TW202320744A - 用於治療抗藥性癌症的組合物和方法 - Google Patents

用於治療抗藥性癌症的組合物和方法 Download PDF

Info

Publication number
TW202320744A
TW202320744A TW111120133A TW111120133A TW202320744A TW 202320744 A TW202320744 A TW 202320744A TW 111120133 A TW111120133 A TW 111120133A TW 111120133 A TW111120133 A TW 111120133A TW 202320744 A TW202320744 A TW 202320744A
Authority
TW
Taiwan
Prior art keywords
tmz
bmx
cells
gbm
cell
Prior art date
Application number
TW111120133A
Other languages
English (en)
Inventor
黃中洋
侯珈禎
Original Assignee
彥臣生技藥品股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 彥臣生技藥品股份有限公司 filed Critical 彥臣生技藥品股份有限公司
Publication of TW202320744A publication Critical patent/TW202320744A/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/075Ethers or acetals
    • A61K31/085Ethers or acetals having an ether linkage to aromatic ring nuclear carbon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00

Abstract

本發明提供一種治療替莫唑胺(TMZ)抗性癌症患者的組合及方法,其包含有效相對比率的TMZ及同功型選擇性HDAC8抑制劑(諸如BMX)的組合,以藉由負調控β-連環蛋白/c-Myc/SOX2訊號傳遞路徑及正調控WT-p53媒介的MGMT抑制來增強TMZ媒介的細胞毒性作用,從而克服TMZ抗性。

