TW202312644A - Half-bridge flyback power converter and control method thereof - Google Patents

Half-bridge flyback power converter and control method thereof Download PDF

Info

Publication number
TW202312644A
TW202312644A TW111121179A TW111121179A TW202312644A TW 202312644 A TW202312644 A TW 202312644A TW 111121179 A TW111121179 A TW 111121179A TW 111121179 A TW111121179 A TW 111121179A TW 202312644 A TW202312644 A TW 202312644A
Authority
TW
Taiwan
Prior art keywords
transistor
signal
period
flyback converter
bridge
Prior art date
Application number
TW111121179A
Other languages
Chinese (zh)
Other versions
TWI822091B (en
Inventor
楊大勇
蘇英傑
陳裕昌
Original Assignee
立錡科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/673,298 external-priority patent/US12009753B2/en
Application filed by 立錡科技股份有限公司 filed Critical 立錡科技股份有限公司
Publication of TW202312644A publication Critical patent/TW202312644A/en
Application granted granted Critical
Publication of TWI822091B publication Critical patent/TWI822091B/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A half-bridge flyback power converter: a first transistor, a second transistor and a third transistor which form a half-bridge circuit. The first transistor is turned on for generating a negative circulated current for achieving zero voltage switching of the second transistor. The second transistor is turned on for magnetizing a transformer. The third transistor is turned on during a demagnetized time period to generate an output voltage. The physical size of the first transistor is smaller than physical size of the third transistor.

Description

半橋返馳式轉換器及其控制方法Half-bridge flyback converter and its control method

本發明係有關一種半橋返馳式轉換器,特別是指一種非對稱半橋返馳式轉換器。本發明也有關於用以控制非對稱半橋返馳式轉換器的控制方法。The invention relates to a half-bridge flyback converter, in particular to an asymmetrical half-bridge flyback converter. The present invention also relates to a control method for controlling an asymmetrical half-bridge flyback converter.

請參閱圖1,圖1顯示先前技術美國專利US 5,959,850的非對稱占空比返馳式轉換器(Asymmetrical Duty Cycle Flyback Converter),此先前技術揭露了具有零電壓切換(zero voltage switching, ZVS)的半橋返馳式轉換器,藉此達成較高的功率效率。零電壓切換可被定義為當電晶體的跨壓 (例如:汲源極電壓)為零或接近於零時,將電晶體切換為導通。然而,本先前技術的缺點為,於輕負載狀態中,電源轉換器的功率轉換效率較低。Please refer to FIG. 1. FIG. 1 shows an asymmetrical duty cycle flyback converter (Asymmetrical Duty Cycle Flyback Converter) of the prior art US Patent No. 5,959,850. This prior art discloses a zero voltage switching (ZVS) Half-bridge flyback converter to achieve higher power efficiency. ZVS can be defined as switching a transistor on when the voltage across the transistor (eg, drain-to-source voltage) is zero or close to zero. However, the disadvantage of the prior art is that the power conversion efficiency of the power converter is low in the light load state.

上述先前技術的另一個缺點在於,該電源轉換器的輸出電壓係不可變的,具體而言,上述先前技術若要改為具有可變輸出電壓的零電壓切換返馳式轉換器,必須藉由偵測其變壓器之去磁時段而控制變壓器的切換。Another disadvantage of the above-mentioned prior art is that the output voltage of the power converter is not variable. Specifically, if the above-mentioned prior art is to be changed to a ZVS flyback converter with a variable output voltage, it must be changed by Detect the demagnetization period of the transformer and control the switching of the transformer.

另一先前技術美國專利US 7,151,681為測量變壓器的反射電壓與放電時段的多重取樣電路(Multiple-sampling circuit for measuring reflected voltage and discharge time of a transformer),此先前技術揭露一種偵測變壓器的輸出電壓與去磁時段的方法,然而,本先前技術無法達成電源轉換器的零電壓切換,其係用於不連續導通模式(discontinuous conduction mode, DCM)的操作。Another prior art US patent US 7,151,681 is a multiple-sampling circuit for measuring reflected voltage and discharge time of a transformer (Multiple-sampling circuit for measuring reflected voltage and discharge time of a transformer). This prior art discloses a method for detecting the output voltage and discharge time of a transformer. The method of demagnetization period, however, cannot achieve ZVS of the power converter in the present prior art, which is used for discontinuous conduction mode (DCM) operation.

圖2顯示先前技術之半橋返馳式轉換器於輕負載狀態中操作於不連續導通模式之波形圖。驅動訊號SH用以驅動半橋返馳式轉換器的上橋開關,以激磁變壓器,驅動訊號SL用以驅動半橋返馳式轉換器的下橋開關,激磁電流IM的訊號波形顯示變壓器操作於不連續導通模式。當半橋返馳式轉換器的輸出功率下降時,驅動訊號SH的脈寬PW因半橋返馳式轉換器的回授控制而降低,驅動訊號SL的脈寬亦對應降低,因此,半橋返馳式轉換器的切換頻率增加,切換損失也因而增加。當驅動訊號SH轉為低位準(關斷)後,於變壓器的去磁時段中,驅動訊號SL的第一個脈波被致能。驅動訊號SL的第二脈波被致能以產生循環電流,藉此達成上橋開關的零電壓切換。FIG. 2 shows a waveform diagram of a prior art half-bridge flyback converter operating in discontinuous conduction mode in a light load state. The driving signal SH is used to drive the upper switch of the half-bridge flyback converter to excite the transformer, and the driving signal SL is used to drive the lower switch of the half-bridge flyback converter. The signal waveform of the exciting current IM shows that the transformer operates at discontinuous conduction mode. When the output power of the half-bridge flyback converter decreases, the pulse width PW of the drive signal SH decreases due to the feedback control of the half-bridge flyback converter, and the pulse width of the drive signal SL also decreases accordingly. Therefore, the half-bridge As the switching frequency of the flyback converter increases, the switching losses also increase. After the driving signal SH turns to a low level (off), the first pulse of the driving signal SL is enabled during the demagnetization period of the transformer. The second pulse of the driving signal SL is enabled to generate a circulating current, thereby achieving zero-voltage switching of the high-side switch.

上述先前技術的缺點在於,當操作於不連續導通模式時,驅動訊號SL於一個切換週期需切換導通/關斷兩次,因此大幅增加驅動訊號SL之平均切換頻率,造成大量的切換損失且導致下橋開關的能量耗損。The disadvantage of the above-mentioned prior art is that when operating in the discontinuous conduction mode, the driving signal SL needs to be switched on/off twice in one switching cycle, so the average switching frequency of the driving signal SL is greatly increased, resulting in a large amount of switching loss and resulting in Energy dissipation in the lower side switch.

相較於先前技術美國專利US 7,151,681,本發明提供一種具有省略週期的諧振半橋返馳式轉換器,以改善中負載、輕負載之操作狀態中的功率效率。Compared with the prior art US Pat. No. 7,151,681, the present invention provides a resonant half-bridge flyback converter with omitted period to improve the power efficiency in the middle-load and light-load operation states.

相較於先前技術美國專利US 5,959,850,本發明提供一種產生去磁訊號的方法以及切換控制電路,其中去磁訊號的期間等於變壓器的去磁時段,本發明可用於具有可程式化輸出電壓的零電壓切換返馳式轉換器,例如:USB PD電源轉換器。Compared with the prior art U.S. Patent US 5,959,850, the present invention provides a method for generating a demagnetization signal and a switching control circuit, wherein the period of the demagnetization signal is equal to the demagnetization period of the transformer, and the present invention can be used for a zero voltage transformer with a programmable output voltage Voltage switching flyback converters such as USB PD power converters.

相較於圖2的先前技術,本發明提供一種非對稱半橋(asymmetrical half-bridge, AHB) 返馳式轉換器的控制電路,以三個電晶體改善中負載與輕負載之操作狀態的功率轉換效率。Compared with the prior art shown in FIG. 2, the present invention provides a control circuit for an asymmetrical half-bridge (AHB) flyback converter, which uses three transistors to improve the power in the operating states of medium load and light load. conversion efficiency.

就其中一個觀點言,本發明提供了一種半橋返馳式轉換器,包含:一第一電晶體,經由一第一訊號控制;一第二電晶體,經由一第二訊號控制;一第三電晶體,經由一第三訊號控制,其中該第一電晶體、該第二電晶體及該第三電晶體用以構成一半橋電路;以及一切換控制電路,用以根據該半橋 返馳式轉換器的一輸入電壓而產生該第一訊號,並根據該半橋 返馳式轉換器的一輸出電壓而產生該第三訊號,且根據一回授訊號而產生該第二訊號,其中該回授訊號相關於該半橋返馳式轉換器的該輸出電壓;其中於一不連續導通模式(discontinuous conduction mode, DCM)的操作中,該切換控制電路操作於一第一切換週期,以控制該第一訊號於一第一時段中導通該第一電晶體,其中經過該第一時段後,該切換控制電路控制該第一訊號、該第二訊號及該第三訊號於一第一不導通時段中,關斷該第一電晶體、該第二電晶體及該第三電晶體,其中經過該第一不導通時段後,該切換控制電路控制該第二訊號於一第二時段中,導通該第二電晶體,其中經過該第二時段後,該切換控制電路控制該第一訊號、該第二訊號及該第三訊號於一第二不導通時段中,關斷該第一電晶體、該第二電晶體及該第三電晶體,其中經過該第二不導通時段後,該切換控制電路控制該第三訊號於一第三時段中,導通該第三電晶體,其中經過該第三時段後,該切換控制電路控制該第一訊號、該第二訊號及該第三訊號於一第三不導通時段中,關斷該第一電晶體、該第二電晶體及該第三電晶體。Regarding one of the viewpoints, the present invention provides a half-bridge flyback converter, comprising: a first transistor controlled by a first signal; a second transistor controlled by a second signal; a third The transistor is controlled by a third signal, wherein the first transistor, the second transistor and the third transistor are used to form a half-bridge circuit; and a switching control circuit is used according to the half-bridge flyback The first signal is generated by an input voltage of the converter, the third signal is generated by an output voltage of the half-bridge flyback converter, and the second signal is generated by a feedback signal, wherein the feedback The signal is related to the output voltage of the half-bridge flyback converter; wherein in a discontinuous conduction mode (discontinuous conduction mode, DCM) operation, the switching control circuit operates in a first switching period to control the The first signal turns on the first transistor in a first period, wherein after the first period, the switching control circuit controls the first signal, the second signal and the third signal in a first non-conduction period , turn off the first transistor, the second transistor and the third transistor, wherein after the first non-conduction period, the switching control circuit controls the second signal to turn on the The second transistor, wherein after the second period, the switching control circuit controls the first signal, the second signal and the third signal to turn off the first transistor, the third signal in a second non-conduction period. The second transistor and the third transistor, wherein after the second non-conduction period, the switching control circuit controls the third signal to conduct the third transistor in a third period, wherein the third period passes Afterwards, the switching control circuit controls the first signal, the second signal and the third signal to turn off the first transistor, the second transistor and the third transistor in a third non-conducting period.

在一較佳實施例中,該第一電晶體導通以產生一循環電流,其中該循環電流用以於該不連續導通模式的操作中達成該第二電晶體的零電壓切換(Zero Voltage Switching, ZVS)。In a preferred embodiment, the first transistor is turned on to generate a circulating current, wherein the circulating current is used to achieve zero voltage switching (ZVS) of the second transistor in the discontinuous conduction mode of operation. ZVS).

在一較佳實施例中,該第二電晶體導通以激磁該半橋返馳式轉換器 之一變壓器。In a preferred embodiment, the second transistor is turned on to energize a transformer of the half-bridge flyback converter.

在一較佳實施例中,該第三電晶體於該變壓器的一去磁時段中導通。In a preferred embodiment, the third transistor is turned on during a demagnetization period of the transformer.

在一較佳實施例中,該第一電晶體與該第三電晶體配置為該半橋返馳式轉換器之下橋電晶體,且該第二電晶體配置為該半橋返馳式轉換器之上橋電晶體。In a preferred embodiment, the first transistor and the third transistor are configured as lower bridge transistors of the half-bridge flyback converter, and the second transistor is configured as the half-bridge flyback converter The bridge transistor above the device.

