TW202323129A - Bicycle rear sprocket assembly and bicycle drive train - Google Patents

Bicycle rear sprocket assembly and bicycle drive train Download PDF

Info

Publication number
TW202323129A
TW202323129A TW111140394A TW111140394A TW202323129A TW 202323129 A TW202323129 A TW 202323129A TW 111140394 A TW111140394 A TW 111140394A TW 111140394 A TW111140394 A TW 111140394A TW 202323129 A TW202323129 A TW 202323129A
Authority
TW
Taiwan
Prior art keywords
sprocket
bicycle rear
assembly
bicycle
sprocket assembly
Prior art date
Application number
TW111140394A
Other languages
Chinese (zh)
Inventor
藤田寬司
Original Assignee
日商島野股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/608,924 external-priority patent/US11332213B2/en
Priority claimed from US15/608,915 external-priority patent/US11059541B2/en
Priority claimed from US15/673,346 external-priority patent/US10377174B2/en
Priority claimed from US15/686,179 external-priority patent/US11220309B2/en
Priority claimed from US15/686,177 external-priority patent/US11179967B2/en
Priority claimed from US15/851,781 external-priority patent/US10946931B2/en
Priority claimed from US15/851,785 external-priority patent/US10752320B2/en
Application filed by 日商島野股份有限公司 filed Critical 日商島野股份有限公司
Publication of TW202323129A publication Critical patent/TW202323129A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/30Chain-wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/02Hubs adapted to be rotatably arranged on axle
    • B60B27/04Hubs adapted to be rotatably arranged on axle housing driving means, e.g. sprockets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/02Hubs adapted to be rotatably arranged on axle
    • B60B27/023Hubs adapted to be rotatably arranged on axle specially adapted for bicycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/02Hubs adapted to be rotatably arranged on axle
    • B60B27/04Hubs adapted to be rotatably arranged on axle housing driving means, e.g. sprockets
    • B60B27/047Hubs adapted to be rotatably arranged on axle housing driving means, e.g. sprockets comprising a freewheel mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M9/00Transmissions characterised by use of an endless chain, belt, or the like
    • B62M9/04Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio
    • B62M9/06Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like
    • B62M9/10Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving different-sized wheels, e.g. rear sprocket chain wheels selectively engaged by the chain, belt, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M9/00Transmissions characterised by use of an endless chain, belt, or the like
    • B62M9/04Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio
    • B62M9/06Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like
    • B62M9/10Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving different-sized wheels, e.g. rear sprocket chain wheels selectively engaged by the chain, belt, or the like
    • B62M9/12Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving different-sized wheels, e.g. rear sprocket chain wheels selectively engaged by the chain, belt, or the like the chain, belt, or the like being laterally shiftable, e.g. using a rear derailleur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M9/00Transmissions characterised by use of an endless chain, belt, or the like
    • B62M9/04Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio
    • B62M9/06Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like
    • B62M9/10Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving different-sized wheels, e.g. rear sprocket chain wheels selectively engaged by the chain, belt, or the like
    • B62M9/12Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving different-sized wheels, e.g. rear sprocket chain wheels selectively engaged by the chain, belt, or the like the chain, belt, or the like being laterally shiftable, e.g. using a rear derailleur
    • B62M9/121Rear derailleurs
    • B62M9/124Mechanisms for shifting laterally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M9/00Transmissions characterised by use of an endless chain, belt, or the like
    • B62M2009/005Details of transmission chains specially adapted for bicycles

Abstract

A bicycle rear sprocket assembly is configured to be mounted to a sprocket support body of a bicycle rear hub assembly. The bicycle rear sprocket assembly comprises a plurality of bicycle sprockets. The plurality of bicycle sprockets comprises a first sprocket and a second sprocket. The first sprocket includes a first opening having a first minimum diameter that is smaller than a minimum outer diameter of the sprocket support body of the bicycle rear hub assembly. The second sprocket includes a second opening and at least ten internal spline teeth. The second opening has a second minimum diameter that is equal to or larger than the minimum outer diameter of the sprocket support body of the bicycle rear hub assembly. The at least ten internal spline teeth are configured to engage with the sprocket support body of the bicycle rear hub assembly.

Description

自行車後鏈輪總成及自行車傳動系統Bicycle rear sprocket assembly and bicycle transmission system

本發明係關於一種自行車後鏈輪總成及一種自行車傳動系統。The invention relates to a bicycle rear sprocket assembly and a bicycle transmission system.

騎車正變成更日益流行的消遣形式以及交通方式。此外,騎車已變為業餘及專業人員兩者的非常流行競技運動。不論自行車是用於消遣、交通抑或是用於競賽,自行車行業正不斷地改良自行車之各種組件。已經充分重新設計之一個自行車組件為鏈輪總成。Cycling is becoming an increasingly popular form of recreation as well as a mode of transportation. Furthermore, cycling has become a very popular competitive sport for both amateurs and professionals. Whether the bicycle is used for recreation, transportation, or competition, the bicycle industry is constantly improving the various components of the bicycle. One of the bicycle components that has been substantially redesigned is the sprocket assembly.

根據本發明之一第一態樣,一種自行車後鏈輪總成經構形以安裝至一自行車後輪轂總成之一鏈輪支撐主體。該自行車後鏈輪總成包含複數個自行車鏈輪。該複數個自行車鏈輪包含一第一鏈輪及一第二鏈輪。該第一鏈輪包括一第一開口,該第一開口具有小於該自行車後輪轂總成之該鏈輪支撐主體之一最小外徑的一第一最小直徑。該第二鏈輪包括一第二開口及至少十個內部花鍵齒。該第二開口具有一第二最小直徑,該第二最小直徑等於或大於該自行車後輪轂總成之該鏈輪支撐主體之該最小外徑。該至少十個內部花鍵齒經構形以與該自行車後輪轂總成之該鏈輪支撐主體嚙合。 在根據第一態樣之自行車後鏈輪總成之情況下,第一最小直徑允許第一鏈輪具有更小節圓直徑。此實現自行車後鏈輪總成之更寬齒輪範圍。此外,相比包括九個或更少內部花鍵齒之鏈輪,第二鏈輪之至少十個內部花鍵齒減小施加至至少十個內部花鍵齒中之每一者的旋轉力。此提高第二鏈輪之耐久性及/或提高選擇第二鏈輪之材料之自由度,而不降低第二鏈輪之耐久性。 根據本發明之一第二態樣,根據該第一態樣之自行車後鏈輪總成進一步包含一鎖定構件。該鎖定構件包括一管狀主體、一外螺紋部分及一徑向突出物。該管狀主體在該自行車後鏈輪總成安裝至該自行車後輪轂總成之一狀態下延伸穿過該第一鏈輪之該第一開口。該管狀主體包括一第一軸向端及一第二軸向端。該第二軸向端相對於該自行車後鏈輪總成之一旋轉中心軸線在一軸向方向上與該第一軸向端相對。在該自行車後鏈輪總成安裝至該自行車後輪轂總成之該狀態下,該第一軸向端經定位成比該第二軸向端更接近該自行車後輪轂總成之一軸向中心平面。該外螺紋部分提供至該第一軸向端,以在該自行車後鏈輪總成安裝至該自行車後輪轂總成之該狀態下與該自行車後輪轂總成之該鏈輪支撐主體之一內螺紋部分嚙合。該徑向突出物相對於該旋轉中心軸線自該第二軸向端徑向向外延伸,以在該自行車後鏈輪總成安裝至該自行車後輪轂總成之該狀態下限制該第一鏈輪相對於該自行車後輪轂總成之該鏈輪支撐主體的一軸向移動。 在根據第二態樣之自行車後鏈輪總成之情況下,有可能將更小鏈輪安裝至自行車後輪轂總成。此實現自行車後鏈輪總成之更寬齒輪範圍。 根據本發明之一第三態樣,根據該第二態樣之自行車後鏈輪總成經構形以使得該第一鏈輪包括一第一向內側;及一第一向外側,其在該軸向方向上與該第一向內側相對。該徑向突出物經構形以在該第一向外側中鄰接該第一鏈輪。 在根據第三態樣之自行車後鏈輪總成之情況下,有可能將更小鏈輪安裝至自行車後輪轂總成。此實現自行車後鏈輪總成之更寬齒輪範圍。 根據本發明之一第四態樣,根據該第一態樣至該第三態樣中任一項之自行車後鏈輪總成經構形以使得:該第二鏈輪相對於該自行車後鏈輪總成之一旋轉中心軸線在一軸向方向上鄰近於該第一鏈輪,而在該第一鏈輪與該第二鏈輪之間無另一鏈輪。 在根據第四態樣之自行車後鏈輪總成之情況下,有可能將更小鏈輪安裝至自行車後輪轂總成。此實現自行車後鏈輪總成之更寬齒輪範圍。 根據本發明之一第五態樣,根據該第一態樣至該第四態樣中任一項之自行車後鏈輪總成經構形以使得:該第一鏈輪包括一第一向內側;及一第一向外側,其相對於該自行車後鏈輪總成之一旋轉中心軸線在一軸向方向上與該第一向內側相對。該第一鏈輪包括提供至該第一向內側以直接地或間接地將一踩踏扭矩傳遞至該鏈輪支撐主體之一第一扭矩傳遞結構。 在根據第五態樣之自行車後鏈輪總成之情況下,有可能將更小鏈輪安裝至自行車後輪轂總成。此實現自行車後鏈輪總成之更寬齒輪範圍。 根據本發明之一第六態樣,根據該第五態樣之自行車後鏈輪總成經構形以使得:該第一扭矩傳遞結構包括至少十個第一扭矩傳遞齒。 在根據第六態樣之自行車後鏈輪總成之情況下,相比包括九個或更少內部花鍵齒之鏈輪,第一鏈輪之十個第一扭矩傳遞齒減小施加至至少十個第一扭矩傳遞齒中之每一者的旋轉力。此提高第一鏈輪之耐久性及/或提高選擇第一鏈輪之材料之自由度,而不降低第一鏈輪之耐久性。 根據本發明之一第七態樣,根據該第六態樣之自行車後鏈輪總成經構形以使得:該至少十個第一扭矩傳遞齒之一總數目等於或大於20。 在根據第七態樣之自行車後鏈輪總成之情況下,有可能提高第一鏈輪之耐久性。 根據本發明之一第八態樣,根據該第一態樣至該第七態樣中任一項之自行車後鏈輪總成經構形以使得:該第二鏈輪之該至少十個內部花鍵齒之一總數目等於或大於20。 在根據第八態樣之自行車後鏈輪總成之情況下,有可能提高第二鏈輪之耐久性。 根據本發明之一第九態樣,根據該第八態樣之自行車後鏈輪總成經構形以使得:該第二鏈輪之該至少十個內部花鍵齒之該總數目等於或大於28。 在根據第九態樣之自行車後鏈輪總成之情況下,有可能提高第二鏈輪之耐久性。 根據本發明之一第十態樣,根據該第一態樣至該第九態樣中任一項之自行車後鏈輪總成經構形以使得:該第二鏈輪之該至少十個內部花鍵齒具有一第一內部周節角及不同於該第一內部周節角之一第二內部周節角。 在根據第十態樣之自行車後鏈輪總成之情況下,有可能易於在正確圓周位置中將自行車後鏈輪總成附接至自行車後輪轂總成。 根據本發明之一第十一態樣,根據該第一態樣至該第十態樣中任一項之自行車後鏈輪總成經構形以使得:該第二鏈輪之該至少十個內部花鍵齒中之至少一者具有一第一花鍵形狀,該第一花鍵形狀不同於該至少十個內部花鍵齒中之另一者的一第二花鍵形狀。 在根據第十一態樣之自行車後鏈輪總成之情況下,有可能易於在正確圓周位置中將自行車後鏈輪總成附接至自行車後輪轂總成。 根據本發明之一第十二態樣,根據該第一態樣至該第十一態樣中任一項之自行車後鏈輪總成經構形以使得:該第二鏈輪之該至少十個內部花鍵齒中之至少一者具有一第一花鍵大小,該第一花鍵大小不同於該至少十個內部花鍵齒中之另一者的一第二花鍵大小。 在根據第十二態樣之自行車後鏈輪總成之情況下,有可能易於在正確圓周位置中將自行車後鏈輪總成附接至自行車後輪轂總成。 根據本發明之一第十三態樣,根據該第一態樣至該第十二態樣中任一項之自行車後鏈輪總成經構形以使得:該第一鏈輪之一總齒數等於或小於10。 在根據第十三態樣之自行車後鏈輪總成之情況下,有可能將更小鏈輪安裝至自行車後輪轂總成。此實現自行車後鏈輪總成之更寬齒輪範圍。 根據本發明之一第十四態樣,根據該第一態樣至該第十三態樣中任一項之自行車後鏈輪總成經構形以使得:該第一鏈輪為該自行車後鏈輪總成中之最小鏈輪。 在根據第十四態樣之自行車後鏈輪總成之情況下,有可能將更小鏈輪安裝至自行車後輪轂總成。此實現自行車後鏈輪總成之更寬齒輪範圍。 根據本發明之一第十五態樣,根據該第一態樣至該第十四態樣中任一項之自行車後鏈輪總成進一步包含:一鏈輪支撐構件,其包括經構形以與該自行車後輪轂總成之該鏈輪支撐主體嚙合的至少十個內部花鍵齒。該複數個自行車鏈輪包含經構形以附接至該鏈輪支撐構件之一額外鏈輪。 在根據第十五態樣之自行車後鏈輪總成之情況下,有可能減輕自行車後鏈輪總成之重量。 根據本發明之一第十六態樣,根據該第十五態樣自行車後鏈輪總成經構形以使得:該額外鏈輪之一總齒數等於或大於46。 在根據第十六態樣之自行車後鏈輪總成之情況下,額外鏈輪實現自行車後鏈輪總成之更寬齒輪範圍。 根據本發明之一第十七態樣,根據該第十五態樣中之自行車後鏈輪總成經構形以使得:該額外鏈輪之一總齒數等於或大於50。 在根據第十七態樣之自行車後鏈輪總成之情況下,額外鏈輪實現自行車後鏈輪總成之更寬齒輪範圍。 根據本發明之一第十八態樣,根據該第一態樣至該第十七態樣中任一項之自行車後鏈輪總成經構形以使得:該複數個自行車鏈輪包含作為該第二鏈輪提供之複數個第二鏈輪。該複數個第二鏈輪各自包括經構形以與該自行車後輪轂總成之該鏈輪支撐主體嚙合的至少十個內部花鍵齒。 在根據第十八態樣之自行車後鏈輪總成之情況下,有可能提高複數個第二鏈輪之耐久性。 根據本發明之一第十九態樣,根據該第十八態樣之自行車後鏈輪總成進一步包含:一鏈輪支撐構件,其包括經構形以與該自行車後輪轂總成之該鏈輪支撐主體嚙合的至少十個內部花鍵齒。該複數個自行車鏈輪包括經構形以附接至該鏈輪支撐構件之一額外鏈輪。 在根據第十九態樣之自行車後鏈輪總成之情況下,有可能減輕自行車後鏈輪總成之重量。 根據本發明之一第二十態樣,根據該第一態樣至該第十九態樣中任一項之自行車後鏈輪總成經構形以使得:該複數個自行車鏈輪之一總數目等於或大於10。 在根據第二十態樣之自行車後鏈輪總成之情況下,有可能提高自行車後鏈輪總成之速度級別。 根據本發明之一第二十一態樣,根據該第一態樣至該第二十態樣中任一項之自行車後鏈輪總成經構形以使得:該複數個自行車鏈輪之一總數目等於或大於11。 在根據第二十一態樣之自行車後鏈輪總成之情況下,有可能進一步提高自行車後鏈輪總成之速度級別。 根據本發明之一第二十二態樣,根據該第一態樣至該第二十一態樣中任一項之自行車後鏈輪總成經構形以使得:該複數個自行車鏈輪之一總數目等於或大於12。 在根據第二十二態樣之自行車後鏈輪總成之情況下,有可能進一步提高自行車後鏈輪總成之速度級別。 根據本發明之一第二十三態樣,根據該第一態樣至該第二十二態樣中任一項之自行車後鏈輪總成經構形以使得:該複數個自行車鏈輪包含具有一最大齒尖直徑之一額外鏈輪。該第二鏈輪之該至少十個內部花鍵齒具有一內部花鍵頂徑。該內部花鍵頂徑對該最大齒尖直徑之一比率範圍介於0.15至0.18。 在根據第二十三態樣之自行車後鏈輪總成之情況下,有可能提高第二鏈輪之耐久性同時實現自行車後鏈輪總成之更寬齒輪範圍。 根據本發明之一第二十四態樣,根據該第一態樣至該第二十三態樣中任一項之自行車後鏈輪總成進一步包含一額外鏈輪。該額外鏈輪包括:至少一個第一移位促進區域,其用以促進一自行車鏈自該額外鏈輪移位至一相鄰更小鏈輪之一第一移位操作;及至少一個第二移位促進區域,其用以促進該自行車鏈自該相鄰更小鏈輪移位至該額外鏈輪之一第二移位操作。 在根據第二十四態樣之自行車後鏈輪總成之情況下,有可能順利進行第一移位操作及第二移位操作。 根據本發明之一第二十五態樣,根據該第二態樣或該第三態樣之自行車後鏈輪總成經構形以使得:該管狀主體具有等於或小於27 mm之一第一外徑。 在根據第二十五態樣之自行車後鏈輪總成之情況下,有可能藉由鎖定構件相對於自行車後輪轂總成固持自行車後鏈輪總成且實現自行車後鏈輪總成之更寬齒輪範圍。 根據本發明之一第二十六態樣,根據該第二十五態樣之自行車後鏈輪總成經構形以使得:該第一外徑等於或大於26 mm。 在根據第二十六態樣之自行車後鏈輪總成之情況下,有可能維持或提高鎖定構件之強度,同時實現自行車後鏈輪總成之更寬齒輪範圍。 根據本發明之一第二十七態樣,根據該第二態樣、該第三態樣、該第二十五態樣或該第二十六態樣之自行車後鏈輪總成經構形以使得:該徑向突出物具有等於或小於32 mm之一第二外徑。 在根據第二十七態樣之自行車後鏈輪總成之情況下,有可能藉由鎖定構件相對於自行車後輪轂總成固持自行車後鏈輪總成且實現自行車後鏈輪總成之更寬齒輪範圍。 根據本發明之一第二十八態樣,根據該第二十七態樣之自行車後鏈輪總成經構形以使得:該第二外徑等於或大於30 mm。 在根據第二十八態樣之自行車後鏈輪總成之情況下,有可能維持或提高鎖定構件之強度,同時實現自行車後鏈輪總成之更寬齒輪範圍。 根據本發明之一第二十九態樣,根據該第二態樣、該第三態樣及該第二十五至該第二十八態樣中任一項之自行車後鏈輪總成經構形以使得:該鎖定構件具有一工具嚙合部分。 在根據第二十九態樣之自行車後鏈輪總成之情況下,有可能藉由使用工具嚙合部分來易於附接鎖定構件。 根據本發明之一第三十態樣,根據該第一態樣至該第二十九態樣中任一項之自行車後鏈輪總成經構形以使得:該複數個自行車鏈輪作為該第一鏈輪提供之複數個第一鏈輪及作為該第二鏈輪提供之複數個第二鏈輪。該複數個第一鏈輪各自包括該第一開口。該複數個第二鏈輪各自包括該第二開口及經構形以與該自行車後輪轂總成之該鏈輪支撐主體嚙合的該至少十個內部花鍵齒。 在根據第三十態樣之自行車後鏈輪總成之情況下,複數個第一鏈輪及複數個第二鏈輪實現自行車後鏈輪總成之更寬齒輪範圍。 根據本發明之一第三十一態樣,根據該第十五態樣之自行車後鏈輪總成經構形以使得:該額外鏈輪藉由黏著劑附接至該鏈輪支撐構件。 在根據第三十一態樣之自行車後鏈輪總成之情況下,由於不使用任何金屬緊固件,有可能進一步減輕自行車後鏈輪總成之重量。 根據本發明之一第三十二態樣,根據該第十五態樣或該第三十一態樣之自行車後鏈輪總成經構形以使得:該鏈輪支撐構件由包括一樹脂材料之一非金屬材料製成。 在根據第三十二態樣之自行車後鏈輪總成之情況下,有可能進一步減輕自行車後鏈輪總成之重量。 根據本發明之一第三十三態樣,根據該第一態樣至該第三十二態樣中任一項之自行車後鏈輪總成經構形以使得:該第二鏈輪之該至少十個內部花鍵齒中的至少兩個內部花鍵齒相對於該自行車後鏈輪總成之一旋轉中心軸線以一第一內部周節角沿圓周配置。該第一內部周節角範圍介於5度至36度。 在根據第三十三態樣之自行車後鏈輪總成之情況下,有可能提高第二鏈輪之耐久性。 根據本發明之一第三十四態樣,根據該第三十三態樣之自行車後鏈輪總成經構形以使得:該第一內部周節角範圍介於10度至20度。 在根據第三十四態樣之自行車後鏈輪總成之情況下,有可能進一步提高第二鏈輪之耐久性。 根據本發明之一第三十五態樣,根據該第三十四態樣之自行車後鏈輪總成經構形以使得:該第一內部周節角等於或小於15度。 在根據第三十五態樣之自行車後鏈輪總成之情況下,有可能進一步提高第二鏈輪之耐久性。 根據本發明之一第三十六態樣,根據該第三十三態樣至該第三十五態樣中任一項之自行車後鏈輪總成經構形以使得:該第二鏈輪之該至少十個內部花鍵齒中的至少其他兩個內部花鍵齒相對於該旋轉中心軸線以一第二內部周節角沿圓周配置。該第二內部周節角不同於該第一內部周節角。 在根據第三十六態樣之自行車後鏈輪總成之情況下,有可能易於在正確圓周位置中將自行車後鏈輪總成附接至自行車後輪轂總成。 根據本發明之一第三十七態樣,根據該第一態樣至該第三十六態樣中任一項之自行車後鏈輪總成經構形以使得:該第二鏈輪之該至少十個內部花鍵齒具有等於或小於34 mm之一內部花鍵頂徑。 在根據第三十七態樣之自行車後鏈輪總成之情況下,有可能提高第二鏈輪之耐久性同時實現自行車後鏈輪總成之更寬齒輪範圍。 根據本發明之一第三十八態樣,根據該第三十七態樣之自行車後鏈輪總成經構形以使得:該第二鏈輪之該內部花鍵頂徑等於或小於33 mm。 在根據第三十八態樣之自行車後鏈輪總成之情況下,有可能提高第二鏈輪之耐久性同時實現自行車後鏈輪總成之更寬齒輪範圍。 根據本發明之一第三十九態樣,根據該第三十七態樣或該第三十八態樣之自行車後鏈輪總成經構形以使得:該第二鏈輪之該內部花鍵頂徑等於或大於29 mm。 在根據第三十九之自行車後鏈輪總成之情況下,有可能提高第二鏈輪之耐久性。 根據本發明之一第四十態樣,根據該第一態樣至該第三十九態樣中任一項之自行車後鏈輪總成經構形以使得:該第二鏈輪之該至少十個內部花鍵齒具有等於或小於32 mm之一內部花鍵底徑。 在根據第四十態樣之自行車後鏈輪總成之情況下,內部花鍵頂徑可增大至少一個內部花鍵齒之傳動表面之徑向長度。此提高第二鏈輪之強度。 根據本發明之一第四十一態樣,根據該第四十態樣之自行車後鏈輪總成經構形以使得:該內部花鍵底徑等於或小於31 mm。 在根據第四十一態樣之自行車後鏈輪總成之情況下,內部花鍵頂徑可進一步增大至少一個內部花鍵齒之傳動表面之徑向長度。此提高第二鏈輪之強度。 根據本發明之一第四十二態樣,根據該第四十態樣或該第四十一態樣之自行車後鏈輪總成經構形以使得:該內部花鍵底徑等於或大於28 mm。 在根據第四十二態樣之自行車後鏈輪總成之情況下,有可能獲得鏈輪支撐主體之必需強度。 根據本發明之一第四十三態樣,根據該第一態樣至該第四十二態樣中任一項之自行車後鏈輪總成經構形以使得:該至少十個內部花鍵齒包括用以在踩踏期間接收來自該自行車後輪轂總成之一傳動旋轉力的複數個內部花鍵傳動表面。該複數個內部花鍵傳動表面各自包括一徑向最外邊緣、一徑向最內邊緣及自該徑向最外邊緣至該徑向最內邊緣界定之一徑向長度。該複數個內部花鍵傳動表面之該等徑向長度之一總和等於或大於7 mm。 在根據第四十三態樣之自行車後鏈輪總成之情況下,有可能增大複數個內部花鍵傳動表面之徑向長度。此提高第二鏈輪之強度。 根據本發明之一第四十四態樣,根據該第四十三態樣之自行車後鏈輪總成經構形以使得:該等徑向長度之該總和等於或大於10 mm。 在根據第四十四態樣之自行車後鏈輪總成之情況下,有可能進一步增大複數個內部花鍵傳動表面之徑向長度。此提高第二鏈輪之強度。 根據本發明之一第四十五態樣,根據該第四十三態樣之自行車後鏈輪總成經構形以使得:該等徑向長度之該總和等於或大於15 mm。 在根據第四十五態樣之自行車後鏈輪總成之情況下,有可能進一步增大複數個內部花鍵傳動表面之徑向長度。此提高第二鏈輪之強度。 根據本發明之一第四十六態樣,根據該四十三態樣至該第四十五態樣中任一項之自行車後鏈輪總成經構形以使得:該等徑向長度之該總和等於或小於36 mm。 在根據第四十六態樣之自行車後鏈輪總成之情況下,有可能進一步提高自行車後鏈輪總成之生產率。 根據本發明之一第四十七態樣,根據該第一態樣至該第四十六態樣中任一項之自行車後鏈輪總成經構形以使得:該至少十個內部花鍵齒中之至少一者包括:一內部花鍵傳動表面,其具有界定於該內部花鍵傳動表面與一第一徑向線之間的一第一內部花鍵表面角,該第一徑向線自該自行車後鏈輪總成之一旋轉中心軸線延伸至該內部花鍵傳動表面之一徑向最外邊緣。該第一內部花鍵表面角範圍介於0度至6度。 在根據第四十七態樣之自行車後鏈輪總成之情況下,有可能提高內部花鍵傳動表面之強度。 根據本發明之一第四十八態樣,根據該第四十七態樣之自行車後鏈輪總成經構形以使得:該至少十個內部花鍵齒中之該至少一者包括:一內部花鍵非傳動表面,其具有界定於該內部花鍵非傳動表面與一第二徑向線之間的一第二內部花鍵表面角,該第二徑向線自該自行車後鏈輪總成之該旋轉中心軸線延伸至該內部花鍵非傳動表面之一徑向最外邊緣。該第二內部花鍵表面角範圍介於0度至6度。 在根據第四十八態樣之自行車後鏈輪總成之情況下,由於內部花鍵齒之對稱形狀,有可能提高自行車後鏈輪總成之生產率。 根據本發明之一第四十九態樣,根據該第一態樣至該第四十八態樣中任一項之自行車後鏈輪總成經構形以使得:該第二鏈輪之該至少十個內部花鍵齒中之至少一者相對於一參考線沿圓周對稱,該參考線相對於該旋轉中心軸線在一徑向方向上自該旋轉中心軸線延伸至該至少十個內部花鍵齒中之該至少一者之一徑向最外端的一圓周中心點。 在根據第四十九態樣之自行車後鏈輪總成之情況下,由於內部花鍵齒之對稱形狀,有可能提高自行車後鏈輪總成之生產率。 根據本發明之一第五十態樣,一種自行車傳動系統包含如第一態樣至第四十九態樣中任一項之自行車後鏈輪總成及一自行車後輪轂總成。該自行車後輪轂總成包含:一輪轂軸,其包括具有等於或大於13 mm之一最小內徑的一軸通孔;一輪轂主體,其圍繞該自行車後輪轂總成之一旋轉中心軸線可旋轉地安裝於該輪轂軸上;及一鏈輪支撐主體,其圍繞該旋轉中心軸線可旋轉地安裝於該輪轂軸上。 在根據第五十態樣之自行車傳動系統之情況下,有可能在後輪周圍提高自行車傳動系統之強度,同時實現自行車後鏈輪總成之更寬齒輪範圍。 根據本發明之一第五十一態樣,根據該第五十態樣之自行車後鏈輪總成經構形以使得:該軸通孔之該最小內徑等於或大於14 mm。 在根據第五十一態樣之自行車傳動系統之情況下,有可能在後輪周圍進一步提高自行車傳動系統之強度。 根據本發明之一第五十二態樣,根據該第五十態樣或該第五十一態樣之自行車後鏈輪總成經構形以使得:該軸通孔之該最小內徑等於或小於21 mm。 在根據第五十二態樣之自行車傳動系統之情況下,有可能提高自行車後輪轂總成之設計自由。 根據本發明之一第五十三態樣,根據該第六態樣之自行車後鏈輪總成經構形以使得:該至少十個第一扭矩傳遞齒之一總數目範圍介於22至24。 在根據第五十三態樣之自行車後鏈輪總成之情況下,至少十個第一扭矩傳遞齒之總數目提高第二鏈輪之耐久性,同時提高自行車後鏈輪總成之生產率。 根據本發明之一第五十四態樣,根據該第一態樣之自行車後鏈輪總成經構形以使得:該第二鏈輪之該至少十個內部花鍵齒之一總數目範圍介於22至24。 在根據第五十四態樣之自行車後鏈輪總成之情況下,至少十個第一扭矩傳遞齒之總數目提高第二鏈輪之耐久性,同時提高自行車後鏈輪總成之生產率。 根據本發明之一第五十五態樣,根據該第三十三態樣之自行車後鏈輪總成經構形以使得:該第一內部周節角範圍介於13度至17度。 在根據第五十五態樣之自行車後鏈輪總成之情況下,第一內部周節角提高第二鏈輪之耐久性,同時提高自行車後鏈輪總成之生產率。 根據本發明之一第五十六態樣,根據該第三十六態樣之自行車後鏈輪總成經構形以使得:該第二內部周節角範圍介於28度至32度。 在根據第五十六態樣之自行車後鏈輪總成之情況下,有可能易於在正確圓周位置中將自行車後鏈輪總成附接至自行車後輪轂總成。 根據本發明之一第五十七態樣,根據該第三十六態樣之自行車後鏈輪總成經構形以使得:該第一內部周節角為該第二內部周節角之一半。 在根據第五十七態樣之自行車後鏈輪總成之情況下,有可能易於在正確圓周位置中將自行車後鏈輪總成附接至自行車後輪轂總成。 根據本發明之一第五十八態樣,根據該第四十三態樣態樣之自行車後鏈輪總成經構形以使得:該複數個內部花鍵傳動表面之該等徑向長度的該總和範圍介於11 mm至14 mm。 在根據第五十八態樣之自行車後鏈輪總成之情況下,內部花鍵頂徑可增大至少一個內部花鍵齒之傳動表面之徑向長度。此在自行車後鏈輪總成之生產率提高之範圍內提高第二鏈輪之強度。 According to a first aspect of the present invention, a bicycle rear sprocket assembly is configured to be mounted to a sprocket support body of a bicycle rear hub assembly. The bicycle rear sprocket assembly includes a plurality of bicycle sprockets. The plurality of bicycle sprockets includes a first sprocket and a second sprocket. The first sprocket includes a first opening having a first minimum diameter that is smaller than a minimum outer diameter of the sprocket support body of the bicycle rear hub assembly. The second sprocket includes a second opening and at least ten inner spline teeth. The second opening has a second minimum diameter equal to or greater than the minimum outer diameter of the sprocket support body of the bicycle rear hub assembly. The at least ten internal spline teeth are configured to engage with the sprocket support body of the bicycle rear hub assembly. In the case of the bicycle rear sprocket assembly according to the first aspect, the first minimum diameter allows the first sprocket to have a smaller pitch circle diameter. This enables a wider gear range for the bicycle rear sprocket assembly. Furthermore, the at least ten internal spline teeth of the second sprocket reduce the rotational force applied to each of the at least ten internal spline teeth compared to a sprocket that includes nine or fewer internal spline teeth. This increases the durability of the second sprocket and/or increases the freedom of choice of the material of the second sprocket without reducing the durability of the second sprocket. According to a second aspect of the present invention, the bicycle rear sprocket assembly according to the first aspect further includes a locking member. The locking member includes a tubular body, an externally threaded portion, and a radial protrusion. The tubular body extends through the first opening of the first sprocket when the bicycle rear sprocket assembly is mounted to a state of the bicycle rear hub assembly. The tubular body includes a first axial end and a second axial end. The second axial end is opposite to the first axial end in an axial direction with respect to a rotation center axis of the bicycle rear sprocket assembly. In the state where the bicycle rear sprocket assembly is mounted to the bicycle rear hub assembly, the first axial end is positioned closer to an axial center of the bicycle rear hub assembly than the second axial end flat. The externally threaded portion is provided to the first axial end to fit within one of the sprocket support bodies of the bicycle rear hub assembly in the state in which the bicycle rear sprocket assembly is mounted to the bicycle rear hub assembly The threaded part engages. The radial protrusion extends radially outward from the second axial end with respect to the central axis of rotation to restrain the first chain in the state where the bicycle rear sprocket assembly is mounted to the bicycle rear hub assembly An axial movement of the wheel relative to the sprocket support body of the bicycle rear hub assembly. In the case of the bicycle rear sprocket assembly according to the second aspect, it is possible to mount a smaller sprocket to the bicycle rear hub assembly. This enables a wider gear range for the bicycle rear sprocket assembly. According to a third aspect of the present invention, the bicycle rear sprocket assembly according to the second aspect is configured such that the first sprocket includes a first inner side; Axially opposite to the first inner side. The radial protrusion is configured to abut the first sprocket in the first outward side. In the case of the bicycle rear sprocket assembly according to the third aspect, it is possible to mount smaller sprockets to the bicycle rear hub assembly. This enables a wider gear range for the bicycle rear sprocket assembly. According to a fourth aspect of the present invention, the bicycle rear sprocket assembly according to any one of the first aspect to the third aspect is configured such that: the second sprocket is opposite to the bicycle rear chain A central axis of rotation of the wheel assembly is adjacent to the first sprocket in an axial direction without another sprocket between the first sprocket and the second sprocket. In the case of the bicycle rear sprocket assembly according to the fourth aspect, it is possible to mount smaller sprockets to the bicycle rear hub assembly. This enables a wider gear range for the bicycle rear sprocket assembly. According to a fifth aspect of the present invention, the bicycle rear sprocket assembly according to any one of the first aspect to the fourth aspect is configured such that: the first sprocket includes a first and a first outward direction opposite to the first inward direction in an axial direction with respect to a central axis of rotation of the bicycle rear sprocket assembly. The first sprocket includes a first torque transmitting structure provided to the first inward side to directly or indirectly transmit a pedaling torque to the sprocket support body. In the case of the bicycle rear sprocket assembly according to the fifth aspect, it is possible to mount smaller sprockets to the bicycle rear hub assembly. This enables a wider gear range for the bicycle rear sprocket assembly. According to a sixth aspect of the present invention, the bicycle rear sprocket assembly according to the fifth aspect is configured such that: the first torque transmission structure includes at least ten first torque transmission teeth. In the case of the bicycle rear sprocket assembly according to the sixth aspect, the ten first torque-transmitting teeth of the first sprocket reduce the application to at least The rotational force of each of the ten first torque transmitting teeth. This increases the durability of the first sprocket and/or increases the freedom of choice of the material of the first sprocket without reducing the durability of the first sprocket. According to a seventh aspect of the present invention, the bicycle rear sprocket assembly according to the sixth aspect is configured such that the total number of one of the at least ten first torque transmitting teeth is equal to or greater than twenty. In the case of the bicycle rear sprocket assembly according to the seventh aspect, it is possible to improve the durability of the first sprocket. According to an eighth aspect of the present invention, the bicycle rear sprocket assembly according to any one of the first aspect to the seventh aspect is configured such that: the at least ten inner sprockets of the second sprocket The total number of one of the spline teeth is equal to or greater than 20. In the case of the bicycle rear sprocket assembly according to the eighth aspect, it is possible to improve the durability of the second sprocket. According to a ninth aspect of the present invention, the bicycle rear sprocket assembly according to the eighth aspect is configured such that: the total number of the at least ten internal spline teeth of the second sprocket is equal to or greater than 28. In the case of the bicycle rear sprocket assembly according to the ninth aspect, it is possible to improve the durability of the second sprocket. According to a tenth aspect of the present invention, the bicycle rear sprocket assembly according to any one of the first aspect to the ninth aspect is configured such that: the at least ten inner parts of the second sprocket The spline teeth have a first inner pitch angle and a second inner pitch angle different from the first inner pitch angle. In the case of the bicycle rear sprocket assembly according to the tenth aspect, it is possible to easily attach the bicycle rear sprocket assembly to the bicycle rear hub assembly in the correct circumferential position. According to an eleventh aspect of the present invention, the bicycle rear sprocket assembly according to any one of the first aspect to the tenth aspect is configured such that: the at least ten of the second sprockets At least one of the internal spline teeth has a first spline shape that is different from a second spline shape of the other of the at least ten internal spline teeth. In the case of the bicycle rear sprocket assembly according to the eleventh aspect, it is possible to easily attach the bicycle rear sprocket assembly to the bicycle rear hub assembly in the correct circumferential position. According to a twelfth aspect of the present invention, the bicycle rear sprocket assembly according to any one of the first aspect to the eleventh aspect is configured such that: the at least ten of the second sprocket At least one of the internal spline teeth has a first spline size that is different from a second spline size of the other of the at least ten internal spline teeth. In the case of the bicycle rear sprocket assembly according to the twelfth aspect, it is possible to easily attach the bicycle rear sprocket assembly to the bicycle rear hub assembly in the correct circumferential position. According to a thirteenth aspect of the present invention, the bicycle rear sprocket assembly according to any one of the first aspect to the twelfth aspect is configured such that: a total number of teeth of the first sprocket equal to or less than 10. In the case of the bicycle rear sprocket assembly according to the thirteenth aspect, it is possible to mount a smaller sprocket to the bicycle rear hub assembly. This enables a wider gear range for the bicycle rear sprocket assembly. According to a fourteenth aspect of the present invention, the bicycle rear sprocket assembly according to any one of the first aspect to the thirteenth aspect is configured such that: the first sprocket is the bicycle rear The smallest sprocket in the sprocket assembly. In the case of the bicycle rear sprocket assembly according to the fourteenth aspect, it is possible to mount a smaller sprocket to the bicycle rear hub assembly. This enables a wider gear range for the bicycle rear sprocket assembly. According to a fifteenth aspect of the present invention, the bicycle rear sprocket assembly according to any one of the first aspect to the fourteenth aspect further includes: a sprocket support member configured to At least ten internal spline teeth engage with the sprocket support body of the bicycle rear hub assembly. The plurality of bicycle sprockets includes an additional sprocket configured to attach to the sprocket support member. In the case of the bicycle rear sprocket assembly according to the fifteenth aspect, it is possible to reduce the weight of the bicycle rear sprocket assembly. According to a sixteenth aspect of the present invention, the bicycle rear sprocket assembly according to the fifteenth aspect is configured such that: the total number of teeth of one of the additional sprockets is equal to or greater than 46. In the case of the bicycle rear sprocket assembly according to the sixteenth aspect, the additional sprocket enables a wider gear range of the bicycle rear sprocket assembly. According to a seventeenth aspect of the present invention, the bicycle rear sprocket assembly according to the fifteenth aspect is configured such that: a total number of teeth of one of the additional sprockets is equal to or greater than 50. In the case of the bicycle rear sprocket assembly according to the seventeenth aspect, the additional sprocket enables a wider gear range of the bicycle rear sprocket assembly. According to an eighteenth aspect of the present invention, the bicycle rear sprocket assembly according to any one of the first aspect to the seventeenth aspect is configured such that: the plurality of bicycle sprockets include the The second sprocket provides a plurality of second sprockets. Each of the plurality of second sprockets includes at least ten internal spline teeth configured to engage the sprocket support body of the bicycle rear hub assembly. In the case of the bicycle rear sprocket assembly according to the eighteenth aspect, it is possible to improve the durability of the plurality of second sprockets. According to a nineteenth aspect of the present invention, the bicycle rear sprocket assembly according to the eighteenth aspect further includes: a sprocket supporting member including the chain configured to be connected to the bicycle rear hub assembly The wheel supports at least ten internal spline teeth engaged by the main body. The plurality of bicycle sprockets includes an additional sprocket configured to attach to the sprocket support member. In the case of the bicycle rear sprocket assembly according to the nineteenth aspect, it is possible to reduce the weight of the bicycle rear sprocket assembly. According to a twentieth aspect of the present invention, the bicycle rear sprocket assembly according to any one of the first aspect to the nineteenth aspect is configured such that: the total number of one of the plurality of bicycle sprockets Mesh is equal to or greater than 10. In the case of the bicycle rear sprocket assembly according to the twentieth aspect, it is possible to increase the speed level of the bicycle rear sprocket assembly. According to a twenty-first aspect of the present invention, the bicycle rear sprocket assembly according to any one of the first aspect to the twentieth aspect is configured such that: one of the plurality of bicycle sprockets The total number is equal to or greater than 11. In the case of the bicycle rear sprocket assembly according to the twenty-first aspect, it is possible to further increase the speed level of the bicycle rear sprocket assembly. According to a twenty-second aspect of the present invention, the bicycle rear sprocket assembly according to any one of the first aspect to the twenty-first aspect is configured such that: one of the plurality of bicycle sprockets A total number equal to or greater than 12. In the case of the bicycle rear sprocket assembly according to the twenty-second aspect, it is possible to further increase the speed level of the bicycle rear sprocket assembly. According to a twenty-third aspect of the present invention, the bicycle rear sprocket assembly according to any one of the first aspect to the twenty-second aspect is configured such that: the plurality of bicycle sprockets include One extra sprocket with a maximum tooth tip diameter. The at least ten internal spline teeth of the second sprocket have an internal spline top diameter. The ratio of the internal spline crown diameter to the maximum tooth tip diameter ranges from 0.15 to 0.18. In the case of the bicycle rear sprocket assembly according to the twenty-third aspect, it is possible to improve the durability of the second sprocket while realizing a wider gear range of the bicycle rear sprocket assembly. According to a twenty-fourth aspect of the present invention, the bicycle rear sprocket assembly according to any one of the first aspect to the twenty-third aspect further includes an additional sprocket. The additional sprocket includes: at least one first shift facilitating region for facilitating a first shifting operation of a bicycle chain from the additional sprocket to an adjacent smaller sprocket; and at least one second a shift facilitating region for facilitating a second shift operation of the bicycle chain from the adjacent smaller sprocket to one of the additional sprockets. In the case of the bicycle rear sprocket assembly according to the twenty-fourth aspect, it is possible to smoothly perform the first shifting operation and the second shifting operation. According to a twenty-fifth aspect of the present invention, the bicycle rear sprocket assembly according to the second aspect or the third aspect is configured such that: the tubular body has a first sprocket equal to or less than 27 mm. outside diameter. In the case of the bicycle rear sprocket assembly according to the twenty-fifth aspect, it is possible to hold the bicycle rear sprocket assembly relative to the bicycle rear hub assembly by means of the locking member and achieve a wider bicycle rear sprocket assembly gear range. According to a twenty-sixth aspect of the present invention, the bicycle rear sprocket assembly according to the twenty-fifth aspect is configured such that: the first outer diameter is equal to or greater than 26 mm. In the case of the bicycle rear sprocket assembly according to the twenty-sixth aspect, it is possible to maintain or increase the strength of the locking member while realizing a wider gear range of the bicycle rear sprocket assembly. According to a twenty-seventh aspect of the present invention, the bicycle rear sprocket assembly according to the second aspect, the third aspect, the twenty-fifth aspect or the twenty-sixth aspect is configured Such that: the radial protrusion has a second outer diameter equal to or smaller than 32 mm. In the case of the bicycle rear sprocket assembly according to the twenty-seventh aspect, it is possible to hold the bicycle rear sprocket assembly with respect to the bicycle rear hub assembly by the locking member and to achieve a wider bicycle rear sprocket assembly gear range. According to a twenty-eighth aspect of the present invention, the bicycle rear sprocket assembly according to the twenty-seventh aspect is configured such that: the second outer diameter is equal to or greater than 30 mm. In the case of the bicycle rear sprocket assembly according to the twenty-eighth aspect, it is possible to maintain or increase the strength of the locking member while achieving a wider gear range of the bicycle rear sprocket assembly. According to a twenty-ninth aspect of the present invention, the bicycle rear sprocket assembly according to any one of the second aspect, the third aspect, and the twenty-fifth to the twenty-eighth aspects is Configured such that: the locking member has a tool engaging portion. In the case of the bicycle rear sprocket assembly according to the twenty-ninth aspect, it is possible to easily attach the locking member by using the tool engaging portion. According to a thirtieth aspect of the present invention, the bicycle rear sprocket assembly according to any one of the first aspect to the twenty-ninth aspect is configured such that: the plurality of bicycle sprockets serve as the A plurality of first sprockets provided as the first sprockets and a plurality of second sprockets provided as the second sprockets. Each of the plurality of first sprockets includes the first opening. Each of the plurality of second sprockets includes the second opening and the at least ten internal spline teeth configured to engage with the sprocket support body of the bicycle rear hub assembly. In the case of the bicycle rear sprocket assembly according to the thirtieth aspect, the plurality of first sprockets and the plurality of second sprockets enable a wider gear range of the bicycle rear sprocket assembly. According to a thirty-first aspect of the present invention, the bicycle rear sprocket assembly according to the fifteenth aspect is configured such that the additional sprocket is attached to the sprocket support member by an adhesive. In the case of the bicycle rear sprocket assembly according to the thirty-first aspect, since any metal fastener is not used, it is possible to further reduce the weight of the bicycle rear sprocket assembly. According to a thirty-second aspect of the present invention, the bicycle rear sprocket assembly according to the fifteenth aspect or the thirty-first aspect is configured such that: the sprocket supporting member is made of a resin material One of the non-metallic materials. In the case of the bicycle rear sprocket assembly according to the thirty-second aspect, it is possible to further reduce the weight of the bicycle rear sprocket assembly. According to a thirty-third aspect of the present invention, the bicycle rear sprocket assembly according to any one of the first aspect to the thirty-second aspect is configured such that: the second sprocket At least two of the at least ten internal spline teeth are circumferentially disposed at a first internal circumferential pitch angle relative to a central axis of rotation of the bicycle rear sprocket assembly. The first internal pitch angle ranges from 5 degrees to 36 degrees. In the case of the bicycle rear sprocket assembly according to the thirty-third aspect, it is possible to improve the durability of the second sprocket. According to a thirty-fourth aspect of the present invention, the bicycle rear sprocket assembly according to the thirty-third aspect is configured such that: the first inner circumferential pitch angle ranges from 10 degrees to 20 degrees. In the case of the bicycle rear sprocket assembly according to the thirty-fourth aspect, it is possible to further improve the durability of the second sprocket. According to a thirty-fifth aspect of the present invention, the bicycle rear sprocket assembly according to the thirty-fourth aspect is configured such that: the first inner circumferential pitch angle is equal to or smaller than 15 degrees. In the case of the bicycle rear sprocket assembly according to the thirty-fifth aspect, it is possible to further improve the durability of the second sprocket. According to a thirty-sixth aspect of the present invention, the bicycle rear sprocket assembly according to any one of the thirty-third aspect to the thirty-fifth aspect is configured such that: the second sprocket At least two other internal spline teeth of the at least ten internal spline teeth are arranged along the circumference at a second internal circumferential pitch angle relative to the rotation central axis. The second inner circumferential pitch angle is different from the first inner circumferential pitch angle. In the case of the bicycle rear sprocket assembly according to the thirty-sixth aspect, it is possible to easily attach the bicycle rear sprocket assembly to the bicycle rear hub assembly in the correct circumferential position. According to a thirty-seventh aspect of the present invention, the bicycle rear sprocket assembly according to any one of the first aspect to the thirty-sixth aspect is configured such that: the second sprocket The at least ten internal spline teeth have an internal spline crown diameter equal to or less than 34 mm. In the case of the bicycle rear sprocket assembly according to the thirty-seventh aspect, it is possible to improve the durability of the second sprocket while realizing a wider gear range of the bicycle rear sprocket assembly. According to a thirty-eighth aspect of the present invention, the bicycle rear sprocket assembly according to the thirty-seventh aspect is configured such that: the inner spline top diameter of the second sprocket is equal to or smaller than 33 mm . In the case of the bicycle rear sprocket assembly according to the thirty-eighth aspect, it is possible to improve the durability of the second sprocket while realizing a wider gear range of the bicycle rear sprocket assembly. According to a thirty-ninth aspect of the present invention, the bicycle rear sprocket assembly according to the thirty-seventh aspect or the thirty-eighth aspect is configured such that: the inner sprocket of the second sprocket The key top diameter is equal to or greater than 29 mm. In the case of the bicycle rear sprocket assembly according to thirty-ninth, it is possible to improve the durability of the second sprocket. According to a fortieth aspect of the present invention, the bicycle rear sprocket assembly according to any one of the first aspect to the thirty-ninth aspect is configured such that: the at least The ten internal spline teeth have an internal spline base diameter equal to or less than 32 mm. In the case of the bicycle rear sprocket assembly according to the fortieth aspect, the inner spline top diameter may increase the radial length of the drive surface of at least one inner spline tooth. This increases the strength of the second sprocket. According to a forty-first aspect of the present invention, the bicycle rear sprocket assembly according to the fortieth aspect is configured such that the internal spline bottom diameter is equal to or smaller than 31 mm. In the case of the bicycle rear sprocket assembly according to the forty-first aspect, the top diameter of the inner spline can further increase the radial length of the transmission surface of at least one inner spline tooth. This increases the strength of the second sprocket. According to a forty-second aspect of the present invention, the bicycle rear sprocket assembly according to the fortieth aspect or the forty-first aspect is configured such that: the internal spline bottom diameter is equal to or greater than 28 mm. In the case of the bicycle rear sprocket assembly according to the forty-second aspect, it is possible to obtain the necessary strength of the sprocket supporting body. According to a forty-third aspect of the present invention, the bicycle rear sprocket assembly according to any one of the first aspect to the forty-second aspect is configured such that: the at least ten internal splines The teeth include a plurality of internal splined drive surfaces for receiving drive rotational force from a rear hub assembly of the bicycle during pedaling. Each of the plurality of internal splined drive surfaces includes a radially outermost edge, a radially innermost edge, and a radial length defined from the radially outermost edge to the radially innermost edge. The sum of one of the radial lengths of the plurality of internal spline drive surfaces is equal to or greater than 7 mm. In the case of the bicycle rear sprocket assembly according to the forty-third aspect, it is possible to increase the radial length of the plurality of internal spline drive surfaces. This increases the strength of the second sprocket. According to a forty-fourth aspect of the present invention, the bicycle rear sprocket assembly according to the forty-third aspect is configured such that the sum of the radial lengths is equal to or greater than 10 mm. In the case of the bicycle rear sprocket assembly according to the forty-fourth aspect, it is possible to further increase the radial length of the plurality of internal spline drive surfaces. This increases the strength of the second sprocket. According to a forty-fifth aspect of the present invention, the bicycle rear sprocket assembly according to the forty-third aspect is configured such that: the sum of the radial lengths is equal to or greater than 15 mm. In the case of the bicycle rear sprocket assembly according to the forty-fifth aspect, it is possible to further increase the radial length of the plurality of internal spline drive surfaces. This increases the strength of the second sprocket. According to a forty-sixth aspect of the present invention, the bicycle rear sprocket assembly according to any one of the forty-third aspect to the forty-fifth aspect is configured such that: This sum is equal to or less than 36 mm. In the case of the bicycle rear sprocket assembly according to the forty-sixth aspect, it is possible to further improve the productivity of the bicycle rear sprocket assembly. According to a forty-seventh aspect of the present invention, the bicycle rear sprocket assembly according to any one of the first aspect to the forty-sixth aspect is configured such that: the at least ten internal splines At least one of the teeth includes an internal splined surface having a first internal splined surface angle defined between the internal splined surface and a first radial line, the first radial line Extending from a central axis of rotation of the bicycle rear sprocket assembly to a radially outermost edge of the inner splined drive surface. The angle of the first inner spline surface ranges from 0° to 6°. In the case of the bicycle rear sprocket assembly according to the forty-seventh aspect, it is possible to increase the strength of the internal spline drive surface. According to a forty-eighth aspect of the present invention, the bicycle rear sprocket assembly according to the forty-seventh aspect is configured such that: the at least one of the at least ten internal spline teeth includes: a an internal splined non-drive surface having a second internal splined surface angle defined between the internal splined non-drive surface and a second radial line from the bicycle rear sprocket assembly The central axis of rotation extends to a radially outermost edge of the inner splined non-drive surface. The second internal spline surface angle ranges from 0° to 6°. In the case of the bicycle rear sprocket assembly according to the forty-eighth aspect, it is possible to increase the productivity of the bicycle rear sprocket assembly due to the symmetrical shape of the inner spline teeth. According to a forty-ninth aspect of the present invention, the bicycle rear sprocket assembly according to any one of the first aspect to the forty-eighth aspect is configured such that: the second sprocket At least one of the at least ten internal spline teeth is circumferentially symmetrical with respect to a reference line extending in a radial direction relative to the rotational central axis from the rotational central axis to the at least ten internal splines A circumferential center point of the radially outermost end of the at least one of the teeth. In the case of the bicycle rear sprocket assembly according to the forty-ninth aspect, it is possible to improve the productivity of the bicycle rear sprocket assembly due to the symmetrical shape of the inner spline teeth. According to a fiftieth aspect of the present invention, a bicycle transmission system includes the bicycle rear sprocket assembly according to any one of the first aspect to the forty-ninth aspect and a bicycle rear hub assembly. The bicycle rear hub assembly comprises: a hub shaft including a shaft through hole having a minimum inner diameter equal to or greater than 13 mm; a hub body rotatable about a central axis of rotation of the bicycle rear hub assembly installed on the wheel hub shaft; and a sprocket supporting body, which is rotatably installed on the wheel hub shaft around the rotation center axis. In the case of the bicycle transmission system according to the fiftieth aspect, it is possible to increase the strength of the bicycle transmission system around the rear wheel while realizing a wider gear range of the bicycle rear sprocket assembly. According to a fifty-first aspect of the present invention, the bicycle rear sprocket assembly according to the fiftieth aspect is configured such that the minimum inner diameter of the shaft through hole is equal to or greater than 14 mm. In the case of the bicycle transmission system according to the fifty-first aspect, it is possible to further increase the strength of the bicycle transmission system around the rear wheel. According to a fifty-second aspect of the present invention, the bicycle rear sprocket assembly according to the fiftieth aspect or the fifty-first aspect is configured such that: the minimum inner diameter of the shaft through hole is equal to or less than 21 mm. In the case of the bicycle transmission system according to the fifty-second aspect, it is possible to increase the freedom of design of the bicycle rear hub assembly. According to a fifty-third aspect of the present invention, the bicycle rear sprocket assembly according to the sixth aspect is configured such that: the total number of the at least ten first torque transmission teeth ranges from 22 to 24 . In the case of the bicycle rear sprocket assembly according to the fifty-third aspect, the total number of at least ten first torque transmitting teeth improves the durability of the second sprocket while increasing the productivity of the bicycle rear sprocket assembly. According to a fifty-fourth aspect of the present invention, the bicycle rear sprocket assembly according to the first aspect is configured such that: a total number range of the at least ten internal spline teeth of the second sprocket Between 22 and 24. In the case of the bicycle rear sprocket assembly according to the fifty-fourth aspect, the total number of at least ten first torque transmitting teeth improves the durability of the second sprocket while improving the productivity of the bicycle rear sprocket assembly. According to a fifty-fifth aspect of the present invention, the bicycle rear sprocket assembly according to the thirty-third aspect is configured such that: the first inner circumferential pitch angle ranges from 13 degrees to 17 degrees. In the case of the bicycle rear sprocket assembly according to the fifty-fifth aspect, the first inner circumferential pitch angle improves the durability of the second sprocket while improving the productivity of the bicycle rear sprocket assembly. According to a fifty-sixth aspect of the present invention, the bicycle rear sprocket assembly according to the thirty-sixth aspect is configured such that: the second inner circumferential pitch angle ranges from 28 degrees to 32 degrees. In the case of the bicycle rear sprocket assembly according to the fifty-sixth aspect, it is possible to easily attach the bicycle rear sprocket assembly to the bicycle rear hub assembly in the correct circumferential position. According to a fifty-seventh aspect of the present invention, the bicycle rear sprocket assembly according to the thirty-sixth aspect is configured such that: the first inner circumferential pitch angle is half of the second inner circumferential pitch angle . In the case of the bicycle rear sprocket assembly according to the fifty-seventh aspect, it is possible to easily attach the bicycle rear sprocket assembly to the bicycle rear hub assembly in the correct circumferential position. According to a fifty-eighth aspect of the present invention, the bicycle rear sprocket assembly according to the forty-third aspect is configured such that: the radial lengths of the plurality of internal spline drive surfaces The sum ranges from 11 mm to 14 mm. In the case of the bicycle rear sprocket assembly according to the fifty-eighth aspect, the inner spline top diameter may increase the radial length of the drive surface of at least one inner spline tooth. This increases the strength of the second sprocket within the scope of increased productivity of the bicycle rear sprocket assembly.

