TW202316920A - Metal-clad laminate, circuit substrate, electronic device and electronic apparatus - Google Patents

Metal-clad laminate, circuit substrate, electronic device and electronic apparatus Download PDF

Info

Publication number
TW202316920A
TW202316920A TW111137127A TW111137127A TW202316920A TW 202316920 A TW202316920 A TW 202316920A TW 111137127 A TW111137127 A TW 111137127A TW 111137127 A TW111137127 A TW 111137127A TW 202316920 A TW202316920 A TW 202316920A
Authority
TW
Taiwan
Prior art keywords
layer
metal
polyimide
clad laminate
polyimide layer
Prior art date
Application number
TW111137127A
Other languages
Chinese (zh)
Inventor
宍戸勇太
安達康弘
Original Assignee
日商日鐵化學材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日鐵化學材料股份有限公司 filed Critical 日商日鐵化學材料股份有限公司
Publication of TW202316920A publication Critical patent/TW202316920A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2379/00Other polymers having nitrogen, with or without oxygen or carbon only, in the main chain
    • B32B2379/08Polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

The subject of the present invention is to achieve both the suppression of wrinkles when metal foil is hot-pressed onto a single-sided metal clad laminate at high temperatures and the interfacial tightness between the hot-pressed metal foil and the polyimide layer. The metal-clad laminate (100) comprises: a first metal layer (101) and an insulating resin layer (110) laminated on the first metal layer (101). The insulating resin layer (110) has a polyimide layer (A) in contact with the first metal layer (101), and a polyimide layer (B) forming a resin surface on the side opposite to the first metal layer (101). Based on the glass transition temperature Tg of the polyimide layer (B), the storage elastic modulus of the polyimide layer (A) at any temperature within the range from Tg+20 DEG C to Tg+90 DEG C is set to be E'(A) and the storage elastic modulus of the polyimide layer (B) is set to be E'(B), the ratio of storage elastic modulus E'(A)/E'(B) is 2.0 or more.

Description

覆金屬積層板、電路基板、電子元件及電子設備Metal-clad laminates, circuit substrates, electronic components and electronic equipment

本發明涉及一種覆金屬積層板、對其進行電路加工而得的電路基板、使用所述電路基板的電子元件及電子設備。The present invention relates to a metal-clad laminate, a circuit substrate obtained by performing circuit processing thereon, electronic components and electronic equipment using the circuit substrate.

近年來,伴隨電子設備的小型化、輕量化、省空間化的進展,薄且輕量、具有可柔性並且即便反覆彎曲也具有優異的耐久性的柔性印刷佈線板(Flexible Printed Circuits,FPC)的需要增大。FPC即便在有限的空間中也可實現立體且高密度的安裝,因此,例如在硬盤驅動器(hard disk drive,HDD)、數字視頻光盤(digital video disk,DVD)、智能手機等電子設備的可動部分的佈線或電纜、連接器等零件中其用途正逐漸擴大。In recent years, with the advancement of miniaturization, weight reduction, and space saving of electronic equipment, flexible printed wiring boards (Flexible Printed Circuits, FPC) that are thin, lightweight, flexible, and have excellent durability even after repeated bending Need to increase. FPC can achieve three-dimensional and high-density installation even in a limited space, so it is used in movable parts of electronic devices such as hard disk drives (HDD), digital video disks (DVD), and smartphones. Its use in wiring or cables, connectors and other parts is gradually expanding.

典型而言,FPC是通過對作為材料的覆銅積層板(copper clad laminate,CCL)等覆金屬積層板的金屬層進行蝕刻來進行佈線加工而製造。關於覆金屬積層板,提出了在與金屬箔相接的絕緣樹脂層中使用貯存彈性模數高的聚醯亞胺的積層板(例如,專利文獻1、專利文獻2)。Typically, an FPC is manufactured by etching a metal layer of a metal-clad laminate (copper clad laminate (CCL) or the like), which is a material, and performing wiring processing. As for metal-clad laminates, laminates using polyimide with a high storage elastic modulus for an insulating resin layer in contact with a metal foil have been proposed (for example, Patent Document 1 and Patent Document 2).

在作為絕緣樹脂層的聚醯亞胺層的單側包括金屬層的單面覆金屬積層板通常在與金屬層相接的聚醯亞胺層中廣泛使用熱塑性聚醯亞胺。具體而言,大多採用從單面覆金屬積層板的金屬層側開始為熱塑性聚醯亞胺層/非熱塑性聚醯亞胺層/熱塑性聚醯亞胺層的積層結構。在將金屬箔熱壓接於此種結構的單面覆金屬積層板的最外層的熱塑性聚醯亞胺層而製作雙面覆金屬積層板的情況下,為了確保最外層的熱塑性聚醯亞胺層的積層面與金屬箔的充分的剝離強度,需要在200℃~400℃左右的高溫下進行熱壓接。但是,若在高溫下進行熱壓接,則存在單面覆金屬積層板的與金屬層相接的一側的熱塑性聚醯亞胺層軟化而容易在鄰接的金屬層上出現褶皺的問題。所述問題可通過降低熱壓接溫度以抑制熱塑性聚醯亞胺層的軟化來解決,但此情況下積層面側的熱塑性聚醯亞胺層與經熱壓接的金屬箔的密接性變得不充分,無法確保佈線加工後的密接可靠性。 [現有技術文獻] [專利文獻] In a single-sided metal-clad laminate including a metal layer on one side of a polyimide layer as an insulating resin layer, thermoplastic polyimide is generally widely used for the polyimide layer in contact with the metal layer. Specifically, a laminated structure of thermoplastic polyimide layer/non-thermoplastic polyimide layer/thermoplastic polyimide layer is often adopted from the metal layer side of the single-sided metal-clad laminate. In the case of producing a double-sided metal-clad laminate by thermocompression-bonding metal foil to the outermost thermoplastic polyimide layer of a single-sided metal-clad laminate with such a structure, in order to ensure that the outermost thermoplastic polyimide To obtain sufficient peel strength between the laminated layer and the metal foil, it is necessary to perform thermocompression bonding at a high temperature of about 200°C to 400°C. However, if thermocompression bonding is performed at a high temperature, the thermoplastic polyimide layer on the side of the single-sided metal-clad laminate that is in contact with the metal layer softens, causing wrinkles to easily form on the adjacent metal layer. The problem can be solved by lowering the thermocompression bonding temperature to suppress the softening of the thermoplastic polyimide layer, but in this case, the adhesion between the thermoplastic polyimide layer on the side of the laminate layer and the thermocompression-bonded metal foil becomes poor. Insufficient, the adhesion reliability after wiring processing cannot be ensured. [Prior art literature] [Patent Document]

[專利文獻1]日本專利特開2020-104340號公報 [專利文獻2]日本專利特開2006-051800號公報 [Patent Document 1] Japanese Patent Laid-Open No. 2020-104340 [Patent Document 2] Japanese Patent Laid-Open No. 2006-051800

[發明所要解決的問題] 本發明的目的在於:實現在高溫下使金屬箔熱壓接於單面覆金屬積層板時褶皺的抑制與經熱壓接的金屬箔與聚醯亞胺層的界面密接性的並存。 [解決問題的技術手段] [Problem to be Solved by the Invention] The object of the present invention is to realize the coexistence of suppression of wrinkles when a metal foil is thermocompression-bonded to a single-sided metal-clad laminate at high temperature, and interface adhesion between the thermocompression-bonded metal foil and a polyimide layer. [Technical means to solve the problem]

本發明者等人進行了努力研究,結果發現,通過使單面覆金屬積層板的與金屬層相接的熱塑性聚醯亞胺層的貯存彈性模數大於積層面側的熱塑性聚醯亞胺層的貯存彈性模數,可解決所述問題,從而完成了本發明。The inventors of the present invention conducted diligent research and found that the storage elastic modulus of the thermoplastic polyimide layer in contact with the metal layer of the single-sided metal-clad laminate is larger than that of the thermoplastic polyimide layer on the side of the laminated layer. The storage modulus of elasticity can solve the problem, thus completing the present invention.

即,本發明的覆金屬積層板包括: 第一金屬層;以及 絕緣樹脂層,積層於所述第一金屬層,所述覆金屬積層板的特徵在於, 所述絕緣樹脂層具有與所述第一金屬層相接的聚醯亞胺層(A)、以及在與所述第一金屬層相反的一側形成了樹脂面的聚醯亞胺層(B), 當以所述聚醯亞胺層(B)的玻璃化轉變溫度Tg為基準而將從Tg+20℃到Tg+90℃的範圍內的任一溫度下的聚醯亞胺層(A)的貯存彈性模數設為E'(A)、將聚醯亞胺層(B)的貯存彈性模數設為E'(B)時,所述貯存彈性模數的比E'(A)/E'(B)為2.0以上。 That is, the metal-clad laminate of the present invention includes: the first metal layer; and An insulating resin layer is laminated on the first metal layer, and the metal-clad laminate is characterized in that, The insulating resin layer has a polyimide layer (A) in contact with the first metal layer, and a polyimide layer (B) having a resin surface formed on a side opposite to the first metal layer. ), When taking the glass transition temperature Tg of the polyimide layer (B) as a reference, the temperature of the polyimide layer (A) at any temperature within the range from Tg+20°C to Tg+90°C When the storage elastic modulus is E'(A) and the storage elastic modulus of the polyimide layer (B) is E'(B), the ratio of the storage elastic modulus E'(A)/E '(B) is 2.0 or more.

本發明的覆金屬積層板中,所述絕緣樹脂層可具有積層於所述聚醯亞胺層(A)與所述聚醯亞胺層(B)之間的聚醯亞胺層(C)。In the metal-clad laminate of the present invention, the insulating resin layer may have a polyimide layer (C) laminated between the polyimide layer (A) and the polyimide layer (B). .

本發明的覆金屬積層板中,所述第一金屬層的厚度可為6 μm~18 μm的範圍內,拉伸彈性模數可為10 GPa~100 GPa的範圍內。In the metal-clad laminate of the present invention, the thickness of the first metal layer may be in the range of 6 μm to 18 μm, and the tensile modulus of elasticity may be in the range of 10 GPa to 100 GPa.

本發明的覆金屬積層板可還包括與所述聚醯亞胺層(B)的樹脂面相接地積層的第二金屬層。The metal-clad laminate of the present invention may further include a second metal layer laminated in contact with the resin surface of the polyimide layer (B).

本發明的覆金屬積層板中,所述第二金屬層與所述聚醯亞胺層(B)的剝離強度可為0.7 kN/m以上。In the metal-clad laminate of the present invention, the peel strength between the second metal layer and the polyimide layer (B) may be 0.7 kN/m or more.

本發明的電路基板是對所述覆金屬積層板中的所述第一金屬層及所述第二金屬層的任一者或兩者進行電路加工而成。The circuit board of the present invention is obtained by performing circuit processing on either or both of the first metal layer and the second metal layer in the metal-clad laminate.

本發明的電路基板是對所述覆金屬積層板中的所述第一金屬層進行電路加工而成的電路基板。The circuit board of the present invention is a circuit board obtained by performing circuit processing on the first metal layer in the metal-clad laminate.

本發明的電子元件可包括所述電路基板。An electronic component of the present invention may include the circuit substrate.

本發明的電子設備可包括所述電路基板。 [發明的效果] An electronic device of the present invention may include the circuit substrate. [Effect of the invention]

本發明的覆金屬積層板中,與第一金屬層相接的聚醯亞胺層(A)的貯存彈性模數E'(A)與積層面側的聚醯亞胺層(B)的貯存彈性模數E'(B)的比E'(A)/E'(B)為2.0以上,由此,即便在高溫下將金屬箔熱壓接於積層面側,也可防止第一金屬層中褶皺的產生。因此,能夠實現經熱壓接的金屬箔與聚醯亞胺層的界面密接性和在高溫下將金屬箔熱壓接於覆金屬積層板上時第一金屬層的褶皺的抑制的並存。因此,通過利用本發明的覆金屬積層板作為FPC材料,可實現提高電路基板的可靠性和良率。In the metal-clad laminate of the present invention, the storage elastic modulus E'(A) of the polyimide layer (A) in contact with the first metal layer and the storage modulus E'(A) of the polyimide layer (B) on the side of the laminated layer The ratio E'(A)/E'(B) of the modulus of elasticity E'(B) is 2.0 or more, thereby preventing the first metal layer from generation of wrinkles. Therefore, it is possible to achieve both the interface adhesion between the thermocompression-bonded metal foil and the polyimide layer and the suppression of wrinkles of the first metal layer when the metal foil is thermocompression-bonded to the metal-clad laminate at high temperature. Therefore, by using the metal-clad laminate of the present invention as an FPC material, the reliability and yield of the circuit board can be improved.

接下來,適宜地參照附圖對本發明的實施方式進行說明。Next, embodiments of the present invention will be described with reference to the drawings as appropriate.

<第一實施方式及第二實施方式> 如圖1所示,本發明第一實施方式的覆金屬積層板100包括第一金屬層101、以及積層於所述第一金屬層101的絕緣樹脂層110。覆金屬積層板100為單面覆金屬積層板。 另外,如圖2所示,本發明第二實施方式的覆金屬積層板200包括第一金屬層101、積層於所述第一金屬層101的絕緣樹脂層110、積層於絕緣樹脂層110的與第一金屬層101為相反側的面的第二金屬層102。覆金屬積層板200為雙面覆金屬積層板。 <First Embodiment and Second Embodiment> As shown in FIG. 1 , the metal-clad laminate 100 according to the first embodiment of the present invention includes a first metal layer 101 and an insulating resin layer 110 laminated on the first metal layer 101 . The metal-clad laminate 100 is a single-sided metal-clad laminate. In addition, as shown in FIG. 2 , the metal-clad laminate 200 according to the second embodiment of the present invention includes a first metal layer 101 , an insulating resin layer 110 laminated on the first metal layer 101 , and an insulating resin layer laminated on the insulating resin layer 110 . The first metal layer 101 is the second metal layer 102 on the opposite side. The metal-clad laminate 200 is a double-sided metal-clad laminate.

