TW202309264A - 用於生產類異戊二烯醇及衍生物之微生物醱酵 - Google Patents

用於生產類異戊二烯醇及衍生物之微生物醱酵 Download PDF

Info

Publication number
TW202309264A
TW202309264A TW111131509A TW111131509A TW202309264A TW 202309264 A TW202309264 A TW 202309264A TW 111131509 A TW111131509 A TW 111131509A TW 111131509 A TW111131509 A TW 111131509A TW 202309264 A TW202309264 A TW 202309264A
Authority
TW
Taiwan
Prior art keywords
microorganism
coa
clostridium
nucleic acid
synthase
Prior art date
Application number
TW111131509A
Other languages
English (en)
Inventor
尚恩 丹尼斯 辛普森
麥可 科普克
魯伯特 奧利弗 約翰 諾曼
史瓦尼 格雷
Original Assignee
美商朗澤科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商朗澤科技有限公司 filed Critical 美商朗澤科技有限公司
Publication of TW202309264A publication Critical patent/TW202309264A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/03027Isoprene synthase (4.2.3.27)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/03046Alpha-farnesene synthase (4.2.3.46)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/03Intramolecular oxidoreductases (5.3) transposing C=C bonds (5.3.3)
    • C12Y503/03002Isopentenyl-diphosphate DELTA-isomerase (5.3.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/101Plasmid DNA for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/145Clostridium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本揭示案提供一種藉由微生物醱酵生產類異戊二烯醇、類異戊二烯醇衍生物或其萜烯前體之方法。通常,該方法涉及在氣態受質存在下培養重組細菌,由此該細菌生產類異戊二烯醇、類異戊二烯醇衍生物、萜烯或其前體。微生物可包含一或多種外源酶。

Description

用於生產類異戊二烯醇及衍生物之微生物醱酵
本揭示案係關於重組微生物及藉由微生物醱酵氣態受質生產類異戊二烯醇、類異戊二烯醇衍生物、萜烯及/或其前體的方法。
類異戊二烯醇為此等新穎合成代謝途徑中生產類異戊二烯前體之關鍵中間產物。萜烯為由五碳異戊二烯單元構成的一類多樣的天然存在的化學物質。萜烯衍生物包括萜類(亦稱為類異戊二烯),其可藉由碳主鏈的氧化或重排或許多官能基的添加或重排而形成。
萜烯之實例包括:異戊二烯(C5半萜)、法呢烯(C15倍半萜)、青蒿素(C15倍半萜)、檸檬醛(C10單萜)、類胡蘿蔔素(C40四萜)、薄荷醇(C10單萜)、樟腦(C10單萜)及大麻素。
類異戊二烯醯基-CoA,諸如3-甲基-丁-2-烯醯基-CoA及3-甲基-丁-3-烯醯基-CoA,以及類異戊二烯醇,諸如異戊烯醇及異戊二烯醇,為關鍵的途徑中間物,可經由磷酸化酶轉化為類異戊二烯前體,諸如磷酸異戊烯酯(IP)、磷酸二甲基烯丙酯(DMAP)、IPP及DMAPP。若需要,可進一步修飾此等產品中之任一者。萜烯為用於多種行業的有價值的商業產品。萜烯之最高噸位用途係作為樹脂、溶劑、香料及維生素。舉例而言,異戊二烯用於生產合成橡膠(順式-1,4-聚異戊二烯),例如用於輪胎行業;法呢烯用作用於運輸之能量密集型滴入式燃料或用作噴氣燃料;青蒿素用作瘧疾藥物;檸檬醛、類胡蘿蔔素、薄荷醇、樟腦及大麻素用於製造醫藥品、丁二烯及作為芳香成分。
萜烯可由石化來源及萜烯原料諸如松節油生產。舉例而言,異戊二烯係作為乙烯生產中石腦油或石油裂解的副產品在石油化工中產生的。許多萜烯亦自天然來源中提取,數量相對較少。然而,此等生產方法為昂貴的、不可持續的且經常造成環境問題,包括促成氣候變化。
由於異戊二烯之極端易燃性,已知的生產方法需要廣泛的保障措施,以限制火災及爆炸的可能性。
本揭示案之目標為克服先前技術之一或多個缺點,或至少向公眾提供生產類異戊二烯醇、類異戊二烯醇衍生物、萜烯及其他相關產品之替代方法。
微生物醱酵為生產類異戊二烯醇、類異戊二烯醇衍生物及/或萜烯提供一種替代選擇。當與多種代謝途徑及用於碳重排及添加/移除官能基之酶組合使用時,本揭示案之反應充當合成類異戊二烯前體之平台。類異戊二烯醇為此等新穎合成代謝途徑中生產類異戊二烯前體之關鍵中間產物。萜烯在自然界中無處不在,例如,其參與細菌細胞壁的生物合成,且其由一些樹木(例如楊樹)產生以保護葉片免受UV光照射。然而,並非所有細菌皆包含產生萜烯及/或其前體作為代謝產物的必要細胞機制。舉例而言,不知道能夠醱酵包含一氧化碳之受質以生產諸如乙醇之產品的一氧化碳營養型產乙酸菌,諸如自產乙醇梭菌( C. autoethanogenum)或揚氏梭菌( C. ljungdahlii)會生產及排放任何萜烯及/或其前體作為代謝產物。此外,不知道大多數細菌會產生任何具有商業價值的類異戊二烯醇或萜烯。
本揭示案大體上提供尤其用於藉由對包含CO之受質進行微生物醱酵生產一或多種類異戊二烯醇、類異戊二烯醇衍生物、萜烯及/或其前體的方法,及用於此類方法之重組微生物。
本揭示案提供一種能夠自氣態受質生產產品的經基因工程改造之微生物,該微生物包含編碼一組外源酶之核酸,該組外源酶包含至少乙醯基-CoA合成酶及以下中之至少一者: a)     編碼一組外源酶之核酸,該組外源酶包含i)酮基-醯基-CoA硫解酶(KAT1),ii) 3-羥基-3-甲基戊二醯基輔酶A(HMG-CoA)合成酶,iii)甲基戊二醯基-CoA水合酶(MGCH),iv) 3-甲基巴豆醯基-CoA羧化酶(MCCC),v)醯基-CoA還原酶(ACOAR),及vi)醇去氫酶(ADH); b)     編碼一組外源酶之核酸,該組外源酶包含i) KAT1,ii) HMG-CoA合成酶,iii) MGCH、MCCC,iv)磷酸轉丁醯酶丁酸激酶(Ptb-buk),v)乙醛-鐵氧化還原蛋白氧化還原酶(AOR),及vi)(ADH); c)     編碼一組外源酶之核酸,該組外源酶包含i) KAT1或PTAr及ACKr,ii) CoA轉移酶A/B(CtfAB),iii)乙醯乙酸去羧酶(ADC)或ADC及羥基異戊酸合成酶(HIVS),iv)羥基異戊酸硫酯酶(3HBZCT),v)羥基異戊基-CoA水解酶(HPHL),vi) ACOAR,及vii) ADH; d)     編碼一組外源酶之核酸,該組外源酶包含i) KAT1或PTAr及ACKr,ii) CoA轉移酶A/B(CtfAB),iii) ADC或ADC及HIVS,iv) 3HBZCT,v) HPHL,vi) Ptb-buk,vii) AOR及ADH; e)     編碼一組外源酶之核酸,該組外源酶包含i) KAT1,ii) HMG-CoA合成酶,iii) 3-羥基-3-甲基戊二醯基輔酶A(HMG-CoA)還原酶,iv)甲羥戊酸激酶(MK),v)磷酸甲羥戊酸激酶(PMK),vi)二磷酸甲羥戊酸去羧酶(DMD),vii)異戊烯基二磷酸異構酶(IDI),viii)二甲基烯丙基二磷酸激酶(DMPKK),及ix)二甲基烯丙基磷酸激酶(DMPK); f)      編碼一組外源酶之核酸,該組外源酶包含i) KAT1,ii) HMG-CoA合成酶,iii) 3-羥基-3-甲基戊二醯基輔酶A(HMG-CoA)還原酶,iv)甲羥戊酸激酶(MK),v)磷酸甲羥戊酸去羧酶(PMVD),vi)異戊烯基磷酸異構酶(IPI),及vii)異戊二烯基磷酸酶(DMPase); g)     編碼一組外源酶之核酸,該組外源酶包含i)硫解酶、醯基-CoA乙醯轉移酶或聚酮合成酶,ii) β-酮醯基-CoA還原酶或β-羥醯基-CoA去氫酶,iii) β-羥醯基-CoA去水酶,iv)反式-烯醯基-CoA還原酶或丁醯基-CoA去氫酶/電子轉移黃素蛋白AB(Bcd-EtfAB),v)形成醇的醯基-CoA還原酶或形成醛的醯基-CoA羧酸還原酶,vi)水解酶或ADH,及vii)醇去水酶;及 其中該微生物為固定C1之微生物且該產品為類異戊二烯醇。
一實施例之微生物,其中該類異戊二烯醇為異戊烯醇。
一實施例之微生物,其進一步包含編碼一組能夠將異戊烯醇轉化為異戊二烯醇之外源酶的核酸。
一實施例之微生物,其進一步包含編碼一組能夠將異戊烯醇轉化為二甲基烯丙基焦磷酸(DMAPP)之酶的核酸。
一實施例之微生物,其進一步包含編碼一組能夠將異戊二烯醇轉化為異戊烯基二磷酸(IPP)之外源酶的核酸。
一實施例之微生物,其進一步包含編碼選自由異戊烯基二磷酸異構酶及香葉基轉移酶組成之群組之外源酶的核酸。
一實施例之微生物,其中該組能夠將異戊烯醇轉化為DMAPP之酶為醇二磷酸激酶。
一實施例之微生物,其中該組能夠將異戊二烯醇轉化為IPP之酶為醇二磷酸激酶。
一實施例之微生物,其進一步包含三種或更多種能夠產生類異戊二烯醇之酶,該等酶選自乙醯羥酸異構還原酶、乙醯乙酸去羧酶、醯基-CoA去氫酶、醯基-CoA還原酶、醯基-CoA合成酶、醯基-CoA轉移酶、醇去水酶、醇去氫酶、醛去羧酶、α-酮酸去羧酶、α-酮酸去氫酶、羧酸激酶、羧酸還原酶、去水酶、二羥酸去水酶、二醇去水酶、烯酸水合酶、烯醯基-CoA水合酶、烯醯基-CoA還原酶、戊二醯基-CoA去羧酶、羥酸去水酶、羥酸去氫酶、羥醯基-CoA去水酶、羥醯基-CoA去氫酶、羥甲基醯基-CoA合成酶、異構還原酶、異丙基蘋果酸去氫酶、異丙基蘋果酸異構酶、異丙基蘋果酸合成酶、變位酶、ω-氧化酶、磷酸轉醯基酶、硫酯酶或硫解酶,其中該生產視情況經由類異戊二烯醯基-CoA進行。
一實施例之微生物,其進一步包含一或多種磷酸化酶,以將該(等)類異戊二烯醇轉化為類異戊二烯前體;及d)視情況選用之一或多種酶,以將該(等)類異戊二烯前體轉化為其他類異戊二烯前體或類異戊二烯或其衍生物;其中該(等)酶中之一或多者為異源的。
一實施例之微生物,其為生產類異戊二烯前體或視情況生產類異戊二烯或其衍生物之重組微生物,該重組微生物包含:a)硫解酶或酮乙醯基-CoA合成酶,其催化醯基-CoA與第二醯基-CoA縮合形成β-酮醯基CoA,各該醯基-CoA選自乙醯基-CoA、羥乙醯基-CoA、丙醯基-CoA、丙二醯基-CoA、未經取代之醯基-CoA或官能化的醯基-CoA;b)視情況存在之一或多個迭代,其中該β-酮醯基CoA使用一或多種酶修飾且隨後用作醯基-CoA引子單元用於步驟a)之新縮合迭代;c)三種或更多種將該β-酮醯基CoA轉化為類異戊二烯醇之酶,該(等)酶包含β-還原酶及醇形成終止酶;d)一或多種磷酸化酶,以將該(等)類異戊二烯醇轉化為類異戊二烯前體;及e)視情況存在之一或多種酶,以將該(等)類異戊二烯前體轉化為其他類異戊二烯前體或類異戊二烯或其衍生物;其中一或多種該(等)酶為異源的。
一實施例之微生物,其進一步包含編碼外源酶異戊烯基二磷酸異構酶及香葉基轉移酶兩者的核酸。
一實施例之微生物,其進一步包含編碼一組選自檸檬烯合成酶、蒎烯合成酶、法呢烯合成酶或其任何組合之外源酶的核酸。
一實施例之微生物,其進一步包含編碼包含異戊二烯合成酶之外源酶的核酸。
一實施例之微生物,其具有一氧化碳去氫酶。
一實施例之微生物,其進一步包含對DXS途徑之破壞性突變。
一實施例之微生物,其中該破壞性突變為基因剔除。
一實施例之微生物,其中該等外源酶包含至少e)與a)、b)、c)、d)、f)及g)中之任一或多者串聯的組合。
