TW202312638A - 減少洩漏電流之平衡裝置 - Google Patents

減少洩漏電流之平衡裝置 Download PDF

Info

Publication number
TW202312638A
TW202312638A TW110144153A TW110144153A TW202312638A TW 202312638 A TW202312638 A TW 202312638A TW 110144153 A TW110144153 A TW 110144153A TW 110144153 A TW110144153 A TW 110144153A TW 202312638 A TW202312638 A TW 202312638A
Authority
TW
Taiwan
Prior art keywords
coil
current
magnetic field
load
vin
Prior art date
Application number
TW110144153A
Other languages
English (en)
Other versions
TWI802110B (zh
Inventor
陳洛麟
金志烘
金善永
Original Assignee
紘嘉電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 紘嘉電子股份有限公司 filed Critical 紘嘉電子股份有限公司
Publication of TW202312638A publication Critical patent/TW202312638A/zh
Application granted granted Critical
Publication of TWI802110B publication Critical patent/TWI802110B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Breakers (AREA)
  • Control Of Electrical Variables (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

一種減少洩漏電流之平衡裝置,包括:一設置於預設負載及電源端之間的平衡線圈模組,以及一控制模組;該平衡線圈模組具有第一線圈、第二線圈、第三線圈,該第一線圈、第二線圈分別連結於該負載之二端,該第三線圈連結於該控制模組,該第一線圈能受到一由電源端往該負載方向的供給電流通過而產生一個正向磁場,該第二線圈能受到一由負載往電源端方向的回歸電流通過而產生一個反向磁場,該控制模組能偵測並計算該供給電流與回歸電流之間的差異,並控制該第三線圈產生一個可以彌補該正向磁場與反向磁場之間差距的補償磁場,藉以使該平衡線圈模組內部的磁場及電流維持平衡狀態,達到降低漏觸電流及維持基本供電之功效。