<絕緣樹脂層> 絕緣樹脂層110包括與第一金屬層101相接的聚醯亞胺層(A)、在與第一金屬層101相反的一側形成了樹脂面的聚醯亞胺層(B)、以及積層於聚醯亞胺層(A)與聚醯亞胺層(B)之間的聚醯亞胺層(C)。 聚醯亞胺層(A)是通過將聚醯胺酸溶液利用澆鑄法塗佈於第一金屬層101並進行乾燥、醯亞胺化而獲得的熱塑性聚醯亞胺層,且是具有與第一金屬層101相接的澆鑄面的聚醯亞胺層。 聚醯亞胺層(B)是具有積層面110a的熱塑性聚醯亞胺層,所述積層面110a用於熱壓接作為第二金屬層102的金屬箔等。 聚醯亞胺層(C)作為基礎樹脂層而承擔維持絕緣樹脂層110的機械強度的作用。在本發明中,形成絕緣樹脂層110的聚醯亞胺層(A)與聚醯亞胺層(B)使用貯存彈性模數不同的聚醯亞胺。 此處,所謂非熱塑性聚醯亞胺一般是指即便受到加熱也不會示出軟化、黏接性的聚醯亞胺,但在本發明中,是指使用動態黏彈性測定裝置(動態熱機械分析儀(dynamic thermomechanical analyzer,DMA))測定的30℃下的貯存彈性模數為1.0×10 9Pa以上、且320℃下的貯存彈性模數示出為3.0×10 8Pa以上的聚醯亞胺。另外,所謂熱塑性聚醯亞胺一般是指可明確地確認到玻璃化轉變溫度(Tg)的聚醯亞胺,但在本發明中,是指使用DMA測定的30℃下的貯存彈性模數為1.0×10 9Pa以上、且320℃下的貯存彈性模數示出為小於3.0×10 8Pa的聚醯亞胺。 <Insulating resin layer> The insulating resin layer 110 includes a polyimide layer (A) in contact with the first metal layer 101 , and a polyimide layer (A) having a resin surface formed on the side opposite to the first metal layer 101 . B), and the polyimide layer (C) laminated between the polyimide layer (A) and the polyimide layer (B). The polyimide layer (A) is a thermoplastic polyimide layer obtained by applying a polyamic acid solution to the first metal layer 101 by casting method, drying and imidizing, and has the same A metal layer 101 contacts the polyimide layer of the casting surface. The polyimide layer (B) is a thermoplastic polyimide layer having a build-up layer 110 a for thermocompression-bonding metal foil or the like as the second metal layer 102 . The polyimide layer (C) plays a role of maintaining the mechanical strength of the insulating resin layer 110 as a base resin layer. In the present invention, polyimides having different storage elastic moduli are used for the polyimide layer (A) and the polyimide layer (B) forming the insulating resin layer 110 . Here, the so-called non-thermoplastic polyimide generally refers to a polyimide that does not show softening or adhesiveness even when heated, but in the present invention, it refers to a polyimide that uses a dynamic viscoelasticity measuring device (dynamic thermomechanical A polyamide having a storage elastic modulus of 1.0×10 9 Pa or higher at 30°C measured by a dynamic thermomechanical analyzer (DMA) and a storage elastic modulus of 3.0×10 8 Pa or higher at 320°C amine. In addition, thermoplastic polyimide generally refers to a polyimide whose glass transition temperature (Tg) can be clearly confirmed, but in the present invention, it means that the storage elastic modulus at 30°C measured using DMA is A polyimide that is 1.0×10 9 Pa or more and has a storage elastic modulus at 320° C. of less than 3.0×10 8 Pa.

此外,在不損害發明效果的範圍內,絕緣樹脂層110可包含聚醯亞胺層(A)~聚醯亞胺層(C)以外的任意的樹脂層。In addition, the insulating resin layer 110 may include any resin layer other than the polyimide layer (A) to the polyimide layer (C) within the range that does not impair the effect of the invention.

關於絕緣樹脂層110,當以聚醯亞胺層(B)的玻璃化轉變溫度Tg為基準而將從Tg+20℃到Tg+90℃的範圍內的任一溫度下的聚醯亞胺層(A)的貯存彈性模數設為E'(A)、將聚醯亞胺層(B)的貯存彈性模數設為E'(B)時,所述貯存彈性模數的比E'(A)/E'(B)為2.0以上。 當在高溫下向聚醯亞胺層(B)側的積層面110a熱壓接作為第二金屬層102的金屬箔時,聚醯亞胺層(B)的貯存彈性模數E'(B)越小,熱壓接時聚醯亞胺對金屬箔的微細凹凸的填充性越良好,密接可靠性越高。另外,在熱壓接時會施加張力,但聚醯亞胺層(A)的貯存彈性模數E'(A)越大,當在高溫下熱壓接時,與作為支撐體的第一金屬層101相接的聚醯亞胺層(A)越不易軟化,可抑制第一金屬層101中的褶皺的產生。因此,通過將比E'(A)/E'(B)設為2.0以上,當在例如200℃~400℃的範圍內、特別是270℃~400℃的範圍內、進而為320℃~400℃的範圍內的高溫下進行熱壓接時,可實現積層面110a處的密接性與第一金屬層101的褶皺抑制的並存。就此種觀點而言,比E'(A)/E'(B)以優選為3~100、更優選為5~60、最優選為10~40為宜。 With regard to the insulating resin layer 110, when the polyimide layer (B) at any temperature within the range from Tg+20°C to Tg+90°C is based on the glass transition temperature Tg of the polyimide layer (B), When the storage elastic modulus of (A) is E'(A), and the storage elastic modulus of the polyimide layer (B) is E'(B), the ratio of the storage elastic modulus E'( A)/E'(B) is 2.0 or more. When the metal foil as the second metal layer 102 is thermocompression-bonded to the build-up layer 110a on the side of the polyimide layer (B) at high temperature, the storage elastic modulus E'(B) of the polyimide layer (B) The smaller it is, the better the polyimide can fill the fine unevenness of the metal foil during thermocompression bonding, and the higher the adhesion reliability will be. In addition, tension will be applied during thermocompression bonding, but the storage elastic modulus E'(A) of the polyimide layer (A) is larger. When thermocompression bonding at high temperature, the first metal as a support The polyimide layer (A) that is in contact with the layer 101 is less likely to be softened, and the occurrence of wrinkles in the first metal layer 101 can be suppressed. Therefore, by setting the ratio E'(A)/E'(B) to 2.0 or more, for example, in the range of 200°C to 400°C, especially in the range of 270°C to 400°C, and furthermore in the range of 320°C to 400°C When thermocompression bonding is performed at a high temperature in the range of °C, both the adhesion at the build-up layer 110 a and the suppression of wrinkles of the first metal layer 101 can be achieved. From such a viewpoint, the ratio E'(A)/E'(B) is preferably 3-100, more preferably 5-60, and most preferably 10-40.

在本發明中,比E'(A)/E'(B)只要在相對於聚醯亞胺層(B)的玻璃化轉變溫度Tg而為Tg+20℃到Tg+90℃的範圍內的任一溫度下滿足上述規定即可,優選為在從Tg+20℃到Tg+90℃的範圍內的全部溫度下滿足上述規定。此處,之所以對聚醯亞胺層(B)的從玻璃化轉變溫度Tg+20℃到Tg+90℃的範圍內的任一溫度下的貯存彈性模數進行比較,是出於以下理由。即,在聚醯亞胺層(B)的玻璃化轉變溫度Tg下,聚醯亞胺層(B)並未發生軟化,因此估計到充分軟化為止的溫度範圍而將Tg+20℃設為下限,另一方面,將Tg+90℃設為上限,以便在聚醯亞胺層(B)的Tg較低的情況下也可覆蓋實用的熱壓接溫度。In the present invention, the ratio E'(A)/E'(B) should be within the range of Tg+20°C to Tg+90°C relative to the glass transition temperature Tg of the polyimide layer (B). It is sufficient to satisfy the above-mentioned regulation at any temperature, and it is preferable to satisfy the above-mentioned regulation at all temperatures in the range from Tg+20°C to Tg+90°C. Here, the storage elastic modulus of the polyimide layer (B) at any temperature in the range from the glass transition temperature Tg+20°C to Tg+90°C was compared for the following reasons . That is, at the glass transition temperature Tg of the polyimide layer (B), the polyimide layer (B) does not soften, so the temperature range until the polyimide layer (B) is fully softened is estimated, and Tg+20°C is set as the lower limit , On the other hand, Tg+90°C is set as the upper limit so that the practical thermocompression bonding temperature can be covered even when the Tg of the polyimide layer (B) is low.

聚醯亞胺層(A)的玻璃化轉變溫度Tg只要可獲得發明的效果,則並無特別限定,但為了確保與第一金屬層101的密接性,優選為200℃以上且400℃以下的範圍內,更優選為250℃以上且380℃以下的範圍內。 另外,聚醯亞胺層(A)的貯存彈性模數E'(A)只要可獲得發明的效果,則並無特別限定,但較高的貯存彈性模數E'(A)對熱壓接時第一金屬層101的褶皺的抑制有效,以優選為1×10 7Pa~1×10 10Pa的範圍內、更優選為1×10 8Pa~1×10 10Pa的範圍內為宜。 The glass transition temperature Tg of the polyimide layer (A) is not particularly limited as long as the effect of the invention can be obtained, but in order to ensure the adhesion with the first metal layer 101, it is preferably 200°C or higher and 400°C or lower. range, more preferably in the range of 250°C or more and 380°C or less. In addition, the storage elastic modulus E'(A) of the polyimide layer (A) is not particularly limited as long as the effect of the invention can be obtained, but a relatively high storage elastic modulus E'(A) is not suitable for thermocompression bonding. In this case, the suppression of wrinkles of the first metal layer 101 is effective, and it is preferably in the range of 1×10 7 Pa to 1×10 10 Pa, more preferably in the range of 1×10 8 Pa to 1×10 10 Pa.

聚醯亞胺層(B)的玻璃化轉變溫度Tg只要可獲得發明的效果,則並無特別限定,但為了確保與第二金屬層102的密接性,優選為200℃以上且400℃以下的範圍內,更優選為200℃以上且350℃以下的範圍內。 另外,聚醯亞胺層(B)的貯存彈性模數E'(B)只要可獲得發明的效果,則並無特別限定,但較低的貯存彈性模數E'(B)對密接性提高有利,但若過低,則熱壓接變得困難,因此以優選為1×10 5Pa~1×10 8Pa的範圍內、更優選為1×10 6Pa~9×10 7Pa的範圍內為宜。 The glass transition temperature Tg of the polyimide layer (B) is not particularly limited as long as the effect of the invention can be obtained, but in order to ensure the adhesion with the second metal layer 102, it is preferably 200°C or higher and 400°C or lower. range, more preferably in the range of 200°C or higher and 350°C or lower. In addition, the storage elastic modulus E'(B) of the polyimide layer (B) is not particularly limited as long as the effect of the invention can be obtained, but a relatively low storage elastic modulus E'(B) improves the adhesiveness. It is advantageous, but if it is too low, thermocompression bonding becomes difficult, so it is preferably in the range of 1×10 5 Pa to 1×10 8 Pa, more preferably in the range of 1×10 6 Pa to 9×10 7 Pa Inside is better.

此外,各聚醯亞胺層的Tg與貯存彈性模數使用動態黏彈性測定裝置(DMA)進行測定。In addition, Tg and storage elastic modulus of each polyimide layer were measured using a dynamic viscoelasticity measuring device (DMA).

接下來,對聚醯亞胺層(A)~聚醯亞胺層(C)的樹脂結構進行說明。在本發明中,為了使比E'(A)/E'(B)為2.0以上,優選為在形成絕緣樹脂層110的聚醯亞胺層(A)與聚醯亞胺層(B)中使用不同組成的聚醯亞胺。 聚醯亞胺是將聚醯胺酸加以醯亞胺化而成,且包含酸酐殘基及二胺殘基。此處,所謂酸酐殘基表示由酸二酐衍生的四價基,所謂二胺殘基表示由二胺化合物衍生的二價基。在使作為原料的酸二酐與二胺化合物以大致等莫耳反應的情況下,可使聚醯亞胺中所含的酸二酐殘基及二胺殘基的種類、莫耳比等與原料的種類和莫耳比大致對應。 此外,在本發明中稱為“聚醯亞胺”的情況下,除了聚醯亞胺以外,還意指聚醯胺醯亞胺、聚醚醯亞胺、聚酯醯亞胺、聚矽氧烷醯亞胺、聚苯并咪唑醯亞胺等包含分子結構中具有醯亞胺基的聚合物的樹脂。 Next, the resin structures of the polyimide layer (A) to the polyimide layer (C) will be described. In the present invention, in order to make the ratio E'(A)/E'(B) 2.0 or more, it is preferable that the polyimide layer (A) and the polyimide layer (B) forming the insulating resin layer 110 Polyimides of different compositions were used. Polyimide is formed by imidizing polyamic acid, and contains acid anhydride residues and diamine residues. Here, an acid anhydride residue means a tetravalent group derived from an acid dianhydride, and a diamine residue means a divalent group derived from a diamine compound. In the case of reacting the acid dianhydride and the diamine compound as a raw material with approximately equimolarity, the types and molar ratios of the acid dianhydride residues and diamine residues contained in the polyimide can be compared The kind of raw material and the molar ratio roughly correspond. In addition, in the case of "polyimide" in the present invention, polyimide, polyetherimide, polyesterimide, polysiloxane, etc. Alkyl imides, polybenzimidazolimides, and other resins containing polymers having imide groups in their molecular structure.

聚醯亞胺層(A): 作為構成聚醯亞胺層(A)的聚醯亞胺中所含的酸二酐殘基,只要可控制貯存彈性模數E'(A),則並無特別限制,但優選為由均苯四甲酸二酐(pyromellitic dianhydride,PMDA)衍生的酸酐殘基(以下,也稱為“PMDA殘基”)和/或由3,3',4,4'-二苯甲酮四羧酸二酐(3,3',4,4'-benzophenone tetracarboxylic dianhydride,BTDA)衍生的酸酐殘基(以下,也稱為“BTDA”殘基)。相對於全部酸酐殘基,以合計含有優選為30莫耳%以上、更優選為50莫耳%~100莫耳%的範圍內的PMDA殘基和/或BTDA殘基為宜。PMDA殘基及BTDA殘基均為具有提高貯存彈性模數作用的殘基。因此,若PMDA殘基和/或BTDA殘基的合計量小於30莫耳%,則無法充分提高聚醯亞胺層(A)的貯存彈性模數E'(A),抑制第一金屬層101的褶皺的效果變得不充分。 Polyimide layer (A): The acid dianhydride residue contained in the polyimide constituting the polyimide layer (A) is not particularly limited as long as the storage elastic modulus E'(A) can be controlled. Anhydride residues derived from tetracarboxylic dianhydride (pyromellitic dianhydride, PMDA) (hereinafter, also referred to as "PMDA residues") and/or tetracarboxylic dianhydride derived from 3,3',4,4'-benzophenone (3,3',4,4'-benzophenone tetracarboxylic dianhydride, BTDA) derived anhydride residue (hereinafter, also referred to as "BTDA" residue). It is preferable to contain PMDA residues and/or BTDA residues in a total of preferably 30 mol % or more, more preferably 50 mol % to 100 mol %, with respect to all acid anhydride residues. Both PMDA residues and BTDA residues have the effect of increasing the storage elastic modulus. Therefore, if the total amount of PMDA residues and/or BTDA residues is less than 30 mol%, the storage elastic modulus E'(A) of the polyimide layer (A) cannot be sufficiently improved, and the first metal layer 101 is inhibited. The effect of the folds becomes insufficient.

