TW202321776A - 輻射聚焦模組與具有輻射聚焦模組的加工系統 - Google Patents

輻射聚焦模組與具有輻射聚焦模組的加工系統 Download PDF

Info

Publication number
TW202321776A
TW202321776A TW110142976A TW110142976A TW202321776A TW 202321776 A TW202321776 A TW 202321776A TW 110142976 A TW110142976 A TW 110142976A TW 110142976 A TW110142976 A TW 110142976A TW 202321776 A TW202321776 A TW 202321776A
Authority
TW
Taiwan
Prior art keywords
radiation
focusing
lens
light
heat source
Prior art date
Application number
TW110142976A
Other languages
English (en)
Other versions
TWI806246B (zh
Inventor
曾耀興
丁仁峰
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW110142976A priority Critical patent/TWI806246B/zh
Publication of TW202321776A publication Critical patent/TW202321776A/zh
Application granted granted Critical
Publication of TWI806246B publication Critical patent/TWI806246B/zh

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

輻射聚焦模組包括光纖、第一聚焦鏡、第二聚焦鏡以及縮束器。光纖具有光軸方向。第一聚焦鏡位在光纖與第二聚焦鏡之間。縮束器位在第一聚焦鏡與第二聚焦鏡之間,且第一聚焦鏡、第二聚焦鏡、以及縮束器排列於光軸方向上,其中縮束器具有開孔。