Description

減少洩漏電流之平衡裝置
本發明是有關減少洩漏電流之平衡裝置,尤指一種在電器設備淹水或人體觸電時,可有效降低漏(觸)電流,並維持對電器設備供電,以確保人員安全及維持電器設備基本運作之平衡裝置。
隨著各種電器及電子裝置的逐漸普及化,人們對於各種用電需求亦不斷增加,在大多數(家庭或工業)的用電環境中,市電乃為一種穩定且便利的電力來源,而目前的市電供應皆係由發電廠經由電線高壓傳輸後,再經變壓至各種固定規格的電壓,以供不同終端消費者依需求經由電線連結至電器及電子裝置;然而,在一般的生活環境及用電過程中,往往會遇到許多天災或人為疏失,造成各種漏(觸)電情形發生。
眾所周知,當電器設備浸水時,可能會由接電部(電器設備之插頭連接電源插座的部位或導入電源之電線裸露部位)往大地產生漏電流,或者當人體接觸到該外露的接電部時,會由接電部透過人體往大地產生電流,此種漏電流往往會造成使用人員的人體傷害及相關電器設備的損壞,因此目前大多數的輸配電或供電設備中會配置漏電斷路開關,可在供電線路或電器設備、電子裝置發生漏電時立即切斷與電源的連結,以達到保護人員及電器設備的用電安全;然而,上述漏電斷路開關其僅能於漏電情形發生後切斷電源,並不具有降低或消除漏電流的功能,再者,許多電器設備(例如:維持生命之醫療設備或儲存資料之電腦設備)並不允許隨時斷電,任何非預期的斷電皆會造成生命及經濟上的嚴重損失。
因此,在韓國登記專利10-2270589號專利案中提供一種防電氣事故的安全裝置,依據該專利所揭露的內容,在電器線路浸水的情況之下,該安全裝置可以預防觸電事故之外,亦可對於電氣設備持續供應最低所需電力,讓電氣設備持續正常運轉。
除此之外,韓國登記專利10-1705090號專利案中揭露了具有接地斷線感測裝置及電源保護裝置等結構;而韓國登記專利10-2181899號專利案中公開了淹水時的防漏電裝置及使用該防漏電裝置的漏電和觸電保護方法,雖然在其說明書中記載著「發生觸電事故時,透過一平衡變壓器可以抵銷洩漏電流所產生的磁場之後,讓洩漏電流的強度可以降低到對於人體不會造成危險的程度」,然而在其專利說明書中只有提交負載和串聯連接關係的簡易圖式,因此該領域的一般技術人員無法直接由該專利所揭露的內容執行相關技術手段,更不知道該專利內容能否實際動作,即使依照該專利之內容能正常運作,也因為該正常運作的時間點落在接電部已被淹水或人體已被觸電之後的時刻,所以無法適當地預防觸電事故。
再者,上述洩漏電流大小係依照該接電部和大地之間所形成的線路狀態(包括人體等)而有所變化,因此在平衡變壓器之正向(由電源的電線流至負載方向)線圈上所流動的電流和逆向(由負載回流至電源的電線方向)線圈所流動的電流都會產生變化,其結果在流動正向電流的線圈和流動逆向電流的線圈上所產生的磁場大小互相不同,導致無法確實維持電流之間的平衡。而且由於經過外露的接電部流向大地的電流會增加,所以無法適當地應付處理觸電事故。
另外,在韓國登記專利10-0749837號專利案中揭露了一種平衡變壓器,該平衡變壓器可以讓並聯方式連接之負載上所流動的電流調整為均勻狀態。從理論來說,在該專利中有提到一種 「透過逆向連接的線圈以維持流動的電流之平衡」的方法,但該方法只是一種讓流動在並聯負載上的電流可以維持平衡狀態的理論而已;換句話說,該理論與可防止由外露之接電部流向大地的電流所造成的觸電事故完全無關。
由於上述漏(觸)電過程中,在接電部和負載、大地之間會形成多種不同的電流路徑之外,依照各種條件(例如:淹水條件、接電部和大地之間的條件、整體電路接地條件等)差異,在電流路徑上所產生的電阻值(以下簡稱 "漏洩負載")也會產生變化;因此,如何能因應不同漏(觸)電條件差異而產生相同減少漏(觸)電流的效果,並可維持對相關電器設備持續供電以避免失能,乃為相關業者所亟待努力之課題。
有鑑於習見之減少漏電或防止觸電的裝置於實際應用時有上述缺點,發明人乃針對該些缺點研究改進之道,終於有本發明產生。
本發明之主要目的在於提供一種減少洩漏電流之平衡裝置,其包括:一設置於預設負載及電源端之間的平衡線圈模組,以及一控制模組;該平衡線圈模組具有第一線圈、第二線圈、第三線圈;其中該第一線圈、第二線圈分別串聯於該負載之二端,該第三線圈連結於該控制模組,該第一線圈能受到一由電源端往該負載方向流動的供給電流通過而產生一個正向磁場,該第二線圈能受到一由負載往電源端方向流動的回歸電流通過而產生一個反向磁場,該控制模組能偵測並計算該供給電流與回歸電流之間的差異,並控制該第三線圈產生一個可以補償該供給電流與回歸電流之間差距的補償磁場,藉以使該平衡線圈模組內部之磁場保持一平衡狀態,達到減少上述漏電流、確實保護人命安全之功效。