在一較佳實施例中,該半橋返馳式轉換器更包含一計時器,其中該計時器用以對該第三不導通時段計時;其中當該半橋返馳式轉換器的該輸出功率減少,該計時器所計時的該第三不導通時段對應增加。In a preferred embodiment, the half-bridge flyback converter further includes a timer, wherein the timer is used to time the third non-conduction period; wherein when the output power of the half-bridge flyback converter decreases, the third non-conduction period counted by the timer increases correspondingly.

在一較佳實施例中,該第一電晶體之實際尺寸小於該第三電晶體之實際尺寸。In a preferred embodiment, the actual size of the first transistor is smaller than the actual size of the third transistor.

在一較佳實施例中,,其中:該第一訊號之振幅低於該第三訊號之振幅;及/或該第一電晶體之閘極相關之一最大額定值(maximum rating)低於該第三電晶體之閘極相關之一最大額定值。In a preferred embodiment, wherein: the amplitude of the first signal is lower than the amplitude of the third signal; and/or a maximum rating related to the gate of the first transistor is lower than A maximum rating associated with the gate of the third transistor.

就另一個觀點言,本發明也提供了一種控制方法,用以控制一半橋返馳式轉換器,其中該半橋返馳式轉換器包括一第一電晶體、一第二電晶體及一第三電晶體,該控制方法包含:產生一第一訊號,以根據該半橋返馳式轉換器的一輸入電壓而驅動該第一電晶體;產生一第二訊號,以根據一回授訊號而驅動該第二電晶體,其中該回授訊號相關於該半橋返馳式轉換器的一輸出電壓;以及產生一第三訊號,以根據該輸出電壓而驅動該第三電晶體;其中驅動該第一電晶體、該第二電晶體及該第三電晶體的步驟包括:於一不連續導通模式的操作中,控制該第一電晶體於一第一時段中導通;經過該第一時段後,控制該第一電晶體、該第二電晶體及該第三電晶體於一第一不導通時段中關斷;經過該第一不導通時段後,控制該第二電晶體於一第二時段中導通;經過該第二時段後,控制該第一電晶體、該第二電晶體及該第三電晶體於一第二不導通時段中關斷;經過該第二不導通時段後,控制該第三電晶體於一第三時段中導通;以及經過該第三時段後,控制該第一電晶體、該第二電晶體及該第三電晶體於一第三不導通時段中關斷。From another point of view, the present invention also provides a control method for controlling a half-bridge flyback converter, wherein the half-bridge flyback converter includes a first transistor, a second transistor and a first Three transistors, the control method includes: generating a first signal to drive the first transistor according to an input voltage of the half-bridge flyback converter; generating a second signal to drive the first transistor according to a feedback signal driving the second transistor, wherein the feedback signal is related to an output voltage of the half-bridge flyback converter; and generating a third signal to drive the third transistor according to the output voltage; wherein driving the The steps of the first transistor, the second transistor and the third transistor include: in a discontinuous conduction mode of operation, controlling the first transistor to be turned on in a first period; after the first period , controlling the first transistor, the second transistor and the third transistor to be turned off in a first non-conducting period; after the first non-conducting period, controlling the second transistor to be in a second period conduction; after the second period, control the first transistor, the second transistor and the third transistor to be turned off in a second non-conduction period; after the second non-conduction period, control the The third transistor is turned on in a third period; and after the third period, the first transistor, the second transistor and the third transistor are controlled to be turned off in a third non-conduction period.

在一較佳實施例中,該控制方法更包含:藉由導通該第一電晶體而產生一循環電流,以於該不連續導通模式的操作中達成該第二電晶體的零電壓切換(Zero Voltage Switching, ZVS)。In a preferred embodiment, the control method further includes: generating a circulating current by turning on the first transistor to achieve zero voltage switching (Zero) of the second transistor in the discontinuous conduction mode of operation. Voltage Switching, ZVS).

在一較佳實施例中,藉由導通該第二電晶體以激磁該半橋返馳式轉換器之一 變壓器。In a preferred embodiment, a transformer of the half-bridge flyback converter is energized by turning on the second transistor.

在一較佳實施例中,於該變壓器的一去磁時段中導通該第三電晶體。In a preferred embodiment, the third transistor is turned on during a demagnetization period of the transformer.

在一較佳實施例中,該第一電晶體與該第三電晶體為該半橋返馳式轉換器之下橋電晶體,且該第二電晶體為該半橋返馳式轉換器之上橋電晶體。In a preferred embodiment, the first transistor and the third transistor are lower bridge transistors of the half-bridge flyback converter, and the second transistor is a lower bridge transistor of the half-bridge flyback converter. Upper bridge transistor.

在一較佳實施例中,該控制方法更包含:當該半橋返馳式轉換器的該輸出功率減少,對應增加該第三不導通時段。In a preferred embodiment, the control method further includes: when the output power of the half-bridge flyback converter decreases, correspondingly increasing the third non-conduction period.

在一較佳實施例中,該第一電晶體之實際尺寸小於該第三電晶體之實際尺寸。In a preferred embodiment, the actual size of the first transistor is smaller than the actual size of the third transistor.

在一較佳實施例中,該第一訊號之振幅低於該第三訊號之振幅。In a preferred embodiment, the amplitude of the first signal is lower than the amplitude of the third signal.

底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。In the following detailed description by means of specific embodiments, it will be easier to understand the purpose, technical content, characteristics and effects of the present invention.

本發明中的圖式均屬示意,主要意在表示各電路間之耦接關係,以及各訊號波形之間之關係,至於電路、訊號波形與頻率則並未依照比例繪製。The diagrams in the present invention are all schematic and mainly intended to show the coupling relationship between various circuits and the relationship between various signal waveforms. As for the circuits, signal waveforms and frequencies, they are not drawn to scale.

圖3顯示本發明之諧振半橋返馳式轉換器之一實施例示意圖。諧振半橋返馳式轉換器300包含:第一電晶體30及第二電晶體40,用以構成半橋電路。變壓器10及諧振電容20彼此串聯並耦接於半橋電路的切換節點LX,變壓器10包括一次側繞組NP、二次側繞組NS以及輔助繞組NA,其中一次側繞組NP及二次側繞組NS具有匝數比n,二次側繞組NS及輔助繞組NA具有匝數比m。一次側控制器200產生驅動訊號SH及驅動訊號SL,驅動訊號SH及驅動訊號SL經由半橋電路切換變壓器10,以於變壓器10的二次側產生輸出電壓VO。驅動訊號SH驅動第一電晶體30,以激磁變壓器10。驅動訊號SL於變壓器10的去磁與諧振時段中導通第二電晶體40,驅動訊號SL亦用於導通第二電晶體40以產生流經變壓器10的循環電流,以達成第一電晶體30的零電壓切換。電阻60藉由偵測變壓器10的一次側開關電流IP而產生電流感測訊號VCS。FIG. 3 shows a schematic diagram of an embodiment of the resonant half-bridge flyback converter of the present invention. The resonant half-bridge flyback converter 300 includes: a first transistor 30 and a second transistor 40 for forming a half-bridge circuit. The transformer 10 and the resonant capacitor 20 are connected in series with each other and coupled to the switching node LX of the half-bridge circuit. The transformer 10 includes a primary winding NP, a secondary winding NS and an auxiliary winding NA, wherein the primary winding NP and the secondary winding NS have Turn ratio n, the secondary side winding NS and the auxiliary winding NA have a turn ratio m. The primary-side controller 200 generates the driving signal SH and the driving signal SL, and the driving signal SH and the driving signal SL switch the transformer 10 through the half-bridge circuit to generate the output voltage VO on the secondary side of the transformer 10 . The driving signal SH drives the first transistor 30 to excite the transformer 10 . The driving signal SL turns on the second transistor 40 during the demagnetization and resonance period of the transformer 10, and the driving signal SL is also used to turn on the second transistor 40 to generate a circulating current flowing through the transformer 10 to achieve the first transistor 30. Zero voltage switching. The resistor 60 generates a current sensing signal VCS by detecting the primary side switch current IP of the transformer 10 .

驅動訊號SH及驅動訊號SL根據回授訊號VFB而產生,其中回授訊號VFB根據諧振半橋返馳式轉換器300的輸出功率而產生。二次側控制器100耦接於輸出電壓VO以產生回授訊號VFB,回授訊號VFB經由光耦合器90耦接於一次側控制器200。二次側控制器100亦用以產生驅動訊號SG,以於變壓器10的去磁時段TDS中驅動二次側同步整流器70。輔助繞組NA於變壓器10切換時產生輔助繞組訊號VNA,電阻51、電阻52用以將輔助繞組訊號VNA衰減以產生輔助訊號VAUX,輔助訊號VAUX耦接於一次側控制器200。在一實施例中,電阻55耦接於一次側控制器200,藉由電阻55以設定參數而產生去磁訊號Sdmg。The driving signal SH and the driving signal SL are generated according to the feedback signal VFB, wherein the feedback signal VFB is generated according to the output power of the resonant half-bridge flyback converter 300 . The secondary side controller 100 is coupled to the output voltage VO to generate a feedback signal VFB, and the feedback signal VFB is coupled to the primary side controller 200 through the optocoupler 90 . The secondary-side controller 100 is also used to generate the driving signal SG to drive the secondary-side synchronous rectifier 70 during the demagnetization period TDS of the transformer 10 . The auxiliary winding NA generates an auxiliary winding signal VNA when the transformer 10 is switched. The resistors 51 and 52 are used to attenuate the auxiliary winding signal VNA to generate an auxiliary signal VAUX. The auxiliary signal VAUX is coupled to the primary side controller 200 . In one embodiment, the resistor 55 is coupled to the primary side controller 200 , and the demagnetization signal Sdmg is generated by setting parameters through the resistor 55 .

圖4顯示對應於圖3之實施例的操作波形圖。當驅動訊號SH導通時,變壓器10被激磁並產生激磁電流IM,當驅動訊號SH不導通時,變壓器10被去磁。於去磁時段TDS中,變壓器10產生二次側開關電流IS,驅動訊號SL相關於變壓器10的去磁時段TDS。在一實施例中,驅動訊號SL之導通期間TSL(亦即脈寬) 等於或長於變壓器10的去磁時段TDS,藉此避免變壓器10操作於連續導通模式(continuous conduction mode, CCM)。於變壓器10的去磁時段TDS中,諧振電容20上產生反射電壓VX,其中反射電壓VX與輸出電壓VO之關係為:VX=n*VO。FIG. 4 shows an operation waveform corresponding to the embodiment of FIG. 3 . When the driving signal SH is turned on, the transformer 10 is excited and generates an excitation current IM. When the driving signal SH is not turned on, the transformer 10 is demagnetized. During the demagnetization period TDS, the transformer 10 generates a secondary side switching current IS, and the driving signal SL is related to the demagnetization period TDS of the transformer 10 . In one embodiment, the conduction period TSL (ie, the pulse width) of the driving signal SL is equal to or longer than the demagnetization period TDS of the transformer 10 , thereby preventing the transformer 10 from operating in a continuous conduction mode (CCM). During the demagnetization period TDS of the transformer 10 , a reflected voltage VX is generated on the resonant capacitor 20 , wherein the relationship between the reflected voltage VX and the output voltage VO is: VX=n*VO.

當驅動訊號SH不導通時,驅動訊號SL可被導通,而當驅動訊號SL不導通時,驅動訊號SH可被導通。驅動訊號SH與驅動訊號SL之間(即驅動訊號SH與驅動訊號SL皆不導通時)可包括空滯時間(例如時段TRH、時段TRL)。When the driving signal SH is off, the driving signal SL can be turned on, and when the driving signal SL is off, the driving signal SH can be turned on. Between the driving signal SH and the driving signal SL (that is, when the driving signal SH and the driving signal SL are both non-conductive) may include a dead time (eg, a period TRH, a period TRL).

圖4之不同時段中的操作細節詳見下列說明。Details of the operations in different periods of time in FIG. 4 are detailed in the following description.