Description

用於治療抗藥性癌症的組合物和方法
相關申請的交叉引用。本申請依據35 U.S.C. §119(a)主張在2021年5月28日提出申請之美國臨時申請案第63/194,585號的權益,該臨時申請案的全部內容藉由引用併入本文。
本發明涉及一種用於治療抗藥性癌症,具體而言為TMZ抗性癌症的新穎組合物及方法。
多形性神經膠質母細胞瘤(GBM)為其中一種最惡性的腫瘤,且其具有侵襲性模式及高復發率;其為世界衛生組織第4級的星狀細胞瘤[1]。儘管採用手術及伴隨的放射及化學療法進行多重模式治療,然而GBM患者的預後仍然很差,平均存活期小於15個月,這表明存在有療法抗性[2-4]。
大腸癌或大腸直腸癌(CRC)為其中一種最普遍的惡性腫瘤,且為全球癌症死亡的第三大主因。儘管大腸癌或CRC標準治療已得到充分研究及確立,然而其仍存在高死亡率及臨床挑戰問題。該疾病的症狀較少,這是因為患者在初期評估時經常被診斷為晚期癌症,且隨後五年存活率約為10%[5-6]。CRC的標準治療為手術、放射及/或化學療法,其中奧沙利鉑(Oxaliplatin,Oxp)及其前驅藥卡培他濱(capecitabine)廣泛用於臨床實踐[7-8]。遺憾的是,在這種DNA交聯劑治療下的復發在最初幾年內仍為常見,甚至在完成整個周期後也是如此[9]。
替莫唑胺(Temozolomide,TMZ)為烷基化劑達卡巴仁(dacarbazine)的咪唑四𠯤親脂性前驅藥,其具有良好的血腦屏障穿透性。儘管TMZ在生理pH下自發非酵素型轉化為反應性化合物5-(3-甲基三𠯤-1-基)-咪唑-4-羧醯胺(MTIC)[10]。MTIC的細胞毒性被認為主要歸因於DNA的烷基化(甲基化),其主要發生在鳥嘌呤的O6及N7位置。自2005年獲得首次FDA批准以來,TMZ已廣泛用作新診斷的多形性神經膠質母細胞瘤(GBM)的標準化學療法。除GBM以外,TMZ已被證明與達卡巴仁具有相等效用。因此,其也在標準治療後用於惡性黑色素瘤患者的「標籤外(off-label)」。另外,許多臨床研究正在進行中,以證明TMZ在其他適應症中的有效性,諸如腦轉移瘤、淋巴瘤、神經內分泌腫瘤、垂體瘤、尤文氏(Ewing’s)肉瘤、原始神經外胚層腫瘤、頑抗性白血病、肺癌、及其他腫瘤[11]。TMZ是一種臨床上對老年人、兒童或安寧患者耐受性良好的治療方法,其可作為單一藥劑或作為輔助性(放射治療或化學療法)第一線或第X線治療。然而,由於O6-甲基鳥嘌呤甲基轉移酶(MGMT)的過度表現,因此經TMZ治療的患者會出現抗藥性。因此,這是成功治療GBM必須克服的臨床上有意義及實質性的障礙。
然而,由於O6-甲基鳥嘌呤甲基轉移酶(MGMT)的過度表現,因此不到50%的患者對TMZ有反應,這會反轉鳥嘌呤O6位的甲基化,從而修復GBM細胞中的DNA並抵抗化學療法作用[12-14]。對接受TMZ治療的新診斷及復發CRC患者之間的MGMT蛋白濃度進行比較,證實MGMT降低可能會促進TMZ治療的效用[15-17]。除了啟動子甲基化之外,MGMT也受各種轉錄因子,諸如p53、Sp1、NF-κB、CEBP及AP-18的調節。當中,p53藉由直接與MGMT啟動子相互作用來負調控MGMT轉錄[18、19]。因此,除了MGMT啟動子甲基化之外,p53也可調控MGMT表現並引起TMZ抗性。因此,必須鑑定調控MGMT的其他機轉以克服TMZ抗性。
因此,希望開發一種新穎且更好的用於抗藥性癌症,具體而言TMB抗性GBM或CRC的療法或治療。
因此,本發明提供一種治療抗藥性癌症,諸如TMZ抗性GBM或CRC的新穎方法。
本發明出乎意料地發現,化合物X,諸如BMX,可增強TMZ媒介的對GBM-R細胞株及CRC細胞株HT29、HCT116及RKO的細胞毒性作用。因此,本發明提供一種治療患者的抗藥性癌症,具體而言TMZ抗性GBM或CRC的新穎方法,其包含向該患者施用BMX及TMZ的組合。
在本發明中,BMX(NBM-T-L-BMX-OS01)為一種組織蛋白去乙醯酶8抑制劑(HDAC8i),其在大腸直腸癌細胞、人類臍內皮細胞、肺癌細胞及神經膠質母細胞瘤細胞中表現出顯著的抗細胞增殖作用,且其在動物異種移植模型中也表現出腫瘤抑制能力[20、21]。然而,本發明出乎意料地發現BMX可克服癌細胞的抗藥性。在本發明的一個實例中,BMX可藉由負調控β-連環蛋白/c-Myc/SOX2訊號傳遞路徑及正調控p53媒介的MGMT抑制來增強TMZ媒介的細胞毒性作用,從而克服GBM-R細胞。已證實在人類GBM組織及GBM-R細胞株中,高HDAC8表現與MGMT濃度相關,且BMX及TMZ的組合在GBM-R細胞株中藉由WT-p53媒介的MGMT抑制而誘導WT(野生型)-p53媒介的細胞凋亡。另外,BMX及TMZ的組合經由GBM-R細胞株中的β-連環蛋白/c-Myc/周期蛋白D1/SOX2訊號傳遞路徑來抑制細胞增殖及GSC表現型活性。
在本發明的一個實例中,已證明經由正調控p53/p21/Puma/Bax在CRC細胞中引發的細胞周期停滯、衰老、自噬及細胞凋亡的BMX及TMZ的組合受到負調控Wnt/β-連環蛋白/周期蛋白D1/c-Myc/p62路徑的串擾所破壞。因此,BMX可能是一種有望的策略,用於精準個人治療具有WT-p53的TMZ抗性GBM患者或CRC患者。
因此,在一方面,本發明提供一種治療TMZ抗性癌症的組合,其包含TMZ及具有式A結構的化合物A,或其醫藥上可接受的鹽、立體異構體、鏡像異構體、前驅藥或溶劑合物:
Figure 02_image003
式A 其中 R 1為氫、烷基、烯基、C 5-C 6環烷基、5-員或6-員不飽和碳環或5-員或6-員雜環、或(CH 2) mR 4; X為C、-O-、-N-或-S-; Y為-O-、-NH或-O-C 1-C 4烷基; n為0到10的整數; m為0到5的整數; R 2及R 3獨立地為C 1-C 6烷基; R 4為C 5-C 6環烷基或可被鹵素、-CF 3、-OR 7或-NR 7R 8取代的5-員或6-員不飽和碳環或雜環,其中R 7及R 8獨立地為氫或C 1-C 6烷基; R 5為OH、NH 2或C 5-C 6環烷基、5-員或6-員不飽和碳環或雜環,其中環烷基、碳環及雜環可任選地被鹵素、NH 2、NO 2、C 1-C 6烷氧基、C 1-6烷硫基、OR 7’’、NR 7R 8或CF 3取代;以及 R 6為H、可被羥基取代的C 1-C 10烷基或C 2-C 10烯基,或與R 1一同為-C 2H 2-; 以及 其中TMZ及化合物A以相對比率組合來有效克服TMZ抗性。
在本發明的一個具體實施例中,化合物A為具有以下結構的化合物BMX:
Figure 02_image005
BMX。
根據本發明,藉由負調控β-連環蛋白/c-Myc/SOX2訊號傳遞路徑及正調控WT-p53媒介的MGMT抑制來增強TMZ媒介的細胞毒性作用,從而克服TMZ抗性。
在本發明中,TMZ及化合物A,例如BMX,分別或依序施用。
在本發明的一個實例中,癌症為多形性神經膠質母細胞瘤(GBM)或大腸直腸癌(CRC)。
在另一個方面,本發明提供一種治療患者的TMZ抗性癌症的方法,該方法向患者施用治療有效量的根據本發明的組合。
在本發明的一個實例中,癌症為GBM或CRC。
在另一方面,本發明提供一種治療患者的抗藥性癌症的精準個人治療的方法,其包含判定患者中WT-p53的表現,且若患者中WT-p53的表現存在,則向患者施用治療有效量的BMX或其與該藥物的組合。
在本發明的一個具體實施例中,藥物為TMZ。
在本發明的一個具體實施例中,抗藥性癌症為TMZ抗藥性癌症,具體而言為GMB或CRC。
在本發明中,已證實BMX有效增強WT-p53癌細胞的抑制。
在另一方面,本發明提供一種BMX及TMZ的組合的用途,其用於製造用於治療TMZ抗性癌症的藥物或試劑盒。
藉由以下實施例進一步描述本發明。然而,應理解到,以下實施例僅用於說明的目的,而不應解釋為在實踐中限制本發明。
除非另有定義,否則本文使用的所有技術及科學用語具有與本發明所屬技術領域中具有通常知識者通常理解的相同含義。
本發明提供一種使用TMZ及化合物A的組合治療TMZ抗性癌症(例如GBM及CRC)患者的新穎方法。
化合物A為一種新穎的小分子同功型選擇性HDAC8抑制劑。化合物A揭示於美國專利號第7,994,357中,其內容藉由引用整體併入本文。化合物A具有式A的結構,或其醫藥上可接受的鹽、立體異構體、鏡像異構體、前驅藥或溶劑合物:
Figure 02_image003
式A 其中 R 1為氫、烷基、烯基、C 5-C 6環烷基、5-員或6-員不飽和碳環或5-員或6-員雜環、或(CH 2) mR 4; X為C、-O-、-N-或-S-; Y為-O-、-NH或-O-C 1-C 4烷基; n為0到10的整數; m為0到5的整數; R 2及R 3獨立地為C 1-C 6烷基; R 4為C 5-C 6環烷基或可被鹵素、-CF 3、-OR 7或-NR 7R 8取代的5-員或6-員不飽和碳環或雜環,其中R 7及R 8獨立地為氫或C 1-C 6烷基; R 5為OH、NH 2或C 5-C 6環烷基、5-員或6-員不飽和碳環或雜環,其中環烷基、碳環及雜環可任選地被鹵素、NH 2、NO 2、C 1-C 6烷氧基、C 1-6烷硫基、OR 7’’、NR 7R 8或CF 3取代;以及 R 6為H、可被羥基取代的C 1-C 10烷基或C 2-C 10烯基,或與R 1一同為-C 2H 2-。
在本發明的一個具體實施例中,化合物A為BMX,其衍生自王草腦(osthole)的半合成,並在學習及記憶中扮演新穎角色,如Yang YC等人所報導的[22]:
Figure 02_image005
BMX。
已知BMX為一種同功型選擇性HDAC8抑制劑,其具有最低的毒性及穿過血腦屏障的能力[22]。
如本文所用,「替莫唑胺」或「TMZ」等詞,以商品名「Temodar」等出售,其涉及用於治療一些腦腫瘤,諸如多形性神經膠質母細胞瘤或未分化性星狀細胞瘤的藥物。TMZ具有以下結構:
Figure 02_image009
替莫唑胺(TMZ)為一種用於治療某些癌症的烷化劑,諸如用於例如星狀細胞瘤的第二線治療及用於多形性神經膠質母細胞瘤的第一線治療。也發現奧拉帕尼(Olaparib)與替莫唑胺組合在復發性小細胞肺癌中表現出顯著的臨床活性。
如本文所用,「多形性神經膠質母細胞瘤」、「神經膠質母細胞瘤」或「GBM」等詞涉及一種腦癌,其可從正常腦細胞起始或從現有低度分化的星狀細胞瘤發展。尚無已知預防GBM的方法。治療通常涉及手術,接著使用化學療法及放射治療。藥物替莫唑胺(TMZ)經常用作化學療法的一部分。如本文所用,「大腸癌」、「大腸直腸癌」或「CRC」等詞也稱作腸癌或直腸癌,其涉及從結腸或直腸(大腸的部分)發展的癌症。其徵象及症狀可能包括便血、排便變化、體重減輕及疲勞。CRC的標準治療為手術、放射及/或化學療法,其中奧沙利鉑(Oxp)及其前驅藥卡培他濱廣泛用於臨床實踐。遺憾的是,在這種DNA交聯劑治療下的復發在最初幾年內仍為常見,甚至在完成整個周期後也是如此。
在本發明中,發現BMX藉由負調控β-連環蛋白/c-Myc/SOX2訊號傳遞路徑及正調控WT-p53媒介的MGMT抑制來增強TMZ媒介的細胞毒性作用,從而克服TMZ抗性。本發明的結果表明,BMX或其與TMZ的組合有望用於TMZ抗性WT-p53 GBM或CRC細胞的精準個人治療。
藉由以下實施例進一步說明本發明,提供這些實施例是為了說明而非限制。
實施例 1
1.1 材料及方法
1.1.1 細胞培養物及試劑
本研究使用四種GBM細胞株:U87、U87R、A172及A172R。美國典型培養物保存中心(ATCC;Manassas,VA,美國)提供人類GBM細胞株U87-MG(ATCC HTB-14;未知來源的GBM)及A172(ATCC CRL-1620;ATCC)。U87R及A172R細胞獲自Tsung-I Hsu博士及Jian-Ying Chung博士(神經再生醫學博士學位學程,醫學科技學院,台北醫學大學,台灣)。使這些細胞在含有10%胎牛血清(FBS)及50 μM TMZ的達爾伯克氏改良伊格爾氏培養基(Dulbecco’s modified Eagle medium,DMEM)中維持至少60天。使用群落形成試驗證實U87R及A172R細胞中的TMZ抗性(圖11)。在補充有10% FBS、100 U/mL青黴素、100 mg/mL鏈黴素(全部來自Gibco;Thermo Fisher Scientific,Waltham,MA,美國)的DMEM中培養細胞,並使其維持在37℃及5% CO 2的加濕培養箱中。NBM-BMX(BMX):(E)-2-(4-甲氧基苄氧基)-3-異戊二烯基-4-甲氧基-N-羥基醯胺,由彥臣生技藥品股份有限公司(台北,台灣)所提供。
1.1.2 細胞增殖及群落形成試驗
吾人在96孔盤中,以每孔接種3000個GBM細胞,並使其附著隔夜。為了驗證細胞株對BMX及TMZ單一療法的反應性,以不同劑量的BMX或TMZ治療細胞24、48及72小時。為了證實細胞對BMX-TMZ組合的反應性,在存在或不存在BMX(10 μM)下,以不同劑量的TMZ(0-800 µg/mL)治療細胞24、48及72小時;或在存在或不存在TMZ(50 μM)下,以不同劑量的BMX(0-50 µM)治療細胞24、48及72小時。治療後,在指定時間點使用CCK8試劑盒(Targetmol,Shanghai,中國)測量吸收值。結果報導為至少三次重複的平均值±標準差。
使A172、A172-R、U87MG及U87MG-R細胞接種(1000個細胞/培養皿)到6公分培養皿中,並培養14天。以磷酸鹽緩衝液洗滌細胞3次,在4%三聚甲醛中固定30分鐘,並在25℃下以0.1%結晶紫染色20分鐘。以自來水小心洗滌群落,接著對群落數(定義為至少50個細胞)進行計數及分析。結果表示為三次獨立實驗的平均群落數±標準誤差。
1.1.3 反轉錄 - 定量聚合酶鏈反應( RT-qPCR
ABI Prism® 7700序列檢測系統(Applied Biosystems,Foster City,CA,美國)用於mRNA表現的定量分析。使細胞(2×10 5)接種在6孔盤中,使用組織總RNA微型試劑盒(Geneaid,Taipei,台灣)提取總RNA。藉由使用高容量cDNA反轉錄試劑盒(Applied Biosystems),使10 ng的總RNA樣品轉錄成cDNA。根據製造商提供的程序,使用Fast SYBR Green Master Mix(Applied Biosystems)定量基因表現,以18秒作為內部參考。所有程序均根據製造商的方案進行。熱循環條件如下:50℃ 2分鐘,95℃ 10分鐘,且循環95℃ 15秒、及60℃ 1秒共40次。以三重複分析每個樣品。使用StepOnePlus(Applied Biosystems)軟體計算循環閾值(Ct)。使用2-(ΔCt)方法計算每種mRNA的相對表現。HDAC8的引子序列如下: HDAC8前置5’-GCGTGATTTCCAGCACATAA-3’(SEQ ID NO: 1); HDAC8反置5’-ATACTTGACCGGGGTCATCC-3’(SEQ ID NO: 2)。 18s前置5’-TCAAGTGCAGTGCAACAACTC-3’(SEQ ID NO: 3); 18s反置5’-AGAGGACAGGGTGGAGTAATCA-3’(SEQ ID NO: 4)。
1.1.4     DNA 細胞周期的流式細胞術分析
對於DNA細胞周期,在存在或不存在TMZ(50 μM)下,以不同劑量的BMX(0-10 μM)治療48小時後,藉由胰蛋白酶消化來收集細胞,以磷酸鹽緩衝鹽水洗滌兩次,並在甲醇中固定。接著再次洗滌細胞,以0.05 mg/mL的最終濃度(Sigma-Aldrich;Merck Millipore,Darmstadt,德國)經受RNaseA,並與10 µg/mL碘化丙啶(PI;Sigma-Aldrich;Merck Millipore)在4℃下在黑暗中一同培養15分鐘。使用螢光活化細胞分選(FACS)流式細胞術(Attune NxT流式細胞術,Thermo Fisher Scientific)進行細胞周期分析。
1.1.5 細胞凋亡的流式細胞術分析
為了分析在TMZ(50 μM)存在或不存在下,不同劑量BMX(0-10 μM)中的細胞凋亡,使用CF®488A膜聯蛋白V及PI細胞凋亡試劑盒(Fremont,CA,美國),根據製造商的使用說明進行FITC標記的膜聯蛋白V/PI染色。PI及膜聯蛋白的流式細胞術分析在治療後48小時進行。使用FACS流式細胞術(Attune NxT流式細胞術,Thermo Fisher Scientific)測量總共10,000個細胞核。
1.1.6 免疫組織化學染色
在4微米厚的石蠟切片上進行免疫組織化學染色。使切片脫蠟、水合,並在4℃下放置隔夜。對於抗CD133(AP1802a,Abgent,San Diego,CA,美國)、P62(ab56416,Abcam,Cambridge,MA,美國)及LC3II(AP1802a,Abgent)的抗體,使用標準抗生物素蛋白-生物素複合物方法。在切片回到室溫後,加入生物素化的二級抗體及辣根(horseradish)標記的鏈黴親和素。接著使樣品在37℃的烘箱中培養。隨後進行DAB顯色、蘇木精對比染色、梯度酒精脫水、以及二甲苯透明。之後以中性膠密封所有樣品。人腦組織:本研究中的倫理聲明得到高雄醫學大學醫院機構審查委員會的批准(編號KMUHIRB-F(I)-20200024)。從參與研究的所有個體獲得知情同意。
1.1.7 西方墨點法分析
收集細胞,並在含有蛋白酶抑制劑的RIPA裂解緩衝液(EMD Millipore Billerica,MA,美國,10× RIPA緩衝液)中裂解。使用蛋白試驗試劑盒(Bio-Rad Laboratories,Hercules,CA,美國)測定蛋白濃度。使SDS上樣緩衝液與蛋白樣品混合。使用8%-12% SDS-PAGE分離蛋白(20 µg/泳道),並轉移到PVDF膜上,以5%牛血清白蛋白在Tris-緩衝鹽水(TBS)-Tween 20(0.5%;TBS-T)中在室溫下封閉1小時,與一級抗體在44℃下培養隔夜,接著與辣根過氧化物酶(HRP)共軛的二級抗體在室溫下培養1小時。在以TBS-T徹底洗滌後,以化學HRP受質檢測HRP訊號。吾人使用的抗體列於表3。藉由與增強的化學發光試劑一同培養並暴露到X射線膠片來觀察每種標靶蛋白的訊號。
1.1.8 統計分析
數據表示為平均值±標準差。使用單因子變異數分析來進行統計分析。使用學生t檢定來比較數據。統計顯著性程度設定為*p < 0.05,**p < 0.01,***p < 0.001。 3 :實驗抗體
名稱 來源或參考 識別符號 額外資訊
GAPDH 果生技 ( Arigo) ,新竹,台灣 ARG10112 1:5000
β- 肌動蛋白 Santa Cruz ,CA ,美國 sc-47778 1:2000
HDAC8 ABclonal ,Woburn ,MA ,美國 A8865 1:1000
c-Myc Cell Signaling Technology 公司 #5605s 1:1000
周期蛋白D1 Cell Signaling Technology 公司 #2978s 1:1000
周期蛋白B Cell Signaling Technology 公司 #12231s 1:1000
凋亡蛋白酶-3 p15 NB100-56708 1:1000
Bax Cell Signaling Technology 公司 #2772s 1:1000
p21 Cell Signaling Technology 公司 #2947s 1:1000