Description

輻射聚焦模組與具有輻射聚焦模組的加工系統
本揭露是有關於一種輻射聚焦模組以及具有輻射聚焦模組的加工系統。
雷射加工是目前高精度電路板加工的常用技術。非同軸光路的雷射加工設備因為機械體積龐大以及重量難以縮減,造成加工精度低以及透鏡因震動而偏移等問題。因此,目前的雷射加工技術加工效率仍有待提升。
在同軸光路的雷射加工設備中,將加工元件被雷射加熱後所產生的熱源紅外光回收以偵測溫度。然而,來自不同熱源且具有不同波長的紅外光束難以有效地聚焦並耦合。因此,目前的同軸光路雷射加工設備的溫度偵測準確度低,使得加工效率難以提升。
有鑑於此,如何提供一種可改善上述問題的加工設備仍是目前業界亟需研究的目標之一。
本揭露之一技術態樣為一種輻射聚焦模組。
在本揭露一實施例中,輻射聚焦模組包括光纖、第一聚焦鏡、第二聚焦鏡以及縮束器。光纖具有光軸方向。第一聚焦鏡位在光纖與第二聚焦鏡之間。縮束器位在第一聚焦鏡與第二聚焦鏡之間,且第一聚焦鏡、第二聚焦鏡、以及縮束器排列於光軸方向上,其中縮束器具有開孔。
在本揭露一實施例中,開孔對準光軸方向。
在本揭露一實施例中,縮束器的折射率小於第一聚焦鏡或第二聚焦鏡的折射率。
在本揭露一實施例中,縮束器包括平凹透鏡與透鏡陣列,且透鏡陣列位在平凹透鏡與第二聚焦鏡之間。
在本揭露一實施例中,透鏡陣列包括複數個透鏡,且透鏡的光軸方向與光纖的光軸方向具有夾角。
在本揭露一實施例中,縮束器包括平凸透鏡與平凹透鏡,且平凸透鏡位在平凹透鏡與第二聚焦鏡之間。
本揭露另一技術態樣為一種加工系統。
在本揭露一實施例中,加工系統包括紅外線偵測器、輻射光源、以及輻射聚焦模組。輻射光源電性連接紅外線偵測器,其中輻射光源配置以發出加工輻射光。輻射聚焦模組配置以傳輸熱源輻射光。輻射聚焦模組包括光纖、第一聚焦鏡、第二聚焦鏡以及縮束器。光纖具有光軸方向。第一聚焦鏡位在光纖與第二聚焦鏡之間。縮束器位在第一聚焦鏡與第二聚焦鏡之間,且第一聚焦鏡、第二聚焦鏡、以及縮束器排列於光軸方向上,其中縮束器具有開孔。
在本揭露一實施例中,開孔的孔徑大於加工輻射光的直徑。
在本揭露一實施例中,開孔的孔徑為加工輻射光的直徑的1.1倍~1.3倍。
在本揭露一實施例中,開孔的孔徑小於熱源輻射光的直徑。
在本揭露一實施例中,加工輻射光包括雷射光、X光、紫外光、兆赫波、微波。
在本揭露一實施例中,熱源輻射光包括紅外光與近紅外光。
在上述實施例中,本揭露的輻射聚焦模組藉由縮束器使熱源輻射光的直徑得以縮小至接近加工輻射光的直徑大小,以提升熱源輻射光進入光纖的比例,可提升溫度偵測準確性。此外,由於縮束器具有開孔,加工輻射光可在不損失功率的狀況下進入第二聚焦鏡。因此,本揭露的輻射聚焦模組可在相同光路中,同時維持加工輻射光的輻射強度並增加熱源輻射光進入光纖的比例。如此一來,可無須設置額外光路以提升熱源輻射光的偵測強度,因此本揭露的加工模組具有體積較小且重量較輕等優點。此外,本揭露的輻射聚焦模組可偵測多個波長的熱源輻射光,藉此提升系統控制器對於加工的控制效果。
以下將以圖式揭露本發明之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。且為了清楚起見,圖式中之層和區域的厚度可能被誇大,並且在圖式的描述中相同的元件符號表示相同的元件。
第1圖為根據本揭露一實施例之加工系統10的輻射聚焦模組100的示意圖。加工系統10包括輻射聚焦模組100與系統控制器200。輻射聚焦模組100包括光纖110、第一聚焦鏡120、第二聚焦鏡130與縮束器140。光纖110具有光軸方向A1。第一聚焦鏡120位在光纖110與第二聚焦鏡130之間。縮束器140位在第一聚焦鏡120與第二聚焦鏡130之間。第二聚焦鏡130、縮束器140與第一聚焦鏡120依序排列於光軸方向A1上。
縮束器140包括平凹透鏡142與透鏡陣列144,且透鏡陣列144位在平凹透鏡142與第二聚焦鏡130之間。在本實施例中,透鏡陣列144包括多個環繞的凸透鏡,第1圖中示例性地繪示出兩個凸透鏡1442、1444,但本揭露不以此為限。平凹透鏡142具有開孔142H。透鏡陣列144可以是由兩個以上的凸透鏡組成的球體矩陣。透鏡陣列144包括開孔144H,也就是透鏡陣列144的多個凸透鏡1442、1444圍繞出開孔144H。凸透鏡1442、1444的光軸方向與光纖110的光軸方向A1具有夾角,藉此使得通過透鏡陣列144朝向平凹透鏡142匯聚。
在本實施例中,系統控制器200的輻射光源210(見第2圖)發出加工輻射光102,且加工輻射光102依序通過光纖110、第一聚焦鏡120、平凹透鏡142的開孔142H、透鏡陣列144的開孔144H以及第二聚焦鏡130後照射至加工元件300上。加工輻射光102在通過第一聚焦鏡120後聚焦為具有直徑D1的平行光。開孔142H與開孔144H的孔徑大於加工輻射光102的直徑D1,開孔142H與開孔144H沿著光軸方向A1對齊。因此,加工輻射光102可通過開孔142H與開孔144H,且加工輻射光102的功率不會因為通過額外介質而衰減。在一些實施例中,開孔142H與開孔144H的孔徑為加工輻射光102的直徑D1的1.1倍~1.3倍。