作為構成聚醯亞胺層(A)的聚醯亞胺中所含的其他酸二酐殘基,例如可列舉由4,4'-氧基二鄰苯二甲酸二酐、3,3',4,4'-聯苯四羧酸二酐、2,2',3,3'-二苯甲酮四羧酸二酐或2,3,3',4'-二苯甲酮四羧酸二酐、2,3',3,4'-二苯基醚四羧酸二酐、雙(2,3-二羧基苯基)醚二酐、3,3'',4,4''-對三聯苯四羧酸二酐、2,3,3'',4''-對三聯苯四羧酸二酐或2,2'',3,3''-對三聯苯四羧酸二酐、2,2-雙(2,3-二羧基苯基)-丙烷二酐或2,2-雙(3,4-二羧基苯基)-丙烷二酐、雙(2,3-二羧基苯基)甲烷二酐或雙(3,4-二羧基苯基)甲烷二酐、雙(2,3-二羧基苯基)碸二酐或雙(3,4-二羧基苯基)碸二酐、1,1-雙(2,3-二羧基苯基)乙烷二酐或1,1-雙(3,4-二羧基苯基)乙烷二酐、1,2,7,8-菲-四羧酸二酐、1,2,6,7-菲-四羧酸二酐或1,2,9,10-菲-四羧酸二酐、2,3,6,7-蒽四羧酸二酐、2,2-雙(3,4-二羧基苯基)四氟丙烷二酐、2,3,5,6-環己烷二酐、1,2,5,6-萘四羧酸二酐、1,4,5,8-萘四羧酸二酐、2,3,6,7-萘四羧酸二酐、4,8-二甲基-1,2,3,5,6,7-六氫萘-1,2,5,6-四羧酸二酐、2,6-二氯萘-1,4,5,8-四羧酸二酐或2,7-二氯萘-1,4,5,8-四羧酸二酐、2,3,6,7-(或1,4,5,8-)四氯萘-1,4,5,8-(或2,3,6,7-)四羧酸二酐、2,3,8,9-苝-四羧酸二酐、3,4,9,10-苝-四羧酸二酐、4,5,10,11-苝-四羧酸二酐或5,6,11,12-苝-四羧酸二酐、環戊烷-1,2,3,4-四羧酸二酐、吡嗪-2,3,5,6-四羧酸二酐、吡咯烷-2,3,4,5-四羧酸二酐、噻吩-2,3,4,5-四羧酸二酐、4,4'-雙(2,3-二羧基苯氧基)二苯基甲烷二酐、2,2-雙[4-(3,4-二羧基苯氧基)苯基]丙烷二酐等芳香族四羧酸二酐衍生的酸二酐殘基。Examples of other acid dianhydride residues contained in the polyimide constituting the polyimide layer (A) include 4,4'-oxydiphthalic dianhydride, 3,3', 4,4'-Biphenyltetracarboxylic dianhydride, 2,2',3,3'-benzophenone tetracarboxylic dianhydride or 2,3,3',4'-benzophenone tetracarboxylic acid Dianhydride, 2,3',3,4'-diphenyl ether tetracarboxylic dianhydride, bis(2,3-dicarboxyphenyl) ether dianhydride, 3,3'',4,4''- p-terphenyltetracarboxylic dianhydride, 2,3,3'',4''-p-terphenyltetracarboxylic dianhydride or 2,2'',3,3''-p-terphenyltetracarboxylic dianhydride , 2,2-bis(2,3-dicarboxyphenyl)-propane dianhydride or 2,2-bis(3,4-dicarboxyphenyl)-propane dianhydride, bis(2,3-dicarboxyphenyl) base) methane dianhydride or bis(3,4-dicarboxyphenyl)methane dianhydride, bis(2,3-dicarboxyphenyl)pyridine dianhydride or bis(3,4-dicarboxyphenyl)pyridine dianhydride , 1,1-bis(2,3-dicarboxyphenyl)ethanedianhydride or 1,1-bis(3,4-dicarboxyphenyl)ethanedianhydride, 1,2,7,8-phenanthrene -tetracarboxylic dianhydride, 1,2,6,7-phenanthrene-tetracarboxylic dianhydride or 1,2,9,10-phenanthrene-tetracarboxylic dianhydride, 2,3,6,7-anthracene tetracarboxylic Acid dianhydride, 2,2-bis(3,4-dicarboxyphenyl)tetrafluoropropane dianhydride, 2,3,5,6-cyclohexane dianhydride, 1,2,5,6-naphthalene tetracarboxylic Acid dianhydride, 1,4,5,8-naphthalene tetracarboxylic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 4,8-dimethyl-1,2,3,5, 6,7-Hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride or 2,7-dichloro Naphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,3,6,7-(or 1,4,5,8-)tetrachloronaphthalene-1,4,5,8-(or 2 ,3,6,7-)tetracarboxylic dianhydride, 2,3,8,9-perylene-tetracarboxylic dianhydride, 3,4,9,10-perylene-tetracarboxylic dianhydride, 4,5, 10,11-perylene-tetracarboxylic dianhydride or 5,6,11,12-perylene-tetracarboxylic dianhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, pyrazine-2 ,3,5,6-tetracarboxylic dianhydride, pyrrolidine-2,3,4,5-tetracarboxylic dianhydride, thiophene-2,3,4,5-tetracarboxylic dianhydride, 4,4' -Aromatic tetracarboxylic acids such as bis(2,3-dicarboxyphenoxy)diphenylmethane dianhydride, 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride, etc. Acid dianhydride derived acid dianhydride residue.

另外,作為構成聚醯亞胺層(A)的聚醯亞胺中所含的二胺殘基,只要可控制貯存彈性模數E'(A),則並無特別限制,但優選為由如下的二胺化合物、即在對位連結有構成主鏈的芳香環的骨架的二胺化合物衍生的二胺殘基(以下,也稱為“對位連結二胺殘基”)。相對於全部二胺殘基,以合計含有優選為30莫耳%以上、更優選為50莫耳%~100莫耳%的範圍內的對位連結二胺殘基為宜。對位連結二胺殘基由於具有分子的直線性,因此具有抑制聚醯亞胺層(A)的貯存彈性模數E'(A)降低的作用。因此,通過含有所述範圍內的對位連結二胺殘基,聚醯亞胺層(A)的貯存彈性模數充分變大,即便在熱壓接時的高溫下也可抑制聚醯亞胺層(A)的軟化,且可抑制第一金屬層的褶皺的產生。若對位連結二胺殘基的含量小於30莫耳%,則無法充分增大聚醯亞胺層(A)的貯存彈性模數E'(A),抑制第一金屬層101的褶皺的效果變得不充分。In addition, the diamine residue contained in the polyimide constituting the polyimide layer (A) is not particularly limited as long as the storage elastic modulus E'(A) can be controlled, but it is preferably composed of the following: The diamine compound, that is, the diamine residue derived from the diamine compound in which the skeleton of the aromatic ring constituting the main chain is linked at the para position (hereinafter, also referred to as "para position linking diamine residue"). It is preferable to contain para-linked diamine residues in a total of preferably 30 mol % or more, more preferably 50 mol % to 100 mol %, with respect to all the diamine residues. Since the para-linked diamine residue has molecular linearity, it has an effect of suppressing a decrease in the storage elastic modulus E'(A) of the polyimide layer (A). Therefore, by containing the para-linked diamine residue in the above range, the storage elastic modulus of the polyimide layer (A) becomes sufficiently large, and the polyimide layer can be suppressed even at high temperatures during thermocompression bonding. softening of layer (A), and generation of wrinkles of the first metal layer can be suppressed. If the content of the para-linked diamine residue is less than 30 mol%, the storage elastic modulus E'(A) of the polyimide layer (A) cannot be sufficiently increased, and the effect of suppressing the wrinkles of the first metal layer 101 become inadequate.

作為對位連結二胺殘基的代表例,可列舉由2,2'-二甲基-4,4'-二胺基聯苯(2,2'-dimethyl-4,4'-diamino biphenyl,m-TB)、2,2'-二乙基-4,4'-二胺基聯苯(2,2'-diethyl-4,4'-diamino biphenyl,m-EB)、2,2'-二乙氧基-4,4'-二胺基聯苯(2,2'-diethoxy-4,4'-diamino biphenyl,m-EOB)、2,2'-二丙氧基-4,4'-二胺基聯苯(2,2'-dipropoxy-4,4'-diamino biphenyl,m-POB)、2,2'-正丙基-4,4'-二胺基聯苯(2,2'-n-propyl-4,4'-diamino biphenyl,m-NPB)、2,2'-二乙烯基-4,4'-二胺基聯苯(2,2'-divinyl-4,4'-diamino biphenyl,VAB)、4,4'-二胺基聯苯、4,4'-二胺基-2,2'-雙(三氟甲基)聯苯(4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl,TFMB)、4,4'-雙(4-胺基苯氧基)聯苯(4,4'-bis(4-aminophenoxy)biphenyl,BAPB)、2,2'-雙[4-(4-胺基苯氧基)苯基]丙烷(2,2'-bis[4-(4-aminophenoxy)phenyl]propane,BAPP)、雙[4-(4-胺基苯氧基)苯基]醚(bis[4-(4-aminophenoxy)phenyl]ether,BAPE)、雙[4-(4-胺基苯氧基)苯基]碸、1,4-雙(4-胺基苯氧基)苯(1,4-bis(4-aminophenoxy)benzene,TPE-Q)、4,4'-二胺基二苯基醚(4,4'-diaminodiphenyl ether,DAPE)等二胺化合物衍生的二胺殘基。 所述對位連結二胺殘基中,就兼顧尺寸穩定性及與第一金屬層101的黏接性的觀點而言,尤其優選為由2,2'-二甲基-4,4'-二胺基聯苯(m-TB)及2,2'-雙[4-(4-胺基苯氧基)苯基]丙烷(BAPP)衍生的二胺殘基。 As a representative example of the para-linked diamine residue, 2,2'-dimethyl-4,4'-diaminobiphenyl (2,2'-dimethyl-4,4'-diamino biphenyl, m-TB), 2,2'-diethyl-4,4'-diaminobiphenyl (2,2'-diethyl-4,4'-diamino biphenyl, m-EB), 2,2'- Diethoxy-4,4'-diaminobiphenyl (2,2'-diethoxy-4,4'-diamino biphenyl, m-EOB), 2,2'-dipropoxy-4,4' -diaminobiphenyl (2,2'-dipropoxy-4,4'-diamino biphenyl, m-POB), 2,2'-n-propyl-4,4'-diaminobiphenyl (2,2 '-n-propyl-4,4'-diamino biphenyl, m-NPB), 2,2'-divinyl-4,4'-diaminobiphenyl (2,2'-divinyl-4,4' -diamino biphenyl, VAB), 4,4'-diaminobiphenyl, 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl (4,4'-diamino-2 ,2'-bis(trifluoromethyl)biphenyl, TFMB), 4,4'-bis(4-aminophenoxy)biphenyl (4,4'-bis(4-aminophenoxy)biphenyl, BAPB), 2,2 '-bis[4-(4-aminophenoxy)phenyl]propane (2,2'-bis[4-(4-aminophenoxy)phenyl]propane, BAPP), bis[4-(4-aminophenoxy) Phenyloxy)phenyl]ether (bis[4-(4-aminophenoxy)phenyl]ether, BAPE), bis[4-(4-aminophenoxy)phenyl]pyridine, 1,4-bis(4 -aminophenoxy)benzene (1,4-bis(4-aminophenoxy)benzene, TPE-Q), 4,4'-diaminodiphenyl ether (4,4'-diaminodiphenyl ether, DAPE), etc. A diamine residue derived from a diamine compound. Among the para-linked diamine residues, it is particularly preferable to use 2,2′-dimethyl-4,4′- Diaminobiphenyl (m-TB) and 2,2'-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) derived diamine residues.

此外,在本說明書中,“二胺化合物”的末端的兩個胺基中的氫原子可經取代,例如可為-NR 1R 2(此處,R 1、R 2獨立地意指烷基等任意的取代基)。 In addition, in this specification, the hydrogen atoms in the two terminal amine groups of the "diamine compound" may be substituted, for example, -NR 1 R 2 (here, R 1 and R 2 independently mean an alkyl group and other arbitrary substituents).

聚醯亞胺層(B): 作為構成聚醯亞胺層(B)的聚醯亞胺中所含的酸二酐殘基,只要可控制貯存彈性模數E'(B),則並無特別限制,相對於全部酸酐殘基,以合計含有優選為30莫耳%以上、更優選為50莫耳%~100莫耳%的範圍內的PMDA殘基和/或由3,3',4,4'-聯苯四羧酸二酐(3,3',4,4'-biphenyl tetracarboxylic dianhydride,BPDA)衍生的酸酐殘基(以下,也稱為“BPDA殘基”)為宜。BPDA殘基可通過調整含量來控制高溫區中的貯存彈性模數。若PMDA殘基和/或BPDA殘基的合計量小於30莫耳%,則有時無法充分獲得與第二金屬層102的化學密接力。 Polyimide layer (B): The acid dianhydride residue contained in the polyimide constituting the polyimide layer (B) is not particularly limited as long as the storage elastic modulus E'(B) can be controlled. , to contain PMDA residues in the range of preferably 30 mol% or more, more preferably 50 mol% to 100 mol%, and/or 3,3',4,4'-biphenyltetracarboxylic acid An acid anhydride residue derived from dianhydride (3,3′,4,4′-biphenyl tetracarboxylic dianhydride, BPDA) (hereinafter also referred to as “BPDA residue”) is preferable. BPDA residues can control the storage elastic modulus in the high temperature region by adjusting the content. When the total amount of PMDA residues and/or BPDA residues is less than 30 mol%, sufficient chemical adhesion to the second metal layer 102 may not be obtained in some cases.