相關申請案之交叉參考 本申請案為2017年9月22日申請之美國專利申請案第15/712,388號之部分接續申請案。此申請案之內容以全文引用之方式併入本文中。 現將參考附圖描述實施例,其中相似參考數字指定在各種圖式中的對應或相同元件。 首先參考圖1,根據一實施例之自行車傳動系統10包含自行車後輪轂總成12及自行車後鏈輪總成14。自行車後輪轂總成12緊固至自行車框架BF。自行車後鏈輪總成14安裝於自行車後輪轂總成12上。自行車制動轉子16安裝於自行車後輪轂總成12上。 自行車傳動系統10進一步包含曲柄總成18及自行車鏈條20。曲柄總成18包括曲柄軸22、右曲柄臂24、左曲柄臂26及前鏈輪27。右曲柄臂24及左曲柄臂26緊固至曲柄軸22。前鏈輪27緊固至曲柄軸22及右曲柄臂24中之至少一者。自行車鏈條20與前鏈輪27及自行車後鏈輪總成14嚙合以將踩踏力自前鏈輪27傳遞至自行車後鏈輪總成14。曲柄總成18包括前鏈輪27作為所說明實施例中之單一鏈輪。然而,曲柄總成18可包括複數個前鏈輪。自行車後鏈輪總成14為後鏈輪總成。然而,自行車後鏈輪總成14之結構可應用於前鏈輪。 在本申請案中,以下方向性術語「前」、「後」、「向前」、「向後」、「左」、「右」、「橫向」、「向上」及「向下」以及任何其他類似方向性術語係指基於坐在自行車之車座(未展示)上且面向把手(未展示)的使用者(例如,騎乘者)而判定之彼等方向。因此,此等術語在用以描述自行車傳動系統10、自行車後輪轂總成12或自行車後鏈輪總成14時,應關於配備有如在水平表面上在直立騎乘位置中所使用之自行車傳動系統10、自行車後輪轂總成12或自行車後鏈輪總成14的自行車而加以解譯。 如圖2中所見,自行車後輪轂總成12及自行車後鏈輪總成14具有旋轉中心軸線A1。自行車後鏈輪總成14相對於自行車框架BF (圖1)圍繞旋轉中心軸線A1由自行車後輪轂總成12可旋轉地支撐。自行車後鏈輪總成14經構形以與自行車鏈條20嚙合,從而在踩踏期間在自行車鏈條20與自行車後鏈輪總成14之間傳遞傳動旋轉力F1。在踩踏期間,自行車後鏈輪總成14在傳動旋轉方向D11上圍繞旋轉中心軸線A1旋轉。傳動旋轉方向D11係沿自行車後輪轂總成12或自行車後鏈輪總成14之圓周方向D1界定。反向旋轉方向D12為傳動旋轉方向D11之相反方向,且係沿圓周方向D1界定。 如圖2中所見,自行車後輪轂總成12包含鏈輪支撐主體28。自行車後鏈輪總成14經構形以安裝至自行車後輪轂總成12之鏈輪支撐主體28。自行車後鏈輪總成14安裝於鏈輪支撐主體28上以在鏈輪支撐主體28與自行車後鏈輪總成14之間傳遞傳動旋轉力F1。自行車後輪轂總成12包含輪轂軸30。鏈輪支撐主體28圍繞旋轉中心軸線A1可旋轉地安裝於上輪轂軸30。自行車後鏈輪總成14進一步包含鎖定構件32。鎖定構件32緊固至鏈輪支撐主體28以相對於旋轉中心軸線A1在軸向方向D2上相對於鏈輪支撐主體28固持自行車後鏈輪總成14。 如圖3中所見,自行車後輪轂總成12藉由車輪緊固結構WS緊固至自行車框架BF。輪轂軸30包括軸通孔30A。車輪緊固結構WS之緊固桿WS1延伸穿過輪轂軸30之軸通孔30A。輪轂軸30包括第一軸端30B及第二軸端30C。輪轂軸30沿旋轉中心軸線A1在第一軸端30B與第二軸端30C之間延伸。第一軸端30B設置於自行車框架BF之第一框架BF1之第一凹槽BF11中。第二軸端30C設置於自行車框架BF之第二框架BF2之第二凹槽BF21中。輪轂軸30藉由車輪緊固結構WS固持於第一框架BF1與第二框架BF2之間。車輪緊固結構WS包括在所申請自行車中已知的結構。因此,出於簡潔起見,此處將不作詳細描述。 在此實施例中,軸通孔30A具有等於或大於13 mm之最小內徑BD1。軸通孔30A之最小內徑BD1較佳地等於或大於14 mm。軸通孔30A之最小內徑BD1較佳地等於或小於21 mm。在此實施例中,軸通孔30A之最小內徑BD1為15 mm。然而,最小內徑BD1不限於此實施例及以上範圍。 輪轂軸30具有等於或大於17 mm之最大外徑BD2。輪轂軸30之最大外徑BD2較佳地等於或大於20 mm。輪轂軸30之最大外徑BD2較佳地等於或小於23 mm。在此實施例中,輪轂軸30之最大外徑BD2為21 mm。然而,輪轂軸30之最大外徑BD2不限於此實施例及以上範圍。輪轂軸30具有等於或大於15 mm之最小外徑BD3。最小外徑BD3較佳地等於或大於17 mm。最小外徑BD3較佳地等於或小於19 mm。在此實施例中,輪轂軸30之最小外徑BD3為17.6 mm。然而,最小外徑BD3不限於此實施例及以上範圍。 輪轂軸30包括軸管30X、第一軸部分30Y及第二軸部分30Z。軸管30X具有管狀形狀,且沿著旋轉中心軸線A1延伸。第一軸部分30Y緊固至軸管30X之第一端。第二軸部分30Z緊固至軸管30X之第二端。第一軸部分30Y及第二軸部分30Z中之至少一者可與軸管30X一體地設置。 如圖3及圖4中所見,自行車後輪轂總成12進一步包含制動轉子支撐主體34。制動轉子支撐主體34圍繞旋轉中心軸線A1可旋轉地安裝於輪轂軸30上。制動轉子支撐主體34耦接至自行車制動轉子16 (圖1)以將制動旋轉力自自行車制動轉子16傳遞至制動轉子支撐主體34。 如圖4中所見,自行車後輪轂總成12包含輪轂主體36。輪轂主體36圍繞自行車後輪轂總成12之旋轉中心軸線A1可旋轉地安裝於輪轂軸30上。在此實施例中,鏈輪支撐主體28為與輪轂主體36分離之構件。制動轉子支撐主體34與輪轂主體36一體地設置為單件式整體構件。然而,鏈輪支撐主體28可與輪轂主體36一體地設置。制動轉子支撐主體34可為與輪轂主體36分離之構件。舉例而言,輪轂主體36由包括鋁之金屬材料製成。 如圖5中所見,自行車後鏈輪總成14包含複數個自行車鏈輪。複數個自行車鏈輪包含第一鏈輪及第二鏈輪。在此實施例中,複數個自行車鏈輪包含作為第一鏈輪提供之複數個第一鏈輪SP1及SP2。該複數個自行車鏈輪亦包含作為第二鏈輪提供之複數個第二鏈輪SP3及SP4。該複數個自行車鏈輪包含額外鏈輪。在此實施例中,該複數個自行車鏈輪包含複數個額外鏈輪SP5至SP12。然而,第一鏈輪之總數目不限於此實施例。第二鏈輪之總數目不限於此實施例。額外鏈輪之總數目不限於此實施例。另外,第一鏈輪SP1與SP2可整體形成為單件式整體構件,而第一鏈輪SP1在此實施例中為與第一鏈輪SP2分離之鏈輪。同理,第二鏈輪SP3與SP4可整體形成為單件式整體構件,而第二鏈輪SP3在此實施例中為與第二鏈輪SP4分離之鏈輪。 舉例而言,該複數個自行車鏈輪之總數目等於或大於10。該複數個自行車鏈輪之總數目可等於或大於11。該複數個自行車鏈輪之總數目可等於或大於12。在此實施例中,該複數個自行車鏈輪之總數目為12。然而,該複數個自行車鏈輪總數目不限於此實施例。舉例而言,該複數個自行車鏈輪之總數可為13、14、或等於或大於15。 在此實施例中,第一鏈輪SP1為自行車後鏈輪總成14中之最小鏈輪。額外鏈輪SP12為自行車後鏈輪總成14中之最大鏈輪。第一鏈輪SP2對應於自行車後鏈輪總成14中之高速齒輪。額外鏈輪SP12對應於自行車後鏈輪總成14中之低速齒輪。 如圖5中所見,第一鏈輪SP1具有節圓直徑PCD1。第一鏈輪SP2具有節圓直徑PCD2。第二鏈輪SP3具有節圓直徑PCD3。第二鏈輪SP4具有節圓直徑PCD4。額外鏈輪SP5具有節圓直徑PCD5。額外鏈輪SP6具有節圓直徑PCD6。額外鏈輪SP7具有節圓直徑PCD7。額外鏈輪SP8具有節圓直徑PCD8。額外鏈輪SP9具有節圓直徑PCD9。額外鏈輪SP10具有節圓直徑PCD10。額外鏈輪SP11具有節圓直徑PCD11。額外鏈輪SP12具有節圓直徑PCD12。 第一鏈輪SP1具有具有節圓直徑PCD1之節圓PC1。第一鏈輪SP2具有具有節圓直徑PCD2之節圓PC2。第二鏈輪SP3具有具有節圓直徑PCD3之節圓PC3。第二鏈輪SP4具有具有節圓直徑PCD4之節圓PC4。額外鏈輪SP5具有具有節圓直徑PCD5之節圓PC5。額外鏈輪SP6具有具有節圓直徑PCD6之節圓PC6。額外鏈輪SP7具有具有節圓直徑PCD7之節圓PC7。額外鏈輪SP8具有具有節圓直徑PCD8之節圓PC8。額外鏈輪SP9具有具有節圓直徑PCD9之節圓PC9。額外鏈輪SP10具有具有節圓直徑PCD10之節圓PC10。額外鏈輪SP11具有具有節圓直徑PCD11之節圓PC11。額外鏈輪SP12具有具有節圓直徑PCD12之節圓PC12。 第一鏈輪SP1之節圓PC1由與第一鏈輪SP1嚙合之自行車鏈20 (圖2)之銷的中心軸線界定。定義節圓PC2至PC12以及節圓PC1。因此,出於簡潔起見,此處將不作詳細描述。 在此實施例中,節圓直徑PCD1小於節圓直徑PCD2。節圓直徑PCD2小於節圓直徑PCD3。節圓直徑PCD3小於節圓直徑PCD4。節圓直徑PCD4小於節圓直徑PCD5。節圓直徑PCD5小於節圓直徑PCD6。節圓直徑PCD6小於節圓直徑PCD7。節圓直徑PCD7小於節圓直徑PCD8。節圓直徑PCD8小於節圓直徑PCD9。節圓直徑PCD9小於節圓直徑PCD10。節圓直徑PCD10小於節圓直徑PCD11。節圓直徑PCD11小於節圓直徑PCD12。 節圓直徑PCD1為自行車後鏈輪總成14中之最小節圓直徑。節圓直徑PCD12為自行車後鏈輪總成14中之最大節圓直徑。第一鏈輪SP1對應於自行車後鏈輪總成14中之高速齒輪。額外鏈輪SP12對應於自行車後鏈輪總成14中之低速齒輪。然而,第一鏈輪SP1可對應於自行車後鏈輪總成14中之另一齒輪。額外鏈輪SP12可對應於自行車後鏈輪總成14中之另一齒輪。 如圖6中所見,第一鏈輪SP2相對於自行車後鏈輪總成14之旋轉中心軸線A1在軸向方向D2上鄰近於第一鏈輪SP1,而在第一鏈輪SP1與SP2之間無另一鏈輪。第二鏈輪SP3相對於自行車後鏈輪總成14之旋轉中心軸線A1在軸向方向D2上鄰近於第一鏈輪SP2,而在第一鏈輪SP2與第二鏈輪SP3之間無另一鏈輪。第二鏈輪SP4相對於自行車後鏈輪總成14之旋轉中心軸線A1在軸向方向D2上鄰近於第二鏈輪SP3,而在第二鏈輪SP3與第二鏈輪SP4之間無另一鏈輪。第一鏈輪SP1及SP2、第二鏈輪SP3、第二鏈輪SP4及額外鏈輪SP5至SP12以此次序在軸向方向D2上配置。 如圖7中所見,第一鏈輪SP1包括鏈輪主體SP1A及複數個鏈輪齒SP1B。複數個鏈輪齒SP1B相對於自行車後鏈輪總成14之旋轉中心軸線A1自鏈輪主體SP1A徑向向外延伸。第一鏈輪SP1之總齒數(至少一個鏈輪齒SP1B之總數目)等於或小於10。在此實施例中,第一鏈輪SP1之至少一個鏈輪齒SP1B的總數目為10。然而,第一鏈輪SP1之複數個鏈輪齒SP1B的總數目不限於此實施例及以上範圍。 如圖8中所見,第一鏈輪SP2包括鏈輪主體SP2A及複數個鏈輪齒SP2B。複數個鏈輪齒SP2B相對於自行車後鏈輪總成14之旋轉中心軸線A1自鏈輪主體SP2A徑向向外延伸。在此實施例中,至少一個鏈輪齒SP2B之總數目為12。然而,第一鏈輪SP2之複數個鏈輪齒SP2B的總數目不限於此實施例。 第一鏈輪SP2包括至少一個第一移位促進區域SP2F1以促進自行車鏈20自第一鏈輪SP2移位至第一鏈輪SP1之第一移位操作。第一鏈輪SP2包括至少一個第二移位促進區域SP2F2以促進自行車鏈20自第一鏈輪SP1移位至第一鏈輪SP2之第二移位操作。在此實施例中,第一鏈輪SP2包括用以促進第一移位操作之複數個第一移位促進區域SP2F1。第一鏈輪SP2包括用以促進第二移位操作之複數個第二移位促進區域SP2F2。然而,第一移位促進區域SP2F1之總數目不限於此實施例。第二移位促進區域SP2F2之總數目不限於此實施例。如本文所使用之術語「移位促進區域」意欲為有意設計成便於自行車鏈自鏈輪至該區域中之另一軸向鄰近鏈輪之移位操作的區域。 在此實施例中,第一鏈輪SP2包括用以促進第一移位操作之複數個第一移位促進凹槽SP2R1。第一鏈輪SP2包括用以促進第二移位操作之複數個第二移位促進凹槽SP2R2。第一移位促進凹槽SP2R1設置於第一移位促進區域SP2F1中。然而,第一移位促進區域SP2F1可包括另一結構來替代或補充第一移位促進凹槽SP2R1。第二移位促進區域SP2F2可包括另一結構來替代或補充第二移位促進凹槽SP2R2。 如圖9中所見,第二鏈輪SP3包括鏈輪主體SP3A及複數個鏈輪齒SP3B。複數個鏈輪齒SP3B相對於自行車後鏈輪總成14之旋轉中心軸線A1自鏈輪主體SP3A徑向向外延伸。在此實施例中,至少一個鏈輪齒SP3B之總數目為14。然而,第二鏈輪SP3之複數個鏈輪齒SP3B的總數目不限於此實施例。 第二鏈輪SP3包括至少一個第一移位促進區域SP3F1以促進自行車鏈20自第二鏈輪SP3移位至第一鏈輪SP2 (圖6)之第一移位操作。第二鏈輪SP3包括至少一個第二移位促進區域SP3F2以促進自行車鏈20自第一鏈輪SP2 (圖6)移位至第二鏈輪SP3之第二移位操作。在此實施例中,第二鏈輪SP3包括用以促進第一移位操作之複數個第一移位促進區域SP3F1。第二鏈輪SP3包括用以促進第二移位操作之複數個第二移位促進區域SP3F2。然而,第一移位促進區域SP3F1之總數目不限於此實施例。第二移位促進區域SP3F2之總數目不限於此實施例。 在此實施例中,第二鏈輪SP3包括用以促進第一移位操作之複數個第一移位促進凹槽SP3R1。第二鏈輪SP3包括用以促進第二移位操作之複數個第二移位促進凹槽SP3R2。第一移位促進凹槽SP3R1設置於第一移位促進區域SP3F1中。然而,第一移位促進區域SP3F1可包括另一結構來替代或補充第一移位促進凹槽SP3R1。第二移位促進區域SP3F2可包括另一結構來替代或補充第二移位促進凹槽SP3R2。 如圖10中所見,第二鏈輪SP4包括鏈輪主體SP4A及複數個鏈輪齒SP4B。複數個鏈輪齒SP4B相對於自行車後鏈輪總成14之旋轉中心軸線A1自鏈輪主體SP4A徑向向外延伸。在此實施例中,至少一個鏈輪齒SP4B之總數目為16。然而,第二鏈輪SP4之複數個鏈輪齒SP4B的總數目不限於此實施例。 第二鏈輪SP4包括至少一個第一移位促進區域SP4F1以促進自行車鏈20自第二鏈輪SP4移位至第二鏈輪SP3之第一移位操作。第二鏈輪SP4包括至少一個第二移位促進區域SP4F2以促進自行車鏈20自第二鏈輪SP3移位至第二鏈輪SP4之第二移位操作。在此實施例中,第二鏈輪SP4包括用以促進第一移位操作之複數個第一移位促進區域SP4F1。第二鏈輪SP4包括用以促進第二移位操作之複數個第二移位促進區域SP4F2。然而,第一移位促進區域SP4F1之總數目不限於此實施例。第二移位促進區域SP4F2之總數目不限於此實施例。 在此實施例中,第二鏈輪SP4包括用以促進第一移位操作之複數個第一移位促進凹槽SP4R1。第二鏈輪SP4包括用以促進第二移位操作之複數個第二移位促進凹槽SP4R2。第一移位促進凹槽SP4R1設置於第一移位促進區域SP4F1中。然而,第一移位促進區域SP4F1可包括另一結構來替代或補充第一移位促進凹槽SP4R1。第二移位促進區域SP4F2可包括另一結構來替代或補充第二移位促進凹槽SP4R2。 如圖11中所見,額外鏈輪SP5包括鏈輪主體SP5A及複數個鏈輪齒SP5B。複數個鏈輪齒SP5B相對於自行車後鏈輪總成14之旋轉中心軸線A1自鏈輪主體SP5A徑向向外延伸。在此實施例中,至少一個鏈輪齒SP5B之總數目為18。然而,額外鏈輪SP5之複數個鏈輪齒SP5B的總數目不限於此實施例。 額外鏈輪SP5包括至少一個第一移位促進區域SP5F1以促進自行車鏈20自額外鏈輪SP5移位至相鄰更小鏈輪SP4之第一移位操作。額外鏈輪SP5包括至少一個第二移位促進區域SP5F2以促進自行車鏈20自相鄰更小鏈輪SP4移位至額外鏈輪SP5之第二移位操作。相鄰更小鏈輪SP4相對於自行車後鏈輪總成14之旋轉中心軸線A1在軸向方向D2上鄰近於額外鏈輪SP5,而在額外鏈輪SP5與相鄰更小鏈輪SP4之間無另一鏈輪。在此實施例中,額外鏈輪SP5包括用以促進第一移位操作之複數個第一移位促進區域SP5F1。額外鏈輪SP5包括用以促進第二移位操作之複數個第二移位促進區域SP5F2。然而,第一移位促進區域SP5F1之總數目不限於此實施例。第二移位促進區域SP5F2之總數目不限於此實施例。 在此實施例中,額外鏈輪SP5包括用以促進第一移位操作之複數個第一移位促進凹槽SP5R1。額外鏈輪SP5包括用以促進第二移位操作之複數個第二移位促進凹槽SP5R2。第一移位促進凹槽SP5R1設置於第一移位促進區域SP5F1中。第二移位促進凹槽SP5R2設置於第二移位促進區域SP5F2中。然而,第一移位促進區域SP5F1可包括另一結構來替代或補充第一移位促進凹槽SP5R1。第二移位促進區域SP5F2可包括另一結構來替代或補充第二移位促進凹槽SP5R2。 如圖12中所見,額外鏈輪SP6包括鏈輪主體SP6A及複數個鏈輪齒SP6B。複數個鏈輪齒SP6B相對於自行車後鏈輪總成14之旋轉中心軸線A1自鏈輪主體SP6A徑向向外延伸。在此實施例中,至少一個鏈輪齒SP6B之總數目為21。然而,額外鏈輪SP6之複數個鏈輪齒SP6B的總數目不限於此實施例。 額外鏈輪SP6包括至少一個第一移位促進區域SP6F1以促進自行車鏈20自額外鏈輪SP6移位至相鄰更小鏈輪SP5之第一移位操作。額外鏈輪SP6包括至少一個第二移位促進區域SP6F2以促進自行車鏈20自相鄰更小鏈輪SP5移位至額外鏈輪SP6之第二移位操作。相鄰更小鏈輪SP5相對於自行車後鏈輪總成14之旋轉中心軸線A1在軸向方向D2上鄰近於額外鏈輪SP6,而在額外鏈輪SP6與相鄰更小鏈輪SP5之間無另一鏈輪。在此實施例中,額外鏈輪SP6包括用以促進第一移位操作之複數個第一移位促進區域SP6F1。額外鏈輪SP6包括用以促進第二移位操作之複數個第二移位促進區域SP6F2。然而,第一移位促進區域SP6F1之總數目不限於此實施例。第二移位促進區域SP6F2之總數目不限於此實施例。 在此實施例中,額外鏈輪SP6包括用以促進第一移位操作之複數個第一移位促進凹槽SP6R1。額外鏈輪SP6包括用以促進第二移位操作之複數個第二移位促進凹槽SP6R2。第一移位促進凹槽SP6R1置於第一移位促進區域SP6F1中。第二移位促進凹槽SP6R2設置於第二移位促進區域SP6F2中。然而,第一移位促進區域SP6F1可包括另一結構來替代或補充第一移位促進凹槽SP6R1。第二移位促進區域SP6F2可包括另一結構來替代或補充第二移位促進凹槽SP6R2。 如圖13中所見,額外鏈輪SP7包括鏈輪主體SP7A及複數個鏈輪齒SP7B。複數個鏈輪齒SP7B相對於自行車後鏈輪總成14之旋轉中心軸線A1自鏈輪主體SP7A徑向向外延伸。在此實施例中,至少一個鏈輪齒SP7B之總數目為24。然而,額外鏈輪SP7之複數個鏈輪齒SP7B的總數目不限於此實施例。 額外鏈輪SP7包括至少一個第一移位促進區域SP7F1以促進自行車鏈20自額外鏈輪SP7移位至相鄰更小鏈輪SP6之第一移位操作。額外鏈輪SP7包括至少一個第二移位促進區域SP7F2以促進自行車鏈20自相鄰更小鏈輪SP6移位至額外鏈輪SP7之第二移位操作。相鄰更小鏈輪SP6相對於自行車後鏈輪總成14之旋轉中心軸線A1在軸向方向D2上鄰近於額外鏈輪SP7,而在額外鏈輪SP7與相鄰更小鏈輪SP6之間無另一鏈輪。在此實施例中,額外鏈輪SP7包括用以促進第一移位操作之複數個第一移位促進區域SP7F1。額外鏈輪SP7包括用以促進第二移位操作之複數個第二移位促進區域SP7F2。然而,第一移位促進區域SP7F1之總數目不限於此實施例。第二移位促進區域SP7F2之總數目不限於此實施例。 在此實施例中,額外鏈輪SP7包括用以促進第一移位操作之複數個第一移位促進凹槽SP7R1。額外鏈輪SP7包括用以促進第二移位操作之複數個第二移位促進凹槽SP7R2。第一移位促進凹槽SP7R1置於第一移位促進區域SP7F1中。第二移位促進凹槽SP7R2設置於第二移位促進區域SP7F2中。然而,第一移位促進區域SP7F1可包括另一結構來替代或補充第一移位促進凹槽SP7R1。第二移位促進區域SP7F2可包括另一結構來替代或補充第二移位促進凹槽SP7R2。 如圖14中所見,額外鏈輪SP8包括鏈輪主體SP8A及複數個鏈輪齒SP8B。複數個鏈輪齒SP8B相對於自行車後鏈輪總成14之旋轉中心軸線A1自鏈輪主體SP8A徑向向外延伸。在此實施例中,至少一個鏈輪齒SP8B之總數目為28。然而,額外鏈輪SP8之複數個鏈輪齒SP8B的總數目不限於此實施例。 額外鏈輪SP8包括至少一個第一移位促進區域SP8F1以促進自行車鏈20自額外鏈輪SP8移位至相鄰更小鏈輪SP7之第一移位操作。額外鏈輪SP8包括至少一個第二移位促進區域SP8F2以促進自行車鏈20自相鄰更小鏈輪SP7移位至額外鏈輪SP8之第二移位操作。相鄰更小鏈輪SP7相對於自行車後鏈輪總成14之旋轉中心軸線A1在軸向方向D2上鄰近於額外鏈輪SP8,而在額外鏈輪SP8與相鄰更小鏈輪SP7之間無另一鏈輪。在此實施例中,額外鏈輪SP8包括用以促進第一移位操作之複數個第一移位促進區域SP8F1。額外鏈輪SP8包括用以促進第二移位操作之複數個第二移位促進區域SP8F2。然而,第一移位促進區域SP8F1之總數目不限於此實施例。第二移位促進區域SP8F2之總數目不限於此實施例。 在此實施例中,額外鏈輪SP8包括用以促進第一移位操作之複數個第一移位促進凹槽SP8R1。額外鏈輪SP8包括用以促進第二移位操作之複數個第二移位促進凹槽SP8R2。第一移位促進凹槽SP8R1置於第一移位促進區域SP8F1中。第二移位促進凹槽SP8R2設置於第二移位促進區域SP8F2中。然而,第一移位促進區域SP8F1可包括另一結構來替代或補充第一移位促進凹槽SP8R1。第二移位促進區域SP8F2可包括另一結構來替代或補充第二移位促進凹槽SP8R2。 如圖15中所見,額外鏈輪SP9包括鏈輪主體SP9A及複數個鏈輪齒SP9B。複數個鏈輪齒SP9B相對於自行車後鏈輪總成14之旋轉中心軸線A1自鏈輪主體SP9A徑向向外延伸。在此實施例中,至少一個鏈輪齒SP9B之總數目為33。然而,額外鏈輪SP9之複數個鏈輪齒SP9B的總數目不限於此實施例。 額外鏈輪SP9包括至少一個第一移位促進區域SP9F1以促進自行車鏈20自額外鏈輪SP9移位至相鄰更小鏈輪SP8之第一移位操作。額外鏈輪SP9包括至少一個第二移位促進區域SP9F2以促進自行車鏈20自相鄰更小鏈輪SP8移位至額外鏈輪SP9之第二移位操作。相鄰更小鏈輪SP8相對於自行車後鏈輪總成14之旋轉中心軸線A1在軸向方向D2上鄰近於額外鏈輪SP9,而在額外鏈輪SP9與相鄰更小鏈輪SP8之間無另一鏈輪。在此實施例中,額外鏈輪SP9包括用以促進第一移位操作之複數個第一移位促進區域SP9F1。額外鏈輪SP9包括用以促進第二移位操作之複數個第二移位促進區域SP9F2。然而,第一移位促進區域SP9F1之總數目不限於此實施例。第二移位促進區域SP9F2之總數目不限於此實施例。 在此實施例中,額外鏈輪SP9包括用以促進第一移位操作之複數個第一移位促進凹槽SP9R1。額外鏈輪SP9包括用以促進第二移位操作之複數個第二移位促進凹槽SP9R2。第一移位促進凹槽SP9R1置於第一移位促進區域SP9F1中。第二移位促進凹槽SP9R2設置於第二移位促進區域SP9F2中。然而,第一移位促進區域SP9F1可包括另一結構來替代或補充第一移位促進凹槽SP9R1。第二移位促進區域SP9F2可包括另一結構來替代或補充第二移位促進凹槽SP9R2。 如圖16中所見,額外鏈輪SP10包括鏈輪主體SP10A及複數個鏈輪齒SP10B。複數個鏈輪齒SP10B相對於自行車後鏈輪總成14之旋轉中心軸線A1自鏈輪主體SP10A徑向向外延伸。在此實施例中,至少一個鏈輪齒SP10B之總數目為39。然而,額外鏈輪SP10之複數個鏈輪齒SP10B的總數目不限於此實施例。 額外鏈輪SP10包括至少一個第一移位促進區域SP10F1以促進自行車鏈20自額外鏈輪SP10移位至相鄰更小鏈輪SP9之第一移位操作。額外鏈輪SP10包括至少一個第二移位促進區域SP10F2以促進自行車鏈20自相鄰更小鏈輪SP9移位至額外鏈輪SP10之第二移位操作。相鄰更小鏈輪SP9相對於自行車後鏈輪總成14之旋轉中心軸線A1在軸向方向D2上鄰近於額外鏈輪SP10,而在額外鏈輪SP10與相鄰更小鏈輪SP9之間無另一鏈輪。在此實施例中,額外鏈輪SP10包括用以促進第一移位操作之複數個第一移位促進區域SP10F1。額外鏈輪SP10包括用以促進第二移位操作之複數個第二移位促進區域SP10F2。然而,第一移位促進區域SP10F1之總數目不限於此實施例。第二移位促進區域SP10F2之總數目不限於此實施例。 在此實施例中,額外鏈輪SP10包括用以促進第一移位操作之複數個第一移位促進凹槽SP10R1。額外鏈輪SP10包括用以促進第二移位操作之複數個第二移位促進凹槽SP10R2。第一移位促進凹槽SP10R1置於第一移位促進區域SP10F1中。第二移位促進凹槽SP10R2設置於第二移位促進區域SP10F2中。然而,第一移位促進區域SP10F1可包括另一結構來替代或補充第一移位促進凹槽SP10R1。第二移位促進區域SP10F2可包括另一結構來替代或補充第二移位促進凹槽SP10R2。 如圖17中所見,額外鏈輪SP11包括鏈輪主體SP11A及複數個鏈輪齒SP11B。複數個鏈輪齒SP11B相對於自行車後鏈輪總成14之旋轉中心軸線A1自鏈輪主體SP11A徑向向外延伸。在此實施例中,至少一個鏈輪齒SP11B之總數目為45。然而,額外鏈輪SP11之複數個鏈輪齒SP11B的總數目不限於此實施例。 額外鏈輪SP11包括至少一個第一移位促進區域SP11F1以促進自行車鏈20自額外鏈輪SP11移位至相鄰更小鏈輪SP10之第一移位操作。額外鏈輪SP11包括至少一個第二移位促進區域SP11F2以促進自行車鏈20自相鄰更小鏈輪SP10移位至額外鏈輪SP11之第二移位操作。相鄰更小鏈輪SP10相對於自行車後鏈輪總成14之旋轉中心軸線A1在軸向方向D2上鄰近於額外鏈輪SP11,而在額外鏈輪SP11與相鄰更小鏈輪SP10之間無另一鏈輪。在此實施例中,額外鏈輪SP11包括用以促進第一移位操作之複數個第一移位促進區域SP11F1。額外鏈輪SP11包括用以促進第二移位操作之複數個第二移位促進凹槽區域SP11F2。然而,第一移位促進區域SP11F1之總數目不限於此實施例。第二移位促進區域SP11F2之總數目不限於此實施例。 在此實施例中,額外鏈輪SP11包括用以促進第一移位操作之複數個第一移位促進凹槽SP11R1。額外鏈輪SP11包括用以促進第二移位操作之複數個第二移位促進凹槽SP11R2。第一移位促進凹槽SP11R1置於第一移位促進區域SP11F1中。第二移位促進凹槽SP11R2設置於第二移位促進區域SP11F2中。然而,第一移位促進區域SP11F1可包括另一結構來替代或補充第一移位促進凹槽SP11R1。第二移位促進區域SP11F2可包括另一結構來替代或補充第二移位促進凹槽SP11R2。 如圖18中所見,額外鏈輪SP12包括鏈輪主體SP12A及複數個鏈輪齒SP12B。複數個鏈輪齒SP12B相對於自行車後鏈輪總成14之旋轉中心軸線A1自鏈輪主體SP12A徑向向外延伸。額外鏈輪SP12之總齒數等於或大於46。額外鏈輪SP12之總齒數亦可等於或大於50。額外鏈輪SP12之總齒數在此實施例中為51。然而,額外鏈輪SP12之至少一個鏈輪齒SP12B之總數目不限於此實施例及以上範圍。 額外鏈輪SP12包括至少一個第一移位促進區域SP12F1以促進自行車鏈20自額外鏈輪SP12移位至相鄰更小鏈輪SP11之第一移位操作。額外鏈輪SP12包括至少一個第二移位促進區域SP12F2以促進自行車鏈20自相鄰更小鏈輪SP11移位至額外鏈輪SP12之第二移位操作。相鄰更小鏈輪SP11相對於自行車後鏈輪總成14之旋轉中心軸線A1在軸向方向D2上鄰近於額外鏈輪SP12,而在額外鏈輪SP12與相鄰更小鏈輪SP11之間無另一鏈輪。在此實施例中,額外鏈輪SP12包括用以促進第一移位操作之複數個第一移位促進區域SP12F1。額外鏈輪SP12包括用以促進第二移位操作之複數個第二移位促進區域SP12F2。然而,第一移位促進區域SP12F1之總數目不限於此實施例。第二移位促進區域SP12F2之總數目不限於此實施例。 在此實施例中,額外鏈輪SP12包括用以促進第一移位操作之複數個第一移位促進凹槽SP12R1。額外鏈輪SP12包括用以促進第二移位操作之複數個第二移位促進凹槽SP12R2。第一移位促進凹槽SP12R1置於第一移位促進區域SP12F1中。第二移位促進凹槽SP12R2設置於第二移位促進區域SP12F2中。然而,第一移位促進區域SP12F1可包括另一結構來替代或補充第一移位促進凹槽SP12R1。第二移位促進區域SP12F2可包括另一結構來替代或補充第二移位促進凹槽SP12R2。 如圖19中所見,鏈輪SP1至SP12為彼此分開的構件。然而,鏈輪SP1至SP12中之至少一者可與鏈輪SP1至SP12中之另一至少部分地整體設置。所有鏈輪SP1至SP12可與彼此一體成型為單件式整體單元。在此狀況下,鏈輪SP3至SP12中之至少一者可包括至少十個內部花鍵齒。 自行車後鏈輪總成14進一步包含鏈輪支撐構件37、複數個間隔件38、第一環39A及第二環39B。第一環39A在軸向方向D2上設置於第二鏈輪SP3與第二鏈輪SP4之間。第二環39B在軸向方向D2上設置於第二鏈輪SP4與額外鏈輪SP5之間。額外鏈輪經構形以附接至鏈輪支撐構件37。在此實施例中額外鏈輪SP5至SP12經構形以附接至鏈輪支撐構件37。 如圖6中所見,舉例而言,額外鏈輪藉由黏著劑37A附接至鏈輪支撐構件37。在此實施例中,額外鏈輪SP5至SP12藉由黏著劑37A附接至鏈輪支撐構件37。因此,有可能藉由減少或消除金屬緊固件來減輕自行車後鏈輪總成14之重量。然而,額外鏈輪SP5至SP12中之至少一者可藉由除黏著劑37A以外之另一結構(包括金屬緊固件)附接至鏈輪支撐構件37。額外鏈輪SP5至SP12中之至少一者可在無鏈輪支撐構件37之情況下與鏈輪支撐主體28嚙合。鏈輪支撐構件37可自自行車後鏈輪總成14省略。另外,第二鏈輪SP3及SP4中之至少一者可附接至鏈輪支撐構件37。 如圖4中所見,鎖定構件32包括管狀主體32A、外螺紋部分32B及徑向突出物32C。管狀主體32A包括第一軸向端32D及第二軸向端32E。相對於自行車後鏈輪總成14之旋轉中心軸線A1,第二軸向端32E在軸向方向D2上與第一軸向端32D相對。如圖6中所見,在自行車後鏈輪總成14安裝至自行車後輪轂總成12之狀態下,第一軸向端32D經定位成比第二軸向端32E更接近自行車後輪轂總成12之軸向中心平面CPL。軸向中心平面CPL垂直於旋轉中心軸線A1。如圖3中所見,軸向中心平面CPL經界定以在軸向方向D2上平分自行車後輪轂總成12之軸向長度。 如圖6中所見,外螺紋部分32B提供至第一軸向端32D,以在自行車後鏈輪總成14安裝至自行車後輪轂總成12之狀態下與自行車後輪轂總成12之鏈輪支撐主體28的內螺紋部分28A嚙合。徑向突出物32C相對於旋轉中心軸線A1自第二軸向端32E徑向向外延伸,以在自行車後鏈輪總成14安裝至自行車後輪轂總成12之狀態下限制第一鏈輪SP2相對於自行車後輪轂總成12之鏈輪支撐主體28的軸向移動。 第一鏈輪SP1包括第一向內側SP1G及第一向外側SP1H。第一向外側SP1H在軸向方向D2上與第一向內側SP1G相對。徑向突出物32C經構形以在第一向外側SP1H中鄰接第一鏈輪SP1。第一鏈輪SP1及SP2該軸向方向上安置於徑向突出物32C與第二鏈輪SP3之間。第一鏈輪SP1及SP2、第二鏈輪SP3、第二鏈輪SP4及第一環39A在軸向方向D2上固持於徑向突出物32C與鏈輪支撐構件37之間。 如圖4中所見,鎖定構件32具有工具嚙合部分32F。工具嚙合部分32F設置於管狀主體32A之內部周邊表面32A1上以與緊固工具(未展示)嚙合。在此實施例中,工具嚙合部分32F包括複數個嚙合凹槽32G,嚙合凹槽32G將在鎖定構件32藉由外螺紋部分32B及內螺紋部分28A以螺紋方式附接至鏈輪支撐主體28時與緊固工具嚙合。 如圖20及圖21中所見,鏈輪支撐主體28包括經構形以與自行車後鏈輪總成14 (圖6)嚙合之至少一個外部花鍵齒40。鏈輪支撐主體28包括經構形以與自行車後鏈輪總成14 (圖6)嚙合之至少十個外部花鍵齒40。亦即,至少一個外部花鍵齒40包括複數個外部花鍵齒40。 鏈輪支撐主體28包括具有管狀形狀之基座支撐件41。基座支撐件41沿旋轉中心軸線A1延伸。外部花鍵齒40自基座支撐件41徑向向外延伸。鏈輪支撐主體28包括較大直徑部分42、凸緣44及複數個螺旋外部花鍵齒46。較大直徑部分42及凸緣44自基座支撐件41徑向向外延伸。較大直徑部分42在軸向方向D2上設置於複數個外部花鍵齒40與凸緣44之間。較大直徑部分42及凸緣44在軸向方向D2上設置於複數個外部花鍵齒40與複數個螺旋外部花鍵齒46之間。如圖6中所見,自行車後鏈輪總成14在軸向方向D2上固持於較大直徑部分42與鎖定構件32之徑向突出物32C之間。較大直徑部分42可具有內部空腔,使得諸如單向聯軸結構之傳動結構可容納於內部空腔內。根據需要,可自自行車後輪轂總成12省略較大直徑部分42。 如圖22中所見,至少十個外部花鍵齒40中之至少一者具有軸向花鍵齒長度SL1。外部花鍵齒40中之每一者具有軸向花鍵齒長度SL1。軸向花鍵齒長度SL1等於或小於27 mm。軸向花鍵齒長度SL1等於或大於22 mm。在此實施例中,軸向花鍵齒長度SL1為24.9 mm。然而,軸向花鍵齒長度SL1不限於此實施例及以上範圍。 如圖23中所見,至少十個外部花鍵齒40之總數目等於或大於20。至少十個外部花鍵齒40之總數目較佳地等於或大於25。至少十個外部花鍵齒40之總數目較佳地等於或大於28。外部花鍵齒40之總數目較佳地等於或小於72。在此實施例中,外部花鍵齒40之總數目為29。然而,外部花鍵齒40之總數目不限於此實施例及以上範圍。 至少十個外部花鍵齒40具有第一外部周節角PA11及第二外部周節角PA12。至少十個外部花鍵齒40中之至少兩個外部花鍵齒相對於旋轉中心軸線A1按第一外部周節角PA11沿圓周配置。換言之,複數個外部花鍵齒40中之至少兩者相對於自行車後輪轂總成12之旋轉中心軸線A1按第一外部周節角PA11沿圓周配置。至少十個外部花鍵齒40中之至少兩個外部花鍵齒相對於自行車後輪轂總成12之旋轉中心軸線A1按第二外部周節角PA12沿圓周配置。換言之,複數個外部花鍵齒40中之至少兩者相對於自行車後輪轂總成12之旋轉中心軸線A1按第二外部周節角PA12沿圓周配置。在此實施例中,第二外部周節角PA12不同於第一外部周節角PA11。然而,第二外部周節角PA12可大體上等於第一外部周節角PA11。 在此實施例中,外部花鍵齒40為在圓周方向D1上按第一外部周節角PA11配置。外部花鍵齒40中之兩個外部花鍵齒為在圓周方向D1上按第二外部周節角PA12配置。然而,外部花鍵齒40中之至少兩個外部花鍵齒可在圓周方向D1上以另一外部周節角配置。 第一外部周節角PA11範圍介於5度至36度。第一外部周節角PA11較佳地範圍介於10度至20度。第一外部周節角PA11較佳地等於或小於15度。在此實施例中,第一外部周節角PA11為12度。然而,第一外部周節角PA11不限於此實施例及以上範圍。 第二外部周節角PA12範圍介於5度至36度。在此實施例中,第二外部周節角PA12為24度。然而,第二外部周節角PA12不限於此實施例及以上範圍。 外部花鍵齒40中之至少一者可不同於外部花鍵齒40中之另一者之第二花鍵形狀的第一花鍵形狀。至少十個外部花鍵齒40中之至少一者可具有不同於至少十個外部花鍵齒40中之另一者之第二花鍵大小的第一花鍵大小。當沿旋轉中心軸線A1檢視時,外部花鍵齒40中之至少一者具有不同於外部花鍵齒40中之另一者之輪廓的輪廓。在此實施例中,外部花鍵齒40X具有不同於外部花鍵齒40中之另一者之第二花鍵形狀的第一花鍵形狀。外部花鍵齒40X具有不同於外部花鍵齒40中之另一者之第二花鍵大小的第一花鍵大小。然而,如圖24中所見,至少十個外部花鍵齒40可彼此具有相同花鍵形狀。至少十個外部花鍵齒40可彼此具有相同花鍵大小。至少十個外部花鍵齒40可彼此具有相同輪廓。 如圖25中所見,至少十個外部花鍵齒40中之每一者具有外部花鍵傳動表面48及外部花鍵非傳動表面50。複數個外部花鍵齒40包括用以在踩踏期間接收來自自行車後鏈輪總成14 (圖6)之傳動旋轉力F1的複數個外部花鍵傳動表面48。複數個外部花鍵齒40包括複數個外部花鍵非傳動表面50。外部花鍵傳動表面48可與自行車後鏈輪總成14接觸以在踩踏期間接收來自自行車後鏈輪總成14 (圖6)之傳動旋轉力F1。外部花鍵傳動表面48面向反向旋轉方向D12。在自行車後鏈輪總成14安裝至自行車後輪轂總成12之狀態下,外部花鍵傳動表面48面向自行車後鏈輪總成14之內部花鍵傳動表面66。外部花鍵非傳動表面50在圓周方向D1上設置於外部花鍵傳動表面48之反向側上。外部花鍵非傳動表面50面向傳動旋轉方向D11,從而在踩踏期間不接收來自自行車後鏈輪總成14之傳動旋轉力F1。在自行車後鏈輪總成14安裝至自行車後輪轂總成12之狀態下,外部花鍵非傳動表面50面向自行車後鏈輪總成14之內部花鍵非傳動表面68。 至少十個外部花鍵齒40分別具有圓周最大寬度MW1。外部花鍵齒40分別具有圓周最大寬度MW1。圓周最大寬度MW1定義為接收施加至外部花鍵齒40之推力F2的最大寬度。圓周最大寬度MW1定義為基於外部花鍵傳動表面48之直線距離。 複數個外部花鍵傳動表面48各自包括徑向最外邊緣48A及徑向最內邊緣48B。外部花鍵傳動表面48自徑向最外邊緣48A延伸至徑向最內邊緣48B。第一參考圓RC11界定於徑向最內邊緣48B上且以旋轉中心軸線A1為中心。第一參考圓RC11在參考點50R處與外部花鍵非傳動表面50相交。圓周最大寬度MW1在圓周方向D1上自徑向最內邊緣48B直線延伸至參考點50R。 複數個外部花鍵非傳動表面50各自包括徑向最外邊緣50A及徑向最內邊緣50B。外部花鍵非傳動表面50自徑向最外邊緣50A延伸至徑向最內邊緣50B。在此實施例中,參考點50R與徑向最內邊緣50B重合。然而,參考點50R可自徑向最內邊緣50B偏移。 圓周最大寬度MW1之總和等於或大於55 mm。圓周最大寬度MW1之總和較佳地等於或大於60 mm。圓周最大寬度MW1之總和較佳地等於或小於70 mm。在此實施例中,圓周最大寬度MW1之總和為60.1 mm。然而,圓周最大寬度MW1之總和不限於此實施例及以上範圍。 如圖26中所見,至少一個外部花鍵齒40具有等於或小於34 mm之外部花鍵頂徑DM11。外部花鍵頂徑DM11等於或小於33 mm。外部花鍵頂徑DM11等於或大於29 mm。在此實施例中,外部花鍵頂徑DM11為32.6 mm。然而,外部花鍵頂徑DM11不限於此實施例及以上範圍。 至少一個外部花鍵齒40具有外部花鍵底徑DM12。至少一個外部花鍵齒40具有外部花鍵齒根圓RC12,外部花鍵齒根圓RC12具有外部花鍵底徑DM12。然而,外部花鍵齒根圓RC12可具有不同於外部花鍵底徑DM12之另一直徑。外部花鍵底徑DM12等於或小於32 mm。外部花鍵底徑DM12等於或小於31 mm。外部花鍵底徑DM12等於或大於28 mm。在此實施例中,外部花鍵底徑DM12為30.2 mm。然而,外部花鍵底徑DM12不限於此實施例及以上範圍。 較大直徑部分42具有大於外部花鍵頂徑DM11之外徑DM13。外徑DM13範圍介於32 mm至40 mm。在此實施例中,外徑DM13為35 mm。然而,外徑DM13不限於此實施例。 如圖25中所見,複數個外部花鍵傳動表面48各自包括自徑向最外邊緣48A至徑向最內邊緣48B界定之徑向長度RL11。複數個外部花鍵傳動表面48之徑向長度RL11的總和等於或大於7 mm。徑向長度RL11之總和等於或大於10 mm。徑向長度RL11之總等於或大於15 mm。徑向長度RL11之總和等於或小於36 mm。在此實施例中,徑向長度RL11之總和為16.6 mm。然而,徑向長度RL11之總和不限於此實施例。 複數個外部花鍵齒40具有額外徑向長度RL12。額外徑向長度RL12分別自外部花鍵齒根圓RC12至複數個外部花鍵齒40之徑向最外端40A界定。額外徑向長度RL12之總和等於或大於20 mm。在此實施例中,額外徑向長度RL12之總和為31.2 mm。然而,額外徑向長度RL12之總和不限於此實施例。 至少十個外部花鍵齒40中之至少一者相對於參考線CL1沿圓周對稱。相對於旋轉中心軸線A1在徑向方向上,參考線CL1自旋轉中心軸線A1延伸至至少十個外部花鍵齒40中之該至少一者之徑向最外端40A的圓周中心點CP1。然而,外部花鍵齒40中之至少一者可相對於參考線CL1具有不對稱形狀。至少十個外部花鍵齒40中之該至少一者包含外部花鍵傳動表面48及外部花鍵非傳動表面50。 複數個外部花鍵傳動表面48中之至少一個表面具有第一外部花鍵表面角AG11。第一外部花鍵表面角AG11界定於外部花鍵傳動表面48與第一徑向線L11之間。第一徑向線L11自自行車後輪轂總成12之旋轉中心軸線A1延伸至外部花鍵傳動表面48之徑向最外邊緣48A。第一外部周節角PA11或第二外部周節角PA12界定於鄰近第一徑向線L11 (見例如圖23)之間。 外部花鍵非傳動表面50中之至少一者具有第二外部花鍵表面角AG12。第二外部花鍵表面角AG12界定於外部花鍵非傳動表面50與第二徑向線L12之間。第二徑向線L12自自行車後輪轂總成12之旋轉中心軸線A1延伸至外部花鍵非傳動表面50之徑向最外邊緣50A。 在此實施例中,第二外部花鍵表面角AG12等於第一外部花鍵表面角AG11。然而,第一外部花鍵表面角AG11可不同於第二外部花鍵表面角AG12。 第一外部花鍵表面角AG11等於或小於6度。第一外部花鍵表面角AG11等於或大於0度。第二外部花鍵表面角AG12等於或小於6度。第二外部花鍵表面角AG12等於或大於0度。在此實施例中,第一外部花鍵表面角AG11為5度。第二外部花鍵表面角AG12為5度。然而,第一外部花鍵表面角AG11及第二外部花鍵表面角AG12不限於此實施例及以上範圍。 如圖27及圖28中所見,制動轉子支撐主體34包括經構形以與自行車制動轉子16 (圖1)嚙合之至少一個額外外部花鍵齒52。在此實施例中,制動轉子支撐主體34包括額外基座支撐件54及複數個額外外部花鍵齒52。額外基座支撐件54具有管狀形狀且沿著旋轉中心軸線A1自輪轂主體36延伸。額外外部花鍵齒52自額外基座支撐件54徑向向外延伸。額外外部花鍵齒52之總數目為52。然而,額外外部花鍵齒52之總數目不限於此實施例。 如圖28中所見,至少一個額外外部花鍵齒52具有額外外部花鍵頂徑DM14。如圖29中所見,額外外部花鍵頂徑DM14大於外部花鍵頂徑DM11。額外外部花鍵頂徑DM14大體上等於較大直徑部分42之外徑DM13。然而,額外外部花鍵頂徑DM14可等於或小於外部花鍵頂徑DM11。額外外部花鍵頂徑DM14可不同於較大直徑部分42之外徑DM13。 如圖29中所見,輪轂主體36包括第一輪輻安裝部分36A及第二輪輻安裝部分36B。複數個第一輪輻SK1耦接至第一輪輻安裝部分36A。複數個第二輪輻SK2耦接至第二輪輻安裝部分36B。在此實施例中,第一輪輻安裝部分36A包括複數個第一附接孔36A1。第一輪輻SK1延伸穿過第一附接孔36A1。第二輪輻安裝部分36B包括複數個第二附接孔36B1。第二輪輻SK2延伸穿過第二附接孔36B1。如本文中所使用,術語「輪輻安裝部分」涵蓋輪輻安裝開口具有凸緣狀形狀以使得輪輻安裝部分相對於如圖29中所見之自行車後輪轂總成之旋轉中心軸線徑向向外延伸的構形,及輪輻安裝部分為直接形成於輪轂主體之徑向外周邊表面上之開口的構形。 第二輪輻安裝部分36B在軸向方向D2上與第一輪輻安裝部分36A間隔開。第一輪輻安裝部分36A在軸向方向D2上設置於鏈輪支撐主體28與第二輪輻安裝部分36B之間。第二輪輻安裝部分36B在軸向方向D2上設置於第一輪輻安裝部分36A與制動轉子支撐主體34之間。 第一輪輻安裝部分36A具有第一軸向最外部分36C。第二輪輻安裝部分36B具有第二軸向最外部分36D。第一軸向最外部分36C包括在自行車後輪轂總成12安裝至自行車框架BF之狀態下在軸向方向D2上面朝向第一框架BF1之表面。第二軸向最外部分36D包括在自行車後輪轂總成12安裝至自行車框架BF之狀態下在軸向方向D2上面朝向第二框架BF2之表面。 輪轂主體36包括第一軸向長度AL1。第一軸向長度AL1相對於自行車後鏈輪總成14之旋轉中心軸線A1在軸向方向D2上界定於第一輪輻安裝部分36A之第一軸向最外部分36C與第二輪輻安裝部分36B之第二軸向最外部分36D之間。第一軸向長度AL1可等於或大於55 mm。第一軸向長度AL1可等於或大於60 mm。第一軸向長度AL1可等於或大於65 mm。在此實施例中,第一軸向長度AL1可為67 mm。然而,第一軸向長度AL1不限於此實施例及以上範圍。第一軸向長度AL1之實例包括55.7 mm、62.3 mm及67 mm。 如圖29中所見,輪轂軸30包括第一軸向框架鄰接表面30B1及第二軸向框架鄰接表面30C1。在自行車後輪轂總成12安裝至自行車框架BF之下,第一軸向框架鄰接表面30B1經構形以相對於自行車後鏈輪總成14之旋轉中心軸線A1在軸向方向D2上鄰接自行車框架BF之第一部分BF12。第二軸向框架鄰接表面30C1經構形以在自行車後輪轂總成12安裝至自行車框架BF之狀態中在軸向方向D2上鄰接自行車框架BF之第二部分BF22。相比於第二軸向框架鄰接表面30C1,第一軸向框架鄰接表面30B1經定位成在軸向方向D2上更接近鏈輪支撐主體28。鏈輪支撐主體28在軸向方向D2上設置於第一軸向框架鄰接表面30B1與第二軸向框架鄰接表面30C1之間。 輪轂軸30包括在軸向方向D2上界定於第一軸向框架鄰接表面30B1與第二軸向框架鄰接表面30C1之間的第二軸向長度AL2。第二軸向長度AL2可等於或大於140 mm。第二軸向長度AL2可等於或大於145 mm。第二軸向長度AL2可等於或大於147 mm。第二軸向長度AL2可為148 mm。然而,第二軸向長度AL2不限於此實施例及以上範圍。第二軸向長度AL2之實例包括142 mm、148 mm及157 mm。 第一軸向長度AL1與第二軸向長度AL2之比率可等於或大於0.3。第一軸向長度AL1與與第二軸向長度AL2之比率可等於或大於0.4。第一軸向長度AL1與與第二軸向長度AL2之比率可等於或大於0.5。舉例而言,第一軸向長度AL1 (67 mm)與第二軸向長度AL2 (148 mm)之比率為大致0.45。然而,第一軸向長度AL1與第二軸向長度AL2之比率不限於此實施例及以上範圍。第一軸向長度AL1與第二軸向長度AL2之比率的實例包括大致0.42 (AL1為62.3 mm且AL2為148 mm),或包括大致0.39 (AL1為55.7 mm且AL2為142 mm)。 如圖6中所見,鏈輪支撐主體28包括第一軸向端28B、第二軸向端28C及軸向鏈輪鄰接表面28D。第二軸向端28C在軸向方向D2上與第一軸向端28B相對。軸向中心平面CPL在軸向方向D2上平分第二軸向長度AL2。軸向鏈輪鄰接表面28D經定位成在軸向方向D2上比第一軸向端28B更接近自行車後輪轂總成12之軸向中心平面CPL。第二軸向端28C經定位成在軸向方向D2上比鏈輪鄰接表面28D軸向地更接近自行車後輪轂總成12之軸向中心平面CPL。在此實施例中,軸向鏈輪鄰接表面28D設置於較大直徑部分42上,然而軸向鏈輪鄰接表面28D可根據需要設置於自行車後輪轂總成12之其他部分上。在自行車後鏈輪總成14安裝於鏈輪支撐主體28上之狀態中,軸向鏈輪鄰接表面28D與自行車後鏈輪總成14接觸。軸向鏈輪鄰接表面28D在軸向方向D2上面向第一軸向端28B。 如圖6中所見,鏈輪配置軸向長度AL3在軸向方向D2上界定於第一軸向框架鄰接表面30B1與鏈輪支撐主體28之軸向鏈輪鄰接表面28D之間。在此實施例中,鏈輪配置軸向長度AL3範圍介於35 mm至45 mm。舉例而言,鏈輪配置軸向長度AL3為39.64 mm。舉例而言,藉由省略較大直徑部分42,鏈輪配置軸向長度AL3亦可延伸直至44.25 mm。然而,鏈輪配置軸向長度AL3不限於此實施例及以上範圍。 較大直徑部分42具有在軸向方向D2上離第一軸向框架鄰接表面30B1最遠之軸向端42A。額外軸向長度AL4在軸向方向D2上自第一軸向框架鄰接表面30B1至軸向端42A界定。額外軸向長度AL4範圍介於38 mm至47 mm。額外軸向長度AL4可範圍介於44 mm至45 mm。額外軸向長度AL4亦可範圍介於40 mm至41 mm。在此實施例中,額外軸向長度AL4為44.25 mm。然而,額外軸向長度AL4不限於此實施例及以上範圍。 較大直徑部分42之較大直徑軸向長度AL5範圍介於3 mm至6 mm。在此實施例中,較大直徑軸向長度AL5為4.61 mm。然而,較大直徑軸向長度AL5不限於此實施例及以上範圍。 第一軸向長度AL1與鏈輪配置軸向長度AL3之比率範圍介於1.2至1.7。舉例而言,若第一軸向長度AL1為55.7 mm且鏈輪配置軸向長度AL3為39.64 mm,則第一軸向長度AL1與鏈輪配置軸向長度AL3之比率為1.4。然而,第一軸向長度AL1與鏈輪配置軸向長度AL3之比率不限於此實施例及以上範圍。舉例而言,若第一軸向長度AL1為62.3 mm且鏈輪配置軸向長度AL3為39.64 mm,則第一軸向長度AL1對鏈輪配置軸向長度AL3之比率可為1.57,或若第一軸向長度AL1為67 mm且鏈輪配置軸向長度AL3為39.64 mm,則第一軸向長度AL1對鏈輪配置軸向長度AL3之比率可為1.69。 如圖30中所見,鏈輪支撐構件37包括輪轂嚙合部分60及複數個支撐臂62。複數個支撐臂62自輪轂嚙合部分60徑向向外延伸。支撐臂62包括第一附接部分62A至第八附接部分62H。複數個間隔件38包括複數個第一間隔件38A、複數個第二間隔件38B、複數個第三間隔件38C、複數個第四間隔件38D、複數個第五間隔件38E、複數個第六間隔件38F及複數個第七間隔件38G。 如圖6中所見,第一間隔件38A設置於額外鏈輪SP5與SP6之間。第二間隔件38B設置於額外鏈輪SP6與SP7之間。第三間隔件38C設置於額外鏈輪SP7與SP8之間。第四間隔件38D設置於額外鏈輪SP8與SP9之間。第五間隔件38E設置於額外鏈輪SP9與SP10之間。第六間隔件38F設置於額外鏈輪SP10與SP11之間。第七間隔件38G設置於額外鏈輪SP11與SP12之間。 額外鏈輪SP6及第一間隔件38A藉由黏著劑37A附接至第一附接部分62A。額外鏈輪SP7及第二間隔件38B藉由黏著劑37A附接至第二附接部分62B。額外鏈輪SP8及第三間隔件38C藉由黏著劑37A附接至第三附接部分62C。額外鏈輪SP9及第四間隔件38D藉由黏著劑37A附接至第四附接部分62D。額外鏈輪SP10及第五間隔件38E藉由黏著劑37A附接至第五附接部分62E。額外鏈輪SP11及第六間隔件38F藉由黏著劑37A附接至第六附接部分62F。額外鏈輪SP12及第七間隔件38G藉由黏著劑37A附接至第七附接部分62G。額外鏈輪SP5及39B藉由黏著劑37A附接至第八附接部分62H。輪轂嚙合部分60、鏈輪SP1至SP4、第一環39A及第二環39B在軸向方向D2上固持於較大直徑部分42與鎖定構件32之徑向突出物32C之間。 在此實施例中,鏈輪SP1至SP12中之每一者由諸如鋁、鐵或鈦之金屬材料製成。鏈輪支撐構件37由包括樹脂材料之非金屬材料製成。第一間隔件38A至第七間隔件38G、第一環39A及第二環39B中之每一者由諸如樹脂材料之非金屬材料製成。然而,鏈輪SP1至SP12中之至少一者可至少部分地由非金屬材料製成。鏈輪支撐構件37、第一間隔件38A至第七間隔件38G、第一環39A及第二環39B中之每一者至少部分地由諸如鋁、鐵或鈦之金屬材料製成。 如圖7中所見,第一鏈輪SP1包括第一開口SP1K。第一開口SP1K具有第一最小直徑MD1。如圖31中所見,在自行車後鏈輪總成14安裝至鏈輪支撐主體28之狀態下,鎖定構件32之管狀主體32A延伸穿過第一鏈輪SP1之第一開口SP1K。在自行車後鏈輪總成14安裝至鏈輪支撐主體28之狀態下,第一鏈輪SP1之第一開口SP1K經構形以使得鎖定構件32之管狀主體32A的第一軸向端32D通過第一鏈輪SP1之第一開口SP1K。鏈輪支撐主體28之第一軸向端28B與第一鏈輪SP1之第一開口SP1K間隔開,而不延伸穿過第一開口SP1K。第一最小直徑MD1小於自行車後輪轂總成12之鏈輪支撐主體28的最小外徑MD28。在此實施例中,最小外徑MD28等於鏈輪支撐主體28之複數個外部花鍵齒40的外部花鍵底徑DM12 (圖26)。 如圖31中所見,管狀主體32A具有等於或小於27 mm之第一外徑ED1。第一外徑ED1等於或大於26 mm。徑向突出物32C具有等於或小於32 mm之第二外徑ED2。第二外徑ED2等於或大於30 mm。在此實施例中,第一外徑ED1為26.2 mm。第二外徑ED2為30.8 mm。然而,第一外徑ED1及第二外徑ED2中之至少一者不限於此實施例及以上範圍。 徑向突出物32C具有界定於軸向方向D2中之軸向寬度ED3。舉例而言,徑向突出物32C之軸向寬度ED3為2 mm。然而,軸向寬度ED3不限於此實施例。 鎖定構件32具有在軸向方向D2上自徑向突出物32C向第一軸向端32D定義之軸向長度ED4。鎖定構件32之軸向長度ED4為10 mm。然而,軸向長度ED4不限於此實施例。 如圖8中所見,第一鏈輪SP2包括第一開口SP2K。亦即,複數個第一鏈輪SP1及SP2各自包括第一開口。第一開口SP2K具有第一最小直徑MD2。如圖31中所見,在自行車後鏈輪總成14安裝至鏈輪支撐主體28之狀態下,鎖定構件32之管狀主體32A延伸穿過第一鏈輪SP2之第一開口SP2K。鏈輪支撐主體28之第一軸向端28B與第一鏈輪SP2之第一開口SP2K間隔開,而不延伸穿過第一開口SP2K。第一最小直徑MD2小於自行車後輪轂總成12之鏈輪支撐主體28的最小外徑MD28。 如圖9中所見,第二鏈輪SP3包括第二開口SP3K。第二開口SP3K具有第二最小直徑MD3。如圖31中所見,在自行車後鏈輪總成14安裝至鏈輪支撐主體28之狀態下,鎖定構件32之管狀主體32A及鏈輪支撐主體28延伸穿過第二鏈輪SP3之第二開口SP3K。鏈輪支撐主體28之第一軸向端28B在軸向方向D2上設置於第二開口SP3K與第一開口SP1K之間。鏈輪支撐主體28之第一軸向端28B在軸向方向D2上設置於第二開口SP3K與第一開口SP2K之間。第二最小直徑MD3等於或大於自行車後輪轂總成12之鏈輪支撐主體28的最小外徑MD28。 如圖10中所見,第二鏈輪SP4包括第二開口SP4K。亦即,複數個第二鏈輪SP3及SP4各自包括第二開口。第二開口SP4K具有第二最小直徑MD4。如圖31中所見,在自行車後鏈輪總成14安裝至鏈輪支撐主體28之狀態下,鏈輪支撐主體28延伸穿過第二鏈輪SP4之第二開口SP4K。鏈輪支撐主體28之第一軸向端28B在軸向方向D2上設置於第二開口SP4K與第一開口SP1K之間。第二最小直徑MD4等於或大於自行車後輪轂總成12之鏈輪支撐主體28的最小外徑MD28。 如圖32中所見,第一鏈輪SP2包括經構形以與自行車後輪轂總成12之鏈輪支撐主體28嚙合的至少十個內部花鍵齒63。至少十個內部花鍵齒63經提供至第一開口SP2K。至少十個內部花鍵齒63提供為第一鏈輪SP2之第一扭矩傳遞結構,如稍後描述。 第一鏈輪SP2之至少十個內部花鍵齒63的總數目等於或大於20。第一鏈輪SP2之至少十個內部花鍵齒63的總數目等於或大於28。內部花鍵齒63之總數目等於或小於72。在此實施例中,內部花鍵齒63之總數目為29。然而,內部花鍵齒63之總數目不限於此實施例及以上範圍。 如圖9中所見,第二鏈輪SP3包括經構形以與自行車後輪轂總成12之鏈輪支撐主體28嚙合的至少十個內部花鍵齒64。在此實施例中,第二鏈輪SP3之至少十個內部花鍵齒64將第二最小直徑MD3定義為至少十個內部花鍵齒64之內部花鍵底徑。 第二鏈輪SP3該至少十個內部花鍵齒64之總數目等於或大於20。第二鏈輪SP3之至少十個內部花鍵齒64的總數目等於或大於28。內部花鍵齒64之總數目等於或小於72。在此實施例中,內部花鍵齒64之總數目為29。然而,內部花鍵齒64之總數目不限於此實施例及以上範圍。 如圖10中所見,第二鏈輪SP4包括經構形以與自行車後輪轂總成12之鏈輪支撐主體28嚙合的至少十個內部花鍵齒65。亦即,複數個第二鏈輪SP3及SP4各自包括經構形以與自行車後輪轂總成12之鏈輪支撐主體28嚙合的至少十個內部花鍵齒。在此實施例中,第二鏈輪SP4之至少十個內部花鍵齒65將第二最小直徑MD4定義為至少十個內部花鍵齒65之內部花鍵底徑。 第二鏈輪SP4之至少十個內部花鍵齒65之總數目等於或大於20。第二鏈輪SP4之至少十個內部花鍵齒65的總數目等於或大於28。內部花鍵齒65之總數目等於或小於72。在此實施例中,內部花鍵齒65之總數目為29。然而,內部花鍵齒65之總數目不限於此實施例及以上範圍。 如圖33中所見,第二鏈輪SP3之至少十個內部花鍵齒64具有第一內部周節角PA21及第二內部周節角PA22。第二鏈輪SP3之至少十個內部花鍵齒64中的至少兩個內部花鍵齒相對於自行車後鏈輪總成14之旋轉中心軸線A1按第一內部周節角PA21沿圓周配置。至少十個內部花鍵齒64中之至少兩個內部花鍵齒在圓周方向D1上彼此鄰接,而在其間無另一花鍵齒。換言之,複數個內部花鍵齒64中之至少兩者相對於自行車後鏈輪總成14之旋轉中心軸線A1按第一內部周節角PA21沿圓周配置。第二鏈輪SP3之至少十個內部花鍵齒64中的至少其他兩個內部花鍵齒相對於旋轉中心軸線A1按第二內部周節角PA22沿圓周配置。第二鏈輪SP3之至少十個內部花鍵齒64中的至少其他兩個內部花鍵齒在圓周方向D1上彼此鄰接,而在其間無另一花鍵齒。換言之,第二鏈輪SP3之複數個內部花鍵齒64中之至少兩者相對於旋轉中心軸線A1按第二內部周節角PA22沿圓周配置。在此實施例中,第二內部周節角PA22不同於第一內部周節角PA21。然而,第二內部周節角PA22可大體上等於第一內部周節角PA21。 在此實施例中,內部花鍵齒64在圓周方向D1上按第一內部周節角PA21沿圓周配置。內部花鍵齒64中之兩個內部花鍵齒為在圓周方向D1上按第二內部周節角PA22配置。然而,內部花鍵齒64中之至少兩個內部花鍵齒可在圓周方向D1上以另一內部周節角配置。 第一內部周節角PA21範圍介於5度至36度。第一內部周節角PA21範圍介於10度至20度。第一內部周節角PA21等於或小於15度。在此實施例中,舉例而言,第一內部周節角PA21為12度。然而,第一內部周節角PA21不限於此實施例及以上範圍。 第二內部周節角PA22範圍介於5度至36度。在此實施例中,第二內部周節角PA22為24度。然而,第二內部周節角PA22不限於此實施例及以上範圍。 第二鏈輪SP3之至少十個內部花鍵齒64中之至少一者具有不同於至少十個內部花鍵齒64中之另一者之第二花鍵形狀的第一花鍵形狀。第二鏈輪SP3之至少十個內部花鍵齒64中之至少一者具有不同於至少十個內部花鍵齒64中之另一者之第二花鍵大小的第一花鍵大小。至少十個內部花鍵齒64中之至少一者具有不同於至少十個內部花鍵齒64中之另一者之橫截面形狀的橫截面形狀。然而,如圖34中所見,內部花鍵齒64可具有彼此相同的形狀。至少十個內部花鍵齒64可具有彼此相同的大小。至少十個內部花鍵齒64可具有彼此相同的橫截面形狀。 如圖35中所見,至少十個內部花鍵齒64中之至少一者包括內部花鍵傳動表面66。至少十個內部花鍵齒64中之至少一者包括內部花鍵非傳動表面68。至少十個內部花鍵齒64包括複數個內部花鍵傳動表面66以在踩踏期間接收來自自行車後輪轂總成12 (圖6)之傳動旋轉力F1。至少十個內部花鍵齒64包括複數個內部花鍵非傳動表面68。內部花鍵傳動表面66可與鏈輪支撐主體28接觸以在踩踏期間將傳動旋轉力F1自鏈輪SP1傳遞至鏈輪支撐主體28。內部花鍵傳動表面66面向傳動旋轉方向D11。在自行車後鏈輪總成14安裝至自行車後輪轂總成12之狀態下,內部花鍵傳動表面66面向自行車後輪轂總成12之內部花鍵傳動表面48。內部花鍵非傳動表面68在圓周方向D1上設置於內部花鍵傳動表面66之反向側上。內部花鍵非傳動表面68面向反向旋轉方向D12,從而在踩踏期間不將傳動旋轉力F1自鏈輪SP1傳遞至鏈輪支撐主體28。在自行車後鏈輪總成14安裝至自行車後輪轂總成12之狀態下,外部花鍵非傳動表面68面向自行車後輪轂總成12之內部花鍵非傳動表面50。 至少十個內部花鍵齒64分別具有圓周最大寬度MW2。內部花鍵齒64分別具有圓周最大寬度MW2。圓周最大寬度MW2定義為接收施加至內部花鍵齒64之推力F3的最大寬度。圓周最大寬度MW2定義為基於內部花鍵傳動表面66之直線距離。 複數個內部花鍵傳動表面66各自包括徑向最外邊緣66A及徑向最內邊緣66B。第二參考圓RC21界定於徑向最外邊緣66A上且以旋轉中心軸線A1為中心。第二參考圓RC21在參考點68R處與內部花鍵非傳動表面68相交。圓周最大寬度MW2在圓周方向D1上自徑向最內邊緣66B直線延伸至參考點68R。 內部花鍵非傳動表面68包括徑向最外邊緣68A及徑向最內邊緣68B。內部花鍵非傳動表面68自徑向最外邊緣68A延伸至徑向最內邊緣68B。參考點68R設置於徑向最外邊緣68A與徑向最內邊緣68B之間。 圓周最大寬度MW2之總和等於或大於40 mm。圓周最大寬度MW2之總和可等於或大於45 mm。圓周最大寬度MW2之總和可等於或大於50 mm。在此實施例中,圓周最大寬度MW2之總和為50.8 mm。然而,圓周最大寬度MW2之總和不限於此實施例。 如圖36中所見,第二鏈輪SP3之至少十個內部花鍵齒64具有內部花鍵頂徑DM21。第二鏈輪SP3之至少一個內部花鍵齒64具有具有內部花鍵頂徑DM21之內部花鍵齒根圓RC22。內部花鍵頂徑DM21等於或小於34 mm。第二鏈輪SP3之內部花鍵頂徑DM21等於或小於33 mm。第二鏈輪SP3之內部花鍵頂徑DM21等於或大於29 mm。在此實施例中,第二鏈輪SP3之內部花鍵頂徑DM21為32.8 mm。然而,第二鏈輪SP3之內部花鍵頂徑DM21不限於此實施例及以上範圍。 第二鏈輪SP3之至少十個內部花鍵齒64具有等於或小於32 mm之內部花鍵底徑DM22。內部花鍵底徑DM22等於或小於31 mm。內部花鍵底徑DM22等於或大於28 mm。在此實施例中,內部花鍵底徑DM22為30.4 mm。然而,內部花鍵底徑DM22不限於此實施例及以上範圍。 如圖18中所見,額外鏈輪SP12具有最大齒尖直徑TD12。最大齒尖直徑TD12為由複數個鏈輪齒SP12B界定之最大外徑。內部花鍵頂徑DM21 (圖36)與最大齒尖直徑TD12之比率範圍介於0.15至0.18。在此實施例中,內部花鍵頂徑DM21與最大齒尖直徑TD12之比率為0.15。然而,內部花鍵頂徑DM21與最大齒尖直徑TD12之比率不限於此實施例及以上範圍。 如圖35中所見,複數個內部花鍵傳動表面66包括徑向最外邊緣66A及徑向最內邊緣66B。複數個內部花鍵傳動表面66各自包括自徑向最外邊緣66A至徑向最內邊緣66B界定之徑向長度RL21。複數個內部花鍵傳動表面66之徑向長度RL21之總和等於或大於7 mm。徑向長度RL21之總和等於或大於10 mm。徑向長度RL21之總和等於或大於15 mm。在此實施例中,徑向長度RL21之總和等於或小於36 mm。在此實施例中,徑向長度RL21之總和為16.6 mm然而,徑向長度RL21之總和不限於此實施例及以上範圍。 複數個內部花鍵齒64具有額外徑向長度RL22。額外徑向長度RL22分別自內部花鍵齒根圓RC22至複數個內部花鍵齒64之徑向最內端64A界定。額外徑向長度RL22之總和等於或大於12 mm。在此實施例中,額外徑向長度RL22之總和為34.8 mm。然而,額外徑向長度RL22之總和不限於此實施例及以上範圍。 第二鏈輪SP3之至少十個內部花鍵齒64中之至少一者相對於參考線CL2沿圓周對稱。相對於旋轉中心軸線A1在徑向方向上,參考線CL2自旋轉中心軸線A1延伸至至少十個內部花鍵齒64中之該至少一者之徑向最外端64A的圓周中心點CP2。然而,內部花鍵齒64中之至少一者可相對於參考線CL2具有不對稱形狀。內部花鍵齒64中之至少一者包含內部花鍵傳動表面66及內部花鍵非傳動表面68。 內部花鍵傳動表面66具有第一內部花鍵表面角AG21。第一內部花鍵表面角AG21界定於內部花鍵傳動表面66與第一徑向線L21之間。第一徑向線L21自自行車後鏈輪總成14之旋轉中心軸線A1延伸至內部花鍵傳動表面66之徑向最外邊緣66A。第一內部周節角PA21或第二內部周節角PA22界定於相鄰第一徑向線L21 (見例如圖33)之間。 內部花鍵非傳動表面68具有第二內部花鍵表面角AG22。第二內部花鍵表面角AG22界定於內部花鍵非傳動表面68與第二徑向線L22之間。第二徑向線L22自自行車後鏈輪總成14之旋轉中心軸線A1延伸至內部花鍵非傳動表面68之徑向最外邊緣68A。 在此實施例中,第二內部花鍵表面角AG22等於第一內部花鍵表面角AG21。然而,第一內部花鍵表面角AG21可不同於第二內部花鍵表面角AG22。 第一內部花鍵表面角AG21介於0度至6度。第二內部花鍵表面角AG22範圍介於0度至6度。在此實施例中,第一內部花鍵表面角AG21為5度。第二內部花鍵表面角AG22為5度。然而,第一內部花鍵表面角AG21及第二內部花鍵表面角AG22不限於此實施例及以上範圍。 如圖37中所見,內部花鍵齒64與外部花鍵齒40嚙合以將傳動旋轉力F1自第二鏈輪SP3傳遞至鏈輪支撐主體28。內部花鍵傳動表面66可與外部花鍵傳動表面48接觸以將傳動旋轉力F1自第二鏈輪SP3傳遞至鏈輪支撐主體28。在內部花鍵傳動表面66與外部花鍵傳動表面48接觸之狀態中,內部花鍵非傳動表面68與外部花鍵非傳動表面50間隔開。 第一鏈輪SP2之內部花鍵齒63及第二鏈輪SP4之內部花鍵齒65與第二鏈輪SP3之內部花鍵齒64具有大體上相同之結構。因此,出於簡潔起見,此處將不作詳細描述。 如圖2中所見,鏈輪支撐構件37包括經構形以與自行車後輪轂總成12之鏈輪支撐主體28嚙合的至少十個內部花鍵齒76。複數個內部花鍵齒76具有與複數個內部花鍵齒64之結構大體上相同的結構。因此,出於簡潔起見,此處將不作詳細描述。 如圖38中所見,第一鏈輪SP1包括第一扭矩傳遞結構SP1T,第一扭矩傳遞結構SP1T提供至第一向內側SP1H以直接地或間接地將踩踏扭矩傳遞至鏈輪支撐主體28。在此實施例中,第一扭矩傳遞結構SP1T包括複數個第一扭矩傳遞齒SP1T1以將踩踏扭矩間接地傳遞至鏈輪支撐主體28。第一扭矩傳遞結構SP1T包括至少十個第一扭矩傳遞齒SP1T1。較佳地,至少十個第一扭矩傳遞齒SP1T1之總數目等於或大於20。更佳地,至少十個第一扭矩傳遞齒SP1T1之總數目等於或大於28。在此實施例中,至少十個第一扭矩傳遞齒SP1T1之總數目為29。然而,至少十個第一扭矩傳遞齒SP1T1之總數目不限於此實施例及以上範圍。 如圖38及圖39中所見,第一鏈輪SP2包括第一向內側SP2H及第一向外側SP2G。相對於自行車後鏈輪總成14之旋轉中心軸線A1,第一向外側SP2G在軸向方向D2上與第一向內側SP2H相對。第一鏈輪SP2包括提供至第一向內側SP2H以將踩踏扭矩直接地或間接地傳遞至鏈輪支撐主體28之第一扭矩傳遞結構SP2M。在此實施例中,第一鏈輪SP2之內部花鍵齒63亦可被稱作第一扭矩傳遞齒63。第一扭矩傳遞結構SP2M包括複數個第一扭矩傳遞齒63以將踩踏扭矩直接傳遞至鏈輪支撐主體28。第一扭矩傳遞結構SP2M包括至少十個第一扭矩傳遞齒63。較佳地,至少十個第一扭矩傳遞齒63之總數目等於或大於20。更佳地,至少十個第一扭矩傳遞齒63之總數目等於或大於28。在此實施例中,至少十個第一扭矩傳遞齒63之總數目為29。然而,至少十個第一扭矩傳遞齒63之總數目不限於此實施例及以上範圍。第一扭矩傳遞齒63亦可被稱作內部花鍵齒63。 如圖39中所見,第一鏈輪SP2包括用以接收來自第一鏈輪SP1之踩踏扭矩的第二扭矩傳遞結構SP2T。第二扭矩傳遞結構SP2T設置於第一向外側SP2G上。在此實施例中,第二扭矩傳遞結構SP2T包括複數個第二扭矩傳遞齒SP2T1。較佳地,第二扭矩傳遞齒SP2T1之總數目等於或大於20。更佳地,第二扭矩傳遞齒SP2T1之總數目等於或大於28。在此實施例中,第二扭矩傳遞齒SP2T1之總數目為29。然而,第二扭矩傳遞齒SP2T1之總數目不限於此實施例及以上範圍。第一扭矩傳遞結構SP1T與第二扭矩傳遞結構SP2T嚙合。複數個第一扭矩傳遞齒SP1T1與複數個第二扭矩傳遞齒SP2T1嚙合以傳遞傳動旋轉力F1。 如圖23及圖24中所見,鏈輪支撐主體28包括設置於基座支撐件41之軸向端處的輪轂指示器28I。當沿旋轉中心軸線A1檢視時,輪轂指示器28I設置於第二外部周節角PA12之區域中。在此實施例中,輪轂指示器28I包括點。然而,輪轂指示器28I可包括其他形狀,諸如三角形及線。另外,輪轂指示器28I可為藉由諸如黏著劑之接合結構附接至鏈輪支撐主體28之分離構件。輪轂指示器28I之位置不限於此實施例。 如圖7中所見,第一鏈輪SP1包括設置於鏈輪主體SP1A之軸向端處的鏈輪指示器SP1I。在此實施例中,鏈輪指示器SP1I包括點。然而,鏈輪指示器SP1I可包括其他形狀,諸如三角形及線。另外,鏈輪指示器SP1I可為藉由諸如黏著劑之接合結構附接至鏈輪SP1之分離構件。鏈輪指示器SP1I之位置不限於此實施例。鏈輪指示器SP1I可提供至其他鏈輪SP2至SP12中之任一者。鏈輪指示器SP1I亦可提供至鏈輪支撐構件37。 如圖6中所見,自行車後輪轂總成12進一步包含自由輪結構78。鏈輪支撐主體28藉由自由輪結構78以操作方式耦接至輪轂主體36。自由輪結構78經構形以將鏈輪支撐主體28耦接至輪轂主體36,以在踩踏期間在傳動旋轉方向D11 (圖5)上使鏈輪支撐主體28連同輪轂主體36旋轉。自由輪結構78經構形以允許鏈輪支撐主體28在惰轉期間在反旋轉方向D12 (圖5)上相對於輪轂主體36旋轉。因此,自由輪結構78可解譯成單向離合器結構78。稍後將詳細描述自由輪結構78。 自行車後輪轂總成12包括第一軸承79A及第二軸承79B。第一軸承79A及第二軸承79B設置於鏈輪支撐主體28與輪轂軸30之間以圍繞旋轉中心軸線A1相對於輪轂軸30可旋轉地支撐鏈輪支撐主體28。 在此實施例中,鏈輪支撐主體28、制動轉子支撐主體34及輪轂主體36中之每一者由諸如鋁、鐵或鈦之金屬材料製成。然而,鏈輪支撐主體28、制動轉子支撐主體34及輪轂主體36中之至少一者可由非金屬材料製成。 如圖40中所見,自由輪結構78包括第一棘輪構件80及第二棘輪構件82。第一棘輪構件80經構形以按扭矩傳遞方式與輪轂主體36及鏈輪支撐主體28中之一者嚙合。第二棘輪構件82經構形以按扭矩傳遞方式與輪轂主體36及鏈輪支撐主體28中之另一者嚙合。在此實施例中,第一棘輪構件80按扭矩傳遞方式與鏈輪支撐主體28嚙合。第二棘輪構件82按扭矩傳遞方式與輪轂主體36嚙合。然而,第一棘輪構件80可經構形以按扭矩傳遞方式與輪轂主體36嚙合。第二棘輪構件82可經構形以按扭矩傳遞方式與鏈輪支撐主體28嚙合。 第一棘輪構件80安裝至鏈輪支撐主體28以圍繞旋轉中心軸線A1相對於輪轂主體36與鏈輪支撐主體28一起旋轉。第二棘輪構件82安裝至輪轂主體36以圍繞旋轉中心軸線A1相對於鏈輪支撐主體28與輪轂主體36一起旋轉。第一棘輪構件80及第二棘輪構件82中之每一者具有環狀形狀。 第一棘輪構件80及第二棘輪構件82中之至少一者可相對於旋轉中心軸線A1在軸向方向D2上相對於輪轂軸30移動。在此實施例中,第一棘輪構件80及第二棘輪構件82中之每一者可在軸向方向D2上相對於輪轂軸30移動。第二棘輪構件82可在軸向方向D2上相對於輪轂主體36移動。第一棘輪構件80可在軸向方向D2上相對於鏈輪支撐主體28移動。 輪轂主體36包括具有環狀形狀之自由輪外殼36H。自由輪外殼36H在軸向方向D2上延伸。第一棘輪構件80及第二棘輪構件82在已裝配狀態下設置於自由輪外殼36H中。 如圖41中所見,第一棘輪構件80包括至少一個第一棘輪齒80A。在此實施例中,至少一個第一棘輪齒80A包括複數個第一棘輪齒80A。複數個第一棘輪齒80A在圓周方向D1上配置以提供鋸齒。 如圖42中所見,第二棘輪構件82包括經構形以按扭矩傳遞方式與至少一個第一棘輪齒80A嚙合的至少一個第二棘輪齒82A。至少一個第二棘輪齒82A與至少一個第一棘輪齒80A嚙合,以將旋轉力F1自鏈輪支撐主體28傳遞至輪轂主體36 (圖40)。在此實施例中,至少一個第二棘輪齒82A包括經構形以按扭矩傳遞方式與複數個第一棘輪齒80A嚙合之複數個第二棘輪齒82A。複數個第二棘輪齒82A在圓周方向D1上配置以提供鋸齒複數個第二棘輪齒82A可與複數個第一棘輪齒80A嚙合。在第二棘輪齒82A與第一棘輪齒80A嚙合之狀態下,第一棘輪構件80與第二棘輪構件82一起旋轉。 如圖41及圖42中所見,鏈輪支撐主體28具有具有第一螺旋花鍵28H之外部周邊表面28P。第一棘輪構件80經構形以按扭矩傳遞方式與鏈輪支撐主體28嚙合,且包括與第一螺旋花鍵28H配合之第二螺旋花鍵80H。第一棘輪構件80在藉由自鏈輪支撐主體28施加之第一推力傳動期間經由與第一螺旋花鍵28H配合之第二螺旋花鍵80H在相對於鏈輪支撐主體28之軸向方向D2上可移動地安裝。在此實施例中,第一螺旋花鍵28H包括複數個螺旋外部花鍵齒46。第二螺旋花鍵80H包括與複數個螺旋外部花鍵齒46配合之複數個螺旋內部花鍵齒80H1。 如圖43中所見,輪轂主體36包括內部周邊表面36S及至少一個第一齒36T。至少一個第一齒36T設置於內部周邊表面36S上。在此實施例中,自由輪外殼36H包括內部周邊表面36S。輪轂主體36包括複數個第一齒36T。複數個第一齒36T設置於內部周邊表面36S上,且相對於旋轉中心軸線A1自內部周邊表面36S朝內徑向延伸。第一齒36T在圓周方向D1上配置以界定第一齒36T中之鄰近兩個齒之間的複數個凹槽36R。 第二棘輪構件82包括輪轂主體嚙合部分82E,輪轂主體嚙合部分82E經由輪轂主體嚙合部分82E按扭矩傳遞方式與輪轂主體36嚙合以將旋轉力F1自第一棘輪構件80傳遞至輪轂主體36。輪轂主體嚙合部分82E及輪轂主體36中之一者包括徑向延伸之至少一個突出物。輪轂主體嚙合部分82E及輪轂主體36中之另一者包括與該至少一個突起部嚙合之至少一個凹槽。在此實施例中,輪轂主體嚙合部分82E包括徑向延伸之至少一個突出物82T作為至少一個突出物。輪轂主體36包括與至少一個突出物82T嚙合之至少一個凹槽36R。在此實施例中,輪轂主體嚙合部分82E包括複數個突出物82T。複數個突出物82T與複數個凹槽36R嚙合。 如圖42中所見,鏈輪支撐主體28之外部周邊表面28P具有經構形以在惰轉期間導引第一棘輪構件80朝向輪轂主體36之導引部分28G。導引部分28G經配置以與第一螺旋花鍵28H界定鈍角AG28 (圖48)。鏈輪支撐主體28包括複數個導引部分28G。導引部分28G經構形以在惰轉或空轉期間導引第一棘輪構件80朝向輪轂主體36。導引部分28G在惰轉期間朝向輪轂主體36導引第一棘輪構件80以在至少一個第一棘輪齒80A (圖41)與至少一個第二棘輪齒82A之間釋放配合嚙合。導引部分28G經構形以使第一棘輪構件80在軸向方向D2上移動遠離第二棘輪構件82。導引部分28G相對於鏈輪支撐主體28至少在圓周方向D1上延伸。導引部分28G至少在圓周方向D1上自複數個螺旋外部花鍵齒46中之一個齒延伸。儘管在此實施例中導引部分28G與螺旋外部花鍵齒46一體地設置為單件式整體構件,但導引部分28G可為與複數個螺旋外部花鍵齒46分離的構件。由於導引部分28G,第一棘輪構件80及第二棘輪構件82在惰轉期間彼此順利脫嚙,在導引部分28G經配置以相對於第一螺旋花鍵28H界定鈍角AG28之狀況下尤其如此。此亦引起在惰轉期間減少噪聲,此係因為至少一個第一棘輪齒80A及至少一個第二棘輪齒82A在惰轉期間順利地彼此分離。 如圖40中所見,自行車後輪轂總成12進一步包含偏置構件84。偏置構件84安置於輪轂主體36與第一棘輪構件80之間,以在軸向方向D2上使第一棘輪構件80朝向第二棘輪構件82偏置。舉例而言,在此實施例中,偏置構件84為壓縮彈簧。 如圖44中所見,偏置構件84在軸向方向D2上在輪轂主體36與第一棘輪構件80之間壓縮。偏置構件84朝向第二棘輪構件82偏置第一棘輪構件80以維持第一棘輪構件80與第二棘輪構件82經由第一棘輪齒80A及第二棘輪齒82A彼此嚙合之嚙合狀態。 較佳地,偏置構件84與輪轂主體36嚙合以與輪轂主體36旋轉。偏置構件84安裝至輪轂主體36以圍繞旋轉中心軸線A1 (圖40)與輪轂主體36一起旋轉。偏置構件84包括捲曲主體84A及連接端84B。輪轂主體36包括連接孔36F。連接端84B設置於連接孔36F中,以使得偏置構件84圍繞旋轉中心軸線A1 (圖40)與輪轂主體36一起旋轉。 如圖44中所見,鏈輪支撐主體28之外周邊表面28P支撐第一棘輪構件80及第二棘輪構件82。第一棘輪構件80包括面向軸向方向D2之軸向表面80S。至少一個第一棘輪齒80A安置於第一棘輪構件80之軸向表面80S上。在此實施例中,複數個第一棘輪齒80A安置於第一棘輪構件80之軸向表面80S上。軸向表面80S大體上垂直於軸向方向D2。然而,軸向表面80S可不垂直於軸向方向D2。 第二棘輪構件82包括面向軸向方向D2之軸向表面82S。至少一個第二棘輪齒82A安置於第二棘輪構件82之軸向表面82S上。第二棘輪構件82之軸向表面82S面朝第一棘輪構件80之軸向表面80S。在此實施例中,複數個第二棘輪齒82A安置於第二棘輪構件82之軸向表面82S上。軸向表面82S大體上垂直於軸向方向D2。然而軸向表面82S可不垂直於軸向方向D2。 如圖40中所見,自行車後輪轂總成12包含間隔件86、支撐構件88、滑動構件90、額外偏置構件92及收納構件94。然而,有可能自自行車後輪轂總成12省略間隔件86、支撐構件88、滑動構件90、額外偏置構件92及收納構件94中之至少一者。 如圖44及圖45中所見,間隔件86在圍繞旋轉中心軸線A1界定之圓周方向D1上至少部分地設置於至少一個第一齒36T與至少一個突出物82T之間。在此實施例中,間隔件86在圓周方向D1上部分地設置於第一齒36T與突出物82T之間。然而,間隔件86可在圓周方向D1上完全設置於第一齒36T與突出物82T之間。 如圖45至圖47中所見,間隔件86包括設置於至少一個第一齒36T與至少一個突出物82T之間的至少一個中間部分86A。至少一個中間部分86A在圓周方向D1上設置於至少一個第一齒36T與至少一個突出物82T之間。在此實施例中,間隔件86包括分別在圓周方向D1上設置於第一齒36T與突出物82T之間的複數個中間部分86A。儘管間隔件86在此實施例中包括該等中間部分86A,但間隔件86可包括一個中間部分86A。 如圖46及圖47中所見,間隔件86包括連接部分86B。複數個中間部分86A在平行於旋轉中心軸線A1之軸向方向D2上自連接部分86B延伸。儘管間隔件86在此實施例中包括連接部分86B,但連接部分86B可為自間隔件86省略。 間隔件86包括非金屬材料。在此實施例中,非金屬材料包括樹脂材料。樹脂材料之實例包括合成樹脂。作為樹脂材料之替代或補充,非金屬材料可包括除樹脂材料以外之材料。儘管中間部分86A與連接部分86B在此實施例中彼此一體地設置為單件式整體構件,但中間部分86A中之至少一者可為與連接部分86B分離之部分。 如圖44及圖45中所見,複數個中間部分86A在徑向方向上設置於輪轂主體36之內部周邊表面36S與第二棘輪構件82之外部周邊表面82P之間。 如圖44中所見,支撐構件88在軸向方向D2上設置於輪轂主體36與第二棘輪構件82之間。支撐構件88附接至第二棘輪構件82。支撐構件88自第一棘輪構件80徑向向外設置。支撐構件88可與第一棘輪構件80接觸。支撐構件88較佳地包括非金屬材料。由非金屬材料製成之支撐構件88在自行車後輪轂總成12之操作期間減少噪聲。在此實施例中,非金屬材料包括樹脂材料。作為樹脂材料之替代或補充,非金屬材料可包括除樹脂材料以外之材料。 滑動構件90在平行於旋轉中心軸線A1之軸向方向D2上設置於鏈輪支撐主體28與第二棘輪構件82之間。第二棘輪構件82在軸向方向D2上設置於第一棘輪構件80與滑動構件90之間。滑動構件90較佳包括非金屬材料。由非金屬材料製成之滑動構件90在自行車後輪轂總成12之操作期間減少噪聲。在此實施例中,非金屬材料包括樹脂材料。作為樹脂材料之替代或補充,非金屬材料可包括除樹脂材料以外之材料。 鏈輪支撐主體28包括鄰接件28E以鄰接第二棘輪構件82來限制第二棘輪構件82遠離輪轂主體36之軸向移動。鄰接件28E可在此實施例中經由滑動構件90間接地鄰接第二棘輪構件82。替代地,鄰接件28E可直接鄰接第二棘輪構件82。第一棘輪構件80在軸向方向D2上安置於第二棘輪構件82之與鏈輪支撐主體28之鄰接件28E相對的軸向側上。滑動構件90在軸向方向D2上設置於鏈輪支撐主體28之鄰接件28E與第二棘輪構件82之間。 如圖44中所見,額外偏置構件92在軸向方向D2上設置於輪轂主體36與第二棘輪構件82之間,以使第二棘輪構件82朝向鏈輪支撐主體28偏置。在此實施例中,額外偏置構件92經由支撐構件88在軸向方向D2上使第二棘輪構件82偏置。額外偏置構件92自偏置構件84徑向向外設置。額外偏置構件92在此實施例中自複數個第二棘輪齒82A徑向向外設置。 收納構件94包括非金屬材料。由非金屬材料製成之收納構件94在自行車後輪轂總成12之操作期間防止偏置構件84過度扭轉。在此實施例中,非金屬材料包括樹脂材料。作為樹脂材料之替代或補充,非金屬材料可包括除樹脂材料以外之材料。收納構件94包括軸向收納部分96及徑向收納部分98。軸向收納部分96在軸向方向D2上設置於第一棘輪構件80與偏置構件84之間。徑向收納部分98在軸向方向D2上自軸向收納部分96延伸。徑向收納部分98自偏置構件84朝內徑向設置。軸向收納部分96與徑向收納部分98彼此一體地設置為單件式整體構件。然而,軸向收納部分96可為與徑向收納部分98分離之構件。 如圖44中所見,自行車後輪轂總成12包含密封結構100。密封結構100設置於鏈輪支撐主體28與輪轂主體36之間。輪轂主體36包括內部空間102。鏈輪支撐主體28、偏置構件84、第一棘輪構件80及第二棘輪構件82中之每一者至少部分地安置於輪轂主體36之內部空間102中。內部空間102由密封結構100密封。在此實施例中,無潤滑劑設置於內部空間102中。然而,自行車後輪轂總成12可包含設置於內部空間102中之潤滑劑。相比與自行車後輪轂總成12可包含設置於內部空間102中之潤滑劑的狀況,若未設置潤滑劑,則可減少安置於內部空間102中之構件之間的每一間隙。 將在下文參考圖44、圖48及圖49詳細描述自行車後輪轂總成12之操作。 如圖44中所見,軸向方向D2包括第一軸向方向D21及與第一軸向方向D21相反之第二軸向方向D22。偏置力F5在第一軸向方向D21上自偏置構件84施加至收納構件94。偏置構件84之偏置力F5使收納構件94、第一棘輪構件80、第二棘輪構件82及滑動構件90在第一軸向方向D21上朝向鏈輪支撐主體28偏置。此使第一棘輪齒80A與第二棘輪齒82A嚙合。 此外,如圖48中所見,當踩踏扭矩T1在傳動旋轉方向D11上輸入至鏈輪支撐主體28時,螺旋內部花鍵齒80H1在第一軸向方向D21上由螺旋外部花鍵齒46相對於鏈輪支撐主體28導引。此強有力地使第一棘輪齒80A與第二棘輪齒82A嚙合。在此狀態下,踩踏扭矩T1經由第一棘輪構件80及第二棘輪構件82 (圖44)自鏈輪支撐主體28傳遞至輪轂主體36 (圖44)。 如圖48中所見,在惰轉期間,藉由偏置構件84 (圖44)與第一棘輪構件80之間產生之旋轉摩擦力F6,第一棘輪構件80與導引部分28G接觸以自第二棘輪構件82脫嚙。如圖49中所見,惰轉扭矩T2在惰轉期間在傳動旋轉方向D11上施加至輪轂主體36。惰轉扭矩T2經由第二棘輪構件82 (圖44)自輪轂主體36 (圖44)傳遞至第一棘輪構件80。此時,由螺旋外部花鍵齒46在第二軸向方向D22上相對於鏈輪支撐主體28導引螺旋內部花鍵齒80H1。此使第一棘輪構件80在第二軸向方向D22上抵抗偏置力F5相對於鏈輪支撐主體28移動。因此,第一棘輪構件80在第二軸向方向D22上移動遠離第二棘輪構件82,從而致使第一棘輪齒80A與第二棘輪齒82A之間的嚙合較弱。此允許第二棘輪構件82在傳動旋轉方向D11上相對於第一棘輪構件80旋轉,從而防止惰轉扭矩T2經由第一棘輪構件80及第二棘輪構件82自輪轂主體36傳遞至鏈輪支撐主體28。此時,第一棘輪齒80A在圓周方向D1上與第二棘輪齒82A一起滑動。 修改 如圖50中所見,在上述實施例及其他修改中,外部花鍵齒40可包括在圓周方向D1上設置於外部花鍵傳動表面48與外部花鍵非傳動表面50之間的凹槽40G。凹槽40G減小自行車後輪轂總成12之重量。 如圖51中所見,在上述實施例及其他修改中,內部花鍵齒64可包括在圓周方向D1上設置於內部花鍵傳動表面66與內部花鍵非傳動表面68之間的凹槽64G。凹槽64G減小自行車後鏈輪總成14之重量。 在本申請案中,至少十個內部花鍵齒可間接地提供至第二鏈輪之第二開口,而在上述實施例中至少十個內部花鍵齒直接提供至第二鏈輪SP3及SP4中之每一者的第二開口。舉例而言,而非將至少十個內部花鍵齒直接提供至第二鏈輪SP3及/或第二鏈輪SP4之第二開口,第二鏈輪SP3及SP4中之至少一者可附接至包括至少十個內部花鍵齒之鏈輪支撐構件。替代地,而非將至少十個內部花鍵齒直接提供至第二鏈輪之第二開口,至少一個第二鏈輪可與包括至少十個內部花鍵齒之至少一個額外鏈輪一體成型為單件式整體構件。因為此第二鏈輪經由鏈輪支撐構件及/或額外鏈輪間接地包括至少十個內部花鍵齒,所以其亦意謂第二鏈輪包括經構形以與自行車後輪轂總成之鏈輪支撐主體嚙合的至少十個內部花鍵齒。 自行車後鏈輪總成14可僅包括一個第一鏈輪或多於兩個第一鏈輪,而自行車後鏈輪總成14在上述實施例中包括兩個第一鏈輪SP1及SP2。 自行車後鏈輪總成14可僅包括一個第二鏈輪或多於兩個第二鏈輪,而自行車後鏈輪總成14在上述實施例中包括兩個第二鏈輪SP3及SP4。 如圖52中所見,在鏈輪支撐主體28中,至少十個外部花鍵齒40之總數目可範圍介於22至24。舉例而言,至少十個外部花鍵齒40之總數目可為23。第一外部周節角PA11可範圍介於13度至17度。舉例而言,第一外部周節角PA11可為15度。第二外部周節角PA12可範圍介於28度至32度。舉例而言,第二外部周節角PA12可為30度。第一外部周節角PA11為第二外部周節角PA12之一半。然而,第一外部周節角PA11可不同於第二外部周節角PA12之一半。至少十個外部花鍵齒40之總數目不限於以上修改及範圍。第一外部周節角PA11不限於以上修改及範圍。第二外部周節角PA12不限於以上修改及範圍。 如圖53中所見,在鏈輪支撐主體28中,複數個外部花鍵傳動表面48之徑向長度RL11的總和可範圍介於11 mm至14 mm。複數個外部花鍵傳動表面48之徑向長度RL11的總和可為12.5 mm。額外徑向長度RL12之總和可範圍介於26 mm至30 mm。舉例而言,額外徑向長度RL12之總和可為28.2 mm。然而,額外徑向長度RL12之總和不限於以上修改及範圍。 如圖54中所見,在第一鏈輪SP1之第一扭矩傳遞結構SP1T中,至少十個第一扭矩傳遞齒SP1T1之總數目可範圍介於22至24。舉例而言,至少十個第一扭矩傳遞齒SP1T1之總數目可為23。然而,至少十個第一扭矩傳遞齒SP1T1之總數目不限於以上修改及範圍。 如圖55中所見,在第一鏈輪SP2之第二扭矩傳遞結構SP2T中,至少十個第二扭矩傳遞齒SP2T1之總數目可範圍介於22至24。舉例而言,至少十個第二扭矩傳遞齒SP2T1之總數目可為23。然而,至少十個第二扭矩傳遞齒SP2T1之總數目不限於以上修改及範圍。 如圖56中所見,在第一鏈輪SP2中,第一鏈輪SP2之至少十個內部花鍵齒63之總數目可範圍介於22至24。舉例而言,第一鏈輪SP2之至少十個內部花鍵齒63之總數目可為23。然而,至少十個內部花鍵齒63之總數目不限於以上修改及範圍。 如圖57中所見,在第二鏈輪SP3中,第二鏈輪SP3之至少十個內部花鍵齒64之總數目可範圍介於22至24。舉例而言,第二鏈輪SP3之至少十個內部花鍵齒64之總數目可為23。然而,至少十個內部花鍵齒64之總數目不限於以上修改及範圍。 如圖58中所見,在第二鏈輪SP4中,第二鏈輪SP4之至少十個內部花鍵齒65的總數目可範圍介於22至24。舉例而言,第二鏈輪SP4之至少十個內部花鍵齒65之總數目可為23。然而,至少十個內部花鍵齒65之總數目不限於以上修改及範圍。 如圖59中所見,在第二鏈輪SP3之至少十個內部花鍵齒64中,第一內部周節角PA21可範圍介於13度至17度。舉例而言,第一內部周節角PA21可為15度。第二內部周節角PA22可範圍介於28度至32度。舉例而言,第二內部周節角PA22可為30度。第一內部周節角PA21可為第二內部周節角PA22之一半。然而,第一內部周節角PA21可不同於第二內部周節角PA22之一半。第一內部周節角PA21不限於以上修改及範圍。第二內部周節角PA22不限於以上修改及範圍。 如圖60中所見,在第二鏈輪SP3之內部花鍵齒64中,複數個內部花鍵傳動表面66之徑向長度RL21之總和可範圍介於11 mm至14 mm。舉例而言,複數個內部花鍵傳動表面66之徑向長度RL21的總和可為12.5 mm。然而,RL21徑向長度之總和不限於以上修改及範圍。額外徑向長度RL22之總和可範圍介於26 mm至29 mm。舉例而言,額外徑向長度RL22之總和為27.6 mm。然而,額外徑向長度RL22之總和不限於此實施例及以上範圍。第一鏈輪SP2之內部花鍵齒63及第二鏈輪SP4之內部花鍵齒65與第二鏈輪SP3之內部花鍵齒64具有相同結構。 如圖61中所見,鏈輪支撐構件37之內部花鍵齒76可與圖57、圖59及圖60中所說明之第二鏈輪SP3之內部花鍵齒64結構相同。鏈輪支撐構件37之至少十個內部花鍵齒76的總數目可範圍介於22至24。舉例而言,鏈輪支撐構件37之至少十個內部花鍵齒76的總數目可為23。然而,至少十個內部花鍵齒76之總數目不限於以上修改及範圍。圖60中所說明之內部花鍵齒64的結構可適用於鏈輪支撐構件37之內部花鍵齒76。 如圖62中所見,自行車後鏈輪總成14可包含額外鏈輪SP13。額外鏈輪SP13藉由複數個耦接構件SP13R耦接至額外鏈輪SP12。額外鏈輪SP13包括鏈輪主體SP13A及至少一個鏈輪齒SP13B。額外鏈輪SP13之鏈輪主體SP13A藉由複數個耦接構件SP13R耦接至額外鏈輪SP12之鏈輪主體SP12A。至少一個鏈輪齒SP13B自鏈輪主體SP13A徑向向外延伸。至少一個鏈輪齒SP13B之總數目大於至少一個鏈輪齒SP12B之總數目。較佳地,至少一個鏈輪齒SP13B之總齒數等於或大於46。更佳地,至少一個鏈輪齒SP13B之總齒數等於或大於50。舉例而言,至少一個鏈輪齒SP13B之總齒數為54。 鏈輪SP1至SP13之鏈輪齒SP1B至SP13B的齒輪廓可具有習知齒輪廓及/或窄寬齒輪廓。特定言之,作為窄-寬齒輪廓,鏈輪SP1至SP13之鏈輪齒SP1B至SP13B亦可包括至少一個第一齒及至少一個第二齒,該等第一齒各自具有第一軸向最大鏈嚙合寬度,該等第二齒各自具有小於第一軸向最大鏈嚙合寬度之第二軸向最大鏈嚙合寬度。沿著軸向方向D2量測第一軸向最大鏈嚙合寬度及第二軸向最大鏈嚙合寬度。第一軸向最大鏈嚙合寬度大於由自行車鏈20之一對內鏈板界定之軸向內鏈空間,且小於由自行車鏈20之一對外鏈板界定之軸向外鏈空間,其中當自行車鏈20與鏈輪SP1至SP13中之一者嚙合時,該對外鏈板在軸向方向D2上面向彼此。第二軸向最大鏈嚙合寬度小於由自行車鏈20之該對內鏈板界定之軸向內鏈空間。因此,至少一個第一齒經構形以與自行車鏈20之一對外鏈板嚙合,其中當自行車鏈20與鏈輪SP1至SP13中之一者嚙合時該對外鏈板在軸向方向D2上面向彼此,且至少一個第二齒經構形以與自行車鏈20之一對內鏈板嚙合,其中該對內鏈板在軸向方向D2上面向彼此。較佳地,至少一個第一齒與至少一個第二齒交替地安置於鏈輪SP1至SP13中之至少一者的外部周邊上。較佳地,鏈輪SP1至SP13之鏈輪齒SP1B至SP13B包括複數個第一齒及複數個第二齒,該等第一齒各自具有上文所提及之第一軸向最大鏈嚙合寬度,該等第二齒各自具有上文所提及之第二軸向最大鏈嚙合寬度。較佳地,複數個第一齒與複數個第二齒交替地安置於鏈輪SP1至SP13中之至少一者的外部周邊上。較佳地,最大鏈輪之鏈輪齒可具有此窄寬齒輪廓。因此,較佳地,圖6中之鏈輪SP12的鏈輪齒SP12B或圖62中之鏈輪SP13的鏈輪齒SP13B包括具有上文所提及之第一軸向最大鏈嚙合寬度之至少一個第一齒及具有上文所提及之第二軸向最大鏈嚙合寬度之至少一個第二齒。 如本文所使用之術語「包含」及其派生詞意欲為指定陳述特徵、元件、組件、群組、整數及/或步驟的存在但不排除其他未陳述特徵、元件、組件、群組、整數及/或步驟的存在的開放術語。此概念亦適用於類似含義之詞語,例如術語「具有」、「包括」及其派生詞。 術語「構件」、「區段」、「部分」、「部件」、「元件」、「主體」及「結構」在以單數形式使用時可具有單一部件或複數個部件之雙重含義。 諸如本申請案中敍述的「第一」及「第二」之序數數目僅為標識符,而不具有任何其他含義,例如特定次序等等。此外,舉例而言,術語「第一元件」自身不暗示「第二元件」之存在,且術語「第二元件」自身不暗示「第一元件」之存在。 如本文中所使用之術語「對」可涵蓋除其中成對元件具有彼此相同之形狀或結構之構形外之其中成對元件具有彼此不同的形狀或結構之構形。 因此,術語「一」、「一或多個」與「至少一個」在本文中可互換地使用。 最後,如本文中所使用之諸如「大體上」、「大約」及「大致」之程度術語意謂所修飾之術語之合理量之偏差以使得最終結果並無顯著改變。本申請案中所描述之所有數值可被理解為包括諸如「大體上」、「大約」及「大致」之術語。 顯然,根據以上教示,本發明之眾多修改及變化為可能的。因此應理解,在所附申請專利範圍之範疇內,可以不同於如本文特定描述之方式的其他方式實踐本發明。 Cross References to Related Applications This application is a continuation-in-part of U.S. Patent Application No. 15/712,388 filed September 22, 2017. The content of this application is incorporated herein by reference in its entirety. Embodiments will now be described with reference to the drawings, wherein like reference numerals designate corresponding or identical elements in the various views. Referring first to FIG. 1 , a bicycle transmission system 10 according to one embodiment includes a bicycle rear hub assembly 12 and a bicycle rear sprocket assembly 14 . The bicycle rear hub assembly 12 is fastened to the bicycle frame BF. The rear sprocket assembly 14 of the bicycle is installed on the rear wheel hub assembly 12 of the bicycle. The bicycle brake rotor 16 is installed on the rear hub assembly 12 of the bicycle. The bicycle transmission system 10 further includes a crank assembly 18 and a bicycle chain 20 . The crank assembly 18 includes a crankshaft 22 , a right crank arm 24 , a left crank arm 26 and a front sprocket 27 . Right crank arm 24 and left crank arm 26 are secured to crankshaft 22 . Front sprocket 27 is secured to at least one of crankshaft 22 and right crank arm 24 . The bicycle chain 20 meshes with the front sprocket 27 and the bicycle rear sprocket assembly 14 to transmit pedaling force from the front sprocket 27 to the bicycle rear sprocket assembly 14 . Crank assembly 18 includes front sprocket 27 as a single sprocket in the illustrated embodiment. However, crank assembly 18 may include a plurality of front sprockets. The bicycle rear sprocket assembly 14 is the rear sprocket assembly. However, the structure of the bicycle rear sprocket assembly 14 can be applied to the front sprocket. In this application, the following directional terms "front", "rear", "forward", "backward", "left", "right", "lateral", "upward" and "downward" and any other Similar directional terms refer to those directions determined based on a user (eg, rider) sitting on the saddle (not shown) of the bicycle and facing the handlebars (not shown). Accordingly, these terms, when used to describe the bicycle drivetrain 10, the bicycle rear hub assembly 12, or the bicycle rear sprocket assembly 14, shall be with respect to a bicycle drivetrain equipped as used in an upright riding position on a horizontal surface. 