加工元件300包括設置在電路板340上的引腳310與焊盤320。焊料330藉由加工輻射光102加熱以進行焊接。加工元件300被加熱後發出熱源輻射光104。熱源輻射光104由多個熱源發出的輻射光組合而成,且熱源輻射光104可具有多個波長。熱源輻射光104依序通過第二聚焦鏡130、透鏡陣列144、平凹透鏡142以及第一聚焦鏡120後進入光纖110,熱源輻射光104接著被系統控制器200回收以提供溫度偵測及回授控制所需的資料。
熱源輻射光104在通過第二聚焦鏡130後聚焦為具有直徑D2的平行光。直徑D2大於加工輻射光102的直徑D1,且直徑D2接近於第二聚焦鏡130的直徑。一部分的熱源輻射光1042可直接通過平凹透鏡142的開孔142H與透鏡陣列144的開孔144H。具體來說,如圖所示,直接通過開孔142H與開孔144H的熱源輻射光1042是與加工輻射光102重疊的部分。另一部份的熱源輻射光1044則在穿透過透鏡陣列144後而縮小直徑。具體來說,此處所述的另一部分的熱源輻射光1044是位在加工輻射光102外圍的部份。
縮束器140的平凹透鏡142與透鏡陣列144的折射率小於第一聚焦鏡120或第二聚焦鏡130的折射率。藉此,可避免熱源輻射光1044在進入平凹透鏡142前聚焦。換句話說,透鏡陣列144中多個凸透鏡1442,1444構成的焦點是落在平凹透鏡142後方,因此熱源輻射光1044在尚未聚焦前即穿透過平凹透鏡142。穿透過平凹透鏡142的熱源輻射光1044與熱源輻射光1042共同具有直徑D3,且直徑D3小於直徑D2。通過縮束器140後的熱源輻射光104透過第一聚焦鏡120聚焦,且熱源輻射光104的直徑接近於光纖110的孔徑而得以進入光纖110。換句話說,開孔142H與開孔144H的孔徑小於熱源輻射光104的直徑D2。熱源輻射光104的直徑D2藉由縮束器140縮小至直徑D3,因此有利於提高熱源輻射光104進入光纖110的比例。
舉例來說,本實施例中的第一聚焦鏡120、縮束器140與第二聚焦鏡130共同構成的結構長度約為10公分,有利於微型化輻射聚焦模組100。第一聚焦鏡120與第二聚焦鏡130由光學玻璃(例如N-BK7玻璃)製成,折射率1.52。第一聚焦鏡120的焦距為32毫米,第二聚焦鏡130的焦距為100毫米。平凹透鏡142與透鏡陣列144由氟化鈣(CaF2)製成,折射率1.43。平凹透鏡142的焦距為60毫米。
加工輻射光102通過第一聚焦鏡120後的直徑D1為14毫米。縮束器140的平凹透鏡142的開孔142H與透鏡陣列144的開孔144H大約為16毫米。如此一來,加工輻射光102可在無損失功率的狀況下通過開孔142H與開孔144H並進入第二聚焦鏡130。
加工輻射光102可包括雷射光、X光、紫外光、兆赫波、微波。熱源輻射光104可包括紅外光與近紅外光。縮束器140的平凹透鏡142與透鏡陣列144可對應熱源輻射光104的波段設置紅外線鍍膜,以降低光線衰減率。在其他實施例中,縮束器140可以是凸透鏡、凹凸透鏡、軸稜鏡、二次反射稜鏡、金屬鏡或上述之組合。透鏡陣列144可以是由多面反射鏡或是光柵構成具有開孔144H的光學元件。只要加工輻射光102可通過此光學元件,且熱源輻射光104的直徑可縮小即可。
第2圖為根據本揭露一實施例之加工系統10的系統控制器200示意圖。系統控制器200包括輻射光源210、準直器212、光源耦合器214、紅外線偵測器220、紅外線耦合器222、回授控制器230以及分色鏡240。輻射光源210發出的輻射光202經過準直器212後,經由分色鏡240反射朝向光源耦合器214並形成如第1圖所示的加工輻射光102。第1圖中所示的熱源輻射光104通過分色鏡240後經由紅外線耦合器222耦合進入紅外線偵測器220。回授控制器230電性連接紅外線偵測器220與輻射光源210。回授控制器230根據紅外線偵測器220的偵測結果取得加工溫度,藉此調整輻射光源210的設定以維持加工效率。
根據上述,輻射聚焦模組100藉由縮束器140使熱源輻射光104的直徑得以縮小至接近加工輻射光102的直徑大小,以提升熱源輻射光104進入光纖110的比例,可提升溫度偵測準確性。此外,由於縮束器140的平凹透鏡142與透鏡陣列144分別具有開孔142H與開孔144H,加工輻射光102可在不損失功率的狀況下進入第二聚焦鏡130。因此,本揭露的輻射聚焦模組100可在相同光路中,同時維持加工輻射光102的輻射強度並增加熱源輻射光104進入光纖110的比例。如此一來,可無須設置額外光路以提升熱源輻射光的偵測強度,因此本揭露的加工模組具有體積較小且重量較輕等優點,可進一步提升加工精度。