時點t1至時點t2之時段為激磁變壓器週期,本時段中第一電晶體30導通且第二電晶體40關斷,流經變壓器10中的一次側開關電流IP增加且諧振電容20之電壓亦增加,此時變壓器10被激磁而諧振電容20進行充電,二次側同步整流器70關斷且其本體二極體75具有逆向偏壓,因此,此時並無能量被轉換至二次側。The time period from time point t1 to time point t2 is the exciter transformer cycle. In this time period, the first transistor 30 is turned on and the second transistor 40 is turned off. The primary switching current IP flowing through the transformer 10 increases and the voltage of the resonant capacitor 20 also increases. , at this time the transformer 10 is excited and the resonant capacitor 20 is charged, the secondary side synchronous rectifier 70 is turned off and its body diode 75 is reverse biased, therefore, no energy is converted to the secondary side at this time.

時點t2至時點t3之時段為第一循環電流週期,本時段中第一電晶體30與第二電晶體40均關斷,變壓器10的循環電流強制半橋電路的切換節點電壓VHB下降,直到第二電晶體40的本體二極體45導通為止。時點t2至時點t3之時段相關於準諧振時段(quasi-resonant period),以達成第二電晶體40的零電壓切換,此時變壓器10的一次側電壓與諧振電容20於時點t3之電壓相同。The time period from time point t2 to time point t3 is the first circulating current period. In this period, both the first transistor 30 and the second transistor 40 are turned off, and the circulating current of the transformer 10 forces the switching node voltage VHB of the half-bridge circuit to drop until the second until the body diode 45 of the transistor 40 is turned on. The period from time t2 to time t3 corresponds to a quasi-resonant period to achieve zero-voltage switching of the second transistor 40 . At this time, the primary side voltage of the transformer 10 is the same as the voltage of the resonant capacitor 20 at time t3 .

時點t3至時點t4之時段為諧振週期(正電流),本時段中,在零電壓切換的狀態下,第一電晶體30關斷且第二電晶體40導通,此時輸出電壓VO等於諧振電容20的跨壓Vcr除以匝數比n,電流開始流經二次側同步整流器70,儲存於變壓器10的能量被轉換至輸出端而產生輸出電壓VO。由於變壓器10的漏電感Lr與諧振電容20(Cr)形成電感電容槽(LC tank),因此二次側電流於諧振頻率Lr及Cr所決定的時段中為正弦波的形式。變壓器10的一次側電流為激磁電流IM與二次側開關電流IS之和。流經諧振槽(Lr, Cr)的電流仍為正電流,其主要由變壓器10的激磁電感驅動,並且流經諧振電容20。The period from time point t3 to time point t4 is the resonant cycle (positive current). In this period, in the state of zero voltage switching, the first transistor 30 is turned off and the second transistor 40 is turned on. At this time, the output voltage VO is equal to the resonance capacitance The transvoltage Vcr of 20 is divided by the turns ratio n, the current starts to flow through the secondary side synchronous rectifier 70, and the energy stored in the transformer 10 is converted to the output terminal to generate the output voltage VO. Since the leakage inductance Lr of the transformer 10 and the resonant capacitor 20 (Cr) form an LC tank, the secondary side current is in the form of a sine wave in a period determined by the resonant frequency Lr and Cr. The primary side current of the transformer 10 is the sum of the excitation current IM and the secondary side switching current IS. The current flowing through the resonant tank (Lr, Cr) is still a positive current, which is mainly driven by the magnetizing inductance of the transformer 10 and flows through the resonant capacitor 20 .

時點t4至時點t5之時段為諧振週期(負電流),本時段中第一電晶體30繼續關斷且第二電晶體40繼續導通,能量持續轉換至二次側,但諧振槽電流被諧振電容20的電壓反向驅動,諧振電容20的能量不僅被轉換至二次側,更於第二電晶體40持續導通(例如時點t4至時點t5)時,用以將變壓器10的激磁電流位準拉至負值。The time period from time point t4 to time point t5 is the resonant period (negative current). During this period, the first transistor 30 continues to be turned off and the second transistor 40 continues to be turned on. The energy is continuously converted to the secondary side, but the current in the resonant tank is absorbed by the resonant capacitor The voltage of 20 is reverse driven, and the energy of the resonant capacitor 20 is not only converted to the secondary side, but also used to pull the excitation current level of the transformer 10 when the second transistor 40 is continuously turned on (for example, from time point t4 to time point t5). to a negative value.

時點t5至時點t6之時段為反向激磁變壓器週期(負電流),本時段自變壓器10的去磁時段TDS結束時至第二電晶體40關斷時,諧振電容20反向激磁變壓器10,並產生負電流。The period from time point t5 to time point t6 is the reverse excitation transformer cycle (negative current). In this period, from the end of the demagnetization period TDS of the transformer 10 to when the second transistor 40 is turned off, the resonant capacitor 20 reversely excites the transformer 10, and produce a negative current.

時點t6至時點t7 之時段為第二循環電流週期,本時段中第一電晶體30與第二電晶體40均關斷,變壓器10的負電流於時點t5至時點t6被感應而產生,以強制半橋電路中切換節點LX上的切換節點電壓VHB增加,直到其導通第一電晶體30的本體二極體35為止。The time period from time point t6 to time point t7 is the second circulating current period. During this time period, both the first transistor 30 and the second transistor 40 are turned off, and the negative current of the transformer 10 is induced from time point t5 to time point t6 to force The switching node voltage VHB on the switching node LX in the half-bridge circuit increases until it turns on the body diode 35 of the first transistor 30 .

時點t7之後,開始另一個與時點t1至時點t2之時段相似的週期,第一電晶體30在零電壓切換狀態下導通且第二電晶體40關斷,若變壓器諧振槽中的循環電流仍為負電流,則諧振槽中多餘的能量將被送回輸入端(供應輸入電壓VIN的節點)。After the time point t7, another period similar to the period from the time point t1 to the time point t2 starts, the first transistor 30 is turned on under the zero voltage switching state and the second transistor 40 is turned off, if the circulating current in the transformer resonant tank is still negative current, the excess energy in the resonant tank will be sent back to the input (the node supplying the input voltage VIN).

在輕負載的狀態下,當輸出功率降低時,驅動訊號SH與驅動訊號SL的脈寬將對應減少,故驅動訊號SH與驅動訊號SL的切換頻率於輕負載狀態下增加,由於鐵芯損失(core loss)、開關損耗(switching loss)等功率損耗增加,因此導致功率轉換器的功率轉換效率變差。In the light load state, when the output power decreases, the pulse width of the driving signal SH and the driving signal SL will decrease correspondingly, so the switching frequency of the driving signal SH and the driving signal SL increases under the light load state, due to the core loss ( core loss), switching loss (switching loss) and other power losses increase, resulting in poor power conversion efficiency of the power converter.

圖5顯示降低驅動訊號SH與驅動訊號SL的切換頻率之操作波形圖。一種改善功率效率的方式是,藉由延長驅動訊號SL關斷(例如時點t3)至驅動訊號SH導通(例如時點t5)之間的時間,可降低切換頻率,然而,驅動訊號SL的關斷將產生循環電流,進而導致切換節點電壓VHB的電壓突波VPK以及輔助訊號VAUX的電壓降VDP,電壓突波VPK與電壓降VDP將造成功率損耗與雜訊。FIG. 5 shows an operation waveform diagram for reducing the switching frequency of the driving signal SH and the driving signal SL. One way to improve the power efficiency is to reduce the switching frequency by prolonging the time between turning off the driving signal SL (such as time point t3) and turning on the driving signal SH (such as time point t5). However, turning off the driving signal SL will Circulating current is generated, thereby causing a voltage surge VPK of the switching node voltage VHB and a voltage drop VDP of the auxiliary signal VAUX. The voltage surge VPK and the voltage drop VDP will cause power loss and noise.

需注意的是,前述驅動訊號SH與驅動訊號SL的導通或關斷皆各自對應於第一電晶體30與第二電晶體40的導通或關斷。It should be noted that the turning on or off of the driving signal SH and the driving signal SL respectively correspond to the turning on or off of the first transistor 30 and the second transistor 40 .

圖6顯示本發明之具有省略週期的諧振半橋返馳式轉換器的一實施例之操作波形圖。FIG. 6 shows an operating waveform diagram of an embodiment of the resonant half-bridge flyback converter with omitted periods of the present invention.

請參閱圖6,在一實施例中,驅動訊號SH於激磁變壓器10的激磁週期中(例如時點t1至時點t2)導通,以激磁變壓器10。驅動訊號SH關斷後,驅動訊號SL於諧振週期中(例如時點t2至時點t3)導通,且具有諧振脈波(例如時點t2至時點t3),一個激磁週期與一個諧振週期形成一個切換週期(例如時點t1至時點t3)。Please refer to FIG. 6 , in one embodiment, the driving signal SH is turned on during the excitation cycle of the excitation transformer 10 (for example, from time point t1 to time point t2 ), so as to excite the transformer 10 . After the drive signal SH is turned off, the drive signal SL is turned on during the resonance period (for example, from time point t2 to time point t3), and has a resonance pulse (for example, from time point t2 to time point t3). One excitation cycle and one resonance cycle form a switching cycle ( For example, time point t1 to time point t3).

如圖6所示,在一實施例中,省略週期Tx起始於驅動訊號SH轉為不導通的不導通時點(例如時點t4),且當省略週期Tx終止時(例如時點t6),驅動訊號SL轉為導通。在一實施例中,當輸出功率因省電而降低時,省略週期Tx將對應增加(即切換頻率減少)。As shown in FIG. 6, in one embodiment, the omission period Tx starts at the non-conduction time point when the drive signal SH turns non-conduction (such as time point t4), and when the omission period Tx ends (such as time point t6), the drive signal SH SL turns on. In one embodiment, when the output power is reduced due to power saving, the skipping period Tx will correspondingly increase (ie, the switching frequency will decrease).

請繼續參閱圖6,相較於無省略週期之時段,例如時點t1至時點t3,驅動訊號SL於省略週期中(例如Tx)不導通而無諧振脈波,舉例而言,在先前技術中,驅動訊號SL於時點t4至時點t5所存在的一個脈波,即驅動訊號SL之諧振脈波,在本實施例中已被省略,如圖6所示,因此,於省略週期中(時點t4至時點t6),並無負循環電流產生。先前技術中,切換節點電壓VHB產生的電壓突波VPK以及輔助訊號VAUX產生的電壓降VDP,在本實施例中亦已被避免。在一實施例中,如圖6所示,驅動訊號SH於省略週期中(例如Tx)亦為不導通狀態。Please continue to refer to FIG. 6 , compared to the period without skipped periods, such as time point t1 to time point t3, the driving signal SL is not conducted during the skipped period (such as Tx) and there is no resonant pulse. For example, in the prior art, A pulse wave of the drive signal SL from time point t4 to time point t5, that is, a resonant pulse wave of the drive signal SL, has been omitted in this embodiment, as shown in FIG. At time t6), there is no negative circulation current. In the prior art, the voltage surge VPK generated by switching the node voltage VHB and the voltage drop VDP generated by the auxiliary signal VAUX are also avoided in this embodiment. In one embodiment, as shown in FIG. 6 , the driving signal SH is also in a non-conductive state during the omitted period (such as Tx).

在一實施例中,當驅動訊號SH關斷後,於省略週期的部分時間中(例如於時點t4至時點t5之間的一部份時間),變壓器10的去磁電流的一部分流經第二電晶體40的本體二極體45。換言之,在一實施例中,驅動訊號SL中並無雙脈波(double pulses)。在一實施例中,驅動訊號SH中亦無雙脈波。就一觀點而言,於驅動訊號SH的單一脈波之後,接著產生驅動訊號SL的單一脈波,於驅動訊號SL的單一脈波之後,接著產生驅動訊號SH的單一脈波,即便諧振半橋返馳式轉換器操作於具有省略週期的狀態亦同。就另一觀點而言,於驅動訊號SH的兩個連續脈波之間,驅動訊號SL包括最多一個脈波,於驅動訊號SL的兩個連續脈波之間,驅動訊號SH包括最多一個脈波。In one embodiment, after the driving signal SH is turned off, during a part of the omitted period (for example, a part of the time between time point t4 and time point t5), a part of the demagnetization current of the transformer 10 flows through the second Body diode 45 of transistor 40 . In other words, in one embodiment, there is no double pulses in the driving signal SL. In one embodiment, there is no double pulse in the driving signal SH. From a point of view, after a single pulse of the driving signal SH, a single pulse of the driving signal SL is generated, and after a single pulse of the driving signal SL, a single pulse of the driving signal SH is generated, even if the resonant half-bridge The same goes for flyback converters operating with omitted periods. From another point of view, between two consecutive pulses of the driving signal SH, the driving signal SL includes at most one pulse, and between two consecutive pulses of the driving signal SL, the driving signal SH includes at most one pulse .