一實施例之微生物,其中該等編碼外源酶之核酸經密碼子最佳化。
一實施例之微生物,其中該等編碼外源酶之核酸整合至微生物之基因體中。
一實施例之微生物,其中該等編碼外源酶之核酸摻入質體中。
一實施例之微生物,其中該等編碼外源酶之核酸係藉由組成型啟動子調節
本揭示案提供一種用於生產類異戊二烯醇之方法,其藉由使用至少一種選自由一氧化碳及二氧化碳組成之群組之C1化合物作為碳源培養如請求項1之微生物,以使該微生物生產類異戊二烯醇。
本揭示案提供一種用於生產類異戊二烯醇、類異戊二烯醇衍生物或萜烯前體之方法,其藉由提供至少一種選自由一氧化碳及二氧化碳組成之群組之C1化合物與如請求項1之微生物接觸,以使該微生物由C1化合物生產類異戊二烯醇、類異戊二烯醇衍生物或萜烯前體。
一實施例之方法,其中向該微生物提供包含氫氣之氣體。
一實施例之方法,其中類異戊二烯醇被回收。
一實施例之方法,其中向該微生物提供包含氫氣之氣體。
一實施例之方法,其中萜烯前體被回收。
一實施例之方法,其中C1化合物衍生自選自由以下組成之群組的工業製程:鐵類金屬產品製造、非鐵產品製造、石油精煉、煤炭氣化、電力生產、炭黑生產、氨生產、甲醇生產及焦炭製造。
一實施例之方法,其中C1化合物為合成氣。
一實施例之微生物,其中該微生物係選自由以下組成之群組:自產乙醇梭菌、揚氏梭菌、拉氏梭菌( Clostridium ragsdalei)、食一氧化碳梭菌( Clostridium carboxidivorans)、德雷克氏梭菌( Clostridium drakei)、糞味梭菌( Clostridium scatologenes)、醋酸梭菌( Clostridium aceticum)、蟻酸醋酸梭菌( Clostridium formicoaceticum)、大梭菌( Clostridium magnum)、鉤蟲貪銅菌( Cupriavidus necator)、熱醋酸穆爾氏菌( Moorella thermoacetica)、熱自養穆爾氏菌( Moorella thermautotrophica)及其任何組合。
一個實施例之微生物,其中類異戊二烯醇轉化為選自由以下組成之群組的萜烯:萜類、維生素A、番茄紅素、角鯊烯、異戊二烯、蒎烯、橙花醇、檸檬醛、樟腦、薄荷醇、檸檬烯、橙花叔醇、法呢醇、法呢烯、植醇、胡蘿蔔素、沉香醇及其任何組合。
在工程改造本揭示案之微生物時,本發明人出人意料地能夠對能夠自氣態受質生產產品之微生物進行基因工程改造,其中該微生物包含迭代途徑,該迭代途徑包含催化(C n)-醯基CoA轉化為β-酮醯基-CoA;催化β-酮醯基-CoA轉化為β-羥醯基-CoA;催化β-羥醯基-CoA轉化為反式-Δ 2-烯醯基-CoA;及催化反式-Δ 2-烯醯基-CoA轉化為(C n+2)醯基-CoA;及一或多種終止酶;且其中該微生物為在硫酯酶中包含破壞性突變的固定C1之細菌。此途徑可使用對較高鏈長度具有特異性的相同酶或其經工程改造之變異體進一步擴展,以產生包括但不限於一系列C4、C6、C8、C10、C12、C14醇、酮、烯醇或二醇。不同類型之分子亦可藉由在硫解酶步驟中使用不同於乙醯基-CoA之引子或延伸物單元獲得。此提供可持續醱酵以使用包含CO之受質及/或包含CO 2之受質產生一級醇。
引子及延伸物係選自草醯基-CoA、乙醯基-CoA、丙二醯基CoA、丁二醯基-CoA、羥基乙醯基-CoA、3-羥基丙醯基-CoA、4-羥基丁醯基-CoA、2-胺基乙醯基-CoA、3-胺基丙醯基-CoA、4-胺基丁醯基-CoA、異丁醯基-CoA、3-甲基-丁醯基-CoA、2-羥基丙醯基-CoA、3-羥基丁醯基-CoA、2-胺基丙醯基-CoA、丙醯基-CoA及戊醯基-CoA。此外,細菌表現逆β氧化途徑中之該組酶且細菌獲得產生一級醇、反式Δ 2脂肪醇、β-酮醇、1,3-二醇、1,4-二醇、1,6-二醇、二酸、β-羥基酸、羧酸或烴的能力。在一個實施例中,乙醯基-CoA為引子/起動分子,其使得合成偶數鏈的正醇及/或羧酸。在另一實施例中,丙醯基-CoA為起動/引子分子,其使得能夠合成奇數鏈的正醇及/或羧酸。
在一個實施例中,引子可為除乙醯基-CoA或丙醯基-CoA以外之引子,但乙醯基-CoA可與引子縮合,充當延伸物單元,向其中添加兩個碳單元。在另一實施例中,此等引子與不同終止酶組合使得合成其他產物。
在一個實施例中,本揭示案描述該一或多種終止酶選自醇形成輔酶-A硫酯還原酶、醛形成CoA硫酯還原酶、醇去氫酶、硫酯酶、醯基-CoA:乙醯基-CoA轉移酶、磷酸轉醯基酶及羧酸激酶;醛鐵氧化還原蛋白氧化還原酶;醛形成CoA硫酯還原酶、醛脫羰酶、醇去氫酶;醛去氫酶、醯基-CoA還原酶或其任何組合。
在一個實施例中,本揭示案描述逆β氧化循環之多輪操作,需要由一或多輪循環產生之醯基-CoA與額外的乙醯基-CoA分子縮合,以使醯基-CoA在每輪循環中延長兩個碳。在另一個實施例中,多輪循環之起始及延伸需要使用對較長鏈之醯基-CoA分子具有特異性之硫解酶與能夠作用於增加碳數之途徑中間物之其他途徑酶的組合。
儘管本發明人已證明本揭示案在自產乙醇梭菌中之功效,但本揭示案適用於更廣泛厭氧產乙酸微生物之群組及在包含CO及/或CO 2之受質上的醱酵,如上文及本文中進一步所論述。
本揭示案提供一種依賴於CoA之延伸平台,其在反向β-氧化樣途徑中接受官能化的醯基-CoA作為引子及延伸單元。產品可隨時拉出,且在需要時進一步修飾。在本發明之其他態樣中,能夠經由各種酶組合自中心碳代謝物諸如丙酮酸合成產品的反應為可能的。類異戊二烯醯基-CoA,諸如3-甲基-丁-2-烯醯基-CoA及3-甲基-丁-3-烯醯基-CoA,以及類異戊二烯醇,諸如異戊烯醇及異戊二烯醇,為關鍵的途徑中間物,可經由磷酸化酶轉化為類異戊二烯前體,諸如磷酸異戊烯酯(IP)、磷酸二甲基烯丙酯(DMAP)、IPP及DMAPP。如上所述,若需要,可進一步修飾此等產品中之任一者。
本發明之另一態樣提供一種採用經由3-甲基-3-丁烯醇(異戊二烯醇)而非異戊烯醇之β-氧化逆轉的途徑。此途徑自引子及延伸單元開始,由硫解酶催化。在由羥醯基-CoA去氫酶、烯醯基-CoA水合酶及烯醯基-CoA還原酶催化之三個β-還原步驟後,生成4-羥基-2-甲基丁醯基-CoA。4-羥基-2-甲基丁醯基-CoA藉由醇形成醯基-CoA還原酶或醛形成醯基-CoA還原酶及醇去氫酶或羧酸還原酶及選自由硫酯酶組成之群組的水解酶、醯基-CoA合成酶、醯基-CoA轉移酶及羧酸激酶加磷酸轉醯基酶轉化為2-甲基-1,4-丁二醇。隨後,醇去水酶將2-甲基-1,4-丁二醇轉化為3-甲基-3-丁烯醇(異戊二烯醇)。異戊二烯醇隨後藉由一或兩個步驟之磷酸化轉化為IPP。若藉由兩個步驟磷酸化,則第一步驟由醇激酶催化且第二步驟由磷酸激酶催化。一個步驟磷酸化係藉由醇二磷酸激酶催化。異戊烯基焦磷酸異構酶(IDI)將DMAPP轉化為IPP。DMAPP及IPP在GPP合成酶的催化下縮合為GPP。
本揭示案提供一種一氧化碳營養型產乙酸重組微生物,其能夠藉由醱酵包含CO之受質生產一或多種萜烯及/或其前體及視情況存在之一或多種其他產品。
在一個特定實施例中,微生物適於表現甲羥戊酸(MVA)途徑中之一或多種酶,該等酶不存在於衍生重組微生物之親本微生物中(在本文中可稱為外源酶)。在另一個實施例中,微生物適於過度表現甲羥戊酸(MVA)途徑中之一或多種酶,該等酶存在於衍生重組微生物之親本微生物中(在本文中可稱為內源酶)。
在另一實施例中,微生物適於: a)     表現甲羥戊酸(MVA)途徑中之一或多種外源酶及/或過度表現甲羥戊酸(MVA)途徑中之一或多種內源酶;及 b)     表現DXS途徑中之一或多種外源酶及/或過度表現DXS途徑中之一或多種內源酶。
在一個實施例中,來自甲羥戊酸(MVA)途徑之一或多種酶係選自由以下組成之群組: a)     硫解酶(EC 2.3.1.9), b)     HMG-CoA合成酶(EC 2.3.3.10), c)     HMG-CoA還原酶(EC 1.1.1.88), d)     甲羥戊酸激酶(EC 2.7.1.36), e)     磷酸甲羥戊酸激酶(EC 2.7.4.2), f)      甲羥戊酸二磷酸去羧酶(EC 4.1.1.33),及 g)     其中任一者之功能等效變異體。
在另一實施例中,來自DXS途徑之一或多種酶係選自由以下組成之群組: a)     1-去氧-D-木酮糖-5-磷酸合成酶DXS(EC:2.2.1.7), b)     1-去氧-D-木酮糖5-磷酸還原異構酶DXR(EC:1.1.1.267), c)     2-C-甲基-D-赤藻糖醇4-磷酸胞苷醯基轉移酶IspD(EC:2.7.7.60), d)     4-二磷酸胞苷-2-C-甲基-D-赤藻糖醇激酶IspE(EC:2.7.1.148), e)     2-C-甲基-D-赤藻糖醇2,4-環二磷酸合成酶IspF(EC:4.6.1.12), f)      4-羥基-3-甲基丁-2-烯-1-基二磷酸合成酶IspG(EC:1.17.7.1), g)     4-羥基-3-甲基丁-2-烯基二磷酸還原酶(EC:1.17.1.2),及 h)     其中任一者之功能等效變異體。
在另一實施例中,表現或過度表現一或多種其他外源或內源酶導致生產萜烯化合物或其前體,其中表現的外源酶或過度表現的內源酶係選自由以下組成之群組: a)     香葉基轉移酶Fps(EC:2.5.1.10), b)     七異戊烯基二磷酸合成酶(EC:2.5.1.10), c)     八異戊烯基二磷酸合成酶(EC:2.5.1.90), d)     異戊二烯合成酶(EC 4.2.3.27), e)     異戊烯基二磷酸δ-異構酶(EC 5.3.3.2), f)      法呢烯合成酶(EC 4.2.3.46 / EC 4.2.3.47),及 g)     其中任一者之功能等效變異體。
在一個實施例中,親本微生物能夠醱酵包含CO之受質以產生乙醯CoA,但不能將乙醯CoA轉化為甲羥戊酸或異戊烯基焦磷酸(IPP),且重組微生物適於表現參與甲羥戊酸途徑之一或多種酶。
在一個實施例中,一或多種萜烯及/或其前體係選自甲羥戊酸、IPP、二甲基烯丙基焦磷酸(DMAPP)、異戊二烯、香葉基焦磷酸(GPP)、法呢基焦磷酸(FPP)及法呢烯。
在一個實施例中,微生物包含一或多個外源核酸,其適於增加一或多個內源核酸之表現,且該一或多個內源核酸編碼上文提及之一或多種酶。
在一個實施例中,適於增加表現之一或多個外源核酸為調節元件。在一個實施例中,調節元件為啟動子。在一個實施例中,啟動子為組成型啟動子。在一個實施例中,啟動子選自包含伍德-永達爾基因簇或磷酸轉乙醯酶/乙酸激酶操縱子啟動子之群組。
在一個實施例中,微生物包含一或多個外源核酸,其編碼且適於表現上文提及之一或多種酶。在一個實施例中,微生物包含一或多個外源核酸,其編碼且適於表現至少兩種酶。在其他實施例中,微生物包含一或多個外源核酸,其編碼且適於表現至少三種、至少四種、至少五種、至少六種、至少七種、至少八種、至少九種或更多種酶。
在一個實施例中,一或多個外源核酸為核酸構築體或載體,在一個特定實施例中為質體,其以任何組合編碼前文所提及之一或多種酶。
在一個實施例中,外源核酸為表現質體。
在一個特定實施例中,親本微生物係選自一氧化碳營養型產乙酸細菌之群組。在某些實施例中,微生物係選自包含以下之群組:自產乙醇梭菌、揚氏梭菌、拉氏梭菌、食一氧化碳梭菌、德雷克氏梭菌、糞味梭菌、醋酸梭菌、蟻酸醋酸梭菌、大梭菌、食甲基丁酸桿菌( Butyribacterium methylotrophicum)、伍氏醋酸桿菌( Acetobacterium woodii)、巴氏嗜鹼菌( Alkalibaculum bacchii)、生產布勞特氏菌( Blautia producta)、黏液真桿菌( Eubacterium limosum)、熱醋酸穆爾氏菌、熱自養穆爾氏菌、卵形鼠孢菌( Sporomusa ovata)、銀醋酸鼠孢菌( Sporomusa silvacetica)、球形鼠孢菌( Sporomusa sphaeroides)、普氏產醋桿菌( Oxobacter pfennigii)及基伍嗜熱厭氧桿菌( Thermoanaerobacter kivui)。
在本文所揭示之微生物的一些態樣中,微生物為選自由以下組成之群組之屬的成員:醋酸桿菌屬、嗜鹼菌屬、布勞特氏菌屬、丁酸桿菌屬、梭菌屬、貪銅菌屬、真桿菌屬、穆爾氏菌屬、產醋桿菌屬、鼠孢菌屬及嗜熱厭氧桿菌屬。
