TW202317799A - 含釕層之形成方法及積層體 - Google Patents

含釕層之形成方法及積層體 Download PDF

Info

Publication number
TW202317799A
TW202317799A TW111131637A TW111131637A TW202317799A TW 202317799 A TW202317799 A TW 202317799A TW 111131637 A TW111131637 A TW 111131637A TW 111131637 A TW111131637 A TW 111131637A TW 202317799 A TW202317799 A TW 202317799A
Authority
TW
Taiwan
Prior art keywords
layer
ruthenium
oxidized
containing layer
forming
Prior art date
Application number
TW111131637A
Other languages
English (en)
Other versions
TWI831337B (zh
Inventor
羅西奧亞歷杭德拉 阿堤加穆勒
朱利安 加蒂諾
吉恩-馬克 吉拉德
文卡提斯瓦拉 佩蘭
Original Assignee
法商液態空氣喬治斯克勞帝方法研究開發股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 filed Critical 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司
Publication of TW202317799A publication Critical patent/TW202317799A/zh
Application granted granted Critical
Publication of TWI831337B publication Critical patent/TWI831337B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Semiconductor Memories (AREA)
  • Drying Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本發明之課題在於提供一種含釕層之形成方法及積層體,該含釕層之形成方法係於形成在基板上之圖案形成用遮罩表面選擇性地形成作為能夠抑制蝕刻殘渣產生之保護層的含釕層,而無需形成選擇性引誘元件。 含釕層之形成方法包括: 準備步驟:準備具有被氧化層之基板;及 沉積步驟:藉由氣相成長法,使用氧化釕,使含釕層沉積於上述被氧化層上; 此處,上述被氧化層含有碳原子。