在一實施例中,於輸出功率低於預設閾值時,產生省略週期Tx。在一實施例中,省略週期Tx隨著輸出功率的降低而對應增加。在一實施例中,即使在驅動訊號SL無法達成第一電晶體30的零電壓切換的情況下,第二驅動訊號於第一驅動訊號的兩個連續脈波之間不包括第二個脈波,因而不以第二個脈波達成第一電晶體30的零電壓切換。In one embodiment, when the output power is lower than a predetermined threshold, an omission period Tx is generated. In one embodiment, the omission period Tx increases correspondingly as the output power decreases. In one embodiment, even if the driving signal SL cannot achieve zero-voltage switching of the first transistor 30, the second driving signal does not include the second pulse between two consecutive pulses of the first driving signal , so the zero-voltage switching of the first transistor 30 is not achieved with the second pulse.

請繼續參閱圖6,在一實施例中,驅動訊號SL之零電壓切換脈波(例如PZV)於省略週期經過後導通第二電晶體40,以達成零電壓切換週期(例如時點t6至時點t7)。Please continue to refer to FIG. 6 , in one embodiment, the zero-voltage switching pulse (such as PZV) of the driving signal SL turns on the second transistor 40 after the omission period elapses, so as to achieve a zero-voltage switching period (such as time point t6 to time point t7 ).

如圖6所示,在一實施例中,於省略週期後的零電壓切換脈波PZV之後,接著產生至少一個切換週期(例如時點t7至時點t9)。As shown in FIG. 6 , in one embodiment, at least one switching cycle (for example, time point t7 to time point t9 ) is generated after the zero-voltage switching pulse PZV after the cycle is omitted.

請繼續參閱圖6,在一實施例中,諧振週期可包括延續零電壓切換期間(例如時點t3’至時點t3),延續零電壓切換期間用以達成第一電晶體30的零電壓切換。換言之,本實施例中,諧振脈波的第一部分(例如時點t2至時點t3’)用以達成變壓器10與諧振電容20之諧振,而諧振脈波的第二部分(例如時點t3’至時點t3)用以產生循環電流以達成第一電晶體30的零電壓切換。Please continue to refer to FIG. 6 , in one embodiment, the resonant period may include a continuation of the zero-voltage switching period (for example, time point t3' to time point t3), and the continuation of the zero-voltage switching period is used to achieve zero-voltage switching of the first transistor 30. In other words, in this embodiment, the first part of the resonant pulse wave (such as time point t2 to time point t3') is used to achieve the resonance between the transformer 10 and the resonant capacitor 20, and the second part of the resonant pulse wave (such as time point t3' to time point t3 ) is used to generate circulating current to achieve zero-voltage switching of the first transistor 30 .

圖7顯示本發明之諧振半橋返馳式轉換器中一次側控制器之一實施例方塊圖。在一實施例中,一次側控制器200包括計時器25以及控制元件240。在一實施例中,控制元件240用以根據輸入電壓VIN(經由輔助訊號VAUX)與回授訊號VFB而產生驅動訊號SH與驅動訊號SL,計時器25用以產生前述省略週期Tx。FIG. 7 shows a block diagram of an embodiment of a primary-side controller in the resonant half-bridge flyback converter of the present invention. In one embodiment, the primary controller 200 includes a timer 25 and a control element 240 . In one embodiment, the control element 240 is used to generate the driving signal SH and the driving signal SL according to the input voltage VIN (via the auxiliary signal VAUX) and the feedback signal VFB, and the timer 25 is used to generate the aforementioned skip period Tx.

如圖7所示,在一實施例中,計時器25根據相關於輸出功率之資訊,判斷輸出功率是否低於預設閾值,當輸出功率被判斷為低於預設閾值時,計時器25開始計算省略週期Tx,並控制控制元件240於省略週期Tx中省略驅動訊號SH與驅動訊號SL之脈波。As shown in Figure 7, in one embodiment, the timer 25 judges whether the output power is lower than the preset threshold according to the information related to the output power, and when the output power is judged to be lower than the preset threshold, the timer 25 starts Calculate the omission period Tx, and control the control element 240 to omit the pulses of the driving signal SH and the driving signal SL in the omission period Tx.

請再次參閱圖4,當諧振半橋返馳式轉換器處於中負載及輕負載的狀態時,時點t4至時點t5之諧振週期較短,無法產生足夠的負電流(能量)以達成零電壓切換,因此,負電流的主要部分係來自時點t5至時點t6所產生之電流。Please refer to Figure 4 again. When the resonant half-bridge flyback converter is in the middle-load or light-load state, the resonant period from time point t4 to time point t5 is short and cannot generate enough negative current (energy) to achieve zero-voltage switching , Therefore, the main part of the negative current is from the current generated from time point t5 to time point t6.

然而,較高的負電流將導致較高的功率損耗,為了將達成零電壓切換的負電流控制在適當位準,去磁時段的控制必須準確,因此需產生去磁訊號Sdmg對應於變壓器10的去磁時段TDS。However, higher negative current will lead to higher power loss. In order to control the negative current to achieve zero voltage switching at an appropriate level, the control of the demagnetization period must be accurate, so it is necessary to generate the demagnetization signal Sdmg corresponding to the transformer 10 Demagnetization period TDS.

圖8顯示本發明之諧振半橋返馳式轉換器中一次側控制器之一實施例方塊圖。在一實施例中,一次側控制器208包括去磁仿擬器250以及控制元件248。在一實施例中,控制元件248用以根據輸入電壓VIN (經由輔助訊號VAUX)與回授訊號VFB而產生驅動訊號SH與驅動訊號SL,去磁仿擬器250用以根據去磁相關訊號而產生去磁訊號Sdmg,以仿擬去磁時段TDS,其中去磁相關訊號例如變壓器10的反射電壓(經由輔助訊號VAUX)。FIG. 8 shows a block diagram of an embodiment of the primary-side controller in the resonant half-bridge flyback converter of the present invention. In one embodiment, the primary controller 208 includes a demagnetization simulator 250 and a control element 248 . In one embodiment, the control element 248 is used to generate the driving signal SH and the driving signal SL according to the input voltage VIN (via the auxiliary signal VAUX) and the feedback signal VFB, and the demagnetization simulator 250 is used to generate the demagnetization related signal. The demagnetization signal Sdmg is generated to simulate the demagnetization period TDS, wherein the demagnetization-related signals such as the reflected voltage of the transformer 10 (via the auxiliary signal VAUX).

請同時參閱圖9,圖9顯示本發明之去磁仿擬器產生去磁訊號之操作波形圖。Please refer to FIG. 9 at the same time. FIG. 9 shows the operation waveform diagram of the demagnetization signal generated by the demagnetization simulator of the present invention.

於切換週期中,諧振半橋返馳式轉換器週期性地操作於非不連續導通模式(例如時點ta至時點tc’),驅動訊號SH首先導通第一電晶體30,以激磁變壓器10進而產生一次側開關電流IP(例如時點ta’至時點tb),於第一電晶體30關斷後,驅動訊號SL用以於諧振週期中(時點tb至時點tc)導通(例如時點tb至時點tc’)第二電晶體40,並用以產生循環電流(例如時點tc至時點tc’)以達成第一電晶體30的零電壓切換。於非不連續導通模式的切換週期中,驅動訊號SL的導通期間TSL(例如時點tb至時點tc’)由去磁訊號Sdmg的脈寬(例如TDSX’)決定,其中去磁訊號Sdmg係由去磁仿擬器250根據先前強制插入的不連續導通模式中的校正而產生。在一實施例中,去磁訊號Sdmg的導通期間TDSX’於先前主動強制之不連續導通模式期間中被校正,並用以使得控制元件248控制第二電晶體40的最小導通時間,藉此於第一電晶體30關斷後的非不連續導通模式期間,去磁變壓器10。在一實施例中,如圖9所示,驅動訊號SL的導通期間TSL(例如時點tb至時點tc’)可為去磁訊號Sdmg的導通期間TDSX’加上一延遲時間(例如時點tc至時點tc’),以於去磁時段後,在一次側開關電流IP上建立負循環電流,以達成第一電晶體30的零電壓切換。In the switching period, the resonant half-bridge flyback converter operates periodically in the discontinuous conduction mode (for example, from time point ta to time point tc'), and the driving signal SH first turns on the first transistor 30 to excite the transformer 10 to generate The primary side switch current IP (for example, from time point ta' to time point tb), after the first transistor 30 is turned off, the driving signal SL is used to conduct in the resonant period (from time point tb to time point tc) (for example, from time point tb to time point tc' ) the second transistor 40 for generating a circulating current (for example from time point tc to time point tc′) to achieve zero-voltage switching of the first transistor 30 . In the switching period of the non-discontinuous conduction mode, the conduction period TSL of the driving signal SL (such as time point tb to time point tc') is determined by the pulse width of the demagnetization signal Sdmg (such as TDSX'), wherein the demagnetization signal Sdmg is determined by the demagnetization signal Sdmg The magnetic simulator 250 is generated from corrections in the previously forced inserted discontinuous conduction mode. In one embodiment, the conduction period TDSX' of the demagnetization signal Sdmg is corrected during the previous actively forced discontinuous conduction mode, and is used to make the control element 248 control the minimum conduction time of the second transistor 40, thereby in the second transistor 40 During the discontinuous conduction mode after a transistor 30 is turned off, the transformer 10 is demagnetized. In one embodiment, as shown in FIG. 9 , the conduction period TSL of the driving signal SL (for example, from the time point tb to the time point tc') can be the conduction period TDSX' of the demagnetization signal Sdmg plus a delay time (for example, from the time point tc to the time point tc′) to establish a negative circulation current on the primary side switch current IP after the demagnetization period, so as to achieve zero-voltage switching of the first transistor 30 .

需注意的是,非不連續導通模式係指不是不連續導通模式的操作模式,例如:連續導通模式(continuous conduction mode, CCM),或準諧振模式(quasi-resonant mode, QRM)之操作,準諧振模式又稱為邊界導通模式(boundary conduction mode, BCM)。It should be noted that the non-discontinuous conduction mode refers to the operation mode that is not discontinuous conduction mode, such as: continuous conduction mode (continuous conduction mode, CCM), or quasi-resonant mode (quasi-resonant mode, QRM) operation, accurate The resonant mode is also called boundary conduction mode (boundary conduction mode, BCM).

在一實施例中,當一次側開關電流IP已有預設數量(例如一正整數NC)之切換週期(例如時點ta至時點t1)係操作於非不連續導通模式(例如準諧振模式)時,至少一個切換週期被主動強制操作於不連續導通模式(例如時點t1至時點t3)。因此,去磁仿擬器250用以於強制插入的不連續導通模式中,根據變壓器10的去磁時段TDS而校正去磁訊號Sdmg的導通期間TDSX。In one embodiment, when the primary-side switch current IP has a preset number (such as a positive integer NC) of switching cycles (such as time point ta to time point t1) and operates in a non-discontinuous conduction mode (such as quasi-resonant mode) , at least one switching period is actively forced to operate in the discontinuous conduction mode (for example, time point t1 to time point t3). Therefore, the demagnetization simulator 250 is used to correct the conduction period TDSX of the demagnetization signal Sdmg according to the demagnetization period TDS of the transformer 10 in the forced insertion discontinuous conduction mode.

如圖9所示,於強制插入的不連續導通模式中,變壓器10的去磁時段TDS從輔助訊號VAUX之上升緣(rising edge)開始,並於輔助訊號VAUX(例如時點t2至時點t3)之下降緣(falling edge,即膝點kn)結束。具體而言,本實施例中,可藉由感測輔助訊號VAUX而偵測反射電壓,輔助訊號VAUX來自第一電晶體30的關斷期間中,變壓器10的輔助繞組NA。反射電壓出現之時間長度,即輔助訊號VAUX自上升緣至膝點kn的脈寬,相關於變壓器10的去磁時段TDS。As shown in FIG. 9 , in the forced-inserted discontinuous conduction mode, the demagnetization period TDS of the transformer 10 starts from the rising edge of the auxiliary signal VAUX and ends between the auxiliary signal VAUX (such as time point t2 to time point t3 ). The falling edge (i.e. knee point kn) ends. Specifically, in this embodiment, the reflected voltage can be detected by sensing the auxiliary signal VAUX, which comes from the auxiliary winding NA of the transformer 10 during the off period of the first transistor 30 . The duration of the reflected voltage, that is, the pulse width of the auxiliary signal VAUX from the rising edge to the knee point kn, is related to the demagnetization period TDS of the transformer 10 .