在本文所揭示之微生物的一些態樣中,微生物衍生自選自由以下組成之群組的親本微生物:伍氏醋酸桿菌、巴氏嗜鹼菌、生產布勞特氏菌、食甲基丁酸桿菌、醋酸梭菌、自產乙醇梭菌、食一氧化碳梭菌、克薩氏梭菌、德雷克氏梭菌、蟻酸醋酸梭菌、揚氏梭菌、大梭菌、拉氏梭菌、糞味梭菌、鉤蟲貪銅菌、黏液真桿菌、熱自養穆爾氏菌、熱醋酸穆爾氏菌、普氏產醋桿菌、卵形鼠孢菌、銀醋酸鼠孢菌、球形鼠孢菌及基伍嗜熱厭氧桿菌。
在一個實施例中,親本微生物為自產乙醇梭菌或揚氏梭菌。在一個特定實施例中,微生物為自產乙醇梭菌DSM23693。在另一特定實施例中,微生物為揚氏梭菌DSM13528(或ATCC55383)。
在一個實施例中,親本微生物缺乏DXS途徑及/或甲羥戊酸(MVA)途徑中之一或多個基因。在一個實施例中,親本微生物缺乏一或多個編碼選自由以下組成之群組之酶的基因: a)     硫解酶(EC 2.3.1.9), b)     HMG-CoA合成酶(EC 2.3.3.10), c)     HMG-CoA還原酶(EC 1.1.1.88), d)     甲羥戊酸激酶(EC 2.7.1.36), e)     磷酸甲羥戊酸激酶(EC 2.7.4.2), f)      甲羥戊酸二磷酸去羧酶(EC 4.1.1.33), g)     1-去氧-D-木酮糖-5-磷酸合成酶DXS(EC:2.2.1.7), h)     1-去氧-D-木酮糖5-磷酸還原異構酶DXR(EC:1.1.1.267), i)       2-C-甲基-D-赤藻糖醇4-磷酸胞苷醯基轉移酶IspD(EC:2.7.7.60), j)       4-二磷酸胞苷-2-C-甲基-D-赤藻糖醇激酶IspE(EC:2.7.1.148), k)     2-C-甲基-D-赤藻糖醇2,4-環二磷酸合成酶IspF(EC:4.6.1.12), l)       4-羥基-3-甲基丁-2-烯-1-基二磷酸合成酶IspG(EC:1.17.7.1), m)   4-羥基-3-甲基丁-2-烯基二磷酸還原酶(EC:1.17.1.2),及 n)     其中任一者之功能等效變異體。
在第二態樣中,本揭示案提供一種編碼一或多種酶之核酸,其在微生物中表現時允許微生物藉由醱酵包含CO之受質來生產一或多種萜烯及/或其前體。
在一個實施例中,核酸編碼兩種或更多種酶,該核酸在微生物中表現時允許微生物藉由醱酵包含CO之受質來生產一或多種萜烯及/或其前體。在一個實施例中,本揭示案之核酸編碼至少三種、至少四種、至少五種、至少六種、至少七種、至少八種、至少九種或更多種此類酶。
在一個實施例中,核酸編碼甲羥戊酸(MVA)途徑中之一或多種酶。在一個實施例中,一或多種酶係選自由以下組成之群組: a)     硫解酶(EC 2.3.1.9), b)     HMG-CoA合成酶(EC 2.3.3.10), c)     HMG-CoA還原酶(EC 1.1.1.88), d)     甲羥戊酸激酶(EC 2.7.1.36), e)     磷酸甲羥戊酸激酶(EC 2.7.4.2), f)      甲羥戊酸二磷酸去羧酶(EC 4.1.1.33),及 g)     其中任一者之功能等效變異體。
在一特定實施例中,核酸編碼硫解酶(其可為乙醯CoA c-乙醯轉移酶)、HMG-CoA合成酶及HMG-CoA還原酶,
在另一實施例中,核酸編碼甲羥戊酸(MVA)途徑中之一或多種酶及DXS途徑中之一或多種其他核酸。在一個實施例中,來自DXS途徑之一或多種酶係選自由以下組成之群組: a)     1-去氧-D-木酮糖-5-磷酸合成酶DXS(EC:2.2.1.7), b)     1-去氧-D-木酮糖5-磷酸還原異構酶DXR(EC:1.1.1.267), c)     2-C-甲基-D-赤藻糖醇4-磷酸胞苷醯基轉移酶IspD(EC:2.7.7.60), d)     4-二磷酸胞苷-2-C-甲基-D-赤藻糖醇激酶IspE(EC:2.7.1.148), e)     2-C-甲基-D-赤藻糖醇2,4-環二磷酸合成酶IspF(EC:4.6.1.12), f)      4-羥基-3-甲基丁-2-烯-1-基二磷酸合成酶IspG(EC:1.17.7.1), g)     4-羥基-3-甲基丁-2-烯基二磷酸還原酶(EC:1.17.1.2),及 h)     其中任一者之功能等效變異體。
在另一實施例中,編碼一或多種其他外源或內源酶之核酸經表現或過度表現,以導致生產萜烯化合物或其前體,其中表現的外源核酸或過度表現的內源酶編碼選自由以下組成之群組的酶: a)     香葉基轉移酶Fps(EC:2.5.1.10), b)     七異戊烯基二磷酸合成酶(EC:2.5.1.10), c)     八異戊烯基二磷酸合成酶(EC:2.5.1.90), d)     異戊二烯合成酶(EC 4.2.3.27), e)     異戊烯基二磷酸δ-異構酶(EC 5.3.3.2), f)      法呢烯合成酶(EC 4.2.3.46 / EC 4.2.3.47),及 g)     其中任一者之功能等效變異體。
在一個實施例中,編碼硫解酶(EC 2.3.1.9)之核酸具有序列SEQ ID NO: 40,或為其功能等效變異體。
在一個實施例中,編碼作為乙醯CoA c-乙醯轉移酶之硫解酶(EC 2.3.1.9)之核酸具有序列SEQ ID NO: 41,或為其功能等效變異體。
在一個實施例中,編碼HMG-CoA合成酶(EC 2.3.3.10)之核酸具有序列SEQ ID NO: 42,或為其功能等效變異體。
在一個實施例中,編碼HMG-CoA還原酶(EC 1.1.1.88)之核酸具有序列SEQ ID NO: 43,或為其功能等效變異體。
在一個實施例中,編碼甲羥戊酸激酶(EC 2.7.1.36)之核酸具有序列SEQ ID NO: 51,或為其功能等效變異體。
在一個實施例中,編碼磷酸甲羥戊酸激酶(EC 2.7.4.2)之核酸具有序列SEQ ID NO: 52,或為其功能等效變異體。
在一個實施例中,編碼甲羥戊酸二磷酸去羧酶(EC 4.1.1.33)之核酸具有序列SEQ ID NO: 53,或為其功能等效變異體。
在一個實施例中,編碼1-去氧-D-木酮糖-5-磷酸合成酶DXS(EC:2.2.1.7)之核酸具有序列SEQ ID NO: 1,或為其功能等效變異體。
在一個實施例中,編碼1-去氧-D-木酮糖5-磷酸還原異構酶DXR(EC:1.1.1.267)之核酸具有序列SEQ ID NO: 3,或為其功能等效變異體。
在一個實施例中,編碼2-C-甲基-D-赤藻糖醇4-磷酸胞苷醯基轉移酶IspD(EC:2.7.7.60)之核酸具有序列SEQ ID NO: 5,或為其功能等效變異體。
在一個實施例中,編碼4-二磷酸胞苷-2-C-甲基-D-赤藻糖醇激酶IspE(EC:2.7.1.148)之核酸具有序列SEQ ID NO: 7,或為其功能等效變異體。
在一個實施例中,編碼2-C-甲基-D-赤藻糖醇2,4-環二磷酸合成酶IspF(EC:4.6.1.12)之核酸具有序列SEQ ID NO: 9,或為其功能等效變異體。
在一個實施例中,編碼4-羥基-3-甲基丁-2-烯-1-基二磷酸合成酶IspG(EC:1.17.7.1)之核酸具有序列SEQ ID NO: 11,或為其功能等效變異體。
在一個實施例中,編碼4-羥基-3-甲基丁-2-烯基二磷酸還原酶(EC:1.17.1.2)之核酸具有序列SEQ ID NO: 13,或為其功能等效變異體。
在一個實施例中,編碼香葉基轉移酶Fps之核酸具有序列SEQ ID NO: 15,或為其功能等效變異體。
在一個實施例中,編碼七異戊烯基二磷酸合成酶之核酸具有序列SEQ ID NO: 17,或為其功能等效變異體。
在一個實施例中,編碼八異戊烯基二磷酸合成酶(EC:2.5.1.90)之核酸,其中八異戊烯基二磷酸合成酶為聚異戊烯基合成酶,由序列SEQ ID NO: 19編碼,或為其功能等效變異體。
在一個實施例中,編碼異戊二烯合成酶(ispS)之核酸具有序列SEQ ID NO: 21,或為其功能等效變異體。
在一個實施例中,編碼異戊烯基二磷酸δ-異構酶(idi)之核酸具有序列SEQ ID NO: 54,或為其功能等效變異體。
在一個實施例中,編碼法呢烯合成酶之核酸具有序列SEQ ID NO: 57,或為其功能等效變異體。
在一個實施例中,核酸編碼以下酶: a)     異戊二烯合成酶; b)     異戊烯基二磷酸δ-異構酶(idi);及 c)     1-去氧-D-木酮糖-5-磷酸合成酶DXS; 或其功能等效變異體。
在一個實施例中,核酸編碼以下酶: a)     硫解酶; b)     HMG-CoA合成酶; c)     HMG-CoA還原酶; d)     甲羥戊酸激酶; e)     磷酸甲羥戊酸激酶; f)      甲羥戊酸二磷酸去羧酶; g)     異戊烯基二磷酸δ-異構酶(idi);及 h)     異戊二烯合成酶; 或其功能等效變異體。
在一個實施例中,核酸編碼以下酶: a)     香葉基轉移酶Fps;及 b)     法呢烯合成酶 或其功能等效變異體。
在一個實施例中,本揭示案之核酸進一步包含啟動子。在一個實施例中,啟動子允許基因在其控制下之組成性表現。在一個特定實施例中,使用伍德-永達爾簇啟動子。在另一個特定實施例中,使用磷酸轉乙醯酶/乙酸激酶操縱子啟動子。在一個特定實施例中,啟動子來自自產乙醇梭菌。
在第三態樣中,本揭示案提供包含第二態樣之一或多種核酸的核酸構築體或載體。
在一個特定實施例中,核酸構築體或載體為表現構築體或載體。在一個特定實施例中,表現構築體或載體為質體。
在第四態樣中,本揭示案提供宿主生物體,其包含第二態樣之核酸或第三態樣之載體或構築體中之任一或多者。
在第五態樣中,本揭示案提供一種組合物,其包含如本揭示案之第三態樣中所提及之表現構築體或載體及甲基化構築體或載體。
較佳地,該組合物能夠產生根據本揭示案之第一態樣之重組微生物。
在一個特定實施例中,表現構築體/載體及/或甲基化構築體/載體為質體。
在第六態樣中,本揭示案提供一種藉由微生物醱酵生產一或多種萜烯及/或其前體及視情況存在之一或多種其他產品的方法,其包含使用本揭示案之第一態樣的重組微生物醱酵包含CO之受質。
在一個實施例中,該方法包含以下步驟: (a) 向含有本揭示案之第一態樣之一或多種微生物之培養物的生物反應器中提供包含CO之受質;及 (b) 厭氧醱酵該生物反應器中之培養物以生產至少一種萜烯及/或其前體。
在一個實施例中,該方法包含以下步驟: (a)   捕獲由於工業製程產生的含CO氣體; (b)  藉由含有本揭示案之第一態樣之一或多種微生物的培養物對含CO氣體進行厭氧醱酵以生產至少一種萜烯及/或其前體。
在方法態樣之特定實施例中,微生物維持於水性培養基中。
在方法態樣之特定實施例中,受質之醱酵發生於生物反應器中。
在一個實施例中,一或多種萜烯及/或其前體係選自甲羥戊酸、IPP、二甲基烯丙基焦磷酸(DMAPP)、異戊二烯、香葉基焦磷酸(GPP)、法呢基焦磷酸(FPP)及法呢烯。
較佳地,包含CO之受質為包含CO之氣態受質。在一個實施例中,受質包含工業廢氣。在某些實施例中,氣體為鋼廠廢氣或合成氣。
在一個實施例中,受質將通常含有主要比例之CO,諸如至少約20體積%至約100體積% CO、20體積%至70體積% CO、30體積%至60體積% CO以及40體積%至55體積% CO。在特定實施例中,受質包含約25體積%、或約30體積%、或約35體積%、或約40體積%、或約45體積%、或約50體積% CO,或約55體積% CO,或約60體積% CO。
在某些實施例中,該等方法進一步包含自醱酵液回收萜烯及/或其前體及視情況存在之一或多種其他產品之步驟。
在第七態樣中,本揭示案提供藉由第六態樣之方法生產時的一或多種萜烯及/或其前體。在一個實施例中,一或多種萜烯及/或其前體係選自由甲羥戊酸、IPP、二甲基烯丙基焦磷酸(DMAPP)、異戊二烯、香葉基焦磷酸(GPP)、法呢基焦磷酸(FPP)及法呢烯組成之群組。
在另一態樣中,本揭示案提供一種用於產生本揭示案之第一態樣之微生物的方法,其包含藉由引入一或多種核酸來轉型一氧化碳營養型產乙酸親本微生物,使得微生物能夠藉由醱酵包含CO之受質來生產或增加生產一或多種萜烯及/或其前體及視情況存在之一或多種其他產品,其中親本微生物不能藉由醱酵包含CO之受質生產或以較低水準生產一或多種萜烯及/或其前體。
在一個特定實施例中,親本微生物藉由引入一或多種適於表現甲羥戊酸(MVA)途徑及視情況存在之DXS途徑中之一或多種酶的外源核酸來轉型。在另一實施例中,親本微生物用一或多種適於過度表現甲羥戊酸(MVA)途徑及視情況存在之DXS途徑中之一或多種酶的核酸來轉型,該等酶為親本微生物中天然存在的。