10. Interpret the bicycle of the bicycle rear wheel hub assembly 12 or the bicycle rear sprocket assembly 14. As seen in FIG. 2 , the bicycle rear hub assembly 12 and the bicycle rear sprocket assembly 14 have a central axis of rotation A1 . The bicycle rear sprocket assembly 14 is rotatably supported by the bicycle rear hub assembly 12 about a rotational center axis A1 relative to the bicycle frame BF ( FIG. 1 ). The bicycle rear sprocket assembly 14 is configured to engage a bicycle chain 20 to transmit a transmission rotational force F1 between the bicycle chain 20 and the bicycle rear sprocket assembly 14 during pedaling. During pedaling, the bicycle rear sprocket assembly 14 rotates about the rotation center axis A1 in the transmission rotation direction D11. The transmission rotation direction D11 is defined along the circumferential direction D1 of the bicycle rear hub assembly 12 or the bicycle rear sprocket assembly 14 . The counter-rotational direction D12 is the opposite direction of the drive rotation direction D11 and is defined along the circumferential direction D1. As seen in FIG. 2 , the bicycle rear hub assembly 12 includes a sprocket support body 28 . The bicycle rear sprocket assembly 14 is configured to mount to the sprocket support body 28 of the bicycle rear hub assembly 12 . The bicycle rear sprocket assembly 14 is mounted on the sprocket support body 28 to transmit the transmission rotational force F1 between the sprocket support body 28 and the bicycle rear sprocket assembly 14 . The bicycle rear hub assembly 12 includes a hub axle 30 . The sprocket supporting body 28 is rotatably mounted on the upper hub shaft 30 around the rotation center axis A1. The bicycle rear sprocket assembly 14 further includes a locking member 32 . The locking member 32 is secured to the sprocket support body 28 to retain the bicycle rear sprocket assembly 14 relative to the sprocket support body 28 in the axial direction D2 relative to the rotational center axis A1 . As seen in FIG. 3 , the bicycle rear hub assembly 12 is fastened to the bicycle frame BF by the wheel fastening structure WS. The hub shaft 30 includes a shaft through hole 30A. The fastening rod WS1 of the wheel fastening structure WS extends through the shaft through hole 30A of the hub shaft 30 . The hub shaft 30 includes a first shaft end 30B and a second shaft end 30C. The hub shaft 30 extends along the rotation center axis A1 between the first shaft end 30B and the second shaft end 30C. The first shaft end 30B is disposed in the first groove BF11 of the first frame BF1 of the bicycle frame BF. The second shaft end 30C is disposed in the second groove BF21 of the second frame BF2 of the bicycle frame BF. The hub axle 30 is held between the first frame BF1 and the second frame BF2 by the wheel fastening structure WS. The wheel fastening structure WS includes structures known in the applied bicycle. Therefore, for the sake of brevity, no detailed description will be given here. In this embodiment, the shaft through hole 30A has a minimum inner diameter BD1 equal to or greater than 13 mm. The minimum inner diameter BD1 of the shaft through hole 30A is preferably equal to or greater than 14 mm. The smallest inner diameter BD1 of the shaft through hole 30A is preferably equal to or smaller than 21 mm. In this embodiment, the minimum inner diameter BD1 of the shaft through hole 30A is 15 mm. However, the minimum inner diameter BD1 is not limited to this embodiment and the above range. The hub shaft 30 has a maximum outer diameter BD2 equal to or greater than 17 mm. The maximum outer diameter BD2 of the hub axle 30 is preferably equal to or greater than 20 mm. The maximum outer diameter BD2 of the hub axle 30 is preferably equal to or smaller than 23 mm. In this embodiment, the maximum outer diameter BD2 of the hub axle 30 is 21 mm. However, the maximum outer diameter BD2 of the hub axle 30 is not limited to this embodiment and the above range. The hub shaft 30 has a minimum outer diameter BD3 equal to or greater than 15 mm. The minimum outer diameter BD3 is preferably equal to or greater than 17 mm. The minimum outer diameter BD3 is preferably equal to or smaller than 19 mm. In this embodiment, the minimum outer diameter BD3 of the hub axle 30 is 17. 6mm. However, the minimum outer diameter BD3 is not limited to this embodiment and the above range. The hub shaft 30 includes a shaft tube 30X, a first shaft portion 30Y, and a second shaft portion 30Z. The shaft tube 30X has a tubular shape and extends along the rotation center axis A1. The first shaft portion 30Y is fastened to the first end of the shaft tube 30X. The second shaft portion 30Z is secured to the second end of the shaft tube 30X. At least one of the first shaft portion 30Y and the second shaft portion 30Z may be provided integrally with the shaft tube 30X. As seen in FIGS. 3 and 4 , the bicycle rear hub assembly 12 further includes a brake rotor support body 34 . The brake rotor supporting body 34 is rotatably mounted on the hub axle 30 around the rotation center axis A1. The brake rotor support body 34 is coupled to the bicycle brake rotor 16 ( FIG. 1 ) to transfer braking rotational force from the bicycle brake rotor 16 to the brake rotor support body 34 . As seen in FIG. 4 , the bicycle rear hub assembly 12 includes a hub body 36 . The hub main body 36 is rotatably mounted on the hub axle 30 around the rotation center axis A1 of the bicycle rear hub assembly 12 . In this embodiment, the sprocket support body 28 is a separate component from the hub body 36 . The brake rotor support body 34 is provided integrally with the hub body 36 as a one-piece unitary member. However, the sprocket support body 28 may be provided integrally with the hub body 36 . The brake rotor support body 34 may be a separate component from the hub body 36 . For example, the hub body 36 is made of a metal material including aluminum. As seen in FIG. 5 , the bicycle rear sprocket assembly 14 includes a plurality of bicycle sprockets. The plurality of bicycle sprockets includes a first sprocket and a second sprocket. In this embodiment, the plurality of bicycle sprockets includes the plurality of first sprockets SP1 and SP2 provided as the first sprockets. The plurality of bicycle sprockets also includes a plurality of second sprockets SP3 and SP4 provided as second sprockets. The plurality of bicycle sprockets includes additional sprockets. In this embodiment, the plurality of bicycle sprockets includes a plurality of additional sprockets SP5 to SP12. However, the total number of first sprockets is not limited to this embodiment. The total number of second sprockets is not limited to this embodiment. The total number of additional sprockets is not limited to this embodiment. Alternatively, the first sprockets SP1 and SP2 may be integrally formed as a single unitary member, with the first sprocket SP1 being a separate sprocket from the first sprocket SP2 in this embodiment. Similarly, the second sprockets SP3 and SP4 can be integrally formed as a single integral member, and the second sprocket SP3 is a separate sprocket from the second sprocket SP4 in this embodiment. For example, the total number of the plurality of bicycle sprockets is equal to or greater than ten. The total number of the plurality of bicycle sprockets may be equal to or greater than eleven. The total number of the plurality of bicycle sprockets may be equal to or greater than twelve. In this embodiment, the total number of the plurality of bicycle sprockets is twelve. However, the total number of the plurality of bicycle sprockets is not limited to this embodiment. For example, the total number of the plurality of bicycle sprockets can be 13, 14, or equal to or greater than 15. In this embodiment, the first sprocket SP1 is the smallest sprocket in the rear sprocket assembly 14 of the bicycle. The extra sprocket SP12 is the largest sprocket in the rear sprocket assembly 14 of the bicycle. The first sprocket SP2 corresponds to the high speed gear in the rear sprocket assembly 14 of the bicycle. The extra sprocket SP12 corresponds to the low gear in the rear sprocket assembly 14 of the bicycle. As seen in FIG. 5, the first sprocket SP1 has a pitch circle diameter PCD1. The first sprocket SP2 has a pitch circle diameter PCD2. The second sprocket SP3 has a pitch circle diameter PCD3. The second sprocket SP4 has a pitch circle diameter PCD4. The extra sprocket SP5 has a pitch circle diameter PCD5. The extra sprocket SP6 has a pitch circle diameter PCD6. The extra sprocket SP7 has a pitch circle diameter PCD7. The extra sprocket SP8 has a pitch circle diameter PCD8. The extra sprocket SP9 has a pitch circle diameter PCD9. The extra sprocket SP10 has a pitch circle diameter PCD10. The extra sprocket SP11 has a pitch circle diameter PCD11. The extra sprocket SP12 has a pitch circle diameter PCD12. The first sprocket SP1 has a pitch circle PC1 having a pitch circle diameter PCD1. The first sprocket SP2 has a pitch circle PC2 having a pitch circle diameter PCD2. The second sprocket SP3 has a pitch circle PC3 having a pitch circle diameter PCD3. The second sprocket SP4 has a pitch circle PC4 having a pitch circle diameter PCD4. The extra sprocket SP5 has a pitch circle PC5 with a pitch circle diameter PCD5. The extra sprocket SP6 has a pitch circle PC6 with a pitch circle diameter PCD6. The extra sprocket SP7 has a pitch circle PC7 with a pitch circle diameter PCD7. The extra sprocket SP8 has a pitch circle PC8 with a pitch circle diameter PCD8. The extra sprocket SP9 has a pitch circle PC9 with a pitch circle diameter PCD9. The extra sprocket SP10 has a pitch circle PC10 having a pitch circle diameter PCD10. The extra sprocket SP11 has a pitch circle PC11 having a pitch circle diameter PCD11. The extra sprocket SP12 has a pitch circle PC12 with a pitch circle diameter PCD12. The pitch circle PC1 of the first sprocket SP1 is defined by the central axis of the pin of the bicycle chain 20 ( FIG. 2 ) meshing with the first sprocket SP1 . The pitch circles PC2 to PC12 and the pitch circle PC1 are defined. Therefore, for the sake of brevity, no detailed description will be given here. In this embodiment, the pitch circle diameter PCD1 is smaller than the pitch circle diameter PCD2. The pitch circle diameter PCD2 is smaller than the pitch circle diameter PCD3. The pitch circle diameter PCD3 is smaller than the pitch circle diameter PCD4. The pitch circle diameter PCD4 is smaller than the pitch circle diameter PCD5. The pitch circle diameter PCD5 is smaller than the pitch circle diameter PCD6. The pitch circle diameter PCD6 is smaller than the pitch circle diameter PCD7. The pitch circle diameter PCD7 is smaller than the pitch circle diameter PCD8. The pitch circle diameter PCD8 is smaller than the pitch circle diameter PCD9. The pitch circle diameter PCD9 is smaller than the pitch circle diameter PCD10. The pitch circle diameter PCD10 is smaller than the pitch circle diameter PCD11. The pitch circle diameter PCD11 is smaller than the pitch circle diameter PCD12. The pitch circle diameter PCD1 is the smallest pitch circle diameter in the bicycle rear sprocket assembly 14 . The pitch circle diameter PCD12 is the largest pitch circle diameter in the bicycle rear sprocket assembly 14 . The first sprocket SP1 corresponds to the high speed gear in the rear sprocket assembly 14 of the bicycle. The extra sprocket SP12 corresponds to the low gear in the rear sprocket assembly 14 of the bicycle. However, the first sprocket SP1 may correspond to another gear in the bicycle rear sprocket assembly 14 . The extra sprocket SP12 may correspond to another gear in the bicycle rear sprocket assembly 14 . As seen in FIG. 6, the first sprocket SP2 is adjacent to the first sprocket SP1 in the axial direction D2 with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14, and between the first sprockets SP1 and SP2. There is no other sprocket. The second sprocket SP3 is adjacent to the first sprocket SP2 in the axial direction D2 with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14, and there is no other sprocket SP2 between the first sprocket SP2 and the second sprocket SP3. a sprocket. The second sprocket SP4 is adjacent to the second sprocket SP3 in the axial direction D2 with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14, and there is no other sprocket between the second sprocket SP3 and the second sprocket SP4. a sprocket. The first sprockets SP1 and SP2, the second sprocket SP3, the second sprocket SP4, and the additional sprockets SP5 to SP12 are arranged in this order in the axial direction D2. As seen in FIG. 7 , the first sprocket SP1 includes a sprocket body SP1A and a plurality of sprocket teeth SP1B. A plurality of sprocket teeth SP1B extend radially outward from the sprocket body SP1A relative to the rotation center axis A1 of the bicycle rear sprocket assembly 14 . The total number of teeth of the first sprocket SP1 (the total number of teeth of at least one sprocket SP1B) is equal to or less than ten. In this embodiment, the total number of at least one sprocket tooth SP1B of the first sprocket SP1 is ten. However, the total number of the sprocket teeth SP1B of the first sprocket SP1 is not limited to this embodiment and the above scope. As seen in FIG. 8 , the first sprocket SP2 includes a sprocket body SP2A and a plurality of sprocket teeth SP2B. A plurality of sprocket teeth SP2B extend radially outward from the sprocket body SP2A with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14 . In this embodiment, the total number of at least one sprocket SP2B is twelve. However, the total number of the sprocket teeth SP2B of the first sprocket SP2 is not limited to this embodiment. The first sprocket SP2 includes at least one first shift facilitating area SP2F1 to facilitate the first shifting operation of the bicycle chain 20 from the first sprocket SP2 to the first sprocket SP1 . The first sprocket SP2 includes at least one second shift facilitating area SP2F2 to facilitate the second shifting operation of the bicycle chain 20 from the first sprocket SP1 to the first sprocket SP2. In this embodiment, the first sprocket SP2 includes a plurality of first shift promoting areas SP2F1 for facilitating the first shift operation. The first sprocket SP2 includes a plurality of second shift promoting regions SP2F2 for facilitating the second shift operation. However, the total number of the first shift promoting regions SP2F1 is not limited to this embodiment. The total number of the second shift promoting regions SP2F2 is not limited to this embodiment. The term "displacement-facilitating region" as used herein is intended to be a region intentionally designed to facilitate the displacement operation of a bicycle chain from a sprocket to another axially adjacent sprocket in that region. In this embodiment, the first sprocket SP2 includes a plurality of first displacement promoting grooves SP2R1 for facilitating the first displacement operation. The first sprocket SP2 includes a plurality of second displacement promoting grooves SP2R2 for facilitating the second displacement operation. The first displacement promoting groove SP2R1 is disposed in the first displacement promoting region SP2F1. However, the first displacement promoting region SP2F1 may include another structure instead of or in addition to the first displacement promoting groove SP2R1. The second displacement promoting region SP2F2 may include another structure instead of or in addition to the second displacement promoting groove SP2R2. As seen in FIG. 9 , the second sprocket SP3 includes a sprocket body SP3A and a plurality of sprocket teeth SP3B. A plurality of sprocket teeth SP3B extend radially outward from the sprocket body SP3A with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14 . In this embodiment, the total number of at least one sprocket SP3B is fourteen. However, the total number of sprocket teeth SP3B of the second sprocket SP3 is not limited to this embodiment. The second sprocket SP3 includes at least one first shift facilitating region SP3F1 to facilitate the first shifting operation of the bicycle chain 20 from the second sprocket SP3 to the first sprocket SP2 ( FIG. 6 ). The second sprocket SP3 includes at least one second displacement facilitating region SP3F2 to facilitate the second displacement operation of the bicycle chain 20 from the first sprocket SP2 ( FIG. 6 ) to the second sprocket SP3 . In this embodiment, the second sprocket SP3 includes a plurality of first shift promoting areas SP3F1 for facilitating the first shift operation. The second sprocket SP3 includes a plurality of second shift promoting regions SP3F2 for facilitating the second shift operation. However, the total number of the first shift promoting regions SP3F1 is not limited to this embodiment. The total number of the second shift promoting regions SP3F2 is not limited to this embodiment. In this embodiment, the second sprocket SP3 includes a plurality of first displacement promoting grooves SP3R1 for facilitating the first displacement operation. The second sprocket SP3 includes a plurality of second displacement promoting grooves SP3R2 for facilitating the second displacement operation. The first displacement promoting groove SP3R1 is disposed in the first displacement promoting region SP3F1. However, the first displacement promoting region SP3F1 may include another structure instead of or in addition to the first displacement promoting groove SP3R1. The second displacement promoting region SP3F2 may include another structure instead of or in addition to the second displacement promoting groove SP3R2. As seen in FIG. 10 , the second sprocket SP4 includes a sprocket body SP4A and a plurality of sprocket teeth SP4B. A plurality of sprocket teeth SP4B extend radially outward from the sprocket body SP4A with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14 . In this embodiment, the total number of at least one sprocket SP4B is sixteen. However, the total number of the sprocket teeth SP4B of the second sprocket SP4 is not limited to this embodiment. The second sprocket SP4 includes at least one first shift facilitating area SP4F1 to facilitate the first shifting operation of the bicycle chain 20 from the second sprocket SP4 to the second sprocket SP3. The second sprocket SP4 includes at least one second shift facilitating area SP4F2 to facilitate the second shifting operation of the bicycle chain 20 from the second sprocket SP3 to the second sprocket SP4. In this embodiment, the second sprocket SP4 includes a plurality of first shift promoting areas SP4F1 for facilitating the first shift operation. The second sprocket SP4 includes a plurality of second shift promoting regions SP4F2 for facilitating the second shift operation. However, the total number of the first shift promoting regions SP4F1 is not limited to this embodiment. The total number of the second shift promoting regions SP4F2 is not limited to this embodiment. In this embodiment, the second sprocket SP4 includes a plurality of first displacement promoting grooves SP4R1 for facilitating the first displacement operation. The second sprocket SP4 includes a plurality of second displacement promoting grooves SP4R2 for facilitating the second displacement operation. The first displacement promoting groove SP4R1 is disposed in the first displacement promoting region SP4F1. However, the first displacement promoting region SP4F1 may include another structure instead of or in addition to the first displacement promoting groove SP4R1. The second displacement promoting region SP4F2 may include another structure instead of or in addition to the second displacement promoting groove SP4R2. As seen in FIG. 11 , the extra sprocket SP5 includes a sprocket body SP5A and a plurality of sprocket teeth SP5B. A plurality of sprocket teeth SP5B extend radially outward from the sprocket body SP5A with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14 . In this embodiment, the total number of at least one sprocket SP5B is eighteen. However, the total number of sprocket teeth SP5B of the extra sprocket SP5 is not limited to this embodiment. The extra sprocket SP5 includes at least one first shift facilitating region SP5F1 to facilitate the first shifting operation of the bicycle chain 20 from the extra sprocket SP5 to the adjacent smaller sprocket SP4. The extra sprocket SP5 includes at least one second shift facilitating region SP5F2 to facilitate the second shifting operation of the bicycle chain 20 from the adjacent smaller sprocket SP4 to the extra sprocket SP5. The adjacent smaller sprocket SP4 is adjacent to the additional sprocket SP5 in the axial direction D2 with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14, and between the additional sprocket SP5 and the adjacent smaller sprocket SP4 There is no other sprocket. In this embodiment, the extra sprocket SP5 includes a plurality of first shift facilitating regions SP5F1 for facilitating the first shift operation. The extra sprocket SP5 includes a plurality of second shift promoting areas SP5F2 for facilitating the second shift operation. However, the total number of the first shift promoting regions SP5F1 is not limited to this embodiment. The total number of the second displacement promoting regions SP5F2 is not limited to this embodiment. In this embodiment, the extra sprocket SP5 includes a plurality of first shift-promoting grooves SP5R1 for facilitating the first shift operation. The extra sprocket SP5 includes a plurality of second displacement promoting grooves SP5R2 for facilitating the second displacement operation. The first displacement promoting groove SP5R1 is disposed in the first displacement promoting region SP5F1. The second displacement promoting groove SP5R2 is disposed in the second displacement promoting region SP5F2. However, the first displacement promoting region SP5F1 may include another structure instead of or in addition to the first displacement promoting groove SP5R1. The second displacement promoting region SP5F2 may include another structure instead of or in addition to the second displacement promoting groove SP5R2. As seen in FIG. 12, the extra sprocket SP6 includes a sprocket body SP6A and a plurality of sprocket teeth SP6B. A plurality of sprocket teeth SP6B extend radially outward from the sprocket body SP6A with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14 . In this embodiment, the total number of at least one sprocket SP6B is twenty-one. However, the total number of sprocket teeth SP6B of the extra sprocket SP6 is not limited to this embodiment. The extra sprocket SP6 includes at least one first shift facilitating region SP6F1 to facilitate the first shifting operation of the bicycle chain 20 from the extra sprocket SP6 to the adjacent smaller sprocket SP5. The extra sprocket SP6 includes at least one second shift facilitating region SP6F2 to facilitate the second shifting operation of the bicycle chain 20 from the adjacent smaller sprocket SP5 to the extra sprocket SP6. The adjacent smaller sprocket SP5 is adjacent to the additional sprocket SP6 in the axial direction D2 with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14, and between the additional sprocket SP6 and the adjacent smaller sprocket SP5 There is no other sprocket. In this embodiment, the extra sprocket SP6 includes a plurality of first shift facilitating regions SP6F1 for facilitating the first shift operation. The extra sprocket SP6 includes a plurality of second shift promoting areas SP6F2 for facilitating the second shift operation. However, the total number of the first shift promoting regions SP6F1 is not limited to this embodiment. The total number of the second shift promoting regions SP6F2 is not limited to this embodiment. In this embodiment, the extra sprocket SP6 includes a plurality of first shift-promoting grooves SP6R1 for facilitating the first shift operation. The extra sprocket SP6 includes a plurality of second displacement promoting grooves SP6R2 for facilitating the second displacement operation. The first displacement promoting groove SP6R1 is placed in the first displacement promoting region SP6F1. The second displacement promoting groove SP6R2 is disposed in the second displacement promoting region SP6F2. However, the first displacement promoting region SP6F1 may include another structure instead of or in addition to the first displacement promoting groove SP6R1. The second displacement promoting region SP6F2 may include another structure instead of or in addition to the second displacement promoting groove SP6R2. As seen in FIG. 13, the extra sprocket SP7 includes a sprocket body SP7A and a plurality of sprocket teeth SP7B. A plurality of sprocket teeth SP7B extend radially outward from the sprocket body SP7A with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14 . In this embodiment, the total number of at least one sprocket SP7B is twenty-four. However, the total number of sprocket teeth SP7B of the extra sprocket SP7 is not limited to this embodiment. The extra sprocket SP7 includes at least one first shift facilitating region SP7F1 to facilitate the first shifting operation of the bicycle chain 20 from the extra sprocket SP7 to the adjacent smaller sprocket SP6. The extra sprocket SP7 includes at least one second shift facilitating region SP7F2 to facilitate the second shifting operation of the bicycle chain 20 from the adjacent smaller sprocket SP6 to the extra sprocket SP7. The adjacent smaller sprocket SP6 is adjacent to the additional sprocket SP7 in the axial direction D2 with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14, and between the additional sprocket SP7 and the adjacent smaller sprocket SP6 There is no other sprocket. In this embodiment, the extra sprocket SP7 includes a plurality of first shift facilitating regions SP7F1 for facilitating the first shift operation. The extra sprocket SP7 includes a plurality of second shift promoting areas SP7F2 for facilitating the second shift operation. However, the total number of the first shift promoting regions SP7F1 is not limited to this embodiment. The total number of the second shift promoting regions SP7F2 is not limited to this embodiment. In this embodiment, the extra sprocket SP7 includes a plurality of first shift-promoting grooves SP7R1 for facilitating the first shift operation. The extra sprocket SP7 includes a plurality of second displacement promoting grooves SP7R2 for facilitating the second displacement operation. The first displacement promoting groove SP7R1 is placed in the first displacement promoting region SP7F1. The second displacement promoting groove SP7R2 is disposed in the second displacement promoting region SP7F2. However, the first displacement promoting region SP7F1 may include another structure instead of or in addition to the first displacement promoting groove SP7R1. The second displacement promoting region SP7F2 may include another structure instead of or in addition to the second displacement promoting groove SP7R2. As seen in FIG. 14, the extra sprocket SP8 includes a sprocket body SP8A and a plurality of sprocket teeth SP8B. A plurality of sprocket teeth SP8B extend radially outward from the sprocket body SP8A with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14 . In this embodiment, the total number of at least one sprocket SP8B is twenty-eight. However, the total number of sprocket teeth SP8B of the extra sprocket SP8 is not limited to this embodiment. The extra sprocket SP8 includes at least one first shift facilitating region SP8F1 to facilitate the first shifting operation of the bicycle chain 20 from the extra sprocket SP8 to the adjacent smaller sprocket SP7. The extra sprocket SP8 includes at least one second shift facilitating region SP8F2 to facilitate the second shifting operation of the bicycle chain 20 from the adjacent smaller sprocket SP7 to the extra sprocket SP8. The adjacent smaller sprocket SP7 is adjacent to the additional sprocket SP8 in the axial direction D2 with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14, and between the additional sprocket SP8 and the adjacent smaller sprocket SP7 There is no other sprocket. In this embodiment, the extra sprocket SP8 includes a plurality of first shift facilitating regions SP8F1 for facilitating the first shift operation. The extra sprocket SP8 includes a plurality of second shift facilitating areas SP8F2 for facilitating the second shift operation. However, the total number of the first shift promoting regions SP8F1 is not limited to this embodiment. The total number of the second shift promoting regions SP8F2 is not limited to this embodiment. In this embodiment, the extra sprocket SP8 includes a plurality of first shift-promoting grooves SP8R1 for facilitating the first shift operation. The extra sprocket SP8 includes a plurality of second shift-promoting grooves SP8R2 for facilitating the second shift operation. The first displacement promoting groove SP8R1 is placed in the first displacement promoting region SP8F1. The second displacement promoting groove SP8R2 is disposed in the second displacement promoting region SP8F2. However, the first displacement promoting region SP8F1 may include another structure instead of or in addition to the first displacement promoting groove SP8R1. The second displacement promoting region SP8F2 may include another structure instead of or supplementing the second displacement promoting groove SP8R2. As seen in Fig. 15, the extra sprocket SP9 includes a sprocket body SP9A and a plurality of sprocket teeth SP9B. A plurality of sprocket teeth SP9B extend radially outward from the sprocket body SP9A with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14 . In this embodiment, the total number of at least one sprocket SP9B is thirty-three. However, the total number of sprocket teeth SP9B of the extra sprocket SP9 is not limited to this embodiment. The extra sprocket SP9 includes at least one first shift facilitating region SP9F1 to facilitate the first shifting operation of the bicycle chain 20 from the extra sprocket SP9 to the adjacent smaller sprocket SP8. The extra sprocket SP9 includes at least one second shift facilitating region SP9F2 to facilitate the second shifting operation of the bicycle chain 20 from the adjacent smaller sprocket SP8 to the extra sprocket SP9. The adjacent smaller sprocket SP8 is adjacent to the additional sprocket SP9 in the axial direction D2 with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14, and between the additional sprocket SP9 and the adjacent smaller sprocket SP8 There is no other sprocket. In this embodiment, the extra sprocket SP9 includes a plurality of first shift facilitating regions SP9F1 for facilitating the first shift operation. The extra sprocket SP9 includes a plurality of second shift facilitating areas SP9F2 for facilitating the second shift operation. However, the total number of the first shift promoting regions SP9F1 is not limited to this embodiment. The total number of the second displacement promoting regions SP9F2 is not limited to this embodiment. In this embodiment, the extra sprocket SP9 includes a plurality of first shift-promoting grooves SP9R1 for facilitating the first shift operation. The extra sprocket SP9 includes a plurality of second shift-promoting grooves SP9R2 for facilitating the second shift operation. The first displacement promoting groove SP9R1 is placed in the first displacement promoting region SP9F1. The second displacement promoting groove SP9R2 is disposed in the second displacement promoting region SP9F2. However, the first displacement promoting region SP9F1 may include another structure instead of or in addition to the first displacement promoting groove SP9R1. The second displacement promoting region SP9F2 may include another structure instead of or in addition to the second displacement promoting groove SP9R2. As seen in FIG. 16 , the extra sprocket SP10 includes a sprocket body SP10A and a plurality of sprocket teeth SP10B. A plurality of sprocket teeth SP10B extend radially outward from the sprocket main body SP10A with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14 . In this embodiment, the total number of at least one sprocket SP10B is thirty-nine. However, the total number of sprocket teeth SP10B of the extra sprocket SP10 is not limited to this embodiment. The extra sprocket SP10 includes at least one first shift facilitating region SP10F1 to facilitate the first shifting operation of the bicycle chain 20 from the extra sprocket SP10 to the adjacent smaller sprocket SP9. The extra sprocket SP10 includes at least one second shift facilitating region SP10F2 to facilitate the second shifting operation of the bicycle chain 20 from the adjacent smaller sprocket SP9 to the extra sprocket SP10. The adjacent smaller sprocket SP9 is adjacent to the additional sprocket SP10 in the axial direction D2 with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14, and between the additional sprocket SP10 and the adjacent smaller sprocket SP9 There is no other sprocket. In this embodiment, the extra sprocket SP10 includes a plurality of first shift facilitating regions SP10F1 for facilitating the first shift operation. The extra sprocket SP10 includes a plurality of second shift facilitating regions SP10F2 for facilitating the second shift operation. However, the total number of the first shift promoting regions SP10F1 is not limited to this embodiment. The total number of the second shift promoting regions SP10F2 is not limited to this embodiment. In this embodiment, the extra sprocket SP10 includes a plurality of first shift-promoting grooves SP10R1 for facilitating the first shift operation. The extra sprocket SP10 includes a plurality of second shift-promoting grooves SP10R2 for facilitating the second shift operation. The first displacement promoting groove SP10R1 is disposed in the first displacement promoting region SP10F1. The second displacement promoting groove SP10R2 is disposed in the second displacement promoting region SP10F2. However, the first displacement promoting region SP10F1 may include another structure instead of or in addition to the first displacement promoting groove SP10R1. The second displacement promoting region SP10F2 may include another structure instead of or in addition to the second displacement promoting groove SP10R2. As seen in FIG. 17 , the extra sprocket SP11 includes a sprocket body SP11A and a plurality of sprocket teeth SP11B. A plurality of sprocket teeth SP11B extend radially outward from the sprocket main body SP11A with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14 . In this embodiment, the total number of at least one sprocket SP11B is 45. However, the total number of sprocket teeth SP11B of the extra sprocket SP11 is not limited to this embodiment. The extra sprocket SP11 includes at least one first shift facilitating region SP11F1 to facilitate the first shifting operation of the bicycle chain 20 from the extra sprocket SP11 to the adjacent smaller sprocket SP10. The extra sprocket SP11 includes at least one second shift facilitating region SP11F2 to facilitate the second shifting operation of the bicycle chain 20 from the adjacent smaller sprocket SP10 to the extra sprocket SP11. The adjacent smaller sprocket SP10 is adjacent to the additional sprocket SP11 in the axial direction D2 with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14, and between the additional sprocket SP11 and the adjacent smaller sprocket SP10 There is no other sprocket. In this embodiment, the extra sprocket SP11 includes a plurality of first shift facilitating regions SP11F1 for facilitating the first shift operation. The extra sprocket SP11 includes a plurality of second shift-promoting groove areas SP11F2 for facilitating the second shift operation. However, the total number of the first shift promoting regions SP11F1 is not limited to this embodiment. The total number of the second displacement promoting regions SP11F2 is not limited to this embodiment. In this embodiment, the extra sprocket SP11 includes a plurality of first displacement promoting grooves SP11R1 for facilitating the first displacement operation. The extra sprocket SP11 includes a plurality of second displacement promoting grooves SP11R2 for facilitating the second displacement operation. The first displacement promoting groove SP11R1 is disposed in the first displacement promoting region SP11F1. The second displacement promoting groove SP11R2 is disposed in the second displacement promoting region SP11F2. However, the first displacement promoting region SP11F1 may include another structure instead of or in addition to the first displacement promoting groove SP11R1. The second displacement promoting region SP11F2 may include another structure instead of or in addition to the second displacement promoting groove SP11R2. As seen in FIG. 18, the extra sprocket SP12 includes a sprocket body SP12A and a plurality of sprocket teeth SP12B. A plurality of sprocket teeth SP12B extend radially outward from the sprocket main body SP12A with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14 . The total number of teeth of the extra sprocket SP12 is equal to or greater than 46. The total number of teeth of the extra sprocket SP12 can also be equal to or greater than 50. The total number of teeth of the additional sprocket SP12 is 51 in this embodiment. However, the total number of at least one sprocket tooth SP12B of the additional sprocket SP12 is not limited to this embodiment and the above scope. The extra sprocket SP12 includes at least one first shift facilitating region SP12F1 to facilitate the first shifting operation of the bicycle chain 20 from the extra sprocket SP12 to the adjacent smaller sprocket SP11. The extra sprocket SP12 includes at least one second shift facilitating region SP12F2 to facilitate the second shifting operation of the bicycle chain 20 from the adjacent smaller sprocket SP11 to the extra sprocket SP12. The adjacent smaller sprocket SP11 is adjacent to the additional sprocket SP12 in the axial direction D2 with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14, and between the additional sprocket SP12 and the adjacent smaller sprocket SP11 There is no other sprocket. In this embodiment, the extra sprocket SP12 includes a plurality of first shift facilitating regions SP12F1 for facilitating the first shift operation. The extra sprocket SP12 includes a plurality of second shift promoting regions SP12F2 for facilitating the second shift operation. However, the total number of the first shift promoting regions SP12F1 is not limited to this embodiment. The total number of the second shift promoting regions SP12F2 is not limited to this embodiment. In this embodiment, the extra sprocket SP12 includes a plurality of first shift promoting grooves SP12R1 for facilitating the first shift operation. The extra sprocket SP12 includes a plurality of second displacement promoting grooves SP12R2 for facilitating the second displacement operation. The first displacement promoting groove SP12R1 is disposed in the first displacement promoting region SP12F1. The second displacement promoting groove SP12R2 is disposed in the second displacement promoting region SP12F2. However, the first displacement promoting region SP12F1 may include another structure instead of or in addition to the first displacement promoting groove SP12R1. The second displacement promoting region SP12F2 may include another structure instead of or in addition to the second displacement promoting groove SP12R2. As seen in FIG. 19, the sprockets SP1 to SP12 are separate members from each other. However, at least one of the sprockets SP1 to SP12 may be at least partially integrally provided with another one of the sprockets SP1 to SP12. All sprockets SP1 to SP12 may be integrally formed with each other as a one-piece integral unit. In this case, at least one of the sprockets SP3-SP12 may include at least ten internal spline teeth. The bicycle rear sprocket assembly 14 further includes a sprocket support member 37, a plurality of spacers 38, a first ring 39A and a second ring 39B. The first ring 39A is disposed between the second sprocket SP3 and the second sprocket SP4 in the axial direction D2. The second ring 39B is disposed between the second sprocket SP4 and the additional sprocket SP5 in the axial direction D2. The additional sprocket is configured for attachment to the sprocket support member 37 . The additional sprockets SP5 to SP12 are configured in this embodiment for attachment to the sprocket support member 37 . As seen in FIG. 6 , the additional sprocket is attached to the sprocket support member 37 by adhesive 37A, for example. In this embodiment, the additional sprockets SP5 to SP12 are attached to the sprocket support member 37 by an adhesive 37A. Therefore, it is possible to reduce the weight of the bicycle rear sprocket assembly 14 by reducing or eliminating metal fasteners. However, at least one of the additional sprockets SP5-SP12 may be attached to the sprocket support member 37 by another structure other than the adhesive 37A, including metal fasteners. At least one of the additional sprockets SP5 to SP12 can be engaged with the sprocket support body 28 without the sprocket support member 37 . The sprocket support member 37 may be omitted from the bicycle rear sprocket assembly 14 . In addition, at least one of the second sprockets SP3 and SP4 may be attached to the sprocket support member 37 . As seen in FIG. 4, the locking member 32 includes a tubular body 32A, an externally threaded portion 32B, and a radial protrusion 32C. The tubular body 32A includes a first axial end 32D and a second axial end 32E. With respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14 , the second axial end 32E is opposite to the first axial end 32D in the axial direction D2 . As seen in FIG. 6, with the bicycle rear sprocket assembly 14 mounted to the bicycle rear hub assembly 12, the first axial end 32D is positioned closer to the bicycle rear hub assembly 12 than the second axial end 32E The axial center plane CPL. The axial center plane CPL is perpendicular to the rotation center axis A1. As seen in FIG. 3 , the axial center plane CPL is defined to bisect the axial length of the rear bicycle hub assembly 12 in the axial direction D2 . As seen in FIG. 6, an externally threaded portion 32B is provided to the first axial end 32D for sprocket support with the bicycle rear hub assembly 12 in a state where the bicycle rear sprocket assembly 14 is mounted to the bicycle rear hub assembly 12. The internally threaded portion 28A of the main body 28 engages. The radial protrusion 32C extends radially outward from the second axial end 32E with respect to the rotation center axis A1 to restrain the first sprocket SP2 in a state where the bicycle rear sprocket assembly 14 is mounted to the bicycle rear hub assembly 12 Axial movement of the sprocket support body 28 relative to the bicycle rear hub assembly 12 . The first sprocket SP1 includes a first inner SP1G and a first outer SP1H. The first outward SP1H is opposed to the first inner SP1G in the axial direction D2. The radial protrusion 32C is configured to abut the first sprocket SP1 in the first outward side SP1H. The first sprockets SP1 and SP2 are arranged between the radial protrusion 32C and the second sprocket SP3 in the axial direction. The first sprockets SP1 and SP2 , the second sprocket SP3 , the second sprocket SP4 and the first ring 39A are held between the radial protrusion 32C and the sprocket support member 37 in the axial direction D2 . As seen in FIG. 4 , the locking member 32 has a tool engaging portion 32F. A tool engaging portion 32F is provided on an inner peripheral surface 32A1 of the tubular body 32A to engage with a fastening tool (not shown). In this embodiment, the tool engaging portion 32F includes a plurality of engaging grooves 32G that will be used when the locking member 32 is threadedly attached to the sprocket support body 28 by the externally threaded portion 32B and the internally threaded portion 28A. Engage with fastening tool. As seen in FIGS. 20 and 21 , the sprocket support body 28 includes at least one external spline tooth 40 configured to engage the bicycle rear sprocket assembly 14 ( FIG. 6 ). The sprocket support body 28 includes at least ten external spline teeth 40 configured to mesh with the bicycle rear sprocket assembly 14 ( FIG. 6 ). That is, at least one external spline tooth 40 includes a plurality of external spline teeth 40 . The sprocket support body 28 includes a base support 41 having a tubular shape. The base support 41 extends along the rotation center axis A1. External spline teeth 40 extend radially outward from base support 41 . The sprocket support body 28 includes a larger diameter portion 42 , a flange 44 and a plurality of helical outer spline teeth 46 . The larger diameter portion 42 and the flange 44 extend radially outward from the base support 41 . The larger diameter portion 42 is disposed between the plurality of outer spline teeth 40 and the flange 44 in the axial direction D2. The larger diameter portion 42 and the flange 44 are disposed between the plurality of outer spline teeth 40 and the plurality of helical outer spline teeth 46 in the axial direction D2. As seen in FIG. 6 , the bicycle rear sprocket assembly 14 is held between the larger diameter portion 42 and the radial protrusion 32C of the locking member 32 in the axial direction D2 . The larger diameter portion 42 may have an internal cavity such that a transmission structure, such as a one-way coupling, may be accommodated within the internal cavity. The larger diameter portion 42 can be omitted from the bicycle rear hub assembly 12 as desired. As seen in Figure 22, at least one of the at least ten outer spline teeth 40 has an axial spline tooth length SL1. Each of the external spline teeth 40 has an axial spline tooth length SL1. The axial spline tooth length SL1 is equal to or less than 27 mm. The axial spline tooth length SL1 is equal to or greater than 22 mm. In this embodiment, the axial spline tooth length SL1 is 24. 