TW202314792A - 形成應變通道層的方法 - Google Patents

形成應變通道層的方法 Download PDF

Info

Publication number
TW202314792A
TW202314792A TW111147542A TW111147542A TW202314792A TW 202314792 A TW202314792 A TW 202314792A TW 111147542 A TW111147542 A TW 111147542A TW 111147542 A TW111147542 A TW 111147542A TW 202314792 A TW202314792 A TW 202314792A
Authority
TW
Taiwan
Prior art keywords
silicon
germanium
channel layer
strained channel
substrate
Prior art date
Application number
TW111147542A
Other languages
English (en)
Inventor
龔聖欽
華 仲
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202314792A publication Critical patent/TW202314792A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7855Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with at least two independent gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys

Abstract

本揭露內容大致關於具有共形半導體覆層材料的FINFET裝置與其之形成方法。覆層材料係矽鍺磊晶材料。能夠沉積覆層材料至小於傳統沉積/蝕刻技術所形成之覆層材料的厚度。

Description

形成應變通道層的方法
本揭露內容的實施例大致關於具有共形半導體覆層材料的鰭式場效電晶體(FINFET)裝置與其之形成方法。
將高移動性應變通道併入鰭-基電晶體中提供期望的應力進入裝置的通道區域中。然而,形成應力材料至裝置的鰭部上的傳統技術會造成裝置在低於設計的水平或更糟情況下作用,這會造成裝置因為應力材料與鰭部不小心的合併(這可造成電短路)而報廢。
需要的是在FINFET裝置上形成共形磊晶半導體覆層材料的方法。
在一個實施例中,形成應變通道層的方法包括暴露基板上的一個或多個三維特徵至含矽前驅物與包含氯的含鍺前驅物,以在一個或多個特徵的橫切表面上形成磊晶矽-鍺通道層,橫切表面具有不同的晶體取向。
在另一個實施例中,形成應變通道層的方法包括暴露基板上的一個或多個垂直鰭部至含矽前驅物與含鍺前驅物,以在一個或多個垂直鰭部的暴露水平與垂直表面上選擇性地形成磊晶矽-鍺應變通道層,暴露水平與垂直表面具有選自<100>與<110>面的不同晶體取向,其中含鍺前驅物包括氯。
在另一個實施例中,裝置包括基板,基板具有複數個垂直鰭部自基板的表面延伸;與磊晶矽-鍺應變通道層,共形地形成於複數個垂直鰭部的表面的水平與垂直表面上,水平與垂直表面具有不同的晶體取向,其中磊晶矽-鍺應變通道層具有均勻鍺濃度與小於五奈米的厚度。
本揭露內容大致關於具有共形半導體覆層材料的FINFET裝置與其之形成方法。覆層材料係矽鍺磊晶材料。能夠沉積覆層材料至小於傳統沉積/蝕刻技術所形成之覆層材料的厚度,同時仍維持期望的均勻性。