Bcl-xL Cell Signaling Technology 公司 #2764s 1:1000
磷酸-p53 p15 #9284s 1:1000
puma Cell Signaling Technology 公司 #12450s 1:1000
MGMT Cell Signaling Technology 公司 #2739s 1:1000
p53 Santa Cruz ,CA ,美國 sc-126 1:1000
CD133 Cell Signaling Technology 公司 #5860s 1:1000
CD44 Abcam ,Cambridge ,MA ,美國 ab157107 1:1000
SOX-2 Cell Signaling Technology 公司 ab97959 1:1000
1.1.9 藉由多數據庫平台預測 HDAC8 抑制劑的潛在機轉間接方法:CLUE在其一百萬個圖形中計算shRNA HDAC8的連接得分,並對與相反化合物的相似性及基因擾動進行排序。過濾標準超過90個正得分,並收集每個實施例的靶向基因作為生物學功能中的shRNA HDAC8調控劑。使此基因列表輸入CPDB平台進行富集分析,從而獲得清晰的路徑資訊。直接方法:根據BMX-L1000基因表現數據,確定對HepG2細胞中藥物生物學功能有反應的正調控及負調控基因列表。BMX(1 μM)與DMSO對照組相比,根據±1.5倍變化定義顯著差異表現基因(DEG),p值< 0.05。因此,DEG用作查詢CPDB的輸入以進行路徑分析。為了縮小優先路徑,吾人使兩個結果交集並選擇共同元素。
1.2 結果:
1.2.1. 藉由生物資訊學工具對 HDAC8 抑制劑的潛在表現圖形的路徑分析
為了探索HDAC8抑制劑及基因參與的可能機轉,吾人使用連接圖譜(C-Map)及基於整合網路的細胞標記統一環境庫(CLUE)系統數據庫(https://clue.io/)及ConsensusPathDB(CPDB)平台(http://cpdb.molgen.mpg.de/)的基因庫進行綜合機轉分析。吾人使用兩個生物資訊學方法,分別為直接及間接分析(圖1A)。對於直接分析,以BMX在L1000盤中治療HepG2細胞,其對BMX的生物學功能有反應(圖1A,右)。使用具有1.5倍變化的顯著差異表現基因(1583個正調控及900個負調控)來查詢CPDB平台,以揭示潛在路徑(p值<0.05)。接著,吾人利用間接方法,CLUE平台的模式匹配算法,分析HDAC8抑制功能。使用shRNA HDAC8標記作為BMX治療(HDAC8抑制劑)的模擬,接著吾人使用CLUE,其計算超過100萬個圖形以匹配來自19,811個小分子化合物或基因擾動(例如18,493個shRNA、3,462個過度表現構築)的相似標記模式,接著獲得連接得分。正得分表示查詢及實例標記之間的相似機轉;而負得分意思為相反功能。吾人的標準為選擇高於90個連接得分的化合物(CP)、敲低基因(KD)、過度表現基因(OE)及干擾素類(PCL)。CLUE使相似功能的化合物或相同家族基因聚集到一個具體的組中,該組可假定為作用機轉。然而,此大數據系統並無提供詳細的路徑資訊。因此,吾人組合CPDB平台對shHDAC8及經BMX治療的細胞進行互補分析(圖1A,左)。這些不同的生物資訊學管道將獲得若干機轉/路徑,且吾人使這兩個數據集交集以篩選可能潛在的路徑。Wnt訊號傳遞路徑為一種經由吾人的多數據庫平台所揭示的一流機轉(圖1B)。
1.2.2     BMX 增強 TMZ 媒介的細胞毒性作用,從而抑制 GBM-R 細胞的生長及增殖
為了研究HDAC8是否與治療抗性GBM相關,吾人檢驗兩種親代GBM細胞株(A172及U87MG,A172及U87MG為野生型p53(WT-p53),圖12)以及兩種TMZ抗性GBM細胞株(A172-R及U87MG-R,WT-p53的變體)的HDAC8表現濃度。在兩種GBM-R細胞株中均檢測到HDAC8過度表現(圖8A及8B)。
在實施例中,NBM-BMX(由Nature Wise Biotech & Medicals公司所提供;本稿中使用BMX)作為HDAC8抑制劑來模擬shRNA HDAC8的作用以進行進一步的實驗。BMX(397.46 Da)的結構如圖2A所示。藉由以BMX治療四種細胞株並檢測BMX誘導的HDAC8 mRNA及蛋白表現的抑制,證實BMX為一種HDAC8抑制劑(圖9A及9B)。
據信,BMX可能會增強在GBM及GBM-R細胞中TMZ媒介的細胞毒性作用的敏感性。在此實施例中,發現BMX及TMZ在治療GBM及GBM-R、A172/A172-R及U87MG/U87MG-R細胞方面存在組合作用。在24、48及72小時內,在不同濃度下,對BMX單獨組、TMZ單獨組及組合組進行MTT試驗,以評估細胞增殖及細胞存活力。在每個單獨治療組中,結果表明每組中的細胞毒性作用以時間相依方式增加(圖10A)。結果表明,BMX單獨的IC 50值在A172/A172-R細胞中為21.00±2.34 μM/>52.64±3.62 μM,在U87MG/U87MG-R細胞中為29.84±2.32 μM/>68.13±4.69 μM(圖2B),這表明BMX單獨可抑制GBM細胞增殖,但不能抑制GBM-R細胞增殖。另外,TMZ單獨的IC 50值在A172/U87MG細胞中為73.48±3.65 μM/80.99±1.68 μM,在A172-R/U87MG-R細胞中為595.07±23.42 μM/302.51±15.24 μM,這證實GBM-R細胞的可靠性(圖2C)。在組合治療組中,BMX 10 μM用於與不同劑量的TMZ組合(圖2D),且TMZ 50 μM(與GBM-R細胞株中的維持濃度相同)用於與不同濃度的BMX組合(圖2E),以判定何種劑量的BMX及TMZ最能增強在GBM-R細胞中TMZ媒介的細胞毒性作用。數據顯示,50 μM TMZ及10 μM BMX在兩種GBM-R細胞株中均發揮最高的細胞毒性作用。吾人以時間相依方式使用這種組合,並在48小時內注意到細胞毒性作用(圖2F,在48小時內,BMX 10 μM:0.88x、0.77x、0.63x;BMX及TMZ:0.74x、0.56x、0.47x)。成株試驗也顯示,10 μM BMX及50 μM TMZ能抑制GBM-R細胞(圖2G),而BMX單獨無法。綜上所述,數據表明組合可治療抑制GBM細胞(U87MG及A172)及GBM-R細胞(U87MG-R及A172-R)的生長及增殖,且10 μM BMX及50 μM TMZ的組合對GBM-R細胞發揮最高的細胞毒性作用(抑制細胞增殖及細胞存活力)。儘管如此,與沒有抑制作用的TMZ單獨相比,BMX單獨的細胞存活力仍適度降低,顯示出對A172R/U87R藥理細胞毒性作用的部分能力。因此,在進一步的實驗中,對BMX及TMZ的組合治療與BMX單獨進行比較。
1.2.3     BMX 藉由靶向 GBM-R 細胞中的 Wnt/β- 連環蛋白 /GSK3β 路徑而增強 TMZ 媒介的細胞毒性作用
藉由增強在GBM-R細胞中TMZ媒介的細胞毒性作用來研究該機轉。根據路徑分析,推測標準的Wnt訊號傳遞(也稱作Wnt/β-連環蛋白)路徑參與GBM-R細胞的增殖。每個細胞的基因背景表明Wnt基因,諸如腺瘤性息肉大腸桿菌及β-連環蛋白(CTNNB1)並無突變。磷酸-β-連環蛋白(Ser33/Ser37/Thr41)作為β-連環蛋白活性形式,用於檢測β-連環蛋白狀態。GSK3β(S9)用於β-連環蛋白磷酸化以降解β-連環蛋白。結果表明,10 μM BMX及50 μM TMZ藉由GSK3β在U87R及A172R細胞中的磷酸化而直接降低β-連環蛋白的蛋白濃度,並降低磷酸-β-連環蛋白(Ser33/Ser37/Thr41)的蛋白濃度,而BMX單獨僅略微降低這些濃度。另外,GSK3β(S9)的磷酸化程度也降低,這表明GSK3β活性增加且β-連環蛋白被磷酸化(圖3A)。為了檢驗BMX對增殖標記c-Myc及周期蛋白D1的作用,注意到在存在及不存在TMZ下的BMX都可降低其程度/濃度(圖3B)。
用蛋白酶體抑制劑MG132治療GBM-R細胞,以證明β-連環蛋白濃度隨蛋白降解而降低。結果顯示,在10 μM BMX及50 μM TMZ下,MG132應用反轉β-連環蛋白降解並增加c-Myc及周期蛋白D1表現(圖3C)。這些結果表明,BMX藉由Ser9磷酸化負調控而增強GSK3β活性,其反過來增強β-連環蛋白在Ser33/Ser37/Thr41處的磷酸化,從而引發蛋白降解。總之,這些數據顯示,10 μM BMX及50 μM TMZ增強TMZ媒介的細胞毒性作用,部分是經由Wnt/β-連環蛋白/GSK3β路徑,從而減少GBM-R細胞增殖。
1.2.4     BMX 藉由在 GBM-R 細胞中促進 TMZ 媒介的細胞凋亡而增強 TMZ 媒介的細胞毒性作用
為了研究BMX是否可誘導細胞周期停滯,分析了BMX(5 μM及10 μM)單獨及與50 μM TMZ組合對A172-R及U87MG-R細胞株的細胞周期的作用。結果顯示,10 μM BMX單獨誘導A172-R細胞(70.34%)及U87MG-R細胞(77.95%)中G0/G1階段的細胞周期停滯。接著,5及10 μM BMX與50 μM TMZ不僅增加G0/G1細胞周期停滯的量,且也在兩種GBM-R細胞株中導致亞G1階段停滯(細胞凋亡)(圖4A-C)。
流式細胞術顯示,BMX與TMZ的組合在A172-R/U87MG-R細胞株中以劑量相依方式產生高百分比的細胞凋亡細胞(21.7%/25.95%)(圖4D)。另外,在以10 μM BMX及50 μM TMZ治療後,晚期細胞凋亡也佔主導地位(圖4E)。因此,BMX單獨僅能誘導細胞周期停滯及抑制細胞增殖,但不能誘導細胞凋亡,而BMX及TMZ的組合在GBM-R細胞中也可促進TMZ媒介的細胞凋亡,從而導致細胞毒性增強。
1.2.5     BMX GBM-R 細胞中藉由 WT-p53 媒介的 MGMT 抑制而增強 TMZ 媒介的細胞毒性作用
因為BMX及TMZ的組合可促進TMZ媒介的細胞凋亡,因此吾人推測BMX可能藉由WT-p53媒介的MGMT抑制而增強TMZ媒介的細胞凋亡。首先,吾人檢驗A172/A172-R及U87MG/U87MG-R細胞中的WT-p53及MGMT濃度,證實TMZ抗性與WT-p53及MGMT相關(圖5A)。生物資訊學分析也表明,僅有33%的患者具有p53突變,其他為p53 WT(表2)。接著,評估TCGA及driverDB數據庫以檢查p53突變和p53 WT之間的總體存活率。藉由群落形成試驗(圖11),清楚地顯示,與突變病例相比,p53 WT病例在GBM患者中示出較差的預後。
吾人檢驗WT-p53媒介的細胞凋亡中的促細胞凋亡訊號系統。也檢驗MGMT的TMZ修復能力。結果顯示,在不存在及存在50 μM TMZ下,以BMX治療後,促凋亡標記(諸如P21、Bax/Bcl2及Puma)的濃度增加,而MGMT的濃度降低。然而,僅在10 μM BMX及50 μM TMZ的組合下才注意到裂解的凋亡蛋白酶-3(圖5B)。為了闡明WT-p53媒介的MGMT抑制中細胞凋亡是否由BMX單獨、TMZ單獨或其組合誘導,在存在或不存在5及10 μM BMX下,以50 μM TMZ治療A172-R及U87MG-R細胞。發現TMZ單獨僅能適度抑制MGMT表現而不增加WT-p53及DNA損傷標記(WT-p53-ser15)。然而,MGMT表現明顯隨著10 μM BMX及50 μM TMZ的組合而降低。另外,WT-p53及DNA損傷標記(WT-p53-ser15)的表現濃度也增加,這意味著MGMT受到WT-p53媒介的細胞凋亡的負調控(圖5C)。
另外,藉由評估p53 WT及突變細胞的散布圖(圖8B),發現GBM p53 WT細胞是MGMT超甲基化的,且降低MGMT mRNA及蛋白表現。另外,TMZ單獨不能在GBM-R細胞中誘導WT-p53媒介的細胞凋亡。然而,這些數據表明BMX及TMZ的組合可藉由WT-p53媒介的GBM-R細胞中的MGMT抑制來增強TMZ媒介的細胞毒性作用。BMX單獨可適度降低MGMT濃度,但不誘導GBM-R細胞中WT-p53媒介的細胞凋亡。 2 CCLE p53 基因特徵
Tp53-WT Tp53- 突變
SF126 KS1 LN229 YKG1
BECKER MOGGUVW SW1783 X8MGBA
GOS3 U87MG TM31 MOGGCCM
KNS81 LN443 U138MG  
KG1C LN235 SF295  
AM38 SF172 M059K  
H4 U343 GI1  
D283MED U178 KNS60  
NMCG1 F5 KALS1  
YH13 SF767 CAS1  
DKMG A1207 KNS42  
U118MG LN319 SNU201  
GB1 LN382 SNU1105  
SNU489 LNZ308 SNU738  
SNU466 LN340 SNU626  
CCFSTTG1 CH157MN DAOY  
D341MED SF268 SW1088  
ONS76 SF539 HS683  
DBTRG05MG SNB75 LN18  
A172   T98G  
X132N1   GMS10  
SNB19   X42MGBA  
U251MG   GAMG  
1.2.6     BMX TMZ 的組合減少 GBM-R 細胞中 GSC 的形成。
由於GSC標記為GBM抗性的核心,因此吾人檢驗GSC標記在所有細胞株中的濃度;在A172-R及U87MG-R細胞中檢測到CD133、CD44及SOX2的高度表現濃度,這暗示TMZ抗性與GSC標記部分相關(圖6A)。另外,以10 μM BMX及50 μM TMZ治療明顯降低兩種GBM-R細胞株中CD133、CD44及SOX2的表現濃度(圖6B)。因此,BMX及TMZ的組合可藉由減弱GSC標記以轉換GBM-R細胞中的幹性表現型來增強TMZ媒介的細胞毒性作用。
吾人也藉由免疫組織化學檢驗TMZ抗性GBM人類組織中的HDAC8及GSC標記(圖6C)。結果顯示,HDAC8及GSC與GBM中的TMZ抗性密切相關。
1.3. 結論
儘管臨床前研究已表明HDAC在神經膠質瘤中具有抗腫瘤作用,但先前的研究均未提及或預期化學療法抗性GBM的治療。在本發明中首次發現,BMX(一種新穎的等選擇性HDAC8抑制劑)不僅可藉由負調控β-連環蛋白/c-Myc/SOX2路徑抑制幹性,且也可藉由正調控WT-p53媒介的MGMT抑制以誘導TMZ抗性的GBM細胞凋亡,從而增強TMZ媒介的細胞毒性作用。另外,也揭示WT-p53/MGMT回復與Wnt/β-連環蛋白/GSKβ訊號傳遞路徑的負相關,可能涉及GBM及具有TMZ抗性的GBM的致癌作用。
基於上述結果,提出以下工作模型(請參見圖7):
首先,在TMZ抗性GBM中的β-連環蛋白/c-Myc/周期蛋白D1/SOX2訊號傳遞路徑(右側路徑)。根據吾人先前研究及本研究中的生物資訊學分析,Wnt/β-連環蛋白/GSK3β路徑可影響GBM的治療選擇[17]。在本發明中證明,在不存在及存在TMZ(細線及粗線)下,BMX都可藉由負調控Ser9磷酸化來增強GSK3β活性,其反過來增強在Ser33/Ser37/Thr41處的β-連環蛋白磷酸化,從而觸發β-連環蛋白降解。以MG132作為蛋白酶體抑制劑證實β-連環蛋白降解。未降解的β-連環蛋白易位進入細胞核而與TCL4結合並活化下游標靶基因,諸如c-Myc及周期蛋白D1,從而誘導細胞增殖並延續細胞周期。BMX單獨(細線)及具有TMZ的BMX(粗線)均抑制c-Myc及周期蛋白D1表現,並誘導細胞周期停滯。然而,BMX單獨不能誘導亞G1階段的細胞周期停滯。僅有BMX及TMZ的組合可誘導深度的細胞周期停滯並進入亞G1階段,這意味著其誘導GBM-R細胞中的晚期細胞凋亡(圖7右下部分中的虛線)。
另外,GSC在GBM的治療抗性中扮演重要的角色。其特徵為藉由神經元幹細胞標記(諸如CD133及CD44)以及轉錄因子(諸如SOX2)的高度表現,而在活體外及活體內具有自我更新能力[23]。本發明揭示,在不存在及存在TMZ下,BMX藉由負調控GSC表現型以抑制幹性,不僅減弱CD133及CD44,且也減弱SOX2。如先前所報導的,c-Myc也是維持神經膠質瘤CSC所必需的[24]。可得出以下結論:BMX單獨及具有TMZ的BMX藉由在GBM-R細胞中經由β-連環蛋白/c-Myc/周期蛋白D1/SOX2訊號傳遞路徑增強TMZ媒介的細胞毒性作用,從而抑制細胞增殖。
另外,WT-p53在TMZ抗性GBM中媒介MGMT抑制(圖7左側的路徑)。GBM中TMZ的作用機轉為使O6位甲基化為鳥嘌呤以使DNA損傷。MGMT反轉甲基化以修復GBM細胞中的DNA並發揮GBM抗性。雖然MGMT非相依性路徑在TMZ抗性中也扮演關鍵角色[25-27],但MGMT相依性路徑仍被認為是TMZ抗性的主要路徑。在本發明中,GBM-R細胞株(A172-R及U87MG-R)表現高濃度的MGMT蛋白,因此驗證MGMT相依性路徑確實是這些細胞株中TMZ抗性的主要機轉。可推測BMX抑制MGMT在MGMT相依性GBM-R細胞株中的表現,從而減弱MGMT修復DNA損傷的能力。在GBM-R細胞株中,BMX單獨適度降低MGMT表現,而TMZ單獨沒有(圖5B及圖5C),但其組合明顯降低MGMT蛋白濃度,並以MGMT相依性方式增強TMZ媒介的細胞凋亡。
如圖7所示,該模型包括兩個主要的訊號傳遞路徑。右側路徑:β-連環蛋白/c-Myc/周期蛋白D1/SOX2訊號傳遞路徑。當GBM-R細胞株以BMX單獨(細線)或以具有TMZ的BMX(粗線)治療時,GSK3β(S9)及活性β-連環蛋白減少。以下c-Myc及周期蛋白D1也減少以誘導細胞周期停滯及減弱幹性活性,然而僅有具有TMZ的BMX(虛線)可能誘導細胞凋亡。左側路徑:WT-p53媒介MGMT抑制。當以BMX單獨或以具有TMZ的BMX治療GBM-R細胞株時,WT-p53在BMX單獨(細線)及具有TMZ的BMX(粗線)中均增加及負調控MGMT濃度、細胞周期停滯及幹性。然而,WT-p53及DNA損傷標記(WT-p53-ser15,未示出)僅在具有TMZ的BMX(粗線)中增加細胞周期停滯標記(P21)及促細胞凋亡標記(BAX/Bcl2及Puma)的活化以誘導細胞凋亡及細胞死亡,這表明為深度的DNA損傷。紅色表明為正調控。綠色表明為負調控。
在實施例中發現,BMX經由WT-p53恢復提供增強抑制HDAC的作用以減少MGMT(圖5A-C中所有的P53泳道)。在本發明中證明BMX單獨(左側細線)適度增加WT-p53濃度到適度負調控MGMT表現,這導致仍然維持DNA修復的能力(圖5B)。也推測HDAC抑制可能藉由WT-p53再活化而降低MGMT表現。已證明BMX單獨適度增加WT-p53濃度並適度負調控MGMT表現,這導致得以維持DNA修復。另外,BMX單獨也可誘導細胞周期停滯標記(P21)。在本發明中,BMX及TMZ(左側粗線)的組合藉由WT-p53(及ser15)過度表現及負調控MGMT表現來誘導廣泛的DNA損傷,這最終導致WT-p53媒介的細胞凋亡(圖5C)。這種組合(與BMX單獨相比)也可增加細胞周期停滯標記(P21)、促細胞凋亡蛋白(Bax/Bcl2及Puma)的表現,並誘導WT-p53媒介的細胞凋亡的裂解的細胞凋亡蛋白酶-3表現。總之,這些結果暗示BMX單獨(圖7左側的細線)僅部分誘導WT-p53媒介的MGMT抑制,但BMX及TMZ的組合(圖7左側的粗線)增強GBM-R細胞株中的TMZ細胞毒性作用,從而克服TMZ抗性。