作為構成聚醯亞胺層(B)的聚醯亞胺中含有的其他酸二酐殘基,可使用與所述聚醯亞胺層(A)中所列舉的其他酸二酐殘基相同的基。As other acid dianhydride residues contained in the polyimide constituting the polyimide layer (B), the same acid dianhydride residues as those listed in the polyimide layer (A) can be used. base.

另外,作為構成聚醯亞胺層(B)的聚醯亞胺中所含的二胺殘基,只要可控制貯存彈性模數E'(B),則並無特別限制,相對於全部二胺殘基,以合計含有優選為50莫耳%以上、更優選為80莫耳%~100莫耳%的範圍內的由彎曲性二胺化合物衍生的二胺殘基(以下,也稱為“彎曲性二胺殘基”)為宜。此處,彎曲性二胺化合物意指構成主鏈的芳香環具有-O-、-CH 2-等柔軟性高的連結基的二胺化合物,更優選為包含間位連結基。通過含有彎曲性二胺殘基,可降低Tg以上溫度下的貯存彈性模數,提高與第二金屬層102的熱壓接性及密接性。若彎曲性二胺殘基的合計量小於50莫耳%,則有時聚醯亞胺層(B)的貯存彈性模數變得過高,與第二金屬層102的熱壓接性及密接性降低。 In addition, the diamine residue contained in the polyimide constituting the polyimide layer (B) is not particularly limited as long as the storage elastic modulus E'(B) can be controlled. Residues, the diamine residue derived from a flexible diamine compound (hereinafter also referred to as "bending Sexual diamine residues") are preferred. Here, the flexible diamine compound means a diamine compound in which the aromatic ring constituting the main chain has a highly flexible linking group such as -O-, -CH 2 -, and more preferably includes a meta linking group. By containing the flexible diamine residue, the storage elastic modulus at a temperature equal to or higher than Tg can be lowered, and the thermocompression bonding property and adhesiveness with the second metal layer 102 can be improved. If the total amount of flexible diamine residues is less than 50 mol %, the storage elastic modulus of the polyimide layer (B) may become too high, and the thermocompression bonding property and adhesion with the second metal layer 102 may be too high. reduced sex.

作為彎曲性二胺殘基的優選具體例,可列舉由1,3-雙(4-胺基苯氧基)苯(1,3-bis(4-aminophenoxy)benzene,TPE-R)、1,3-雙(3-胺基苯氧基)苯(1,3-bis(3-aminophenoxy)benzene,APB)、4,4'-[2-甲基-(1,3-伸苯基)雙氧基]雙苯胺、4,4'-[4-甲基-(1,3-伸苯基)雙氧基]雙苯胺、4,4'-[5-甲基-(1,3-伸苯基)雙氧基]雙苯胺、3,3'-二胺基二苯基甲烷、3,3'-二胺基二苯基丙烷、3,3'-二胺基二苯基硫醚、3,3'-二胺基二苯基碸、3,3'-二胺基二苯基醚、3,4'-二胺基二苯基醚、3,4'-二胺基二苯基甲烷、3,4'-二胺基二苯基丙烷、3,4'-二胺基二苯基硫醚、3,3'-二胺基二苯甲酮、(3,3'-雙胺基)二苯基胺、1,4-雙(3-胺基苯氧基)苯、3-[4-(4-胺基苯氧基)苯氧基]苯胺、3-[3-(4-胺基苯氧基)苯氧基]苯胺、雙[4-(3-胺基苯氧基)苯基]甲烷、雙[4-(3-胺基苯氧基)苯基]丙烷、雙[4-(3-胺基苯氧基)苯基]醚、雙[4-(3-胺基苯氧基)苯基]碸、雙[4-(3-胺基苯氧基)]二苯甲酮、雙[4,4'-(3-胺基苯氧基)]苯甲醯苯胺、4-[3-[4-(4-胺基苯氧基)苯氧基]苯氧基]苯胺、4,4'-[氧基雙(3,1-伸苯氧基)]雙苯胺、2,2-雙[4-(4-胺基苯氧基)苯基]丙烷(BAPP)等二胺化合物衍生的二胺殘基。這些中,由1,3-雙(4-胺基苯氧基)苯(TPE-R)、2,2-雙[4-(4-胺基苯氧基)苯基]丙烷(BAPP)衍生的二胺殘基具有優異的彎曲性,因此可降低聚醯亞胺層(B)的貯存彈性模數、賦予柔軟性,從而最優選。Preferred specific examples of flexible diamine residues include 1,3-bis(4-aminophenoxy)benzene (1,3-bis(4-aminophenoxy)benzene, TPE-R), 1, 3-bis(3-aminophenoxy)benzene (1,3-bis(3-aminophenoxy)benzene, APB), 4,4'-[2-methyl-(1,3-phenylene)bis Oxygen]bisaniline, 4,4'-[4-methyl-(1,3-phenylene)dioxy]bisaniline, 4,4'-[5-methyl-(1,3- Phenyl)dioxy]bisaniline, 3,3'-diaminodiphenylmethane, 3,3'-diaminodiphenylpropane, 3,3'-diaminodiphenylsulfide, 3,3'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl Methane, 3,4'-diaminodiphenylpropane, 3,4'-diaminodiphenylsulfide, 3,3'-diaminobenzophenone, (3,3'-diamine base) diphenylamine, 1,4-bis(3-aminophenoxy)benzene, 3-[4-(4-aminophenoxy)phenoxy]aniline, 3-[3-(4 -aminophenoxy)phenoxy]aniline, bis[4-(3-aminophenoxy)phenyl]methane, bis[4-(3-aminophenoxy)phenyl]propane, bis [4-(3-aminophenoxy)phenyl]ether, bis[4-(3-aminophenoxy)phenyl]pyridine, bis[4-(3-aminophenoxy)]di Benzophenone, bis[4,4'-(3-aminophenoxy)]benzoylaniline, 4-[3-[4-(4-aminophenoxy)phenoxy]phenoxy ]aniline, 4,4'-[oxybis(3,1-phenoxy)]bisaniline, 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) Diamine residues derived from diamine compounds. Of these, derived from 1,3-bis(4-aminophenoxy)benzene (TPE-R), 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) The diamine residue of has excellent flexibility, so it can reduce the storage elastic modulus of the polyimide layer (B) and impart flexibility, which is most preferable.

作為構成聚醯亞胺層(B)的聚醯亞胺中所含的其他二胺殘基,可使用與所述聚醯亞胺層(A)中所列舉的其他二胺殘基相同的基。As other diamine residues contained in the polyimide constituting the polyimide layer (B), the same diamine residues as those listed in the polyimide layer (A) can be used. .

在構成聚醯亞胺層(A)、聚醯亞胺層(B)的聚醯亞胺中,通過選定所述酸二酐殘基及二胺殘基的種類、應用兩種以上的酸二酐殘基或二胺殘基時的各自的莫耳比,可對熱膨脹係數、貯存彈性模數、拉伸彈性模數等進行控制。另外,在構成聚醯亞胺層(A)、聚醯亞胺層(B)的聚醯亞胺中,在具有多個聚醯亞胺的結構單元的情況下,可以嵌段的形式存在,也可無規地存在,但優選為無規地存在。In the polyimides constituting the polyimide layer (A) and the polyimide layer (B), by selecting the types of the acid dianhydride residues and diamine residues and using two or more acid di The respective molar ratios in the case of anhydride residues or diamine residues can control the thermal expansion coefficient, storage elastic modulus, tensile elastic modulus, and the like. In addition, in the polyimide constituting the polyimide layer (A) and the polyimide layer (B), in the case of having a plurality of structural units of polyimide, it may exist in the form of a block, They may also be present randomly, but are preferably present randomly.

聚醯亞胺層(C): 關於構成聚醯亞胺層(C)的聚醯亞胺的樹脂結構及貯存彈性模數,並無特別限制,可使用公知的結構。 另外,為了確保絕緣樹脂層110整體的尺寸穩定性,聚醯亞胺層(C)的熱膨脹係數(coefficient of thermal expansion,CTE)優選為30 ppm/K以下,更優選為-5 ppm/K~25 ppm/K的範圍內的低膨脹性樹脂層。 Polyimide layer (C): The resin structure and storage elastic modulus of the polyimide constituting the polyimide layer (C) are not particularly limited, and known structures can be used. In addition, in order to ensure the dimensional stability of the insulating resin layer 110 as a whole, the coefficient of thermal expansion (coefficient of thermal expansion, CTE) of the polyimide layer (C) is preferably 30 ppm/K or less, more preferably -5 ppm/K~ Low expansion resin layer in the range of 25 ppm/K.

構成聚醯亞胺層(A)~聚醯亞胺層(C)的聚醯亞胺可適宜地調配例如增塑劑、環氧樹脂等其他硬化樹脂成分、硬化劑、硬化促進劑、有機填料、無機填料、偶合劑、阻燃劑等作為任意成分。The polyimides constituting the polyimide layer (A) to polyimide layer (C) can be suitably formulated such as plasticizers, other hardening resin components such as epoxy resins, hardeners, hardening accelerators, and organic fillers. , inorganic fillers, coupling agents, flame retardants, etc. as optional components.

(聚醯亞胺的合成) 一般而言,聚醯亞胺可通過使四羧酸二酐與二胺化合物在溶媒中反應,並在生成聚醯胺酸後使其加熱閉環來製造。例如,使四羧酸二酐與二胺化合物以大致等莫耳溶解於有機溶媒中,在0℃~100℃的範圍內的溫度下攪拌30分鐘~24小時來進行聚合反應,由此獲得作為聚醯亞胺的前驅物的聚醯胺酸。進行反應時,以要生成的前驅物在有機溶媒中成為5重量%~30重量%的範圍內、優選為10重量%~20重量%的範圍內的方式溶解反應成分。作為聚合反應中使用的有機溶媒,例如可列舉:N,N-二甲基甲醯胺(N,N-dimethyl formamide,DMF)、N,N-二甲基乙醯胺(N,N-dimethyl acetamide,DMAc)、N,N-二乙基乙醯胺、N-甲基-2-吡咯烷酮(N-methyl-2-pyrrolidone,NMP)、2-丁酮、二甲基亞碸(dimethyl sulfoxide,DMSO)、六甲基磷醯胺、N-甲基己內醯胺、硫酸二甲酯、環己酮、二噁烷、四氫呋喃、二乙二醇二甲醚、三乙二醇二甲醚、甲酚等。也可將這些溶媒併用兩種以上來使用,也可進而併用二甲苯、甲苯之類的芳香族烴。另外,此種有機溶媒的使用量並無特別限制,優選調整為使通過聚合反應而獲得的聚醯胺酸溶液的濃度成為5重量%~30重量%左右的使用量來使用。 (Synthesis of polyimide) In general, polyimide can be produced by reacting tetracarboxylic dianhydride and diamine compound in a solvent, producing polyamic acid, and heating to close the ring. For example, a tetracarboxylic dianhydride and a diamine compound are dissolved in an organic solvent in an approximately equimolar manner, and the polymerization reaction is carried out by stirring at a temperature in the range of 0° C. to 100° C. for 30 minutes to 24 hours, thereby obtaining the Polyamide acid which is the precursor of polyimide. When performing the reaction, the reaction components are dissolved so that the precursor to be produced is in the range of 5% by weight to 30% by weight, preferably 10% by weight to 20% by weight, in the organic solvent. Examples of the organic solvent used in the polymerization reaction include: N,N-dimethylformamide (N,N-dimethyl formamide, DMF), N,N-dimethylacetamide (N,N-dimethyl acetamide, DMAc), N,N-diethylacetamide, N-methyl-2-pyrrolidone (N-methyl-2-pyrrolidone, NMP), 2-butanone, dimethylsulfoxide (dimethylsulfoxide, DMSO), hexamethylphosphoramide, N-methylcaprolactam, dimethyl sulfate, cyclohexanone, dioxane, tetrahydrofuran, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, cresol etc. These solvents may be used in combination of two or more, and aromatic hydrocarbons such as xylene and toluene may further be used in combination. In addition, the usage amount of such an organic solvent is not particularly limited, but it is preferably adjusted so that the concentration of the polyamic acid solution obtained by the polymerization reaction becomes about 5% by weight to 30% by weight.

所合成的聚醯胺酸通常有利地用作反應溶媒溶液,但視需要可進行濃縮、稀釋或者置換為其他有機溶媒。另外,聚醯胺酸一般而言溶媒可溶性優異,因此可有利地使用。聚醯胺酸的溶液的黏度優選為500 cP~100,000 cP的範圍內。若偏離所述範圍,則在利用塗佈機等進行塗敷作業時,膜上容易產生厚度不均、條紋等不良。使聚醯胺酸進行醯亞胺化的方法並無特別限制,例如可優選地採用如下的熱處理:在所述溶媒中,在80℃~400℃的範圍內的溫度條件下歷時1小時~24小時進行加熱等。The synthesized polyamic acid is usually advantageously used as a reaction solvent solution, but it can be concentrated, diluted or replaced with other organic solvents if necessary. In addition, since polyamic acid is generally excellent in solvent solubility, it can be used advantageously. The viscosity of the polyamic acid solution is preferably within a range of 500 cP to 100,000 cP. If it deviates from the above-mentioned range, defects such as thickness unevenness and streaks are likely to occur on the film at the time of coating operation with a coater or the like. The method for imidizing polyamic acid is not particularly limited. For example, the following heat treatment can be preferably adopted: in the solvent, at a temperature in the range of 80° C. to 400° C. for 1 hour to 24 hours. hours for heating etc.

作為構成聚醯亞胺層(A)~聚醯亞胺層(C)的聚醯亞胺的前驅物的聚醯胺酸的重量平均分子量均優選為例如10,000~400,000的範圍內,更優選為50,000~350,000的範圍內。若重量平均分子量小於10,000,則存在絕緣樹脂層110的強度降低而容易脆化的傾向。另一方面,若重量平均分子量超過400,000,則聚醯胺酸溶液的黏度變高,塗敷作業時容易產生厚度不均、條紋等不良。The weight average molecular weight of polyamic acid, which is a precursor of polyimide constituting the polyimide layer (A) to polyimide layer (C), is preferably within the range of, for example, 10,000 to 400,000, more preferably In the range of 50,000 to 350,000. When the weight-average molecular weight is less than 10,000, the strength of the insulating resin layer 110 tends to decrease and become brittle easily. On the other hand, when the weight average molecular weight exceeds 400,000, the viscosity of the polyamic acid solution becomes high, and defects such as uneven thickness and streaks are likely to occur during coating operations.