第1A-1C圖係根據揭露內容實施例的基板在FINFET形成操作過程中的示意橫剖面圖。第1A圖描繪具有垂直鰭部102與淺溝槽隔離(STI)層104於基板100中的基板100。基板100可為塊矽基板、絕緣體上矽(SOI)基板、鍺基板等等。垂直鰭部102自基板100的上表面垂直地延伸。藉由造成垂直鰭部102的基板100的上表面的遮罩與蝕刻來形成垂直鰭部102。然而,亦可考慮其他形成方法。垂直鰭部102包括透過垂直鰭部102的植入而引進的通道摻雜。STI 104配置在基板100的上表面上且在垂直鰭部102之間。STI 104促進基板100上形成之裝置之間的電隔離。如第1A圖中所描繪,垂直鰭部102延伸高於STI 104的上表面一段距離。在一個實例中,STI 104係由二氧化矽、氮化矽或氮氧化矽的一者或多者所形成。然而,可考慮其他介電材料。
在垂直鰭部102與STI 104形成後,如第1B圖中所示,應變通道層106形成於垂直鰭部102的表面上。應變通道層106在磊晶沉積製程過程中形成,並因此具有對應於垂直鰭部102的晶體取向的晶體取向。在一個實例中,應變通道層106係磊晶矽鍺(Si (1-x)Ge x)。應變通道層106的存在引發期望的應力進入裝置的通道區域、裝置的源極/汲極區域或兩者。在一個實例中,應變通道層106作為接合材料。
藉由暴露垂直鰭部102至包括一個或多個鍺前驅物與一個或多個矽前驅物的氣體混合物來形成應變通道層106。應變通道層106中的Ge部分在Si (1-x)Ge x的範圍可為約5%至約75%,例如Si 0.95Ge 0.05至Si 0.25Ge 0.75。一個或多個鍺前驅物可包括四氯化鍺(GeCl 4)、氯鍺烷(GeH 3Cl)、二氯鍺烷(GeH 2Cl 2)、三氯鍺烷(GeHCl 3)、六氯二鍺烷(Ge 2Cl 6)、八氯三鍺烷(Ge 3Cl 8)。一個或多個矽前驅物可包括矽烷(SiH 4)、二矽烷(Si 2H 6)、三矽烷(Si 3H 8)、四矽烷(Si 4H 10)、五矽烷(Si 5H 12)。可利用包括雙原子氫或雙原子氮的選擇性載氣。值得注意的是可考慮其他鍺與矽前驅物。在一個實例中,基板100被維持在約560℃至約700℃範圍中的溫度下。處理腔室中的壓力被維持在約5托至約80托的壓力下。各自在約100 sccm至約1200 sccm的流動速率下提供矽前驅物與鍺前驅物,然而,取決於基板尺寸而可考慮其他流動速率。可利用雙原子氮或雙原子氫的載氣來促進鍺前驅物與矽前驅物的流動。
在垂直鰭部的一個或多個垂直與水平表面上共形地沉積磊晶矽-鍺應變通道層的特定實例中,在約15 sccm至約45sccm的流動速率下提供矽前驅物,並在約100 sccm至約1000 sccm的流動速率下提供鍺前驅物。在上述實例中,矽前驅物與鍺前驅物的比例係約1:2至約1:67。
將上方具有垂直鰭部102的基板100在循環製程(例如,原子層沉積)中暴露至鍺前驅物與矽前驅物或同時地(例如,化學氣相沉積)暴露至鍺前驅物與矽前驅物。在一個實例中,在低壓化學氣相沉積製程(例如,約5托至約80托下)中形成應變通道層106。額外或替代地,離子化或自由基化矽前驅物與/或鍺前驅物以促進材料沉積於垂直鰭部102上。在一個實例中,應變通道層106可被沉積至小於10奈米的厚度,諸如約小於5奈米或者約2奈米或更低。在上述實例中,一旦應變通道層106的厚度與電子波函數的德布羅意(de Broglie)波長大小相同時可發現量子侷限。當材料被沉積至上述厚度時,沉積材料的電子與光學性質偏離於塊材料的那些性質。優點可包括諸如汲極電流的提高、較低的功率消耗與/或較低的電阻器開啟閥值電壓。
在上述實例中,垂直鰭部102作為允許應變通道層106生長於垂直鰭部102上的結構性支撐。由於垂直鰭部102提供結構性支撐,可如上述形成具有相對較小厚度的應變通道層106,藉此透過藉由降低接合寬度而得的較大電流流動來改善裝置效能。