總之,本發明出乎意料地發現,BMX藉由負調控β-連環蛋白/c-Myc/SOX2訊號傳遞路徑及正調控WT-p53媒介的MGMT抑制來增強TMZ媒介的細胞毒性作用,從而克服TMZ抗性。這些發現表明,BMX及TMZ的組合有望用於精確個人治療TMZ抗性WT-p53 GBM細胞。
實施例 2
2.1. 材料及方法
2.1.1 細胞株及細胞培養物
在此研究中使用三種CRC細胞株:HT29、HCT116及RKO。美國典型培養物保存中心(ATCC;Manassas,VA,美國)提供人類CRC細胞株HT29(ATCC HTB-38;突變TP53,p.R273H;APC框移突變,p. E1554fs;野生型β-連環蛋白),HCT116(ATCC CCL-247;野生型TP53;野生型APC;缺失β-連環蛋白,p. S45del)、以及RKO(ATCC CRL-2577;野生型TP53;野生型APC;野生型β-連環蛋白)。在貼壁培養條件下培養如上所列的三種CRC細胞株,並在含有5% CO 2的細胞培養箱中維持在37℃。HCT-116及HT-29細胞的兩種細胞株在補充有10%胎牛血清(Gibco;Thermo Fischer Scientific,Grand Island,NY,美國)、1%青黴素及1%鏈黴素的McCoy 5A培養基中培養。在補充有10% FBS、1%青黴素、1%鏈黴素及1%丙酮酸鈉的MEM培養基中培養RKO細胞。每三天藉由胰蛋白酶消化對細胞培養物進行傳代。BM-BMX(BMX):(E)-2-(4-甲氧基苄氧基) -3-異戊二烯基-4-甲氧基-N-羥基醯胺,由Nature Wise Biotech & Medicals Corporation(Taipei,台灣)所提供。
2.1.2 細胞增殖試驗
吾人在96孔盤中,以每孔接種4000個CRC細胞,並使其附著隔夜。為了驗證細胞株對BMX及TMZ單一療法的反應性,以不同劑量的BMX或TMZ治療細胞24、48及72小時。為了證實細胞對BMX-TMZ組合的反應性,在存在或不存在BMX(5 μM)下以不同劑量的TMZ(0-1000 µg/mL)治療細胞24、48及72小時,或在存在或不存在TMZ(50 μM)下以不同劑量的BMX(0-10 µg/mL)治療細胞24、48及72小時。治療後,在指定時間點使用CCK8試劑盒(Targetmol,Shanghai,中國)測量吸收值。結果報導為至少三次重複的平均值±標準差。
2.1.3     DNA 細胞周期的流式細胞術分析
在存在或不存在TMZ(50 μM)下,以不同劑量的BMX(0-10 μM)治療細胞48小時。未經治療的細胞用作陰性對照組。所有樣品在至少三次獨立實驗中以一式三份運轉。進行碘化丙啶(PI)的流式細胞術分析。對於DNA細胞周期,使細胞胰蛋白酶消化、離心、以磷酸鹽緩衝液(PBS)洗滌,並在甲醇中固定。接著再次洗滌細胞,並與PI工作溶液(10 µg/mL PI及20 mg/mL RNase A)在37℃下在黑暗中一同培養15分鐘。使用流式細胞術(Attune NxT流式細胞術,Thermo Fisher Scientific)計算10,000個單個細胞核的PI螢光。使用Attune NxT流式細胞術軟體分析G0/G1、S、G2/M及亞G0/G1階段的細胞級分,並對每個直方圖判定平均峰值螢光強度。
2.1.4 細胞凋亡的流式細胞術分析
在TMZ存在或不存在(50 μM)下,根據製造商的使用說明[16],藉由使用CF®488A膜聯蛋白V及PI細胞凋亡試劑盒(Fremont,CA,美國)檢測磷脂醯絲胺酸的膜外化,從而試驗不同劑量BMX(0-10 μM)中的細胞凋亡誘導。接著立即藉由流式細胞術分析所有樣品。
2.1.5 定量即時 RT-PCR
根據製造商的使用說明,使用組織總RNA微型試劑盒(Geneaid,Taipei,台灣)從細胞(2×10 5)中提取RNA。使用NanoDrop®分光光度計(Thermo Scientific,Waltham,MA,美國)在260-280 nm處檢查RNA濃度及純度。接著,也遵循製造商的使用說明,使用高容量cDNA反轉錄試劑盒(Applied Biosystems)進行cDNA合成。根據製造商的建議,使用Power SYBR Green PCR Master Mix(Applied Biosystems)在7500即時PCR系統(Applied Biosystems)中進行qPCR反應,以18秒作為內部參考。使用StepOnePlus(Applied Biosystems)軟體計算循環閾值(Ct)。使用2−(ΔCt)方法計算每種mRNA的相對表現。HDAC8的引子序列如下: HDAC8前置5’-GCGTGATTTCCAGCACATAA-3’(SEQ ID NO: 1); HDAC8反置5’-ATACTTGACCGGGGTCATCC-3’(SEQ ID NO: 2)。 18s前置5’-TCAAGTGCAGTGCAACAACTC-3’(SEQ ID NO: 3); 18s反置5’-AGAGGACAGGGTGGAGTAATCA-3’(SEQ ID NO: 4)。
2.1.6 群落形成試驗
對於貼壁相依性生長試驗,使1000個細胞重新懸浮在培養基中並接種在6孔盤中。在存在或不存在TMZ(50 μM)下,每2-3天更換僅以各種濃度BMX(0-10 μM)加入的培養基。14天後,除去培養基,且細胞經洗滌、以4%三聚甲醛固定30分鐘,並以0.1%結晶紫在25℃下染色20分鐘。以二甲基亞碸(DMSO)溶解經染色的細胞後,藉由570 nm的吸光度來定量結晶紫的強度。結果表示為三次獨立實驗的平均群落±標準誤差。
2.1.7 衰老相關( SA β- 半乳糖苷酶( SA-β-gal )分析
使用衰老檢測試劑盒(CS0030-1KT;Sigma-Aldrich;Merck Millipore,Darmstadt,德國)進行β-gal活性的SA表現。簡而言之,在存在或不存在TMZ(50 μM)下,以不同劑量的BMX(0-10 μM)治療細胞48小時,以PBS洗滌並在室溫下使用固定液固定半小時,接著在37℃下與SA-β-gal染色溶液一同培養隔夜。藉由在pH 6.0下X-gal(5-溴-4-氯-3-3吲哚基β-D-半乳糖苷)染色來檢驗SA-β-gal活性。對以藍色染色的衰老細胞進行拍照。藉由光學顯微鏡分析隨機選擇的視野(n=3)以定量衰老細胞的百分比。
2.1.8 西方墨點法分析
在存在或不存在TMZ(50 μM)或OXP(5 μM)下,使用西方墨點法分析檢驗不同濃度BMX(0-10 μM)及SAHA、VPA或PCI-34051下的測試細胞株中的指定蛋白表現濃度。對如先前所述製備的裂解物進行SDS-PAGE及西方墨點法分析[16]。使用針對以下的特異性一級抗體進行檢測:乙醯-組織蛋白H3(Lys9/Lys14)、乙醯-組織蛋白H4(Lys8)、P53、乙醯-p53(Lys382)、磷酸-p53(Ser15)、P21、P16、MGMT、磷-H2AX(S139)、E2F1、E2F3、裂解的凋亡蛋白酶-3、裂解的凋亡蛋白酶-8、裂解的凋亡蛋白酶-7、裂解的凋亡蛋白酶-9、PARP、Bax、Bcl-2、Bid、Bim、Bak、Puma、β-連環蛋白、磷酸-β-連環蛋白(Ser/33/37/41)、GSK3β、磷酸-GSK3β(Ser9)、c-Myc、周期蛋白D1、P62、LC3B、CD133、CD44、SOX-2及HDAC8;並使用GAPDH、α-微管蛋白或β-肌動蛋白作為內部對照組。在與一級抗體一同培養並再與辣根過氧化物酶(HRP)共軛的二級抗體的二級抗體一同培養後,以化學HRP受質檢測HRP訊號。吾人使用的抗體列於表4。藉由與增強的化學發光試劑一同培養並暴露到X射線膠片,觀察每種標靶蛋白的訊號。 表4:關鍵資源
試劑類型(種類)或資源 名稱 來源或參考 識別符號 額外資訊
抗體 兔抗乙醯組織蛋白H3(Lys9/Lys14) Cell signaling(Beverly,MA,美國) s9677 1:1000
抗體 兔抗乙醯組織蛋白H4(Lys8) Cell signaling(Beverly,MA,美國) s2594 1:1000
抗體 小鼠抗GAPDH Santa Cruz(Santa Cruz,CA,美國) sc-32233 1:1000
抗體 小鼠抗P53 Santa Cruz(Santa Cruz,CA,美國) sc-126 1:1000
抗體 兔抗乙醯-p53(Lys382) Cell signaling(Beverly,MA,美國) s2525 1:1000
抗體 兔抗磷酸-p53(Ser15) Cell signaling(Beverly,MA,美國) 9284 1:1000
抗體 兔抗P21 Cell signaling(Beverly,MA,美國) s2947 1:1000
抗體 小鼠抗P16 Santa Cruz(Santa Cruz,CA,美國) sc-56330 1:1000
抗體 兔抗MGMT Cell signaling(Beverly,MA,美國) s2739 1:1000
抗體 兔抗磷-H2AX(S139) Elabscience E-AB-68087 1:1000
抗體 小鼠抗E2F1 Santa Cruz(Santa Cruz,CA,美國) SC-251 1:1000
抗體 小鼠抗E2F3 Santa Cruz(Santa Cruz,CA,美國) SC-56665 1:1000
抗體 兔抗裂解的凋亡蛋白酶-3 Cell signaling(Beverly,MA,美國) s9661 1:1000
抗體 兔抗裂解的凋亡蛋白酶-9 Cell signaling(Beverly,MA,美國) s9501 1:1000
抗體 兔抗裂解的凋亡蛋白酶-7 Cell signaling(Beverly,MA,美國) s9491 1:1000
抗體 兔抗裂解的凋亡蛋白酶-8 Cell signaling(Beverly,MA,美國) s9496 1:1000
抗體 兔抗PARP Cell signaling(Beverly,MA,美國) s9542 1:1000
抗體 兔抗Bax Cell signaling(Beverly,MA,美國) s2772 1:1000
抗體 兔抗Bcl-2 Cell signaling(Beverly,MA,美國) s2870 1:1000
抗體 兔抗Bid Cell signaling(Beverly,MA,美國) s2002 1:1000
抗體 兔抗Bim Cell signaling(Beverly,MA,美國) s2819 1:1000
抗體 兔抗Bak Cell signaling(Beverly,MA,美國) s3814 1:1000
抗體 兔抗Puma Cell signaling(Beverly,MA,美國) s4976 1:1000
抗體 兔抗β-連環蛋白 Cell signaling(Beverly,MA,美國) s9562 1:1000
抗體 兔抗磷酸- -連環蛋白(Ser/33/37/41) Cell signaling(Beverly,MA,美國) s9561 1:1000
抗體 兔抗磷酸-GSK3 (Ser9) Cell signaling(Beverly,MA,美國) s9323s 1:1000
抗體 小鼠抗GSK3  BD Biosciences 610202 1:1000
抗體 兔抗c-Myc Abcam(Cambridge,MA,美國) ab32072 1:1000
抗體 小鼠抗周期蛋白D1 Santa Cruz(Santa Cruz,CA,美國) sc-8396 1:1000
抗體 小鼠抗α-微管蛋白 Sigma-Aldrich(St. Louis,MO,美國) T5168 1:5000
抗體 小鼠抗P62 Abcam(Cambridge,MA,美國) ab56416 1:2000
抗體 兔抗LC3B Cell signaling(Beverly,MA,美國) s3868 1:1000
抗體 兔抗CD133 Cell signaling(Beverly,MA,美國) s64326 1:1000
抗體 兔抗CD44 Proteintech(美國) 15675-1-AP 1:2000
抗體 兔抗SOX-2 Abcam(Cambridge,MA,美國) ab97959 1:1000
抗體 兔抗HDAC8 ABclonal a8865 1:1000
2.1.9 統計分析
數據表示為平均值±標準差。使用單因子變異數分析來進行統計分析。使用學生t檢定來比較數據。統計顯著性程度設定為*p < 0.05,**p < 0.01,***p < 0.001。
2.2. 結果
2.2.1 使在三個 CRC 細胞株中 BMX TMZ 的組合最佳化
為了研究BMX或TMZ對CRC細胞生長的影響,使用三種人類大腸直腸癌細胞株:HT29(p53突變)、HCT116(p53野生型)及RKO(p53野生型)。其分別以BMX(0.313、0.625、1.25、2.5、5及10 μM)或TMZ(25、50、100、200、400、800及1000 μM)治療24、48及72小時。結果示出,CRC細胞存活力以劑量相依性方式受到顯著抑制。得到HT-29、HCT-116及RKO細胞中BMX單獨或TMZ單獨的半最大抑制濃度(IC 50)值(表5)。對於代表體內致瘤性的成株試驗,TMZ在HT29、HCT116及RKO細胞的成株試驗中有效對抗腫瘤球的形成,TMZ的IC 50值分別為359.45±50.43、137.66±22.73及244.01±29.42 µM。結果示出,在3個培養時間下,BMX及TMZ對三種大腸直腸癌細胞(包括HT-29、HCT-116及RKO)的基本細胞增殖抑制率。 5 BMX TMZ 的組合抑制 CRC 細胞中的細胞增殖
BMX單獨 TMZ單獨
時間(小時) 細胞株 BMX的IC 50(μM) TMZ的IC 50(μM)
24 48 72 24 48 72
HT29 42.6±2.4 9.9±0.5 2.9±0.2 >1000 930.8±47.7 257.6±20.53
HCT116 24.8±2.5 7.7±0.3 1.5±0.3 >1000 515.2±21.6 192.0±14.7
RKO 38.5±3.5 7.2±0.6 1.5±0.2 >1000 991.6±52.4 380.5±40.3
使用BMX 5 μM與不同劑量的TMZ組合 TMZ 50 μM與不同濃度的BMX的組合
BMZ(5 μM) TMZ(50 μM)
時間(小時) 細胞株 TMZ的IC 50(μM) BMZ的IC 50(μM)
24 48 72 24 48 72
HT29 >400 128.3±18.3 -- >10 9.1±0.2 2.2±0.1
HCT116 >400 41.56±2.4 -- >10 3.2±0.3 0.9±0.1
RKO >400 21.9±2.7 -- >10 3.6±0.4 0.9±0.1
為了評估BMX是否提高TMZ的化學敏感性,使BMX及TMZ一同施用於HT-29、HCT-116及RKO細胞。BMX(5 µM)及TMZ(25、50、100、200及400 µM)的組合表現出比BMX單獨及TMZ單獨對細胞生長更大的抑制作用。BMX(5 µM)及TMZ(25、50、100、200及400 µM)的組合表現出比BMX單獨及TMZ單獨對細胞生長更大的抑制作用。隨後,選擇與不同濃度的BMX(0.313、0.625、1.25、2.5、5及10 μM)組合的TMZ 50μM,來驗證TMZ及BMX是以時間相依性方式抑制細胞增殖。值得注意的是,BMX降低在HT-29、HCT-116及RKO細胞中TMZ的IC 50(表5)。這些發現表明,BMX抑制CRC細胞增殖並提高TMZ的化學敏感性。50 μM TMZ加上5 μM BMX在HT-29、HCT-116及RKO細胞中發揮最高的細胞毒性作用。吾人以時間相依性方式使用這種組合,並注意到在48小時內的細胞毒性作用。這一發現表明,BMX提高TMZ的化學敏感性。BMX與TMZ的組合以時間相依性方式抑制細胞增殖。因此,所有後續實驗均是使用TMZ 50μM與不同濃度的BMX(2.5、5及10 μM)組合48小時所進行。
吾人接著檢驗BMX單獨或BMX與TMZ的組合存在下的群落形成。吾人發現,當BMX與50 μM TMZ組合時,這種抑制作用以規則連續的方式增加。若增加到TMZ(150 μM),BMX可降低到1-2 μM而非5-10 μM。總之,這些結果表明BMX及TMZ的組合使用可增效抑制CRC癌細胞的增殖及群落形成。因此,所有後續實驗均是使用TMZ 50μM與不同濃度的BMX(2.5、5及10 μM)組合48小時所進行。
2.2.2     BMX TMZ 的組合與常規藥物對 CRC 的作用
細胞周期停滯為一種抑制細胞增殖的主要原因。為了評估BMX或組合治療抑制細胞生長的可能機轉,使用流式細胞術試驗細胞周期圖形。如圖13所示,組合治療顯著誘導G2/M階段停滯,且在HT29及HCT116細胞中對G2/M階段停滯的作用比任何其他單一藥物強得多。2.5、5及10 μM BMX與50 μM TMZ不僅增加G0/G1細胞周期停滯的量,且也在RKO細胞株中導致亞G1階段停滯(細胞凋亡)。
藉由在三個CRC細胞中的膜聯蛋白V組合來測量在48小時治療後具有TMZ的BMX的增效作用。與每種試劑單獨相比,以BMX及TMZ治療誘導凋亡細胞百分比的顯著增加。BMX在HT29、HCT116及RKO細胞中使早期細胞凋亡細胞增加到23.78%、49.34%及59.18%,對晚期細胞凋亡細胞的增加也是如此。而組合治療中,在培養48小時後,晚期細胞凋亡的族群在HT29、HCT116及RKO細胞中從1.08%增加到10.36%、3.67%增加到19.37%、以及0.32%增加到16.48%。
2.2.3     BMX 以及 BMX TMZ 的組合誘導的細胞凋亡是由 p53 媒介的 MGMT 抑制所媒介
據報導,p53路徑涉及由化學治療藥物誘導的各種癌細胞的細胞凋亡[28]。已表明BMX可活化p53、導致細胞死亡,並由β-連環蛋白路徑所媒介[16]。為了闡明BMX及TMZ的抗癌作用是否由DNA損傷所引起,吾人在具有不同p53表現型的三種CRC細胞株中DNA損傷及相應的p53路徑標記。考慮到標記包括p53、乙醯-p53(Lyx382)、p53(Ser15)、p21、p16、MGMT、γ-H2AX、E2F1、E2F3、GAPDH在HT29、HCT116及RKO細胞中的基本蛋白表現情況,BMX單獨不僅增強p53表現,且也可能調控其他干擾細胞生長的重要基因。以BMX單獨或BMX與TMZ的組合治療劑量相依性地增加HT29、HCT116及RKO細胞中p53磷酸化(Ser15)及γ-H2AX磷酸化(Ser139)的濃度。在HT29、HCT116及RKO細胞中,p53在Lys382的乙醯化以時間相依性方式增加,p53下游靶p21及p16的表現增強。如p53野生型及突變細胞的西方墨點法結果所示,CRC p53野生型細胞是MGMT超甲基化的,且也降低MGMT蛋白表現。另外,BMX與TMZ的組合顯著降低E2F3表現(圖14A)。有趣的是,BMX或具有TMZ的BMX也增加組織蛋白H3的乙醯化。這表明BMX會影響細胞中組織蛋白乙醯轉移酶及/或HDAC的活性,從而導致蛋白(包括p53)的乙醯化。BMX與TMZ的組合可藉由增強p53表現及活化p53功能媒介的MGMT抑制來增加P21、P16表現及γ-H2AX磷酸化(圖14A)。