<各層的厚度及其比率> 聚醯亞胺層(A)及聚醯亞胺層(B)的厚度並無特別限制,為了確保與金屬箔的密接性,分別優選為1 μm以上,更優選為2 μm~10 μm的範圍內。 <Thickness and ratio of each layer> The thicknesses of the polyimide layer (A) and the polyimide layer (B) are not particularly limited, but are each preferably 1 μm or more, more preferably 2 μm to 10 μm in order to ensure adhesion to the metal foil Inside.

為了抑制在熱壓接時在第一金屬層101產生褶皺,聚醯亞胺層(A)的厚度相對於絕緣樹脂層110的整體厚度的比例優選為3%~45%的範圍內,更優選為4%~20%的範圍內。厚度比例小於3%時,有時在熱壓接時無法充分獲得抑制第一金屬層101產生褶皺的效果,厚度比例若超過45%,則絕緣樹脂層110內的低膨脹性樹脂層的比例減少,因此存在絕緣樹脂層110的尺寸穩定性劣化的傾向。In order to suppress wrinkles in the first metal layer 101 during thermocompression bonding, the ratio of the thickness of the polyimide layer (A) to the entire thickness of the insulating resin layer 110 is preferably in the range of 3% to 45%, more preferably In the range of 4% to 20%. If the thickness ratio is less than 3%, the effect of suppressing wrinkles of the first metal layer 101 may not be sufficiently obtained during thermocompression bonding, and if the thickness ratio exceeds 45%, the ratio of the low-expansion resin layer in the insulating resin layer 110 will decrease. , so there is a tendency for the dimensional stability of the insulating resin layer 110 to deteriorate.

另外,為了確保與第二金屬層102的密接性,聚醯亞胺層(B)的厚度相對於絕緣樹脂層110的整體厚度的比例優選為3%~45%的範圍內,更優選為4%~20%的範圍內。厚度比例小於3%時,基於熱壓接的密接性有時變得不充分,厚度比例若超過45%,則絕緣樹脂層110內的低膨脹性樹脂層的比例減少,因此存在絕緣樹脂層110的尺寸穩定性劣化的傾向。In addition, in order to ensure the adhesion with the second metal layer 102, the ratio of the thickness of the polyimide layer (B) to the entire thickness of the insulating resin layer 110 is preferably in the range of 3% to 45%, more preferably 4%. %~20% range. When the thickness ratio is less than 3%, the adhesiveness by thermocompression bonding may become insufficient, and if the thickness ratio exceeds 45%, the ratio of the low-expansion resin layer in the insulating resin layer 110 decreases, so the insulating resin layer 110 exists. Tendency to deteriorate dimensional stability.

聚醯亞胺層(C)的厚度並無特別限制,可根據使用目的而適宜設定,但例如優選為3 μm~75 μm的範圍內,更優選為8 μm~50 μm的範圍內。另外,為了確保絕緣樹脂層110的尺寸穩定性,聚醯亞胺層(C)的厚度在絕緣樹脂層110整體的厚度中所占的比例優選為30%以上,更優選為60%~92%的範圍內。The thickness of the polyimide layer (C) is not particularly limited, and can be appropriately set according to the purpose of use. For example, it is preferably within a range of 3 μm to 75 μm, more preferably within a range of 8 μm to 50 μm. In addition, in order to ensure the dimensional stability of the insulating resin layer 110, the ratio of the thickness of the polyimide layer (C) to the overall thickness of the insulating resin layer 110 is preferably 30% or more, more preferably 60% to 92%. In the range.

關於絕緣樹脂層110,為了減少高頻信號傳輸時的介電損耗,作為絕緣樹脂層整體,利用分離柱電介質諧振器(split post dielectric resonator,SPDR)測定時的10 GHz下的介電損耗角正切(Df)優選為0.004以下。為了改善電路基板的傳輸損耗,特別重要的是對絕緣樹脂層的介電損耗角正切進行控制,通過使介電損耗角正切成為所述範圍內,降低傳輸損耗的效果增大。因此,在將本發明的覆金屬積層板用作高頻用途的電路基板的材料的情況下,可效率良好地減少傳輸損耗。若10 GHz下的介電損耗角正切超過0.004,則容易發生電信號在高頻信號的傳輸路徑上的損失變大等不良情況。10 GHz下的介電損耗角正切的下限值並無特別限制,但需要考慮絕緣樹脂層110的物性控制。Regarding the insulating resin layer 110, in order to reduce the dielectric loss during high-frequency signal transmission, the dielectric loss tangent at 10 GHz measured with a split post dielectric resonator (SPDR) as the entire insulating resin layer (Df) is preferably 0.004 or less. In order to improve the transmission loss of the circuit board, it is particularly important to control the dielectric loss tangent of the insulating resin layer, and by setting the dielectric loss tangent within the above-mentioned range, the effect of reducing transmission loss increases. Therefore, when the metal-clad laminate of the present invention is used as a material for a circuit board for high-frequency applications, transmission loss can be efficiently reduced. If the dielectric loss tangent at 10 GHz exceeds 0.004, problems such as increased loss of electrical signals on the transmission path of high-frequency signals are likely to occur. The lower limit of the dielectric loss tangent at 10 GHz is not particularly limited, but control of the physical properties of the insulating resin layer 110 needs to be considered.

<第一金屬層及第二金屬層> 作為構成第一金屬層101及第二金屬層102的金屬,只要可用作FPC的佈線層的材料,則並無特別限制,例如可列舉選自銅、鋁、不鏽鋼、鐵、銀、鈀、鎳、鉻、鉬、鎢、鋯、金、鈷、鈦、鉭、鋅、鉛、錫、矽、鉍、銦或這些的合金等中的金屬。就黏接性的觀點而言,第一金屬層101及第二金屬層102優選為使用金屬箔。在導電性的方面特別優選的是銅箔。此外,在連續生產覆金屬積層板100、覆金屬積層板200的情況下,作為金屬箔,可使用將規定厚度的金屬箔捲繞成卷狀的長條狀的金屬箔。 <The first metal layer and the second metal layer> The metals constituting the first metal layer 101 and the second metal layer 102 are not particularly limited as long as they can be used as a material for the wiring layer of the FPC, for example, copper, aluminum, stainless steel, iron, silver, palladium, Metals in nickel, chromium, molybdenum, tungsten, zirconium, gold, cobalt, titanium, tantalum, zinc, lead, tin, silicon, bismuth, indium, or alloys of these, etc. From the viewpoint of adhesiveness, metal foil is preferably used for the first metal layer 101 and the second metal layer 102 . Copper foil is particularly preferable in terms of conductivity. In addition, when the metal-clad laminate 100 and the metal-clad laminate 200 are continuously produced, as the metal foil, a metal foil having a predetermined thickness wound into a roll can be used.

第一金屬層101的厚度並無特別限制,但在作為FPC材料的用途中,優選為6 μm~18 μm的範圍內,更優選為9 μm~12 μm的範圍內。另外,第一金屬層101的拉伸彈性模數並無特別限制,但在作為FPC材料的用途中,優選為10 GPa~100 GPa的範圍內,更優選為15 GPa~70 GPa的範圍內。此外,在第一金屬層101的厚度及拉伸彈性模數小於所述範圍的情況下,在以輥對輥方式搬送時,有時機械強度不足而處理性降低。另一方面,在第一金屬層101的厚度及拉伸彈性模數大於所述範圍的情況下,處理性變得良好,但另一方面,柔性降低,除此之外,原本在熱壓接時在第一金屬層101幾乎不會產生褶皺。但是,在為了兼顧作為FPC材料的用途所需要的機械強度與柔性而將第一金屬層101的厚度及拉伸彈性模數設為所述範圍內的情況下,在高溫下的熱壓接時變得容易發生褶皺,因此,本發明的效果得到顯著體現。The thickness of the first metal layer 101 is not particularly limited, but it is preferably within a range of 6 μm to 18 μm, and more preferably within a range of 9 μm to 12 μm for use as an FPC material. In addition, the tensile modulus of the first metal layer 101 is not particularly limited, but it is preferably in the range of 10 GPa to 100 GPa, more preferably in the range of 15 GPa to 70 GPa in the application as an FPC material. Moreover, when the thickness and tensile elastic modulus of the 1st metal layer 101 are less than the said range, when conveying by a roll-to-roll system, mechanical strength may become insufficient and handleability may fall. On the other hand, when the thickness and tensile elastic modulus of the first metal layer 101 are larger than the above-mentioned range, the handleability becomes good, but on the other hand, the flexibility is lowered. Wrinkles hardly occur on the first metal layer 101 at this time. However, when the thickness and tensile elastic modulus of the first metal layer 101 are set within the above-mentioned ranges in order to balance the mechanical strength and flexibility required for use as an FPC material, when thermocompression bonding at high temperature Wrinkles are likely to occur, and therefore, the effects of the present invention are remarkably exhibited.

第二金屬層102的厚度並無特別限制,但在作為FPC材料的用途中,優選為6 μm~18 μm的範圍內,更優選為9 μm~12 μm的範圍內。另外,第二金屬層102的拉伸彈性模數並無特別限制,但在作為FPC材料的用途中,優選為10 GPa~100 GPa的範圍內,更優選為15 GPa~70 GPa的範圍內。The thickness of the second metal layer 102 is not particularly limited, but it is preferably within a range of 6 μm to 18 μm, and more preferably within a range of 9 μm to 12 μm for use as an FPC material. In addition, the tensile modulus of the second metal layer 102 is not particularly limited, but it is preferably in the range of 10 GPa to 100 GPa, more preferably in the range of 15 GPa to 70 GPa in the application as an FPC material.

<覆金屬積層板的製造方法> 作為製造覆金屬積層板100的方法的形態,例如可列舉: [1]在作為第一金屬層101的金屬箔上塗佈聚醯胺酸的溶液並乾燥後進行醯亞胺化的方法(以下,稱為澆鑄法); [2]在作為第一金屬層101的金屬箔上,通過多層擠出而以同時積層多層的狀態進行聚醯胺酸溶液的塗佈、乾燥後,進行醯亞胺化的方法(以下,稱為多層擠出法) 等。 <Manufacturing method of metal-clad laminate> Examples of the method of manufacturing the metal-clad laminate 100 include: [1] A method of applying a polyamic acid solution on a metal foil as the first metal layer 101, drying it, and performing imidization (hereinafter referred to as a casting method); [2] On the metal foil as the first metal layer 101, a polyamic acid solution is applied in a state of simultaneously laminating multiple layers by multi-layer extrusion, dried, and then imidized (hereinafter referred to as for multi-layer extrusion) wait.

所述[1]的方法例如包括如下步驟: (1a)在作為第一金屬層101的金屬箔上塗佈聚醯胺酸的溶液並使其乾燥的步驟;以及 (1b)通過在金屬箔上對聚醯胺酸進行熱處理以進行醯亞胺化來形成聚醯亞胺層的步驟,通過反覆進行步驟1a及步驟1b,可在第一金屬層101上依次積層形成聚醯亞胺層(A)、聚醯亞胺層(C)、聚醯亞胺層(B)。此外,也可在反覆進行步驟1a後,在步驟1b中對多個層成批地進行醯亞胺化。 The method of [1] includes the following steps, for example: (1a) a step of applying a solution of polyamic acid on the metal foil as the first metal layer 101 and drying it; and (1b) A step of forming a polyimide layer by heat-treating polyamic acid on a metal foil for imidization. By repeating step 1a and step 1b, layers can be sequentially stacked on the first metal layer 101 A polyimide layer (A), a polyimide layer (C), and a polyimide layer (B) are formed. In addition, after performing step 1a repeatedly, in step 1b, imidization may be performed batchwise for a plurality of layers.

所述[2]的方法除了在所述[1]的方法的步驟1a中通過多層擠出而同時塗佈聚醯胺酸的積層結構體並使其乾燥以外,可與所述[1]的方法同樣地實施。The method of [2] can be combined with the method of [1] except that the polyamic acid laminated structure is simultaneously coated and dried by multilayer extrusion in step 1a of the method [1]. The method is implemented in the same way.

在本實施方式中,優選為在第一金屬層101上完成聚醯胺酸的醯亞胺化。聚醯胺酸的樹脂層在固定於第一金屬層101的狀態下被醯亞胺化,因此可抑制醯亞胺化過程中的各聚醯亞胺層的伸縮變化,可維持厚度或尺寸精度。In this embodiment, it is preferable to complete the imidization of polyamic acid on the first metal layer 101 . Since the polyimide resin layer is imidized while being fixed to the first metal layer 101, it is possible to suppress the expansion and contraction change of each polyimide layer during the imidization process, and maintain thickness and dimensional accuracy. .

如圖3所示,覆金屬積層板200可通過將作為第二金屬層102的金屬箔102A熱壓接於覆金屬積層板100的絕緣樹脂層110中的積層面110a而製造。作為熱壓接的溫度條件,優選為在相對於聚醯亞胺層(B)的玻璃化轉變溫度Tg而為Tg+20℃到Tg+90℃的範圍內進行。As shown in FIG. 3 , the metal-clad laminate 200 can be manufactured by thermocompression bonding the metal foil 102A as the second metal layer 102 to the build-up layer 110 a of the insulating resin layer 110 of the metal-clad laminate 100 . As a temperature condition of thermocompression bonding, it is preferable to perform it in the range of Tg+20 degreeC to Tg+90 degreeC with respect to the glass transition temperature Tg of a polyimide layer (B).

在具有以上結構的覆金屬積層板200中,為了保證加工成FPC等電路基板後的可靠性,第二金屬層102與聚醯亞胺層(B)的剝離強度優選為0.7 kN/m以上,更優選為1.0 kN/m以上。In the metal-clad laminate 200 having the above structure, in order to ensure the reliability after being processed into a circuit board such as FPC, the peel strength between the second metal layer 102 and the polyimide layer (B) is preferably 0.7 kN/m or more, More preferably, it is 1.0 kN/m or more.