Description

含釕層之形成方法及積層體
本發明係關於一種含釕層之形成方法及積層體。
於光微影法中,感光性聚合物光阻劑係被用以處理薄膜之圖案部分或半導體基板之塊體(bulk)。對光阻劑進行曝光、顯影後,藉由高指向性各向異性反應性離子蝕刻(以下,有時稱為「RIE」)製程最後於基板上形成三維結構。於奈米電子學中,日益要求三維形狀小型化及複雜化,因此若要圖案轉印,如果僅為光阻劑則有時會過薄。例如,22 nm以下之微影法用光阻劑存在無法承受高能離子照射,於RIE中迅速劣化之情況。為了克服該問題,而導入具有高於光阻劑之選擇性及抗性之非晶形碳(以下,有時稱為「AC」)之類的材料,形成非晶形碳與光阻劑之遮罩積層體。理想上,光阻劑具有由基板之面內之AC所賦予的意欲圖案之正確形狀,該基板具有穿過光阻劑之垂直壁。因此,一部分基板經光阻劑及AC被覆,其他部分則未受到被覆。經光阻劑及AC覆蓋之一部分基板由於在蝕刻、離子注入、或其他圖案轉印機制中作為保護層發揮作用,故而為圖案轉印所需者。
若要形成高縱橫比(aspect ratio)結構,需要長時間進行指向性反應性離子蝕刻,因此無法避免AC逐漸劣化。離子對側壁表面之撞擊會促進由蝕刻製程所導致之AC劣化,結果存在無法確保目標蝕刻層之形狀及尺寸之情況。
近年來,為了降低或排除反應性離子蝕刻中AC之逐漸劣化,而導入聚醯胺之類的碳質材料、或TiN及TaN之類的金屬硬罩等(參照非專利文獻1、2)。然而,該等材料因下述等原因而無法稱為理想之製程:為了選擇性形成於非晶形碳上,需要抑制劑、鈍化劑、自組裝單分子層等選擇性引誘元件,故而難以適應圖案化製程;由蝕刻製程所產生之殘渣層成長於遮罩上;遮罩上之選擇形成性低。 [先前技術文獻] [非專利文獻]
[非專利文獻1]Journal of Vacuum Science & Technology A,39, 2, 2021 [非專利文獻2]J. Vac. Sci. Technol. B 24, 5, 2006 2262
[發明所欲解決之課題]
本發明之目的在於提供一種含釕層之形成方法及積層體,該含釕層之形成方法係於形成在基板上之圖案形成用遮罩表面選擇性地形成作為能夠抑制蝕刻殘渣產生之保護層的含釕層,而無需形成選擇性引誘元件。 [解決課題之技術手段]
本案發明人等進行了潛心研究,結果發現藉由採用下述構成可達成上述目的,從而完成了本發明。
於一實施形態中,本發明係關於一種含釕層之形成方法,其包括: 準備步驟:準備具有被氧化層之基板;及 沉積步驟:藉由氣相成長法,使用氧化釕,使含釕層沉積於上述被氧化層上; 此處,上述被氧化層含有碳原子。
若根據該形成方法,可使含釕層選擇性地沉積於具有被氧化層(即,具有受到氧化之性質之層)之基板中之被氧化層上。釕(Ru)係對典型地被用以蝕刻氧化物或氮化物、抗反射塗層等被覆層之許多電漿化學物質(例如,全氟碳化物(PFC)氣體等)具有耐蝕刻性。同時,釕可藉由不會去除被覆層材料之其他電漿化學物質容易地去除,而不會產生殘渣。因此,含釕層係作為蝕刻時之圖案遮罩之類的被氧化層之保護層發揮作用。結果,無需抑制劑或自組裝單分子層(SAM),可避免遮罩劣化,減少殘留物形成。進而可減少圖案堵塞或崩解之危險性。再者,其原因雖不明,但推測其原因之一在於:氧化釕(RuO 4)為亦可應用於氣相反應之強氧化劑,與被氧化層具有一種親和性。
又,上述被氧化層較佳含有碳原子。藉由被氧化層含有可氧化之碳原子或碳-碳鍵(即,藉由為有機層或半有機層),氧化釕與被氧化層之親和性進一步提昇。結果,可進一步提昇氧化釕層於被氧化層上之選擇形成性。
於一實施形態中,上述含釕層之平均組成可為RuOx。此處,x之值為0以上2以下。又,於x之值為0(包括實質上為0之情形)之情形時,意指形成純釕層。此處,所謂平均組成,可藉由X射線光電子光譜法,根據平均值而求出。具體而言,可藉由X射線光電子光譜法,獲得3次重複之資料,根據其平均值算出平均組成。
於一實施形態中,上述沉積步驟每1個循環所形成之含釕層之厚度較佳為0.05 nm以上0.20 nm以下。又,於一實施形態中,藉由上述沉積步驟所形成之含釕層之厚度較佳為1 nm以上30 nm以下。藉由該等,可使含釕層之遮罩保護功能、強度及生產性高度平衡。