在某些實施例中,一或多種酶如前文所描述。
在一個實施例中,提供一種經分離、經基因工程改造之一氧化碳營養型產乙酸細菌,其包含編碼甲羥戊酸途徑或DXS途徑或萜烯生物合成途徑中之酶的外源核酸,由此該細菌表現該酶。該酶係選自由以下組成之群組: a)     硫解酶(EC 2.3.1.9); b)     HMG-CoA合成酶(EC 2.3.3.10); c)     HMG-CoA還原酶(EC 1.1.1.88); d)     甲羥戊酸激酶(EC 2.7.1.36); e)     磷酸甲羥戊酸激酶(EC 2.7.4.2); f)      甲羥戊酸二磷酸去羧酶(EC 4.1.1.33);1-去氧-D-木酮糖-5-磷酸合成酶DXS(EC:2.2.1.7); g)     1-去氧-D-木酮糖5-磷酸還原異構酶DXR(EC:1.1.1.267); h)     2-C-甲基-D-赤藻糖醇4-磷酸胞苷醯基轉移酶IspD(EC:2.7.7.60); i)       4-二磷酸胞苷-2-C-甲基-D-赤藻糖醇激酶IspE(EC:2.7.1.148); j)       2-C-甲基-D-赤藻糖醇2;4-環二磷酸合成酶IspF(EC:4.6.1.12); k)     4-羥基-3-甲基丁-2-烯-1-基二磷酸合成酶IspG(EC:1.17.7.1); l)       4-羥基-3-甲基丁-2-烯基二磷酸還原酶(EC:1.17.1.2);香葉基轉移酶Fps(EC:2.5.1.10); m)   七異戊烯基二磷酸合成酶(EC:2.5.1.10); n)     八異戊烯基二磷酸合成酶(EC:2.5.1.90); o)     異戊二烯合成酶(EC 4.2.3.27); p)     異戊烯基二磷酸δ-異構酶(EC 5.3.3.2);及 q)     法呢烯合成酶(EC 4.2.3.46 / EC 4.2.3.47)。
在一些態樣中,細菌在不存在該核酸之情況下不表現該酶。在一些態樣中,細菌在厭氧條件下表現該酶。
一個實施例提供一種質體,其可在一氧化碳營養型產乙酸細菌中複製。質體包含編碼甲羥戊酸途徑或DXS途徑或萜烯生物合成途徑中之酶的核酸,由此當質體在細菌中時,該酶由該等細菌表現。該酶係選自由以下組成之群組: a)     硫解酶(EC 2.3.1.9); b)     HMG-CoA合成酶(EC 2.3.3.10); c)     HMG-CoA還原酶(EC 1.1.1.88); d)     甲羥戊酸激酶(EC 2.7.1.36); e)     磷酸甲羥戊酸激酶(EC 2.7.4.2); f)      甲羥戊酸二磷酸去羧酶(EC 4.1.1.33);1-去氧-D-木酮糖-5-磷酸合成酶DXS(EC:2.2.1.7); g)     1-去氧-D-木酮糖5-磷酸還原異構酶DXR(EC:1.1.1.267); h)     2-C-甲基-D-赤藻糖醇4-磷酸胞苷醯基轉移酶IspD(EC:2.7.7.60); i)       4-二磷酸胞苷-2-C-甲基-D-赤藻糖醇激酶IspE(EC:2.7.1.148); j)       2-C-甲基-D-赤藻糖醇2;4-環二磷酸合成酶IspF(EC:4.6.1.12); k)     4-羥基-3-甲基丁-2-烯-1-基二磷酸合成酶IspG(EC:1.17.7.1); l)       4-羥基-3-甲基丁-2-烯基二磷酸還原酶(EC:1.17.1.2);香葉基轉移酶Fps(EC:2.5.1.10); m)   七異戊烯基二磷酸合成酶(EC:2.5.1.10); n)     八異戊烯基二磷酸合成酶(EC:2.5.1.90); o)     異戊二烯合成酶(EC 4.2.3.27); p)     異戊烯基二磷酸δ-異構酶(EC 5.3.3.2);及 q)     法呢烯合成酶(EC 4.2.3.46 / EC 4.2.3.47)。
在另一實施例中提供用於將CO及/或CO 2轉化成異戊二烯之方法。該方法包含:將含CO及/或含CO 2之氣態受質傳遞至生物反應器中,該生物反應器含有一氧化碳營養型產乙酸細菌於培養基中之培養物,使得細菌將CO及/或CO 2轉化為異戊二烯,且自生物反應器中回收異戊二烯。一氧化碳營養型產乙酸細菌經基因工程改造以表現異戊二烯合成酶。
另一實施例提供一種經分離、經基因工程改造之一氧化碳營養型產乙酸細菌,其包含編碼異戊二烯合成酶之核酸。該等細菌表現異戊二烯合成酶,且該等細菌能夠將二甲基烯丙基二磷酸轉化為異戊二烯。在一個態樣中,異戊二烯合成酶為美洲山楊( Populus tremuloides)的一種酶。在另一態樣中,核酸經密碼子最佳化。在另一態樣中,異戊二烯合成酶之表現在自產乙醇梭菌之丙酮酸:鐵氧化還原蛋白氧化還原酶基因之啟動子的轉錄控制下。
另一實施例提供一種將CO及/或CO 2轉化為異戊基二磷酸(IPP)之方法。該方法包含:將含CO及/或含CO 2之氣態受質傳遞至生物反應器中,該生物反應器含有一氧化碳營養型產乙酸細菌於培養基中之培養物,使得細菌將CO及/或CO 2轉化為異戊基二磷酸(IPP),且自生物反應器中回收IPP。一氧化碳營養型產乙酸細菌經基因工程改造以表現異戊基二磷酸δ異構酶。
另一實施例提供經分離、經基因工程改造之一氧化碳營養型產乙酸細菌,其包含編碼異戊基二磷酸δ異構酶之核酸。該等細菌表現異戊基二磷酸δ異構酶,且該等細菌能夠將二甲基烯丙基二磷酸轉化為異戊基二磷酸。在一些態樣中,核酸編碼拜氏梭菌( Clostridium beijerinckii)異戊基二磷酸δ異構酶。在其他態樣中,核酸在自產乙醇梭菌之丙酮酸:鐵氧化還原蛋白氧化還原酶基因之啟動子的轉錄控制下。在其他態樣中,核酸在自產乙醇梭菌之丙酮酸:鐵氧化還原蛋白氧化還原酶基因之啟動子的轉錄對照下,且在編碼異戊二烯合成酶之第二核酸的下游。
另一實施例提供一種將CO及/或CO 2轉化為異戊基二磷酸(IPP)及/或異戊二烯之方法。該方法包含:將含CO及/或含CO 2之氣態受質傳遞至生物反應器中,該生物反應器含有一氧化碳營養型產乙酸細菌於培養基中之培養物,使得細菌將CO及/或CO 2轉化為異戊基二磷酸(IPP)及/或異戊二烯,且自生物反應器中回收IPP及/或異戊二烯。一氧化碳營養型產乙酸細菌經基因工程改造以具有編碼去氧木酮糖5-磷酸合成酶(DXS)酶之核酸的增加的複本數,其中增加的複本數大於每個基因體1個。
另一實施例提供經分離、經基因工程改造之一氧化碳營養型產乙酸細菌,其包含每個基因體大於1個複本數之編碼去氧木酮糖5-磷酸合成酶(DXS)酶之核酸。在一些態樣中,經分離、經基因工程改造之一氧化碳營養型產乙酸細菌可進一步包含編碼異戊二烯合成酶之核酸。在其他態樣中,經分離、經基因工程改造之一氧化碳營養型產乙酸細菌可進一步包含編碼異戊基二磷酸δ異構酶之核酸。在其他態樣中,經分離、經基因工程改造之一氧化碳營養型產乙酸細菌可進一步包含編碼異戊基二磷酸δ異構酶之核酸及編碼異戊二烯合成酶之核酸。
另一實施例提供經分離、經基因工程改造之一氧化碳營養型產乙酸細菌,其包含編碼磷酸甲羥戊酸激酶(PMK)之核酸。該等細菌表現所編碼的酶,且該酶並非細菌原生的。在一些態樣中,酶為金黃色葡萄球菌的酶。在一些態樣中,酶在一或多個自產乙醇梭菌啟動子的控制下表現。在一些態樣中,細菌進一步包含編碼硫解酶(thlA/vraB)之核酸、編碼HMG-CoA合成酶(HMGS)之核酸及編碼HMG-CoA還原酶(HMGR)之核酸。在一些態樣中,硫解酶為丙酮丁醇梭菌硫解酶。在一些態樣中,細菌進一步包含編碼甲羥戊酸二磷酸去羧酶(PMD)之核酸。
另一實施例提供經分離、經基因工程改造之一氧化碳營養型產乙酸細菌,其包含編碼α-法呢烯合成酶之外源核酸。在一些態樣中,核酸經密碼子最佳化以在自產乙醇梭菌中表現。在一些態樣中,α-法呢烯合成酶為蘋果α-法呢烯合成酶。在一些態樣中,細菌進一步包含編碼香葉基轉移酶之核酸區段。在一些態樣中, 香葉基轉移酶為大腸桿菌香葉基轉移酶。
本揭示案之態樣或實施例中之任一者之適合的經分離、經基因工程改造之一氧化碳營養型產乙酸細菌可選自由以下組成之群組:自產乙醇梭菌、揚氏梭菌、拉氏梭菌、食一氧化碳梭菌、德雷克氏梭菌、糞味梭菌、醋酸梭菌、蟻酸醋酸梭菌、大梭菌、食甲基丁酸桿菌、伍氏醋酸桿菌、巴氏嗜鹼菌、生產布勞特氏菌、黏液真桿菌、熱醋酸穆爾氏菌、熱自養穆爾氏菌、卵形鼠孢菌、銀醋酸鼠孢菌、球形鼠孢菌、普氏產醋桿菌及基伍嗜熱厭氧桿菌。
本揭示案亦可廣泛地認為包括在本申請案說明書中單獨地或共同地提及或指示之部分、元件及特徵,呈該等部分、元件或特徵中之兩者或更多者的任何或所有組合形式,且其中本文中提及特定整數,其具有本揭示案涉及之此項技術中已知的等效物,此等已知等效物被視為併入本文中,如同個別地闡述一般。
相關申請案之交叉參考
本申請案主張2021年8月24日申請之美國臨時專利申請案第63/260,534號之權益,其全部內容以引用之方式併入本文中。 有關序列表之參考
本申請案含有序列表,該序列表已以ST.26序列表XML格式以電子方式提交,且特此以全文引用之方式併入。該ST.26序列表XML創建於2022年7月22日,命名為LT219US1-Sequences.xml,大小為305,148位元組。
以下為概括給出的本揭示案之描述,包括其較佳實施例。本揭示案由在以下本文中標題「實例」下給出的揭示內容進一步闡明,其提供支持本揭示案之實驗性資料、本揭示案之各種態樣的具體實例以及執行本揭示案之方式。
本發明人出人意料地能夠工程改造一種一氧化碳營養型產乙酸微生物,以藉由氣體受質之醱酵來生產類異戊二烯醇、類異戊二烯醇衍生物、萜烯及其前體,包括異戊二烯及法呢烯。此為此等產品之生產提供一種替代方法,該方式可具有優於其目前生產方法的益處。另外,其提供使用來自工業製程之一氧化碳之方式,否則該一氧化碳將被釋放至大氣中且污染環境。
當關於微生物使用時,術語「非天然存在」意指微生物具有至少一種未發現於所提及物種之天然存在之菌株(包含所提及物種之野生型菌株)中的基因修飾。非天然存在之微生物通常在實驗室或研究設施中開發。本揭示案之微生物為非天然存在的。
術語「基因修飾」、「基因改變」或「基因工程改造」泛指人工操縱微生物之基因體或核酸。同樣,術語「基因修飾」、「基因改變」或「基因工程改造」係指含有此基因修飾、基因改變或基因工程改造之微生物。此等術語可用於區分實驗室產生之微生物與天然存在之微生物。基因修飾方法包含例如異源基因表現、基因或啟動子插入或缺失、核酸突變、經改變之基因表現或不活化、酶工程改造、定向進化、基於知識之設計、隨機突變誘發方法、基因改組及密碼子優化。本揭示案之微生物經基因工程改造。
「重組」指示核酸、蛋白質或微生物為基因修飾、工程改造或重組之產物。通常,術語「重組」係指含有衍生自多個來源之遺傳物質或由其編碼之核酸、蛋白質或微生物,該等來源諸如兩種或更多種不同之微生物菌株或物種。本揭示案之微生物一般為重組的。
「野生型」係指生物體、菌株、基因或自然界中存在之特性的典型形式,其區別於突變或變異體形式。
「內源的」係指存在於或表現於衍生本揭示案之微生物的野生型或親本微生物中之核酸或蛋白質。舉例而言,內源基因為天然存在於衍生本揭示案之微生物的野生型或親本微生物中之基因。在一個實施例中,內源基因之表現可藉由諸如外源啟動子之外源調節元件控制。
「外源的」係指源自本揭示案之微生物之外的核酸或蛋白質。舉例而言,外源基因或酶可以人工方式或以重組方式產生且引入或表現於本揭示案之微生物中。外源基因或酶亦可自異源微生物分離且引入或表現於本揭示案之微生物中。外源核酸可適於整合至本揭示案之微生物之基因體中或在本揭示案之微生物中保持在染色體外狀態,例如在質體中。
「異源的」係指不存在於衍生本揭示案之微生物的野生型或親本微生物中之核酸或蛋白質。舉例而言,異源基因或酶可衍生自不同的菌株或物種且引入或表現於本揭示案之微生物中。異源基因或酶可以其存在於不同菌株或物種中之形式引入或表現於本揭示案之微生物中。或者,可以某種方式修飾異源基因或酶,例如藉由對其在本揭示案之微生物中表現進行密碼子優化或藉由對其進行工程改造以改變功能,以便逆轉酶活性之方向或改變受質特異性。