9 mm. However, the axial spline tooth length SL1 is not limited to this embodiment and the above range. As seen in FIG. 23 , the total number of at least ten external spline teeth 40 is equal to or greater than twenty. The total number of at least ten external spline teeth 40 is preferably equal to or greater than twenty-five. The total number of at least ten external spline teeth 40 is preferably equal to or greater than twenty-eight. The total number of external spline teeth 40 is preferably equal to or less than seventy-two. In this embodiment, the total number of external spline teeth 40 is twenty-nine. However, the total number of external spline teeth 40 is not limited to this embodiment and the above range. At least ten outer spline teeth 40 have a first outer circumferential pitch angle PA11 and a second outer circumferential pitch angle PA12. At least two of the at least ten external spline teeth 40 are circumferentially arranged at a first external circumferential pitch angle PA11 with respect to the rotation central axis A1. In other words, at least two of the plurality of external spline teeth 40 are arranged along the circumference at the first external pitch angle PA11 with respect to the rotation center axis A1 of the bicycle rear hub assembly 12 . At least two of the at least ten external spline teeth 40 are arranged along the circumference at a second external pitch angle PA12 with respect to the rotation center axis A1 of the bicycle rear hub assembly 12 . In other words, at least two of the plurality of external spline teeth 40 are arranged along the circumference at the second external peripheral pitch angle PA12 with respect to the rotation center axis A1 of the bicycle rear hub assembly 12 . In this embodiment, the second outer pitch angle PA12 is different from the first outer pitch angle PA11. However, the second outer pitch angle PA12 may be substantially equal to the first outer pitch angle PA11. In this embodiment, the external spline teeth 40 are arranged at a first external pitch angle PA11 in the circumferential direction D1. Two of the external spline teeth 40 are arranged at a second external pitch angle PA12 in the circumferential direction D1. However, at least two of the outer spline teeth 40 may be arranged at another outer circumferential pitch angle in the circumferential direction D1. The first outer pitch angle PA11 ranges from 5 degrees to 36 degrees. The first outer pitch angle PA11 preferably ranges from 10 degrees to 20 degrees. The first outer peripheral pitch angle PA11 is preferably equal to or smaller than 15 degrees. In this embodiment, the first outer pitch angle PA11 is 12 degrees. However, the first outer pitch angle PA11 is not limited to this embodiment and the above range. The second outer pitch angle PA12 ranges from 5 degrees to 36 degrees. In this embodiment, the second outer peripheral pitch angle PA12 is 24 degrees. However, the second outer peripheral pitch angle PA12 is not limited to this embodiment and the above range. At least one of the external spline teeth 40 may be different from the first spline shape of the second spline shape of the other of the external spline teeth 40 . At least one of the at least ten external spline teeth 40 may have a first spline size that is different from a second spline size of another of the at least ten external spline teeth 40 . At least one of the external spline teeth 40 has a different profile than the other of the external spline teeth 40 when viewed along the rotational center axis A1 . In this embodiment, the outer spline teeth 40X have a first spline shape that is different from the second spline shape of the other of the outer spline teeth 40 . The outer spline teeth 40X have a first spline size that is different from the second spline size of the other of the outer spline teeth 40 . However, as seen in Fig. 24, at least ten outer spline teeth 40 may have the same spline shape as each other. At least ten external spline teeth 40 may have the same spline size as one another. At least ten external spline teeth 40 may have the same profile as each other. As seen in FIG. 25 , each of the at least ten external spline teeth 40 has an external spline drive surface 48 and an external spline non-drive surface 50 . The plurality of external spline teeth 40 includes a plurality of external spline drive surfaces 48 for receiving the drive rotational force F1 from the bicycle rear sprocket assembly 14 ( FIG. 6 ) during pedaling. The plurality of external spline teeth 40 includes a plurality of external spline non-drive surfaces 50 . The external splined drive surface 48 can contact the bicycle rear sprocket assembly 14 to receive the drive rotational force F1 from the bicycle rear sprocket assembly 14 ( FIG. 6 ) during pedaling. The external spline drive surface 48 faces in the counter-rotational direction D12. The outer splined surface 48 faces the inner splined surface 66 of the bicycle rear sprocket assembly 14 when the bicycle rear sprocket assembly 14 is mounted to the bicycle rear hub assembly 12 . The external spline non-transmission surface 50 is disposed on the opposite side of the external spline transmission surface 48 in the circumferential direction D1. The external splined non-drive surface 50 faces the drive rotation direction D11 so as not to receive the drive rotation force F1 from the bicycle rear sprocket assembly 14 during pedaling. The outer splined non-drive surface 50 faces the inner splined non-drive surface 68 of the bicycle rear sprocket assembly 14 in a state where the bicycle rear sprocket assembly 14 is mounted to the bicycle rear hub assembly 12 . At least ten external spline teeth 40 each have a circumferential maximum width MW1. The outer spline teeth 40 each have a maximum circumferential width MW1. The circumferential maximum width MW1 is defined as the maximum width receiving the thrust F2 applied to the external spline teeth 40 . The circumferential maximum width MW1 is defined as the linear distance based on the external spline drive surface 48 . The plurality of outer splined drive surfaces 48 each include a radially outermost edge 48A and a radially innermost edge 48B. The outer splined drive surface 48 extends from a radially outermost edge 48A to a radially innermost edge 48B. The first reference circle RC11 is defined on the radially innermost edge 48B and centered on the rotation central axis A1. The first reference circle RC11 intersects the outer splined non-drive surface 50 at a reference point 50R. The circumferential maximum width MW1 extends linearly from the radially innermost edge 48B to the reference point 50R in the circumferential direction D1. The plurality of external splined non-drive surfaces 50 each include a radially outermost edge 50A and a radially innermost edge 50B. The outer splined non-drive surface 50 extends from a radially outermost edge 50A to a radially innermost edge 50B. In this embodiment, the reference point 50R coincides with the radially innermost edge 50B. However, the reference point 50R may be offset from the radially innermost edge 50B. The sum of the maximum circumferential widths MW1 is equal to or greater than 55 mm. The sum of the circumferential maximum widths MW1 is preferably equal to or greater than 60 mm. The sum of the circumferential maximum widths MW1 is preferably equal to or less than 70 mm. In this embodiment, the sum of the maximum circumferential width MW1 is 60. 1 mm. However, the sum of the maximum circumferential widths MW1 is not limited to this embodiment and the above range. As seen in FIG. 26, at least one external spline tooth 40 has an external spline top diameter DM11 equal to or smaller than 34 mm. External spline top diameter DM11 is equal to or less than 33 mm. External spline top diameter DM11 is equal to or greater than 29 mm. In this embodiment, the external spline top diameter DM11 is 32. 6 mm. However, the external spline top diameter DM11 is not limited to this embodiment and the above range. At least one external spline tooth 40 has an external spline base diameter DM12. At least one external spline tooth 40 has an external spline root circle RC12 having an external spline base diameter DM12. However, the outer spline root circle RC12 may have another diameter than the outer spline bottom diameter DM12. External spline bottom diameter DM12 is equal to or less than 32 mm. External spline bottom diameter DM12 is equal to or less than 31 mm. External spline bottom diameter DM12 is equal to or greater than 28 mm. In this embodiment, the external spline bottom diameter DM12 is 30. 2 mm. However, the external spline bottom diameter DM12 is not limited to this embodiment and the above range. The larger diameter portion 42 has an outer diameter DM13 that is larger than the outer spline top diameter DM11. The outer diameter DM13 ranges from 32 mm to 40 mm. In this embodiment, the outer diameter DM13 is 35 mm. However, the outer diameter DM13 is not limited to this embodiment. As seen in FIG. 25 , the plurality of outer splined drive surfaces 48 each include a radial length RL11 defined from a radially outermost edge 48A to a radially innermost edge 48B. The sum of the radial lengths RL11 of the plurality of external spline transmission surfaces 48 is equal to or greater than 7 mm. The sum of the radial lengths RL11 is equal to or greater than 10 mm. The sum of the radial lengths RL11 is equal to or greater than 15 mm. The sum of the radial lengths RL11 is equal to or less than 36 mm. In this embodiment, the sum of the radial lengths RL11 is 16. 6mm. However, the sum of the radial lengths RL11 is not limited to this embodiment. The plurality of external spline teeth 40 has an additional radial length RL12. The additional radial lengths RL12 are respectively defined from the outer spline root circle RC12 to the radially outermost ends 40A of the plurality of outer spline teeth 40 . The sum of the additional radial lengths RL12 is equal to or greater than 20 mm. In this embodiment, the sum of the additional radial lengths RL12 is 31. 2mm. However, the sum of the additional radial lengths RL12 is not limited to this embodiment. At least one of the at least ten external spline teeth 40 is circumferentially symmetrical with respect to the reference line CL1. In the radial direction with respect to the rotation center axis A1 , the reference line CL1 extends from the rotation center axis A1 to the circumferential center point CP1 of the radially outermost end 40A of the at least one of the at least ten outer spline teeth 40 . However, at least one of the outer spline teeth 40 may have an asymmetric shape with respect to the reference line CL1. The at least one of the at least ten external spline teeth 40 includes an external spline drive surface 48 and an external spline non-drive surface 50 . At least one of the plurality of external splined drive surfaces 48 has a first external splined surface angle AG11. A first outer spline surface angle AG11 is defined between the outer spline drive surface 48 and the first radial line L11. The first radial line L11 extends from the rotation center axis A1 of the bicycle rear hub assembly 12 to the radially outermost edge 48A of the outer splined drive surface 48 . The first outer pitch angle PA11 or the second outer pitch angle PA12 is defined between adjacent first radial lines L11 (see, eg, FIG. 23 ). At least one of the external splined non-drive surfaces 50 has a second external splined surface angle AG12. A second external spline surface angle AG12 is defined between the external spline non-drive surface 50 and the second radial line L12. The second radial line L12 extends from the rotational central axis A1 of the bicycle rear hub assembly 12 to the radially outermost edge 50A of the outer splined non-transmission surface 50 . In this embodiment, the second external spline surface angle AG12 is equal to the first external spline surface angle AG11. However, the first external spline surface angle AG11 may be different from the second external spline surface angle AG12. The first external spline surface angle AG11 is equal to or smaller than 6 degrees. The first external spline surface angle AG11 is equal to or greater than 0 degrees. The second external spline surface angle AG12 is equal to or less than 6 degrees. The second external spline surface angle AG12 is equal to or greater than 0 degrees. In this embodiment, the first external spline surface angle AG11 is 5 degrees. The second external spline surface angle AG12 is 5 degrees. However, the first external spline surface angle AG11 and the second external spline surface angle AG12 are not limited to this embodiment and the above range. As seen in FIGS. 27 and 28 , the brake rotor support body 34 includes at least one additional external spline tooth 52 configured to engage the bicycle brake rotor 16 ( FIG. 1 ). In this embodiment, the brake rotor support body 34 includes an additional base support 54 and a plurality of additional external spline teeth 52 . The additional base support 54 has a tubular shape and extends from the hub body 36 along the rotational center axis A1. Additional external spline teeth 52 extend radially outward from an additional base support 54 . The total number of additional external spline teeth 52 is fifty-two. However, the total number of additional external spline teeth 52 is not limited to this embodiment. As seen in Figure 28, at least one additional external spline tooth 52 has an additional external spline top diameter DM14. As seen in Fig. 29, the extra external spline top diameter DM14 is larger than the external spline top diameter DM11. Additional outer spline top diameter DM14 is substantially equal to larger diameter portion 42 outer diameter DM13 . However, the additional external spline top diameter DM14 may be equal to or smaller than the external spline top diameter DM11. The additional outer spline top diameter DM14 may be different from the larger diameter portion 42 outer diameter DM13 . As seen in FIG. 29, the hub body 36 includes a first spoke mounting portion 36A and a second spoke mounting portion 36B. A plurality of first spokes SK1 are coupled to the first spoke mounting portion 36A. A plurality of second spokes SK2 are coupled to the second spoke mounting portion 36B. In this embodiment, the first spoke mounting portion 36A includes a plurality of first attachment holes 36A1. The first spoke SK1 extends through the first attachment hole 36A1. The second spoke mounting portion 36B includes a plurality of second attachment holes 36B1. The second spoke SK2 extends through the second attachment hole 36B1. As used herein, the term "spoke mounting portion" encompasses a configuration in which the spoke mounting opening has a flange-like shape such that the spoke mounting portion extends radially outward relative to the central axis of rotation of the bicycle rear hub assembly as seen in FIG. shape, and the spoke mounting portion is a configuration of an opening formed directly on the radially outer peripheral surface of the hub main body. The second spoke mounting portion 36B is spaced apart from the first spoke mounting portion 36A in the axial direction D2. The first spoke mounting portion 36A is disposed between the sprocket support body 28 and the second spoke mounting portion 36B in the axial direction D2. The second spoke mounting portion 36B is disposed between the first spoke mounting portion 36A and the brake rotor supporting body 34 in the axial direction D2. The first spoke mounting portion 36A has a first axially outermost portion 36C. The second spoke mounting portion 36B has a second axially outermost portion 36D. The first axially outermost portion 36C includes a surface facing the first frame BF1 upward in the axial direction D2 in the state where the bicycle rear hub assembly 12 is mounted to the bicycle frame BF. The second axially outermost portion 36D includes a surface facing the second frame BF2 upward in the axial direction D2 in the state where the bicycle rear hub assembly 12 is mounted to the bicycle frame BF. Hub body 36 includes a first axial length AL1. The first axial length AL1 is defined between the first axially outermost portion 36C of the first spoke mounting portion 36A and the second spoke mounting portion in the axial direction D2 with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14 Between the second axial portion 36B and the outermost portion 36D. The first axial length AL1 may be equal to or greater than 55 mm. The first axial length AL1 may be equal to or greater than 60 mm. The first axial length AL1 may be equal to or greater than 65 mm. In this embodiment, the first axial length AL1 may be 67 mm. However, the first axial length AL1 is not limited to this embodiment and the above range. Examples of the first axial length AL1 include 55. 7 mm, 62. 3mm and 67mm. As seen in FIG. 29 , the hub axle 30 includes a first axial frame abutment surface 30B1 and a second axial frame abutment surface 30C1 . After the bicycle rear hub assembly 12 is mounted under the bicycle frame BF, the first axial frame abutment surface 30B1 is configured to abut the bicycle frame in the axial direction D2 with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14 The first part of BF BF12. The second axial frame abutment surface 30C1 is configured to abut the second portion BF22 of the bicycle frame BF in the axial direction D2 in the state where the bicycle rear hub assembly 12 is mounted to the bicycle frame BF. The first axial frame abutment surface 30B1 is positioned closer to the sprocket support body 28 in the axial direction D2 than the second axial frame abutment surface 30C1 . The sprocket support body 28 is disposed between the first axial frame abutment surface 30B1 and the second axial frame abutment surface 30C1 in the axial direction D2. The hub axle 30 includes a second axial length AL2 defined in the axial direction D2 between the first axial frame abutment surface 30B1 and the second axial frame abutment surface 30C1 . The second axial length AL2 may be equal to or greater than 140 mm. Second axial length AL2 may be equal to or greater than 145 mm. Second axial length AL2 may be equal to or greater than 147 mm. Second axial length AL2 may be 148 mm. However, the second axial length AL2 is not limited to this embodiment and the above range. Examples of the second axial length AL2 include 142 mm, 148 mm, and 157 mm. The ratio of the first axial length AL1 to the second axial length AL2 may be equal to or greater than 0. 3. The ratio of the first axial length AL1 to the second axial length AL2 may be equal to or greater than 0. 4. The ratio of the first axial length AL1 to the second axial length AL2 may be equal to or greater than 0. 5. For example, the ratio of the first axial length AL1 (67 mm) to the second axial length AL2 (148 mm) is approximately 0. 45. However, the ratio of the first axial length AL1 to the second axial length AL2 is not limited to this embodiment and the above range. Examples of the ratio of the first axial length AL1 to the second axial length AL2 include approximately 0. 42 (AL1 is 62. 3 mm and AL2 is 148 mm), or including approximately 0. 39 (AL1 is 55. 7 mm and AL2 is 142 mm). As seen in FIG. 6 , the sprocket support body 28 includes a first axial end 28B, a second axial end 28C, and an axial sprocket abutment surface 28D. The second axial end 28C is opposed to the first axial end 28B in the axial direction D2. The axial center plane CPL bisects the second axial length AL2 in the axial direction D2. The axial sprocket abutment surface 28D is positioned closer to the axial center plane CPL of the bicycle rear hub assembly 12 in the axial direction D2 than the first axial end 28B. The second axial end 28C is positioned axially closer to the axial center plane CPL of the bicycle rear hub assembly 12 in the axial direction D2 than the sprocket abutment surface 28D. In this embodiment, the axial sprocket abutment surface 28D is provided on the larger diameter portion 42 , however the axial sprocket abutment surface 28D may be provided on other portions of the bicycle rear hub assembly 12 as desired. In a state where the bicycle rear sprocket assembly 14 is mounted on the sprocket support body 28 , the axial sprocket abutment surface 28D is in contact with the bicycle rear sprocket assembly 14 . The axial sprocket abutment surface 28D faces the first axial end 28B in the axial direction D2. As seen in FIG. 6 , the sprocket arrangement axial length AL3 is defined in the axial direction D2 between the first axial frame abutment surface 30B1 and the axial sprocket abutment surface 28D of the sprocket support body 28 . In this embodiment, the axial length AL3 of the sprocket arrangement ranges from 35 mm to 45 mm. For example, the sprocket configuration axial length AL3 is 39. 64mm. For example, by omitting the larger diameter portion 42, the sprocket configuration axial length AL3 can also be extended up to 44. 25mm. However, the sprocket configuration axial length AL3 is not limited to this embodiment and the above range. The larger diameter portion 42 has an axial end 42A furthest from the first axial frame abutment surface 30B1 in the axial direction D2. The additional axial length AL4 is defined in the axial direction D2 from the first axial frame abutment surface 30B1 to the axial end 42A. The additional axial length AL4 ranges from 38 mm to 47 mm. The additional axial length AL4 may range from 44 mm to 45 mm. The additional axial length AL4 may also range from 40 mm to 41 mm. In this embodiment, the additional axial length AL4 is 44. 25mm. However, the additional axial length AL4 is not limited to this embodiment and the above range. The larger diameter axial length AL5 of the larger diameter portion 42 ranges from 3 mm to 6 mm. In this embodiment, the larger diameter axial length AL5 is 4. 61mm. However, the larger diameter axial length AL5 is not limited to this embodiment and the above range. The ratio of the first axial length AL1 to the sprocket configuration axial length AL3 ranges from 1. 2 to 1. 7. For example, if the first axial length AL1 is 55. 7 mm and the sprocket configuration axial length AL3 is 39. 64 mm, the ratio of the first axial length AL1 to the sprocket configuration axial length AL3 is 1. 4. However, the ratio of the first axial length AL1 to the sprocket configuration axial length AL3 is not limited to this embodiment and the above scope. For example, if the first axial length AL1 is 62. 3 mm and the sprocket configuration axial length AL3 is 39. 64 mm, the ratio of the first axial length AL1 to the sprocket configuration axial length AL3 can be 1. 57, or if the first axial length AL1 is 67 mm and the sprocket configuration axial length AL3 is 39. 64 mm, the ratio of the first axial length AL1 to the sprocket configuration axial length AL3 can be 1. 69. As seen in FIG. 30 , the sprocket support member 37 includes a hub engaging portion 60 and a plurality of support arms 62 . A plurality of support arms 62 extend radially outward from the hub engaging portion 60 . The support arm 62 includes a first attachment portion 62A to an eighth attachment portion 62H. The plurality of spacers 38 includes a plurality of first spacers 38A, a plurality of second spacers 38B, a plurality of third spacers 38C, a plurality of fourth spacers 38D, a plurality of fifth spacers 38E, and a plurality of sixth spacers. The spacer 38F and a plurality of seventh spacers 38G. As seen in FIG. 6 , the first spacer 38A is disposed between the additional sprockets SP5 and SP6 . The second spacer 38B is disposed between the additional sprockets SP6 and SP7. The third spacer 38C is disposed between the additional sprockets SP7 and SP8. The fourth spacer 38D is disposed between the additional sprockets SP8 and SP9. The fifth spacer 38E is disposed between the additional sprockets SP9 and SP10. The sixth spacer 38F is disposed between the additional sprockets SP10 and SP11. The seventh spacer 38G is disposed between the additional sprockets SP11 and SP12. The additional sprocket SP6 and the first spacer 38A are attached to the first attachment portion 62A by the adhesive 37A. The additional sprocket SP7 and the second spacer 38B are attached to the second attachment portion 62B by the adhesive 37A. The additional sprocket SP8 and the third spacer 38C are attached to the third attachment portion 62C by the adhesive 37A. The additional sprocket SP9 and the fourth spacer 38D are attached to the fourth attachment portion 62D by the adhesive 37A. The additional sprocket SP10 and the fifth spacer 38E are attached to the fifth attachment portion 62E by the adhesive 37A. The additional sprocket SP11 and the sixth spacer 38F are attached to the sixth attachment portion 62F by the adhesive 37A. The additional sprocket SP12 and the seventh spacer 38G are attached to the seventh attaching portion 62G by the adhesive 37A. The additional sprockets SP5 and 39B are attached to the eighth attachment portion 62H by the adhesive 37A. The hub engaging portion 60 , the sprockets SP1 to SP4 , the first ring 39A and the second ring 39B are held between the larger diameter portion 42 and the radial protrusion 32C of the locking member 32 in the axial direction D2 . In this embodiment, each of the sprockets SP1 to SP12 is made of a metal material such as aluminum, iron, or titanium. The sprocket supporting member 37 is made of non-metallic material including resin material. Each of the first spacer 38A to seventh spacer 38G, the first ring 39A, and the second ring 39B is made of a non-metallic material such as a resin material. However, at least one of the sprockets SP1 to SP12 may be at least partially made of a non-metallic material. Each of the sprocket support member 37 , the first spacer 38A to the seventh spacer 38G, the first ring 39A and the second ring 39B is at least partially made of a metal material such as aluminum, iron, or titanium. As seen in FIG. 7 , the first sprocket SP1 includes a first opening SP1K. The first opening SP1K has a first minimum diameter MD1. As seen in FIG. 31 , in a state where the bicycle rear sprocket assembly 14 is mounted to the sprocket support body 28 , the tubular body 32A of the locking member 32 extends through the first opening SP1K of the first sprocket SP1 . In the state where the bicycle rear sprocket assembly 14 is mounted to the sprocket support body 28, the first opening SP1K of the first sprocket SP1 is configured such that the first axial end 32D of the tubular body 32A of the locking member 32 passes through the second opening SP1K. A first opening SP1K of the sprocket SP1. The first axial end 28B of the sprocket support body 28 is spaced from the first opening SP1K of the first sprocket SP1 without extending through the first opening SP1K. The first minimum diameter MD1 is smaller than the minimum outer diameter MD28 of the sprocket support body 28 of the bicycle rear hub assembly 12 . In this embodiment, the minimum outer diameter MD28 is equal to the outer spline base diameter DM12 ( FIG. 26 ) of the plurality of outer spline teeth 40 of the sprocket support body 28 . As seen in FIG. 31 , the tubular body 32A has a first outer diameter ED1 equal to or less than 27 mm. The first outer diameter ED1 is equal to or greater than 26 mm. The radial protrusion 32C has a second outer diameter ED2 equal to or smaller than 32 mm. The second outer diameter ED2 is equal to or greater than 30 mm. In this embodiment, the first outer diameter ED1 is 26. 2 mm. The second outer diameter ED2 is 30. 8 mm. However, at least one of the first outer diameter ED1 and the second outer diameter ED2 is not limited to this embodiment and the above range. The radial protrusion 32C has an axial width ED3 defined in the axial direction D2. For example, the axial width ED3 of the radial protrusion 32C is 2 mm. However, the axial width ED3 is not limited to this embodiment. The locking member 32 has an axial length ED4 defined in the axial direction D2 from the radial protrusion 32C to the first axial end 32D. The axial length ED4 of the locking member 32 is 10 mm. However, the axial length ED4 is not limited to this embodiment. As seen in FIG. 8, the first sprocket SP2 includes a first opening SP2K. That is, each of the plurality of first sprockets SP1 and SP2 includes a first opening. The first opening SP2K has a first minimum diameter MD2. As seen in FIG. 31 , in a state where the bicycle rear sprocket assembly 14 is mounted to the sprocket support body 28 , the tubular body 32A of the locking member 32 extends through the first opening SP2K of the first sprocket SP2 . The first axial end 28B of the sprocket support body 28 is spaced from the first opening SP2K of the first sprocket SP2 without extending through the first opening SP2K. The first minimum diameter MD2 is smaller than the minimum outer diameter MD28 of the sprocket support body 28 of the bicycle rear hub assembly 12 . As seen in FIG. 9 , the second sprocket SP3 includes a second opening SP3K. The second opening SP3K has a second minimum diameter MD3. As seen in FIG. 31 , in a state where the bicycle rear sprocket assembly 14 is mounted to the sprocket support body 28, the tubular body 32A of the locking member 32 and the sprocket support body 28 extend through the second opening of the second sprocket SP3. SP3K. The first axial end 28B of the sprocket supporting body 28 is disposed between the second opening SP3K and the first opening SP1K in the axial direction D2. The first axial end 28B of the sprocket supporting body 28 is disposed between the second opening SP3K and the first opening SP2K in the axial direction D2. The second minimum diameter MD3 is equal to or greater than the minimum outer diameter MD28 of the sprocket support body 28 of the bicycle rear hub assembly 12 . As seen in FIG. 10, the second sprocket SP4 includes a second opening SP4K. That is, each of the plurality of second sprockets SP3 and SP4 includes a second opening. The second opening SP4K has a second minimum diameter MD4. As seen in FIG. 31 , in a state where the bicycle rear sprocket assembly 14 is mounted to the sprocket support body 28 , the sprocket support body 28 extends through the second opening SP4K of the second sprocket SP4 . The first axial end 28B of the sprocket supporting body 28 is disposed between the second opening SP4K and the first opening SP1K in the axial direction D2. The second minimum diameter MD4 is equal to or greater than the minimum outer diameter MD28 of the sprocket support body 28 of the bicycle rear hub assembly 12 . As seen in FIG. 32 , the first sprocket SP2 includes at least ten inner spline teeth 63 configured to engage the sprocket support body 28 of the bicycle rear hub assembly 12 . At least ten internal spline teeth 63 are provided to the first opening SP2K. At least ten internal spline teeth 63 provide a first torque transmitting structure of the first sprocket SP2, as described later. The total number of at least ten inner spline teeth 63 of the first sprocket SP2 is equal to or greater than twenty. The total number of at least ten internal spline teeth 63 of the first sprocket SP2 is equal to or greater than 28. The total number of internal spline teeth 63 is equal to or less than 72. In this embodiment, the total number of internal spline teeth 63 is twenty-nine. However, the total number of internal spline teeth 63 is not limited to this embodiment and the above range. As seen in FIG. 9 , the second sprocket SP3 includes at least ten inner spline teeth 64 configured to engage the sprocket support body 28 of the bicycle rear hub assembly 12 . In this embodiment, the at least ten inner spline teeth 64 of the second sprocket SP3 define the second minimum diameter MD3 as the inner spline base diameter of the at least ten inner spline teeth 64 . The total number of the at least ten internal spline teeth 64 of the second sprocket SP3 is equal to or greater than twenty. The total number of at least ten inner spline teeth 64 of the second sprocket SP3 is equal to or greater than twenty-eight. The total number of internal spline teeth 64 is 72 or less. In this embodiment, the total number of internal spline teeth 64 is twenty-nine. However, the total number of internal spline teeth 64 is not limited to this embodiment and above. As seen in FIG. 10 , the second sprocket SP4 includes at least ten inner spline teeth 65 configured to engage the sprocket support body 28 of the bicycle rear hub assembly 12 . That is, the plurality of second sprockets SP3 and SP4 each include at least ten internal spline teeth configured to engage with the sprocket support body 28 of the bicycle rear hub assembly 12 . In this embodiment, the at least ten inner spline teeth 65 of the second sprocket SP4 define the second minimum diameter MD4 as the inner spline base diameter of the at least ten inner spline teeth 65 . The total number of at least ten internal spline teeth 65 of the second sprocket SP4 is equal to or greater than twenty. The total number of at least ten internal spline teeth 65 of the second sprocket SP4 is equal to or greater than twenty-eight. The total number of internal spline teeth 65 is equal to or less than 72. In this embodiment, the total number of internal spline teeth 65 is twenty-nine. However, the total number of internal spline teeth 65 is not limited to this embodiment and the above range. As seen in FIG. 33 , the at least ten inner spline teeth 64 of the second sprocket SP3 have a first inner circumferential pitch angle PA21 and a second inner circumferential pitch angle PA22 . At least two of the at least ten internal spline teeth 64 of the second sprocket SP3 are arranged along the circumference at a first internal circumferential pitch angle PA21 relative to the rotation center axis A1 of the bicycle rear sprocket assembly 14 . At least two of the at least ten internal spline teeth 64 adjoin each other in the circumferential direction D1 without another spline tooth in between. In other words, at least two of the plurality of internal spline teeth 64 are arranged along the circumference at the first internal circumferential pitch angle PA21 with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14 . Among the at least ten internal spline teeth 64 of the second sprocket SP3 , at least two other internal spline teeth are arranged along the circumference at a second internal circumferential pitch angle PA22 relative to the rotation central axis A1 . At least two other inner spline teeth of the at least ten inner spline teeth 64 of the second sprocket SP3 adjoin each other in the circumferential direction D1 without another spline tooth in between. In other words, at least two of the plurality of internal spline teeth 64 of the second sprocket SP3 are arranged along the circumference at the second internal circumferential pitch angle PA22 with respect to the rotation central axis A1 . In this embodiment, the second inner circumferential pitch angle PA22 is different from the first inner circumferential pitch angle PA21. However, the second inner circumferential pitch angle PA22 may be substantially equal to the first inner circumferential pitch angle PA21. In this embodiment, the inner spline teeth 64 are circumferentially arranged at the first inner circumferential pitch angle PA21 in the circumferential direction D1. Two of the inner spline teeth 64 are arranged at the second inner circumferential pitch angle PA22 in the circumferential direction D1. However, at least two of the inner spline teeth 64 may be arranged at another inner circumferential pitch angle in the circumferential direction D1. The first internal pitch angle PA21 ranges from 5 degrees to 36 degrees. The first internal pitch angle PA21 ranges from 10 degrees to 20 degrees. The first inner circumferential pitch angle PA21 is equal to or smaller than 15 degrees. In this embodiment, for example, the first inner circumferential pitch angle PA21 is 12 degrees. However, the first internal pitch angle PA21 is not limited to this embodiment and the above range. The second inner circumferential pitch angle PA22 ranges from 5 degrees to 36 degrees. In this embodiment, the second inner circumferential pitch angle PA22 is 24 degrees. However, the second inner circumferential pitch angle PA22 is not limited to this embodiment and the above range. At least one of the at least ten inner spline teeth 64 of the second sprocket SP3 has a first spline shape different from the second spline shape of another one of the at least ten inner spline teeth 64 . At least one of the at least ten internal spline teeth 64 of the second sprocket SP3 has a first spline size that is different from the second spline size of another of the at least ten internal spline teeth 64 . At least one of the at least ten internal spline teeth 64 has a cross-sectional shape that is different from the cross-sectional shape of another of the at least ten internal spline teeth 64 . However, as seen in Fig. 34, the inner spline teeth 64 may have the same shape as each other. At least ten internal spline teeth 64 may be the same size as one another. At least ten internal spline teeth 64 may have the same cross-sectional shape as one another. As seen in FIG. 35 , at least one of the at least ten internal spline teeth 64 includes an internal spline drive surface 66 . At least one of the at least ten internal spline teeth 64 includes an internal spline non-drive surface 68 . The at least ten internal spline teeth 64 include a plurality of internal spline drive surfaces 66 to receive drive rotational force F1 from the bicycle rear hub assembly 12 ( FIG. 6 ) during pedaling. The at least ten internal spline teeth 64 include a plurality of internal spline non-drive surfaces 68 . The inner splined drive surface 66 may contact the sprocket support body 28 to transfer the drive rotational force F1 from the sprocket SP1 to the sprocket support body 28 during pedaling. The inner splined drive surface 66 faces the drive rotational direction D11. The inner splined drive surface 66 faces the inner splined drive surface 48 of the bicycle rear hub assembly 12 when the bicycle rear sprocket assembly 14 is mounted to the bicycle rear hub assembly 12 . The internal spline non-transmission surface 68 is disposed on the opposite side of the internal spline transmission surface 66 in the circumferential direction D1. The inner splined non-drive surface 68 faces the counter-rotational direction D12 so that the drive rotational force F1 is not transmitted from the sprocket SP1 to the sprocket support body 28 during pedaling. The outer splined non-drive surface 68 faces the inner splined non-drive surface 50 of the bicycle rear hub assembly 12 in a state where the bicycle rear sprocket assembly 14 is mounted to the bicycle rear hub assembly 12 . At least ten inner spline teeth 64 each have a circumferential maximum width MW2. The inner spline teeth 64 each have a maximum circumferential width MW2. The circumferential maximum width MW2 is defined as the maximum width receiving the thrust force F3 applied to the inner spline teeth 64 . The circumferential maximum width MW2 is defined as the linear distance based on the internal spline drive surface 66 . The plurality of inner splined drive surfaces 66 each include a radially outermost edge 66A and a radially innermost edge 66B. The second reference circle RC21 is defined on the radially outermost edge 66A and centered on the rotation central axis A1. The second reference circle RC21 intersects the inner splined non-drive surface 68 at a reference point 68R. The circumferential maximum width MW2 extends linearly in the circumferential direction D1 from the radially innermost edge 66B to the reference point 68R. The inner splined non-drive surface 68 includes a radially outermost edge 68A and a radially innermost edge 68B. The inner splined non-drive surface 68 extends from a radially outermost edge 68A to a radially innermost edge 68B. Reference point 68R is disposed between radially outermost edge 68A and radially innermost edge 68B. The sum of the maximum circumferential widths MW2 is equal to or greater than 40 mm. The sum of the maximum circumferential widths MW2 may be equal to or greater than 45 mm. The sum of the maximum circumferential widths MW2 may be equal to or greater than 50 mm. In this embodiment, the sum of the maximum circumference width MW2 is 50. 8 mm. However, the sum of the circumferential maximum widths MW2 is not limited to this embodiment. As seen in FIG. 36, at least ten inner spline teeth 64 of the second sprocket SP3 have an inner spline top diameter DM21. At least one inner spline tooth 64 of the second sprocket SP3 has an inner spline root circle RC22 with an inner spline crest diameter DM21 . Internal spline top diameter DM21 is equal to or less than 34 mm. The inner spline top diameter DM21 of the second sprocket SP3 is equal to or smaller than 33 mm. The inner spline top diameter DM21 of the second sprocket SP3 is equal to or greater than 29 mm. In this embodiment, the inner spline top diameter DM21 of the second sprocket SP3 is 32. 8mm. However, the inner spline top diameter DM21 of the second sprocket SP3 is not limited to this embodiment and the above range. At least ten internal spline teeth 64 of the second sprocket SP3 have an internal spline base diameter DM22 equal to or smaller than 32 mm. Internal spline bottom diameter DM22 is equal to or less than 31 mm. Internal spline bottom diameter DM22 is equal to or greater than 28 mm. In this embodiment, the internal spline bottom diameter DM22 is 30. 4 mm. However, the internal spline bottom diameter DM22 is not limited to this embodiment and the above range. As seen in FIG. 18, the extra sprocket SP12 has the largest tooth tip diameter TD12. The maximum tooth tip diameter TD12 is the maximum outer diameter defined by the plurality of sprocket teeth SP12B. The ratio of the internal spline top diameter DM21 (Fig. 36) to the maximum tooth tip diameter TD12 ranges from 0. 15 to 0. 18. In this embodiment, the ratio of the inner spline top diameter DM21 to the maximum tooth tip diameter TD12 is 0. 15. However, the ratio of the inner spline top diameter DM21 to the maximum tooth tip diameter TD12 is not limited to this embodiment and the above range. As seen in FIG. 35, the plurality of inner splined drive surfaces 66 includes a radially outermost edge 66A and a radially innermost edge 66B. The plurality of inner splined drive surfaces 66 each include a radial length RL21 defined from a radially outermost edge 66A to a radially innermost edge 66B. The sum of the radial lengths RL21 of the plurality of internal spline transmission surfaces 66 is equal to or greater than 7 mm. The sum of the radial lengths RL21 is equal to or greater than 10 mm. The sum of the radial lengths RL21 is equal to or greater than 15 mm. In this embodiment, the sum of the radial lengths RL21 is equal to or less than 36 mm. In this embodiment, the sum of the radial lengths RL21 is 16. 6 mm However, the sum of the radial lengths RL21 is not limited to this embodiment and the above range. The plurality of internal spline teeth 64 has an additional radial length RL22. The additional radial length RL22 is defined from the inner spline root circle RC22 to the radially innermost end 64A of the plurality of inner spline teeth 64 , respectively. The sum of the additional radial lengths RL22 is equal to or greater than 12 mm. In this embodiment, the sum of the additional radial lengths RL22 is 34. 