於一實施形態中,該形成方法較佳於上述沉積步驟中進行1次或2次以上沉積循環,該沉積循環具備: 第1暴露:使上述氧化釕暴露於上述被氧化層;以及 第2暴露:於該第1暴露後,使選自由氫氣、氨氣、及肼所組成之群中之至少1種共反應劑暴露於上述第1暴露後之上述被氧化層。於沉積步驟中,藉由氧化釕之作用,被氧化層中之碳-碳鍵轉換為環氧、醛、酮等氧化基,與此同時,生成RuO 2等氧化釕物質。繼而,藉由利用氫氣等共反應劑進行氧化基或氧化釕物質之還原,可使鍵結於被氧化層之氧化基還原,同時析出平均組成為RuOx(此處,x之值為0以上2以下)之含釕層。
於一實施形態中,上述基板較佳進而具有氧化物層。由於氧化釕不會對不具有受到氧化之性質之氧化物層表現出反應性,故而可進一步提昇含釕層於被氧化層上之選擇形成性。
於一實施形態中,上述氧化物層可為SiO 2層、SiN層、SiON層、Al 2O 3層、ZrO 2層、TiO 2層或HfO 2層。可根據基板用途來配置適當之氧化物層。
於一實施形態中,上述被氧化層較佳為非晶形碳層、摻硼非晶形碳層、摻鎢非晶形碳層、光阻層或含致孔劑(porogen)之多孔質低介電常數前驅層。非晶形碳層及光阻層代表性地含有縮合為芳香族簇或者連結於其他片段或雜原子之可氧化之sp 2碳原子。又,含致孔劑之多孔質低介電常數前驅層具有對氧化具強親和性之sp 2碳原子及sp 3碳原子、或C-H鍵等官能基。因此,該等被氧化層能夠發揮對由氧化釕所引起之氧化反應之親和性。結果可謀求含釕層之選擇形成性進一步提昇。此處,非晶形碳層意指實質上由非晶形碳(單獨)構成之層。摻硼非晶形碳層意指由摻雜有硼之非晶形碳構成之層。摻鎢非晶形碳層則意指由摻雜有鎢之非晶形碳構成之層。
於一實施形態中,作為上述被氧化層,較佳為非晶形碳層。
於一實施形態中,上述被氧化層可經圖案化。即便被氧化層具有線與間隙或接觸孔之形狀,亦可選擇性地形成作為保護層之氧化釕層,能夠保護被氧化層。
於另一實施形態中,本發明係關於一種含釕層之形成方法,其包括: 準備步驟:將具有被氧化層之基板設置於沉積腔室中;及 沉積步驟:藉由氣相成長法將經氣化之氧化釕導入至上述沉積腔室而使含釕層沉積於上述被氧化層上; 此處,上述被氧化層含有碳原子。
於另一實施形態中,本發明係關於一種含釕層之形成方法,其包括: 準備步驟:準備具有被氧化層之基板;及 沉積步驟:藉由利用氣相成長法使氧化釕沉積,於上述被氧化層上形成含釕膜; 此處,上述被氧化層含有碳原子。
於另一實施形態中,本發明係關於一種積層體,其具有: 基板:於表面具有被氧化層及氧化物層;及 含釕層:形成於上述被氧化層之表面; 此處,上述被氧化層含有碳原子。
於該積層體中,在被氧化層之表面選擇性地形成有作為保護層之含釕層,故而能夠防止被氧化層劣化,同時有效率地進行對氧化物層之蝕刻等處理。
上述被氧化層較佳含有碳原子。藉由被氧化層含有可氧化之碳原子或碳-碳鍵,氧化釕與被氧化層之親和性進一步提昇,可進一步提昇含釕層於被氧化層上之選擇形成性。
於另一實施形態中,上述被氧化層較佳為非晶形碳層、摻硼非晶形碳層、摻鎢非晶形碳層、光阻層或含致孔劑之多孔質低介電常數前驅層。其中,上述被氧化層較佳為非晶形碳層。該等被氧化層具有可氧化之碳原子,能夠發揮對由氧化釕所引起之氧化反應之親和性,可謀求含釕層之選擇形成性進一步提昇。
於另一實施形態中,上述含釕層之厚度較佳為1 nm以上30 nm以下。藉此,可使含釕層之遮罩保護功能、強度及生產性高度平衡。
以下,對本發明之實施形態進行說明。本發明不限定於該等實施形態。
《含釕層之形成方法》 本實施形態之含釕層之形成方法包括: 準備步驟:準備具有被氧化層之基板;及 沉積步驟:藉由氣相成長法,使用氧化釕,使含釕層沉積於上述被氧化層上。以下,以於基板上形成碳質硬罩及阻膜之積層體作為被氧化層,進行圖案化後於積層體表面形成作為保護層之含釕層的態樣為例,參照圖1A~圖1D對各步驟進行說明。圖1A~圖1D係表示一實施形態之含釕層形成方法之一個步驟的示意剖面圖。
(準備步驟) 於本步驟中,準備具有被氧化層之基板。如圖1A所示,於作為基板之半導體層10上形成有交替積層犧牲層20(例如SiN層)與絕緣層30(例如SiO 2層)而成之硬罩積層體(以下,亦稱為「ONON(oxide-nitride-oxide-nitride-nitride,氧化物-氮化物-氧化物-氮化物-氮化物)積層體」)。積層數可根據基板用途適當設定。ONON積層體可藉由CVD(Chemical Vapor Deposition,化學氣相沉積)法或ALD(Atomic Layer Deposition,原子層沉積)法形成。