第3圖為根據本揭露另一實施例之加工系統10a的輻射聚焦模組100a的示意圖。輻射聚焦模組100a與輻射聚焦模組100大致相同,其差異在於輻射聚焦模組100的縮束器140a包括平凹透鏡142與平凸透鏡144a。舉例來說,平凸透鏡144a的焦距為100毫米。輻射聚焦模組100a具有與輻射聚焦模組100相同的技術功效,於此不再贅述。
第4圖為根據本揭露一實施例之輻射聚焦模組的熱源輻射光傳輸效率模擬數據。在本實施例中,以第3圖的輻射聚焦模組100做為模擬時的配置。模擬光源功率為1瓦特,波長分別為1600奈米與2300奈米為兩模擬熱源紅外光。第4圖中以光軸方向A1對應的位置定義為橫向位置座標的原點。
表一為上述兩模擬熱源紅外光皆來自熱源S1時,模擬偵測器I與模擬偵測器II接收到的紅外線功率及傳輸效率。第4圖中的紅外線偵測器400分別用以模擬不同尺寸的偵測器。如表一所示,模擬偵測器I為50.8毫米乘以50.8毫米,且模擬偵測器II為0.8毫米乘以0.8毫米。如表一所示,第2列至第4列的資料分別列出習知的輻射聚焦模組的模擬結果,第5列至第7列的資料分別列出第3圖所示的輻射聚焦模組100a的模擬結果。
傳輸效率可根據模擬偵測器I的接收功率與模擬偵測器II的接收功率得出。從表一的第3列與第6列的資料可知,本發明的輻射聚焦模組100對於波長1600奈米的熱源紅外光的傳輸效率可從26.980%提升至77.132%。從表一的第4列與第7列的資料可知,本發明的輻射聚焦模組100對於波長2300奈米的熱源紅外光的傳輸效率可從32.158%提升至67.377%。
  波長 (奈米) 位置 (釐米) 波長 (奈米) 位置 (釐米) 模擬偵測器I 接收功率 模擬偵測器II 接收功率 傳輸效率(%)
習知 1600 0 2300 0 1.84 0.5442  
1600 0     0.9177 0.2476 26.980
    2300 0 0.9223 0.2966 32.158
本發明 1600 0 2300 0 1.903 1.375  
1600 0     0.95139 0.73383 77.132
    2300 0 0.75161 0.64117 67.377
表一、輻射聚焦模組的傳輸效率模擬數據
表二為上述兩模擬熱源紅外光分別來自熱源S1與熱源S2時,模擬偵測器I與模擬偵測器II接收到的紅外線功率及傳輸效率。從表二的第3列與第6列的資料可知,本發明的輻射聚焦模組100對於波長1600奈米的熱源紅外光的傳輸效率可從26.980%提升至77.132%。從表一的第4列與第7列的資料可知,本發明的輻射聚焦模組100對於波長2300奈米的熱源紅外光的傳輸效率可從33.509%提升至54.081%。換句話說,即使熱源S2相較於圖中光軸方向A1有0.5釐米的橫向偏移,其對應的傳輸效率仍明顯高於習知的輻射聚焦模組。
  波長 (奈米) 位置 (釐米) 波長 (奈米) 位置 (釐米) 模擬偵測器I 接收功率 模擬偵測器II 接收功率 傳輸效率(%)
習知 1600 0 2300 0.5 1.839 0.5437  
1600 0     0.9177 0.2476 26.980
    2300 0.5 0.9213 0.2903 31.509
本發明 1600 0 2300 0.5 1.9025 1.2482  
1600 0     0.95139    0.73383 77.132
    2300 0.5 0.75111 0.51437 54.081
表二、輻射聚焦模組的傳輸效率模擬數據
第5圖為根據本揭露一實施例之輻射聚焦模組的紅外線傳輸效率模擬數據。第5圖的輻射聚焦模組與第4圖中所述的配置相同,其差異在於,本實施例中的熱源S3與熱源S4的位置分別位在橫向座標-.25釐米與0.25釐米。表三為上述兩模擬熱源紅外光分別來自熱源S3時與熱源S4時,模擬偵測器I與模擬偵測器II接收到的紅外線功率及傳輸效率。從表三的第3、4列與第6、7列的資料可知,本發明的輻射聚焦模組100相較於習知的輻射聚焦模組皆有明顯提升。換句話說,即使熱源S3時與熱源S4皆相較於光軸方向A1有橫向偏移,其對應的傳輸效率仍明顯高於習知的輻射聚焦模組。
  波長 (奈米) 位置 (釐米) 波長 (奈米) 位置 (釐米) 模擬偵測器I 接收功率 模擬偵測器II 接收功率 傳輸效率(%)
習知 1600 -0.25 2300 0.25 1.84 0.5442  
1600 -0.25     0.9178 0.2460 26.803
    2300 0.25 0.9222 0.2962 32.118
本發明 1600 -0.25 2300 0.25 1.9017 1.3182  