特別地,在本文所述之微生物中表現的異源核酸或蛋白質可來源於芽孢桿菌屬、梭菌屬、貪銅菌屬、埃希氏菌屬、葡糖桿菌屬、生絲微菌屬、離胺酸芽孢桿菌屬、類芽孢桿菌屬、假單胞菌屬、沈積菌屬、芽孢八疊球菌屬、鏈黴菌屬、熱硫桿狀菌屬、棲熱孢菌屬、玉蜀黍屬、克雷伯氏菌屬、分枝桿菌屬、沙門氏菌屬、擬分枝桿菌屬、葡萄球菌屬、伯克氏菌屬、李斯特氏菌屬、不動桿菌屬、志賀氏菌屬、奈瑟氏菌屬、博特氏桿菌屬、鏈球菌屬、腸桿菌屬、弧菌屬、退伍軍人桿菌屬、黃單胞菌屬、沙雷氏菌屬、克羅諾桿菌屬、貪銅菌屬、螺旋桿菌屬、耶爾森氏菌屬、丙酸桿菌屬、弗朗西斯氏菌屬、果膠桿菌屬、弓形菌屬、乳桿菌屬、希瓦氏菌屬、伊文氏桿菌屬、硫磺單胞菌屬、消化球菌科、熱球菌屬、酵母屬、火球菌屬、大豆屬、人屬、羅爾斯通氏菌屬、短桿菌屬、甲基桿菌屬、土芽孢桿菌屬、牛屬、雞屬、厭氧球菌屬、爪蟾屬、鈍喙蜥屬、家鼠屬、小鼠屬、豬屬、赤球菌屬、根瘤菌屬、巨型球菌屬、中生根瘤菌屬、消化球菌屬、土壤桿菌、彎曲桿菌屬、醋酸桿菌屬、嗜鹼菌屬、布勞特氏菌屬、丁酸桿菌屬、真桿菌屬、穆爾氏菌屬、產醋桿菌屬、鼠孢菌屬、嗜熱厭氧桿菌屬、裂殖酵母屬、類芽孢桿菌屬、假芽孢桿菌屬、離胺酸芽孢桿菌屬、鳥胺酸芽胞桿菌屬、鹵桿菌屬、庫特氏菌屬、慢生芽胞桿菌屬、無氧芽胞桿菌屬、土壤芽胞桿菌屬、維京桿菌屬、脂環桿菌屬、芽孢八疊球菌屬、鹽漬微球菌屬、芽孢八疊球菌屬、動性球菌屬、棒狀桿菌屬、嗜熱好氧菌屬、硫化芽孢桿菌屬或共生短桿菌屬。
術語「聚核苷酸」、「核苷酸」、「核苷酸序列」、「核酸」及「寡核苷酸」可互換使用。其係指任何長度之核苷酸之聚合形式,該等核苷酸為脫氧核糖核苷酸或核糖核苷酸,或其類似物。聚核苷酸可具有任何三維結構,且可執行任何已知或未知的功能。以下為聚核苷酸之非限制性實例:基因或基因片段之編碼或非編碼區、由連鎖分析定義之基因座(基因座)、外顯子、內含子、信使RNA(mRNA)、轉移RNA、核醣體RNA、短干擾RNA(siRNA)、短髮夾RNA(shRNA)、微小RNA(miRNA)、核酶、cDNA、重組聚核苷酸、分支聚核苷酸、質體、載體、任何序列之分離DNA、任何序列之分離RNA、核酸探針及引子。聚核苷酸可包含一或多種經修飾之核苷酸,諸如甲基化核苷酸或核苷酸類似物。若存在,則可在聚合物組裝之前或之後賦予核苷酸結構之修飾。核苷酸序列可能間雜有非核苷酸組分。可在聚合之後,諸如藉由與標記組分結合而進一步修飾聚核苷酸。
如本文中所使用,「表現」係指聚核苷酸自DNA模板轉錄(諸如為mRNA或其他RNA轉錄物)之過程及/或轉錄mRNA隨後轉譯為肽、多肽或蛋白質之過程。轉錄物及經編碼多肽可統稱為「基因產物」。
術語「多肽」、「肽」及「蛋白質」在本文中可互換使用以指代任何長度之胺基酸之聚合物。聚合物可為直鏈或分支鏈,其可包括經修飾之胺基酸,且其可間雜有非胺基酸。該等術語亦涵蓋經修飾之胺基酸聚合物;例如,藉由二硫鍵形成、糖基化、脂質化、乙醯化、磷酸化或任何其他操縱,諸如與標記組分之結合。如本文中所使用,術語「胺基酸」包括天然及/或非天然或合成胺基酸,包含甘胺酸及D或L光學異構體,以及胺基酸類似物及肽模擬物。
「酶活性」或簡言之「活性」泛指酶促活性,包含但不限於酶之活性、酶之量或酶催化反應之可用性。因此,「增加」酶活性包含增加酶之活性、增加酶之量或增加酶催化反應之可用性。類似地,「降低」酶活性包含降低酶之活性、降低酶之量或降低酶催化反應之可用性。
「突變的」係指與衍生本揭示案之微生物的野生型或親本微生物相比,在本揭示案之微生物中已經修飾的核酸或蛋白質。在一個實施例中,突變可為編碼酶之基因中之缺失、插入或取代。在另一實施例中,突變可為酶中一或多個胺基酸之缺失、插入或取代。
「經破壞之基因」係指以某種方式修飾之基因,以減少或消除基因之表現、基因之調節活性或所編碼蛋白質或酶之活性。破壞可使基因或酶部分不活化、完全不活化或缺失。破壞可為完全消除基因、蛋白質或酶之表現或活性的基因剔除(KO)突變。破壞亦可為減弱,其減少但不完全消除基因、蛋白質或酶之表現或活性。破壞可為減少、防止或阻斷由酶產生之產物之生物合成的任何東西。破壞可包括例如編碼蛋白質或酶之基因中之突變,參與編碼酶之基因表現道基因調節元件中之突變,引入產生減少或抑制酶活性之蛋白質的核酸,或引入抑制蛋白質或酶表現之核酸(例如反義RNA、RNAi、TALEN、siRNA、CRISPR或CRISPRi)或蛋白質。破壞可使用此項技術中已知的任何方法引入。出於本揭示案之目的,破壞為實驗室產生的,而非天然存在的。
「親本微生物」為用於產生本揭示案之微生物的微生物。親本微生物可為天然存在之微生物(亦即野生型微生物)或先前已經修飾之微生物(亦即突變或重組微生物)。本揭示案之微生物可經修飾以表現或過度表現一或多種在親本微生物中不表現或不過度表現之酶。類似地,本揭示案之微生物可經修飾以含有一或多個親本微生物所不含之基因。本揭示案之微生物亦可經修飾以不表現或表現較少量之一或多種表現於親本微生物中之酶。
本揭示案之微生物可衍生自基本上任何親本微生物。在一個實施例中,本揭示案之微生物可衍生自選自由以下組成之群組的親本微生物:丙酮丁醇梭菌、拜氏梭菌、大腸桿菌及釀酒酵母。在其他實施例中,微生物衍生自選自由以下組成之群組的親本微生物:伍氏醋酸桿菌、巴氏嗜鹼菌、生產布勞特氏菌、食甲基丁酸桿菌、乙酸梭菌、自產乙醇梭菌、食一氧化碳梭菌、克薩氏梭菌、德雷克氏梭菌、蟻酸醋酸梭菌、揚氏梭菌、大梭菌、拉氏梭菌、糞味梭菌、黏液真桿菌、熱自養穆爾氏菌、熱醋酸穆爾氏菌、普氏產醋桿菌、卵形鼠孢菌、銀醋酸鼠孢菌、球形鼠孢菌及基伍嗜熱厭氧桿菌。在一較佳實施例中,親本微生物為自產乙醇梭菌、揚氏梭菌或拉氏梭菌。在一尤其較佳實施例中,親本微生物為自產乙醇梭菌LZ1561,其根據《布達佩斯條約(Budapest Treaty)》的條款於2010年6月7日寄存在位於Inhoffenstraße 7B, D-38124, Braunschweig, Germany的德國微生物菌種保藏中心(Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH(DSMZ)),且授予寄存編號DSM23693。此菌株描述於國際專利申請案第PCT/NZ2011/000144號,該國際專利申請案以WO 2012/015317公開。
術語「衍生自」指示核酸、蛋白質或微生物由不同(例如,親本或野生型)核酸、蛋白質或微生物修飾或調適,以便產生新核酸、蛋白質或微生物。此類修飾或調適通常包括核酸或基因之插入、缺失、突變或取代。一般而言,本揭示案之微生物衍生自親本微生物。在一個實施例中,本揭示案之微生物衍生自自產乙醇梭菌、揚氏梭菌或拉氏梭菌。在一較佳實施例中,本揭示案之微生物衍生自以寄存編號DSM23693寄存之自產乙醇梭菌LZ1561。
本揭示案之微生物可基於功能特性進一步分類。舉例而言,本揭示案之微生物可為或可衍生自固定C1之微生物、厭氧菌、產乙酸菌、產乙醇菌、一氧化碳營養菌及/或甲烷氧化菌。
表1提供微生物之代表性清單且鑑別其功能特性。
1 伍德-永達爾 固定C1之 厭氧菌 產乙酸菌 產乙醇菌 自養生物 一氧化碳營養菌
伍氏醋酸桿菌 + + + + +/ - 1 + -
巴氏嗜鹼菌 + + + + + + +
生產布勞特氏菌 + + + + - + +
食甲基丁酸桿菌 + + + + + + +
醋酸梭菌 + + + + - + +
自產乙醇梭菌 + + + + + + +
食一氧化碳梭菌 + + + + + + +
克薩氏梭菌 + + + + + + +
德雷克氏梭菌 + + + + - + +
蟻酸醋酸梭菌 + + + + - + +
揚氏梭菌 + + + + + + +
大梭菌 + + + + - + +/ - 2
拉氏梭菌 + + + + + + +
糞味梭菌 + + + + - + +
黏液真桿菌 + + + + - + +
熱自養穆爾氏菌 + + + + + + +
熱醋酸穆爾氏菌(原名為熱醋酸梭菌) + + + + - 3 + +
普氏產醋桿菌 + + + + - + +
卵形鼠孢菌 + + + + - + +/ - 4
銀醋酸鼠孢菌 + + + + - + +/ - 5
球形鼠孢菌 + + + + - + +/ - 6
基伍嗜熱厭氧桿菌 + + + + - + -
1 伍氏醋酸桿菌可自果糖,但不自氣體產生乙醇。
2 尚未研究大梭菌是否可生長於CO上。
3 已報導一種熱醋酸穆爾氏菌菌株,即穆爾氏菌屬HUC22-1自氣體產生乙醇。
4 尚未研究卵形鼠孢菌是否可生長於CO上。
5 尚未研究銀醋酸鼠孢菌是否可生長於CO上。
6 尚未研究球形鼠孢菌是否可生長於CO上。
「伍德-永達爾」係指如例如藉由Ragsdale, 《生物化學與生物物理學學報( Biochim Biophys Acta)》, 1784: 1873-1898, 2008所描述之碳固定之伍德-永達爾途徑。「伍德-永達爾微生物」可預測地指含有伍德-永達爾途徑之微生物。通常,本揭示案之微生物含有天然的伍德-永達爾途徑。本文中,伍德-永達爾途徑可為天然未經修飾的伍德-永達爾途徑,或者其可為具有一定程度之基因修飾(例如過度表現、異源表現、敲除等)之伍德-永達爾途徑,只要其仍用以將CO、CO 2及/或H 2轉化為乙醯基-CoA。
「C1」係指一碳分子,例如CO、CO 2、CH 4或CH 3OH。「C1氧合物」係指亦包括至少一個氧原子之一碳分子,例如CO、CO 2或CH 3OH。「C1碳源」係指充當本揭示案之微生物之一部分或唯一碳源的一碳分子。舉例而言,C1碳源可包括CO、CO 2、CH 4、CH 3OH或CH 2O 2之中一者或多者。較佳地,C1碳源包括CO及CO 2中之一者或兩者。「固定C1之微生物」為能夠自C1碳源產生一或多種產物之微生物。通常,本揭示案之微生物為固定C1之細菌。在一較佳實施例中,本揭示案之微生物衍生自表1中鑑別之固定C1之微生物。
「厭氧菌」為生長不需要氧氣之微生物。若氧氣以高於某一臨限值存在,則厭氧菌可能會消極反應或甚至死亡。然而,一些厭氧菌能夠耐受低水準之氧氣(例如0.000001-5%的氧氣),有時稱為「微氧條件」。通常,本揭示案之微生物為厭氧菌。在一較佳實施例中,本揭示案之微生物衍生自表1中鑑別之厭氧菌。
「產乙酸菌」為使用伍德-永達爾途徑作為其能量守恆及合成乙醯基-CoA及乙醯基-CoA衍生產物(諸如乙酸鹽)之主要機制的絕對厭氧細菌(Ragsdale, 《生物化學與生物物理學學報》, 1784:1873-1898, 2008)。詳言之,產乙酸菌使用伍德-永達爾途徑作為(1)自CO 2還原合成乙醯基-CoA之機制,(2)終端接受電子、能量守恆方法,(3)固定(同化)細胞碳之合成中之CO 2之機制(Drake, 《產乙酸原核生物(Acetogenic Prokaryotes)》,《原核生物(The Prokaryotes)》, 第3版, 第354頁, New York, NY, 2006)。所有天然存在之產乙酸菌為固定C1、厭氧、自養及非甲烷營養的。通常,本揭示案之微生物為產乙酸菌。在一較佳實施例中,本揭示案之微生物衍生自表1中鑑別之產乙酸菌。
「產乙醇菌」為產生或能夠產生乙醇之微生物。通常,本揭示案之微生物為產乙醇菌。在一較佳實施例中,本揭示案之微生物衍生自表1中鑑別之產乙醇菌。
「自養生物」為能夠在不存在有機碳之情況下生長之微生物。實際上,自養生物使用無機碳源,諸如CO及/或CO 2。通常,本揭示案之微生物為自養生物。在一較佳實施例中,本揭示案之微生物衍生自表1中鑑別之自養生物。
「一氧化碳營養菌」為能夠利用CO作為唯一碳來源及能量來源之微生物。通常,本揭示案之微生物為一氧化碳營養菌。在一較佳實施例中,本揭示案之微生物衍生自表1中鑑別之一氧化碳營養菌。
「甲烷營養菌」為能夠使用甲烷作為唯一碳源及能量來源之微生物。在某些實施例中,本揭示案之微生物為甲烷營養菌或衍生自甲烷營養菌。在其他實施例中,本揭示案之微生物並非甲烷營養菌或並非衍生自甲烷營養菌。
在一較佳實施例中,本揭示案之微生物衍生自梭菌綱之包含物種自產乙醇梭菌、揚氏梭菌及拉氏梭菌之簇。此等物種首先由Abrini, 《微生物學檔案( Arch Microbiol)》, 161: 345-351, 1994(自產乙醇梭菌),Tanner, 《國際系統細菌學雜誌( Int J System Bacteriol)》, 43: 232-236, 1993(揚氏梭菌)及Huhnke, WO 2008/028055(拉氏梭菌)進行報導及表徵。
