an audible environment; and detecting the noise generated by the fan operating at the first rotational speed in a noisy environment to provide a first overall ambient noise signal of the electronic system; a controller for: providing the fan control signal according to a mode signal; analyzing the first sample noise signal and the first global ambient noise signal to obtain a first probability distribution related to the degree of similarity between the first sample noise signal and the first global ambient noise signal; and The rotational speed of the fan is dynamically adjusted according to the magnitude relationship between the first probability distribution and a first critical value. 如請求項1所述之電子系統,其中該控制器另用來: 當判定該第一機率分佈之值大於該第一臨界值時,調整該風扇控制訊號以降低該第一轉速之值;且 當判定該第一機率分佈之值不大於該第一臨界值時,調整該風扇控制訊號以增加該第一轉速之值。 The electronic system as claimed in claim 1, wherein the controller is additionally used for: When it is determined that the value of the first probability distribution is greater than the first critical value, adjusting the fan control signal to reduce the value of the first rotational speed; and When it is determined that the value of the first probability distribution is not greater than the first critical value, the fan control signal is adjusted to increase the value of the first rotational speed. 如請求項1所述之電子系統,其中: 該收音裝置另用來: 在該無響環境中偵測該風扇以一第二轉速運作時的一第二樣本噪音訊號;以及 在該有響環境中偵測該風扇以該第二轉速運作時所產生的噪音,以提供該電子系統之一第二整體環境噪音訊號; 該控制器另用來: 分析該第二樣本噪音訊號和該第二整體環境噪音訊號以求出相關該第二樣本噪音訊號和該第二整體環境噪音訊號之間相似程度的一第二機率分佈; 當判定該第二機率分佈小於一第二臨界值超過一預定時間時,儲存該第二整體環境噪音訊號;以及 當判定該風扇在該有響環境中已運作超過一預定期間時,依據該第二整體環境噪音訊號來更新該第一樣本噪音訊號;且 該第二轉速大於該第一轉速。 The electronic system as described in claim 1, wherein: The radio is also used for: detecting a second sample noise signal of the fan operating at a second rotational speed in the audible environment; and detecting the noise generated by the fan operating at the second rotational speed in the loud environment to provide a second overall ambient noise signal of the electronic system; The controller is also used to: analyzing the second sample noise signal and the second overall ambient noise signal to obtain a second probability distribution related to the degree of similarity between the second sample noise signal and the second overall ambient noise signal; storing the second overall ambient noise signal when it is determined that the second probability distribution is less than a second critical value for more than a predetermined time; and updating the first sample noise signal according to the second overall ambient noise signal when it is determined that the fan has been operating in the loud environment for more than a predetermined period of time; and The second rotational speed is greater than the first rotational speed. 如請求項3所述之電子系統,其中該控制器係使用深度學習(deep learning)來分析該第一樣本噪音訊號和該第一整體環境噪音訊號以求出該第一機率分佈,以及分析該第二樣本噪音訊號和該第二整體環境噪音訊號以求出該第二機率分佈。The electronic system as described in claim 3, wherein the controller uses deep learning (deep learning) to analyze the first sample noise signal and the first overall environmental noise signal to obtain the first probability distribution, and analyze The second sample noise signal and the second overall environmental noise signal are used to obtain the second probability distribution. 如請求項3所述之電子系統,其另包含一記憶單元,用來儲存該第一樣本噪音訊號、該第一整體環境噪音訊號、該第二樣本噪音訊號,和該第二整體環境噪音訊號。The electronic system as described in claim 3, further comprising a memory unit for storing the first sample noise signal, the first overall ambient noise signal, the second sample noise signal, and the second overall ambient noise signal. 一種動態調整風扇轉速之方法,其包含: 在一無響環境中偵測一電子系統中一風扇以一第一轉速運作時的一第一樣本噪音訊號; 在一有響環境中偵測該風扇以該第一轉速運作時所產生的噪音,以提供該電子系統之一第一整體環境噪音訊號; 分析該第一樣本噪音訊號和該第一整體環境噪音訊號以求出相關該第一樣本噪音訊號和該第一整體環境噪音訊號之間相似程度的一第一機率分佈;以及 依據該第一機率分佈和一第一臨界值之大小關係來動態地調整該風扇之轉速。 A method for dynamically adjusting fan speed, comprising: Detecting a first sample noise signal when a fan in an electronic system operates at a first rotational speed in an audible environment; detecting the noise generated by the fan operating at the first rotational speed in a noisy environment to provide a first overall ambient noise signal of the electronic system; analyzing the first sample noise signal and the first global ambient noise signal to obtain a first probability distribution related to the degree of similarity between the first sample noise signal and the first global ambient noise signal; and The rotational speed of the fan is dynamically adjusted according to the magnitude relationship between the first probability distribution and a first critical value. 如請求項6所述之方法,其另包含: 使用深度學習來分析該第一樣本噪音訊號和該第一整體環境噪音訊號以求出該第一機率分佈。 The method as described in claim item 6, which further includes: Deep learning is used to analyze the first sample noise signal and the first overall environmental noise signal to obtain the first probability distribution. 如請求項6所述之方法,其另包含: 當判定該第一機率分佈之值大於該第一臨界值時,調降該第一轉速之值;且 當判定該第一機率分佈之值不大於該第一臨界值時,調升該第一轉速之值。 The method as described in claim item 6, which further includes: When it is determined that the value of the first probability distribution is greater than the first critical value, lowering the value of the first rotational speed; and When it is determined that the value of the first probability distribution is not greater than the first critical value, the value of the first rotational speed is increased. 如請求項6所述之方法,其另包含: 在該無響環境中偵測該風扇以一第二轉速運作時的一第二樣本噪音訊號; 在該有響環境中偵測該風扇以該第二轉速運作時所產生的噪音,以提供該電子系統之一第二整體環境噪音訊號; 分析該第二樣本噪音訊號和該第二整體環境噪音訊號以求出相關該第二樣本噪音訊號和該第二整體環境噪音訊號之間相似程度的一第二機率分佈; 當判定該第二機率分佈小於一第二臨界值超過一預定時間時,儲存該第二整體環境噪音訊號;以及 當判定該風扇在該有響環境中已運作超過一預定期間時,依據該第二整體環境噪音訊號來更新該第一樣本噪音訊號,其中該第二轉速大於該第一轉速。 The method as described in claim item 6, which further includes: detecting a second sample noise signal when the fan operates at a second rotational speed in the silent environment; detecting the noise generated by the fan operating at the second rotational speed in the loud environment to provide a second overall ambient noise signal of the electronic system; analyzing the second sample noise signal and the second overall ambient noise signal to obtain a second probability distribution related to the degree of similarity between the second sample noise signal and the second overall ambient noise signal; storing the second overall ambient noise signal when it is determined that the second probability distribution is less than a second critical value for more than a predetermined time; and When it is determined that the fan has been operating in the noisy environment for more than a predetermined period, the first sample noise signal is updated according to the second overall ambient noise signal, wherein the second rotational speed is greater than the first rotational speed. 如請求項9所述之方法,其另包含: 使用深度學習來分析該第二樣本噪音訊號和該第二整體環境噪音訊號以求出該第二機率分佈。 The method as described in Claim 9, which further includes: Deep learning is used to analyze the second sample noise signal and the second overall environmental noise signal to obtain the second probability distribution.
TW110148697A 2021-12-24 2021-12-24 Electronic system and method of dynamically adjusting fan speed TWI817298B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110148697A TWI817298B (en) 2021-12-24 2021-12-24 Electronic system and method of dynamically adjusting fan speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110148697A TWI817298B (en) 2021-12-24 2021-12-24 Electronic system and method of dynamically adjusting fan speed