在一實施例中,一次側控制器208更包括週期計數器260,週期計數器260用以根據一次側開關電流IP而計算切換週期操作於非不連續導通模式的數量,且當一次側開關電流IP被判斷為已有預設數量之切換週期非操作於不連續導通模式時,週期計數器260用以控制控制元件248主動強制操作於不連續導通模式。在一實施例中,週期計數器260可經由電流感測訊號VCS而感測一次側開關電流IP,藉此判斷操作於非不連續導通模式。In one embodiment, the primary-side controller 208 further includes a cycle counter 260. The cycle counter 260 is used to calculate the number of switching cycles operating in the discontinuous conduction mode according to the primary-side switch current IP, and when the primary-side switch current IP is When it is determined that there have been a predetermined number of switching cycles without operating in the discontinuous conduction mode, the cycle counter 260 is used to control the control element 248 to actively force the operation in the discontinuous conduction mode. In one embodiment, the cycle counter 260 can sense the primary side switch current IP through the current sensing signal VCS, so as to determine the operation in the non-discontinuous conduction mode.

在一實施例中,如圖9所示,於強制不連續導通模式切換週期中,驅動訊號SL持續控制第二電晶體40為不導通,使得半橋電路不僅操作於不連續導通模式,亦操作於非同步切換模式,其中於強制不連續導通模式切換週期中,變壓器10的去磁電流(例如時點t2至時點t2’之IP)的一部分流經第二電晶體40的本體二極體45。In one embodiment, as shown in FIG. 9, during the forced discontinuous conduction mode switching period, the driving signal SL continuously controls the second transistor 40 to be non-conductive, so that the half-bridge circuit not only operates in the discontinuous conduction mode, but also operates In the asynchronous switching mode, during the forced discontinuous conduction mode switching period, a part of the demagnetization current (eg IP from time point t2 to time point t2 ′) of the transformer 10 flows through the body diode 45 of the second transistor 40 .

請繼續參閱圖9,在不連續導通模式DCM之後(例如時點t4至時點t5),驅動訊號SL的第一脈波導通第二電晶體40,以自諧振電容20至變壓器10激磁變壓器10,進而產生負循環電流(時點t4至時點t5之IP)以達成第一電晶體30的零電壓切換。Please continue to refer to FIG. 9, after the discontinuous conduction mode DCM (such as time point t4 to time point t5), the first pulse wave of the driving signal SL conducts the second transistor 40 to excite the transformer 10 from the resonant capacitor 20 to the transformer 10, and then A negative circulating current (IP from time point t4 to time point t5 ) is generated to achieve zero-voltage switching of the first transistor 30 .

圖10顯示本發明產生去磁訊號Sdmg之去磁仿擬器的一具體實施例示意圖。在一實施例中,去磁仿擬器250包括計時產生器205、比較器280以及邏輯電路285。FIG. 10 shows a schematic diagram of a specific embodiment of a demagnetization simulator for generating a demagnetization signal Sdmg according to the present invention. In one embodiment, the demagnetization simulator 250 includes a timing generator 205 , a comparator 280 and a logic circuit 285 .

在一實施例中,計時產生器205包括積分器,積分器由開關231及電容230組成,開關231由取樣訊號SMP所控制,取樣訊號SMP相關於驅動訊號SH以對電流感測訊號VCS取樣。放電電流ID相關於n*VO,用以將電容230的跨壓VC放電。跨壓VC藉由比較器280而與參考電壓Vref進行比較。邏輯電路285根據比較器輸出CPO與相關於驅動訊號SH的取樣訊號SMP而產生去磁訊號Sdmg。在一實施例中,參考電壓Vref為0伏特,當一次側開關電流IP為0時,電流感測電壓VCS為0。In one embodiment, the timing generator 205 includes an integrator. The integrator is composed of a switch 231 and a capacitor 230. The switch 231 is controlled by the sampling signal SMP. The sampling signal SMP is related to the driving signal SH to sample the current sensing signal VCS. The discharge current ID is related to n*VO, and is used to discharge the voltage VC across the capacitor 230 . The cross voltage VC is compared with the reference voltage Vref by the comparator 280 . The logic circuit 285 generates the demagnetization signal Sdmg according to the comparator output CPO and the sampling signal SMP corresponding to the driving signal SH. In one embodiment, the reference voltage Vref is 0 volts, and when the primary side switch current IP is 0, the current sensing voltage VCS is 0.

在一實施例中,去磁訊號Sdmg的時間長度相關於變壓器10的輸入電壓之電壓位準(Vinx),亦即如圖3所示,一次側繞組NP與諧振電容20之耦接節點NNP上的電壓,去磁訊號Sdmg的時間長度也相關於變壓器10的輸出電壓之電壓位準(例如n*VO)及變壓器10於第一電晶體30導通時的激磁時段(TW)。需注意的是,變壓器10的輸入電壓之電壓位準Vinx等於輸入電壓VIN減去諧振電容20的跨壓Vcr。In one embodiment, the duration of the demagnetization signal Sdmg is related to the voltage level (Vinx) of the input voltage of the transformer 10, that is, as shown in FIG. 3, the coupling node NNP between the primary winding NP and the resonant capacitor 20 The voltage of the demagnetization signal Sdmg is also related to the voltage level of the output voltage of the transformer 10 (for example, n*VO) and the excitation period (TW) of the transformer 10 when the first transistor 30 is turned on. It should be noted that the voltage level Vinx of the input voltage of the transformer 10 is equal to the input voltage VIN minus the cross voltage Vcr of the resonant capacitor 20 .

根據變壓器10被去磁的磁通量等於變壓器10被激磁的磁通量,可列出以下式1:According to the demagnetized magnetic flux of the transformer 10 is equal to the excited magnetic flux of the transformer 10, the following formula 1 can be listed:

Vinx*TW = n*VO*TDS                                               (式1)Vinx*TW = n*VO*TDS (Formula 1)

其中TW為在變壓器10的激磁時段中,變壓器10的輸入電壓之電壓位準Vinx之出現時間;n*VO為在變壓器10的去磁時段TDS中,變壓器10的電壓。n為一次側繞組NP及二次側繞組NS之匝數比,VO為二次側繞組NS之電壓(即輸出電壓)。Where TW is the appearance time of the voltage level Vinx of the input voltage of the transformer 10 during the excitation period of the transformer 10 ; n*VO is the voltage of the transformer 10 during the demagnetization period TDS of the transformer 10 . n is the turns ratio of the primary side winding NP and the secondary side winding NS, and VO is the voltage (ie output voltage) of the secondary side winding NS.

在變壓器10被激磁後,電流感測訊號VCS之位準VCSp相關於一次側開關電流IP於激磁過程結束之峰值,且於圖3所示之電阻60上產生,其可以下列式2表示:After the transformer 10 is energized, the level VCSp of the current sensing signal VCS is related to the peak value of the primary side switch current IP at the end of the energization process, and is generated on the resistor 60 shown in FIG. 3 , which can be represented by the following formula 2:

VCSp = (Vinx/L)*TW*Rs                                            (式2)VCSp = (Vinx/L)*TW*Rs (Formula 2)

其中L為變壓器10之一次側繞組NP之電感,Rs為電阻60之電阻值,VCSp為變壓器10於激磁過程結束之電壓位準。Where L is the inductance of the primary winding NP of the transformer 10, Rs is the resistance value of the resistor 60, and VCSp is the voltage level of the transformer 10 at the end of the excitation process.

設ID = n*VO/Rt,其中Rt為電阻55之電阻值。Let ID=n*VO/Rt, where Rt is the resistance value of the resistor 55 .

去磁訊號Sdmg之脈寬TDSX可被表示為:The pulse width TDSX of the demagnetization signal Sdmg can be expressed as:

TDSX = (C*VCSp)/ID,其中C為電容230之電容值。TDSX = (C*VCSp)/ID, where C is the capacitance of the capacitor 230 .

TDSX = (Rt*C*VCSp)/(n*VO)TDSX = (Rt*C*VCSp)/(n*VO)

TDSX = (Rt*C/(n*VO))*(Rs/L)*Vinx*TWTDSX = (Rt*C/(n*VO))*(Rs/L)*Vinx*TW

設Rt = L/(Rs*C)                                                           (式3)Let Rt = L/(Rs*C)

TDSX = (Vinx*TW)/(n*VO)                                        (式4)TDSX = (Vinx*TW)/(n*VO) (Formula 4)

當式3之條件滿足時,式4所示之去磁訊號Sdmg之導通期間TDSX等於變壓器10之去磁時段TDS。When the condition of Equation 3 is satisfied, the conduction period TDSX of the demagnetization signal Sdmg shown in Equation 4 is equal to the demagnetization period TDS of the transformer 10 .

請繼續參閱圖10,開關231導通以對電流感測訊號VCS取樣至電容230,且於開關231關斷時(即激磁結束時),電流感測訊號VCS之位準VCSp被保持在電容230,開關231由取樣訊號SMP控制。當開關231關斷時,去磁訊號Sdmg被致能(例如藉由邏輯電路285),換言之,當去磁訊號Sdmg開始致能時,電容230之跨壓VC為電流感測訊號VCS的峰值。在開關231關斷之後,放電電流ID開始將電容230放電,當電容230經由放電電流ID(ID = n*VO/Rt)完全放電完成時(VC=0V),去磁訊號Sdmg禁能。圖10及圖3所示之電阻55用以設定去磁訊號Sdmg的預設脈寬。Please continue to refer to FIG. 10 , the switch 231 is turned on to sample the current sensing signal VCS to the capacitor 230, and when the switch 231 is turned off (that is, when the excitation ends), the level VCSp of the current sensing signal VCS is kept at the capacitor 230, The switch 231 is controlled by the sampling signal SMP. When the switch 231 is turned off, the demagnetization signal Sdmg is enabled (for example by the logic circuit 285 ), in other words, when the demagnetization signal Sdmg starts to be enabled, the voltage VC across the capacitor 230 is the peak value of the current sensing signal VCS. After the switch 231 is turned off, the discharge current ID starts to discharge the capacitor 230. When the capacitor 230 is fully discharged (VC=0V) through the discharge current ID (ID=n*VO/Rt), the demagnetization signal Sdmg is disabled. The resistor 55 shown in FIG. 10 and FIG. 3 is used to set the preset pulse width of the demagnetization signal Sdmg.

在一實施例中,於強制插入的不連續導通模式切換週期中,去磁訊號Sdmg的脈寬TDSX可藉由去磁仿擬器250而與輔助訊號VAUX的脈寬所示意的去磁時段TDS做比較,因此去磁訊號Sdmg的脈寬TDSX可被校正而用於接下來的非不連續導通模式切換週期。在一實施例中,去磁仿擬器250更用以根據不連續導通模式中所偵測到的去磁時段TDS而調整電阻255之電阻值,以校正去磁訊號Sdmg的脈波期間TDSX。In one embodiment, in the forcedly inserted discontinuous conduction mode switching period, the pulse width TDSX of the demagnetization signal Sdmg can be compared with the demagnetization period TDS indicated by the pulse width of the auxiliary signal VAUX by the demagnetization simulator 250 Therefore, the pulse width TDSX of the demagnetization signal Sdmg can be corrected for the next DCM switching period. In one embodiment, the demagnetization simulator 250 is further used to adjust the resistance value of the resistor 255 according to the demagnetization period TDS detected in the discontinuous conduction mode, so as to correct the pulse period TDSX of the demagnetization signal Sdmg.