1600 -0.25     0.95168 0.7285 76.522
    2300 0.25 0.95112 0.58995 62.027
表三、輻射聚焦模組的傳輸效率模擬數據
第6圖為根據本揭露一實施例之輻射聚焦模組的紅外線傳輸效率模擬數據。第6圖的輻射聚焦模組與第4圖中所述的配置相同,其差異在於,本實施例中的熱源S5與熱源S6的位置分別位在橫向座標原點與0.5釐米。表四為上述兩模擬熱源紅外光分別來自熱源S5時與熱源S6時,模擬偵測器I與模擬偵測器II接收到的紅外線功率及傳輸效率。從表四的第3、4列與第6、7列的資料可知,本發明的輻射聚焦模組100相較於習知的輻射聚焦模組皆有明顯提升。換句話說,即使熱源S5相較於光軸方向A1有-0.5釐米的橫向偏移,其對應的傳輸效率仍明顯高於習知的輻射聚焦模組。
  波長 (奈米) 位置 (釐米) 波長 (奈米) 位置 (釐米) 模擬偵測器I 接收功率 模擬偵測器II 接收功率 傳輸效率(%)
習知 1600 0.5 2300 0 1.8400 0.5383  
1600 0.5     0.9182 0.2405 26.1926
    2300 0 0.9218 0.2978 32.3064
本發明 1600 0.5 2300 0 1.9028 1.3530  
1600 0.5     0.9514 0.7108 74.7152
    2300 0 0.9514 0.6421 67.4963.
表四、輻射聚焦模組的傳輸效率模擬數據
如同前述,由於實際的加工元件被加熱而發出熱源輻射光時,熱源輻射光是由多個熱源發出的輻射光組合而成,因此實際的熱源輻射光可具有多個波長。如表一至表四所示,當波長1600奈米的熱源紅外光與波長2300奈米的熱源紅外光同時被偵測時(第2列與第5列)的接收功率與波長1600奈米的熱源紅外光與波長2300奈米的熱源紅外光分別被偵測時(第3列、第4列與第6列、第7列)的接收功率相近。由此結果可推測,偵測實際的加工元件時的結果可根據單一波長的熱源紅外光的模擬數據而得出。
參閱第2圖。一般而言,紅外線偵測器220的偵測效果會受到所在環境影響。當回收的熱源輻射光104的強度太小時,回授控制器230恐無法根據紅外線偵測器220的偵測結果執行有效的回授控制。本揭露的輻射聚焦模組可偵測多個波長,因此可利用拍頻計算的方式估算加工溫度,提升系統控制器200對於加工的控制效果。
綜上所述,本揭露的輻射聚焦模組藉由縮束器使熱源輻射光的直徑得以縮小至接近加工輻射光的直徑大小,以提升熱源輻射光進入光纖的比例,可提升溫度偵測準確性。此外,由於縮束器具有開孔,加工輻射光可在不損失功率的狀況下進入第二聚焦鏡。因此,本揭露的輻射聚焦模組可在相同光路中,同時維持加工輻射光的輻射強度並增加熱源輻射光進入光纖的比例。如此一來,可無須設置額外光路以提升熱源輻射光的偵測強度,因此本揭露的加工模組具有體積較小且重量較輕等優點,可進一步提升加工精度。此外,本揭露的輻射聚焦模組可偵測多個波長的熱源輻射光,藉此提升系統控制器對於加工的控制效果。
10,10a:加工系統 100,100a:輻射聚焦模組 102:加工輻射光 104,1042,1044:熱源輻射光 110:光纖 120:第一聚焦鏡 130:第二聚焦鏡 140,140a:縮束器 142:平凹透鏡 142H:開孔 144:透鏡陣列 1442,1444:凸透鏡 144H:開孔 144a:平凸透鏡 200:系統控制器 202:輻射光 210:輻射光源 212:準直器 214:光源耦合器 220:紅外線偵測器 222:紅外線耦合器 230:回授控制器 240:分色鏡 300:加工元件 310:引腳 320:焊盤 330:焊料 340:電路板 400:紅外線偵測器 A1:光軸方向 D1,D2,D3:直徑 S1,S2,S3,S4,S5,S6:熱源
第1圖為根據本揭露一實施例之加工系統的輻射聚焦模組的示意圖。 第2圖為根據本揭露一實施例之加工系統的系統控制器示意圖。 第3圖為根據本揭露另一實施例之加工系統的輻射聚焦模組的示意圖。 第4圖為根據本揭露一實施例之輻射聚焦模組的紅外線傳輸效率模擬數據。 第5圖為根據本揭露一實施例之輻射聚焦模組的紅外線傳輸效率模擬數據。 第6圖為根據本揭露一實施例之輻射聚焦模組的紅外線傳輸效率模擬數據。
10:加工系統
100:輻射聚焦模組
102:加工輻射光
104,1042,1044:熱源輻射光
110:光纖
120:第一聚焦鏡
130:第二聚焦鏡
140:縮束器
142:平凹透鏡
142H:開孔
144:透鏡陣列
1442,1444:凸透鏡
144H:開孔
200:系統控制器
300:加工元件
310:引腳
320:焊盤
330:焊料
340:電路板
A1:光軸方向
D1,D2,D3:直徑