基板可選自MIM、DRAM、或FeRam技術中用作絕緣材料之氧化物(例如,HfO 2基材料、TiO 2基材料、ZrO 2基材料、稀土類氧化物基材料、三元氧化物基材料等),或者選自銅基板或用作銅基板與低介電常數膜之間之阻氧層之氮化物基膜(例如TaN)。於半導體、光電池、LCD-TFT、或平板裝置之製造中可使用其他基板。作為此種基板之例,並無限定,可舉含金屬氮化物基板(例如,TaN、TiN、SiN、WN、TaCN、TiCN、TaSiN、及TiSiN)等基板;絕緣體(例如,SiO 2、Si 3N 4、SiON、HfO 2、Ta 2O 5、ZrO 2、TiO 2、Al 2O 3、及鈦酸鋇鍶);或含有該等材料之組合中之幾種的其他基板。
繼而,使非晶形碳等有機碳質層40沉積於ONON積層體上。有機碳質層40於底部具有與絕緣層30之界面。有機碳質層例如可藉由CVD進行沉積。
於有機碳質層40上塗佈阻劑組成物而形成阻膜,對阻膜進行圖案化,藉此形成抗阻圖案50。抗阻圖案50例如用以形成作為三維記憶體結構之一部分的線與間隙圖案或接觸孔。
如圖1B所示,於由反應性離子蝕刻(RIE)所構成之第1蝕刻步驟後,使用抗阻圖案50處理有機碳質層40。有機碳質層40及抗阻圖案50係經各向異性蝕刻,兩層之膜厚變薄。有機碳質層40中之與孔或圖案間對應之部分被蝕刻至ONON積層體之絕緣層30露出。藉此,能夠製作具有被氧化層之基板。
作為基板,不限於上述。例如,許多金屬即過渡金屬可在幾種不同之氧化狀態下產生。其意指該等具有受到氧化而形成氧化物之能力。此外,具有C-H鍵、Si-Si鍵、Si-H鍵、Ge-Ge鍵、Ge-H鍵之表面亦適合選擇性形成。因此,關於利用選擇性蒸鍍法形成保護層,只要氧化釕暴露於被氧化面,則可應用於各式各樣之基板。
(沉積步驟) 於本步驟中,藉由氣相成長法,使用氧化釕,使含釕膜沉積於上述被氧化層上。為了形成貫通有機碳質層40及ONON積層體並到達半導體層10之孔或圖案,需要更長時間之蝕刻。以往,於該製程期間,促進來自抗阻圖案50及有機碳質層40之殘渣之形成,落入未貫通之孔內或圖案間,增大孔或圖案間堵塞之危險性。又,在離子撞擊抗阻圖案50及有機碳質層40之表面的期間,孔或圖案發生變形,其等之形狀特徵或結構發生崩解。
與此相對,於本實施形態中,使用對蝕刻氣體更具有抗性之材料,以避免於下一步驟即ONON積層體及其他抗反射塗層(未圖示)之電漿蝕刻步驟中形成聚合物粒子。即,如圖1C所示,不使釕沉積於位在ONON積層體底部之絕緣層30上,利用氣相成長法使氧化釕(RuO 4)選擇性沉積,而於抗阻圖案50及有機碳質層40兩者之表面形成含釕層來保護該等。此時,氧化釕與有機碳質層40反應,使層之表層氧化。氧化釕可伴有溶劑(例如,甲基乙基氟化溶劑或四氫呋喃)。
作為氣相成長法,可適宜採用ALD法或CVD法。為了自基板去除污染物質,可進行1秒以上10秒以下包括氧電漿暴露之預處理步驟。沉積腔室若為於內部執行氣相沉積方法之裝置之任意封閉容器或腔室即可。作為具體例,並無限定,可舉:平行板式反應器、冷壁式反應器、熱壁式反應器、葉片式反應器、多晶圓反應器、或其他類型之沉積系統等。
繼而,將含有經氣化之氧化釕之氣體導入至上述沉積腔室。純(單一)氧化釕或混合有其他成分之氧化釕可以液體狀態供給至氣化器。於導入至沉積腔室之前,使載體氣體起泡,藉此進行氣化。視需要,可將容器加熱至氧化釕具有足夠之蒸氣壓且為分解溫度以下的溫度。作為載體氣體,並無限定,可舉:Ar、He、N 2、及該等之混合物。容器例如可維持在較佳為50℃以上300℃以下、更佳為80℃以上200℃以下之範圍內之溫度。
沉積腔室中之氧化釕可維持在較佳處於0.1 Pa以上2 Pa以下,更佳處於0.2 Pa以上1.5 Pa以下之範圍內之壓力。
氧化釕可以純粹之形態(例如液體或低熔點固體)、或與適宜溶劑混合之形態供給。作為溶劑,可為不燃性溶劑,亦可為可燃性溶劑。作為溶劑,例如可舉:甲基乙基氟化溶劑、四氫呋喃等。又,亦可為各種溶劑之混合溶劑。
上述沉積步驟每1個循環所形成之氧化釕層之厚度之下限較佳為0.05 nm,更佳為0.10 nm,進而較佳為0.15 nm。上述沉積步驟每1個循環之厚度之上限較佳為0.30 nm,更佳為0.25 nm,進而較佳為0.20 nm。
藉由上述沉積步驟形成之含釕層之厚度之下限較佳為1 nm,更佳為2 nm,進而較佳為4 nm,尤佳為5 nm。氧化釕層之厚度之上限較佳為30 nm,更佳為28 nm,進而較佳為26 nm,尤佳為24 nm。