在其他實施例中,除了調整電阻255之電阻值外,去磁仿擬器250亦可藉由以下方式校正去磁訊號Sdmg的脈波期間TDSX:調整電壓閾值Vth以決定去磁訊號Sdmg之結束,或調整電容230的電容值,或調整例如圖10中電晶體271與電晶體272所組成的電流鏡之比值。In other embodiments, in addition to adjusting the resistance value of the resistor 255, the demagnetization simulator 250 can also correct the pulse period TDSX of the demagnetization signal Sdmg in the following manner: adjust the voltage threshold Vth to determine the end of the demagnetization signal Sdmg , or adjust the capacitance of the capacitor 230, or adjust, for example, the ratio of the current mirror formed by the transistor 271 and the transistor 272 in FIG. 10 .

圖11顯示本發明之諧振半橋返馳式轉換器之一較佳實施例示意圖。諧振半橋返馳式轉換器900相似於圖3之諧振半橋返馳式轉換器300。在本實施例中,諧振半橋返馳式轉換器900包括第一電晶體M1、第二電晶體M2及第三電晶體M3,第一電晶體M1、第二電晶體M2及第三電晶體M3用以構成半橋電路。就一觀點而言,第一電晶體M1與第三電晶體M3配置為諧振半橋返馳式轉換器900之下橋電晶體,且第二電晶體M2配置為諧振半橋返馳式轉換器900之上橋電晶體。FIG. 11 shows a schematic diagram of a preferred embodiment of the resonant half-bridge flyback converter of the present invention. The resonant half-bridge flyback converter 900 is similar to the resonant half-bridge flyback converter 300 of FIG. 3 . In this embodiment, the resonant half-bridge flyback converter 900 includes a first transistor M1, a second transistor M2 and a third transistor M3, and the first transistor M1, the second transistor M2 and the third transistor M3 is used to form a half-bridge circuit. From a viewpoint, the first transistor M1 and the third transistor M3 are configured as the lower bridge transistors of the resonant half-bridge flyback converter 900, and the second transistor M2 is configured as the resonant half-bridge flyback converter 900 above the bridge transistor.

根據回授訊號VFB及輸入電壓VIN,一次側控制器201用以產生第一驅動訊號S1、第二驅動訊號S2及第三驅動訊號S3,第一驅動訊號S1、第二驅動訊號S2及第三驅動訊號S3耦接以經由半橋電路而切換變壓器10,藉此於變壓器10之二次側產生輸出電壓VO。第二驅動訊號S2驅動第二電晶體M2以激磁變壓器10,第三驅動訊號S3於變壓器10之去磁與諧振時段中導通第三電晶體M3,第三驅動訊號S3也用於導通第三電晶體M3以產生流經變壓器10的循環電流,並於重負載狀態中達成第二電晶體M2的零電壓切換。換言之,第二電晶體M2為諧振半橋返馳式轉換器900之一次側上橋開關且可對應於圖3之第一電晶體30,第三電晶體M3為諧振半橋返馳式轉換器900之一次側下橋開關且可對應於圖3之第二電晶體40。就一觀點而言,第一電晶體M1用以並聯於第三電晶體M3且作為輔助一次側下橋開關,具有獨立的控制訊號S1。According to the feedback signal VFB and the input voltage VIN, the primary side controller 201 is used to generate the first driving signal S1, the second driving signal S2 and the third driving signal S3, the first driving signal S1, the second driving signal S2 and the third driving signal The driving signal S3 is coupled to switch the transformer 10 through the half-bridge circuit, thereby generating the output voltage VO on the secondary side of the transformer 10 . The second driving signal S2 drives the second transistor M2 to excite the transformer 10. The third driving signal S3 turns on the third transistor M3 during the demagnetization and resonance periods of the transformer 10. The third driving signal S3 is also used to turn on the third transistor M3. The transistor M3 is used to generate a circulating current flowing through the transformer 10 and achieve zero-voltage switching of the second transistor M2 in a heavy load state. In other words, the second transistor M2 is the primary-side upper bridge switch of the resonant half-bridge flyback converter 900 and may correspond to the first transistor 30 in FIG. 3 , and the third transistor M3 is the resonant half-bridge flyback converter. 900 is a primary side lower bridge switch and may correspond to the second transistor 40 in FIG. 3 . From a point of view, the first transistor M1 is connected in parallel with the third transistor M3 and serves as an auxiliary primary-side low-bridge switch, and has an independent control signal S1.

在一實施例中,在輕負載狀態且操作於不連續導通模式時,藉由導通第二電晶體M2而激磁變壓器10之後,第三電晶體M3於變壓器10之去磁與諧振時段中被控制為導通。於去磁之後,當第三電晶體M3持續關斷,第一驅動訊號S1用以導通第一電晶體M1,以產生流經變壓器10的循環電流而達成第二電晶體M2的零電壓切換時,。因此,第三電晶體M3在不連續導通模式之一個切換週期中可避免切換兩次。In one embodiment, the third transistor M3 is controlled during the demagnetization and resonance period of the transformer 10 after the transformer 10 is excited by turning on the second transistor M2 when operating in the discontinuous conduction mode under light load conditions. for conduction. After demagnetization, when the third transistor M3 is continuously turned off, the first driving signal S1 is used to turn on the first transistor M1 to generate a circulating current flowing through the transformer 10 to achieve zero-voltage switching of the second transistor M2 ,. Therefore, the third transistor M3 can avoid switching twice in one switching cycle of the discontinuous conduction mode.

由於第一電晶體M1只用以產生循環電流以達成零電壓切換,在一實施例中,第一電晶體M1之實際尺寸(例如長寬比)可配置為遠小於第三電晶體M3之實際尺寸。因此,第一電晶體M1的驅動能力及寄生電容(例如閘極電容)低於第三電晶體M3的寄生電容,第一電晶體M1的切換損耗也因此低於第三電晶體M3的切換損耗。Since the first transistor M1 is only used to generate circulating current to achieve zero-voltage switching, in one embodiment, the actual size (such as aspect ratio) of the first transistor M1 can be configured to be much smaller than the actual size of the third transistor M3 size. Therefore, the driving capability and parasitic capacitance (such as gate capacitance) of the first transistor M1 are lower than the parasitic capacitance of the third transistor M3, and the switching loss of the first transistor M1 is therefore lower than the switching loss of the third transistor M3. .

舉例而言,電晶體的閘極切換損耗Pg可被表示為:For example, the gate switching loss Pg of a transistor can be expressed as:

Pg = 0.5*Ciss*Vg*Vg*FreqPg = 0.5*Ciss*Vg*Vg*Freq

其中Ciss為電晶體之輸入電容,Vg為閘極驅動訊號之電壓位準,Freq為閘極驅動訊號之切換頻率。Among them, Ciss is the input capacitance of the transistor, Vg is the voltage level of the gate drive signal, and Freq is the switching frequency of the gate drive signal.

如上述開關功率損耗方程式,實際尺寸較小的第一電晶體M1用以專用於不連續導通模式中達成第二電晶體M2的零電壓切換,因此第一電晶體M1的閘極切換損耗低於實際尺寸較大的第三電晶體M3。According to the above switching power loss equation, the first transistor M1 with a smaller actual size is dedicated to achieve zero-voltage switching of the second transistor M2 in the discontinuous conduction mode, so the gate switching loss of the first transistor M1 is lower than The third transistor M3 with larger actual size.

此外,在一實施例中,第一驅動訊號S1的電壓位準(即Vg)之振幅低於第三驅動訊號S3的電壓位準之振幅,因此更可降低第一電晶體M1之切換損耗,且在一實施例中,第一電晶體M1之閘極最大額定值(例如閘源極電壓)也可低於第三電晶體M3之閘極最大額定值。In addition, in one embodiment, the amplitude of the voltage level (Vg) of the first driving signal S1 is lower than the amplitude of the voltage level of the third driving signal S3, so that the switching loss of the first transistor M1 can be further reduced. And in one embodiment, the maximum rated value of the gate of the first transistor M1 (for example, the gate-source voltage) may also be lower than the maximum rated value of the gate of the third transistor M3.

電阻60藉由偵測變壓器10的一次側開關電流IP而產生電流感測訊號VCS,一次側控制器201用以根據輸入電壓VIN而產生第一驅動訊號S1,並根據輸入電壓VIN及/或輸出電壓VO而產生第三驅動訊號S3。一次側控制器201更用以根據回授訊號VFB而產生第二驅動訊號S2。The resistor 60 generates the current sensing signal VCS by detecting the primary-side switch current IP of the transformer 10, and the primary-side controller 201 is used to generate the first driving signal S1 according to the input voltage VIN, and output the first drive signal according to the input voltage VIN and/or The voltage VO is used to generate the third driving signal S3. The primary side controller 201 is further used to generate the second driving signal S2 according to the feedback signal VFB.

圖12顯示本發明之一次側控制器201操作於不連續導通模式之一較佳實施例操作波形圖。於不連續導通模式之操作中,一次側控制器201操作於第一切換週期Tcyc1並控制第一驅動訊號S1於第一時段TA中導通第一電晶體M1,藉此產生循環電流以達成第二電晶體M2導通時的零電壓切換。經過第一時段TA後,第一驅動訊號S1、第二驅動訊號S2及第三驅動訊號S3用以於第一不導通時段Td1(即空滯時段)中,關斷第一電晶體M1、第二電晶體M2及第三電晶體M3。在一實施例中,第一不導通時段Td1相關於用以達成第二電晶體M2之零電壓切換的準諧振時段。經過第一不導通時段Td1後,第二驅動訊號S2於第二時段TB中,導通第二電晶體M2,第二電晶體M2之導通用以激磁變壓器10。經過第二時段TB後,第一驅動訊號S1、第二驅動訊號S2及第三驅動訊號S3用以於(即空滯時段)中,關斷第一電晶體M1、第二電晶體M2及第三電晶體M3。在一實施例中,第二不導通時段Td2相關於用以達成第三電晶體M3之零電壓切換的另一準諧振時段。經過第二不導通時段Td2後,第三驅動訊號S3於第三時段TC中,導通第三電晶體M3,第三電晶體M3於變壓器10之去磁時段中導通。經過第三時段TC後,第一驅動訊號S1、第二驅動訊號S2及第三驅動訊號S3用以於第三不導通時段TZ中,關斷第一電晶體M1、第二電晶體M2及第三電晶體M3,其中激磁電流IM於第三不導通時段TZ中(即不連續導通模式)維持在零。經過第三不導通時段TZ後,開始另一切換週期Tcyc2。FIG. 12 shows an operation waveform diagram of a preferred embodiment of the primary-side controller 201 operating in the discontinuous conduction mode of the present invention. In the operation of the discontinuous conduction mode, the primary side controller 201 operates in the first switching period Tcyc1 and controls the first driving signal S1 to conduct the first transistor M1 in the first period TA, thereby generating a circulating current to achieve the second Zero-voltage switching when transistor M2 is on. After the first period TA, the first driving signal S1, the second driving signal S2 and the third driving signal S3 are used to turn off the first transistor M1, the second The second transistor M2 and the third transistor M3. In one embodiment, the first non-conduction period Td1 is related to the quasi-resonant period for achieving zero-voltage switching of the second transistor M2. After the first non-conduction period Td1 , the second driving signal S2 turns on the second transistor M2 in the second period TB, and the conduction of the second transistor M2 is used to excite the transformer 10 . After the second period TB, the first driving signal S1, the second driving signal S2 and the third driving signal S3 are used to turn off the first transistor M1, the second transistor M2 and the Three-transistor M3. In one embodiment, the second non-conduction period Td2 is related to another quasi-resonant period for achieving zero-voltage switching of the third transistor M3. After the second non-conduction period Td2, the third driving signal S3 turns on the third transistor M3 in the third period TC, and the third transistor M3 turns on in the demagnetization period of the transformer 10 . After the third period TC, the first driving signal S1, the second driving signal S2 and the third driving signal S3 are used to turn off the first transistor M1, the second transistor M2 and the third transistor M2 in the third non-conduction period TZ. The tri-transistor M3, wherein the excitation current IM is maintained at zero in the third non-conduction period TZ (ie, discontinuous conduction mode). After the third non-conduction period TZ, another switching period Tcyc2 starts.

圖13顯示本發明一次側控制器之一較佳實施例方塊圖。在一實施例中,一次側控制器213包括計時器22及控制元件243。控制元件243用以根據輸入電壓VIN(經由VAUX)及回授訊號VFB而產生第一驅動訊號S1、第二驅動訊號S2及第三驅動訊號S3。FIG. 13 shows a block diagram of a preferred embodiment of the primary side controller of the present invention. In one embodiment, the primary side controller 213 includes a timer 22 and a control element 243 . The control element 243 is used for generating the first driving signal S1 , the second driving signal S2 and the third driving signal S3 according to the input voltage VIN (via VAUX ) and the feedback signal VFB.