Publications (2)

Publication Number Publication Date
TW202325990A true TW202325990A (en) 2023-07-01
TWI817298B TWI817298B (en) 2023-10-01

Family

ID=88147629

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110148697A TWI817298B (en) 2021-12-24 2021-12-24 Electronic system and method of dynamically adjusting fan speed

Country Status (1)

Country Link
TW (1) TWI817298B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090002939A1 (en) * 2007-06-29 2009-01-01 Eric Baugh Systems and methods for fan speed optimization
CN104748296B (en) * 2014-01-01 2018-09-11 美的集团股份有限公司 Air-conditioning and its control method
CN109779939B (en) * 2019-01-09 2021-05-18 合肥联宝信息技术有限公司 Fan rotating speed control method and device

Also Published As

Publication number Publication date
TWI817298B (en) 2023-10-01

Similar Documents

Publication Publication Date Title
US7941231B1 (en) Ambient noise level sampling system for cooling an electronic device
US20130332159A1 (en) Using fan throttling to enhance dictation accuracy
US8515095B2 (en) Reducing annoyance by managing the acoustic noise produced by a device
US20100079094A1 (en) Enclosure acoustic compensation
WO2017171721A1 (en) Fan speed control in electronic devices
CN109779939B (en) Fan rotating speed control method and device
US20220301555A1 (en) Home appliance and method for voice recognition thereof
US11996080B2 (en) Electronic system with heat dissipation and feed-forward active noise control function and related method
US20090080671A1 (en) Method and device for controlling a noise producing component
EP3705016A1 (en) Home appliance and method for controlling thereof
US11215193B2 (en) Fan assembly with a self-adjusting gap and electronic devices with a fan assembly
TWI817298B (en) Electronic system and method of dynamically adjusting fan speed
US20040120113A1 (en) Acoustically adaptive thermal management
CN116428204A (en) Electronic system and method for dynamically adjusting fan rotation speed
WO2019185015A1 (en) Signal noise removal method utilizing piezoelectric transducer
TWI395875B (en) Control system and method for dynamically adjusting fan speed
TW202036218A (en) Fan control method and electronic device
TWI592578B (en) Fan controlling method of electronic device
US10290294B1 (en) Information handling system having acoustic noise reduction
CN107870660B (en) Fan control method of electronic device
WO2023097768A1 (en) Electronic device control method and apparatus, and electronic device and readable storage medium
TWI715336B (en) Laptop computer capable of detecting lid status and related method
US20230400905A1 (en) Techniques for power savings, improved security, and enhanced user perceptual audio
TW202347084A (en) Device control method and electronic device
US12002446B2 (en) Electronic system having heat dissipation and feed-forward active noise control function and related method