<第三實施方式> 參照圖4及圖5對作為本發明的應用例的第三實施方式進行說明。如圖4及圖5所示,可通過將兩個覆金屬積層板100以聚醯亞胺層(B)彼此相向的方式配置、並對積層面110a彼此進行熱壓接來製作覆金屬積層板300。本實施方式的覆金屬積層板300是具有依次積層有第一金屬層101/聚醯亞胺層(A)/聚醯亞胺層(C)/聚醯亞胺層(B)/聚醯亞胺層(B)/聚醯亞胺層(C)/聚醯亞胺層(A)/第一金屬層101的結構的雙面覆金屬積層板。 <Third Embodiment> A third embodiment as an application example of the present invention will be described with reference to FIGS. 4 and 5 . As shown in FIG. 4 and FIG. 5 , a metal-clad laminate can be produced by arranging two metal-clad laminates 100 so that the polyimide layers (B) face each other, and thermocompression-bonding the laminated layers 110 a 300. The metal-clad laminate 300 of this embodiment has the structure of first metal layer 101/polyimide layer (A)/polyimide layer (C)/polyimide layer (B)/polyimide layer laminated in this order. A double-sided metal-clad laminate with a structure of amine layer (B)/polyimide layer (C)/polyimide layer (A)/first metal layer 101 .

<第四實施方式> 參照圖6及圖7對作為本發明的應用例的第四實施方式進行說明。如圖6及圖7所示,可通過如下方式來製作覆金屬積層板400:將兩個覆金屬積層板100以聚醯亞胺層(B)彼此相向的方式配置,並且在所述兩個覆金屬積層板100之間夾入接合片BS,對接合片BS與兩個積層面110a進行熱壓接。覆金屬積層板400是具有依次積層有第一金屬層101/聚醯亞胺層(A)/聚醯亞胺層(C)/聚醯亞胺層(B)/接合片BS/聚醯亞胺層(B)/聚醯亞胺層(C)/聚醯亞胺層(A)/第一金屬層101的結構的雙面覆金屬積層板。 <Fourth Embodiment> A fourth embodiment as an application example of the present invention will be described with reference to FIGS. 6 and 7 . As shown in FIGS. 6 and 7 , the metal-clad laminate 400 can be produced by arranging two metal-clad laminates 100 so that the polyimide layers (B) face each other, and The bonding sheet BS is sandwiched between the metal-clad laminates 100, and the bonding sheet BS is bonded to the two build-up layers 110a by thermocompression. The metal-clad laminate 400 is laminated sequentially with the first metal layer 101/polyimide layer (A)/polyimide layer (C)/polyimide layer (B)/bonding sheet BS/polyimide A double-sided metal-clad laminate with a structure of amine layer (B)/polyimide layer (C)/polyimide layer (A)/first metal layer 101 .

<電路基板> 所述實施方式的覆金屬積層板100、覆金屬積層板200、覆金屬積層板300、覆金屬積層板400主要用作FPC等電路基板的材料。即,通過對覆金屬積層板100、覆金屬積層板200、覆金屬積層板300、覆金屬積層板400的第一金屬層101和/或第二金屬層102利用常規方法加工成圖案狀來形成佈線層,可製造作為本發明一個實施方式的FPC等電路基板。雖省略圖示,但優選實施方式的電路基板具有覆金屬積層板100、覆金屬積層板200、覆金屬積層板300、覆金屬積層板400中的第一金屬層101及第二金屬層102中的任一者或兩者、或者兩個第一金屬層101中的任一者或兩者被置換為佈線層的結構。 <Circuit board> The metal-clad laminate 100 , the metal-clad laminate 200 , the metal-clad laminate 300 , and the metal-clad laminate 400 of the above embodiment are mainly used as materials for circuit boards such as FPC. That is, it is formed by processing the first metal layer 101 and/or the second metal layer 102 of the metal-clad laminate 100, the metal-clad laminate 200, the metal-clad laminate 300, and the metal-clad laminate 400 into a pattern by a conventional method. As the wiring layer, a circuit board such as an FPC which is one embodiment of the present invention can be manufactured. Although not shown, the circuit board according to the preferred embodiment has the first metal layer 101 and the second metal layer 102 in the metal-clad laminate 100 , the metal-clad laminate 200 , the metal-clad laminate 300 , and the metal-clad laminate 400 . Either or both of the two first metal layers 101 are replaced with wiring layers.

<電子元件/電子設備> 本實施方式的電子元件及電子設備包括所述電路基板。作為本實施方式的電子元件,例如可列舉:液晶顯示器、有機電致發光(electroluminescence,EL)顯示器、電子紙等顯示裝置、有機EL照明、太陽電池、觸控面板、照相機模組、逆變器、轉換器及其構成部件等。另外,作為電子設備,例如可列舉:HDD、DVD、行動電話、智能手機、平板終端、汽車的電子控制單元(electronic control unit,ECU)、動力控制單元(power control unit,PCU)等。電路基板在這些電子元件或電子設備中,可優選地用作例如可動部分的佈線、電纜、連接器等零件。 [實施例] <Electronic Components/Electronic Equipment> An electronic component and an electronic device according to the present embodiment include the circuit board. Examples of the electronic component of this embodiment include liquid crystal displays, organic electroluminescence (EL) displays, display devices such as electronic paper, organic EL lighting, solar cells, touch panels, camera modules, and inverters. , converters and their components, etc. In addition, examples of electronic devices include HDDs, DVDs, mobile phones, smart phones, tablet terminals, electronic control units (electronic control units, ECUs) and power control units (power control units, PCUs) of automobiles. In these electronic components or electronic devices, the circuit board can be preferably used as parts such as wiring of movable parts, cables, connectors, and the like. [Example]

以下示出實施例,對本發明的特徵進行更具體說明。但是,本發明的範圍並不限定於實施例。此外,在以下的實施例中,只要無特別說明,則各種測定、評價基於下述內容。Examples are shown below to describe the features of the present invention in more detail. However, the scope of the present invention is not limited to the examples. In addition, in the following examples, unless otherwise specified, various measurements and evaluations are based on the following contents.

[黏度的測定] 使用E型黏度計(博勒菲(Brookfield)公司製造,商品名:DV-II+Pro)來測定25℃下的黏度。以扭矩成為10%~90%的方式設定轉速,在開始測定起經過2分鐘後,讀取黏度穩定時的值。 [Measurement of viscosity] The viscosity at 25° C. was measured using an E-type viscometer (manufactured by Brookfield, trade name: DV-II+Pro). The rotation speed was set so that the torque became 10% to 90%, and after 2 minutes from the start of the measurement, the value when the viscosity was stable was read.

[重量平均分子量的測定] 利用凝膠滲透色譜儀(東曹公司製造,商品名:HLC-8420GPC)進行測定。使用聚苯乙烯作為標準物質,洗脫液使用N,N-二甲基乙醯胺。 [Measurement of weight average molecular weight] The measurement was performed with a gel permeation chromatography (manufactured by Tosoh Corporation, trade name: HLC-8420GPC). Polystyrene was used as a standard substance, and N,N-dimethylacetamide was used as an eluent.

[熱膨脹係數(CTE)的測定] 對於3 mm×20 mm的大小的聚醯亞胺膜,使用熱機械分析裝置(日立高新技術科學(Hitachi High-Tech Science)公司製造,商品名:TMA6100),一邊施加5.0 g的荷重,一邊以一定的升溫速度自30℃升溫至270℃,進而在所述溫度下保持10分鐘後,以5℃/min的速度進行冷卻,求出從250℃到100℃的平均熱膨脹係數(熱膨脹係數)。 [Measurement of Coefficient of Thermal Expansion (CTE)] For a polyimide film with a size of 3 mm×20 mm, a thermomechanical analyzer (manufactured by Hitachi High-Tech Science, trade name: TMA6100) was used to apply a load of 5.0 g while Raise the temperature from 30°C to 270°C at a certain heating rate, and then keep at the temperature for 10 minutes, then cool at a rate of 5°C/min, and obtain the average thermal expansion coefficient (thermal expansion coefficient) from 250°C to 100°C.

[玻璃化轉變溫度(Tg)及貯存彈性模數的測定] 對於5 mm×20 mm的大小的聚醯亞胺膜,使用動態黏彈性測定裝置(DMA:TA儀器(TA Instruments)公司製造,商品名:RSA3),在將從30℃到400℃的升溫速度設為5℃/min、頻率1 Hz的條件下進行測定。玻璃化轉變溫度由基於主分散的tanδ的最大值溫度求出。 [Measurement of glass transition temperature (Tg) and storage elastic modulus] For a polyimide film with a size of 5 mm × 20 mm, using a dynamic viscoelasticity measurement device (DMA: manufactured by TA Instruments (TA Instruments), trade name: RSA3), the heating rate will be from 30 ° C to 400 ° C The measurement was performed under the conditions of 5° C./min and a frequency of 1 Hz. The glass transition temperature was determined from the maximum temperature of tan δ based on the main dispersion.

[剝離強度的測定] 將柔性覆銅積層板中的塗佈面側的銅箔(第一銅箔層)蝕刻去除而獲得單面覆銅積層板,將所述單面覆銅積層板的銅箔(第二銅箔層)以寬度1.0 mm進行電路加工,以準備樣品,利用雙面膠帶將聚醯亞胺層的表面固定於鋁板,使用滕喜龍(Tensilon)試驗機(東洋精機製作所公司製造,商品名:斯特格拉夫(Strograph)VE-1D)進行測定。將銅箔在180度方向上以50 mm/min的速度來拉伸,求出剝離了10 mm時的中央值強度。將剝離強度為1.3 kN/m以上的情況判定為“◎”,將剝離強度為1.0 kN/m以上且小於1.3 kN/m的情況判定為“○”,將剝離強度為0.7 kN/m以上且小於1.0 kN/m的情況判定為“△”,將剝離強度小於0.7 kN/m的情況判定為“×”。 [Measurement of Peel Strength] Etch and remove the copper foil (first copper foil layer) on the coated side of the flexible copper-clad laminate to obtain a single-sided copper-clad laminate, and the copper foil (second copper foil) of the single-sided copper-clad laminate layer) with a width of 1.0 mm for circuit processing to prepare samples, the surface of the polyimide layer was fixed to the aluminum plate with double-sided tape, and Tensilon (Tensilon) testing machine (manufactured by Toyo Seiki Seisakusho Co., Ltd., trade name: Ste Graf (Strograph) VE-1D) for determination. The copper foil was stretched at a speed of 50 mm/min in a direction of 180 degrees, and the median strength at the time of peeling 10 mm was obtained. The case where the peel strength is 1.3 kN/m or more is judged as "◎", the case where the peel strength is 1.0 kN/m or more and less than 1.3 kN/m is judged as "○", and the peel strength is 0.7 kN/m or more and The case where it was less than 1.0 kN/m was judged as "Δ", and the case where the peel strength was less than 0.7 kN/m was judged as "×".

[外觀形狀的評價] 進行柔性覆銅積層板中的塗佈面側的銅箔(第一銅箔層)的外觀評價。將積層後的樣品切出350 mm×250 mm的大小的片材,以目視進行觀察,將外觀形狀良好且未產生褶皺的情況判定為“◎”,將局部產生了對電路加工並無影響的水平的褶皺的情況判定為“○”,將整個面上產生了對電路加工並無影響的水平的褶皺的情況判定為“△”,將整個面上產生了對電路加工有影響的水平的褶皺的情況判定為“×”。 [Evaluation of appearance shape] The appearance evaluation of the copper foil (1st copper foil layer) on the coating surface side in a flexible copper-clad laminated board was performed. Cut out the laminated sample into a sheet with a size of 350 mm × 250 mm, and observe it visually. If the appearance shape is good and no wrinkles occur, it is judged as "◎", and if there is a local defect that does not affect the circuit processing. The case of horizontal wrinkles is judged as "○", the case of horizontal wrinkles that do not affect circuit processing is judged as "△" on the entire surface, and the case of horizontal wrinkles that affect circuit processing is generated on the entire surface The case of is judged as "×".

[拉伸彈性模數的測定] 將銅箔切出寬度12.7 mm後,在380℃下進行15分鐘退火處理,然後使用拉伸壓縮試驗機(東洋精機製作所公司製造,商品名:斯特格拉夫(Strograph)R-1)進行測定。以夾盤間距101.6 mm、掃描速度10 mm/min的速度進行拉伸,根據所獲得的應力-位移曲線在0.2%位移處的斜率算出拉伸彈性模數。 [Measurement of tensile modulus of elasticity] After the copper foil was cut out to a width of 12.7 mm, it was annealed at 380°C for 15 minutes, and then measured using a tensile compression tester (manufactured by Toyo Seiki Seisakusho Co., Ltd., trade name: Strograph R-1) . Stretching was carried out at a chuck spacing of 101.6 mm and a scanning speed of 10 mm/min, and the tensile modulus of elasticity was calculated according to the slope of the obtained stress-displacement curve at 0.2% displacement.

[介電損耗角正切的測定] 使用向量網路分析儀(vector network analyzer)(安捷倫(Agilent)公司製造,商品名:E8363C)及分離柱電介質諧振器(SPDR諧振器),測定頻率10 GHz下的聚醯亞胺膜的介電損耗角正切。此外,測定中所使用的材料是將對柔性覆銅積層板的銅箔層進行蝕刻去除而製備的聚醯亞胺膜在溫度:24℃~26℃、濕度:45%~55%的條件下放置24小時後的材料。 [Measurement of dielectric loss tangent] The dielectric of the polyimide film at a frequency of 10 GHz was measured using a vector network analyzer (manufactured by Agilent, trade name: E8363C) and a separated column dielectric resonator (SPDR resonator). Loss tangent. In addition, the material used in the measurement is a polyimide film prepared by etching and removing the copper foil layer of the flexible copper-clad laminate. The material after standing for 24 hours.