8mm. However, the sum of the additional radial lengths RL22 is not limited to this embodiment and the above range. At least one of the at least ten inner spline teeth 64 of the second sprocket SP3 is circumferentially symmetrical with respect to the reference line CL2. In a radial direction with respect to the central axis of rotation A1 , the reference line CL2 extends from the central axis of rotation A1 to a circumferential center point CP2 of the radially outermost end 64A of at least one of the at least ten internal spline teeth 64 . However, at least one of the internal spline teeth 64 may have an asymmetric shape with respect to the reference line CL2. At least one of the internal spline teeth 64 includes an internal spline drive surface 66 and an internal spline non-drive surface 68 . The inner splined drive surface 66 has a first inner splined surface angle AG21. A first internal spline surface angle AG21 is defined between the internal spline drive surface 66 and the first radial line L21. The first radial line L21 extends from the central axis of rotation A1 of the bicycle rear sprocket assembly 14 to the radially outermost edge 66A of the inner splined drive surface 66 . The first inner circumferential pitch angle PA21 or the second inner circumferential pitch angle PA22 is defined between adjacent first radial lines L21 (see, eg, FIG. 33 ). The internal splined non-drive surface 68 has a second internal splined surface angle AG22. A second internal spline surface angle AG22 is defined between the internal spline non-drive surface 68 and the second radial line L22. The second radial line L22 extends from the central axis of rotation A1 of the bicycle rear sprocket assembly 14 to the radially outermost edge 68A of the inner splined non-drive surface 68 . In this embodiment, the second internal spline surface angle AG22 is equal to the first internal spline surface angle AG21. However, the first internal spline surface angle AG21 may be different from the second internal spline surface angle AG22. The first internal spline surface angle AG21 is between 0° and 6°. The second internal spline surface angle AG22 ranges from 0° to 6°. In this embodiment, the first internal spline surface angle AG21 is 5 degrees. The second internal spline surface angle AG22 is 5 degrees. However, the first internal spline surface angle AG21 and the second internal spline surface angle AG22 are not limited to this embodiment and the above range. As seen in FIG. 37 , the inner spline teeth 64 mesh with the outer spline teeth 40 to transmit the transmission rotational force F1 from the second sprocket SP3 to the sprocket support body 28 . The inner splined drive surface 66 may contact the outer splined drive surface 48 to transmit the drive rotational force F1 from the second sprocket SP3 to the sprocket support body 28 . In the state where the inner splined drive surface 66 is in contact with the outer splined drive surface 48 , the inner splined non-drive surface 68 is spaced apart from the outer splined non-drive surface 50 . The internal spline teeth 63 of the first sprocket SP2 and the internal spline teeth 65 of the second sprocket SP4 have substantially the same structure as the internal spline teeth 64 of the second sprocket SP3. Therefore, for the sake of brevity, no detailed description will be given here. As seen in FIG. 2 , the sprocket support member 37 includes at least ten internal spline teeth 76 configured to engage the sprocket support body 28 of the bicycle rear hub assembly 12 . The plurality of internal spline teeth 76 has substantially the same structure as the plurality of internal spline teeth 64 . Therefore, for the sake of brevity, no detailed description will be given here. As seen in FIG. 38 , the first sprocket SP1 includes a first torque transmitting structure SP1T provided to the first inner side SP1H to directly or indirectly transmit pedaling torque to the sprocket support body 28 . In this embodiment, the first torque transmission structure SP1T includes a plurality of first torque transmission teeth SP1T1 to indirectly transmit the pedaling torque to the sprocket supporting body 28 . The first torque transmitting structure SP1T includes at least ten first torque transmitting teeth SP1T1. Preferably, the total number of at least ten first torque transmission teeth SP1T1 is equal to or greater than twenty. More preferably, the total number of at least ten first torque transmitting teeth SP1T1 is equal to or greater than 28. In this embodiment, the total number of at least ten first torque transmitting teeth SP1T1 is twenty-nine. However, the total number of at least ten first torque transmission teeth SP1T1 is not limited to this embodiment and the above range. As seen in FIGS. 38 and 39 , the first sprocket SP2 includes a first inner SP2H and a first outer SP2G. With respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14 , the first outward SP2G is opposed to the first inner SP2H in the axial direction D2 . The first sprocket SP2 includes a first torque transmitting structure SP2M provided to the first inward side SP2H to directly or indirectly transmit pedaling torque to the sprocket supporting body 28 . In this embodiment, the inner spline teeth 63 of the first sprocket SP2 may also be referred to as first torque transmission teeth 63 . The first torque transmission structure SP2M includes a plurality of first torque transmission teeth 63 to directly transmit the pedaling torque to the sprocket supporting body 28 . The first torque transmitting structure SP2M includes at least ten first torque transmitting teeth 63 . Preferably, the total number of at least ten first torque transmitting teeth 63 is equal to or greater than twenty. More preferably, the total number of at least ten first torque transmitting teeth 63 is equal to or greater than twenty-eight. In this embodiment, the total number of at least ten first torque transmitting teeth 63 is twenty-nine. However, the total number of at least ten first torque transmission teeth 63 is not limited to this embodiment and the above range. The first torque transmitting teeth 63 may also be referred to as inner spline teeth 63 . As seen in FIG. 39, the first sprocket SP2 includes a second torque transmitting structure SP2T for receiving the pedaling torque from the first sprocket SP1. The second torque transmitting structure SP2T is disposed on the first outwardly facing SP2G. In this embodiment, the second torque transfer structure SP2T includes a plurality of second torque transfer teeth SP2T1. Preferably, the total number of second torque transmission teeth SP2T1 is equal to or greater than twenty. More preferably, the total number of second torque transmission teeth SP2T1 is equal to or greater than 28. In this embodiment, the total number of second torque transmitting teeth SP2T1 is twenty-nine. However, the total number of second torque transmission teeth SP2T1 is not limited to this embodiment and the above range. The first torque transmitting structure SP1T is engaged with the second torque transmitting structure SP2T. The plurality of first torque transmission teeth SP1T1 meshes with the plurality of second torque transmission teeth SP2T1 to transmit the transmission rotational force F1. As seen in FIGS. 23 and 24 , the sprocket support body 28 includes a hub indicator 28I disposed at an axial end of the base support 41 . The hub indicator 28I is disposed in the region of the second outer peripheral pitch angle PA12 when viewed along the rotational center axis A1. In this embodiment, hub indicator 281 includes dots. However, hub indicator 281 may include other shapes, such as triangles and lines. Additionally, the hub indicator 281 may be a separate component attached to the sprocket support body 28 by an engaging structure such as an adhesive. The position of the hub indicator 28I is not limited to this embodiment. As seen in FIG. 7 , the first sprocket SP1 includes a sprocket indicator SP1I provided at an axial end of the sprocket main body SP1A. In this embodiment, the sprocket indicator SP1I includes dots. However, the sprocket indicator SP1I may include other shapes, such as triangles and lines. Additionally, the sprocket indicator SP1I may be a separate member attached to the sprocket SP1 by an engaging structure such as an adhesive. The position of the sprocket indicator SP1I is not limited to this embodiment. Sprocket indicator SP1I may be provided to any of the other sprockets SP2-SP12. A sprocket indicator SP1I may also be provided to the sprocket support member 37 . As seen in FIG. 6 , the bicycle rear hub assembly 12 further includes a freewheel structure 78 . The sprocket support body 28 is operatively coupled to the hub body 36 by a freewheel structure 78 . The freewheel structure 78 is configured to couple the sprocket support body 28 to the hub body 36 to rotate the sprocket support body 28 along with the hub body 36 in the drive rotation direction D11 ( FIG. 5 ) during pedaling. The freewheel structure 78 is configured to allow the sprocket support body 28 to rotate relative to the hub body 36 in a counter-rotational direction D12 ( FIG. 5 ) during idling. Therefore, the freewheel structure 78 can be interpreted as a one-way clutch structure 78 . The freewheel structure 78 will be described in detail later. The bicycle rear hub assembly 12 includes a first bearing 79A and a second bearing 79B. The first bearing 79A and the second bearing 79B are provided between the sprocket supporting body 28 and the hub axle 30 to rotatably support the sprocket supporting body 28 with respect to the hub axle 30 about the rotation center axis A1. In this embodiment, each of the sprocket support body 28, the brake rotor support body 34 and the hub body 36 is made of a metal material such as aluminum, iron or titanium. However, at least one of the sprocket support body 28, the brake rotor support body 34, and the hub body 36 may be made of a non-metallic material. As seen in FIG. 40 , the freewheel structure 78 includes a first ratchet member 80 and a second ratchet member 82 . The first ratchet member 80 is configured to torque-transmittingly engage one of the hub body 36 and the sprocket support body 28 . The second ratchet member 82 is configured to torque-transmittingly engage the other of the hub body 36 and the sprocket support body 28 . In this embodiment, the first ratchet member 80 is torque-transmittingly engaged with the sprocket support body 28 . The second ratchet member 82 is torque-transmittingly engaged with the hub body 36 . However, the first ratchet member 80 may be configured to torque-transmittingly engage the hub body 36 . The second ratchet member 82 may be configured to torque-transmittingly engage the sprocket support body 28 . The first ratchet member 80 is mounted to the sprocket support body 28 to rotate with the sprocket support body 28 relative to the hub body 36 about the rotation center axis A1. The second ratchet member 82 is mounted to the hub body 36 to rotate with the hub body 36 about the rotation center axis A1 relative to the sprocket support body 28 . Each of the first ratchet member 80 and the second ratchet member 82 has a ring shape. At least one of the first ratchet member 80 and the second ratchet member 82 is movable relative to the hub axle 30 in the axial direction D2 relative to the rotation center axis A1 . In this embodiment, each of the first ratchet member 80 and the second ratchet member 82 is movable relative to the hub axle 30 in the axial direction D2. The second ratchet member 82 is movable relative to the hub body 36 in the axial direction D2. The first ratchet member 80 is movable relative to the sprocket support body 28 in the axial direction D2. The hub body 36 includes a freewheel housing 36H having an annular shape. The freewheel housing 36H extends in the axial direction D2. The first ratchet member 80 and the second ratchet member 82 are disposed in the freewheel housing 36H in an assembled state. As seen in FIG. 41 , the first ratchet member 80 includes at least one first ratchet tooth 80A. In this embodiment, at least one first ratchet tooth 80A includes a plurality of first ratchet teeth 80A. A plurality of first ratchet teeth 80A are arranged in the circumferential direction D1 to provide saw teeth. As seen in FIG. 42 , the second ratchet member 82 includes at least one second ratchet tooth 82A configured to torque-transmittingly engage the at least one first ratchet tooth 80A. The at least one second ratchet tooth 82A meshes with the at least one first ratchet tooth 80A to transmit the rotational force F1 from the sprocket support body 28 to the hub body 36 ( FIG. 40 ). In this embodiment, the at least one second ratchet tooth 82A includes a plurality of second ratchet teeth 82A configured to torque-transmittingly mesh with the plurality of first ratchet teeth 80A. The plurality of second ratchet teeth 82A are arranged in the circumferential direction D1 to provide saw teeth. The plurality of second ratchet teeth 82A can mesh with the plurality of first ratchet teeth 80A. In a state where the second ratchet teeth 82A are engaged with the first ratchet teeth 80A, the first ratchet member 80 rotates together with the second ratchet member 82 . As seen in FIGS. 41 and 42 , the sprocket support body 28 has an outer peripheral surface 28P having a first helical spline 28H. The first ratchet member 80 is configured for torque-transmitting engagement with the sprocket support body 28 and includes a second helical spline 80H cooperating with the first helical spline 28H. The first ratchet member 80 moves in the axial direction D2 relative to the sprocket support body 28 through the second helical spline 80H cooperating with the first helical spline 28H during transmission by the first thrust force applied from the sprocket support body 28 Mounted removably. In this embodiment, the first helical spline 28H includes a plurality of helical outer spline teeth 46 . The second helical spline 80H includes a plurality of helical inner spline teeth 80H1 cooperating with the plurality of helical outer spline teeth 46 . As seen in FIG. 43 , the hub body 36 includes an inner peripheral surface 36S and at least one first tooth 36T. At least one first tooth 36T is provided on the inner peripheral surface 36S. In this embodiment, the freewheel housing 36H includes an inner peripheral surface 36S. The hub body 36 includes a plurality of first teeth 36T. The plurality of first teeth 36T are disposed on the inner peripheral surface 36S, and extend radially inward from the inner peripheral surface 36S relative to the rotation center axis A1. The first teeth 36T are arranged in the circumferential direction D1 to define a plurality of grooves 36R between adjacent two teeth of the first teeth 36T. The second ratchet member 82 includes a hub body engaging portion 82E torque-transmittingly engaged with the hub body 36 via the hub body engaging portion 82E to transmit the rotational force F1 from the first ratchet member 80 to the hub body 36 . One of the hub body engaging portion 82E and the hub body 36 includes at least one radially extending protrusion. The other of hub body engaging portion 82E and hub body 36 includes at least one groove that engages the at least one protrusion. In this embodiment, the hub body engaging portion 82E includes at least one protrusion 82T extending radially as at least one protrusion. Hub body 36 includes at least one groove 36R that engages at least one protrusion 82T. In this embodiment, the hub body engaging portion 82E includes a plurality of protrusions 82T. The plurality of protrusions 82T engage with the plurality of grooves 36R. As seen in FIG. 42 , the outer peripheral surface 28P of the sprocket support body 28 has a guide portion 28G configured to guide the first ratchet member 80 toward the hub body 36 during idling. The pilot portion 28G is configured to define an obtuse angle AG28 ( FIG. 48 ) with the first helical spline 28H. The sprocket supporting body 28 includes a plurality of guide portions 28G. The guide portion 28G is configured to guide the first ratchet member 80 toward the hub body 36 during idle or lost motion. The guide portion 28G guides the first ratchet member 80 toward the hub body 36 during idling to release mating engagement between at least one first ratchet tooth 80A ( FIG. 41 ) and at least one second ratchet tooth 82A. The guide portion 28G is configured to move the first ratchet member 80 away from the second ratchet member 82 in the axial direction D2. The guide portion 28G extends at least in the circumferential direction D1 with respect to the sprocket support body 28 . The guide portion 28G extends from one of the plurality of helical outer spline teeth 46 at least in the circumferential direction D1. Although in this embodiment the guide portion 28G is provided integrally with the helical outer spline teeth 46 as a one-piece unitary member, the guide portion 28G may be a separate member from the plurality of helical outer spline teeth 46 . Due to the guide portion 28G, the first ratchet member 80 and the second ratchet member 82 disengage smoothly from each other during idling, especially if the guide portion 28G is configured to define an obtuse angle AG28 with respect to the first helical spline 28H . This also results in reduced noise during idling because the at least one first ratchet tooth 80A and the at least one second ratchet tooth 82A are smoothly separated from each other during idling. As seen in FIG. 40 , the bicycle rear hub assembly 12 further includes a biasing member 84 . A biasing member 84 is disposed between the hub body 36 and the first ratchet member 80 to bias the first ratchet member 80 toward the second ratchet member 82 in the axial direction D2. For example, in this embodiment, the biasing member 84 is a compression spring. As seen in FIG. 44 , the biasing member 84 is compressed in the axial direction D2 between the hub body 36 and the first ratchet member 80 . The biasing member 84 biases the first ratchet member 80 toward the second ratchet member 82 to maintain a meshed state in which the first ratchet member 80 and the second ratchet member 82 mesh with each other via the first ratchet teeth 80A and the second ratchet teeth 82A. Preferably, the biasing member 84 is engaged with the hub body 36 for rotation therewith. The biasing member 84 is mounted to the hub body 36 to rotate with the hub body 36 about the rotational center axis A1 ( FIG. 40 ). The biasing member 84 includes a crimped body 84A and a connecting end 84B. The hub main body 36 includes a connection hole 36F. The connection end 84B is disposed in the connection hole 36F so that the biasing member 84 rotates together with the hub main body 36 about the rotation center axis A1 ( FIG. 40 ). As seen in FIG. 44 , the outer peripheral surface 28P of the sprocket support body 28 supports the first ratchet member 80 and the second ratchet member 82 . The first ratchet member 80 includes an axial surface 80S facing the axial direction D2. At least one first ratchet tooth 80A is disposed on the axial surface 80S of the first ratchet member 80 . In this embodiment, a plurality of first ratchet teeth 80A are disposed on the axial surface 80S of the first ratchet member 80 . Axial surface 80S is generally perpendicular to axial direction D2. However, the axial surface 80S may not be perpendicular to the axial direction D2. The second ratchet member 82 includes an axial surface 82S facing the axial direction D2. At least one second ratchet tooth 82A is disposed on the axial surface 82S of the second ratchet member 82 . The axial surface 82S of the second ratchet member 82 faces the axial surface 80S of the first ratchet member 80 . In this embodiment, a plurality of second ratchet teeth 82A are disposed on the axial surface 82S of the second ratchet member 82 . Axial surface 82S is generally perpendicular to axial direction D2. However, the axial surface 82S may not be perpendicular to the axial direction D2. As seen in FIG. 40 , bicycle rear hub assembly 12 includes spacer 86 , support member 88 , slide member 90 , additional biasing member 92 and receiving member 94 . However, it is possible to omit at least one of the spacer 86 , support member 88 , slide member 90 , additional biasing member 92 , and receiving member 94 from the bicycle rear hub assembly 12 . As seen in FIGS. 44 and 45 , the spacer 86 is at least partially disposed between the at least one first tooth 36T and the at least one protrusion 82T in a circumferential direction D1 defined around the rotational center axis A1 . In this embodiment, the spacer 86 is partially disposed between the first tooth 36T and the protrusion 82T in the circumferential direction D1. However, the spacer 86 may be completely disposed between the first tooth 36T and the protrusion 82T in the circumferential direction D1. As seen in FIGS. 45-47 , spacer 86 includes at least one intermediate portion 86A disposed between at least one first tooth 36T and at least one protrusion 82T. At least one intermediate portion 86A is disposed between the at least one first tooth 36T and the at least one protrusion 82T in the circumferential direction D1. In this embodiment, the spacer 86 includes a plurality of intermediate portions 86A disposed between the first tooth 36T and the protrusion 82T in the circumferential direction D1, respectively. Although the spacer 86 includes the intermediate portions 86A in this embodiment, the spacer 86 may include one intermediate portion 86A. As seen in FIGS. 46 and 47 , the spacer 86 includes a connection portion 86B. The plurality of intermediate portions 86A extend from the connection portion 86B in an axial direction D2 parallel to the rotation center axis A1. Although the spacer 86 includes the connection portion 86B in this embodiment, the connection portion 86B may be omitted from the spacer 86 . Spacer 86 includes a non-metallic material. In this embodiment, the non-metallic material includes a resin material. Examples of resin materials include synthetic resins. Instead of or in addition to the resin material, the non-metallic material may include materials other than the resin material. Although the intermediate portion 86A and the connecting portion 86B are integrally provided with each other as a one-piece unitary member in this embodiment, at least one of the intermediate portions 86A may be a separate portion from the connecting portion 86B. As seen in FIGS. 44 and 45 , a plurality of intermediate portions 86A are disposed between the inner peripheral surface 36S of the hub body 36 and the outer peripheral surface 82P of the second ratchet member 82 in the radial direction. As seen in FIG. 44 , the support member 88 is disposed between the hub body 36 and the second ratchet member 82 in the axial direction D2. A support member 88 is attached to the second ratchet member 82 . The support member 88 is disposed radially outward from the first ratchet member 80 . The support member 88 can be in contact with the first ratchet member 80 . Support member 88 preferably comprises a non-metallic material. The support member 88 made of a non-metallic material reduces noise during operation of the bicycle rear hub assembly 12 . In this embodiment, the non-metallic material includes a resin material. Instead of or in addition to the resin material, the non-metallic material may include materials other than the resin material. The sliding member 90 is disposed between the sprocket support body 28 and the second ratchet member 82 in the axial direction D2 parallel to the rotation center axis A1. The second ratchet member 82 is disposed between the first ratchet member 80 and the slide member 90 in the axial direction D2. The sliding member 90 preferably comprises a non-metallic material. The sliding member 90 made of non-metallic material reduces noise during operation of the bicycle rear hub assembly 12 . In this embodiment, the non-metallic material includes a resin material. Instead of or in addition to the resin material, the non-metallic material may include materials other than the resin material. The sprocket support body 28 includes an abutment 28E to abut the second ratchet member 82 to limit axial movement of the second ratchet member 82 away from the hub body 36 . The abutment 28E may indirectly abut the second ratchet member 82 in this embodiment via the slide member 90 . Alternatively, abutment 28E may directly abut second ratchet member 82 . The first ratchet member 80 is arranged on the opposite axial side of the second ratchet member 82 from the abutment 28E of the sprocket support body 28 in the axial direction D2. The sliding member 90 is disposed between the abutment 28E of the sprocket support body 28 and the second ratchet member 82 in the axial direction D2. As seen in FIG. 44 , an additional biasing member 92 is disposed between the hub body 36 and the second ratchet member 82 in the axial direction D2 to bias the second ratchet member 82 toward the sprocket support body 28 . In this embodiment, the additional biasing member 92 biases the second ratchet member 82 in the axial direction D2 via the support member 88 . Additional biasing member 92 is disposed radially outward from biasing member 84 . The additional biasing member 92 is disposed radially outward from the second plurality of ratchet teeth 82A in this embodiment. The storage member 94 includes a non-metallic material. The receiving member 94 made of a non-metallic material prevents the biasing member 84 from excessive twisting during operation of the bicycle rear hub assembly 12 . In this embodiment, the non-metallic material includes a resin material. Instead of or in addition to the resin material, the non-metallic material may include materials other than the resin material. The storage member 94 includes an axial storage portion 96 and a radial storage portion 98 . The axial receiving portion 96 is disposed between the first ratchet member 80 and the biasing member 84 in the axial direction D2. The radial receiving portion 98 extends from the axial receiving portion 96 in the axial direction D2. The radial receiving portion 98 is disposed radially inwardly from the biasing member 84 . The axial receiving portion 96 and the radial receiving portion 98 are provided integrally with each other as a one-piece unitary member. However, the axial receiving portion 96 may be a separate component from the radial receiving portion 98 . As seen in FIG. 44 , the bicycle rear hub assembly 12 includes a sealing structure 100 . The sealing structure 100 is disposed between the sprocket support body 28 and the hub body 36 . The hub body 36 includes an interior space 102 . Each of the sprocket support body 28 , the biasing member 84 , the first ratchet member 80 , and the second ratchet member 82 are at least partially disposed within the interior space 102 of the hub body 36 . The inner space 102 is sealed by the sealing structure 100 . In this embodiment, no lubricant is disposed in the interior space 102 . However, the bicycle rear hub assembly 12 may include a lubricant disposed within the interior space 102 . Compared to the case where the bicycle rear hub assembly 12 may contain lubricant disposed in the interior space 102, if no lubricant is provided, each gap between components disposed in the interior space 102 may be reduced. The operation of the bicycle rear hub assembly 12 will be described in detail below with reference to FIGS. 44 , 48 and 49 . As seen in FIG. 44 , the axial direction D2 includes a first axial direction D21 and a second axial direction D22 opposite to the first axial direction D21 . A biasing force F5 is applied from the biasing member 84 to the receiving member 94 in the first axial direction D21. The biasing force F5 of the biasing member 84 biases the receiving member 94 , the first ratchet member 80 , the second ratchet member 82 , and the slide member 90 toward the sprocket support body 28 in the first axial direction D21 . This engages the first ratchet tooth 80A with the second ratchet tooth 82A. Furthermore, as seen in FIG. 48 , when the pedaling torque T1 is input to the sprocket support body 28 in the transmission rotation direction D11 , the helical inner spline teeth 80H1 are opposed by the helical outer spline teeth 46 in the first axial direction D21 . The sprocket support body 28 guides. This strongly engages the first ratchet tooth 80A with the second ratchet tooth 82A. In this state, the pedaling torque T1 is transmitted from the sprocket support main body 28 to the hub main body 36 ( FIG. 44 ) via the first ratchet member 80 and the second ratchet member 82 ( FIG. 44 ). As seen in FIG. 48, during idling, the first ratchet member 80 comes into contact with the guide portion 28G to move from the first ratchet member 80 by the rotational friction force F6 generated between the biasing member 84 (FIG. 44) and the first ratchet member 80. The two ratchet members 82 are disengaged. As seen in FIG. 49 , an idle torque T2 is applied to the hub body 36 in the drive rotation direction D11 during idle. The idle torque T2 is transmitted from the hub body 36 ( FIG. 44 ) to the first ratchet member 80 via the second ratchet member 82 ( FIG. 44 ). At this time, the helical inner spline teeth 80H1 are guided relative to the sprocket support body 28 in the second axial direction D22 by the helical outer spline teeth 46 . This moves the first ratchet member 80 relative to the sprocket support body 28 in the second axial direction D22 against the biasing force F5. Accordingly, the first ratchet member 80 moves away from the second ratchet member 82 in the second axial direction D22 , thereby causing a weaker engagement between the first ratchet teeth 80A and the second ratchet teeth 82A. This allows the second ratchet member 82 to rotate relative to the first ratchet member 80 in the transmission rotation direction D11, thereby preventing the idle torque T2 from being transmitted from the hub body 36 to the sprocket support body via the first ratchet member 80 and the second ratchet member 82 28. At this time, the first ratchet teeth 80A slide together with the second ratchet teeth 82A in the circumferential direction D1. Modification As seen in FIG. 50 , in the above-described embodiment and other modifications, the external spline teeth 40 may include grooves 40G disposed between the external spline transmission surface 48 and the external spline non-transmission surface 50 in the circumferential direction D1 . The groove 40G reduces the weight of the rear hub assembly 12 of the bicycle. As seen in FIG. 51 , in the above-described embodiments and other modifications, the inner spline teeth 64 may include grooves 64G disposed between the inner spline transmission surface 66 and the inner spline non-transmission surface 68 in the circumferential direction D1 . The groove 64G reduces the weight of the rear sprocket assembly 14 of the bicycle. In the present application, at least ten internal spline teeth may be provided indirectly to the second opening of the second sprocket, whereas in the above embodiment at least ten internal spline teeth are directly provided to the second sprockets SP3 and SP4 the second opening of each. For example, instead of providing at least ten internal spline teeth directly to the second opening of the second sprocket SP3 and/or the second sprocket SP4, at least one of the second sprockets SP3 and SP4 may be attached To a sprocket support member comprising at least ten internal spline teeth. Alternatively, instead of providing at least ten internal spline teeth directly to the second opening of the second sprocket, at least one second sprocket may be integrally formed with at least one additional sprocket comprising at least ten internal spline teeth as One-piece monolithic member. Because this second sprocket includes at least ten internal spline teeth indirectly via the sprocket support member and/or the additional sprocket, it also means that the second sprocket includes a chain configured to mate with the bicycle rear hub assembly The wheel supports at least ten internal spline teeth engaged by the main body. The bicycle rear sprocket assembly 14 can include only one first sprocket or more than two first sprockets, and the bicycle rear sprocket assembly 14 includes two first sprockets SP1 and SP2 in the above embodiment. The bicycle rear sprocket assembly 14 may only include one second sprocket or more than two second sprockets, and the bicycle rear sprocket assembly 14 includes two second sprockets SP3 and SP4 in the above embodiment. As seen in FIG. 52 , the total number of at least ten external spline teeth 40 may range from 22 to 24 in the sprocket support body 28 . For example, the total number of at least ten external spline teeth 40 may be twenty-three. The first outer pitch angle PA11 may range from 13 degrees to 17 degrees. For example, the first outer pitch angle PA11 may be 15 degrees. The second outer pitch angle PA12 may range from 28 degrees to 32 degrees. For example, the second outer pitch angle PA12 may be 30 degrees. The first outer pitch angle PA11 is half of the second outer pitch angle PA12. However, the first outer pitch angle PA11 may be different from half of the second outer pitch angle PA12. The total number of at least ten external spline teeth 40 is not limited to the above modifications and ranges. The first outer circumferential pitch angle PA11 is not limited to the above modifications and ranges. The second outer peripheral pitch angle PA12 is not limited to the above modifications and ranges. As seen in Fig. 53, in the sprocket support body 28, the sum of the radial lengths RL11 of the plurality of external spline drive surfaces 48 may range from 11 mm to 14 mm. The sum of the radial length RL11 of a plurality of external spline transmission surfaces 48 can be 12. 5 mm. The sum of the additional radial lengths RL12 may range from 26 mm to 30 mm. For example, the sum of the extra radial length RL12 can be 28. 2mm. However, the sum of the additional radial lengths RL12 is not limited to the above modifications and ranges. As seen in FIG. 54 , the total number of at least ten first torque transmitting teeth SP1T1 may range from 22 to 24 in the first torque transmitting structure SP1T of the first sprocket SP1 . For example, the total number of at least ten first torque transmitting teeth SP1T1 may be 23. However, the total number of at least ten first torque transmitting teeth SP1T1 is not limited to the above modifications and ranges. As seen in FIG. 55 , the total number of at least ten second torque transmitting teeth SP2T1 may range from 22 to 24 in the second torque transmitting structure SP2T of the first sprocket SP2 . For example, the total number of at least ten second torque transfer teeth SP2T1 may be 23. However, the total number of at least ten second torque transmitting teeth SP2T1 is not limited to the above modifications and ranges. As seen in FIG. 56 , the total number of at least ten inner spline teeth 63 of the first sprocket SP2 may range from 22 to 24 in the first sprocket SP2 . For example, the total number of at least ten inner spline teeth 63 of the first sprocket SP2 may be twenty-three. However, the total number of at least ten internal spline teeth 63 is not limited to the above modifications and ranges. As seen in FIG. 57 , the total number of at least ten inner spline teeth 64 of the second sprocket SP3 may range from 22 to 24 in the second sprocket SP3 . For example, the total number of at least ten inner spline teeth 64 of the second sprocket SP3 may be twenty-three. However, the total number of at least ten internal spline teeth 64 is not limited to the above modifications and ranges. As seen in FIG. 58 , the total number of at least ten inner spline teeth 65 of the second sprocket SP4 may range from 22 to 24 in the second sprocket SP4 . For example, the total number of at least ten inner spline teeth 65 of the second sprocket SP4 may be twenty-three. However, the total number of at least ten internal spline teeth 65 is not limited to the above modifications and ranges. As seen in FIG. 59, among the at least ten inner spline teeth 64 of the second sprocket SP3, the first inner circumferential pitch angle PA21 may range from 13 degrees to 17 degrees. For example, the first internal pitch angle PA21 may be 15 degrees. The second inner circumferential pitch angle PA22 may range from 28 degrees to 32 degrees. For example, the second internal pitch angle PA22 may be 30 degrees. The first inner circumferential pitch angle PA21 may be half of the second inner circumferential pitch angle PA22. However, the first inner circumferential pitch angle PA21 may be different from half of the second inner circumferential pitch angle PA22. The first inner circumferential pitch angle PA21 is not limited to the above modifications and ranges. The second inner circumferential pitch angle PA22 is not limited to the above modifications and ranges. As seen in FIG. 60 , in the inner spline teeth 64 of the second sprocket SP3 , the sum of the radial lengths RL21 of the plurality of inner spline drive surfaces 66 may range from 11 mm to 14 mm. For example, the sum of the radial lengths RL21 of a plurality of internal spline transmission surfaces 66 may be 12. 5 mm. However, the sum of the radial lengths of RL21 is not limited to the above modifications and ranges. The sum of the additional radial lengths RL22 may range from 26 mm to 29 mm. For example, the sum of the extra radial length RL22 is 27. 6mm. However, the sum of the additional radial lengths RL22 is not limited to this embodiment and the above range. The internal spline teeth 63 of the first sprocket SP2 and the internal spline teeth 65 of the second sprocket SP4 have the same structure as the internal spline teeth 64 of the second sprocket SP3. As seen in FIG. 61 , the internal spline teeth 76 of the sprocket support member 37 may be of the same construction as the internal spline teeth 64 of the second sprocket SP3 illustrated in FIGS. 57 , 59 and 60 . The total number of at least ten internal spline teeth 76 of the sprocket support member 37 may range from 22-24. For example, the total number of at least ten internal spline teeth 76 of the sprocket support member 37 may be twenty-three. However, the total number of at least ten internal spline teeth 76 is not limited to the above modifications and ranges. The configuration of the internal spline teeth 64 illustrated in FIG. 60 is applicable to the internal spline teeth 76 of the sprocket support member 37 . As seen in FIG. 62, the bicycle rear sprocket assembly 14 may include an additional sprocket SP13. The extra sprocket SP13 is coupled to the extra sprocket SP12 by a plurality of coupling members SP13R. The extra sprocket SP13 includes a sprocket body SP13A and at least one sprocket tooth SP13B. The sprocket main body SP13A of the additional sprocket SP13 is coupled to the sprocket main body SP12A of the additional sprocket SP12 by a plurality of coupling members SP13R. At least one sprocket tooth SP13B extends radially outward from the sprocket body SP13A. The total number of at least one sprocket SP13B is greater than the total number of at least one sprocket SP12B. Preferably, the total number of teeth of at least one sprocket SP13B is equal to or greater than 46. More preferably, the total number of teeth of at least one sprocket SP13B is equal to or greater than 50. For example, the total number of teeth of at least one sprocket SP13B is 54. The tooth profiles of the sprocket teeth SP1B to SP13B of the sprockets SP1 to SP13 may have conventional tooth profiles and/or narrow and wide tooth profiles. In particular, as a narrow-wide tooth profile, the sprocket teeth SP1B to SP13B of the sprockets SP1 to SP13 may also comprise at least one first tooth and at least one second tooth each having a first axial maximum The chain engagement width, each of the second teeth has a second axial maximum chain engagement width smaller than the first axial maximum chain engagement width. The maximum chain engagement width in the first axis and the maximum chain engagement width in the second axis are measured along the axial direction D2. The maximum chain engagement width in the first axial direction is greater than the axial inner chain space defined by a pair of inner chain plates of the bicycle chain 20, and smaller than the axial outer chain space defined by one of the outer chain plates of the bicycle chain 20, wherein when the bicycle chain When 20 is engaged with one of the sprockets SP1 to SP13, the outer link plates face each other in the axial direction D2. The second axial maximum chain engagement width is smaller than the axial inner chain space defined by the pair of inner chain plates of the bicycle chain 20 . Therefore, at least one first tooth is configured to engage with one of the outer link plates of the bicycle chain 20, which faces in the axial direction D2 when the bicycle chain 20 is engaged with one of the sprockets SP1 to SP13. each other, and at least one second tooth is configured to engage with a pair of inner link plates of the bicycle chain 20, wherein the pair of inner link plates face each other in the axial direction D2. Preferably, at least one first tooth and at least one second tooth are arranged alternately on the outer periphery of at least one of the sprockets SP1 to SP13. Preferably, the sprocket teeth SP1B to SP13B of the sprockets SP1 to SP13 include a plurality of first teeth and a plurality of second teeth, and each of the first teeth has the above-mentioned first axial maximum chain engagement width , each of the second teeth has the above-mentioned second axial maximum chain engagement width. Preferably, the plurality of first teeth and the plurality of second teeth are arranged alternately on the outer periphery of at least one of the sprockets SP1 to SP13. Preferably, the sprocket teeth of the largest sprocket can have this narrow and wide tooth profile. Therefore, preferably, the sprocket tooth SP12B of the sprocket SP12 in FIG. 6 or the sprocket SP13B of the sprocket SP13 in FIG. 62 includes at least one of the above-mentioned first axial maximum chain engagement widths. A first tooth and at least one second tooth having the above-mentioned second axial maximum chain mesh width. As used herein, the term "comprises" and its derivatives are intended to specify the presence of stated features, elements, components, groups, integers and/or steps but not to exclude other unstated features, elements, components, groups, integers and Open term for the existence of / or steps. This concept also applies to words of similar meaning, such as the terms "having", "including" and their derivatives. The terms "member", "section", "portion", "part", "element", "body" and "structure" when used in the singular can have the dual meaning of a single part or a plurality of parts. The ordinal numbers such as "first" and "second" described in this application are only identifiers and do not have any other meaning, such as a specific order or the like. Furthermore, for example, the term "first element" does not imply the existence of a "second element" by itself, and the term "second element" does not imply the existence of a "first element" by itself. The term "pair" as used herein may encompass configurations in which paired elements have different shapes or structures from each other, in addition to configurations in which paired elements have the same shape or structure as each other. Accordingly, the terms "a", "one or more" and "at least one" are used interchangeably herein. Finally, terms of degree such as "substantially", "approximately" and "approximately" as used herein mean a reasonable amount of deviation of the modified term such that the end result is not significantly changed. All numerical values described in this application can be understood to include terms such as "substantially", "approximately" and "approximately". Obviously many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.