較佳於上述沉積步驟中進行1次或2次以上沉積循環,該沉積循環具備: 第1暴露:將上述氧化釕暴露於上述被氧化層;以及 第2暴露:於該第1暴露後,將選自由氫氣、氨氣、及肼所組成之群中之至少1種共反應劑暴露於上述第1暴露後之上述被氧化層。藉由氫氣等共反應劑,可使鍵結於被氧化層之氧化基還原,同時析出RuOx(x之值為0以上2以下)之層。
因此,用以使含釕層沉積之ALD法製程可包括如下步驟: 1個沉積循環將基板暴露於第1反應物; 將未反應之第1反應物及反應副產物自反應空間去除; 將基板暴露於第2反應物;及 後續之第2去除步驟。例如,第1反應物可含有氧化釕(RuO 4),第2反應物可含有氫(H 2)氣。可反覆進行該1個沉積循環直至獲得期望之含釕層。
作為共反應劑之氫氣較佳為與載體氣體一同導入至沉積腔室。作為載體氣體,可適宜採用導入氧化釕時之載體氣體。其中,較佳為氬(Ar)。
氫氣在氫氣與氬氣之合計體積中所占之體積比例之下限較佳為5%,更佳為10%,進而較佳為15%。上述氫氣之體積比例之上限較佳為90%,更佳為50%,進而較佳為30%。 又,氫氣亦可為100%。進而亦可使用氮氣代替氬氣。
沉積腔室中之氫氣之分壓可維持在較佳處於100 Pa以上800 Pa以下,更佳處於200 Pa以上600 Pa以下之範圍內之壓力。
作為保護層之含釕層(平均組成為RuOx(此處,x之值為0以上2以下)之含釕層或純釕層)沉積於有機碳質層40及抗阻圖案50之兩個表面後,如圖1D所示,藉由進一步蝕刻,可不在圖案之側壁上累積殘渣而將犧牲模板轉印至基板。
含釕層可藉由氮化物或氧化物、未去除ARC材料之其他電漿化學物質,例如藉由氧電漿轉換為不殘留殘渣之氧化釕(RuO 4)層。該氧化釕層可自沉積腔室容易地清除,可容易地去除。
圖2揭示自含釕層形成至去除之有機碳質層之表面上之一連串反應之推定機制的示意圖。但,本發明並不限定於該推定機制。
形成於基板上之被氧化層(例如有機碳質層40)之表面具有碳原子(圖2中,狀態a))。
利用氧化釕(RuO 4)使有機碳質層40之表面氧化,藉此碳原子或碳-碳鍵轉換為環氧、醛、酮等氧化基,同時生成RuO 2等氧化釕物質(圖2中,狀態b))。
繼而,利用作為共反應劑之氫氣進行還原時,可使鍵結於有機碳質層40之含氧官能基還原,同時析出純釕層(圖2中,狀態c))。
其後,藉由對含釕層(釕層)進行氧電漿處理,而形成氧化釕(RuO 4)層,並進行清除,藉此可自有機碳質層40之表面去除含釕層(圖2中,狀態d))。
關於用以去除釕層之電漿清洗之條件,氧氣壓力較佳為0.1 Pa以上1.5 Pa以下,更佳為0.2 Pa以上1.0 Pa以下。功率較佳為100 W以上500 W以下,更佳為200 W以上300 W以下。電漿處理時間較佳為1秒以上50秒以下,更佳為5秒以上20秒以下。
(其他被氧化層) 於材料對氧化無反應性,或沒有那麼有反應性,因此對氧化釕(RuO 4)之反應性低的情形時,該行業者可意識到藉由將氧化物官能基修飾或導入至應保護之層,能夠選擇性形成含釕層。例如,一些已氧化或未反應之低介電常數或ULK層係在暴露於用以將多孔性導入該等層所需之紫外線前,經犧牲有機致孔劑(例如BCHD或ATRP)填充之情形時,對氧化釕(RuO 4)可具有反應性。
致孔劑有機碳質材料具有對氧化具強親和性之sp 2及sp 3之碳-碳鍵、碳-氫鍵等官能基。因此,作為強氧化劑之氧化釕(RuO 4)可與致孔劑有機碳質材料選擇性地反應,選擇性地沉積含釕層作為保護層。
《積層體》 本實施形態之積層體具有: 基板:於表面具有被氧化層及氧化物層;及 含釕層:形成於上述被氧化層之表面; 此處,上述被氧化層含有碳原子。此種結構係與含釕層之形成方法之說明中所示之圖1C之結構對應(再者,於圖1C中,含釕層雖為釕層,但並不限於此,平均組成亦可為RuOx(x之值為0以上2以下))。因此,各元件之適宜態樣請參考一邊參照圖1A~圖1D及圖2一邊進行之上述說明之對應部分。
《其他實施形態》 本發明之一實施形態係關於一種對製造電子裝置有用之方法及前驅體。更詳而言,係關於使釕膜沉積於基板上。關於一種下述方法:於與用以形成接點、通孔、記憶體孔及其他堆疊層之多重圖案化以及自對準技術相關之蝕刻製程中保護層。
本發明之一實施形態係關於一種由下述構成之方法:使用含有RuO 4之釕前驅物質,以使釕或含有釕之膜選擇性地沉積於有機層或半有機層上,而不會沉積於無機層上。