實施例及比較例中使用的代號表示以下化合物。 PMDA:均苯四甲酸二酐 BTDA:3,3',4,4'-二苯甲酮四羧酸二酐 BPDA:3,3',4,4'-聯苯四羧酸二酐 m-TB:2,2'-二甲基-4,4'-二胺基聯苯 TPE-R:1,3-雙(4-胺基苯氧基)苯 BAPP:2,2-雙[4-(4-胺基苯氧基)苯基]丙烷 DMAc:N,N-二甲基乙醯胺 銅箔1:軋製銅箔,厚度9 μm,退火處理後的拉伸彈性模數36 GPa 銅箔2:軋製銅箔,厚度12 μm,退火處理後的拉伸彈性模數36 GPa 銅箔3:軋製銅箔,厚度18 μm,退火處理後的拉伸彈性模數36 GPa 銅箔4:軋製銅箔,厚度18 μm,退火處理後的拉伸彈性模數18 GPa The codes used in Examples and Comparative Examples represent the following compounds. PMDA: pyromellitic dianhydride BTDA: 3,3',4,4'-Benzophenone tetracarboxylic dianhydride BPDA: 3,3',4,4'-Biphenyltetracarboxylic dianhydride m-TB: 2,2'-dimethyl-4,4'-diaminobiphenyl TPE-R: 1,3-bis(4-aminophenoxy)benzene BAPP: 2,2-bis[4-(4-aminophenoxy)phenyl]propane DMAc: N,N-Dimethylacetamide Copper foil 1: Rolled copper foil, thickness 9 μm, tensile elastic modulus after annealing treatment 36 GPa Copper foil 2: rolled copper foil, thickness 12 μm, tensile elastic modulus after annealing treatment 36 GPa Copper foil 3: rolled copper foil, thickness 18 μm, tensile elastic modulus after annealing treatment 36 GPa Copper foil 4: rolled copper foil, thickness 18 μm, tensile elastic modulus after annealing treatment 18 GPa

(合成例1) 在255.0重量份的DMAc中加入21.43重量份的m-TB(100.92莫耳份),在室溫下攪拌30分鐘以上,使其完全溶解。接著,加入16.26重量份的PMDA(74.56莫耳份)及7.31重量份的BPDA(24.85莫耳份),在室溫下進行4小時攪拌,獲得黏度27,400 cP、重量平均分子量117,000的聚醯胺酸溶液1。 (Synthesis Example 1) 21.43 parts by weight of m-TB (100.92 parts by mole) was added to 255.0 parts by weight of DMAc, and stirred at room temperature for 30 minutes or more to completely dissolve it. Next, 16.26 parts by weight of PMDA (74.56 parts by mole) and 7.31 parts by weight of BPDA (24.85 parts by mole) were added, and stirred at room temperature for 4 hours to obtain a polyamic acid with a viscosity of 27,400 cP and a weight average molecular weight of 117,000. Solution 1.

在基材上,以硬化後的厚度成為約25 μm的方式均勻地塗佈聚醯胺酸溶液1,然後在140℃以下進行加熱乾燥並將溶媒去除。進而,從140℃階段性升溫到360℃來進行熱處理,完成醯亞胺化,從而製備像這樣獲得的聚醯亞胺膜1。所獲得的聚醯亞胺膜1的CTE為23 ppm/K,為非熱塑性。On the substrate, the polyamic acid solution 1 was uniformly applied so that the thickness after curing was about 25 μm, and then heat-dried at 140° C. or lower to remove the solvent. Furthermore, heat treatment was performed by raising the temperature stepwise from 140° C. to 360° C. to complete the imidization, and the thus obtained polyimide film 1 was produced. The obtained polyimide film 1 had a CTE of 23 ppm/K and was non-thermoplastic.

(合成例2) 在264.0重量份的DMAc中加入10.55重量份的TPE-R(36.10莫耳份)及7.66重量份的m-TB(33.10莫耳份),在室溫下攪拌30分鐘以上,使其完全溶解。接著,加入10.89重量份的PMDA(49.93莫耳份)及6.90重量份的BTDA(21.40莫耳份),在室溫下進行4小時攪拌,獲得黏度3,800 cP、重量平均分子量180,000的聚醯胺酸溶液2。 (Synthesis Example 2) 10.55 parts by weight of TPE-R (36.10 parts by mole) and 7.66 parts by weight of m-TB (33.10 parts by mole) were added to 264.0 parts by weight of DMAc, and stirred at room temperature for more than 30 minutes to completely dissolve. Next, add 10.89 parts by weight of PMDA (49.93 parts by mole) and 6.90 parts by weight of BTDA (21.40 parts by mole), and stir at room temperature for 4 hours to obtain a polyamic acid with a viscosity of 3,800 cP and a weight average molecular weight of 180,000. Solution 2.

與合成例1同樣地製作的聚醯亞胺膜2的Tg為300℃,貯存彈性模數為1.2×10 9Pa(270℃)、1.2×10 9Pa(275℃)、2.0×10 8Pa(350℃)及1.3×10 8Pa(400℃)。 Polyimide film 2 produced in the same manner as in Synthesis Example 1 had a Tg of 300°C and a storage elastic modulus of 1.2×10 9 Pa (270°C), 1.2×10 9 Pa (275°C), and 2.0×10 8 Pa (350°C) and 1.3×10 8 Pa (400°C).

(合成例3) 在264.0重量份的DMAc中加入23.20重量份的BAPP(56.53莫耳份),在室溫下攪拌30分鐘以上,使其完全溶解。接著,加入11.95重量份的PMDA(54.77莫耳份)及0.85重量份的BPDA(2.88莫耳份),在室溫下進行4小時攪拌,獲得黏度1,700 cP、重量平均分子量200,000的聚醯胺酸溶液3。 (Synthesis Example 3) 23.20 parts by weight of BAPP (56.53 parts by mole) was added to 264.0 parts by weight of DMAc, and stirred at room temperature for 30 minutes or more to completely dissolve it. Next, 11.95 parts by weight of PMDA (54.77 parts by mole) and 0.85 parts by weight of BPDA (2.88 parts by mole) were added, and stirred at room temperature for 4 hours to obtain a polyamic acid with a viscosity of 1,700 cP and a weight average molecular weight of 200,000. Solution 3.

與合成例1同樣地製作的聚醯亞胺膜3的Tg為320℃,貯存彈性模數為1.5×10 9Pa(270℃)、1.0×10 8Pa(275℃)、6.3×10 7Pa(350℃)及1.9×10 7Pa(400℃)。 Polyimide film 3 produced in the same manner as in Synthesis Example 1 had a Tg of 320°C and a storage elastic modulus of 1.5×10 9 Pa (270°C), 1.0×10 8 Pa (275°C), and 6.3×10 7 Pa (350°C) and 1.9×10 7 Pa (400°C).

(合成例4) 在264.0重量份的DMAc中加入17.94重量份的TPE-R(61.36莫耳份)及0.69重量份的m-TB(3.23莫耳份),在室溫下攪拌30分鐘以上,使其完全溶解。接著,加入11.63重量份的BPDA(39.53莫耳份)及5.75重量份的PMDA(26.35莫耳份),在室溫下進行4小時攪拌,獲得黏度2,500 cP、重量平均分子量121,000的聚醯胺酸溶液4。 (Synthesis Example 4) 17.94 parts by weight of TPE-R (61.36 parts by mole) and 0.69 parts by weight of m-TB (3.23 parts by mole) were added to 264.0 parts by weight of DMAc, and stirred at room temperature for more than 30 minutes to completely dissolve. Next, 11.63 parts by weight of BPDA (39.53 parts by mole) and 5.75 parts by weight of PMDA (26.35 parts by mole) were added, and stirred at room temperature for 4 hours to obtain a polyamic acid with a viscosity of 2,500 cP and a weight average molecular weight of 121,000. Solution 4.

與合成例1同樣地製作的聚醯亞胺膜4的Tg為225℃,貯存彈性模數為1.0×10 8Pa(275℃)。 The polyimide film 4 produced in the same manner as in Synthesis Example 1 had a Tg of 225° C. and a storage elastic modulus of 1.0×10 8 Pa (275° C.).

(合成例5) 在264.0重量份的DMAc中加入15.33重量份的TPE-R(52.43莫耳份)及2.78重量份的m-TB(13.11莫耳份),在室溫下攪拌30分鐘以上,使其完全溶解。接著,加入12.79重量份的BPDA(43.45莫耳份)及5.10重量份的PMDA(23.40莫耳份),在室溫下進行4小時攪拌,獲得黏度2,300 cP、重量平均分子量118,000的聚醯胺酸溶液5。 (Synthesis Example 5) 15.33 parts by weight of TPE-R (52.43 parts by mole) and 2.78 parts by weight of m-TB (13.11 parts by mole) were added to 264.0 parts by weight of DMAc, and stirred at room temperature for more than 30 minutes to completely dissolve. Next, 12.79 parts by weight of BPDA (43.45 parts by mole) and 5.10 parts by weight of PMDA (23.40 parts by mole) were added, and stirred at room temperature for 4 hours to obtain a polyamic acid with a viscosity of 2,300 cP and a weight average molecular weight of 118,000. Solution 5.

與合成例1同樣地製作的聚醯亞胺膜5的Tg為220℃,貯存彈性模數為4.4×10 7Pa(270℃)。 The polyimide film 5 prepared in the same manner as in Synthesis Example 1 had a Tg of 220° C. and a storage elastic modulus of 4.4×10 7 Pa (270° C.).

[實施例1] 在銅箔1上以硬化後的厚度成為2 μm的方式塗佈聚醯胺酸溶液2,然後在140℃以下進行加熱乾燥並將溶媒去除。在其上以硬化後的厚度成為21 μm的方式塗佈聚醯胺酸溶液1,然後在140℃以下進行加熱乾燥並將溶媒去除。進而,在其上以硬化後的厚度成為2 μm的方式塗佈聚醯胺酸溶液3,然後在140℃以下進行加熱乾燥並將溶媒去除。然後,從140℃階段性升溫到360℃來進行醯亞胺化,製備單面覆銅積層板1。在所獲得的單面覆銅積層板1的聚醯亞胺層側配置銅箔2,使用熱輥積層機,在積層壓力1 kN/cm 2、積層溫度350℃的條件下連續地進行熱積層,獲得柔性覆銅積層板1。將柔性覆銅積層板1的評價結果示於表1中。 [Example 1] The polyamic acid solution 2 was applied on the copper foil 1 so that the thickness after curing was 2 μm, and then heat-dried at 140° C. or lower to remove the solvent. Polyamic acid solution 1 was applied thereon so that the thickness after curing was 21 μm, and then heat-dried at 140° C. or lower to remove the solvent. Further, the polyamic acid solution 3 was applied thereon so that the thickness after curing became 2 μm, and then heat-dried at 140° C. or lower to remove the solvent. Then, the temperature was increased stepwise from 140° C. to 360° C. for imidization, and a single-sided copper-clad laminate 1 was prepared. Copper foil 2 was placed on the polyimide layer side of the obtained single-sided copper-clad laminate 1, and thermal lamination was performed continuously at a lamination pressure of 1 kN/cm 2 and a lamination temperature of 350°C using a hot roll lamination machine. , to obtain a flexible copper-clad laminate 1 . Table 1 shows the evaluation results of the flexible copper-clad laminate 1.

[實施例2] 除了使用銅箔2來代替銅箔1以外,與實施例1同樣地進行而獲得柔性覆銅積層板2。將柔性覆銅積層板2的評價結果示於表1中。 [Example 2] Except having used the copper foil 2 instead of the copper foil 1, it carried out similarly to Example 1, and obtained the flexible copper clad laminated board 2. Table 1 shows the evaluation results of the flexible copper-clad laminate 2.

[實施例3] 除了使用銅箔3來代替銅箔1以外,與實施例1同樣地進行而獲得柔性覆銅積層板3。將柔性覆銅積層板3的評價結果示於表1中。 [Example 3] Except having used the copper foil 3 instead of the copper foil 1, it carried out similarly to Example 1, and obtained the flexible copper clad laminated board 3. Table 1 shows the evaluation results of the flexible copper-clad laminate 3 .

[實施例4] 除了使用銅箔4來代替銅箔1以外,與實施例1同樣地進行而獲得柔性覆銅積層板4。將柔性覆銅積層板4的評價結果示於表1中。 [Example 4] Except having used the copper foil 4 instead of the copper foil 1, it carried out similarly to Example 1, and obtained the flexible copper clad laminated board 4. Table 1 shows the evaluation results of the flexible copper-clad laminate 4 .

[實施例5] 除了使用銅箔3來代替銅箔1、並將積層溫度設為400℃以外,與實施例1同樣地進行而獲得柔性覆銅積層板5。將柔性覆銅積層板5的評價結果示於表1中。 [Example 5] The flexible copper-clad laminated board 5 was obtained like Example 1 except having used the copper foil 3 instead of the copper foil 1, and having made lamination temperature 400 degreeC. Table 1 shows the evaluation results of the flexible copper-clad laminate 5 .

[實施例6] 除了使用銅箔2來代替銅箔1、使用聚醯胺酸溶液4來代替聚醯胺酸溶液3;及將積層溫度設為275℃以外,與實施例1同樣地進行而獲得柔性覆銅積層板6。將柔性覆銅積層板6的評價結果示於表1中。 [Example 6] Except that copper foil 2 was used instead of copper foil 1, polyamic acid solution 4 was used instead of polyamic acid solution 3, and the lamination temperature was set to 275°C, a flexible copper clad laminate was obtained in the same manner as in Example 1. board6. Table 1 shows the evaluation results of the flexible copper-clad laminate 6 .

[實施例7] 除了使用銅箔2來代替銅箔1、使用聚醯胺酸溶液5來代替聚醯胺酸溶液3;及將積層溫度設為270℃以外,與實施例1同樣地進行而獲得柔性覆銅積層板7。將柔性覆銅積層板7的評價結果示於表1中。 [Example 7] Except that copper foil 2 was used instead of copper foil 1, polyamic acid solution 5 was used instead of polyamic acid solution 3, and the lamination temperature was set to 270°C, a flexible copper clad laminate was obtained in the same manner as in Example 1. plate 7. Table 1 shows the evaluation results of the flexible copper-clad laminate 7 .

[實施例8] 除了使用銅箔2來代替銅箔1、使用聚醯胺酸溶液3來代替聚醯胺酸溶液2;使用聚醯胺酸溶液5來代替聚醯胺酸溶液3;及將積層溫度設為270℃以外,與實施例1同樣地進行而獲得柔性覆銅積層板8。將柔性覆銅積層板8的評價結果示於表1中。 [Example 8] In addition to using copper foil 2 instead of copper foil 1, using polyamic acid solution 3 instead of polyamic acid solution 2; using polyamic acid solution 5 instead of polyamic acid solution 3; and setting the lamination temperature to 270 Except for ℃, it carried out similarly to Example 1, and the flexible copper-clad laminated board 8 was obtained. Table 1 shows the evaluation results of the flexible copper-clad laminate 8 .

比較例1 除了使用銅箔2來代替銅箔1、使用聚醯胺酸溶液2來代替聚醯胺酸溶液3以外,與實施例1同樣地進行而獲得柔性覆銅積層板9。將柔性覆銅積層板9的評價結果示於表1中。 Comparative example 1 A flexible copper-clad laminate 9 was obtained in the same manner as in Example 1, except that copper foil 2 was used instead of copper foil 1 and polyamic acid solution 2 was used instead of polyamic acid solution 3 . Table 1 shows the evaluation results of the flexible copper-clad laminate 9 .