10:自行車傳動系統 12:自行車後輪轂總成 14:自行車後鏈輪總成 16:自行車制動轉子 18:曲柄總成 20:自行車鏈 22:曲柄軸 24:右曲柄臂 26:左曲柄臂 27:前鏈輪 28:鏈輪支撐主體 28A:內螺紋部分 28B:第一軸向端 28C:第二軸向端 28D:軸向鏈輪鄰接表面 28E:鄰接件 28G:導引部分 28H:第一螺旋花鍵 28I:輪轂指示器 28P:外部周邊表面 30:輪轂軸 30A:軸通孔 30B:第一軸端 30B1:第一軸向框架鄰接表面 30C1:第二軸向框架鄰接表面 30C:第二軸端 30X:軸管 30Y:第一軸部分 30Z:第二軸部分 32:鎖定構件 32A:管狀主體 32A1:內部周邊表面 32B:外螺紋部分 32C:徑向突出物 32D:第一軸向端 32E:第二軸向端 32F:工具嚙合部分 32G:嚙合凹槽 34:制動轉子支撐主體 36:輪轂主體 36A:第一輪輻安裝部分 36A1:第一附接孔 36B:第二輪輻安裝部分 36B1:第二附接孔 36C:第一軸向最外部分 36D:第二軸向最外部分 36F:連接孔 36H:自由輪外殼 36R:凹槽 36S:內部周邊表面 36T:第一齒 37:鏈輪支撐構件 37A:黏著劑 38:間隔件 38A:第一間隔件 38B:第二間隔件 38C:第三間隔件 38D:第四間隔件 38E:第五間隔件 38F:第六間隔件 38G:第七間隔件 39A:第一環 39B:第二環 40:外部花鍵齒 40A:徑向最外端 40G:凹槽 40X:外部花鍵齒 41:基座支撐件 42:較大直徑部分 42A:軸向端 44:凸緣 46:螺旋外部花鍵齒 48:外部花鍵傳動表面 48A:徑向最外邊緣 48B:徑向最內邊緣 50:外部花鍵非傳動表面 50A:徑向最外邊緣 50B:徑向最內邊緣 50R:參考點 52:額外外部花鍵齒 54:額外基座支撐件 60:輪轂嚙合部分 62:支撐臂 62A:第一附接部分 62B:第二附接部分 62C:第三附接部分 62D:第四附接部分 62E:第五附接部分 62F:第六附接部分 62G:第七附接部分 62H:第八附接部分 63:第一扭矩傳遞齒 64:內部花鍵齒 64A:徑向最內端 64G:凹槽 65:內部花鍵齒 66:內部花鍵傳動表面 66A:徑向最外邊緣 66B:徑向最內邊緣 68:內部花鍵非傳動表面 68A:徑向最外邊緣 68B:徑向最內邊緣 68R:參考點 76:內部花鍵齒 78:自由輪結構 79A:第一軸承 79B:第二軸承 80:第一棘輪構件 80A:第一棘輪齒 80H:第二螺旋花鍵 80H1:螺旋內部花鍵齒 80S:軸向表面 82:第二棘輪構件 82A:第二棘輪齒 82E:輪轂主體嚙合部分 82P:外部周邊表面 82S:軸向表面 82T:突出物 84:偏置構件 84A:捲曲主體 84B:連接端 86:間隔件 86A:中間部分 86B:連接部分 88:支撐構件 90:滑動構件 92:額外偏置構件 94:收納構件 96:軸向收納部分 98:徑向收納部分 100:密封結構 102:內部空間 A1:中心軸線 AG11:第一外部花鍵表面角 AG12:第二外部花鍵表面角 AG21:第一內部花鍵表面角 AG22:第二內部花鍵表面角 AG28:鈍角 AL1:第一軸向長度 AL2:第二軸向長度 AL3:鏈輪配置軸向長度 AL4:額外軸向長度 AL5:較大直徑軸向長度 BD1:最小內徑 BD2:最大外徑 BD3:最小外徑 BF:自行車框架 BF1:第一框架 BF2:第二框架 BF11:第一凹槽 BF12:第一部分 BF21:第二凹槽 BF22:第二部分 CL1:參考線 CL2:參考線 CP1:圓周中心點 CP2:圓周中心點 CPL:軸向中心平面 D1:圓周方向 D11:傳動旋轉方向 D12:反向旋轉方向 D2:軸向方向 D21:第一軸向方向 D22:第二軸向方向 DM11:外部花鍵頂徑 DM12:外部花鍵底徑 DM13:外徑 DM14:額外外部花鍵頂徑 DM21:內部花鍵頂徑 DM22:內部花鍵底徑 ED1:第一外徑 ED2:第二外徑 ED3:軸向寬度 ED4:軸向長度 F1:傳動旋轉力 F2:推力 F3:推力 F5:偏置力 F6:旋轉摩擦力 III-III:線 L11:第一徑向線 L12:第二徑向線 L21:第一徑向線 L22:第二徑向線 MD1:第一最小直徑 MD2:第一最小直徑 MD3:第二最小直徑 MD4:第二最小直徑 MD28:最小外徑 MW1:圓周最大寬度 MW2:圓周最大寬度 PA11:第一外部周節角 PA12:第二外部周節角 PA21:第一內部周節角 PA22:第二內部周節角 PC1:節圓 PC2:節圓 PC3:節圓 PC4:節圓 PC5:節圓 PC6:節圓 PC7:節圓 PC8:節圓 PC9:節圓 PC10:節圓 PC11:節圓 PC12:節圓 PCD1:節圓直徑 PCD2:節圓直徑 PCD3:節圓直徑 PCD4:節圓直徑 PCD5:節圓直徑 PCD6:節圓直徑 PCD7:節圓直徑 PCD8:節圓直徑 PCD9:節圓直徑 PCD10:節圓直徑 PCD11:節圓直徑 PCD12:節圓直徑 RC11:第一參考圓 RC12:外部花鍵齒根圓 RC21:第二參考圓 RC22:內部花鍵齒根圓 RL11:徑向長度 RL12:額外徑向長度 RL21:徑向長度 RL22:額外徑向長度 SK1:第一輪輻 SK2:第二輪輻 SL1:軸向花鍵齒長度 SP1:第一鏈輪 SP1A:鏈輪主體 SP1B:鏈輪齒 SP1G:第一向內側 SP1H:第一向外側 SP1I:鏈輪指示器 SP1K:第一開口 SP1T:第一扭矩傳遞結構 SP1T1:第一扭矩傳遞齒 SP2:第一鏈輪 SP2A:鏈輪主體 SP2B:鏈輪齒 SP2F1:第一移位促進區域 SP2F2:第二移位促進區域 SP2G:第一向外側 SP2H:第一向內側 SP2K:第一開口 SP2M:第一扭矩傳遞結構 SP2R1:第一移位促進凹槽 SP2R2:第二移位促進凹槽 SP2T:第二扭矩傳遞結構 SP2T1:第二扭矩傳遞齒 SP3:第二鏈輪 SP3A:鏈輪主體 SP3B:鏈輪齒 SP3F1:第一移位促進區域 SP3F2:第二移位促進區域 SP3K:第二開口 SP3R1:第一移位促進凹槽 SP3R2:第二移位促進凹槽 SP4:第二鏈輪 SP4A:鏈輪主體 SP4B:鏈輪齒 SP4F1:第一移位促進區域 SP4F2:第二移位促進區域 SP4K:第二開口 SP4R1:第一移位促進凹槽 SP4R2:第二移位促進凹槽 SP5:額外鏈輪 SP5A:鏈輪主體 SP5B:鏈輪齒 SP5F1:第一移位促進區域 SP5F2:第二移位促進區域 SP5R1:第一移位促進凹槽 SP5R2:第二移位促進凹槽 SP6:額外鏈輪 SP6A:鏈輪主體 SP6B:鏈輪齒 SP6F1:第一移位促進區域 SP6F2:第二移位促進區域 SP6R1:第一移位促進凹槽 SP6R2:第二移位促進凹槽 SP7:額外鏈輪 SP7A:鏈輪主體 SP7B:鏈輪齒 SP7F1:第一移位促進區域 SP7F2:第二移位促進區域 SP7R1:第一移位促進凹槽 SP7R2:第二移位促進凹槽 SP8:額外鏈輪 SP8A:鏈輪主體 SP8B:鏈輪齒 SP8F1:第一移位促進區域 SP8F2:第二移位促進區域 SP8R1:第一移位促進凹槽 SP8R2:第二移位促進凹槽 SP9:額外鏈輪 SP9A:鏈輪主體 SP9B:鏈輪齒 SP9F1:第一移位促進區域 SP9F2:第二移位促進區域 SP9R1:第一移位促進凹槽 SP9R2:第二移位促進凹槽 SP10:額外鏈輪 SP10A:鏈輪主體 SP10B:鏈輪齒 SP10F1:第一移位促進區域 SP10F2:第二移位促進區域 SP10R1:第一移位促進凹槽 SP10R2:第二移位促進凹槽 SP11:額外鏈輪 SP11A:鏈輪主體 SP11B:鏈輪齒 SP11F1:第一移位促進區域 SP11F2:第二移位促進區域 SP11R1:第一移位促進凹槽 SP11R2:第二移位促進凹槽 SP12:額外鏈輪 SP12A:鏈輪主體 SP12B:鏈輪齒 SP12F1:第一移位促進區域 SP12F2:第二移位促進區域 SP12R1:第一移位促進凹槽 SP12R2:第二移位促進凹槽 SP13:額外鏈輪 SP13A:鏈輪主體 SP13B:鏈輪齒 SP13R:耦接構件 T1:踩踏扭矩 T2:惰轉扭矩 TD12:最大齒尖直徑 WS:車輪緊固結構 WS1:緊固桿 XLV-XLV:線 10: Bicycle drive system 12:Bicycle rear hub assembly 14:Bicycle rear sprocket assembly 16: Bicycle brake rotor 18: crank assembly 20: Bike chain 22: crankshaft 24: Right crank arm 26: Left crank arm 27: Front sprocket 28: Sprocket support body 28A: Internal thread part 28B: first axial end 28C: second axial end 28D: Axial sprocket abutment surface 28E: Adjacent parts 28G: Guide part 28H: The first helical spline 28I: hub indicator 28P: External Perimeter Surface 30: hub shaft 30A: shaft through hole 30B: first shaft end 30B1: First axial frame abutment surface 30C1: Second Axial Frame Adjacent Surface 30C: second shaft end 30X: shaft tube 30Y: first axis part 30Z: Second axis part 32: Locking member 32A: Tubular body 32A1: Internal Perimeter Surface 32B: external thread part 32C: Radial protrusions 32D: first axial end 32E: second axial end 32F: Tool engaging part 32G: Engagement groove 34: Brake rotor support body 36: Hub main body 36A: The first spoke installation part 36A1: First attachment hole 36B: Second spoke installation part 36B1: Second attachment hole 36C: the outermost part of the first axis 36D: the outermost part of the second axis 36F: connection hole 36H: Free wheel housing 36R: Groove 36S: Internal peripheral surface 36T: first tooth 37: sprocket support member 37A: Adhesive 38: spacer 38A: first spacer 38B: second spacer 38C: third spacer 38D: fourth spacer 38E: fifth spacer 38F: sixth spacer 38G: seventh spacer 39A: First ring 39B: Second ring 40: External spline teeth 40A: Radial outermost end 40G: Groove 40X: External spline teeth 41: Base support 42: Larger diameter part 42A: axial end 44: Flange 46: Helical external spline teeth 48: External spline drive surface 48A: Radial outermost edge 48B: Radial innermost edge 50: External spline non-drive surface 50A: Radial outermost edge 50B: Radial innermost edge 50R: Reference point 52: Extra external spline teeth 54: Additional Base Supports 60: hub engaging part 62: Support arm 62A: first attachment part 62B: Second attachment part 62C: Third attachment part 62D: Fourth attachment part 62E: Fifth attachment part 62F: Sixth attachment part 62G: Seventh attachment part 62H: Eighth attachment part 63: The first torque transmission tooth 64: Internal spline teeth 64A: Radial innermost end 64G: Groove 65: Internal spline teeth 66: Internal spline drive surface 66A: Radial outermost edge 66B: Radial innermost edge 68: Internal spline non-drive surface 68A: Radial outermost edge 68B: Radial innermost edge 68R: Reference point 76: Internal spline teeth 78: Free wheel structure 79A: First bearing 79B:Second bearing 80: first ratchet member 80A: 1st ratchet tooth 80H: Second helical spline 80H1: Helical internal spline teeth 80S: axial surface 82: second ratchet member 82A: second ratchet teeth 82E: hub main body engaging part 82P: External Perimeter Surface 82S: axial surface 82T:Protrusion 84: Offset member 84A: curly body 84B: Connecting end 86: spacer 86A: middle part 86B: Connection part 88: Support member 90: sliding member 92: Extra offset member 94: storage components 96:Axial storage part 98: radial storage part 100: sealed structure 102: Internal space A1: Central axis AG11: First external spline surface angle AG12: Second external spline surface angle AG21: First internal spline surface angle AG22: Second internal spline surface angle AG28: obtuse angle AL1: first axial length AL2: second axial length AL3: Axial length of sprocket arrangement AL4: Extra axial length AL5: Larger diameter axial length BD1: Minimum inner diameter BD2: Maximum outer diameter BD3: Minimum outer diameter BF: Bike Frame BF1: First frame BF2: Second Frame BF11: First Groove BF12: Part 1 BF21: Second groove BF22: Part Two CL1: reference line CL2: Reference line CP1: circle center point CP2: circle center point CPL: axial center plane D1: Circumferential direction D11: Transmission rotation direction D12: reverse direction of rotation D2: axial direction D21: The first axial direction D22: Second axial direction DM11: Top diameter of external spline DM12: Bottom diameter of external spline DM13: outer diameter DM14: Extra external spline top diameter DM21: Internal spline top diameter DM22: Bottom diameter of internal spline ED1: First outer diameter ED2: second outer diameter ED3: axial width ED4: axial length F1: transmission rotational force F2: Thrust F3: Thrust F5: bias force F6: Rotational friction III-III: Line L11: first radial line L12: second radial line L21: first radial line L22: second radial line MD1: first minimum diameter MD2: first minimum diameter MD3: second smallest diameter MD4: second smallest diameter MD28: Minimum outer diameter MW1: the maximum width of the circumference MW2: the maximum width of the circumference PA11: First outer pitch angle PA12: second outer pitch angle PA21: First internal pitch angle PA22: second internal pitch angle PC1: pitch circle PC2: pitch circle PC3: pitch circle PC4: pitch circle PC5: pitch circle PC6: pitch circle PC7: pitch circle PC8: pitch circle PC9: pitch circle PC10: pitch circle PC11: pitch circle PC12: pitch circle PCD1: pitch circle diameter PCD2: pitch circle diameter PCD3: pitch circle diameter PCD4: pitch circle diameter PCD5: pitch circle diameter PCD6: pitch circle diameter PCD7: pitch circle diameter PCD8: pitch circle diameter PCD9: pitch circle diameter PCD10: pitch circle diameter PCD11: pitch circle diameter PCD12: pitch circle diameter RC11: First reference circle RC12: external spline root circle RC21: Second reference circle RC22: Internal spline root circle RL11: radial length RL12: Extra radial length RL21: radial length RL22: Extra radial length SK1: first spoke SK2: Second spoke SL1: Axial spline tooth length SP1: 1st sprocket SP1A: Sprocket body SP1B: sprocket teeth SP1G: First to medial SP1H: First to the outside SP1I: Sprocket Indicator SP1K: First opening SP1T: First Torque Transfer Structure SP1T1: First torque transmission tooth SP2: 1st sprocket SP2A: Sprocket body SP2B: sprocket teeth SP2F1: first translocation-facilitating region SP2F2: Second translocation-promoting region SP2G: First to the outside SP2H: First to the inside SP2K: First Opening SP2M: First Torque Transfer Structure SP2R1: first shift facilitates groove SP2R2: second translocation-facilitating groove SP2T: Second Torque Transfer Structure SP2T1: Second torque transmission tooth SP3: Second sprocket SP3A: Sprocket body SP3B: sprocket teeth SP3F1: first translocation-promoting region SP3F2: Second translocation-promoting region SP3K: Second opening SP3R1: first shift facilitates groove SP3R2: Second translocation-facilitating groove SP4: Second sprocket SP4A: Sprocket body SP4B: sprocket teeth SP4F1: first translocation-promoting region SP4F2: Second translocation-promoting region SP4K: Second opening SP4R1: first shift facilitates groove SP4R2: second translocation-facilitating groove SP5: Extra sprockets SP5A: Sprocket body SP5B: sprocket teeth SP5F1: the first translocation-promoting region SP5F2: Second translocation-promoting region SP5R1: first shift facilitates groove SP5R2: Second translocation-facilitating groove SP6: Extra sprockets SP6A: Sprocket body SP6B: sprocket teeth SP6F1: first translocation-facilitating region SP6F2: Second translocation-promoting region SP6R1: first shift facilitates groove SP6R2: Second shift-facilitating groove SP7: Extra sprockets SP7A: Sprocket body SP7B: sprocket teeth SP7F1: the first translocation-facilitating region SP7F2: Second translocation-promoting region SP7R1: first shift facilitates groove SP7R2: Second translocation-facilitating groove SP8: Extra sprockets SP8A: Sprocket body SP8B: sprocket teeth SP8F1: first translocation facilitation region SP8F2: Second translocation-promoting region SP8R1: First Shift Facilitation Groove SP8R2: Second shift-facilitating groove SP9: Extra sprockets SP9A: Sprocket body SP9B: sprocket teeth SP9F1: the first translocation-promoting region SP9F2: Second translocation-promoting region SP9R1: First shift facilitates groove SP9R2: second translocation-facilitating groove SP10: Extra sprockets SP10A: Sprocket body SP10B: sprocket teeth SP10F1: first translocation facilitation region SP10F2: Second translocation-facilitating region SP10R1: First Shift Facilitation Groove SP10R2: Second Shift Facilitation Groove SP11: Extra sprockets SP11A: Sprocket body SP11B: sprocket teeth SP11F1: first translocation facilitation region SP11F2: Second translocation-promoting region SP11R1: First Shift Facilitation Groove SP11R2: Second Shift Facilitation Groove SP12: Extra sprockets SP12A: Sprocket body SP12B: sprocket teeth SP12F1: first translocation facilitation region SP12F2: Second translocation-promoting region SP12R1: First Shift Facilitation Groove SP12R2: Second Shift Facilitation Groove SP13: Extra sprockets SP13A: Sprocket body SP13B: sprocket teeth SP13R: Coupling member T1: pedaling torque T2: idle torque TD12: Maximum tooth tip diameter WS: wheel fastening structure WS1: fastening rod XLV-XLV: line