Claims (12)

  1. 一種輻射聚焦模組,包括: 一光纖,具有一光軸方向; 一第一聚焦鏡與一第二聚焦鏡,其中該第一聚焦鏡位在該光纖與該第二聚焦鏡之間;以及 一縮束器,位在該第一聚焦鏡與該第二聚焦鏡之間,且該第一聚焦鏡、該第二聚焦鏡、以及該縮束器排列於該光軸方向上,其中該縮束器具有一開孔。
  2. 如請求項1所述之輻射聚焦模組,其中該開孔對準該光軸方向。
  3. 如請求項1所述之輻射聚焦模組,其中該縮束器的一折射率小於該第一聚焦鏡或第二聚焦鏡的一折射率。
  4. 如請求項1所述之輻射聚焦模組,其中該縮束器包括一平凹透鏡與一透鏡陣列,且該透鏡陣列位在該平凹透鏡與該第二聚焦鏡之間。
  5. 如請求項4所述之輻射聚焦模組,其中該透鏡陣列包括複數個透鏡,且該些透鏡的光軸方向與該光纖的光軸方向具有一夾角。
  6. 如請求項1所述之輻射聚焦模組,其中該縮束器包括一平凸透鏡與一平凹透鏡,且該平凸透鏡位在該平凹透鏡與該第二聚焦鏡之間。
  7. 一加工系統,包括: 一紅外線偵測器; 一輻射光源,電性連接該紅外線偵測器,其中該輻射光源配置以發出一加工輻射光;以及 一輻射聚焦模組,配置以傳輸一熱源輻射光,其中該輻射聚焦模組包括: 一光纖,具有一光軸方向; 一第一聚焦鏡與一第二聚焦鏡,其中該第一聚焦鏡位在該光纖與該第二聚焦鏡之間;以及 一縮束器,位在該第一聚焦鏡與該第二聚焦鏡之間,且該第一聚焦鏡、該第二聚焦鏡、以及該縮束器排列於該光軸方向上,其中該縮束器具有一開孔。
  8. 如請求項7所述之加工系統,其中該開孔的一孔徑大於該加工輻射光的直徑。
  9. 如請求項7所述之加工系統,其中該開孔的一孔徑為該加工輻射光的直徑的1.1倍~1.3倍。
  10. 如請求項7所述之加工系統,其中該開孔的一孔徑小於該熱源輻射光的直徑。
  11. 如請求項7所述之加工系統,其中該加工輻射光包括雷射光、X光、紫外光、兆赫波、微波。
  12. 如請求項7所述之加工系統,其中該熱源輻射光包括紅外光與近紅外光。
TW110142976A 2021-11-18 2021-11-18 輻射聚焦模組與具有輻射聚焦模組的加工系統 TWI806246B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110142976A TWI806246B (zh) 2021-11-18 2021-11-18 輻射聚焦模組與具有輻射聚焦模組的加工系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110142976A TWI806246B (zh) 2021-11-18 2021-11-18 輻射聚焦模組與具有輻射聚焦模組的加工系統