比較例2 除了使用銅箔2來代替銅箔1、使用聚醯胺酸溶液5來代替聚醯胺酸溶液2;使用聚醯胺酸溶液5來代替聚醯胺酸溶液3;及將積層溫度設為270℃以外,與實施例1同樣地進行而獲得柔性覆銅積層板10。將柔性覆銅積層板10的評價結果示於表1中。 Comparative example 2 In addition to using copper foil 2 instead of copper foil 1, using polyamic acid solution 5 instead of polyamic acid solution 2; using polyamic acid solution 5 instead of polyamic acid solution 3; and setting the lamination temperature to 270 Except for ℃, it carried out similarly to Example 1, and the flexible copper-clad laminated board 10 was obtained. Table 1 shows the evaluation results of the flexible copper-clad laminate 10 .

另外,表1中的“層(A)”及“層(B)”分別意指“聚醯亞胺層(A)”及“聚醯亞胺層(B)”。另外,表1中的E'(A)、E'(B)均意指積層溫度下的貯存彈性模數。In addition, "layer (A)" and "layer (B)" in Table 1 mean "polyimide layer (A)" and "polyimide layer (B)", respectively. In addition, both E'(A) and E'(B) in Table 1 mean the storage elastic modulus at the lamination temperature.

[表1]    聚醯胺酸溶液 第一 銅箔層 層(B)的Tg [℃] 積層 溫度[℃] E'(A) [Pa] E'(B) [Pa] E'(A) /E'(B) 外觀形狀 剝離 強度 層(A) 層(B) 實施例1 2 3 銅箔1 320 350 2.0E+08 6.3E+07 3.2 實施例2 2 3 銅箔2 320 350 2.0E+08 6.3E+07 3.2 實施例3 2 3 銅箔3 320 350 2.0E+08 6.3E+07 3.2 實施例4 2 3 銅箔4 320 350 2.0E+08 6.3E+07 3.2 實施例5 2 3 銅箔3 320 400 1.3E+08 1.9E+07 6.8 實施例6 2 4 銅箔2 225 275 1.2E+09 1.0E+08 12.0 實施例7 2 5 銅箔2 220 270 1.2E+09 4.4E+07 27.3 實施例8 3 5 銅箔2 220 270 1.5E+09 4.4E+07 34.1 比較例1 2 2 銅箔2 300 350 2.0E+08 2.0E+08 1.0 × 比較例2 5 5 銅箔2 220 270 4.4E+07 4.4E+07 1.0 × [Table 1] polyamide solution first copper foil layer Tg of layer (B) [°C] Lamination temperature [°C] E'(A) [Pa] E'(B) [Pa] E'(A)/E'(B) Appearance shape Peel strength Layer (A) Layer (B) Example 1 2 3 copper foil 1 320 350 2.0E+08 6.3E+07 3.2 Example 2 2 3 Copper foil 2 320 350 2.0E+08 6.3E+07 3.2 Example 3 2 3 Copper foil 3 320 350 2.0E+08 6.3E+07 3.2 Example 4 2 3 Copper foil 4 320 350 2.0E+08 6.3E+07 3.2 Example 5 2 3 Copper foil 3 320 400 1.3E+08 1.9E+07 6.8 Example 6 2 4 Copper foil 2 225 275 1.2E+09 1.0E+08 12.0 Example 7 2 5 Copper foil 2 220 270 1.2E+09 4.4E+07 27.3 Example 8 3 5 Copper foil 2 220 270 1.5E+09 4.4E+07 34.1 Comparative example 1 2 2 Copper foil 2 300 350 2.0E+08 2.0E+08 1.0 x Comparative example 2 5 5 Copper foil 2 220 270 4.4E+07 4.4E+07 1.0 x

將對實施例1~實施例8及比較例1~比較例2中獲得的柔性覆銅積層板1~柔性覆銅積層板10的銅箔層進行蝕刻去除而製備的聚醯亞胺膜1~聚醯亞胺膜10在頻率10 GHz下的介電損耗角正切(Df)示於表2中。The polyimide films 1 to 1 prepared by etching and removing the copper foil layers of the flexible copper-clad laminates 1 to 10 obtained in Examples 1 to 8 and Comparative Examples 1 to 2 The dielectric loss tangent (Df) of the polyimide film 10 at a frequency of 10 GHz is shown in Table 2.

[表2]    聚醯亞胺膜 介電損耗角正切(Df) 實施例1 1 0.0035   實施例2 2 0.0035   實施例3 3 0.0035   實施例4 4 0.0035   實施例5 5 0.0034   實施例6 6 0.0038   實施例7 7 0.0038   實施例8 8 0.0039   比較例1 9 0.0035   比較例2 10 0.0037   [Table 2] Polyimide membrane Dielectric loss tangent (Df) Example 1 1 0.0035 Example 2 2 0.0035 Example 3 3 0.0035 Example 4 4 0.0035 Example 5 5 0.0034 Example 6 6 0.0038 Example 7 7 0.0038 Example 8 8 0.0039 Comparative example 1 9 0.0035 Comparative example 2 10 0.0037

以上,出於例示的目的而對本發明的實施方式進行了詳細說明,但本發明不受所述實施方式的制約,能夠進行各種變形。As mentioned above, although the embodiment of this invention was demonstrated in detail for the purpose of illustration, this invention is not limited to the said embodiment, Various deformation|transformation is possible.

100、200、300、400:覆金屬積層板 101:第一金屬層 102:第二金屬層 102A:金屬箔 110:絕緣樹脂層 110a:積層面 (A):聚醯亞胺層(A) (B):聚醯亞胺層(B) (C):聚醯亞胺層(C) BS:接合片 100, 200, 300, 400: Metal-clad laminates 101: The first metal layer 102: Second metal layer 102A: metal foil 110: insulating resin layer 110a: stacking layer (A): polyimide layer (A) (B): polyimide layer (B) (C): polyimide layer (C) BS: Bonding piece

圖1是表示本發明第一實施方式的覆金屬積層板的結構的示意性剖面圖。 圖2是表示本發明第二實施方式的覆金屬積層板的結構的示意性剖面圖。 圖3是表示本發明第二實施方式的覆金屬積層板的製造方法的說明圖。 圖4是表示本發明第三實施方式的覆金屬積層板的製造方法的說明圖。 圖5是表示本發明第三實施方式的覆金屬積層板的結構的示意性剖面圖。 圖6是表示本發明第四實施方式的覆金屬積層板的製造方法的說明圖。 圖7是表示本發明第四實施方式的覆金屬積層板的結構的示意性剖面圖。 FIG. 1 is a schematic cross-sectional view showing the structure of a metal-clad laminate according to a first embodiment of the present invention. 2 is a schematic cross-sectional view showing the structure of a metal-clad laminate according to a second embodiment of the present invention. 3 is an explanatory view showing a method of manufacturing a metal-clad laminate according to a second embodiment of the present invention. 4 is an explanatory view showing a method of manufacturing a metal-clad laminate according to a third embodiment of the present invention. 5 is a schematic cross-sectional view showing the structure of a metal-clad laminate according to a third embodiment of the present invention. Fig. 6 is an explanatory view showing a method of manufacturing a metal-clad laminate according to a fourth embodiment of the present invention. 7 is a schematic cross-sectional view showing the structure of a metal-clad laminate according to a fourth embodiment of the present invention.

100:覆金屬積層板 100: metal clad laminate

101:第一金屬層 101: The first metal layer

110:絕緣樹脂層 110: insulating resin layer

110a:積層面 110a: stacking layer

(A):聚醯亞胺層(A) (A): polyimide layer (A)

(B):聚醯亞胺層(B) (B): polyimide layer (B)

(C):聚醯亞胺層(C) (C): Polyimide layer (C)

Claims (9)

一種覆金屬積層板,包括:第一金屬層;以及 絕緣樹脂層,積層於所述第一金屬層,所述覆金屬積層板的特徵在於, 所述絕緣樹脂層具有與所述第一金屬層相接的聚醯亞胺層(A)、以及在與所述第一金屬層相反的一側形成了樹脂面的聚醯亞胺層(B), 當以所述聚醯亞胺層(B)的玻璃化轉變溫度Tg為基準而將從Tg+20℃到Tg+90℃的範圍內的任一溫度下的聚醯亞胺層(A)的貯存彈性模數設為E'(A)、且將聚醯亞胺層(B)的貯存彈性模數設為E'(B)時,所述貯存彈性模數的比E'(A)/E'(B)為2.0以上。 A metal-clad laminate comprising: a first metal layer; and An insulating resin layer is laminated on the first metal layer, and the metal-clad laminate is characterized in that, The insulating resin layer has a polyimide layer (A) in contact with the first metal layer, and a polyimide layer (B) having a resin surface formed on a side opposite to the first metal layer. ), When taking the glass transition temperature Tg of the polyimide layer (B) as a reference, the temperature of the polyimide layer (A) at any temperature within the range from Tg+20°C to Tg+90°C When the storage elastic modulus is E'(A) and the storage elastic modulus of the polyimide layer (B) is E'(B), the ratio of the storage elastic modulus E'(A)/ E'(B) is 2.0 or more. 如請求項1所述的覆金屬積層板,其中,所述絕緣樹脂層具有積層於所述聚醯亞胺層(A)與所述聚醯亞胺層(B)之間的聚醯亞胺層(C)。The metal-clad laminate according to claim 1, wherein the insulating resin layer has polyimide laminated between the polyimide layer (A) and the polyimide layer (B). layer (C). 如請求項1或請求項2所述的覆金屬積層板,其中,所述第一金屬層的厚度為6 μm~18 μm的範圍內,拉伸彈性模數為10 GPa~100 GPa的範圍內。The metal-clad laminate according to claim 1 or claim 2, wherein the thickness of the first metal layer is in the range of 6 μm to 18 μm, and the tensile modulus of elasticity is in the range of 10 GPa to 100 GPa . 如請求項1所述的覆金屬積層板,還包括與所述聚醯亞胺層(B)的樹脂面相接地積層的第二金屬層。The metal-clad laminate according to claim 1, further comprising a second metal layer laminated in contact with the resin surface of the polyimide layer (B). 如請求項4所述的覆金屬積層板,其中,所述第二金屬層與所述聚醯亞胺層(B)的剝離強度為0.7 kN/m以上。The metal-clad laminate according to claim 4, wherein the peel strength between the second metal layer and the polyimide layer (B) is 0.7 kN/m or more. 一種電路基板,對如請求項4所述的覆金屬積層板中的所述第一金屬層及所述第二金屬層的任一者或兩者進行電路加工而成。A circuit substrate, which is obtained by performing circuit processing on either or both of the first metal layer and the second metal layer in the metal-clad laminate according to Claim 4. 一種電路基板,對如請求項1所述的覆金屬積層板中的所述第一金屬層進行電路加工而成。A circuit substrate, which is obtained by performing circuit processing on the first metal layer in the metal-clad laminate according to Claim 1. 一種電子元件,其特徵在於,包括如請求項6或請求項7所述的電路基板。An electronic component, characterized by comprising the circuit substrate as described in Claim 6 or Claim 7. 一種電子設備,其特徵在於,包括如請求項6或請求項7所述的電路基板。 An electronic device, characterized by comprising the circuit substrate as described in Claim 6 or Claim 7.
TW111137127A 2021-09-30 2022-09-30 Metal-clad laminate, circuit substrate, electronic device and electronic apparatus TW202316920A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-162374 2021-09-30
JP2021162374 2021-09-30

Publications (1)

Publication Number Publication Date
TW202316920A true TW202316920A (en) 2023-04-16

Family

ID=85770946

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111137127A TW202316920A (en) 2021-09-30 2022-09-30 Metal-clad laminate, circuit substrate, electronic device and electronic apparatus

Country Status (4)

Country Link
JP (1) JP2023051810A (en)
KR (1) KR20230047000A (en)
CN (1) CN115891346A (en)
TW (1) TW202316920A (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4619860B2 (en) 2004-07-13 2011-01-26 新日鐵化学株式会社 Flexible laminate and method for manufacturing the same
JP7212515B2 (en) 2018-12-26 2023-01-25 日鉄ケミカル&マテリアル株式会社 Metal-clad laminates and circuit boards

Also Published As

Publication number Publication date
JP2023051810A (en) 2023-04-11
KR20230047000A (en) 2023-04-06
CN115891346A (en) 2023-04-04

Similar Documents

Publication Publication Date Title
TWI781901B (en) Polyimide film, copper laminate and circuit substrate
JP6908590B2 (en) Polyamic acid, thermoplastic polyimide, resin film, metal-clad laminate and circuit board
JP7301495B2 (en) Metal-clad laminates and circuit boards
JP2022118015A (en) Double-sided metal-clad laminate and circuit board
CN113563585B (en) Polyimide and application thereof in metal laminated plate
TW202337693A (en) Multilayer circuit board and method of manufacturing the same
TW202140622A (en) Resin film, metal-clad laminate and circuit board wherein the resin film includes a liquid crystal polymer layer, a first adhesive layer, and a second adhesive layer
JP7053208B2 (en) Polyimide film, metal-clad laminate and circuit board
JP7453432B2 (en) Metal-clad laminates and circuit boards
KR20230117670A (en) Metal clad laminate and circuit board
TW202010634A (en) Laminated board with metal-coated layer, adhesive sheet, adhesive polyimide resin composition and circuit substrate having adhesive layer with excellent adhesion, dielectric constant, small dielectric dissipation factor and capable of reducing transmission loss even for high-frequency transmission
TW202319444A (en) Polyamide acid, polyimide, polyimide film, metal-clad laminate and circuit
JP7405644B2 (en) Metal-clad laminates and circuit boards
TW202225276A (en) Polyimide film, metal-clad laminate, method for producing same and circuit substrate
TW202316920A (en) Metal-clad laminate, circuit substrate, electronic device and electronic apparatus
JP7120870B2 (en) Method for producing polyimide film and method for producing metal-clad laminate
JP7453433B2 (en) Metal-clad laminates and circuit boards
JP7453434B2 (en) Metal-clad laminates and circuit boards
TW202400413A (en) Metal-clad laminate, circuit board, electronic device and electronic apparatus
JP2024046788A (en) Circuit board manufacturing method
JP2024050431A (en) Metal-clad laminates, circuit boards, electronic devices and electronic equipment
JP2022047880A (en) Manufacturing method of polyimide film and manufacturing method of metal-clad laminate board
TW202237705A (en) Polyimide, metal-clad laminate plate and circuit board
TW202413090A (en) Metal-clad laminate, circuit board, electronic device and electronic apparatus
TW202405055A (en) Polyamic acid, polyimide, metal-clad laminate and circuit board