促細胞凋亡(壓力或死亡)訊號和抗細胞凋亡分子(包括Bcl-2及Bid、Bax或poma)之間的平衡為主要原因,其藉由凋亡蛋白酶相依性路徑引起細胞凋亡反應[29]。圖14B中顯示的凋亡蛋白酶的裂解表明,凋亡蛋白酶-7、凋亡蛋白酶-8、凋亡蛋白酶-9及凋亡蛋白酶-3活性在較低濃度下BMX沒有顯著變化,而在HT29細胞中BMX與TMZ組合時,上述凋亡蛋白酶以劑量相依性方式高度正調控,最終導致PARP裂解及細胞凋亡。發現在BMX 10 μM治療後,在HCT116及RKO細胞株中裂解的凋亡蛋白酶3、凋亡蛋白酶7、凋亡蛋白酶9及凋亡蛋白酶PARP的細胞凋亡蛋白表現濃度,以濃度相依性方式顯著增加。另外,吾人檢驗p53野生型細胞媒介的細胞凋亡中的促細胞凋亡訊號系統。結果顯示,BMX治療降低抗細胞凋亡蛋白Bcl-2的濃度,並增加促細胞凋亡蛋白Bax、Bim及Puma。然而,BMX治療並未導致促細胞凋亡Bcl-2家族蛋白Bak及Bid的正調控。另外,BMX及TMZ的增效作用優於BMX單獨(圖14C)。TMZ加BMX的組合比每種單獨治療產生更多的衰老細胞,尤其是在p53野生型細胞,諸如HCT116及RKO中(圖15)。由於CD133、CD44及SOX2與CSC的抗藥性高度相關,並用作CSC(包括CRC)的表現型標記,因此以BMX及TMZ治療會以劑量相依性方式明顯降低在HT29、HCT116及RKO中CD133、CD44及SOX2的表現濃度(圖16)。因此,BMX及TMZ的組合可藉由減弱cSC標記以轉換CRC細胞中的幹性表現型來增強TMZ媒介的細胞毒性作用。因此,上述結果表明,在CRC細胞中藉由BMX及TMZ的組合治療活化凋亡蛋白酶相依性訊號傳遞路徑,從而誘導細胞凋亡。
2.4  BMX 藉由靶向 CRC 細胞中的 Wnt/β- 連環蛋白 /GSK3β 路徑而增強 TMZ 媒介的細胞毒性作用
接著,在三種CRC細胞中研究BMX增強TMZ媒介的對Wnt/β-連環蛋白活性的細胞毒性作用的機轉。如圖3A所示,在三種CRC細胞中藉由BMX治療,β-連環蛋白、磷酸-β-連環蛋白(Ser33/Ser37/Thr41)及磷酸-GSK-3β(Ser9)蛋白表現濃度增加,而磷酸-β-連環蛋白(Ser33/Ser37/Thr41)及磷酸化GSK-3β(Ser9)濃度降低。在三種細胞株中,以5 µM BMX及TMZ的組合治療可直接降低β-連環蛋白的蛋白濃度,並藉由GSK3β的磷酸化降低磷酸β-連環蛋白(S33/S37/T41)的蛋白濃度。另外,吾人進一步檢驗BMX對增殖標記c-Myc及周期蛋白D1的作用,並注意到BMX在存在及不存在TMZ下都可降低增殖標記c-Myc及周期蛋白D1(圖17A)。這些結果表明,以5 µM BMX及TMZ的組合治療藉由Ser9磷酸化負調控而增強GSK3β活性,其反過來增強β-連環蛋白在Ser33/Ser37/Thr41處的磷酸化,從而引發蛋白降解(圖17B)。另外,在5 μM BMX及50 μM TMZ下,MG132應用可反轉β-連環蛋白降解並增加MGMT表現(圖17C)。總之,這些數據顯示,BMX及TMZ增強TMZ媒介的細胞毒性作用,部分是經由Wnt/β-連環蛋白/GSK3β路徑,從而減少CRC細胞增殖。
2.5 自噬作為 BMX BMX TMZ 的組合誘導的細胞死亡中的關鍵調控因子
脂質化LC3及自噬受質p62經常用作評估自噬小體及自噬的標記[17]。以BMX治療或以BMX及TMZ的組合治療也使P62及LC3-II的表現濃度相依性增加,這是LC3的加工形式(圖18A)。β-連環蛋白負調控P62表現[17、30]。為了驗證P62降低的蛋白濃度是由β-連環蛋白降解所引起,使蛋白酶體抑制劑MG132應用到經BMX或經BMX及TMZ的組合治療的細胞。如所預期的,當應用MG132時,BMX誘導的β連環蛋白降解受到反轉,且P62表現也受到抑制(圖18B)。由於組合治療下β-連環蛋白降解,因此P62不再受到抑制,接著觸發下游自噬路徑(圖18B)。為了判定自噬在BMX或BMX及TMZ的組合誘導的細胞死亡中的作用,吾人使用BAF(一種抑制自噬晚期的蛋白生物合成抑制劑)以及Z-VAD-FMK(苄氧羰基-纈胺醯基-丙胺醯基-天冬胺醯基-[O-甲基]-氟甲基酮,一種受抑制的細胞滲透泛凋亡蛋白酶),在加入BMX或BMX及TMZ的組合之前治療細胞,且吾人發現Z-VAD-FMK在三種細胞株中抑制由BMX加TMZ治療誘導的早期細胞凋亡。另外,以BAF A1預治療減少經由流式細胞術獲得的BMX或BMX及TMZ的組合誘導的細胞死亡,這與由BMX或BMX與TMZ的組合誘導的裂解的凋亡蛋白酶-3、凋亡蛋白酶-7、凋亡蛋白酶-8及凋亡蛋白酶-9表現減少的結果一致。已鑒定不同的自噬/細胞凋亡相關蛋白與相應的訊號傳遞路徑之間的相互作用,這暗示著兩種路徑之間存在串擾。為了測試細胞凋亡在6c誘導的自噬中的作用,吾人在加入BMX或BMX及TMZ的組合之前以BAF或Z-VAD-FMK治療細胞。如圖18D所示,儘管Z-VAD-FMK及BAF顯示早期細胞凋亡抑制,但BAF抑制BMX及TMZ的組合誘導的凋亡蛋白酶-3的活化,而不干擾所有細胞中的LC3I/II。然而,Z-VAD-FMK在p53突變細胞株中抑制BMX及TMZ的組合誘導的凋亡蛋白酶-3活化,並干擾LC3I/II。總之,這些結果強調在細胞死亡期間刺激自噬的重要性。
2.3. 結論
使用傳統放射-化學療法的CRC治療有時是無效率的,部分原因是CRC患者對這種治療方案沒有反應及/或遭受嚴重的藥物毒性。本發明證明,BMX及TMZ的組合在HCC細胞中,尤其是在HCT116及RKO中,表現出特異性及有效、增效的抗增殖及細胞凋亡作用。總之,BMX及TMZ提供最佳的增效效用,且其機轉為目前最重要的環節。
也得出以下結論:BMX是一種特異性HDAC8i,其與替莫唑胺(TMZ)組合可抑制細胞增殖、誘導細胞周期停滯、細胞衰老、自噬及凋亡,從而導致細胞死亡。也發現BMX及TMZ的組合藉由凋亡蛋白酶-3裂解及PARP活化誘導增效的凋亡性細胞死亡。本發明證實,BMX及TMZ的組合誘導磷酸-p53(ser15)的增加以及DNA損傷,諸如增加的γ-H2AX病灶。磷酸-p53(ser15)表現的增加可能是由於總p53表現的增加,這在吾人先前的研究中有所報導[16、17]。另外,吾人的研究顯示,BMX可能與TMZ一同對CRC細胞的存活力具有HDAC相依性增效作用。
鑑於上述,在人類GBM組織及GBM-R細胞株中的高HDAC8表現與MGMT濃度相關。BMX及TMZ的組合藉由WT-p53媒介的MGMT抑制作用在GBM-R細胞株中誘導WT-p53媒介的細胞凋亡。另外,BMX及TMZ的組合也經由GBM-R細胞株中的β-連環蛋白/c-Myc/周期蛋白D1/SOX2訊號傳遞路徑來抑制細胞增殖及GSC表現型活性。因此,BMX可能是一種精準個人治療WT-p53及TMZ抗性GBM患者的有望策略。
總的來說,作為增效機轉的指示,在本發明中證明BMX及TMZ的組合藉由正調控p53/p21/E2F3/Bax及負調控Wnt/β-連環蛋白/周期蛋白D1/c-Myc/p62路徑而有效誘導CRC的細胞死亡。因此,發現BMX及TMX的組合對細胞死亡提供潛在的作用,包括誘導細胞凋亡及自噬。實施例中的結果表明BMX及TMZ的組合的潛在作用,幫助吾人了解其對CRC細胞死亡的HDAC8相依性增效作用。這些發現表明一種對組合化學治療方案產生抗性的高度臨床相關的新穎機轉。
雖然本說明書含有許多細節,但其不應被解釋為對本發明的範圍或可能要求保護的範圍的限制,而應被解釋為對本發明的具體實施例或實施例所特有的特徵的描述。在本說明書中,在單獨的具體實施例或實施例的上下文中所描述的某些特徵也可在單一具體實施例中組合實施。 參考文獻 1.       Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016, 131, 803-820, doi:10.1007/s00401-016-1545-1. 2.       Park, J.K.; Hodges, T.; Arko, L.; Shen, M.; Iacono, D.D.; McNabb, A.; Bailey, N.O.; Kreisl, T.N.; Iwamoto, F.M.; Sul, J., et al. Scale to Predict Survival After Surgery for Recurrent Glioblastoma Multiforme. Journal of Clinical Oncology 2010, 28, 3838-3843, doi:10.1200/jco.2010.30.0582. 3.       Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U., et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005, 352, 987-996, doi:10.1056/NEJMoa043330. 4.       Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K., et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009, 10, 459-466, doi:10.1016/s1470-2045(09)70025-7. 5.       Siegel, R. L., Miller, K. D., and Jemal, A. (2015) Cancer statistics, 2015. CA Cancer J Clin 65, 5-29 6.       Vecchione, L., Gambino, V., Raaijmakers, J., Schlicker, A., Fumagalli, A., Russo, M., Villanueva, A., Beerling, E., Bartolini, A., Mollevi, D. G., El-Murr, N., Chiron, M., Calvet, L., Nicolazzi, C., Combeau, C., Henry, C., Simon, I. M., Tian, S., in 't Veld, S., D'Ario, G., Mainardi, S., Beijersbergen, R. L., Lieftink, C., Linn, S., Rumpf-Kienzl, C., Delorenzi, M., Wessels, L., Salazar, R., Di Nicolantonio, F., Bardelli, A., van Rheenen, J., Medema, R. H., Tejpar, S., and Bernards, R. (2016) A Vulnerability of a Subset of Colon Cancers with Potential Clinical Utility. Cell 165, 317-3307.    Xie, Y.-H., Chen, Y.-X., and Fang, J.-Y. (2020) Comprehensive review of targeted therapy for colorectal cancer. Signal Transduction and Targeted Therapy 5, 22 8.       Floudas, C. S., Brar, G., Mabry-Hrones, D., Duffy, A. G., Wood, B., Levy, E., Krishnasamy, V., Fioravanti, S., Bonilla, C. M., Walker, M., Morelli, M. P., Kleiner, D. E., Steinberg, S. M., Figg, W. D., Greten, T. F., and Xie, C. (2019) A Pilot Study of the PD-1 Targeting Agent AMP-224 Used With Low-Dose Cyclophosphamide and Stereotactic Body Radiation Therapy in Patients With Metastatic Colorectal Cancer. Clin Colorectal Cancer 18, e349-e360. 9.       Martino-Echarri, E., Henderson, B. R., and Brocardo, M. G. (2014) Targeting the DNA replication checkpoint by pharmacologic inhibition of Chk1 kinase: a strategy to sensitize APC mutant colon cancer cells to 5-fluorouracil chemotherapy. Oncotarget 5, 9889-9900. 10.     Temozolomide [US Prescribing Information]. Whitehouse Station, NJ; Merck & Co., Inc.; 2019Newlands ES, Stevens MFG, Wedge SR et.al, Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev. 1997; 23(1):35-61. 11.     Tatar Z, Thivat E, Planchat E Temozolomide and unusual indications: review of literature. Cancer Treat Rev. 2013; 39(2):125-35. 12.     Alonso, M.M.; Gomez-Manzano, C.; Bekele, B.N.; Yung, W.K.; Fueyo, J. Adenovirus-based strategies overcome temozolomide resistance by silencing the O6-methylguanine-DNA methyltransferase promoter. Cancer Res 2007, 67, 11499-11504, doi:10.1158/0008-5472.Can-07-5312. 13.     Le Rhun, E.; Preusser, M.; Roth, P.; Reardon, D.A.; van den Bent, M.; Wen, P.; Reifenberger, G.; Weller, M. Molecular targeted therapy of glioblastoma. Cancer Treat Rev 2019, 80, 101896, doi:10.1016/j.ctrv.2019.101896. 14.     Cabrini, G.; Fabbri, E.; Lo Nigro, C.; Dechecchi, M.C.; Gambari, R. Regulation of expression of O6-methylguanine-DNA methyltransferase and the treatment of glioblastoma (Review). Int J Oncol 2015, 47, 417-428, doi:10.3892/ijo.2015.3026. 15.     Wiewrodt, D., Nagel, G., Dreimüller, N., Hundsberger, T., Perneczky, A., and Kaina, B. (2008) MGMT in primary and recurrent human glioblastomas after radiation and chemotherapy and comparison with p53 status and clinical outcome. Int J Cancer 122, 1391-1399 16.     Tsai, C. Y., Ko, H. J., Chiou, S. J., Lai, Y. L., Hou, C. C., Javaria, T., Huang, Z. Y., Cheng, T. S., Hsu, T. I., Chuang, J. Y., Kwan, A. L., Chuang, T. H., Huang, C. F., Loh, J. K., and Hong, Y. R. (2021) NBM-BMX, an HDAC8 Inhibitor, Overcomes Temozolomide Resistance in Glioblastoma Multiforme by Downregulating the beta-Catenin/c-Myc/SOX2 Pathway and Upregulating p53-Mediated MGMT Inhibition. Int J Mol Sci 22 17.     Chu, C. W., Ko, H. J., Chou, C. H., Cheng, T. S., Cheng, H. W., Liang, Y. H., Lai, Y. L., Lin, C. Y., Wang, C., Loh, J. K., Cheng, J. T., Chiou, S. J., Su, C. L., Huang, C. F., and Hong, Y. R. (2019) Thioridazine Enhances P62-Mediated Autophagy and Apoptosis Through Wnt/β-Catenin Signaling Pathway in Glioma Cells.  Int J Mol Sci 2019, 20, doi:10.3390/ijms20030473. 18.     Bocangel, D.; Sengupta, S.; Mitra, S.; Bhakat, K.K. p53-Mediated down-regulation of the human DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) via interaction with Sp1 transcription factor. Anticancer Res 2009, 29, 3741-3750. 19.     Natsume, A.; Ishii, D.; Wakabayashi, T.; Tsuno, T.; Hatano, H.; Mizuno, M.; Yoshida, J. IFN-beta down-regulates the expression of DNA repair gene MGMT and sensitizes resistant glioma cells to temozolomide. Cancer Res 2005, 65, 7573-7579, doi:10.1158/0008-5472.Can-05-0036. 20.     Yang, H.-Y., Hsu, Y.-F., Chiu, P.-T., Ho, S.-J., Wang, C.-H., Chi, C.