傳統磊晶生成矽鍺被形成帶有歸因於矽鍺的結晶取向(即,面心立方)以及HCl的使用的小面,HCl通常用於FINFET裝置中的傳統矽鍺形成中。包含小面通常造成非均勻的膜沉積。然而,相較於傳統方式,形成的應變通道層106具有顯著降低的小面數目。此外,相對於傳統矽鍺層,應變通道層106亦具有處處均勻的矽與鍺濃度。在傳統矽鍺層中,相較於垂直(例如,<110>)面,鍺濃度通常在水平(例如,<100>)面中較高。此外,材料的生成速率在<100>與<110>面上顯著不同,這造成非均勻厚度。應變通道層106並未遭受與傳統層上相同的濃度與/或厚度非均勻性。
可藉由利用含氯的鍺前驅物來達成本揭露內容的優點。含氯的鍺前驅物(例如,上方描述的那些前驅物)係選擇性抵制氧化物與氮化物材料。因此,利用上述的處理化學物,應變通道層106被形成在垂直鰭部102的暴露表面上,但矽鍺材料通常不沉積於STI 104的暴露表面上。再者,本文所述的處理化學物促進橫跨大範圍製程條件<100>與<110>面兩者上的均勻生長速率。
在一個實例中,可如上述般生成應變通道層106。在約650℃與約10托下,<100>面的生長速率係每分鐘約162埃,而鍺濃度係約27原子百分比。在<110>面中,生長速率係每分鐘約165埃,而鍺濃度係約26原子百分比。在另一個實例中,在約600℃與約15托下,<100>面中的生長速率係每分鐘約87埃,而鍺濃度係約30百分比。在<110>面中,生長速率係每分鐘約92埃,而鍺濃度係約28百分比。在一個實例中,<100>面與<110>面中的生長速率在彼此的3百分比內,諸如彼此的2百分比內、或彼此的1.5百分比內或者彼此的1.0百分比內。
如第1C圖中所描繪,在應變通道層106形成後,在應變通道層上形成閘極介電質108與閘極材料110。閘極介電質108位在應變通道層106與閘極材料110之間以促進兩者之間的電隔離。閘極介電質108可由氧化矽、氮化矽、氧化鉿、氮氧化鉿矽與/或氧化鉿矽所形成。閘極材料110可由聚矽、非晶矽、鍺、矽鍺、金屬與/或金屬合金所形成。
第2A-2D圖描繪根據揭露內容的一個實施例形成在基板100上的應變通道層106的TEM照片。應變通道層106共形地形成於垂直鰭部102上。應變通道層106係具有處處均勻厚度與濃度的磊晶矽鍺層。此外,由於應變通道層106選擇性沉積於垂直鰭部102的暴露表面上而不沉積於STI 104的暴露表面上,自STI移除材料的蝕刻操作便非為必需的。因此,比起傳統方式應變通道層106的形成更有效率。
儘管描繪FINFET的一個實例,但亦可考慮其他裝置。舉例而言,本文的實施例可用於雙閘極、三閘極與相似的FINFET結構以及其他特徵。亦可考慮在FINFET以外的裝置中使用。再者,儘管參照應變通道層來描述本文的實施例,亦可考慮參照非應變通道層來應用所揭露的實施例。
揭露內容的優點包括比起傳統應變閘極通道更均勻地且較小規模地沉積之應變閘極通道的應用。此外,本文所述之應變閘極通道的形成製程利用選擇性沉積製程,藉此藉由排除某些遮罩與蝕刻製程來降低製程時間。
儘管上文針對本揭露內容的實施例,但可在不悖離本揭露內容的基本範圍下設計出揭露內容的其他與進一步實施例,且本揭露內容的範圍係由後續的申請專利範圍所決定。
100:基板 102:垂直鰭部 104:STI 106:應變通道層 108:閘極介電質 110:閘極材料
為了可詳細地理解本揭露內容的上方記載特徵,可藉由參照實施例(某些描繪於附圖中)而取得揭露內容更特定的描述內容(簡短概述於上)。然而,值得注意的是附圖僅描繪示範性實施例並因此不被視為限制範圍,因為此揭露內容可允許其他等效性實施例。
第1A-1C圖係根據揭露內容實施例的基板在FINFET形成操作過程中的示意橫剖面圖。
第2A-2D圖描繪根據揭露內容實施例的第1B圖的應變通道層的TEM照片。
為了促進理解,已經儘可能利用相同的元件符號來標示圖式中共有的相同元件。預期一個實施例的元件與特徵可有利地併入其他實施例而毋需進一步列舉。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
100:基板
102:垂直鰭部
104:STI
106:應變通道層
108:閘極介電質
110:閘極材料