本發明之另一目的在於提供一種減少洩漏電流之平衡裝置,其由於該平衡線圈模組之第三線圈係依需要而可配合該第一線圈或第二線圈形成互動,可使該平衡線圈模組內部之磁場接近平衡,進而將上述漏電流的強度降到最低的狀態,以達到使漏電或觸電之危險最輕微化之功效。
本發明之又一目的在於提供一種減少洩漏電流之平衡裝置,其於該平衡線圈模組中各線圈進行互動的過程中,可同時對該負載提供最基本的電力供應,以確保該負載能維持基本正常的運作,進而可避免非預期斷電造成生命安全或經濟的損失。
為達成上述目的及功效,本發明所採行的技術手段包括:一種減少洩漏電流之平衡線圈模組,包括:一設置於預設負載及電源端之間的平衡線圈模組;該平衡線圈模組具有第一線圈、第二線圈、第三線圈;其中該第一線圈、第二線圈分別連結於該負載之二端,該第一線圈能流通由電源端往該負載方向流動的供給電流,而產生一個正向磁場,該第二線圈能流通由負載往電源端方向流動的回歸電流,而產生一個反向磁場,該第三線圈能夠被提供一電流,以產生一個可以彌補該正向磁場與反向磁場之間差距的補償磁場。
本發明所採行的技術手段另包括:一種利用上述之平衡線圈模組所構成的減少洩漏電流之平衡裝置,其中該平衡線圈模組之該第一線圈、第二線圈分別連結於該負載之二端,而該第三線圈連結於一控制模組,該第一線圈能受到一由該電源端往該負載方向流動的供給電流通過,而產生一個正向磁場,該第二線圈能受到一由該負載往該電源端方向流動的回歸電流通過,而產生一個反向磁場,該控制模組能偵測並計算該供給電流與回歸電流之間的差值,並控制一電流通過該第三線圈,藉以產生一個可以彌補該正向磁場與反向磁場之間差距的補償磁場。
依上述結構,其中該控制模組具有一供給電流感測部及一回歸電流感測部,分別設置於該負載的二端;該控制模組係能分別感測通過該供給電流感測部之該供給電流的大小,以及通過該回歸電流感測部之該回歸電流的大小,再計算出該供給電流與回歸電流之間的大小差異之後,以控制通過該第三線圈的電流。
依上述結構,其中該控制模組係能輸出一控制電流至該第三線圈,藉以使該第三線圈產生該補償磁場。
依上述結構,其中該控制模組係將該控制電流之方向控制調整到與通過該第一線圈之供給電流方向一致的狀態。
依上述結構,其中該控制模組係將該控制電流之方向控制調整到與通過該第二線圈之回歸電流方向一致的狀態。
依上述結構,其中該第三線圈係分別連結於該電源端,該控制模組包括一設於該第三線圈與該電源端之間的切換開關組,當該控制模組操作該切換開關組導通該第三線圈與該電源端,能使該第三線圈通電產生該補償磁場。
依上述結構,其中第一線圈之匝數:第二線圈之匝數:第三線圈之匝數=1:1:2。
依上述結構,其中該第三線圈具有一中間抽頭,能將該第三線圈均分為二相同匝數之線圈,且該切換開關組包括第一切換開關及第二切換開關,該第一切換開關係設置於該第三線圈一端與該電源端之間,該第二切換開關係設置於該中間抽頭與該電源端之間。
依上述結構,其中第一線圈之匝數:第二線圈之匝數:第三線圈之匝數=1:1:1。
依上述結構,其中該切換開關組另包括一斷電開關,該斷電開關係設置於該平衡線圈模組與該電源端之間。
為使本發明的上述目的、功效及特徵可獲致更具體的瞭解,茲依下列附圖說明如下:
請參第1至2圖所示,可知本發明第一實施例之減少洩漏電流之平衡裝置100主要結構包括:平衡線圈模組10及控制模組20等部份;其中該平衡線圈模組10係設置於一負載200及電源端Vin之間,該平衡線圈模組10具有第一線圈N1、第二線圈N2、第三線圈N3,該第一線圈N1一端具有一第一端N11,連接於該電源端Vin供電之電源端子PS,該第一線圈N1另一端具有一第二端N12,連接於該負載200之一端,該第二線圈N2一端具有一第四端N22,連接於該電源端Vin之接地端子NS,該第二線圈N2另一端具有一第三端N21,連接於該負載200之另一端,藉以使該第一線圈N1 、第二線圈N2形成分別串聯於該負載200二端之組合狀態。
該第三線圈N3連結於該控制模組20,該控制模組20具有一供給電流感測部21及一回歸電流感測部22,分別設置於該負載200的二端;該控制模組20能分別感測通過該供給電流感測部21之由電源端Vin往該負載200方向流動的供給電流Iin大小,以及通過該回歸電流感測部22之由負載200往電源端Vin方向流動的回歸電流Iout大小,並計算該供給電流Iin和回歸電流Iout之大小差異,再輸出一控制電流IC至該第三線圈N3產生一補償磁場,藉以驅使該平衡線圈模組10中分別經由該供給電流Iin和回歸電流Iout所產生的磁場大小形成平衡。