-C., Huang, Y.-H., Lee, C.-F., Li, Y.-S., Ou, G., and Hsu, M.-J. (2013) Anti-cancer activity of an osthole derivative, NBM-T-BMX-OS01: targeting vascular endothelial growth factor receptor signaling and angiogenesis. PloS one 8, e81592-e81592. 21.     Chen, T. J., Zhou, Y. F., Ning, J. J., Yang, T., Ren, H., Li, Y., Zhang, S., and Chen, M. W. (2015) NBM-T-BMX-OS01, an Osthole Derivative, Sensitizes Human Lung Cancer A549 Cells to Cisplatin through AMPK-Dependent Inhibition of ERK and Akt Pathway. Cellular Physiology and Biochemistry 36, 893-906. 22.     Yang, Y.C.; Chen, C.N.; Wu, C.I.; Huang, W.J.; Kuo, T.Y.; Kuan, M.C.; Tsai, T.H.; Huang, J.S.; Huang, C.Y. NBM-T-L-BMX-OS01, Semisynthesized from Osthole, Is a Novel Inhibitor of Histone Deacetylase and Enhances Learning and Memory in Rats. Evid Based Complement Alternat Med 2013, 2013, 514908, doi:10.1155/2013/514908. 23.     Lathia, J.D.; Mack, S.C.; Mulkearns-Hubert, E.E.; Valentim, C.L.; Rich, J.N. Cancer stem cells in glioblastoma. Genes Dev 2015, 29, 1203-1217, doi:10.1101/gad.261982.115. 24.  Wang, J.; Wang, H.; Li, Z.; Wu, Q.; Lathia, J.D.; McLendon, R.E.; Hjelmeland, A.B.; Rich, J.N. c-Myc is required for maintenance of glioma cancer stem cells. PLoS One 2008, 3, e3769, doi:10.1371/journal.pone.0003769. 25.     Gaspar, N.; Marshall, L.; Perryman, L.; Bax, D.A.; Little, S.E.; Viana-Pereira, M.; Sharp, S.Y.; Vassal, G.; Pearson, A.D.; Reis, R.M., et al. MGMT-independent temozolomide resistance in pediatric glioblastoma cells associated with a PI3-kinase-mediated HOX/stem cell gene signature. Cancer Res 2010, 70, 9243-9252, doi:10.1158/0008-5472.Can-10-1250. 26.     Yi, G.Z.; Huang, G.; Guo, M.; Zhang, X.; Wang, H.; Deng, S.; Li, Y.; Xiang, W.; Chen, Z.; Pan, J., et al. Acquired temozolomide resistance in MGMT-deficient glioblastoma cells is associated with regulation of DNA repair by DHC2. Brain 2019, 142, 2352-2366, doi:10.1093/brain/awz202. 27.     Yang, W.B.; Chuang, J.Y.; Ko, C.Y.; Chang, W.C.; Hsu, T.I. Dehydroepiandrosterone Induces Temozolomide Resistance Through Modulating Phosphorylation and Acetylation of Sp1 in Glioblastoma. Mol Neurobiol 2019, 56, 2301-2313, doi:10.1007/s12035-018-1221-7. 28.     Jäämaa, S., Af Hällström, T. M., Sankila, A., Rantanen, V., Koistinen, H., Stenman, U. H., Zhang, Z., Yang, Z., De Marzo, A. M., Taari, K., Ruutu, M., Andersson, L. C., and Laiho, M. (2010) DNA damage recognition via activated ATM and p53 pathway in nonproliferating human prostate tissue. Cancer Res 70, 8630-8641. 29.     Bogenberger, J. M., Kornblau, S. M., Pierceall, W. E., Lena, R., Chow, D., Shi, C. X., Mantei, J., Ahmann, G., Gonzales, I. M., Choudhary, A., Valdez, R., Camoriano, J., Fauble, V., Tiedemann, R. E., Qiu, Y. H., Coombes, K. R., Cardone, M., Braggio, E., Yin, H., Azorsa, D. O., Mesa, R. A., Stewart, A. K., and Tibes, R. (2014) BCL-2 family proteins as 5-Azacytidine-sensitizing targets and determinants of response in myeloid malignancies. Leukemia 28, 1657-1665. 30.     Aberle, H., Bauer, A., Stappert, J., Kispert, A., and Kemler, R. (1997) beta-catenin is a target for the ubiquitin-proteasome pathway. Embo j 16, 3797-3804
當結合附圖閱讀時,將更好理解前面發明內容及以下本發明的詳細描述。為了說明本發明,附圖中示出目前較佳的具體實施例。
在圖式中:
圖1提供藉由生物資訊學工具對潛在與HDAC8相關的基因進行的路徑分析;其中shRNA HDAC8被輸入CLUE數據庫,且選擇得分>90的CP及PCL(A)。使標靶基因輸入CPDB路徑分析數據庫(B)以用於進一步實驗。(C)選擇shRNA HDAC8的CP及PCL(得分>90)的前10條路徑。10條路徑如下:VEGF;PI3K-Akt訊號傳遞路徑;JAK STAT路徑及調控;訊號傳遞路徑;MAPK訊號傳遞路徑-智人(人類);細胞凋亡;自噬;HIF-1訊號傳遞路徑;TNF相關的細胞凋亡弱誘導劑(TWEAK)訊號傳遞路徑;Wnt訊號傳遞路徑。VEGF;PI3K-Akt訊號傳遞路徑;JAK STAT路徑及調控;訊號傳遞路徑;MAPK訊號傳遞路徑-智人(人類);細胞凋亡;自噬;HIF-1訊號傳遞路徑;TNF相關的細胞凋亡弱誘導劑(TWEAK)訊號傳遞路徑;Wnt訊號傳遞路徑。
圖2示出BMX抑制GBM細胞(U87MG及A172)的生長及增殖,且BMX及TMZ的組合抑制GBM-R細胞(U87MG-R及A172-R)的生長及增殖。(A)BMX的化學結構。(B)以0.5、10、15、30或50 µM BMX治療後GBM及GBM-R細胞株的細胞存活力。(C)以0.25、50、100、200、400或800 µM TMZ治療後GBM及GBM-R細胞株的細胞存活力。(D)以10 µM BMX,在存在或不存在不同濃度(0.25、50、100、200、400或800 µM)的TMZ下治療24小時後的GBM及GBM-R細胞存活力。(E)以50 µM TMZ,在存在或不存在各種濃度(0.5、10、15、30或50 µM)的BMX下治療24小時後的GBM及GBM-R細胞存活力。(F)以50 µM TMZ,在存在或不存在10 µM BMX下治療24、48及72小時後的GBM-R細胞存活力。(G)以BMX(0、5或10 µM),在存在或不存在TMZ(50 µM)下,進行14天的GBM及GBM-R細胞株的群落形成試驗。數據表示為來自三次實驗的平均值± SEM。*p < 0.05相對於對照組(A172及U87MG);#p < 0.05相對於(A172-R及U87MG-R)。
圖3示出BMX藉由靶向Wnt/β-連環蛋白/GSK3β路徑來抑制GBM-R細胞中的細胞增殖而增強TMZ媒介的細胞毒性作用。(A)以5或10 µM BMX,在存在或不存在50µM TMZ下治療48小時後,GBM-R細胞的GSK-3β及β-連環蛋白活化狀態。(B)以5或10 µM BMX,在存在或不存在50 µM TMZ下治療48小時後GBM-R細胞的c-Myc及周期蛋白D1蛋白濃度。(C)以10 µM BMX及50 µM TMZ,在存在或不存在10 µM MG132下治療後,GBM-R細胞中β-連環蛋白(Ser33/37/41)磷酸化狀態以及c-Myc與周期蛋白D1蛋白表現的變化。
圖4示出BMX及TMZ的組合藉由促進GBM-R細胞中TMZ媒介的細胞凋亡而增強TMZ媒介的細胞毒性作用。(A)在存在或不存在TMZ下,以BMX治療48小時後,GBM(U87MG及A172)及GBM-R(U87MG-R及A172-R)細胞的細胞周期分布。(B)G0/G1、S及G2/M階段的細胞百分比以直方圖表示。(C)亞G1的百分比的長條圖。(D)在存在或不存在TMZ下,以BMX治療48小時後,GBM(U87MG及A172)及GBM-R(U87MG-R及A172-R)細胞的膜聯蛋白V/PI細胞凋亡試驗。(E)直方圖顯示細胞凋亡細胞的百分比。
圖5示出BMX及TMZ的組合藉由在GBM-R細胞中的WT-p53媒介的MGMT抑制而增強TMZ媒介的細胞毒性作用。(A)WT-p53及MGMT在GBM(U87MG及A172)及GBM-R(U87MG-R及A172-R)細胞株上的表現模式。(B)在U87MG-R及A172-R上,以5或10 µM BMX,在存在或不存在50 µM TMZ下治療48小時後,WT-p53、MGMT、P21、Bax、Bcl-2、Puma及裂解的凋亡蛋白酶-3的蛋白變異。(C)以5或10 µM BMX,在存在或不存在50 µM TMZ下治療GBM(U87MG及A172)及GBM-R(U87MG-R及A172-R)細胞48小時,降低MGMT濃度,並增加WT-p53及磷酸-WT-p53濃度(ser 15)。β-肌動蛋白用作內部對照組。
圖6示出BMX及TMZ的組合降低GBM-R細胞中GSC的形成。(A)在親代和抗性子細胞株之間CSC相關基因(CD133、CD44及SOX2)表現的狀態。(B)U87MG-R及A172-R細胞在接受5及10 µM BMX、存在或不存在50 µM TMZ下,48小時後CD133、CD44及SOX2蛋白濃度的變化。(C)藉由手術生檢獲得的人類原發性GBM(伴隨放療及化學療法前同一患者)及復發性GBM腫瘤組織(伴隨放療及化學療法後)中HDAC8及CSC相關基因(CD133及CD44)的免疫組織化學染色。
圖7提供BMX與TMZ的組合以克服GBM-R細胞中TMZ抗性的機轉的工作模型。
圖8示出GBM細胞株的基因特徵(A)藉由西方墨點法在GBM細胞中表現HDAC8(來自Abcam公司)。
圖9示出BMX是一種有效的半合成HDAC8抑制劑。(B)藉由大數據分析對MGMT甲基化對GBM進行檢測。分別以藍色及紅色標記野生型及突變型(單邊t檢定,*p<0.05)。(A)使用qRT-PCR試驗,測定在存在或不存在TMZ(50 μM)下,以不同劑量的BMX(0-10 μM)刺激的HDAC8表現濃度。(B)使用西方墨點法,測定在存在或不存在TMZ(50 μM)下,以BMX(0-10 μM)刺激的HDAC8表現濃度。
圖10示出BMX及BMX與TMZ一同抑制U87MG、U87MG-R、A172及A172-R的生長及增殖。(A)以指定濃度的BMX(0.5、10、15、30或50 µM)治療24、48及72小時後,GBM及GBM-R細胞株的細胞存活力。(B)以指定濃度的TMZ(0.25、50、100、200、400或800 µM)治療24、48及72小時後,GBM及GBM-R細胞株的細胞存活力。(C)以10 µM BMX,在存在或不存在不同濃度TMZ(0.25、50、100、200、400或800 µM)下治療24、48及72小時後,GBM及GBM-R細胞株的細胞存活力。(D)以50 µM TMZ,在存在或不存在不同濃度(0.5、10、15、30或50 µM)的BMX下治療24、48及72小時後,GBM及GBM-R細胞株的細胞存活力。(E)以50 μM TMZ,在存在或不存在10μM BMX下治療24、48及72小時後,GBM-R細胞株的細胞存活力。
圖11示出BMX在GBM細胞中的活體外細胞毒性。(A)以TMZ(50及100 μM)治療U87及U87R細胞以及(B)A172及A172R細胞。使用成株試驗判定TMZ對GBM細胞的抑制作用。*p < 0.05;**p < 0.01;***p < 0.001。
圖12示出神經膠質母細胞瘤中的藥物及基因資訊,包括有兩個親代GBM細胞株(A172及U87MG)的HDAC8表現濃度,其為野生型p53(WT-p53)及兩種TMZ抗性GBM細胞株。
圖13示出BMX、TMZ、奧沙利鉑及阿黴素(doxorubicin)組合會抑制CRC細胞中的細胞增殖。(A)使用CCK-8方法試驗具有不同藥物濃度及治療持續時間的BMX、TMZ、Oxp、Dox、BMX加TMZ、BMX加Oxp或BMX加Dox在HT29、HCT116及RKO細胞中的增殖。(B)在HT29、HCT116及RKO細胞中,以不同的BMX、TMZ、Oxp、BMX加TMZ以及BMX加Oxp治療,進行群落形成試驗,對殖株定量並以統計數字表示。(C)在HT29、HCT116及RKO細胞中以不同濃度的BMX或BMX與TMZ的組合治療48小時後的細胞周期分析,以及在每個細胞周期階段中的細胞比例。(D)以不同濃度的BMX或BMX與TMZ的組合治療48小時後的細胞凋亡分析,以及在HT29、HCT116及RKO細胞中的細胞凋亡率。所有結果均顯示為來自三次獨立實驗的平均值±標準差。*p < 0.05,**p < 0.01,***p < 0.001相對於對照組(HT29細胞);#p < 0.05,##p < 0.01,###p < 0.001相對於對照組(HCT116細胞);†p < 0.05,††p < 0.01,†††p < 0.001相對於對照組(RKO細胞)。
圖14示出BMX、BMX及TMZ的組合誘導的細胞凋亡及自噬的作用是由p53媒介的MGMT抑制所媒介。(A)在以各種濃度的BMX(5及10 μM)及BMX與TMZ的組合治療48小時的HT29、HCT116及RKO細胞中,P53、p53 Lys382乙醯化、p53 Ser15磷酸化、p21、p16、MGMT、γH2AX、E2F1及E2F3表現的西方墨點法分析。(B)在HT29、HCT116及RKO細胞中表現裂解的凋亡蛋白酶-3、凋亡蛋白酶-7、凋亡蛋白酶-8、凋亡蛋白酶-9及裂解的PARP蛋白,這些細胞以不同濃度的BMX(5及10 μM)及BMX與TMZ的組合治療48小時。(C)在以各種濃度的BMX(5及10 μM)及BMX與TMZ的組合治療48小時的HT29、HCT116及RKO細胞中,Bax、Bcl-2、BID、Bim、Bak及Puna蛋白的表現。GAPDH用作上樣對照組。
圖15示出BMX、BMX及TMZ的組合誘導HT29、HCT116及RKO細胞的細胞衰老。BMX及TMZ的組合的衰老相關β-半乳糖苷酶(SAβ-gal)染色。以10 μM BMX加TMZ(50 μM)治療細胞48小時,以SAβ-gal(藍色細胞質染色劑)對細胞染色。比例尺:50 μm。SAβ-gal活性的定量。所有結果均顯示為來自三次獨立實驗的平均值±標準差。*p < 0.05,**p < 0.01,***p < 0.001相對於對照組(HT29細胞);#p < 0.05,##p < 0.01,###p < 0.001相對於對照組(HCT116細胞);†p < 0.05,††p < 0.01,†††p < 0.001相對於對照組(RKO細胞)。
圖16示出BMX及TMZ的組合降低HT29、HCT116及RKO細胞中CSC的形成。HT29、HCT116及RKO細胞在接受5及10 µM BMX、存在或不存在50 µM TMZ下,48小時後CD133、CD44及SOX2蛋白濃度的變化。GAPDH用作上樣對照組。
圖17示出BMX藉由靶向CRC細胞中的Wnt/β-連環蛋白/GSK3β路徑而增強TMZ媒介的細胞毒性作用。(A)在以5或10 μM BMX,存在或不存在50 μM TMZ下治療48小時後,HT29、HCT116及RKO細胞的GSK-3β、β‑連環蛋白活化狀態、c-Myc及周期蛋白D1。(B)在T29、HCT116及RKO細胞中,以BMX,在存在或不存在50 μM TMZ及MG132下正調控GSK‑3β、β‑連環蛋白活化狀態、c-Myc及周期蛋白D1表現。(C)在T29、HCT116及RKO細胞中,以BMX,在存在或不存在50 μM TMZ及MG132下正調控P53及MGMT表現。GAPDH用作上樣對照組。
圖18示出自噬是BMX單獨、BMX及TMZ的組合誘導細胞死亡的原因。(A)藉由西方墨點法評估以BMX(5及10 μM),在存在或不存在50 μM TMZ下治療的HT29、HCT116及RKO細胞中,LC3及P62/SQSTM1表現。(B)在T29、HCT116及RKO細胞中,以BMX,在存在或不存在50 μM TMZ及MG132下負調控p62/SQSTM1表現。(C)以BAF及VAD預治療減少HT29、HCT116及RKO細胞中的細胞凋亡,其中這些細胞暴露於BMX(5及10 μM),在存在或不存在50 μM TMZ下48小時。(D)VAD及BAF對BMX(5及10 μM)的作用,在存在或不存在50 μM TMZ下,誘導裂解的凋亡蛋白酶-3、裂解的PARP、P62及LC3表現。GAPDH用作上樣對照組。
Figure 111120133-A0101-11-0002-1