當結合附圖考慮時,參考以下實施方式,本發明之更完整評價及其許多伴隨優點將易於獲得,同樣變為更好理解。 圖1為根據一實施例之自行車傳動系統的示意圖。 圖2為圖1中所說明之自行車傳動系統的分解透視圖。 圖3為沿圖2之線III-III截取之自行車傳動系統的橫截面圖。 圖4為圖2中所說明之自行車傳動系統之自行車後輪轂總成的透視圖,該自行車後輪轂總成具有自行車後鏈輪總成之鎖定構件。 圖5為圖1中所說明之自行車傳動系統之自行車後鏈輪總成的側視圖。 圖6為圖4中所說明之自行車傳動系統的放大橫截面圖。 圖7為圖5中所說明之自行車後鏈輪總成之鏈輪的側視圖。 圖8為圖5中所說明的自行車後鏈輪總成之鏈輪的側視圖。 圖9為圖5中所說明之自行車後鏈輪總成之鏈輪的側視圖。 圖10為圖5中所說明之自行車後鏈輪總成之第一鏈輪的側視圖。 圖11為圖5中所說明之自行車後鏈輪總成之鏈輪的側視圖。 圖12為圖5中所說明之自行車後鏈輪總成之鏈輪的側視圖。 圖13為圖5中所說明之自行車後鏈輪總成之鏈輪的側視圖。 圖14為圖5中所說明之自行車後鏈輪總成之鏈輪的側視圖。 圖15為圖5中所說明之自行車後鏈輪總成之鏈輪的側視圖。 圖16為圖5中所說明之自行車後鏈輪總成之鏈輪的側視圖。 圖17為圖5中所說明之自行車後鏈輪總成之鏈輪的側視圖。 圖18為圖5中所說明之自行車後鏈輪總成之鏈輪的側視圖。 圖19為圖5中所說明之自行車後鏈輪總成的分解透視圖。 圖20為圖4中所說明之自行車後鏈輪總成之鏈輪支撐主體的透視圖。 圖21為圖4中所說明之自行車後輪轂總成之鏈輪支撐主體的另一透視圖。 圖22為圖4中所說明之自行車後輪轂總成之鏈輪支撐主體的後視圖。 圖23為圖4中所說明之自行車後輪轂總成之鏈輪支撐主體的側視圖。 圖24為根據修改之自行車後輪轂總成之鏈輪支撐主體的側視圖。 圖25圖23中所說明之鏈輪支撐主體的放大橫截面圖。 圖26為圖23中所說明之鏈輪支撐主體的橫截面圖。 圖27為圖4中所說明之自行車後輪轂總成的透視圖。 圖28為圖4中所說明之自行車後輪轂總成的側視圖。 圖29為圖4中所說明之自行車後輪轂總成的後視圖。 圖30為圖4中所說明之自行車後輪轂總成之鏈輪支撐主體及複數個間隔件的分解透視圖。 圖31為圖4中所說明之自行車傳動系統之部分放大截面視圖。 圖32為圖8中所說明之鏈輪的另一側視圖。 圖33為圖9中所說明之鏈輪的側視圖。 圖34為根據修改之圖9中所說明之鏈輪的側視圖。 圖35為圖29中所說明之鏈輪的放大截面視圖。 圖36為圖29中所說明之鏈輪的另一橫截面圖。 圖37為圖2中所說明之自行車傳動系統的另一橫截面圖。 圖38為圖7及圖8中所說明之鏈輪的分解透視圖。 圖39為圖7及圖8中所說明之鏈輪的另一分解透視圖。 圖40為圖4中所說明之自行車後輪轂總成之一部分的分解透視圖。 圖41為圖40中所說明之自行車後輪轂總成之一部分的分解透視圖。 圖42為圖40中所說明之自行車後輪轂總成之一部分的分解透視圖。 圖43為圖40中所說明之自行車後輪轂總成之一部分的分解透視圖。 圖44為圖40中所說明之自行車後輪轂總成的部分橫截面圖。 圖45為沿著圖44之線XLV-XLV截取之自行車後輪轂總成的橫截面圖。 圖46為圖40中所說明之自行車後輪轂總成之間隔件的透視圖。 圖47為圖40中所說明之自行車後輪轂總成之間隔件的另一透視圖。 圖48為展示圖40中所說明之自行車後輪轂後總成之第一棘輪構件及鏈輪支撐主體之動作(踩踏)的示意圖。 圖49為展示圖40中所說明之自行車後輪轂總成之第一棘輪構件及鏈輪支撐主體之作用(惰轉)的示意圖。 圖50為根據修改之鏈輪支撐主體的放大橫截面圖。 圖51為根據修改之鏈輪的放大截面視圖。 圖52為根據修改之自行車後輪轂總成之鏈輪支撐主體的側視圖。 圖53為圖52中所說明之鏈輪支撐主體的放大橫截面圖。 圖54為根據修改之自行車後鏈輪總成之鏈輪的分解透視圖。 圖55為根據修改之自行車後鏈輪總成之鏈輪的另一分解透視圖。 圖56為根據修改之自行車後鏈輪總成之鏈輪的側視圖。 圖57為根據修改之自行車後鏈輪總成之鏈輪的側視圖。 圖58為根據修改之自行車後鏈輪總成之鏈輪的側視圖。 圖59為圖57中所說明之鏈輪的側視圖。 圖60為圖57中所說明之鏈輪之放大截面視圖。 圖61為根據修改自行車後鏈輪總成之鏈輪支撐構件的部分側視圖。 圖62為根據修改之自行車傳動系統之橫截面圖。 A more complete appreciation of the invention, and its many attendant advantages, will be readily obtained, as well as become better understood, by reference to the following embodiments when considered in conjunction with the accompanying drawings. FIG. 1 is a schematic diagram of a bicycle transmission system according to an embodiment. FIG. 2 is an exploded perspective view of the bicycle drivetrain illustrated in FIG. 1. FIG. Fig. 3 is a cross-sectional view of the bicycle transmission system taken along line III-III of Fig. 2 . 4 is a perspective view of the bicycle rear hub assembly of the bicycle drivetrain illustrated in FIG. 2 with the locking member of the bicycle rear sprocket assembly. FIG. 5 is a side view of the bicycle rear sprocket assembly of the bicycle drivetrain illustrated in FIG. 1. FIG. FIG. 6 is an enlarged cross-sectional view of the bicycle drivetrain illustrated in FIG. 4. FIG. FIG. 7 is a side view of a sprocket of the bicycle rear sprocket assembly illustrated in FIG. 5. FIG. FIG. 8 is a side view of a sprocket of the bicycle rear sprocket assembly illustrated in FIG. 5. FIG. FIG. 9 is a side view of a sprocket of the bicycle rear sprocket assembly illustrated in FIG. 5. FIG. 10 is a side view of the first sprocket of the bicycle rear sprocket assembly illustrated in FIG. 5. FIG. 11 is a side view of a sprocket of the bicycle rear sprocket assembly illustrated in FIG. 5. FIG. FIG. 12 is a side view of a sprocket of the bicycle rear sprocket assembly illustrated in FIG. 5. FIG. 13 is a side view of a sprocket of the bicycle rear sprocket assembly illustrated in FIG. 5. FIG. FIG. 14 is a side view of a sprocket of the bicycle rear sprocket assembly illustrated in FIG. 5. FIG. 15 is a side view of a sprocket of the bicycle rear sprocket assembly illustrated in FIG. 5. FIG. FIG. 16 is a side view of a sprocket of the bicycle rear sprocket assembly illustrated in FIG. 5. FIG. 17 is a side view of a sprocket of the bicycle rear sprocket assembly illustrated in FIG. 5. FIG. 18 is a side view of a sprocket of the bicycle rear sprocket assembly illustrated in FIG. 5. FIG. FIG. 19 is an exploded perspective view of the bicycle rear sprocket assembly illustrated in FIG. 5. FIG. 20 is a perspective view of the sprocket support body of the bicycle rear sprocket assembly illustrated in FIG. 4 . 21 is another perspective view of the sprocket support body of the bicycle rear hub assembly illustrated in FIG. 4 . 22 is a rear view of the sprocket support body of the bicycle rear hub assembly illustrated in FIG. 4 . 23 is a side view of the sprocket support body of the bicycle rear hub assembly illustrated in FIG. 4 . Fig. 24 is a side view of the sprocket supporting body of the bicycle rear hub assembly according to the modification. Figure 25 is an enlarged cross-sectional view of the sprocket support body illustrated in Figure 23. 26 is a cross-sectional view of the sprocket support body illustrated in FIG. 23 . FIG. 27 is a perspective view of the bicycle rear hub assembly illustrated in FIG. 4. FIG. FIG. 28 is a side view of the bicycle rear hub assembly illustrated in FIG. 4. FIG. FIG. 29 is a rear view of the bicycle rear hub assembly illustrated in FIG. 4. FIG. 30 is an exploded perspective view of the sprocket support body and a plurality of spacers of the bicycle rear hub assembly illustrated in FIG. 4 . FIG. 31 is an enlarged partial cross-sectional view of the bicycle transmission system illustrated in FIG. 4. FIG. Figure 32 is another side view of the sprocket illustrated in Figure 8 . Figure 33 is a side view of the sprocket illustrated in Figure 9 . Figure 34 is a side view of the sprocket illustrated in Figure 9 according to a modification. FIG. 35 is an enlarged cross-sectional view of the sprocket illustrated in FIG. 29. FIG. FIG. 36 is another cross-sectional view of the sprocket illustrated in FIG. 29 . FIG. 37 is another cross-sectional view of the bicycle drivetrain illustrated in FIG. 2 . FIG. 38 is an exploded perspective view of the sprocket illustrated in FIGS. 7 and 8 . 39 is another exploded perspective view of the sprocket illustrated in FIGS. 7 and 8 . FIG. 40 is an exploded perspective view of a portion of the bicycle rear hub assembly illustrated in FIG. 4. FIG. FIG. 41 is an exploded perspective view of a portion of the bicycle rear hub assembly illustrated in FIG. 40. FIG. FIG. 42 is an exploded perspective view of a portion of the bicycle rear hub assembly illustrated in FIG. 40. FIG. FIG. 43 is an exploded perspective view of a portion of the bicycle rear hub assembly illustrated in FIG. 40. FIG. FIG. 44 is a partial cross-sectional view of the bicycle rear hub assembly illustrated in FIG. 40. FIG. Fig. 45 is a cross-sectional view of the bicycle rear hub assembly taken along line XLV-XLV in Fig. 44 . FIG. 46 is a perspective view of a spacer between the bicycle rear hub assembly illustrated in FIG. 40. FIG. FIG. 47 is another perspective view of the spacer between the bicycle rear hub assembly illustrated in FIG. 40. FIG. Fig. 48 is a schematic diagram showing the action (stepping) of the first ratchet member and the sprocket supporting body of the bicycle rear hub rear assembly illustrated in Fig. 40 . Fig. 49 is a schematic view showing the function (idling) of the first ratchet member and the sprocket supporting body of the bicycle rear hub assembly illustrated in Fig. 40 . Fig. 50 is an enlarged cross-sectional view of a sprocket supporting body according to a modification. Fig. 51 is an enlarged sectional view of a sprocket according to a modification. Fig. 52 is a side view of the sprocket supporting body of the bicycle rear hub assembly according to the modification. FIG. 53 is an enlarged cross-sectional view of the sprocket support body illustrated in FIG. 52. FIG. Fig. 54 is an exploded perspective view of a sprocket of the bicycle rear sprocket assembly according to a modification. Fig. 55 is another exploded perspective view of the sprocket of the bicycle rear sprocket assembly according to the modification. Fig. 56 is a side view of the sprocket of the bicycle rear sprocket assembly according to the modification. Fig. 57 is a side view of the sprocket of the bicycle rear sprocket assembly according to the modification. Fig. 58 is a side view of the sprocket of the bicycle rear sprocket assembly according to the modification. Figure 59 is a side view of the sprocket illustrated in Figure 57. FIG. 60 is an enlarged cross-sectional view of the sprocket illustrated in FIG. 57. FIG. Fig. 61 is a partial side view of a sprocket support member of a bicycle rear sprocket assembly according to a modification. Fig. 62 is a cross-sectional view of a bicycle transmission system according to a modification.