上述結構中,該控制模組20係為一種可執行AC-AC轉換功能的電路裝置,且係由通電之後即開始運作,其具體之結構及運作方法屬於一種本領域中普遍的技術內容,所以在此不再針對該控制模組20作詳細的說明敘述。
在實際應用時,由於人體接觸到該負載200(即電器、電子產品)外露之導電部位時,或該負載200之導電部位浸水時,該導電部位與大地之間會形成多種漏電迴路,且各漏電迴路係與負載200之間形成並聯迴路;為了便於了解,在第1圖中於該負載200二端並聯一漏洩負載電路300,藉以模擬該負載200在漏電或觸電等異常狀態時的電流流動狀態。
在一個可行的實施例中,該漏洩負載電路300具有一並聯於該負載200二端之電阻R3,於該電阻R3之二端分別經由一電阻R1、電阻R2共同連接一電阻Rbody的一端,且由該電阻Rbody的另一端接地。
在模擬條件為PSIM 64-bit Version 9.0,AC 220V : peak voltage 311V(= RMS 220V)、由控制模組20向第三線圈N3所供應的電源為60Hz之AC 44V: peak voltage 62.2V(= RMS 44V);以及該負載200係由10 mH電感和100 Ω電阻串聯而成,且該漏洩負載電路300的電阻R1為80Ω、電阻R2為20Ω、電阻R3為20Ω、電阻Rbody為500Ω之下,上述第1圖之模擬等效電路乃如第2圖所示。
請參第3至5圖所示,在一般不具有類似本發明之減少洩漏電流之平衡裝置100的負載200於運作過程中(即第2圖中,缺少該減少洩漏電流之平衡裝置100之結構)發生漏電或觸電等異常狀態時,該供給電流Iin的大小係為通過負載200之負載電流IL、通過電阻Rbody之漏電流IB,以及流動在電阻R1、電阻R2、電阻R3上之電流的總和,而該回歸電流Iout的大小係為由供給電流Iin扣除往電阻Rbody方向流動的漏電流IB;此時,由第2圖中該模擬等效電路中測出通過該負載200之負載電流IL以及通過該電阻Rbody之模擬漏電流IB的大小及波形,乃如第3圖所示,其中,該負載電流IL約略為3.1A,而該漏電流IB約略為0.125A。
在上述第2圖之結構中,該平衡線圈模組10的第一線圈N1、第二線圈N2、第三線圈N3的線圈匝數各設為100匝,且第一線圈N1的內部電阻Rs、第二線圈N2之內部電阻Rt及第三線圈N3的內部電阻Rp皆設為0.1Ω,且該第一線圈N1的漏電感Ls、第二線圈N2的漏電感Lt及第三線圈N3的漏電感Lp皆為0.0001H;此時,磁化電感Lm為0.2H。
因此,該平衡線圈模組10的各項參數如下表所列:
Figure 02_image001
Figure 02_image003
同理,在上述第2圖之結構中,在相同發生漏電或觸電等異常狀態時,若該減少洩漏電流之平衡裝置100並未正常運作的情形下,通過該負載200之負載電流IL以及通過該電阻Rbody之模擬漏電流IB的大小及波形,乃如第4圖所示;由上述該第3圖及第4圖所示,無論是未設置該平衡線圈模組10,或該平衡線圈模組10未動作,通過該負載200之負載電流IL以及模擬之漏電流IB的電流大小並不會有太大的變化。
然而,本發明上述第一實施例的結構中,在相同發生漏電或觸電等異常狀態時,若該減少洩漏電流之平衡裝置100正常運作,則該控制模組20可經由該供給電流感測部21感測該供給電流Iin的大小,並經由該回歸電流感測部22感測該回歸電流Iout的大小,並計算該供給電流Iin和回歸電流Iout之大小差異;其中,若該供給電流Iin大於該回歸電流Iout,則該控制模組20輸出之控制電流IC係與流動於該第二線圈N2之回歸電流Iout相同方向,使該第三線圈N3產生一與該第二線圈N2相同方向的補償磁場,藉以平衡該供給電流Iin通過該第一線圈N1所產生之正向磁場;而在部份特殊的情形下,若該供給電流Iin小於該回歸電流Iout,則該控制模組20輸出之控制電流IC係與流動於該第一線圈N2之供給電流Iin相同方向,使該第三線圈N3產生一與該第一線圈N1相同方向的補償磁場,藉以平衡該回歸電流Iout通過該第二線圈N2所產生之反向磁場;因此,利用上述方式可使該平衡線圈模組10中分別經由該供給電流Iin和回歸電流Iout所產生的磁場大小形成平衡。