Claims (13)

  1. 一種化合物A與替莫唑胺(Temozolomide,TMZ)的組合之用途,其係用於製造用於治療患者的TMZ抗性癌症的藥劑或試劑盒,其中該化合物A具有以下式A的結構,或其醫藥上可接受的鹽、立體異構體、鏡像異構體、前驅藥或溶劑合物:
    Figure 03_image003
    式A 其中 R 1為氫、烷基、烯基、C 5-C 6環烷基、5-員或6-員不飽和碳環或5-員或6-員雜環、或(CH 2)mR 4; X為C、-O-、-N-或-S-; Y為-O-、-NH或-O-C 1-C 4烷基; n為0到10的整數; m為0到5的整數; R 2及R 3獨立地為C 1-C 6烷基; R 4為C 5-C 6環烷基或可被鹵素、-CF 3、-OR 7或-NR 7R 8取代的5-員或6-員不飽和碳環或雜環,其中R 7及R 8獨立地為氫或C 1-C 6烷基; R 5為OH、NH 2或C 5-C 6環烷基、5-員或6-員不飽和碳環或雜環,其中該環烷基、碳環及雜環可任選地被鹵素、NH 2、NO 2、C 1-C 6烷氧基、C 1-6烷硫基、OR 7’’、NR 7R 8或CF 3取代;以及 R 6為H、可被羥基取代的C 1-C 10烷基或C 2-C 10烯基,或與R 1一同為-C 2H 2-;以及 其中TMZ及該化合物A以相對比率組合來有效克服TMZ抗性。
  2. 如請求項1之用途,其中該化合物A為具有以下結構的化合物BMX:
    Figure 03_image005
    BMX。
  3. 如請求項1之用途,其中藉由增強TMZ媒介的細胞毒性作用來克服該TMZ抗性。
  4. 如請求項3之用途,其中該增強TMZ媒介的細胞毒性作用是藉由負調控β-連環蛋白/c-Myc/SOX2訊號傳遞路徑及正調控WT-p53媒介的MGMT來抑制該抗性。
  5. 如請求項1之用途,其中TMZ及該化合物A分別或依序施用。
  6. 一種包含TMZ及BMX的組合之用途,其係用於製造用於治療TMZ抗性癌症的藥物或試劑盒。
  7. 如請求項6之用途,其中該癌症為多形性神經膠質母細胞瘤(GBM)或大腸直腸癌(CRC)。
  8. 一種化合物A與抗癌藥物的組合之用途,其係用於製造治療對該抗癌藥物具有抗藥性的癌症患者的藥物或試劑盒,其中該化合物A如請求項1或2中所定義。
  9. 如請求項8之用途,其中該抗癌藥物為TMZ。
  10. 如請求項8或9之用途,其中該癌症為GBM或CRC。
  11. 一種化合物A之用途,其係用於製造用於精準個人治療表現WT-p53的患者中抗藥性癌症的藥物或試劑盒,其中該化合物A如請求項1或2中所定義。
  12. 如請求項11之用途,其中該藥物為TMZ。
  13. 如請求項11或12之用途,其中該抗藥性癌症為TMZ抗性GMB或CRC。
TW111120133A 2021-05-28 2022-05-30 用於治療抗藥性癌症的組合物和方法 TW202320744A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163194585P 2021-05-28 2021-05-28
US63/194,585 2021-05-28