計時器22用以計時而產生第三不導通時段TZ,第三不導通時段TZ起始於第三驅動訊號S3脈波結束時(例如下降緣)。在一實施例中,當諧振半橋返馳式轉換器的輸出功率減少時,第三不導通時段TZ對應增加,因此,諧振半橋返馳式轉換器的切換頻率亦能因諧振半橋返馳式轉換器的輸出功率減少而對應減少,藉此改善輕負載操作狀態中的效能。The timer 22 is used for timing to generate the third non-conduction period TZ, and the third non-conduction period TZ starts when the pulse of the third driving signal S3 ends (for example, a falling edge). In one embodiment, when the output power of the resonant half-bridge flyback converter decreases, the third non-conduction period TZ increases correspondingly. Therefore, the switching frequency of the resonant half-bridge flyback converter can also be reduced due to the resonant half-bridge flyback The output power of the Chi-mode converter is reduced correspondingly, thereby improving performance in light load operating conditions.

以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之權利範圍。所說明之各個實施例,並不限於單獨應用,亦可以組合應用,舉例而言,兩個或以上之實施例可以組合運用,而一實施例中之部分組成亦可用以取代另一實施例中對應之組成部件。此外,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,舉例而言,本發明所稱「根據某訊號進行處理或運算或產生某輸出結果」,不限於根據該訊號的本身,亦包含於必要時,將該訊號進行電壓電流轉換、電流電壓轉換、及/或比例轉換等,之後根據轉換後的訊號進行處理或運算產生某輸出結果。由此可知,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,其組合方式甚多,在此不一一列舉說明。因此,本發明的範圍應涵蓋上述及其他所有等效變化。The present invention has been described above with reference to preferred embodiments, but the above description is only for making those skilled in the art easily understand the content of the present invention, and is not intended to limit the scope of rights of the present invention. The various embodiments described are not limited to single application, and can also be used in combination. For example, two or more embodiments can be used in combination, and some components in one embodiment can also be used to replace another embodiment. corresponding components. In addition, under the same spirit of the present invention, those skilled in the art can think of various equivalent changes and various combinations. For example, the term "processing or computing according to a certain signal or generating a certain output result" in the present invention is not limited to According to the signal itself, it also includes performing voltage-current conversion, current-voltage conversion, and/or ratio conversion on the signal when necessary, and then processing or computing the converted signal to generate a certain output result. It can be seen that under the same spirit of the present invention, those skilled in the art can think of various equivalent changes and various combinations, and there are many combinations, which will not be listed here. Accordingly, the scope of the invention should encompass the above and all other equivalent variations.

10:變壓器 100:二次側控制器 20:諧振電容 200:一次側控制器 201:一次側控制器 205:時脈產生器 208:一次側控制器 22:計時器 230:電容 231:開關 240:控制元件 243:控制元件 248:控制元件 25:計時器 250:去磁仿擬器 255:電阻 260:週期計數器 271, 272:電晶體 280:比較器 285:邏輯電路 30:第一電晶體 300:諧振半橋返馳式轉換器 35:本體二極體 40:第二電晶體 45:本體二極體 51, 52, 55, 60:電阻 70:二次側同步整流器 75:本體二極體 90:光耦合器 900:諧振半橋返馳式轉換器 C:電容值 CPO:比較器輸出 DCM:不連續導通模式 ID:放電電流 IM:激磁電流 IP:一次側開關電流 IS:二次側開關電流 kn:膝點 Lr:漏電感 LX:切換節點 M1:第一電晶體 M2:第二電晶體 M3:第三電晶體 n,m:匝數比 NA:輔助繞組 NC:正整數 NNP:耦接節點 NP:一次側繞組 NS:二次側繞組 PW:脈寬 PZV:零電壓切換脈波 Rs:電阻值 Rt:電阻值 S1:第一驅動訊號 S2:第二驅動訊號 S3:第三驅動訊號 Sdmg:去磁訊號 SG:驅動訊號 SH:驅動訊號 SL:驅動訊號 SMP:取樣訊號 t1-t9:時點 t3’:時點 ta-te:時點 TA:第一時段 ta’, tc’:時點 TB:第二時段 TC:第三時段 Tcyc1:切換週期 Tcyc2:切換週期 Td1:第一不導通時段 Td2:第二不導通時段 TDS:去磁時段 TDSX:導通期間 TDSX’:導通期間 TRH:時段 TRL:時段 TSL:導通期間 TW:激磁時段 Tx:省略週期 TZ:第三不導通時段 VAUX:輔助訊號 VC:跨壓 Vcr:跨壓 VCS:電流感測訊號 VCSp:電壓位準 VDP:電壓降 VFB:回授訊號 Vg:電壓位準 VHB:切換節點電壓 VIN:輸入電壓 Vinx:電壓位準 VNA:輔助繞組訊號 VO:輸出電壓 VPK:電壓突波 Vref:參考電壓 Vth:電壓閾值 VX:反射電壓 10:Transformer 100:Secondary side controller 20: Resonant capacitor 200: primary side controller 201: primary side controller 205: Clock generator 208: primary side controller 22: Timer 230: capacitance 231: switch 240: control element 243: Control elements 248: Control elements 25: Timer 250: Demagnetization Simulator 255: resistance 260: Cycle counter 271, 272: Transistor 280: Comparator 285: Logic Circuit 30: The first transistor 300: Resonant Half Bridge Flyback Converter 35:Body diode 40: second transistor 45:Body diode 51, 52, 55, 60: Resistors 70: Secondary side synchronous rectifier 75:Body diode 90: Optocoupler 900: Resonant half-bridge flyback converter C: capacitance value CPO: Comparator output DCM: discontinuous conduction mode ID: discharge current IM: excitation current IP: primary side switch current IS: Secondary side switching current kn: knee point Lr: leakage inductance LX: switch node M1: the first transistor M2: second transistor M3: The third transistor n, m: turns ratio NA: auxiliary winding NC: positive integer NNP: Coupling Node NP: primary side winding NS: Secondary side winding PW: pulse width PZV: zero voltage switching pulse Rs: resistance value Rt: resistance value S1: The first driving signal S2: The second driving signal S3: The third driving signal Sdmg: demagnetization signal SG: drive signal SH: drive signal SL: drive signal SMP: Sampling signal t1-t9: time point t3': time point ta-te: time point TA: the first period ta', tc': time point TB:Second period TC: the third period Tcyc1: switching cycle Tcyc2: switching cycle Td1: the first non-conduction period Td2: the second non-conduction period TDS: Demagnetization period TDSX: conduction period TDSX': conduction period TRH: time period TRL: time period TSL: conduction period TW: excitation period Tx: omit cycle TZ: the third non-conduction period VAUX: auxiliary signal VC: cross voltage Vcr: cross voltage VCS: current sense signal VCSp: voltage level VDP: voltage drop VFB: feedback signal Vg: voltage level VHB: switching node voltage VIN: input voltage Vinx: voltage level VNA: auxiliary winding signal VO: output voltage VPK: voltage surge Vref: reference voltage Vth: voltage threshold VX: reflected voltage

圖1顯示先前技術之非對稱占空比返馳式轉換器。Figure 1 shows a prior art flyback converter with asymmetric duty cycle.

圖2顯示先前技術之半橋返馳式轉換器於輕負載狀態中操作於不連續導通模式之波形圖。FIG. 2 shows a waveform diagram of a prior art half-bridge flyback converter operating in discontinuous conduction mode in a light load state.

圖3顯示本發明之諧振半橋返馳式轉換器之一實施例示意圖。FIG. 3 shows a schematic diagram of an embodiment of the resonant half-bridge flyback converter of the present invention.

圖4顯示對應於圖3之實施例的操作波形圖。FIG. 4 shows an operation waveform corresponding to the embodiment of FIG. 3 .

圖5顯示降低驅動訊號SH與驅動訊號SL的切換頻率之操作波形圖。FIG. 5 shows an operation waveform diagram for reducing the switching frequency of the driving signal SH and the driving signal SL.

圖6顯示本發明之具有省略週期的諧振半橋返馳式轉換器的一實施例之操作波形圖。FIG. 6 shows an operating waveform diagram of an embodiment of the resonant half-bridge flyback converter with omitted periods of the present invention.

圖7顯示本發明之諧振半橋返馳式轉換器中一次側控制器之一實施例方塊圖。FIG. 7 shows a block diagram of an embodiment of a primary-side controller in the resonant half-bridge flyback converter of the present invention.

圖8顯示本發明之諧振半橋返馳式轉換器中一次側控制器之一實施例方塊圖。FIG. 8 shows a block diagram of an embodiment of a primary-side controller in the resonant half-bridge flyback converter of the present invention.

圖9顯示本發明之去磁仿擬器產生去磁訊號之操作波形圖。Fig. 9 shows the operation waveform diagram of the demagnetization simulator generating the demagnetization signal of the present invention.

圖10顯示本發明去磁仿擬器產生去磁訊號Sdmg之一具體實施例示意圖。FIG. 10 shows a schematic diagram of a specific embodiment of the demagnetization simulator generating the demagnetization signal Sdmg of the present invention.

圖11顯示本發明之諧振半橋返馳式轉換器之一較佳實施例示意圖。FIG. 11 shows a schematic diagram of a preferred embodiment of the resonant half-bridge flyback converter of the present invention.

圖12顯示本發明之一次側控制器201操作於不連續導通模式之一較佳實施例操作波形圖。FIG. 12 shows an operation waveform diagram of a preferred embodiment of the primary-side controller 201 operating in the discontinuous conduction mode of the present invention.

圖13顯示本發明一次側控制器之一較佳實施例方塊圖。FIG. 13 shows a block diagram of a preferred embodiment of the primary side controller of the present invention.

none

10:變壓器 10:Transformer

100:二次側控制器 100:Secondary side controller

20:諧振電容 20: Resonant capacitor

201:一次側控制器 201: primary side controller

51,52,60:電阻 51,52,60: resistance

70:二次側同步整流器 70: Secondary side synchronous rectifier

75:本體二極體 75:Body diode

900:諧振半橋返馳式轉換器 900: Resonant half-bridge flyback converter

IP:一次側開關電流 IP: primary side switch current

IS:二次側開關電流 IS: Secondary side switching current

M1:第一電晶體 M1: the first transistor

M2:第二電晶體 M2: second transistor

M3:第三電晶體 M3: The third transistor

NA:輔助繞組 NA: auxiliary winding

NP:一次側繞組 NP: primary side winding

NS:二次側繞組 NS: Secondary side winding

S1:第一驅動訊號 S1: The first driving signal

S2:第二驅動訊號 S2: The second driving signal

S3:第三驅動訊號 S3: The third driving signal

SG:驅動訊號 SG: drive signal

VAUX:輔助訊號 VAUX: auxiliary signal

VCS:電流感測訊號 VCS: current sense signal

VFB:回授訊號 VFB: feedback signal

VHB:切換節點電壓 VHB: switching node voltage

VIN:輸入電壓 VIN: input voltage

VO:輸出電壓 VO: output voltage

Claims (16)