Publications (2)

Publication Number Publication Date
TW202321776A true TW202321776A (zh) 2023-06-01
TWI806246B TWI806246B (zh) 2023-06-21

Family

ID=87803079

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110142976A TWI806246B (zh) 2021-11-18 2021-11-18 輻射聚焦模組與具有輻射聚焦模組的加工系統

Country Status (1)

Country Link
TW (1) TWI806246B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8866920B2 (en) * 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
DE102013210078B4 (de) * 2013-05-29 2015-04-30 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Vorrichtung, Verfahren und Computerprogrammprodukt zur Bestimmung der Fokusposition eines Hochenergiestrahls
US9517929B2 (en) * 2013-11-19 2016-12-13 Rofin-Sinar Technologies Inc. Method of fabricating electromechanical microchips with a burst ultrafast laser pulses
EP3221727B1 (de) * 2014-11-19 2021-03-17 Trumpf Laser- und Systemtechnik GmbH System zur asymmetrischen optischen strahlformung
CN208614006U (zh) * 2018-07-06 2019-03-19 深圳市艾雷激光科技有限公司 激光焊接头及激光焊接设备

Also Published As

Publication number Publication date
TWI806246B (zh) 2023-06-21

Similar Documents

Publication Publication Date Title
CN106415359B (zh) 照明装置、方法与医疗成像系统
US20110170293A1 (en) Illumination device and producing method thereof
US8126302B2 (en) Method and system for correcting an optical beam
US20220236384A1 (en) Focal plane optical conditioning for integrated photonics
CN110554510A (zh) 一种透射式衍射光学元件的光学成像系统
KR20170024491A (ko) 레이저 솔더링 장치
TWI806246B (zh) 輻射聚焦模組與具有輻射聚焦模組的加工系統
JP2018528081A (ja) Dcb構造体の重ね溶接のためのレーザー加工機および方法
JP6894485B2 (ja) はんだ付け装置およびそのシステム制御器
US20190341745A1 (en) Laser device
CN116135397A (zh) 辐射聚焦模块与具有辐射聚焦模块的加工系统
JP7126062B2 (ja) 調芯方法
CN109946908A (zh) 一种匀光棒及照明系统
CN113515023A (zh) 双波段照明系统及具有其的无掩模直写光刻设备
TWI798762B (zh) 雷射焊錫系統及其光束整形方法
JP2019201031A (ja) 集光光学ユニット及びそれを用いたレーザ発振器、レーザ加工装置、レーザ発振器の異常診断方法
JP7015989B2 (ja) 光伝送装置
WO2022124057A1 (ja) Led光照射装置、及び、検査システム
TWI705866B (zh) 焊錫裝置及其系統控制器
NL2022322B1 (en) Light source for ophthalmic applications
US7021796B2 (en) Light engine apparatus and method
WO2019021559A1 (ja) レーザービーム照射装置及びレーザービーム照射システム
KR20220038408A (ko) 레이저 처리 시스템 및 방법
JPS635520A (ja) 縮小投影露光方法
JP2021089307A (ja) 投受光光学系、および光学装置