此時,通過該負載200之負載電流IL以及通過該電阻Rbody之模擬漏電流IB的大小及波形,乃如第5圖所示,且由該第5圖所揭露的內容中,明顯可看出通過該負載200之負載電流IL約略為3.1A,與前述第3、4圖所示之大小相同,表示在發生漏電或觸電等異常狀態時,仍可對該負載200提供基本正常供電,但該模擬之漏電流IB則由原來約略為0.125A降至約略為0.003A,因此該漏電流IB大小明顯降低表示可有效降低漏、觸電流之情形。
請參第6、7圖所示,可知本發明之上述第一實施例的結構,若將其應用於三相四線式電源時,各減少洩漏電流之平衡裝置100係分別設置於該三相電源各供電之電源端子R、S、T與接地端子N之間(如第6圖所示);而若將其應用於三相三線式電源時,則各減少洩漏電流之平衡裝置100係分別設置於該三相電源各供電之電源端子R、S、T之間(如第7圖所示)。
請參第8圖所示,可知本發明之上述減少洩漏電流之平衡裝置100於實際應用時,在一電源端Vin經由該減少洩漏電流之平衡裝置100連結一插座25或其它能與負載200連結之接電組件,且該負載200經由該插座25取得電源之使用環境(即一般較常見的漏觸電環境)下;當該插座25浸水而造成一漏電環境,且於該漏電環境中產生一觸電位置S,假設該插座25中的電源接點(即連結於該電源端子PS的接點)與觸電位置S之間的距離為DI,而該插座25中的接地接點(即連結於該接地端子NS的接點)與觸電位置S之間的距離為DO,則在上述該插座25中的電源接點與接地接點間距離足夠接近的條件下,該電源接點與觸電位置S之間的距離DI可視為等於該接地接點與觸電位置S之間的距離DO。
請參第9圖所示,由於在上述第8圖中之漏電環境下,該減少洩漏電流之平衡裝置100中的控制模組20輸出至第三線圈N3使漏電流最小化之控制電壓VC,係由該觸電位置S分別至該插座25中的電源接點、接地接點之間通過水下路徑的電阻(即該漏洩負載電路300中之電阻R1、電阻R2)比例所決定;依上述該電源接點與觸電位置S之間的距離DI等於該接地接點與觸電位置S之間的距離DO的結論,可知由該電源接點與觸電位置S之間的距離DI及該接地接點與觸電位置S之間的距離DO等二路徑所產生之電阻(即該漏洩負載電路300中之電阻R1、電阻R2)幾乎相同。
在上述情形下,若該平衡線圈模組10中第一線圈N1之匝數:第二線圈N2之匝數:第三線圈N3之匝數=1:1:1,則該控制電壓VC=電源端Vin的電壓/2;而若該平衡線圈模組10中第一線圈N1 之匝數:第二線圈N2 之匝數:第三線圈N3之匝數=1:1:2,則該控制電壓VC=電源端Vin電壓。
此時,在本發明第二實施例中,若採用該平衡線圈模組10中第一線圈N1之匝數:第二線圈N2之匝數:第三線圈N3之匝數=1:1:2之組成架構,將該第三線圈N3二端分別連結於該電源端Vin,且該控制模組20再於該第三線圈N3與該電源端Vin之間設置一切換開關組23,其餘各部電路結構則與前述第一實施例相同;藉此,當該控制模組20感測並計算該供給電流Iin和回歸電流Iout具有大小差異後,可直接驅動該切換開關組23導通該第三線圈N3與該電源端Vin,使該第三線圈N3通電產生該補償磁場,以降低該漏電流IB的電流大小。
由於此種架構中,該控制模組20無需執行複雜的運算及操作(轉換該電源端Vin之電壓,並調整該控制電流IC之大小)動作,因此可有效簡化該控制模組20的架構,達到降低成本、提昇經濟效益等功效。
請參第10圖所示,可知在上述第8圖中的應用環境下,若該漏電發生的位置在連接於該電源端Vin之電源端子PS直接接地(與大地連接)的情形下,則該電阻R1、電阻R2、電阻R3組合後之總和為0;此時,若該平衡線圈模組10中第一線圈N1之匝數:第二線圈N2之匝數:第三線圈N3之匝數=1:1:1,則該控制電壓VC=電源端Vin電壓為最佳。
因此,在本發明第三實施例中,若採用該平衡線圈模組10中第一線圈N1之匝數:第二線圈N2之匝數:第三線圈N3之匝數=1:1:1之組成架構,將該第三線圈N3二端分別連結於該電源端Vin,且該控制模組20再於該第三線圈N3與該電源端Vin之間設置一切換開關組23,其餘各部電路結構則與前述第一實施例相同;藉此,當該控制模組20感測並計算該供給電流Iin和回歸電流Iout具有大小差異後,可直接驅動該切換開關組23導通該第三線圈N3與該電源端Vin,使該第三線圈N3通電產生該補償磁場,以降低該漏電流IB的電流大小。