Ru膜無需抑制劑或自組裝單分子層(SAM),藉由化學氣相沉積(CVD)或原子層沉積(ALD)選擇性地沉積於有機或半有機碳質層上,其後,於用以對目標層進行圖案化之下一步驟即蝕刻步驟中,作為蝕刻硬罩發揮作用。藉由該方法所製造之釕層減少有機層或半有機層之線間之間隔,因此亦被用以提供與轉印圖案結構相反之修整效果。
本發明之一實施形態係關於一種下述方法:與多重圖案化及自對準圖案化技術相比,於邏輯、電晶體及記憶體裝置內效率佳地形成具有得到改善之機械強度之結構。藉由該方法沉積之含釕層,係以作為硬遮罩之保護層發揮作用之方式沉積於基板上之所選擇之區域,以避免為微影法之一個步驟之蝕刻製程中硬罩受損。 [實施例]
記載以下實施例以例示本說明書揭示之應用,但應充分理解,本說明書所記載之製程之所有優點並非均可被包含於本發明之特定實施形態或實施形態之群中。以下揭示特定實施形態及實施例,但該行業者可理解本發明擴展至本發明具體揭示之實施形態及/或用途之外,包括明顯之修正。因此,應理解所揭示之本發明之範圍不應受以下記載之特定實施形態限定。
<實施例1> 準備於表面依序形成有SiO 2層(3 μm之厚度)及非晶形碳層(700 nm之厚度,以100 nm間隔形成具有140~160 nm之直徑之接觸孔)之基板(購買自Advantech股份有限公司)。將該基板設置於加熱至氧化釕(RuO 4)之分解溫度以下(100℃)之腔室內,進行使氧化釕之蒸氣通過其中之ALD法循環。作為循環條件,將RuO 4以0.8 Pa於腔室內脈衝10秒,自腔室清除多餘之未反應氣體。繼而,將分壓為500 Pa之氫氣(20%H 2/Ar(體積比))添加10秒作為共反應劑,使表面反應時之氧化釕層還原而形成釕層(於平均組成RuOx中,x=0)。
若根據上述方法,釕層之厚度係依據每1個循環0.07 nm~0.19 nm範圍之沉積速度。
結果,於30次ALD法循環後,2.30 nm之釕層選擇性地沉積於非晶形碳層上。另一方面,於SiO 2層上未沉積釕層。圖3A係形成於非晶形碳層表面之單獨含有釕之含釕層的電子顯微鏡照片(倍率:120,000倍)。圖3B係SiO 2層之表面之電子顯微鏡照片(倍率:100,000倍)。再者,使用日立高新技術股份有限公司製造之Hitachi UHR FE-SEM SU9000作為電子顯微鏡。
圖4係形成於非晶形碳層表面之單獨含有釕之含釕層的二次離子質譜分析圖。對於二次離子質譜分析,使用ULVAC-PHI股份有限公司之PHI ADEPT1010。測定條件如下。 ・一次離子種類:Cs +・一次加速電壓:2.0 kV ・檢測區域:132×132(μm×μm) 將所測得之結果示於圖4。圖4中之橫軸表示距表面之深度(nm),縱軸表示各種元素之比例(%)。可知釕單獨存在於自含釕層表面至約4 nm之深度處,形成有純度高之釕層。
關於用以去除釕層之電漿清洗條件,係於0.5 Pa之壓力及250 W之功率下,將使用純度99.999%之O 2氣體之10秒O 2電漿進行5個脈衝。
<實施例2> 以與實施例1相同之方式,進行60次ALD法循環,結果8.44 nm之釕層選擇性地沉積於非晶形碳層上。另一方面,於SiO 2層上未沉積釕層。
<實施例3> 以實施例1相同之方式,進行120次ALD法循環,結果22.48 nm之釕層選擇性地沉積於非晶形碳層上。另一方面,於SiO 2層上未沉積釕層。
10:半導體層 20:犧牲層(SiN層) 30:絕緣層(SiO 2層) 40:有機碳質層(非晶形碳層) 50:抗阻圖案 60:含釕層(釕層)
[圖1A]係表示一實施形態之含釕層形成方法之一個步驟的示意剖面圖。 [圖1B]係表示一實施形態之含釕層形成方法之一個步驟的示意剖面圖。 [圖1C]係表示一實施形態之含釕層形成方法之一個步驟的示意剖面圖。 [圖1D]係表示一實施形態之含釕層形成方法之一個步驟的示意剖面圖。 [圖2]係表示自含釕層形成至去除之有機碳質層之表面上之一連串反應之推定機制的示意圖。 [圖3A]係實施例1中之形成於非晶形碳層表面之單獨含有釕之含釕層的電子顯微鏡照片(倍率:120,000倍)。 [圖3B]係實施例1中之SiO 2層表面之電子顯微鏡照片(倍率100,000倍)。 [圖4]係形成於非晶形碳層表面之單獨含有釕之含釕層的二次離子質譜分析圖。
10:半導體層
20:犧牲層(SiN層)
30:絕緣層(SiO2層)
40:有機碳質層(非晶形碳層)
50:抗阻圖案
60:含釕層(釕層)