Claims (12)

  1. 一種形成一應變通道層的方法,包括以下步驟: 在一基板的一上表面上形成一淺溝槽隔離層,該基板包含多個三維特徵,其中該淺溝槽隔離層形成於自該上表面延伸的該些三維特徵之間,且其中該淺溝槽隔離層包括氧化矽、氮化矽或氮氧化矽;及 暴露該基板上的該些三維特徵至一含矽前驅物與一包含氯的含鍺前驅物,以選擇性地形成一磊晶矽-鍺應變通道層於該些三維特徵的數個橫切表面上,同時維持該淺溝槽隔離層的暴露表面不具有磊晶矽-鍺應變通道層,該些橫切表面包括一垂直表面與一水平表面,且其中該磊晶矽-鍺應變通道層具有一橫跨該些三維特徵的實質相同厚度。
  2. 如請求項1所述之方法,其中該基板在暴露過程中被維持在約560℃至約700℃的一範圍中的一溫度下。
  3. 如請求項1所述之方法,其中該含鍺前驅物包括選自下列所構成之群組的一或多個化合物:四氯化鍺(GeCl 4)、氯鍺烷(GeH 3Cl)、二氯鍺烷(GeH 2Cl 2)、三氯鍺烷(GeHCl 3)、六氯二鍺烷(Ge 2Cl 6)與八氯三鍺烷(Ge 3Cl 8)。
  4. 如請求項1所述之方法,其中該含矽前驅物包括選自下列所構成之群組的一或多個化合物:矽烷(SiH 4)、二矽烷(Si 2H 6)、三矽烷(Si 3H 8)與四矽烷(Si 4H 10)。
  5. 如請求項1所述之方法,進一步包括: 在該磊晶矽-鍺應變通道層上形成一閘極介電質;及 在該閘極介電質上形成一閘極材料。
  6. 如請求項5所述之方法,其中該閘極介電質包括氧化矽、氮化矽、氧化鉿、氮氧化鉿矽、氧化鉿矽或上述之任一組合,且其中該閘極材料包括聚矽、非晶矽、鍺、矽鍺或上述之任一組合。
  7. 如請求項1所述之方法,其中該磊晶矽-鍺應變通道層被共形地沉積在該些三維特徵上。
  8. 如請求項1所述之方法,其中該些三維特徵包括數個垂直鰭部。
  9. 如請求項8所述之方法,其中該些垂直鰭部包括矽。
  10. 如請求項1所述之方法,其中該磊晶矽-鍺應變通道層在<100>與<110>面上具有大約相同的沉積速率。
  11. 如請求項1所述之方法,其中一FINFET裝置形成於該基板上。
  12. 如請求項1所述之方法,其中該磊晶矽-鍺應變通道層具有一約2奈米至小於10奈米的厚度。
TW111147542A 2016-12-12 2017-12-12 形成應變通道層的方法 TW202314792A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662432869P 2016-12-12 2016-12-12
US62/432,869 2016-12-12

Publications (1)

Publication Number Publication Date
TW202314792A true TW202314792A (zh) 2023-04-01

Family

ID=62487874

Family Applications (3)

Application Number Title Priority Date Filing Date
TW110127685A TWI812984B (zh) 2016-12-12 2017-12-12 形成應變通道層的方法
TW106143536A TWI748021B (zh) 2016-12-12 2017-12-12 形成應變通道層的方法
TW111147542A TW202314792A (zh) 2016-12-12 2017-12-12 形成應變通道層的方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW110127685A TWI812984B (zh) 2016-12-12 2017-12-12 形成應變通道層的方法
TW106143536A TWI748021B (zh) 2016-12-12 2017-12-12 形成應變通道層的方法

Country Status (4)

Country Link
US (1) US11011635B2 (zh)
KR (1) KR102427152B1 (zh)
TW (3) TWI812984B (zh)
WO (1) WO2018111859A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060846B2 (en) * 2018-12-19 2021-07-13 Kla Corporation Scatterometry based methods and systems for measurement of strain in semiconductor structures
EP3675159B1 (en) * 2018-12-27 2023-05-24 IMEC vzw A semiconductor structure and a method for cutting a semiconductor fin