請參第11圖所示,可知本發明第四實施例中該減少洩漏電流之平衡裝置100的結構包括:平衡線圈模組10及控制模組20等部份;其中該平衡線圈模組10具有第一線圈N1、第二線圈N2、第三線圈N3,該第一線圈N1之匝數:第二線圈N2之匝數:第三線圈N3之匝數=1:1:2,該第一線圈N1、第二線圈N2係分別串聯於一負載200的二端,該第三線圈N3具有一中間抽頭N31,能將該第三線圈N3均分為二相同匝數之線圈。
該控制模組20可分別操作控制一切換開關組23及一斷電開關24,該切換開關組23包括第一切換開關231及第二切換開關232,該第一切換開關231係設置於該第三線圈N3一端與該電源端Vin之間,該第二切換開關232 係設置於該中間抽頭N31與該電源端Vin之間,而該斷電開關24係設置於該平衡線圈模組10與該電源端Vin之間;除此之外,該平衡線圈模組10、控制模組20與其它相關組件的連結關係皆與前述第二、三實施例相同,在此不多作贅述。
在實際應用時,當該控制模組20感測並計算該供給電流Iin和回歸電流Iout具有大小差異後;可由該控制模組20先驅動該第一切換開關231導通該完整的第三線圈N3與該電源端Vin,此時該第一線圈N1之匝數:第二線圈N2之匝數:第三線圈N3之匝數=1:1:2,該減少洩漏電流之平衡裝置100具有與前述第二實施例相同之結構特徵,並可產生與該第二實施例相同之功效;若上述動作無法有效降低該漏電流IB大小,則該控制模組20再改驅動該第二切換開關232導通該中間抽頭N31與該電源端Vin,此時,該第一線圈N1之匝數:第二線圈N2之匝數:第三線圈N3之匝數=1:1:1,該減少洩漏電流之平衡裝置100具有與前述第三實施例相同之結構特徵,並可產生與該第三實施例相同之功效;而若上述操作仍無法將該漏電流IB大小降至所預期的範圍之下,則該控制模組20驅動該斷電開關24動作,以切斷該平衡線圈模組10與該電源端Vin之連接,以預防可能發生的觸電事故。
綜合以上所述,本發明減少洩漏電流之平衡裝置確可達成在電器設備浸水或人體觸電時,可有效降低漏(觸)電流,並維持對電器設備基本正常供電之功效,實為一具新穎性及進步性之發明,爰依法提出申請發明專利;惟上述說明之內容,僅為本發明之較佳實施例說明,舉凡依本發明之技術手段與範疇所延伸之變化、修飾、改變或等效置換者,亦皆應落入本發明之專利申請範圍內。
10:平衡線圈模組
20:控制模組
21:供給電流感測部
22:回歸電流感測部
23:切換開關組
231:第一切換開關
232:第二切換開關
24:斷電開關
25:插座
100:減少洩漏電流之平衡裝置
200:負載
300:漏洩負載電路
DI:電源端子與觸電位置之間的距離
DO:接地端子與觸電位置之間的距離
Ls、Lt、Lp:漏電感
Lm:磁化電感
IB:漏電流
IC:控制電流
IL:負載電流
Iin:供給電流
Iout:回歸電流
N1:第一線圈
N2:第二線圈
N3:第三線圈
N11:第一端
N12:第二端
N21:第三端
N22:第四端
N31:中間抽頭
NS、N:接地端子
PS、R、S、T:電源端子
R1、R2、R3、Rbody:電阻
Rs、Rt、Rp:內部電阻
S:觸電位置
VC:控制電壓
Vin:電源端
第1圖係本發明第一實施例之完整電路方塊圖。
第2圖係第1圖之電路方塊於特定元件數值時的模擬等效電路圖。
第3圖係第2圖之電路結構中,未設置平衡線圈模組且在漏洩負載電路連接於負載(非正常狀態)時的負載電流及漏電流比對圖。
第4圖係第2圖之電路結構中,控制模組未驅動平衡線圈模組動作且在漏洩負載電路連接於負載(非正常狀態)時的負載電流及漏電流比對圖。
第5圖係第2圖之電路結構中,控制模組驅動平衡線圈模組動作前、後的負載電流及漏電流比對圖。
第6圖係本發明第一實施例應用於三相四線式電源及負載之間的實施例圖。
第7圖係本發明第一實施例應用於三相三線式電源及負載之間的實施例圖。
第8圖係本發明第一實施例之一應用情形示意圖。
第9圖係本發明第二實施例之電路方塊圖。
第10圖係本發明第三實施例之電路方塊圖。
第11圖係本發明第四實施例之電路方塊圖。
10:平衡線圈模組
20:控制模組
21:供給電流感測部
22:回歸電流感測部
100:減少洩漏電流之平衡裝置
200:負載
300:漏洩負載電路
IB:漏電流
IC:控制電流
IL:負載電流
Iin:供給電流
Iout:回歸電流
N1:第一線圈
N2:第二線圈
N3:第三線圈
N11:第一端
N12:第二端
N21:第三端
N22:第四端
NS:接地端子
PS:電源端子
R1、R2、R3、Rbody:電阻
Vin:電源端