Claims (15)

  1. 一種含釕層之形成方法,其包括: 準備步驟:準備具有被氧化層之基板;及 沉積步驟:藉由氣相成長法,使用氧化釕,使含釕層沉積於該被氧化層上; 此處,該被氧化層含有碳原子。
  2. 如請求項1之含釕層之形成方法,其中,該含釕層之平均組成為RuOx(此處,x之值為0以上2以下)。
  3. 如請求項1或2之含釕層之形成方法,其中,該沉積步驟每1個循環所形成之該含釕層之厚度為0.05 nm以上0.30 nm以下。
  4. 如請求項1至3中任一項之含釕層之形成方法,其中,藉由該沉積步驟形成之該含釕層之厚度為1 nm以上30 nm以下。
  5. 如請求項1至4中任一項之含釕層之形成方法,其於該沉積步驟中進行1次或2次以上沉積循環,該沉積循環具備: 第1暴露:將該氧化釕暴露於該被氧化層;以及 第2暴露:於該第1暴露後,將選自由氫氣、氨氣、及肼所組成之群中之至少1種共反應劑暴露於該第1暴露後之該被氧化層。
  6. 如請求項1至5中任一項之含釕層之形成方法,其中,該基板進而具有氧化物層。
  7. 如請求項6之含釕層之形成方法,其中,該氧化物層為SiO 2層、SiN層、SiON層、Al 2O 3層、ZrO 2層、TiO 2層或HfO 2層。
  8. 如請求項1至7中任一項之含釕層之形成方法,其中,該被氧化層為非晶形碳層、摻硼非晶形碳層、摻鎢非晶形碳層、光阻層或含致孔劑(porogen)之多孔質低介電常數前驅層。
  9. 如請求項8之含釕層之形成方法,其中,該被氧化層為非晶形碳層。
  10. 如請求項1至9中任一項之含釕層之形成方法,其中,該被氧化層經圖案化。
  11. 一種積層體,其具有: 基板:於表面具有被氧化層及氧化物層;及 含釕層:形成於該被氧化層之表面; 此處,該被氧化層含有碳原子。
  12. 如請求項11之積層體,其中,該含釕層之平均組成為RuOx(此處,x之值為0以上2以下)。
  13. 如請求項11或12之積層體,其中,該被氧化層為非晶形碳層、光阻層、摻硼非晶形碳層、摻鎢非晶形碳層或含致孔劑之多孔質低介電常數前驅層。
  14. 如請求項13之積層體,其中,該被氧化層為非晶形碳層。
  15. 如請求項11至14中任一項之積層體,其中,該含釕層之厚度為1 nm以上30 nm以下。
TW111131637A 2021-10-26 2022-08-23 含釕層之形成方法及積層體 TWI831337B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-174306 2021-10-26
JP2021174306A JP2024061697A (ja) 2021-10-26 2021-10-26 ルテニウム含有層の形成方法及び積層体