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6897131B2 (en) 2002-09-20 2005-05-24 Applied Materials, Inc. Advances in spike anneal processes for ultra shallow junctions
US7540920B2 (en) 2002-10-18 2009-06-02 Applied Materials, Inc. Silicon-containing layer deposition with silicon compounds
US7132338B2 (en) 2003-10-10 2006-11-07 Applied Materials, Inc. Methods to fabricate MOSFET devices using selective deposition process
US8501594B2 (en) 2003-10-10 2013-08-06 Applied Materials, Inc. Methods for forming silicon germanium layers
US7166528B2 (en) 2003-10-10 2007-01-23 Applied Materials, Inc. Methods of selective deposition of heavily doped epitaxial SiGe
US7078302B2 (en) 2004-02-23 2006-07-18 Applied Materials, Inc. Gate electrode dopant activation method for semiconductor manufacturing including a laser anneal
US7682940B2 (en) 2004-12-01 2010-03-23 Applied Materials, Inc. Use of Cl2 and/or HCl during silicon epitaxial film formation
US7560352B2 (en) 2004-12-01 2009-07-14 Applied Materials, Inc. Selective deposition
US7312128B2 (en) 2004-12-01 2007-12-25 Applied Materials, Inc. Selective epitaxy process with alternating gas supply
US7393733B2 (en) * 2004-12-01 2008-07-01 Amberwave Systems Corporation Methods of forming hybrid fin field-effect transistor structures
US7235492B2 (en) 2005-01-31 2007-06-26 Applied Materials, Inc. Low temperature etchant for treatment of silicon-containing surfaces
WO2007035660A1 (en) 2005-09-20 2007-03-29 Applied Materials, Inc. Method to form a device on a soi substrate
EP2024531A2 (en) 2006-05-01 2009-02-18 Applied Materials, Inc. A method of ultra-shallow junction formation using si film alloyed with carbon
JP2010103142A (ja) * 2008-10-21 2010-05-06 Toshiba Corp 半導体装置の製造方法
US7947589B2 (en) * 2009-09-02 2011-05-24 Freescale Semiconductor, Inc. FinFET formation with a thermal oxide spacer hard mask formed from crystalline silicon layer
US20110147840A1 (en) * 2009-12-23 2011-06-23 Cea Stephen M Wrap-around contacts for finfet and tri-gate devices
US8310013B2 (en) 2010-02-11 2012-11-13 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating a FinFET device
US8629426B2 (en) * 2010-12-03 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain stressor having enhanced carrier mobility manufacturing same
US8642454B2 (en) 2011-05-19 2014-02-04 International Business Machines Corporation Low temperature selective epitaxy of silicon germanium alloys employing cyclic deposit and etch
US9406518B2 (en) 2011-11-18 2016-08-02 Taiwan Semiconductor Manufacturing Company, Ltd. (110) surface orientation for reducing fermi-level-pinning between high-K dielectric and group III-V compound semiconductor substrate
US8847281B2 (en) * 2012-07-27 2014-09-30 Intel Corporation High mobility strained channels for fin-based transistors
US20150170916A1 (en) * 2013-12-17 2015-06-18 United Microelectronics Corp. Semiconductor process for manufacturing epitaxial structures
US10153372B2 (en) * 2014-03-27 2018-12-11 Intel Corporation High mobility strained channels for fin-based NMOS transistors
US20150318169A1 (en) 2014-05-01 2015-11-05 Globalfoundries Inc. Methods of forming epitaxial semiconductor cladding material on fins of a finfet semiconductor device
KR20170070281A (ko) * 2014-10-30 2017-06-21 어플라이드 머티어리얼스, 인코포레이티드 저온에서 얇은 에피택셜 필름들을 성장시키는 방법

Also Published As

Publication number Publication date
TW202143294A (zh) 2021-11-16
TWI812984B (zh) 2023-08-21
US20180166570A1 (en) 2018-06-14
KR20190086752A (ko) 2019-07-23
TWI748021B (zh) 2021-12-01
TW201833996A (zh) 2018-09-16
US11011635B2 (en) 2021-05-18
KR102427152B1 (ko) 2022-07-28
WO2018111859A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
CN107112213B (zh) 在低温下生长薄外延膜的方法
TWI689971B (zh) 使用n型摻雜的選擇性磊晶生長以在n型金氧半導體鰭式電晶體中形成非直視性的源極汲極延伸部分
US10115826B2 (en) Semiconductor structure and the manufacturing method thereof
US10205002B2 (en) Method of epitaxial growth shape control for CMOS applications
CN105448991B (zh) 晶体管及其形成方法
TWI677906B (zh) 選擇性磊晶的方法
JP2009540565A (ja) 半導体膜の選択的なエピタキシャル形成
US9129938B1 (en) Methods of forming germanium-containing and/or III-V nanowire gate-all-around transistors
KR102321839B1 (ko) 트랜지스터의 소스/드레인 영역 상의 에피택셜 필름에 대한 선택적 식각 방법
US20170025509A1 (en) Strained silicon germanium fin with controlled junction for finfet devices
TWI812984B (zh) 形成應變通道層的方法
TWI544623B (zh) 磊晶層及其製作方法
US9865587B1 (en) Method and structure for forming buried ESD with FinFETs
US9349864B1 (en) Methods for selectively forming a layer of increased dopant concentration
US10879131B2 (en) Semiconductor structure and manufacturing method for the same
US10002759B2 (en) Method of forming structures with V shaped bottom on silicon substrate
US20230420521A1 (en) Graded superlattice structure for gate all around devices