此等三個物種有許多相似之處。特定言之,此等物種全部為梭菌屬之固定C1、厭氧、產乙酸、產乙醇及一氧化碳營養型成員。此等物種具有類似基因型及表現型及能量守恆及醱酵代謝模式。此外,此等物種簇於梭菌rRNA同源組I中,其16S rRNA DNA超過99%一致,DNA G + C含量為約22-30 mol%,為革蘭氏陽性的,具有類似形態及大小(0.5‐0.7 × 3‐5 μm之間的對數生長細胞),為嗜溫性的(最佳生長於30-37℃下),具有約4-7.5之類似pH值範圍(其中最佳pH值為約5.5-6),缺乏細胞色素且經由Rnf複合體保存能量。另外,已在此等物種中顯示使羧酸還原為其對應醇(Perez, 《生物技術與生物工程( Biotechnol Bioeng)》, 110:1066-1077, 2012)。重要的是,此等物種亦全部顯示在含有CO氣體上之強自養生長,產生乙醇及乙酸酯(或乙酸)作為主要醱酵產物,且在某些條件下產生少量2,3‐丁二醇及乳酸。
然而,此等三個物種亦具有許多不同之處。此等物種分離自不同來源:自產乙醇梭菌分離自家兔腸道,揚氏梭菌分離自雞舍廢棄物,且拉氏梭菌分離自淡水沈積物。此等物種不同之處在於利用不同的糖(例如鼠李糖、阿拉伯糖)、酸(例如葡糖酸鹽、檸檬酸鹽)、胺基酸(例如精胺酸、組胺酸)以及其他受質(例如甜菜鹼、丁醇)。此外,此等物種對某些維生素(例如硫胺素、生物素)之營養缺陷型不同。此等物種在伍德-永達爾途徑基因及蛋白質之核酸及胺基酸序列方面具有差異,但已發現此等基因及蛋白質之一般組織及數目在所有物種中相同(Köpke, 《生物技術新見( Curr Opin Biotechnol)》, 22: 320-325, 2011)。
因此,總體而言,自產乙醇梭菌、揚氏梭菌或拉氏梭菌之許多特性並非該物種所特有的,而是梭菌屬之此簇固定C1、厭氧、產乙酸、產乙醇及一氧化碳營養型成員之一般特性。然而,由於此等物種實際上不同,因此對此等物種中之一者之基因修飾或操縱可能不會對此等物種中之另一者中產生相同影響。舉例而言,可觀測到生長、效能或產物產生之差異。
本揭示案之微生物亦可衍生自自產乙醇梭菌、揚氏梭菌或拉氏梭菌之分離株或突變異體。自產乙醇梭菌之分離株及突變異體包括JA1-1(DSM10061)(Abrini, 《微生物學檔案》, 161: 345-351, 1994)、LZ1560(DSM19630)(WO 2009/064200)及LZ1561(DSM23693)(WO 2012/015317)。揚氏梭菌之分離株及突變異體包括ATCC 49587(Tanner, 《國際系統細菌學雜誌》, 43: 232-236, 1993)、PETCT(DSM13528, ATCC 55383)、ERI‐2(ATCC 55380)(US 5,593,886)、C‐01 (ATCC 55988)(US 6,368,819)、O‐52(ATCC 55989)(US 6,368,819)及OTA‐1(Tirado‐Acevedo, 《使用揚氏梭菌自合成氣產生生物乙醇(Production of bioethanol from synthesis gas using Clostridium ljungdahlii)》, PhD thesis, 北卡羅來納州立大學(North Carolina State University), 2010)。拉氏梭菌之分離株及突變異體包括PI 1(ATCC BAA-622,ATCC PTA-7826)(WO 2008/028055)。
然而,如上所述,本揭示案之微生物亦可衍生自基本上任何親本微生物,諸如選自由丙酮丁醇梭菌、拜氏梭菌、大腸桿菌及釀酒酵母組成之群組的親本微生物。
破壞性突變之引入導致本揭示案之微生物與衍生本揭示案之微生物的親本微生物相比不產生目標產物或實質上不產生目標產物或目標產物之量減少。舉例而言,本揭示案之微生物可不產生目標產物或產生比親本微生物少至少約1%、3%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或95%的目標產物。舉例而言,本揭示案之微生物可產生小於約0.001、0.01、0.10、0.30、0.50或1.0 g/L目標產物。
儘管本文提供酶之例示性序列及來源,但本揭示案決不限於此等序列及來源——其亦涵蓋變異體。術語「變異體」包括序列不同於參考核酸及蛋白質之序列(諸如先前技術中所揭示或本文中所例示之參考核酸及蛋白質之序列)的核酸及蛋白質。可使用執行與參考核酸或蛋白質實質上相同的功能之變異體核酸或蛋白質來實施本揭示案。舉例而言,變異體蛋白質可執行與參考蛋白質實質上相同的功能或催化實質上相同的反應。變異體基因可編碼與參考基因相同或實質上相同的蛋白質。變異體啟動子可具有與參考啟動子實質上相同的促進一或多種基因表現之能力。
此類核酸或蛋白質在本文中可稱為「功能等效變異體」。藉助於實例,核酸之功能等效變異體可包含等位基因變異體、基因片段、突變基因、多態性及類似者。來自其他微生物之同源基因亦為功能等效變異體之實例。此等基因包含諸如丙酮丁醇梭菌、拜氏梭菌或揚氏梭菌之物種中之同源基因,其詳情在諸如Genbank或NCBI之網站上公開可用。功能等效變異體亦包含其序列因特定微生物之密碼子優化而變化之核酸。核酸之功能等效變異體將較佳與參考核酸具有至少約70%、約80%、約85%、約90%、約95%、約98%或更大核酸序列一致性(同源性百分比)。蛋白質之功能等效變異體將較佳與參考蛋白質具有至少約70%、約80%、約85%、約90%、約95%、約98%或更大胺基酸一致性(同源性百分比)。變異體核酸或蛋白質之功能等效性可使用此項技術中已知之任何方法評估。
「互補性」係指核酸藉由傳統Watson-Crick或其他非傳統類型與另一核酸序列形成氫鍵之能力。互補性百分比指示核酸分子中可與第二核酸序列形成氫鍵(例如,Watson-Crick鹼基配對)之殘基的百分比(例如,10個中有5、6、7、8、9、10個為50%、60%、70%、80%、90%及100%互補)。「完美互補」意謂核酸序列之所有連續殘基將與第二核酸序列中相同數目之連續殘基氫鍵結。如本文中所使用之「實質上互補」係指在8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、30、35、40、45、50或更多核苷酸之區域上至少60%、65%、70%、75%、80%、85%、90%、95%、97%、98%、99%或100%之互補程度,或係指在嚴格條件下雜交之兩種核酸。
「雜交」係指一或多個聚核苷酸反應以形成複合物之反應,該複合物經由核苷酸殘基之鹼基之間的氫鍵結而穩定化。可藉由Watson Crick鹼基配對、Hoogstein結合或以任何其他序列特異方式進行氫鍵結。複合物可包括形成雙螺旋體結構之兩股、形成多股複合物之三股或更多股、單個自雜交股或此等之任何組合。雜交反應可構成諸如起始PCR或藉由酶裂解聚核苷酸之較廣泛方法中之步驟。能夠與給定序列雜交之序列稱為給定序列之「補體」。
可使用此項技術中已知之任何方法將核酸遞送至本揭示案之微生物中。舉例而言,核酸可作為裸核酸遞送,或可與一或多種試劑,諸如脂質體一起調配。若適當,核酸可為DNA、RNA、cDNA或其組合。在某些實施例中可使用限制性抑制劑。額外載體可包含質體、病毒、噬菌體、黏質體及人工染色體。在一較佳實施例中,使用質體將核酸遞送至本揭示案之微生物。藉助於實例,轉型(包括轉導或轉染)可藉由電穿孔、超音波處理、聚乙二醇介導之轉型、化學或天然感受態、原生質體轉型、原噬菌體誘導或結合來實現。在具有活性限制酶系統之某些實施例中,可能有必要在將核酸引入微生物中之前將核酸甲基化。
此外,核酸可經設計以包括調節元件,諸如啟動子,以增加或以其他方式控制特定核酸之表現。啟動子可為組成型啟動子或誘導型啟動子。理想地,啟動子為伍德-永達爾途徑啟動子、鐵氧化還原蛋白啟動子、丙酮酸鐵氧化還原蛋白氧化還原酶啟動子、Rnf複合體操縱子啟動子、ATP合成酶操縱子啟動子或磷酸轉乙醯酶/乙酸激酶操縱子啟動子。
應瞭解,本揭示案可使用序列與本文中具體例示之序列不同的核酸來實施,只要其執行實質上相同的功能。對於編碼蛋白質或肽之核酸序列,此意謂經編碼之蛋白質或肽具有實質上相同的功能。對於表示啟動子序列之核酸序列,變異體序列將具有促進一或多個基因之表現的能力。此類核酸在本文中可稱為「功能等效變異體」。藉助於實例,核酸之功能等效變異體包括等位基因變異體、基因片段、包括突變(缺失、插入、核苷酸取代及類似者)及/或多態性及類似者之基因。來自其他微生物之同源基因亦可視為本文中具體例示之序列之功能等效變異體之實例。
此等包括諸如揚氏梭菌、橙色綠屈撓菌、金屬球菌屬或硫化葉菌屬之物種中之同源基因,其詳情在諸如Genbank或NCBI之網站上公開可用。片語「功能等效變異體」亦應視為包括序列由於特定微生物之密碼子優化而變化之核酸。本文中之核酸之「功能等效變異體」將較佳地與所鑑別核酸具有至少約70%、較佳地約80%、更佳地約85%、較佳地約90%、較佳地約95%或更大核酸序列一致性。
亦應瞭解,本揭示案可使用序列與本文中具體例示之胺基酸序列不同的多肽來實踐。此等變異體在本文中可稱為「功能等效變異體」。蛋白質或肽之功能等效變異體包括與所鑑別之蛋白質或肽共用至少40%、較佳地50%、較佳地60%、較佳地70%、較佳地75%、較佳地80%、較佳地85%、較佳地90%、較佳地95%或更大胺基酸一致性且具有與所關注之肽或蛋白質實質上相同的功能的彼等蛋白質或肽。此類變異體在其範疇內包括蛋白質或肽之片段,其中片段包含多肽之截短形式,其中缺失可為1至5、至10、至15、至20、至25個胺基酸,且可在多肽之任一端自殘基1至25延伸,且其中缺失在區內可具有任何長度;或可處於內部位置。本文中之特定多肽之功能等效變異體亦應視為包括由其他細菌物種中之同源基因表現之多肽,例如如先前段落中所例示。
本揭示案之微生物可使用此項技術中已知用於產生重組微生物之任何數目之技術由親本微生物及一或多個外源核酸製備。僅藉助於實例,轉型(包括轉導或轉染)可藉由電穿孔、超音波處理、聚乙二醇介導之轉型、化學或天然感受態或綴合來實現。合適的轉化技術例如描述於Sambrook J, Fritsch EF, Maniatis T:分子選殖(Molecular Cloning):實驗室手冊(A laboratory Manual),冷泉港實驗室出版社(Cold Spring Harbour Laboratory Press),冷泉港(Cold Spring Harbour), 1989中。
在某些實施例中,由於在待轉型微生物中具有活性之限制系統,有必要將待引入微生物中之核酸甲基化。此可使用多種技術進行,包括下文所描述之彼等技術,且進一步例示於下文實例部分中。
藉助於實例,在一個實施例中,本揭示案之重組微生物藉由包含以下步驟之方法產生:將(i)如本文中所描述之表現構築體/載體及(ii)包含甲基轉移酶基因之甲基化構築體/載體引入至穿梭微生物中;表現甲基轉移酶基因;自穿梭微生物分離一或多個構築體/載體;及將一或多個構築體/載體引入至目的微生物中。
在一個實施例中,組成性表現步驟B之甲基轉移酶基因。在另一實施例中,誘導步驟B之甲基轉移酶基因之表現。
穿梭微生物為促進構成表現構築體/載體之核酸序列之甲基化的微生物,較佳地為限制陰性微生物。在一特定實施例中,穿梭微生物為限制陰性大腸桿菌、枯草芽孢桿菌(Bacillus subtilis)或乳酸乳球菌(Lactococcus lactis)。
甲基化構築體/載體包含編碼甲基轉移酶之核酸序列。
一旦表現構築體/載體及甲基化構築體/載體引入穿梭微生物中,則誘導存在於甲基化構築體/載體上之甲基轉移酶基因。誘導可藉由任何適合的啟動子系統實現,但在本揭示案之一個特定實施例中,甲基化構築體/載體包含誘導型lac啟動子且藉由添加乳糖或其類似物,更佳地異丙基-β-D-硫代半乳糖苷(IPTG)來誘導。其他合適的啟動子包括ara、tet或T7系統。在本揭示案之另一實施例中,甲基化構築體/載體啟動子為組成型啟動子。
在一個特定實施例中,甲基化構築體/載體具有對穿梭微生物之一致性具有特異性之複製起點,使得存在於甲基化構築體/載體上之任何基因表現於穿梭微生物中。較佳地,表現構築體/載體具有對目的微生物之一致性具有特異性之複製起點,使得存在於表現構築體/載體上之任何基因表現於目的微生物中。
甲基轉移酶之表現導致存在於表現構築體/載體上之基因之甲基化。表現構築體/載體可接著根據多種已知方法中之任一者自穿梭微生物分離。僅藉助於實例,下文所描述之實例部分中所描述之方法可用於分離表現構築體/載體。
在一個特定實施例中,兩個構築體/載體同時分離。
可使用任何數目之已知方法將表現構築體/載體引入至目的微生物中。然而,藉助於實例,可使用下文實例部分中所描述之方法。由於表現構築體/載體經甲基化,因此存在於表現構築體/載體上之核酸序列能夠併入至目的微生物中且成功地表現。