10:自行車傳動系統 10: Bicycle drive system

14:自行車後鏈輪總成 14: Bicycle rear sprocket assembly

28:鏈輪支撐主體 28: Sprocket support body

28A:內螺紋部分 28A: Internal thread part

28B:第一軸向端 28B: first axial end

28C:第二軸向端 28C: second axial end

28D:軸向鏈輪鄰接表面 28D: Axial sprocket abutment surface

30:輪轂軸 30: hub shaft

30B:第一軸端 30B: first shaft end

30B1:第一軸向框架鄰接表面 30B1: First axial frame abutment surface

32:鎖定構件 32: locking member

32A:管狀主體 32A: Tubular body

32B:外螺紋部分 32B: external thread part

32C:徑向突出物 32C: Radial protrusions

32D:第一軸向端 32D: first axial end

32E:第二軸向端 32E: second axial end

36:輪轂主體 36: Hub main body

36A:第一輪輻安裝部分 36A: The first spoke installation part

37:鏈輪支撐構件 37: sprocket support member

37A:黏著劑 37A: Adhesive

38A:第一間隔件 38A: first spacer

38B:第二間隔件 38B: second spacer

38C:第三間隔件 38C: third spacer

38D:第四間隔件 38D: fourth spacer

38E:第五間隔件 38E: fifth spacer

38F:第六間隔件 38F: sixth spacer

38G:第七間隔件 38G: seventh spacer

39A:第一環 39A: First ring

39B:第二環 39B: Second ring

42:較大直徑部分 42: Larger diameter part

42A:軸向端 42A: axial end

44:凸緣 44: Flange

60:輪轂嚙合部分 60: hub engagement part

62:支撐臂 62: Support arm

62A:第一附接部分 62A: first attachment part

62B:第二附接部分 62B: Second attachment part

62C:第三附接部分 62C: Third attachment part

62D:第四附接部分 62D: Fourth attachment part

62E:第五附接部分 62E: Fifth attachment part

62F:第六附接部分 62F: Sixth attachment part

62G:第七附接部分 62G: Seventh attachment part

78:自由輪結構 78: Free wheel structure

79A:第一軸承 79A: First bearing

79B:第二軸承 79B:Second bearing

A1:中心軸線 A1: Central axis

AL3:鏈輪配置軸向長度 AL3: Axial length of sprocket arrangement

AL4:額外軸向長度 AL4: Extra axial length

AL5:較大直徑軸向長度 AL5: Larger diameter axial length

CPL:軸向中心平面 CPL: axial center plane

SP1:第一鏈輪 SP1: 1st sprocket

SP1G:第一向內側 SP1G: First to medial

SP1H:第一向外側 SP1H: First to the outside

SP2:第一鏈輪 SP2: 1st sprocket

SP3:第二鏈輪 SP3: Second sprocket

SP4:第二鏈輪 SP4: Second sprocket

SP5:額外鏈輪 SP5: Extra sprockets

SP6:額外鏈輪 SP6: Extra sprockets

SP7:額外鏈輪 SP7: Extra sprockets

SP8:額外鏈輪 SP8: Extra sprockets

SP9:額外鏈輪 SP9: Extra sprockets

SP10:額外鏈輪 SP10: Extra sprockets

SP11:額外鏈輪 SP11: Extra sprockets

SP12:額外鏈輪 SP12: Extra sprockets

Claims (58)

一種自行車後鏈輪總成,其經構形以安裝至一自行車後輪轂總成之一鏈輪支撐主體,該自行車後鏈輪總成包含: 複數個自行車鏈輪,其包含: 一第一鏈輪,其包括: 一第一開口,其具有小於該自行車後輪轂總成之該鏈輪支撐主體之一最小外徑的一第一最小直徑;及 一第二鏈輪,其包括: 一第二開口,其具有等於或大於該自行車後輪轂總成之該鏈輪支撐主體之該最小外徑的一第二最小直徑;及 至少十個內部花鍵齒,其經構形以與該自行車後輪轂總成之該鏈輪支撐主體嚙合。 A bicycle rear sprocket assembly configured to be mounted to a sprocket support body of a bicycle rear hub assembly, the bicycle rear sprocket assembly comprising: A plurality of bicycle sprockets comprising: A first sprocket comprising: a first opening having a first minimum diameter that is smaller than a minimum outer diameter of the sprocket support body of the bicycle rear hub assembly; and a second sprocket comprising: a second opening having a second minimum diameter equal to or greater than the minimum outer diameter of the sprocket support body of the bicycle rear hub assembly; and At least ten internal spline teeth configured to engage the sprocket support body of the bicycle rear hub assembly. 如請求項1之自行車後鏈輪總成,其進一步包含 一鎖定構件,其包括: 一管狀主體,其在該自行車後鏈輪總成安裝至該自行車後輪轂總成之一狀態下延伸穿過該第一鏈輪之該第一開口,該管狀主體包括: 一第一軸向端;及 一第二軸向端,其相對於該自行車後鏈輪總成之一旋轉中心軸線在一軸向方向上與該第一軸向端相對,在該自行車後鏈輪總成安裝至該自行車後輪轂總成之該狀態下,該第一軸向端經定位成比該第二軸向端更接近該自行車後輪轂總成之一軸向中心平面; 一外螺紋部分,其提供至該第一軸向端,以在該自行車後鏈輪總成安裝至該自行車後輪轂總成之該狀態下與該自行車後輪轂總成之該鏈輪支撐主體之一內螺紋部分嚙合;及 一徑向突出物,其相對於該旋轉中心軸線自該第二軸向端徑向向外延伸,以在該自行車後鏈輪總成安裝至該自行車後輪轂總成之該狀態下限制該第一鏈輪相對於該自行車後輪轂總成之該鏈輪支撐主體的一軸向移動。 Such as the bicycle rear sprocket assembly of claim 1, which further includes A locking member comprising: a tubular body extending through the first opening of the first sprocket in a state in which the bicycle rear sprocket assembly is mounted to the bicycle rear hub assembly, the tubular body comprising: a first axial end; and a second axial end opposite to the first axial end in an axial direction with respect to a central axis of rotation of the bicycle rear sprocket assembly after the bicycle rear sprocket assembly is mounted to the bicycle In the state of the hub assembly, the first axial end is positioned closer to an axial center plane of the bicycle rear hub assembly than the second axial end; An externally threaded portion provided to the first axial end for interfacing with the sprocket support main body of the bicycle rear hub assembly in the state where the bicycle rear sprocket assembly is mounted to the bicycle rear hub assembly an internally threaded portion engages; and a radial protrusion extending radially outward from the second axial end with respect to the central axis of rotation to constrain the second sprocket assembly in the state in which the bicycle rear sprocket assembly is mounted to the bicycle rear hub assembly An axial movement of a sprocket relative to the sprocket support body of the bicycle rear hub assembly. 如請求項2之自行車後鏈輪總成,其中 該第一鏈輪包括: 一第一向內側;及 一第一向外側,其在該軸向方向上與該第一向內側相對,且 該徑向突出物經構形以在該第一向外側中鄰接該第一鏈輪。 Such as the bicycle rear sprocket assembly of claim 2, wherein The first sprocket includes: a first to the inside; and a first outward facing in the axial direction opposite the first inner facing, and The radial protrusion is configured to abut the first sprocket in the first outward side. 如請求項1之自行車後鏈輪總成,其中 該第二鏈輪相對於該自行車後鏈輪總成之一旋轉中心軸線在一軸向方向上鄰近於該第一鏈輪,而在該第一鏈輪與該第二鏈輪之間無另一鏈輪。 Such as the bicycle rear sprocket assembly of claim 1, wherein The second sprocket is adjacent to the first sprocket in an axial direction relative to a central axis of rotation of the bicycle rear sprocket assembly without another sprocket between the first sprocket and the second sprocket a sprocket. 如請求項1之自行車後鏈輪總成,其中 該第一鏈輪包括: 一第一向內側;及 一第一向外側,其相對於該自行車後鏈輪總成之一旋轉中心軸線在一軸向方向上與該第一向內側相對,且 該第一鏈輪包括提供至該第一向內側以直接地或間接地將一踩踏扭矩傳遞至該鏈輪支撐主體之一第一扭矩傳遞結構。 Such as the bicycle rear sprocket assembly of claim 1, wherein The first sprocket includes: a first to the inside; and a first outward facing direction opposite the first inward facing in an axial direction with respect to a central axis of rotation of the bicycle rear sprocket assembly, and The first sprocket includes a first torque transmitting structure provided to the first inward side to directly or indirectly transmit a pedaling torque to the sprocket support body. 如請求項5之自行車後鏈輪總成,其中 該第一扭矩傳遞結構包括至少十個第一扭矩傳遞齒。 Such as the bicycle rear sprocket assembly of claim 5, wherein The first torque transmitting structure includes at least ten first torque transmitting teeth. 如請求項6之自行車後鏈輪總成,其中 該至少十個第一扭矩傳遞齒之一總數目等於或大於20。 Such as the bicycle rear sprocket assembly of claim 6, wherein The total number of one of the at least ten first torque transmitting teeth is equal to or greater than twenty. 如請求項1之自行車後鏈輪總成,其中 該第二鏈輪之該至少十個內部花鍵齒之一總數目等於或大於20。 Such as the bicycle rear sprocket assembly of claim 1, wherein A total number of one of the at least ten internal spline teeth of the second sprocket is equal to or greater than twenty. 如請求項8之自行車後鏈輪總成,其中 該第二鏈輪之該至少十個內部花鍵齒之該總數目等於或大於28。 Such as the bicycle rear sprocket assembly of claim 8, wherein The total number of the at least ten internal spline teeth of the second sprocket is equal to or greater than twenty-eight. 如請求項1之自行車後鏈輪總成,其中 該第二鏈輪之該至少十個內部花鍵齒具有一第一內部周節角及不同於該第一內部周節角之一第二內部周節角。 Such as the bicycle rear sprocket assembly of claim 1, wherein The at least ten internal spline teeth of the second sprocket have a first internal pitch angle and a second internal pitch angle different from the first internal pitch angle. 如請求項1之自行車後鏈輪總成,其中 該第二鏈輪之該至少十個內部花鍵齒中之至少一者具有一第一花鍵形狀,該第一花鍵形狀不同於該至少十個內部花鍵齒中之另一者的一第二花鍵形狀。 Such as the bicycle rear sprocket assembly of claim 1, wherein At least one of the at least ten internal spline teeth of the second sprocket has a first spline shape different from one of the other of the at least ten internal spline teeth Second spline shape. 如請求項1之自行車後鏈輪總成,其中 該第二鏈輪之該至少十個內部花鍵齒中之至少一者具有一第一花鍵大小,該第一花鍵大小不同於該至少十個內部花鍵齒中之另一者的一第二花鍵大小。 Such as the bicycle rear sprocket assembly of claim 1, wherein At least one of the at least ten internal spline teeth of the second sprocket has a first spline size different from one of the other of the at least ten internal spline teeth Second spline size. 如請求項1之自行車後鏈輪總成,其中 該第一鏈輪之一總齒數等於或小於10。 Such as the bicycle rear sprocket assembly of claim 1, wherein A total number of teeth of one of the first sprockets is equal to or less than 10. 如請求項1之自行車後鏈輪總成,其中 該第一鏈輪為該自行車後鏈輪總成中之最小鏈輪。 Such as the bicycle rear sprocket assembly of claim 1, wherein The first sprocket is the smallest sprocket in the bicycle rear sprocket assembly. 如請求項1之自行車後鏈輪總成,其進一步包含 一鏈輪支撐構件,其包括經構形以與該自行車後輪轂總成之該鏈輪支撐主體嚙合的至少十個內部花鍵齒,其中 該複數個自行車鏈輪包含經構形以附接至該鏈輪支撐構件之一額外鏈輪。 Such as the bicycle rear sprocket assembly of claim 1, which further includes a sprocket support member comprising at least ten internal spline teeth configured to engage the sprocket support body of the bicycle rear hub assembly, wherein The plurality of bicycle sprockets includes an additional sprocket configured to attach to the sprocket support member. 如請求項15之自行車後鏈輪總成,其中 該額外鏈輪之一總齒數等於或大於46。 Such as the bicycle rear sprocket assembly of claim 15, wherein One of the additional sprockets has a total number of teeth equal to or greater than 46. 如請求項15之自行車後鏈輪總成,其中 該額外鏈輪之一總齒數等於或大於50。 Such as the bicycle rear sprocket assembly of claim 15, wherein One of the additional sprockets has a total number of teeth equal to or greater than 50. 如請求項1之自行車後鏈輪總成,其中 該複數個自行車鏈輪包含作為該第二鏈輪提供之複數個第二鏈輪,且 該複數個第二鏈輪各自包括經構形以與該自行車後輪轂總成之該鏈輪支撐主體嚙合的該至少十個內部花鍵齒。 Such as the bicycle rear sprocket assembly of claim 1, wherein the plurality of bicycle sprockets includes a plurality of second sprockets provided as the second sprocket, and Each of the plurality of second sprockets includes the at least ten internal spline teeth configured to engage the sprocket support body of the bicycle rear hub assembly. 如請求項18之自行車後鏈輪總成,其進一步包含 一鏈輪支撐構件,其包括經構形以與該自行車後輪轂總成之該鏈輪支撐主體嚙合的至少十個內部花鍵齒,其中 該複數個自行車鏈輪包含經構形以附接至該鏈輪支撐構件之一額外鏈輪。 Such as the bicycle rear sprocket assembly of claim 18, which further includes a sprocket support member comprising at least ten internal spline teeth configured to engage the sprocket support body of the bicycle rear hub assembly, wherein The plurality of bicycle sprockets includes an additional sprocket configured to attach to the sprocket support member. 如請求項1之自行車後鏈輪總成,其中 該複數個自行車鏈輪之一總數目等於或大於10。 Such as the bicycle rear sprocket assembly of claim 1, wherein The total number of one of the plurality of bicycle sprockets is equal to or greater than ten. 如請求項1之自行車後鏈輪總成,其中 該複數個自行車鏈輪之一總數目等於或大於11。 Such as the bicycle rear sprocket assembly of claim 1, wherein The total number of one of the plurality of bicycle sprockets is equal to or greater than 11. 如請求項1之自行車後鏈輪總成,其中 該複數個自行車鏈輪之一總數目等於或大於12。 Such as the bicycle rear sprocket assembly of claim 1, wherein The total number of one of the plurality of bicycle sprockets is equal to or greater than twelve. 如請求項1之自行車後鏈輪總成,其中 該複數個自行車鏈輪包含具有一最大齒尖直徑之一額外鏈輪, 該第二鏈輪之該至少十個內部花鍵齒具有一內部花鍵頂徑,且 該內部花鍵頂徑對該最大齒尖直徑之一比率範圍介於0.15至0.18。 Such as the bicycle rear sprocket assembly of claim 1, wherein the plurality of bicycle sprockets includes an additional sprocket having a largest tooth tip diameter, the at least ten internal spline teeth of the second sprocket have an internal spline top diameter, and The ratio of the internal spline crown diameter to the maximum tooth tip diameter ranges from 0.15 to 0.18. 如請求項1之自行車後鏈輪總成,其中 該複數個自行車鏈輪包含包括以下各者之一額外鏈輪: 至少一個第一移位促進區域,其用以促進一自行車鏈自該額外鏈輪移位至一相鄰更小鏈輪之一第一移位操作;及 至少一個第二移位促進區域,其用以促進該自行車鏈自該相鄰更小鏈輪移位至該額外鏈輪之一第二移位操作。 Such as the bicycle rear sprocket assembly of claim 1, wherein The plurality of bicycle sprockets includes an additional sprocket comprising one of the following: at least one first displacement-facilitating region for facilitating a first displacement operation of a bicycle chain from the additional sprocket to an adjacent smaller sprocket; and At least one second displacement facilitating region for facilitating a second displacement operation of the bicycle chain from the adjacent smaller sprocket to the additional sprocket. 如請求項3之自行車後鏈輪總成,其中 該管狀主體具有等於或小於27 mm之一第一外徑。 Such as the bicycle rear sprocket assembly of claim 3, wherein The tubular body has a first outer diameter equal to or less than 27 mm. 如請求項25之自行車後鏈輪總成,其中 該第一外徑等於或大於26 mm。 Such as the bicycle rear sprocket assembly of claim 25, wherein The first outer diameter is equal to or greater than 26 mm. 如請求項3之自行車後鏈輪總成,其中 該徑向突出物具有等於或小於32 mm之一第二外徑。 Such as the bicycle rear sprocket assembly of claim 3, wherein The radial protrusion has a second outer diameter equal to or less than 32 mm. 如請求項27之自行車後鏈輪總成,其中 該第二外徑等於或大於30 mm。 Such as the bicycle rear sprocket assembly of claim 27, wherein The second outer diameter is equal to or greater than 30 mm. 如請求項3之自行車後鏈輪總成,其中 該鎖定構件具有一工具嚙合部分。 Such as the bicycle rear sprocket assembly of claim 3, wherein The locking member has a tool engaging portion. 如請求項1之自行車後鏈輪總成,其中 該複數個自行車鏈輪包含: 複數個第一鏈輪,其作為該第一鏈輪提供,該複數個第一鏈輪各自包括該第一開口;及 複數個第二鏈輪,其作為該第二鏈輪提供,該複數個第二鏈輪各自包括該第二開口及經構形以與該自行車後輪轂總成之該鏈輪支撐主體嚙合的該至少十個內部花鍵齒。 Such as the bicycle rear sprocket assembly of claim 1, wherein The plurality of bicycle sprockets includes: a plurality of first sprockets provided as the first sprocket, each of the plurality of first sprockets including the first opening; and A plurality of second sprockets provided as the second sprocket, the plurality of second sprockets each including the second opening and the sprocket support body configured to engage the rear hub assembly of the bicycle At least ten internal spline teeth. 如請求項15之自行車後鏈輪總成,其中 該額外鏈輪藉由黏著劑附接至該鏈輪支撐構件。 Such as the bicycle rear sprocket assembly of claim 15, wherein The additional sprocket is attached to the sprocket support member by adhesive. 如請求項15之自行車後鏈輪總成,其中 該鏈輪支撐構件由包括一樹脂材料之一非金屬材料製成。 Such as the bicycle rear sprocket assembly of claim 15, wherein The sprocket supporting member is made of a non-metallic material including a resin material. 如請求項1之自行車後鏈輪總成,其中 該第二鏈輪之該至少十個內部花鍵齒中的至少兩個內部花鍵齒相對於該自行車後鏈輪總成之一旋轉中心軸線以一第一內部周節角沿圓周配置,且 該第一內部周節角範圍介於5度至36度。 Such as the bicycle rear sprocket assembly of claim 1, wherein At least two of the at least ten internal spline teeth of the second sprocket are circumferentially disposed at a first internal circumferential pitch angle relative to a central axis of rotation of the bicycle rear sprocket assembly, and The first internal pitch angle ranges from 5 degrees to 36 degrees. 如請求項33之自行車後鏈輪總成,其中 該第一內部周節角範圍介於10度至20度。 Such as the bicycle rear sprocket assembly of claim 33, wherein The first internal pitch angle ranges from 10° to 20°. 如請求項34之自行車後鏈輪總成,其中 該第一內部周節角等於或小於15度。 Such as the bicycle rear sprocket assembly of claim 34, wherein The first inner circumferential pitch angle is equal to or less than 15 degrees. 如請求項33之自行車後鏈輪總成,其中 該第二鏈輪之該至少十個內部花鍵齒中的至少其他兩個內部花鍵齒相對於該旋轉中心軸線以一第二內部周節角沿圓周配置,且 該第二內部周節角不同於該第一內部周節角。 Such as the bicycle rear sprocket assembly of claim 33, wherein At least two other internal spline teeth of the at least ten internal spline teeth of the second sprocket are circumferentially disposed at a second internal circumferential pitch angle relative to the central axis of rotation, and The second inner circumferential pitch angle is different from the first inner circumferential pitch angle. 如請求項1之自行車後鏈輪總成,其中 該第二鏈輪之該至少十個內部花鍵齒具有等於或小於34 mm之一內部花鍵頂徑。 Such as the bicycle rear sprocket assembly of claim 1, wherein The at least ten internal spline teeth of the second sprocket have an internal spline crown diameter equal to or less than 34 mm. 如請求項37之自行車後鏈輪總成,其中 該第二鏈輪之該內部花鍵頂徑等於或小於33 mm。 Such as the bicycle rear sprocket assembly of claim 37, wherein The inner spline top diameter of the second sprocket is equal to or smaller than 33 mm. 如請求項37之自行車後鏈輪總成,其中 該第二鏈輪之該內部花鍵頂徑等於或大於29 mm。 Such as the bicycle rear sprocket assembly of claim 37, wherein The inner spline top diameter of the second sprocket is equal to or greater than 29 mm. 如請求項1之自行車後鏈輪總成,其中 該第二鏈輪之該至少十個內部花鍵齒具有等於或小於32 mm之一內部花鍵底徑。 Such as the bicycle rear sprocket assembly of claim 1, wherein The at least ten internal spline teeth of the second sprocket have an internal spline base diameter equal to or less than 32 mm. 如請求項40之自行車後鏈輪總成,其中 該內部花鍵底徑等於或小於31 mm。 Such as the bicycle rear sprocket assembly of claim 40, wherein The internal spline base diameter is equal to or less than 31 mm. 如請求項40之自行車後鏈輪總成,其中 該內部花鍵底徑等於或大於28 mm。 Such as the bicycle rear sprocket assembly of claim 40, wherein The internal spline base diameter is equal to or greater than 28 mm. 如請求項1之自行車後鏈輪總成,其中 該至少十個內部花鍵齒包括用以在踩踏期間接收來自該自行車後輪轂總成之一傳動旋轉力的複數個內部花鍵傳動表面, 該複數個內部花鍵傳動表面各自包括 一徑向最外邊緣, 一徑向最內邊緣,及 一徑向長度,其係自該徑向最外邊緣至該徑向最內邊緣界定,且 該複數個內部花鍵傳動表面之該等徑向長度之一總和等於或大於7 mm。 Such as the bicycle rear sprocket assembly of claim 1, wherein the at least ten internal spline teeth include a plurality of internal spline drive surfaces for receiving drive rotational force from a rear hub assembly of the bicycle during pedaling, Each of the plurality of internal splined drive surfaces includes a radially outermost edge, a radially innermost edge, and a radial length defined from the radially outermost edge to the radially innermost edge, and The sum of one of the radial lengths of the plurality of internal spline drive surfaces is equal to or greater than 7 mm. 如請求項43之自行車後鏈輪總成,其中 該等徑向長度之該總和等於或大於10 mm。 Such as the bicycle rear sprocket assembly of claim 43, wherein The sum of the radial lengths is equal to or greater than 10 mm. 如請求項43之自行車後鏈輪總成,其中 該等徑向長度之該總和等於或大於15 mm。 Such as the bicycle rear sprocket assembly of claim 43, wherein The sum of the radial lengths is equal to or greater than 15 mm. 如請求項43之自行車後鏈輪總成,其中 該等徑向長度之該總和等於或小於36 mm。 Such as the bicycle rear sprocket assembly of claim 43, wherein The sum of the radial lengths is equal to or less than 36 mm. 如請求項1之自行車後鏈輪總成,其中 該至少十個內部花鍵齒中之至少一者包括 一內部花鍵傳動表面,其具有界定於該內部花鍵傳動表面與一第一徑向線之間的一第一內部花鍵表面角,該第一徑向線自該自行車後鏈輪總成之一旋轉中心軸線延伸至該內部花鍵傳動表面之一徑向最外邊緣,且 該第一內部花鍵表面角範圍介於0度至6度。 Such as the bicycle rear sprocket assembly of claim 1, wherein At least one of the at least ten internal spline teeth includes an internal splined drive surface having a first internal splined surface angle defined between the internal splined drive surface and a first radial line from the bicycle rear sprocket assembly a central axis of rotation extends to a radially outermost edge of the inner splined drive surface, and The angle of the first inner spline surface ranges from 0° to 6°. 如請求項47之自行車後鏈輪總成,其中 該至少十個內部花鍵齒中之該至少一者包括 一內部花鍵非傳動表面,其具有界定於該內部花鍵非傳動表面與一第二徑向線之間的一第二內部花鍵表面角,該第二徑向線自該自行車後鏈輪總成之該旋轉中心軸線延伸至該內部花鍵非傳動表面之一徑向最外邊緣,且 該第二內部花鍵表面角範圍介於0度至6度。 Such as the bicycle rear sprocket assembly of claim 47, wherein The at least one of the at least ten internal spline teeth includes an internal splined non-drive surface having a second internal splined surface angle defined between the internal splined non-drive surface and a second radial line from the bicycle rear sprocket the central axis of rotation of the assembly extends to a radially outermost edge of the internal splined non-drive surface, and The second inner spline surface angle ranges from 0° to 6°. 如請求項1之自行車後鏈輪總成,其中 該第二鏈輪之該至少十個內部花鍵齒中之至少一者相對於一參考線沿圓周對稱,該參考線相對於該旋轉中心軸線在一徑向方向上自該旋轉中心軸線延伸至該至少十個內部花鍵齒中之該至少一者之一徑向最外端的一圓周中心點。 Such as the bicycle rear sprocket assembly of claim 1, wherein At least one of the at least ten internal spline teeth of the second sprocket is circumferentially symmetrical with respect to a reference line extending in a radial direction relative to the central axis of rotation from the central axis of rotation to A circumferential center point of a radially outermost end of the at least one of the at least ten internal spline teeth. 一種自行車傳動系統,其包含: 如請求項1之自行車後鏈輪總成;及 一自行車後輪轂總成,其包含: 一輪轂軸,其包括具有等於或大於13 mm之一最小內徑的一軸通孔; 一輪轂主體,其圍繞該自行車後輪轂總成之一旋轉中心軸線可旋轉地安裝於該輪轂軸上;及 一鏈輪支撐主體,其圍繞該旋轉中心軸線可旋轉地安裝於該輪轂軸上。 A bicycle transmission system comprising: Such as the bicycle rear sprocket assembly of claim 1; and A bicycle rear hub assembly, which includes: Hub shafts comprising a shaft through-bore having a minimum inner diameter equal to or greater than 13 mm; a hub body rotatably mounted on the hub axle about a central axis of rotation of the bicycle rear hub assembly; and A sprocket support body is rotatably mounted on the hub axle around the rotation center axis. 如請求項50之自行車傳動系統,其中 該軸通孔之該最小內徑等於或大於14 mm。 Such as the bicycle transmission system of claim 50, wherein The minimum inner diameter of the shaft through hole is equal to or greater than 14 mm. 如請求項50之自行車傳動系統,其中 該軸通孔之該最小內徑等於或小於21 mm。 Such as the bicycle transmission system of claim 50, wherein The minimum inner diameter of the shaft through hole is equal to or smaller than 21 mm. 如請求項6之自行車後鏈輪總成,其中 該至少十個第一扭矩傳遞齒之一總數目範圍介於22至24。 Such as the bicycle rear sprocket assembly of claim 6, wherein The total number of one of the at least ten first torque transmission teeth ranges from 22 to 24. 如請求項1之自行車後鏈輪總成,其中 該第二鏈輪之該至少十個內部花鍵齒之一總數目範圍介於22至24。 Such as the bicycle rear sprocket assembly of claim 1, wherein A total number of the at least ten internal spline teeth of the second sprocket ranges from 22-24. 如請求項33之自行車後鏈輪總成,其中 該第一內部周節角範圍介於13度至17度。 Such as the bicycle rear sprocket assembly of claim 33, wherein The first internal pitch angle ranges from 13 degrees to 17 degrees. 如請求項36之自行車後鏈輪總成,其中 該第二內部周節角範圍介於28度至32度。 Such as the bicycle rear sprocket assembly of claim 36, wherein The second inner circumferential pitch angle ranges from 28 degrees to 32 degrees. 如請求項36之自行車後鏈輪總成,其中 該第一內部周節角為該第二內部周節角之一半。 Such as the bicycle rear sprocket assembly of claim 36, wherein The first inner circumferential pitch angle is half of the second inner circumferential pitch angle. 如請求項43之自行車後鏈輪總成,其中 該複數個內部花鍵傳動表面之該等徑向長度的該總和範圍介於11 mm至14 mm。 Such as the bicycle rear sprocket assembly of claim 43, wherein The sum of the radial lengths of the plurality of internal spline drive surfaces ranges from 11 mm to 14 mm.
TW111140394A 2017-05-30 2018-05-11 Bicycle rear sprocket assembly and bicycle drive train TW202323129A (en)

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
US15/608,924 US11332213B2 (en) 2017-05-30 2017-05-30 Bicycle rear sprocket assembly and bicycle drive train
US15/608,924 2017-05-30
US15/608,915 US11059541B2 (en) 2017-05-30 2017-05-30 Bicycle hub assembly
US15/608,915 2017-05-30
US15/673,346 US10377174B2 (en) 2017-08-09 2017-08-09 Bicycle hub assembly
US15/673,346 2017-08-09
US15/686,179 US11220309B2 (en) 2017-05-30 2017-08-25 Bicycle rear sprocket assembly
US15/686,177 US11179967B2 (en) 2017-05-30 2017-08-25 Bicycle hub assembly
US15/686,177 2017-08-25
US15/686,179 2017-08-25
US201715712407A 2017-09-22 2017-09-22
US201715712388A 2017-09-22 2017-09-22
US15/712,407 2017-09-22
US15/712,388 2017-09-22
US15/851,781 US10946931B2 (en) 2017-09-22 2017-12-22 Bicycle rear sprocket assembly and bicycle drive train
US15/851,785 2017-12-22
US15/851,781 2017-12-22
US15/851,785 US10752320B2 (en) 2017-09-22 2017-12-22 Bicycle rear hub assembly

Publications (1)

Publication Number Publication Date
TW202323129A true TW202323129A (en) 2023-06-16

Family

ID=64279281

Family Applications (5)

Application Number Title Priority Date Filing Date
TW108142953A TWI820259B (en) 2017-05-30 2018-05-11 Bicycle rear hub assembly and sprocket support body
TW111140394A TW202323129A (en) 2017-05-30 2018-05-11 Bicycle rear sprocket assembly and bicycle drive train
TW107116092A TWI786113B (en) 2017-05-30 2018-05-11 Bicycle rear hub assembly
TW107116090A TWI707802B (en) 2017-05-30 2018-05-11 Bicycle rear sprocket assembly and bicycle drive train
TW109133515A TWI785387B (en) 2017-05-30 2018-05-11 Bicycle rear sprocket assembly and bicycle drive train

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW108142953A TWI820259B (en) 2017-05-30 2018-05-11 Bicycle rear hub assembly and sprocket support body

Family Applications After (3)

Application Number Title Priority Date Filing Date
TW107116092A TWI786113B (en) 2017-05-30 2018-05-11 Bicycle rear hub assembly
TW107116090A TWI707802B (en) 2017-05-30 2018-05-11 Bicycle rear sprocket assembly and bicycle drive train
TW109133515A TWI785387B (en) 2017-05-30 2018-05-11 Bicycle rear sprocket assembly and bicycle drive train

Country Status (4)

Country Link
JP (5) JP6670342B2 (en)
CN (4) CN108973524B (en)
DE (2) DE102018111277A1 (en)
TW (5) TWI820259B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109572916A (en) * 2019-01-14 2019-04-05 昆山攀登电子科技有限公司 A kind of electric bicycle column foot speed of torque sensing device
US11518474B2 (en) * 2019-01-24 2022-12-06 Shimano Inc. Bicycle sprocket arrangement
WO2020179142A1 (en) 2019-03-04 2020-09-10 本田技研工業株式会社 Saddle-type vehicle
US11578761B2 (en) * 2019-03-22 2023-02-14 Shimano Inc. Bicycle sprocket arrangement
US11642913B2 (en) * 2019-03-22 2023-05-09 Shimano Inc. Sprocket support body and bicycle hub assembly
IT201900013341A1 (en) * 2019-07-30 2021-01-30 Campagnolo Srl Sprocket carrier and sprocket set sub-assembly for a bicycle rear wheel
US11591043B2 (en) * 2019-07-30 2023-02-28 Campagnolo S.R.L. Sprocket-carrying body and sub-assembly of sprocket-carrying body and cogset for a bicycle rear wheel
IT201900013287A1 (en) * 2019-07-30 2021-01-30 Campagnolo Srl Adapter for a sprocket body for a bicycle rear wheel
JP7448321B2 (en) 2019-08-29 2024-03-12 シマノ(シンガポール)プライベートリミテッド Hub for human powered vehicles
US11465710B2 (en) * 2019-12-10 2022-10-11 Shimano Inc. Bicycle rear sprocket assembly
DE102021212748A1 (en) * 2020-12-25 2022-06-30 Shimano Inc. HUB FOR A HUMAN-POWERED VEHICLE

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES396325A1 (en) * 1971-10-23 1973-02-01 Zeus Ind S A Improvements introduced in the multiple crowns free wheel system for bikes. (Machine-translation by Google Translate, not legally binding)
JPS6111116Y2 (en) * 1981-03-20 1986-04-08
JPS591013Y2 (en) * 1981-07-07 1984-01-12 マエダ工業株式会社 Bicycle spoke protector
FR2571329B1 (en) * 1984-10-09 1987-04-24 Bouffard Claude SPROCKET ADAPTABLE TO A BICYCLE REAR WHEEL HUB AND A FREEWHEEL REAR HUB USING SUCH A SPROCKET
JPH0187993U (en) * 1987-12-02 1989-06-09
JPH0732803A (en) * 1993-07-19 1995-02-03 Reizu Eng:Kk Bicycle wheel
CN1186751A (en) * 1996-10-02 1998-07-08 岛野(新)私人有限公司 Multiple sprocket assembly adapted to secure sprocket to outer race
US5788593A (en) * 1996-10-02 1998-08-04 Shimano (Singapore) Private, Limited Multiple sprocket assembly adapted to secure a sprocket to an outer race
US5954604A (en) * 1996-11-21 1999-09-21 Shimano, Inc. Multiple sprocket assembly for a bicycle
JP3142247B2 (en) * 1997-05-08 2001-03-07 株式会社シマノ Interior gear hub for bicycle
US6101907A (en) * 1998-11-25 2000-08-15 Snap-On Tools Company Interference fit joint and method and indexable ratchet wrench utilizing same
EP1149000A1 (en) 1998-12-08 2001-10-31 DT Swiss AG Hub, notably for bicycles and such like
US6264575B1 (en) * 1999-04-08 2001-07-24 Shimano, Inc. Freewheel for a bicycle
US6382381B1 (en) * 2000-09-06 2002-05-07 Shimano Inc. Bicycle hub assembly
US6497314B2 (en) 2000-12-07 2002-12-24 Shimano Inc. Bicycle hub with sliding engagement member and detachable freewheel
US6523659B2 (en) * 2000-12-11 2003-02-25 Shimano Inc. Bicycle hub with tight connection ratchet and detachable freewheel
EP1216849B1 (en) * 2000-12-19 2004-08-18 Jiri Krampera Spoked wheel for bicycle
US20020139631A1 (en) * 2001-03-30 2002-10-03 Wang Ming Theng Frictionless rear hub sprocket and ratchet assembly
US6371252B1 (en) * 2001-08-30 2002-04-16 Shimano Inc. Bicycle disc brake hub
US6669306B1 (en) 2002-10-25 2003-12-30 Shimano Inc. Bicycle hub axle assembly
CN2606688Y (en) * 2003-03-07 2004-03-17 森迪工业股份有限公司 Structure improvement of flower drum
JP2005231556A (en) 2004-02-20 2005-09-02 Shimano Inc Hub for bicycle
US7846047B2 (en) * 2004-09-10 2010-12-07 Shimano, Inc. Bicycle sprocket having a thickened spline
US8096908B2 (en) * 2004-12-14 2012-01-17 Shimano, Inc. Bicycle sprocket with a laterally projecting gear change tooth
US20080004143A1 (en) * 2006-06-16 2008-01-03 Shimano Inc. Bicycle sprocket assembly
JP5349756B2 (en) * 2007-01-17 2013-11-20 Ntn株式会社 Constant velocity universal joint
TW200900323A (en) * 2007-06-19 2009-01-01 William Blair Shook Steel insert for aluminum spline body
ITBO20070725A1 (en) * 2007-10-30 2009-04-30 O F F Road Di Cerasi Alessandr CONNECTION FLANGE FOR CYCLES AND MOTORCYCLES TRANSMISSION BODIES
JP2009293789A (en) * 2008-06-09 2009-12-17 Aisin Seiki Co Ltd Stabilizer control device
DE102011013536A1 (en) * 2011-03-10 2012-09-13 Dt Swiss Ag Hub for a bicycle
TWI657965B (en) * 2011-07-13 2019-05-01 矢倫德國股份有限公司 Multi-sprocket-equipped transmission base body device for supporting bicycle transmission
US8956254B2 (en) * 2011-08-04 2015-02-17 Shimano Inc. Bicycle sprocket assembly
TWM442978U (en) * 2012-04-25 2012-12-11 Shimano Kk A bicycle sprocket and a bicycle sprocket assembly
CN202827980U (en) * 2012-07-05 2013-03-27 岛野股份有限公司 Bicycle chain wheel and bicycle chain wheel assembly
JP6395023B2 (en) * 2013-03-14 2018-09-26 株式会社リコー Rotating body driving device and image forming apparatus having the same
US20140265539A1 (en) 2013-03-15 2014-09-18 Specialized Bicycle Components, Inc. Bicycle with improved chain line
US9199509B2 (en) * 2014-01-21 2015-12-01 Shimano Inc. Bicycle hub
US9731550B2 (en) * 2014-05-02 2017-08-15 Shimano Inc. Bicycle hub assembly
US9446815B2 (en) * 2014-09-19 2016-09-20 Vp Components Co., Ltd Chain wheel assembly and chain wheel device using it
US10155567B2 (en) * 2014-10-07 2018-12-18 Shimano Inc. Bicycle shifting control apparatus
CN104494775B (en) * 2014-12-10 2017-05-24 张家港市九鼎机械有限公司 Light-weight speed changing device and bicycle adopting light-weight speed changing device
EP3037336B1 (en) * 2014-12-23 2017-04-12 Campagnolo S.R.L. Sprocket assembly for a bicycle
US9649880B2 (en) * 2015-01-29 2017-05-16 Shimano Inc. Bicycle hub assembly
US9511819B1 (en) * 2015-05-25 2016-12-06 Shimano Inc. Bicycle rear sprocket assembly
US10562588B2 (en) * 2015-09-01 2020-02-18 The Hive Global, Inc Bicycle cassette with locking connection
US9707801B2 (en) * 2015-10-01 2017-07-18 Shimano Inc. Bicycle hub assembly
DE202016100725U1 (en) 2016-02-12 2016-04-22 Shimano Inc. Bicycle hub assembly

Also Published As

Publication number Publication date
JP2018203243A (en) 2018-12-27
TWI707802B (en) 2020-10-21
JP6885915B2 (en) 2021-06-16
TWI786113B (en) 2022-12-11
CN110712474A (en) 2020-01-21
CN108974239B (en) 2021-07-20
JP7016290B2 (en) 2022-02-04
JP6670342B2 (en) 2020-03-18
TW202124212A (en) 2021-07-01
DE102018111277A1 (en) 2018-12-06
TW201900494A (en) 2019-01-01
CN108974239A (en) 2018-12-11
TWI785387B (en) 2022-12-01
TWI820259B (en) 2023-11-01
DE202018006055U1 (en) 2019-01-28
CN108973524B (en) 2022-01-04
JP2018203242A (en) 2018-12-27
TW201900446A (en) 2019-01-01
CN110712474B (en) 2023-08-08
JP7232296B2 (en) 2023-03-02
JP6918184B2 (en) 2021-08-11
CN113581359B (en) 2022-09-02
JP2019038539A (en) 2019-03-14
CN114379280A (en) 2022-04-22
CN113581359A (en) 2021-11-02
TW202012207A (en) 2020-04-01
JP2020138735A (en) 2020-09-03
JP2021191678A (en) 2021-12-16
CN108973524A (en) 2018-12-11

Similar Documents

Publication Publication Date Title
TWI785387B (en) Bicycle rear sprocket assembly and bicycle drive train
US10752320B2 (en) Bicycle rear hub assembly
US10946931B2 (en) Bicycle rear sprocket assembly and bicycle drive train
TWI795653B (en) Bicycle hub assembly
JP6642933B2 (en) Bicycle hub assembly
TWI791156B (en) Bicycle hub assembly
CN114379280B (en) Bicycle rear hub assembly