Claims (12)

  1. 一種減少洩漏電流之平衡線圈模組,包括:一設置於預設負載(200)及電源端(Vin)之間的平衡線圈模組(10);該平衡線圈模組(10)具有第一線圈(N1)、第二線圈(N2)、第三線圈(N3);其中該第一線圈(N1)、第二線圈(N2)分別連結於該負載(200)之二端,該第一線圈(N1)能流通由該電源端(Vin)往該負載(200)方向流動的供給電流(Iin),而產生一個正向磁場,該第二線圈(N2)能流通由負載(200)往電源端(Vin)方向流動的回歸電流(Iout),而產生一個反向磁場,該第三線圈(N3)能夠被提供一電流,以產生一個可以彌補該正向磁場與反向磁場之間差距的補償磁場。
  2. 一種利用請求項1所述之平衡線圈模組所構成的減少洩漏電流之平衡裝置,其中該平衡線圈模組(10)之該第一線圈(N1)、第二線圈(N2)分別連結於該負載(200)之二端,而該第三線圈(N3)連結於一控制模組(20),該第一線圈(N1)能受到一由該電源端(Vin)往該負載(200)方向流動的供給電流(Iin)通過,而產生一個正向磁場,該第二線圈(N2)能受到一由該負載(200)往該電源端(Vin)方向流動的回歸電流(Iout)通過,而產生一個反向磁場,該控制模組(20)能偵測並計算該供給電流(Iin)與回歸電流(Iout)之間的差值,並控制一電流通過該第三線圈(N3),藉以產生一個可以彌補該正向磁場與反向磁場之間差距的補償磁場。
  3. 如請求項2所述之減少洩漏電流之平衡裝置,其中該控制模組(20)具有一供給電流感測部(21)及一回歸電流感測部(22),分別設置於該負載(200)的二端;該控制模組(20)係能分別感測通過該供給電流感測部(21)之該供給電流(Iin)的大小,以及通過該回歸電流感測部(22)之該回歸電流(Iout)的大小,再計算出該供給電流(Iin)與回歸電流(Iout)之間的大小差異之後,以控制通過該第三線圈(N3)的電流。
  4. 如請求項2所述之減少洩漏電流之平衡裝置,其中該控制模組(20)係能輸出一控制電流(IC)至該第三線圈(N3),藉以使該第三線圈(N3)產生該補償磁場。
  5. 如請求項4所述之減少洩漏電流之平衡裝置,其中該控制模組(20)係將該控制電流(IC)之方向控制調整到與通過該第一線圈(N1)之供給電流方向一致的狀態。
  6. 如請求項4所述之減少洩漏電流之平衡裝置,其中該控制模組(20)係將該控制電流(IC)之方向控制調整到與通過該第二線圈(N2)之回歸電流方向一致的狀態。
  7. 如請求項2所述之減少洩漏電流之平衡裝置,其中該第三線圈(N3)係分別連結於該電源端(Vin),該控制模組(20)包括一設於該第三線圈(N3)與該電源端(Vin)之間的切換開關組(23),當該控制模組(20)操作該切換開關組(23)導通該第三線圈(N3)與該電源端(Vin),能使該第三線圈(N3)通電產生該補償磁場。
  8. 如請求項3所述之減少洩漏電流之平衡裝置,其中該第三線圈(N3)係分別連結於該電源端(Vin),該控制模組(20)包括一設於該第三線圈(N3)與該電源端(Vin)之間的切換開關組(23),當該控制模組(20)操作該切換開關組(23)導通該第三線圈(N3)與該電源端(Vin),能使該第三線圈(N3)通電產生該補償磁場。
  9. 如請求項7所述之減少洩漏電流之平衡裝置,其中第一線圈(N1)之匝數:第二線圈(N2)之匝數:第三線圈(N3)之匝數=1:1:2。
  10. 如請求項9所述之減少洩漏電流之平衡裝置,其中該第三線圈(N3)具有一中間抽頭(N31),能將該第三線圈(N3)均分為二相同匝數之線圈,且該切換開關組(23)包括第一切換開關(231)及第二切換開關(232),該第一切換開關(231)係設置於該第三線圈(N3)一端與該電源端(Vin)之間,該第二切換開關(232)係設置於該中間抽頭(N31)與該電源端(Vin)之間。
  11. 如請求項7所述之減少洩漏電流之平衡裝置,其中第一線圈(N1)之匝數:第二線圈(N2)之匝數:第三線圈(N3)之匝數=1:1:1。
  12. 如請求項7或8或9或10或11所述之減少洩漏電流之平衡裝置,其中該切換開關組(23)另包括一斷電開關(24),該斷電開關(24)係設置於該平衡線圈模組(10)與該電源端(Vin)之間。
TW110144153A 2021-09-02 2021-11-26 減少洩漏電流之平衡裝置 TWI802110B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210117058A KR102350330B1 (ko) 2021-09-02 2021-09-02 누설전류 감소용 밸런싱 트랜스포머
KR10-2021-0117058 2021-09-02