據設想,可將甲基轉移酶基因引入至穿梭微生物中且過度表現。因此,在一個實施例中,所得甲基轉移酶可使用已知方法收集且活體外用於甲基化表現質體。可接著將表現構築體/載體引入至目的微生物中以用於表現。在另一實施例中,將甲基轉移酶基因引入至穿梭微生物之基因體中,隨後將表現構築體/載體引入至穿梭微生物中,自穿梭微生物分離一或多個構築體/載體,且接著將表現構築體/載體引入至目的微生物中。
據設想,如上文所定義之表現構築體/載體及甲基化構築體/載體可組合以提供物質組合物。此組合物在避開限制障壁機制以產生本揭示案之重組微生物方面具有特定效用。
在一個特定實施例中,表現構築體/載體及/或甲基化構築體/載體為質體。
一般熟習此項技術者將瞭解用於產生本揭示案之微生物之多種合適的甲基轉移酶。然而,藉助於實例,可使用枯草芽孢桿菌噬菌體ΦT1甲基轉移酶及後文實例中所描述之甲基轉移酶。考慮到所需甲基轉移酶及基因密碼之序列,將容易瞭解編碼合適的甲基轉移酶之核酸。
適於允許表現甲基轉移酶基因之任何數目之構築體/載體可用於產生甲基化構築體/載體。
在一個實施例中,受質包含CO。在一個實施例中,受質包含CO2及CO。在另一實施例中,受質包含CO2及H2。在另一實施例中,受質包含CO2及CO及H2。
「受質」係指用於本揭示案之微生物之碳源及/或能量源。通常,受質為氣態的,且包含C1碳源,例如CO、CO2及/或CH4。較佳地,受質包含CO或CO + CO2之C1碳源。受質可進一步包含其他非碳組分,諸如H2、N2或電子。然而,在其他實施例中,受質可為碳水化合物,諸如糖、澱粉、纖維、木質素、纖維素或半纖維素或其組合。舉例而言,碳水化合物可為果糖、半乳糖、葡萄糖、乳糖、麥芽糖、蔗糖、木糖或其某種組合。在一些實施例中,受質不包含(D)-木糖(Alkim, Microb Cell Fact, 14: 127, 2015)。在一些實施例中,受質不包含戊糖諸如木糖(Pereira, Metab Eng, 34: 80-87, 2016)。在一些實施例中,受質可包含氣態受質及碳水化合物受質(混合營養醱酵)。受質可進一步包含其他非碳組分,諸如H2、N2或電子。
氣態受質通常包含至少一定量的CO,諸如約1、2、5、10、20、30、40、50、60、70、80、90或100 mol% CO。氣態受質可包含一定範圍的CO,諸如約20-80、30-70或40-60 mol% CO。較佳地,氣態受質包含約40-70 mol% CO(例如軋鋼廠或高爐氣體)、約20-30 mol% CO(例如鹼性氧氣爐氣體)或約15-45 mol% CO(例如合成氣)。在一些實施例中,氣態受質可包含相對較低量的CO,諸如約1-10或1-20 mol% CO。本揭示案之微生物通常將氣態受質中之至少一部分CO轉化為產物。在一些實施例中,氣態受質不包含或實質上不包含(< 1 mol%)CO。
氣態受質可包含一定量的H2。舉例而言,氣態受質可包含約1、2、5、10、15、20或30 mol% H2。在一些實施例中,氣態受質可包含相對較高量的H2,諸如約60、70、80或90 mol% H2。在其他實施例中,氣態受質不包含或實質上不包含(< 1 mol%)H2。
氣態受質可包含一定量的CO2。舉例而言,氣態受質可包含約1-80或1-30 mol% CO2。在一些實施例中,氣態受質可包含低於約20、15、10或5 mol% CO2。在另一實施例中,氣態受質不包含或實質上不包含(< 1 mol%)CO2。
氣態受質亦可以替代形式提供。舉例而言,氣態受質可溶解於液體中或吸附於固體支撐物上。
氣態受質及/或C1碳源可為作為工業製程之副產物獲得或來自一些其他來源(諸如來自汽車尾氣或生物質氣化)的廢氣。在某些實施例中,工業製程選自由以下組成之群組:鐵類金屬產品製造(諸如軋鋼廠製造)、非鐵產品製造、石油精煉、煤炭氣化、電力生產、炭黑生產、氨生產、甲醇生產及焦炭製造。在此等實施例中,氣態受質及/或C1碳源可在其排放至大氣中之前使用任何便利方法自工業製程捕獲。
氣態受質及/或C1碳源可為合成氣,諸如藉由煤炭或精煉廠殘餘物氣化、生物質或木質纖維素材料氣化或天然氣重整所獲得之合成氣。在另一實施例中,合成氣可獲自城市固體廢物或工業固體廢物之氣化。
受質及/或C1碳源可為作為工業製程的副產物獲得或來自另一來源,諸如汽車尾氣、沼氣、掩埋產氣、直接空氣捕獲或來自電解之廢氣。受質及/或C1碳源可為藉由熱解、焙燒或氣化產生之合成氣。換言之,可藉由熱解、焙燒或氣化來回收廢材料,以產生用作受質及/或C1碳源之合成氣。受質及/或C1碳源可為包含甲烷的氣體。
在某些實施例中,工業製程係選自鐵類金屬產品製造諸如鋼鐵製造、非鐵產品製造、石油精煉、電力生產、炭黑生產、紙張及紙漿製造、氨生產、甲醇生產、焦炭製造、石油化工生產、碳水化合物醱酵、水泥製造、好氧消化、厭氧消化、催化製程、天然氣提取、纖維素醱酵、石油提取、地質儲層、來自諸如天然氣煤及石油之化石資源的氣體,或其任何組合。工業製程中的具體加工步驟的實例包括催化劑再生、流化催化劑裂化及催化劑再生。空氣分離及直接空氣捕獲是其他適合工業製程。鋼鐵及鐵合金製造中的具體實例包括高爐煤氣、鹼性氧氣爐煤氣、焦爐煤氣、鐵爐爐頂煤氣的直接還原及煉鐵的殘餘氣體。在此等實施例中,受質及/或C1碳源可在其排放至大氣中之前使用任何已知方法自工業製程捕獲。
受質及/或C1碳源可為稱為合成氣的合成氣體,其可自重整、部分氧化或氣化製程中獲得。氣化製程的實例包括煤的氣化、煉油廠殘渣的氣化、石油焦的氣化、生物質的氣化、木質纖維素材料的氣化、廢木材的氣化、黑液的氣化、城市固體廢物的氣化、城市液體廢物的氣化、工業固體廢物的氣化、工業液體廢物的氣化、廢物衍生燃料的氣化、下水道的氣化、下水道污泥的氣化、廢水處理產生的污泥的氣化、沼氣的氣化。重整製程的實例包括蒸汽甲烷重整、蒸汽石腦油重整、天然氣重整、沼氣重整、掩埋產氣重整、石腦油重整及乾甲烷重整。部分氧化製程的實例包括熱及催化部分氧化製程、天然氣的催化部分氧化、烴的部分氧化。城市固體廢物的實例包括輪胎、塑膠、纖維,諸如鞋、服裝及紡織品中的纖維。城市固體廢物可僅為掩埋型廢物。城市固體廢料可以分類或未分類。生物質之實例可包括木質纖維素材料,且亦可包括微生物生物質。木質纖維素材料可包括農業廢料及森林廢料。
受質及/或C1碳源可為包含甲烷的氣流。此類含甲烷氣體可諸如在壓裂、廢水處理、牲畜業、農業及城市固體廢物掩埋場期間自化石甲烷排放獲得。亦設想甲烷可經燃燒以產生電力或熱量,且C1副產物可用作受質或碳源。
氣態受質之組成可能對反應之效率及/或成本具有顯著影響。舉例而言,氧氣(O2)之存在可降低厭氧性醱酵製程之效率。視受質之組成而定,可能需要處理、洗滌或過濾受質以移除任何非所要雜質,諸如毒素、非所要組分或灰塵顆粒,及/或增加所需組分之濃度。
在某些實施例中,醱酵在不存在碳水化合物受質,諸如糖、澱粉、纖維、木質素、纖維素或半纖維素之情況下進行。
在一些實施例中,CO及H2至乙二醇(MEG)之總體能量學優於葡萄糖至乙二醇之能量學,如下文所示,其中CO及H2之更負的吉布斯自由能ΔrG'm指示朝向乙二醇之驅動力更大。使用平衡器(http://equilibrator.weizmann.ac.il/)對葡萄糖與CO作為受質之比較的總體反應△G進行計算,此為評估生物系統中途徑或途徑中之個別步驟之總體可行性的標準方法(Flamholz, E. Noor, A. Bar-Even, R. Milo (2012) eQuilibrator - 生化熱力學計算器(eQuilibrator - the biochemical thermodynamics calculator)《核酸研究(Nucleic Acids Res)》 40:D770-5;Noor, A. Bar-Even, A. Flamholz, Y. Lubling, D. Davidi, R. Milo (2012) 結合準確性及覆蓋面之反應熱力學綜合開放框架(An integrated open framework for thermodynamics of reactions that combines accuracy and coverage)《生物資訊學(Bioinformatics)》 28:2037-2044;Noor, H.S. Haraldsdóttir, R. Milo, R.M.T. Fleming (2013) 使用成分貢獻之吉布斯能量的一致估計(Consistent Estimation of Gibbs Energy Using Component Contributions)《公共科學圖書館·計算生物學(PLoS Comput Biol)》 9(7): e1003098;Noor, A. Bar-Even, A. Flamholz, E. Reznik, W. Liebermeister, R. Milo (2014) 途徑熱力學強調中央代謝的動力學障礙(Pathway Thermodynamics Highlights Kinetic Obstacles in Central Metabolism)《公共科學圖書館·計算生物學》 10(2):e1003483)。計算如下:
Figure 02_image001
生理條件:
Figure 02_image003
除了乙二醇、乙醛酸鹽及/或乙醇酸鹽之外,本揭示案之微生物可經培養以生產一或多種副產品。舉例而言,本揭示案之微生物可生產或可經工程改造以生產乙醇(WO 2007/117157)、乙酸鹽(WO 2007/117157)、1-丁醇(WO 2008/115080、WO 2012/053905及WO 2017/066498)、丁酸鹽(WO 2008/115080)、2,3-丁二醇(WO 2009/151342及WO 2016/094334)、乳酸鹽(WO 2011/112103)、丁烯(WO 2012/024522)、丁二烯(WO 2012/024522)、甲基乙基酮(2-丁酮)(WO 2012/024522及WO 2013/185123)、乙烯(WO 2012/026833)、丙酮(WO 2012/115527)、異丙醇(WO 2012/115527)、脂質(WO 2013/036147)、3-羥基丙酸鹽(3-HP)(WO 2013/180581)、萜烯,除了2-苯乙醇之外,包括異戊二烯(WO 2013/180584)、脂肪酸(WO 2013/191567)、2-丁醇(WO 2013/185123)、1,2-丙二醇(WO 2014/036152)、1-丙醇(WO 2017/066498)、1-己醇(WO 2017/066498)、1-辛醇(WO 2017/066498)、分支酸鹽衍生產物(WO 2016/191625)、3-羥基丁酸鹽(WO 2017/066498)、1,3-丁二醇(WO 2017/066498)、2-羥基異丁酸鹽或2-羥基異丁酸(WO 2017/066498)、異丁烯(WO 2017/066498)、己二酸(WO 2017/066498)、1,3-己二醇(WO 2017/066498)、3-甲基-2-丁醇(WO 2017/066498)、2-丁烯-1-醇(WO 2017/066498)、異戊酸鹽(WO 2017/066498)、異戊醇(WO 2017/066498)及/或單乙二醇(WO 2019/126400)。在一些實施例中,除了乙二醇之外,本揭示案之微生物亦生產乙醇、2,3-丁二醇及/或丁二酸鹽。在某些實施例中,微生物生物質本身可視為產物。此等產物可進一步轉化以產生柴油、噴射機燃料及/或汽油之至少一種組分。在某些實施例中,2-苯乙醇可用作芳香劑、精油、調味劑及皂類中之成分。此外,可藉由此項技術中已知的任何方法或方法之組合進一步加工微生物生物質以生產單細胞蛋白(c)。除一或多種目標產物以外,本發明之微生物亦可產生乙醇、乙酸鹽及/或2,3-丁二醇。
「天然產物」為藉由未經基因修飾之微生物產生之產物。舉例而言,乙醇、乙酸鹽及2,3-丁二醇為自產乙醇梭菌、揚氏梭菌及拉氏梭菌之天然產物。「非天然產物」為藉由經基因修飾微生物產生而非藉由衍生經基因修飾微生物之未經基因修飾微生物產生之產物。不知道乙二醇係由任何天然存在之微生物產生的,因此其為所有微生物的非天然產物。
「選擇性」係指目標產物之產量與藉由微生物產生之所有醱酵產物之產量的比率。本揭示案之微生物可經工程改造而以一定選擇性或最小選擇性產生產物。在一個實施例中,目標產物,諸如乙二醇占由本揭示案之微生物產生之所有醱酵產物的至少約5%、10%、15%、20%、30%、50%或75%。在一個實施例中,乙二醇占由本揭示案之微生物產生之所有醱酵產物之至少10%,使得本揭示案之微生物對乙二醇之選擇性為至少10%。在另一實施例中,乙二醇占由本揭示案之微生物產生之所有醱酵產物之至少30%,使得本揭示案之微生物對乙二醇之選擇性為至少30%。