Publications (2)

Publication Number Publication Date
TW202317799A true TW202317799A (zh) 2023-05-01
TWI831337B TWI831337B (zh) 2024-02-01

Family

ID=86158482

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111131637A TWI831337B (zh) 2021-10-26 2022-08-23 含釕層之形成方法及積層體

Country Status (3)

Country Link
JP (1) JP2024061697A (zh)
TW (1) TWI831337B (zh)
WO (1) WO2023076274A1 (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080050612A (ko) * 2005-09-08 2008-06-09 어플라이드 머티어리얼스, 인코포레이티드 대면적 전자부품을 위한 패턴화된 무전해 금속화 처리
US9418867B2 (en) * 2014-01-10 2016-08-16 Applied Materials, Inc. Mask passivation using plasma
US10378105B2 (en) * 2016-05-31 2019-08-13 Tokyo Electron Limited Selective deposition with surface treatment

Also Published As

Publication number Publication date
WO2023076274A1 (en) 2023-05-04
JP2024061697A (ja) 2024-05-08
TWI831337B (zh) 2024-02-01

Similar Documents

Publication Publication Date Title
KR102662636B1 (ko) 유전체 표면들에 대하여 금속 또는 금속성 표면들 상에서의 선택적 퇴적
TWI820967B (zh) 用於在基材的表面上選擇性形成材料的方法
KR102403102B1 (ko) 반도체 처리 장치
TWI743035B (zh) 改善硬遮罩膜及氧化矽膜之間的黏著的電漿處理
TWI636501B (zh) 使用水蒸氣處理將材料層從基材移除的方法
JP5726693B2 (ja) 半導体装置の製造方法
TW201726965A (zh) 形成氮碳氧化矽薄膜的方法
TWI784176B (zh) 用以增進極紫外光(euv)蝕刻抗性的保護性覆蓋物之選擇性原子層沉積(ald)
US10199223B2 (en) Semiconductor device fabrication using etch stop layer
US8344352B2 (en) Using unstable nitrides to form semiconductor structures
JP2004158704A (ja) 半導体装置および半導体装置の製造方法
US8475677B2 (en) Etchant gas
US10361112B2 (en) High aspect ratio gap fill
WO2000024048A1 (en) Method of etching patterned layers useful as masking during subsequent etching or for damascene structures
TWI831337B (zh) 含釕層之形成方法及積層體
KR20240074924A (ko) 루테늄 함유 층의 형성 방법 및 적층체
JP2006024668A (ja) 半導体装置の製造方法
WO2021021279A1 (en) Dose reduction of patterned metal oxide photoresists
JP2021511660A (ja) 選択的に堆積されるパリレンマスク
US20240145232A1 (en) Benzyl compound passivation for selective deposition and selective etch protection
TW201101394A (en) Method of etching a multi-layer
JP2023143793A (ja) 基板処理方法及びこれを用いた選択的蒸着方法
US20090197421A1 (en) Chemistry and compositions for manufacturing integrated circuits
Xu et al. Study of Tungsten-Doped Carbon Hard Mask Etch Process Using NF 3/O 2 Based Chemistry
KR20230139306A (ko) 기판 처리 방법 및 이를 사용한 선택적 증착 방법