Publications (2)

Publication Number Publication Date
TW202312638A true TW202312638A (zh) 2023-03-16
TWI802110B TWI802110B (zh) 2023-05-11

Family

ID=79355340

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110214061U TWM629694U (zh) 2021-09-02 2021-11-26 減少洩漏電流之平衡線圈模組及應用該平衡線圈模組所構成的平衡裝置
TW110144153A TWI802110B (zh) 2021-09-02 2021-11-26 減少洩漏電流之平衡裝置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW110214061U TWM629694U (zh) 2021-09-02 2021-11-26 減少洩漏電流之平衡線圈模組及應用該平衡線圈模組所構成的平衡裝置

Country Status (3)

Country Link
KR (1) KR102350330B1 (zh)
TW (2) TWM629694U (zh)
WO (1) WO2023033226A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102350330B1 (ko) * 2021-09-02 2022-01-11 오정인 누설전류 감소용 밸런싱 트랜스포머

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6597587B1 (en) * 2002-04-02 2003-07-22 The University Of Hong Kong Current driven synchronous rectifier with energy recovery using hysterisis driver
KR100749837B1 (ko) 2006-05-29 2007-08-21 주식회사 경인전자 밸런스용 트랜스포머
JP2008048527A (ja) * 2006-08-14 2008-02-28 Ntt Data Ex Techno Corp スイッチング電源回路及びトランス
WO2013043065A2 (en) * 2011-09-23 2013-03-28 Eyales Bonifacio J Electromagnetic energy-flux reactor
JP5781882B2 (ja) * 2011-09-29 2015-09-24 トヨタ自動車株式会社 送電装置、車両および電力伝送システム
KR101442527B1 (ko) 2011-12-01 2014-09-26 이재도 감전사고방지용 누전차단장치
CN104221249B (zh) * 2012-01-18 2017-05-24 康明斯发电Ip公司 转换开关
JP2013223354A (ja) * 2012-04-17 2013-10-28 Mayekawa Mfg Co Ltd 整流器
KR20140059652A (ko) * 2012-11-08 2014-05-16 삼성전기주식회사 전원 공급 장치 및 조명용 전원 공급 장치
KR20150088504A (ko) * 2014-01-24 2015-08-03 (주)바인이에스티 중성점 접지 방식의 변압기 및 그 방법과 그를 이용한 침수 시 감전 방지 장치
CN107078680B (zh) * 2014-09-17 2019-06-11 三菱电机株式会社 电力转换装置以及压缩机驱动装置
KR101726340B1 (ko) * 2016-02-16 2017-04-12 서미숙 침수 시 감전 방지 장치 및 방법
CN106160268B (zh) * 2015-05-15 2020-11-06 松下知识产权经营株式会社 异物检测装置、无线送电装置以及无线电力传送系统
KR102350491B1 (ko) * 2015-11-18 2022-01-14 삼성전자주식회사 전자 장치 및 그의 동작 방법
KR102181889B1 (ko) 2020-03-25 2020-11-24 정순권 화재 및 안전을 위한 화재 및 안전을 위한 침수시 누전 방지 장치 및 이를 이용한 누전 및 감전보호 방법
KR102270589B1 (ko) * 2020-08-14 2021-06-29 주식회사 아이티이 침수 시에 감전을 방지하는 배전시스템 및 단자대
CN112886593A (zh) * 2021-03-31 2021-06-01 哈尔滨理工大学 一种混合型有源滤波器电路结构
KR102350330B1 (ko) * 2021-09-02 2022-01-11 오정인 누설전류 감소용 밸런싱 트랜스포머

Also Published As

Publication number Publication date
WO2023033226A1 (ko) 2023-03-09
KR102350330B1 (ko) 2022-01-11
TWI802110B (zh) 2023-05-11
TWM629694U (zh) 2022-07-21

Similar Documents

Publication Publication Date Title
Jou et al. Analysis of zig-zag transformer applying in the three-phase four-wire distribution power system
CN108462162B (zh) 一种多功能柔性接地装置
US8223468B2 (en) Power conditioning circuit utilizing high oersted rating inductors
KR101320373B1 (ko) 변압기를 구비한 결상복구장치 및 그 설치공법
TWI802110B (zh) 減少洩漏電流之平衡裝置
Chiesa et al. Five-leg transformer model for GIC studies
US20150171613A1 (en) Electrical switching apparatus including alternating current electronic trip circuit with arc fault detection circuit and power supply
Sakhno et al. Field-circuit modelling of an advanced welding transformer with two parallel rectifiers
Farazmand et al. Analysis, modeling, and simulation of the phase-hop condition in transformers: The largest inrush currents
KR20130044247A (ko) 전력계통의 결상 시 결상복구장치 및 그 복구방법
Santoso et al. Modeling ferroresonance phenomena in an underground distribution system
CN217692811U (zh) 一种减少泄漏电的平衡装置
KR20200098359A (ko) 전력 모니터링 및 제어하기 위한 시스템과 방법
CN114389376A (zh) 一种减少泄漏电的平衡装置
CN107834577B (zh) 一种零线电流消除器
US9384928B2 (en) Electrical switching apparatus including transductor circuit and alternating current electronic trip circuit
Rappaport Does grounding make a system safe?: analyzing the factors that contribute to electrical safety
CN108603901B (zh) 在电路断开时受保护以防止浪涌电压的电流测量设备
Oliveira et al. On-line diagnostics of transformer winding insulation failures, by Parks vector approach
CN203057084U (zh) 双比例集成式放大器
CN216819697U (zh) 一种降低剩余电压的电路及医疗器械设备
KR101302806B1 (ko) 친환경 절전형 전력품질 복구장치를 내장한 수배전반(고압반, 저압반, 전동제어반, 분전반)
Opacˇak et al. Influence of grounding transformer on ground fault current in MV networks
US20090195942A1 (en) Effect of a loss of a reactive impedance of a transformer, when secondary windings of the transformer are short circuited. The Method and the Device for a reduction of a short circuit currents
Than Implementation of Power Factor Correction Using Solid State Switched Capacitors