一種半橋返馳式轉換器,包含: 一第一電晶體,經由一第一訊號控制; 一第二電晶體,經由一第二訊號控制; 一第三電晶體,經由一第三訊號控制,其中該第一電晶體、該第二電晶體及該第三電晶體用以構成一半橋電路;以及 一切換控制電路,用以根據該半橋返馳式轉換器的一輸入電壓而產生該第一訊號,並根據該半橋返馳式轉換器的一輸出電壓而產生該第三訊號,且根據一回授訊號而產生該第二訊號,其中該回授訊號相關於該半橋返馳式轉換器的該輸出電壓; 其中於一不連續導通模式(discontinuous conduction mode, DCM)的操作中,該切換控制電路操作於一第一切換週期,以控制該第一訊號於一第一時段中導通該第一電晶體,其中經過該第一時段後,該切換控制電路控制該第一訊號、該第二訊號及該第三訊號於一第一不導通時段中,關斷該第一電晶體、該第二電晶體及該第三電晶體,其中經過該第一不導通時段後,該切換控制電路控制該第二訊號於一第二時段中,導通該第二電晶體,其中經過該第二時段後,該切換控制電路控制該第一訊號、該第二訊號及該第三訊號於一第二不導通時段中,關斷該第一電晶體、該第二電晶體及該第三電晶體,其中經過該第二不導通時段後,該切換控制電路控制該第三訊號於一第三時段中,導通該第三電晶體,其中經過該第三時段後,該切換控制電路控制該第一訊號、該第二訊號及該第三訊號於一第三不導通時段中,關斷該第一電晶體、該第二電晶體及該第三電晶體。 A half-bridge flyback converter comprising: a first transistor controlled by a first signal; a second transistor controlled by a second signal; a third transistor controlled by a third signal, wherein the first transistor, the second transistor and the third transistor are used to form a half-bridge circuit; and a switching control circuit for generating the first signal according to an input voltage of the half-bridge flyback converter, and generating the third signal according to an output voltage of the half-bridge flyback converter, and according to generating the second signal by a feedback signal, wherein the feedback signal is related to the output voltage of the half-bridge flyback converter; Wherein in a discontinuous conduction mode (discontinuous conduction mode, DCM) operation, the switching control circuit operates in a first switching period to control the first signal to conduct the first transistor in a first period, wherein After the first period, the switching control circuit controls the first signal, the second signal and the third signal to turn off the first transistor, the second transistor and the third signal in a first non-conduction period. The third transistor, wherein after the first non-conduction period, the switching control circuit controls the second signal to conduct the second transistor in a second period, wherein after the second period, the switching control circuit controlling the first signal, the second signal and the third signal to turn off the first transistor, the second transistor and the third transistor in a second non-conduction period, wherein after the second non-conduction After the conduction period, the switching control circuit controls the third signal to turn on the third transistor in a third period, wherein after the third period, the switching control circuit controls the first signal, the second signal and The third signal turns off the first transistor, the second transistor and the third transistor during a third non-conduction period. 如請求項1所述之半橋返馳式轉換器,其中該第一電晶體導通以產生一循環電流,其中該循環電流用以於該不連續導通模式的操作中達成該第二電晶體的零電壓切換(Zero Voltage Switching, ZVS)。The half-bridge flyback converter as claimed in item 1, wherein the first transistor is turned on to generate a circulating current, wherein the circulating current is used to achieve the second transistor in the operation of the discontinuous conduction mode Zero Voltage Switching (Zero Voltage Switching, ZVS). 如請求項1所述之半橋返馳式轉換器,其中該第二電晶體導通以激磁該半橋返馳式轉換器之一變壓器。The half-bridge flyback converter as claimed in claim 1, wherein the second transistor is turned on to excite a transformer of the half-bridge flyback converter. 如請求項3所述之半橋返馳式轉換器,其中該第三電晶體於該變壓器的一去磁時段中導通。The half-bridge flyback converter as claimed in claim 3, wherein the third transistor is turned on during a demagnetization period of the transformer. 如請求項1所述之半橋返馳式轉換器,其中該第一電晶體與該第三電晶體配置為該半橋返馳式轉換器之下橋電晶體,且該第二電晶體配置為該半橋返馳式轉換器之上橋電晶體。The half-bridge flyback converter according to claim 1, wherein the first transistor and the third transistor are configured as lower bridge transistors of the half-bridge flyback converter, and the second transistor is configured is the upper bridge transistor of the half-bridge flyback converter. 如請求項1所述之半橋返馳式轉換器,更包含一計時器,其中該計時器用以對該第三不導通時段計時;其中當該半橋返馳式轉換器的該輸出功率減少,該計時器所計時的該第三不導通時段對應增加。The half-bridge flyback converter as described in claim 1, further comprising a timer, wherein the timer is used for timing the third non-conduction period; wherein when the output power of the half-bridge flyback converter decreases , the third non-conduction period counted by the timer increases correspondingly. 如請求項1所述之半橋返馳式轉換器,其中該第一電晶體之實際尺寸小於該第三電晶體之實際尺寸。The half-bridge flyback converter as claimed in claim 1, wherein the actual size of the first transistor is smaller than the actual size of the third transistor. 如請求項1所述之半橋返馳式轉換器,其中: 該第一訊號之振幅低於該第三訊號之振幅;及/或 該第一電晶體之閘極相關之一最大額定值(maximum rating)低於該第三電晶體之閘極相關之一最大額定值。 The half-bridge flyback converter as described in Claim 1, wherein: the amplitude of the first signal is lower than the amplitude of the third signal; and/or A maximum rating associated with the gate of the first transistor is lower than a maximum rating associated with the gate of the third transistor. 一種控制方法,用以控制一半橋返馳式轉換器,其中該半橋返馳式轉換器包括一第一電晶體、一第二電晶體及一第三電晶體,該控制方法包含: 產生一第一訊號,以根據該半橋返馳式轉換器的一輸入電壓而驅動該第一電晶體; 產生一第二訊號,以根據一回授訊號而驅動該第二電晶體,其中該回授訊號相關於該半橋返馳式轉換器的一輸出電壓;以及 產生一第三訊號,以根據該輸出電壓而驅動該第三電晶體; 其中驅動該第一電晶體、該第二電晶體及該第三電晶體的步驟包括: 於一不連續導通模式的操作中,控制該第一電晶體於一第一時段中導通; 經過該第一時段後,控制該第一電晶體、該第二電晶體及該第三電晶體於一第一不導通時段中關斷; 經過該第一不導通時段後,控制該第二電晶體於一第二時段中導通; 經過該第二時段後,控制該第一電晶體、該第二電晶體及該第三電晶體於一第二不導通時段中關斷; 經過該第二不導通時段後,控制該第三電晶體於一第三時段中導通;以及 經過該第三時段後,控制該第一電晶體、該第二電晶體及該第三電晶體於一第三不導通時段中關斷。 A control method for controlling a half-bridge flyback converter, wherein the half-bridge flyback converter includes a first transistor, a second transistor and a third transistor, the control method comprising: generating a first signal to drive the first transistor according to an input voltage of the half-bridge flyback converter; generating a second signal for driving the second transistor according to a feedback signal, wherein the feedback signal is related to an output voltage of the half-bridge flyback converter; and generating a third signal to drive the third transistor according to the output voltage; Wherein the step of driving the first transistor, the second transistor and the third transistor comprises: In a discontinuous conduction mode of operation, controlling the first transistor to conduct in a first period; After the first period, controlling the first transistor, the second transistor and the third transistor to be turned off in a first non-conduction period; After the first non-conduction period, controlling the second transistor to conduct in a second period; After the second period, controlling the first transistor, the second transistor and the third transistor to be turned off in a second non-conduction period; After the second non-conduction period, controlling the third transistor to conduct in a third period; and After the third period, the first transistor, the second transistor and the third transistor are controlled to be turned off in a third non-conducting period. 如請求項9所述之控制方法,更包含:藉由導通該第一電晶體而產生一循環電流,以於該不連續導通模式的操作中達成該第二電晶體的零電壓切換(Zero Voltage Switching, ZVS)。The control method as described in Claim 9, further comprising: generating a circulating current by turning on the first transistor to achieve zero voltage switching (Zero Voltage) of the second transistor in the operation of the discontinuous conduction mode Switching, ZVS). 如請求項9所述之控制方法,其中藉由導通該第二電晶體以激磁該半橋返馳式轉換器之一變壓器。The control method as claimed in claim 9, wherein a transformer of the half-bridge flyback converter is excited by turning on the second transistor. 如請求項11所述之控制方法,其中於該變壓器的一去磁時段中導通該第三電晶體。The control method as claimed in claim 11, wherein the third transistor is turned on during a demagnetization period of the transformer. 如請求項9所述之控制方法,其中該第一電晶體與該第三電晶體為該半橋返馳式轉換器之下橋電晶體,且該第二電晶體為該半橋返馳式轉換器之上橋電晶體。The control method according to claim 9, wherein the first transistor and the third transistor are the lower bridge transistors of the half-bridge flyback converter, and the second transistor is the half-bridge flyback converter Bridge transistors above the converter. 如請求項9所述之控制方法,更包含: 當該半橋返馳式轉換器的該輸出功率減少,對應增加該第三不導通時段。 The control method as described in Claim 9 further includes: When the output power of the half-bridge flyback converter decreases, the third non-conduction period increases correspondingly. 如請求項9所述之控制方法,其中該第一電晶體之實際尺寸小於該第三電晶體之實際尺寸。The control method as claimed in claim 9, wherein the actual size of the first transistor is smaller than the actual size of the third transistor. 如請求項9所述之控制方法,其中該第一訊號之振幅低於該第三訊號之振幅。The control method according to claim 9, wherein the amplitude of the first signal is lower than the amplitude of the third signal.
TW111121179A 2021-09-06 2022-06-08 Half-bridge flyback power converter and control method thereof TWI822091B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163241090P 2021-09-06 2021-09-06
US63/241090 2021-09-06
US17/673298 2022-02-16
US17/673,298 US12009753B2 (en) 2021-02-25 2022-02-16 Half-bridge flyback power converter and control method thereof

Publications (2)

Publication Number Publication Date
TW202312644A true TW202312644A (en) 2023-03-16
TWI822091B TWI822091B (en) 2023-11-11

Family

ID=85388252

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111121179A TWI822091B (en) 2021-09-06 2022-06-08 Half-bridge flyback power converter and control method thereof

Country Status (2)

Country Link
CN (1) CN115776236A (en)
TW (1) TWI822091B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116526860A (en) * 2023-03-13 2023-08-01 艾科微电子(深圳)有限公司 Asymmetric half-bridge power supply and control method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005101635A1 (en) * 2004-04-16 2005-10-27 System General Corp. Soft-switching power converter having power saving means
CN1972096A (en) * 2005-11-25 2007-05-30 台达电子工业股份有限公司 Switching power supply and its zero-voltage switching (ZVS) control method
ITUB20159679A1 (en) * 2015-12-21 2017-06-21 St Microelectronics Srl A POWER CONTROL MODULE FOR AN ELECTRONIC CONVERTER, ITS INTEGRATED CIRCUIT, ELECTRONIC CONVERTER AND PROCEDURE
TWI626821B (en) * 2017-04-18 2018-06-11 立錡科技股份有限公司 Flyback power converter circuit with active clamping and zero voltage switching and conversion control circuit thereof
US11196347B2 (en) * 2018-12-13 2021-12-07 Power Integrations, Inc. Apparatus and methods for controlling a switch drive signal following mode transitions in a switching power converter

Also Published As

Publication number Publication date
TWI822091B (en) 2023-11-11
CN115776236A (en) 2023-03-10

Similar Documents

Publication Publication Date Title
US8988901B2 (en) Switching power supply device
US11626871B2 (en) Control of secondary switches based on secondary winding voltage in a power converter
US9276483B2 (en) Control circuit for active-clamp flyback power converter with programmable switching period
US6469484B2 (en) Power supply circuit and method thereof to detect demagnitization of the power supply
JP5463759B2 (en) Switching power supply device and switching power supply control circuit
US7636249B2 (en) Rectifier circuit
JP3371962B2 (en) DC-DC converter
JP4835087B2 (en) DC-DC converter
JP4371042B2 (en) Switching power supply
KR101727290B1 (en) Converter and the driving method thereof
US12009753B2 (en) Half-bridge flyback power converter and control method thereof
JP2015163018A (en) switching power supply
JP2009284667A (en) Power supply device, its control method, and semiconductor device
CN111585444A (en) Switching converter and method for operating a switching converter
US20050024897A1 (en) Synchronized rectifying controller for a forward power converter
TW202312644A (en) Half-bridge flyback power converter and control method thereof
TWI824551B (en) Resonant half-bridge flyback power converter with skipping cycles and control method thereof
TWI825773B (en) Flyback power converter having emulated demagnetized signal and primary-side control circuit and control method thereof
JP5926766B2 (en) DC / DC converter
US20240120844A1 (en) Resonant flyback power converter and switching control circuit and method thereof
WO2023162074A1 (en) Active clamp fly-back converter
KR101486962B1 (en) Converter and the driving method thereof
KR20160147689A (en) Converter and the driving method thereof
JP2003219639A (en) Switching power source
JP2003111404A (en) Dc-dc converter