Publications (1)

Publication Number Publication Date
TW202320744A true TW202320744A (zh) 2023-06-01

Family

ID=84229523

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111120133A TW202320744A (zh) 2021-05-28 2022-05-30 用於治療抗藥性癌症的組合物和方法

Country Status (9)

Country Link
US (1) US20230038230A1 (zh)
EP (1) EP4351551A1 (zh)
KR (1) KR20240016352A (zh)
CN (1) CN117642159A (zh)
AU (1) AU2022283415A1 (zh)
BR (1) BR112023024812A2 (zh)
CA (1) CA3221779A1 (zh)
TW (1) TW202320744A (zh)
WO (1) WO2022247954A1 (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7994357B2 (en) * 2009-04-03 2011-08-09 Naturewise Biotech & Medicals Corporation Cinamic compounds and derivatives therefrom for the inhibition of histone deacetylase
CN104136410A (zh) * 2011-12-29 2014-11-05 药品循环公司 作为组蛋白脱乙酰酶8抑制剂的肉桂酸羟基酰胺
WO2014116962A1 (en) * 2013-01-24 2014-07-31 Trustees Of Boston University Selective histone deacetylase 8 inhibitors

Also Published As

Publication number Publication date
EP4351551A1 (en) 2024-04-17
US20230038230A1 (en) 2023-02-09
BR112023024812A2 (pt) 2024-02-20
CA3221779A1 (en) 2022-12-01
WO2022247954A1 (en) 2022-12-01
CN117642159A (zh) 2024-03-01
KR20240016352A (ko) 2024-02-06
AU2022283415A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
Hu et al. Lanatoside C inhibits cell proliferation and induces apoptosis through attenuating Wnt/β-catenin/c-Myc signaling pathway in human gastric cancer cell
Wang et al. Progress of breast cancer basic research in China
Gopal et al. Parthenolide specifically depletes histone deacetylase 1 protein and induces cell death through ataxia telangiectasia mutated
Jiang et al. Involvement of p38 in signal switching from autophagy to apoptosis via the PERK/eIF2α/ATF4 axis in selenite-treated NB4 cells
Cheng et al. Punicalagin induces senescent growth arrest in human papillary thyroid carcinoma BCPAP cells via NF-κB signaling pathway
Karkoulis et al. Targeted inhibition of heat shock protein 90 disrupts multiple oncogenic signaling pathways, thus inducing cell cycle arrest and programmed cell death in human urinary bladder cancer cell lines
Tufail et al. Breast cancer: molecular mechanisms of underlying resistance and therapeutic approaches
Chen et al. Glutamine deprivation plus BPTES alters etoposide-and cisplatin-induced apoptosis in triple negative breast cancer cells
Tian et al. Fangchinoline targets PI3K and suppresses PI3K/AKT signaling pathway in SGC7901 cells Retraction in/10.3892/ijo. 2023.5547
Neumann et al. The natural anticancer compound rocaglamide selectively inhibits the G1‐S‐phase transition in cancer cells through the ATM/ATR‐mediated Chk1/2 cell cycle checkpoints
Yuan et al. TIPE3 is a regulator of cell apoptosis in glioblastoma
Henssen et al. Targeting tachykinin receptors in neuroblastoma
Vishnoi et al. Berberine represses β-catenin translation involving 4E-BPs in hepatocellular carcinoma cells
Yoshida et al. Aberrant Activation of Cell-Cycle–Related Kinases and the Potential Therapeutic Impact of PLK1 or CHEK1 Inhibition in Uterine Leiomyosarcoma
Chen et al. Inhibition of HSP90 sensitizes a novel Raf/ERK dual inhibitor CY-9d in triple-negative breast cancer cells
Beurel et al. GSK-3β reactivation with LY294002 sensitizes hepatoma cells to chemotherapy-induced apoptosis
Liang et al. RASSF6-mediated inhibition of Mcl-1 through JNK activation improves the anti-tumor effects of sorafenib in renal cell carcinoma
Kaneko et al. Potentiation of bleomycin in Jurkat cells by fungal pycnidione
Guo et al. Fangchinoline suppresses the growth and invasion of human glioblastoma cells by inhibiting the kinase activity of Akt and Akt-mediated signaling cascades
Yuan et al. Synergistic efficacy of homoharringtonine and venetoclax on acute myeloid leukemia cells and the underlying mechanisms
Jian et al. Anti-tumor effects of dual PI3K-HDAC inhibitor CUDC-907 on activation of ROS-IRE1α-JNK-mediated cytotoxic autophagy in esophageal cancer
Tong et al. MUC1 promotes glioblastoma progression and TMZ resistance by stabilizing EGFRvIII
Liu et al. Anti-tumor effects of Skp2 inhibitor AAA-237 on NSCLC by arresting cell cycle at G0/G1 phase and inducing senescence
Skwarska et al. The imidazoacridinone C-1311 induces p53-dependent senescence or p53-independent apoptosis and sensitizes cancer cells to radiation
Zhan et al. BH3 mimetic ABT-263 enhances the anticancer effects of apigenin in tumor cells with activating EGFR mutation