一或多種醱酵產物中之至少一者可為培養物產生之生物質。至少一部分微生物生物質可轉化為單細胞蛋白(SCP)。至少一部分單細胞蛋白可用作動物飼料之成分。
在一個實施例中,本揭示案提供了一種動物飼料,其包含微生物生物質及至少一種賦形劑,其中該微生物生物質包含在包含CO、CO2及H2中之一或多者的氣態受質上生長的微生物。
「單細胞蛋白」(SCP)係指可用於富含蛋白質之人類食物及/或動物飼料中,通常替代蛋白質補充物之習知來源之微生物生物質,諸如豆粕或魚粉。為產生單細胞蛋白或其他產物,該製程可包括額外的分離、加工或處理步驟。舉例而言,該方法可包括對微生物生物質進行滅菌,使微生物生物質離心及/或將微生物生物質乾燥。在某些實施例中,微生物生物質使用噴霧乾燥或槳葉乾燥來乾燥。該方法亦可包括使用此項技術中已知之任何方法降低微生物生物質之核酸含量,因為攝入高核酸含量之膳食可能導致核酸降解產物積聚及/或胃腸窘迫。單細胞蛋白可適用於餵養動物,諸如家畜或寵物。特定言之,動物飼料可適用於餵養一頭或多頭肉牛、奶牛、豬、綿羊、山羊、馬、騾子、驢、鹿、水牛/野牛、美洲駝、羊駝、馴鹿、駱駝、野牛、大額牛、犛牛、雞、火雞、鴨、鵝、鵪鶉、珍珠雞、雛鳥/鴿子、魚、蝦、甲殼動物、貓、狗及嚙齒動物。動物飼料之組成可根據不同動物之營養要求調整。此外,該製程可包括將微生物生物質與一或多種賦形劑摻合或組合。
「微生物生物質」係指包括微生物細胞之生物材料。舉例而言,微生物生物質可包括純的或基本上純的細菌、古細菌、病毒或真菌培養物或由其等組成。當最初自醱酵液中分離時,微生物生物質通常含有大量的水。此類水可藉由乾燥或處理微生物生物質來移除或減少。
「賦形劑」可指可添加至微生物生物質以增強或改變動物飼料之形式、屬性或營養含量之任何物質。舉例而言,賦形劑可包括以下中之一者或多者:碳水化合物、纖維、脂肪、蛋白質、維生素、礦物質、水、調味劑、甜味劑、抗氧化劑、酶、防腐劑、益生菌或抗生素。在一些實施例中,賦形劑可為乾草、稻草、青貯料、穀物、油或脂肪或其他植物材料。賦形劑可為Chiba,第18節:《飲食調配及常見飼料成分(Diet Formulation and Common Feed Ingredients)》,《動物營養手冊(Animal Nutrition Handbook)》,第3修訂版,第575-633頁,2014中所確認之任何飼料成分。
「生物聚合物」係指由活生物體之細胞產生之天然聚合物。在某些實施例中,生物聚合物為PHA。在某些實施例中,生物聚合物為PHB。
「生物塑膠」係指由可再生生物質來源生產之塑膠材料。生物塑膠可由可再生資源生產,例如植物脂肪及油、玉米澱粉、稻草、木片、鋸末或回收之食物垃圾。
在本文中,提及酸(例如乙酸或2-羥基異丁酸)應理解為還包括相應的鹽(例如乙酸鹽或2-羥基異丁酸鹽)。
通常,在生物反應器中進行培養。術語「生物反應器」包含培養/醱酵裝置,其由一或多個容器、塔或管道配置組成,諸如連續攪拌槽反應器(CSTR)、固定細胞反應器(ICR)、滴流床反應器(TBR)、氣泡柱、氣升式醱酵器、靜態混合器或適用於氣液接觸之另一容器或另一裝置。在一些實施例中,生物反應器可包括第一生長反應器及第二培養/醱酵反應器。可將受質提供至此等反應器中之一者或兩者。如本文中所使用,術語「培養」及「醱酵」可互換使用。此等術語涵蓋培養/醱酵製程之生長階段及產物生物合成階段。
通常在含有足以准許微生物生長之營養物、維生素及/或礦物質之水性培養基中維持培養物。較佳地,水性培養基為厭氧微生物生長培養基,諸如最小厭氧微生物生長培養基。合適之培養基為此項技術中所熟知。
培養/醱酵期望應在生產乙二醇之適當條件下進行。必要時,培養/醱酵在厭氧條件下進行。應考慮之反應條件包括壓力(或分壓)、溫度、氣體流速、液體流速、培養基pH、培養基氧化還原潛力、攪拌速率(若使用連續攪拌槽反應器)、接種物含量、確保液相中之氣體不會變成限制性之最大氣體受質濃度及避免產物抑制之最大產物濃度。詳言之,可控制受質之引入速率以確保液相中氣體之濃度不會變成限制性的。
在高壓下操作生物反應器允許增加自氣相至液相之氣體品質轉移速率。因此,在高於大氣壓之壓力下進行培養/醱酵通常較佳。此外,因為既定氣體轉化率部分為受質滯留時間之函數,且滯留時間指示生物反應器之所需體積,所以使用加壓系統可大大減小所需生物反應器之體積,且因此降低培養/醱酵設備之資金成本。此又意謂當生物反應器維持在高壓而非大氣壓下時,滯留時間(定義為生物反應器中之液體體積除以輸入氣體流動速率)可減少。最佳反應條件將部分地取決於所用的特定微生物。然而,一般而言,較佳在高於大氣壓之壓力下操作醱酵。此外,因為既定氣體轉化率部分為受質滯留時間之函數,且實現所需滯留時間又指示生物反應器之所需體積,所以使用加壓系統可大大減小所需生物反應器之體積,且因此降低醱酵設備之資金成本。
在某些實施例中,醱酵在不存在光之情況下或在不存在足以滿足光合微生物之能量需求之光量之情況下進行。在某些實施例中,本揭示案之微生物為非光合微生物。
目標產物可使用任何方法或此項技術中已知方法之組合自醱酵培養液分離或純化,該等方法包含例如分餾、蒸發、滲透蒸發、氣體汽提、相分離及萃取醱酵,包含例如液-液萃取。在某些實施例中,目標產物藉由以下步驟自醱酵培養液回收:自生物反應器連續移除培養液之一部分,分離微生物細胞與培養液(宜藉由過濾進行),及自培養液回收一或多種目標產物。醇及/或丙酮可例如藉由蒸餾回收。酸可例如藉由吸附於活性炭上回收。較佳地將所分離微生物細胞返回生物反應器。亦較佳使移除目標產物後剩餘之不含細胞之滲透物返回至生物反應器。可將其他營養物(諸如B族維生素)添加至不含細胞之滲透物中以在滲透物返回至生物反應器前補充培養基。純化技術可包括親和標籤純化(例如His、Twin-Strep及FLAG)、基於珠粒之系統、基於尖端之方法及用於更大規模自動化純化之FPLC系統。亦揭示不依賴於親和標籤之純化方法(例如鹽析、離子交換及尺寸排阻)。
如本文中所提及,「醱酵液」為至少包含營養培養基及細菌細胞之培養基。
如本文中所提及,「穿梭微生物」為表現甲基轉移酶之微生物,且不同於目的微生物。
如本文中所提及,「目的微生物」為表現表現構築體/載體上所包括之基因之微生物,且不同於穿梭微生物。
術語「主要醱酵產物」意謂以最高濃度及/或產率產生之一種醱酵產物。
術語「增加效率」、「增加之效率」及其類似術語在與醱酵製程相關使用時包括但不限於增加以下中之一或多者:催化醱酵之微生物的生長速率、在升高的產物濃度下之生長及/或產物產生速率、每體積消耗之受質所產生之所需產物之體積、所需產物之產生速率或產生水準及所產生之所需產物相比於醱酵之其他副產物的相對比例。
片語「包含一氧化碳之受質」及類似術語應理解為包括其中一氧化碳可用於一或多種細菌菌株以用於例如生長及/或醱酵之任何受質。
片語「包含一氧化碳之氣態受質」及類似片語及術語包括含有一定含量之一氧化碳之任何氣體。在某些實施例中,受質含有至少約20體積%至約100體積% CO、20體積%至70體積% CO、30體積%至60體積% CO及40體積%至55體積% CO。在特定實施例中,受質包含約25體積%、或約30體積%、或約35體積%、或約40體積%、或約45體積%、或約50體積% CO,或約55體積% CO,或約60體積% CO。
儘管受質不必含有任何氫氣,但H 2之存在不應對根據本揭示案之方法之產物形成有害。在特定實施例中,氫之存在導致乙醇產生之改良的總體效率。舉例而言,在特定實施例中,受質可包含大約2:1、或1:1、或1:2比率之H 2:CO。在一個實施例中,受質包含約30體積%或更少H 2、20體積%或更少H 2、約15體積%或更少H 2或約10體積%或更少H 2。在其他實施例中,受質流包含低濃度H 2,例如小於5%、或小於4%、或小於3%、或小於2%、或小於1%,或實質上不含氫。受質亦可含有一些CO 2,例如約1體積%至約80體積% CO 2,或1體積%至約30體積% CO 2。在一個實施例中,受質包含小於或等於約20體積% CO 2。在特定實施例中,受質包含小於或等於約15體積% CO 2、小於或等於約10體積% CO 2、小於或等於約5體積% CO 2,或實質上不含CO 2
在以下描述中,本揭示案之實施例根據遞送及醱酵「含有CO之氣態受質」加以描述。然而,應瞭解,氣態受質可以替代形式提供。舉例而言,可提供溶解於液體中之含有CO之氣態受質。基本上,液體經含有一氧化碳之氣體飽和,且接著將該液體添加至生物反應器中。此可使用標準方法來實現。藉助於實例,可使用微泡分散發生器(Hensirisak等人,用於好氣醱酵之微泡分散發生器的規模放大(Scale-up of microbubble dispersion generator for aerobic fermentation);應用生物化學與生物技術(Applied Biochemistry and Biotechnology)第101卷,第3冊/2002年10月)。藉助於另一實例,含有CO之氣態受質可吸附至固體載體上。藉由使用術語「含有CO之受質」及其類似術語涵蓋此類替代方法。
在本揭示案之特定實施例中,含有CO之氣態受質為工業廢氣。「工業廢氣」應廣泛地理解為包括藉由工業製程產生之包含CO的任何氣體,且包括由於鐵類金屬產品製造、非鐵產品製造、石油精煉過程、煤炭氣化、生物質氣化、電力生產、炭黑生產及焦炭製造而產生的氣體。其他實例可提供於本文別處。
除非上下文另有要求,否則如本文所用,片語「醱酵」、「醱酵過程」或「醱酵反應」及其類似片語意欲涵蓋該過程之生長階段及產物生物合成階段。如本文中進一步描述,在一些實施例中,生物反應器可包含第一生長反應器及第二醱酵反應器。因而,將金屬或組合物添加至醱酵反應應理解為包括添加至此等反應器中之任一者或兩者。
術語「生物反應器」包括醱酵裝置,其由一或多個容器及/或塔或管道配置組成,該裝置包括連續攪拌槽反應器(CSTR)、固定細胞反應器(ICR)、滴流床反應器(TBR)、氣泡柱、氣升式醱酵罐、靜態混合器或適用於氣-液接觸之另一容器或另一裝置。在一些實施例中,生物反應器可包含第一生長反應器及第二醱酵反應器。因而,當提及將受質添加至生物反應器或醱酵反應時,應理解為包括適當時添加至此等反應器中之任一者或兩者。
「外源核酸」為源自其所引入的微生物之外的核酸。外源核酸可來源於任何適當來源,包括但不限於待引入其之微生物(例如在重組微生物所來源的親本微生物中)、與待引入其之生物體不同的微生物菌株或物種,或其可人工或以重組方式形成。在一個實施例中,外源核酸代表天然存在於待引入其之微生物內的核酸序列,且其經引入以增加特定基因之表現或過度表現(例如,藉由增加序列(例如基因)之複本數,或引入強或組成型啟動子以增加表現)。在另一實施例中,外源核酸代表待引入其之微生物內非天然存在的核酸序列,且允許表現在微生物內非天然存在的產物或增加微生物原生基因之表現(例如在引入調節元件諸如啟動子之情況下)。外源核酸可適於整合至待引入其之微生物的基因體中或保持染色體外狀態。
「外源」亦可用於指蛋白質。此係指衍生重組微生物之親本微生物中不存在的蛋白質。
如本文所用,與重組微生物及核酸或蛋白質有關的術語「內源」係指衍生重組微生物之親本微生物中存在的任何核酸或蛋白質。
應瞭解,本揭示案可使用序列與本文中具體例示之序列不同的核酸來實施,只要其執行實質上相同的功能。對於編碼蛋白質或肽之核酸序列,此意謂經編碼之蛋白質或肽具有實質上相同的功能。對於表示啟動子序列之核酸序列,變異體序列將具有促進一或多個基因之表現的能力。此類核酸在本文中可稱為「功能等效變異體」。舉例而言,核酸之功能等效變異體包括等位基因變異體、基因片段、包括突變(缺失、插入、核苷酸取代及其類似者)及/或多型性及其類似者之基因。來自其他微生物之同源基因亦可視為本文中具體例示之序列之功能等效變異體之實例。此等基因包含諸如丙酮丁醇梭菌、拜氏梭菌或揚氏梭菌之物種中之同源基因,其詳情在諸如Genbank或NCBI之網站上公開可用。片語「功能等效變異體」亦應視為包括序列由於特定微生物之密碼子最佳化而變化之核酸。本文中之核酸之「功能等效變異體」將較佳地與所鑑別核酸具有至少約70%、較佳地約80%、更佳地約85%、較佳地約90%、較佳地約95%或更大核酸序列一致性。
亦應瞭解,本揭示案可使用序列與本文中具體例示之胺基酸序列不同的多肽來實踐。此等變異體在本文中可稱為「功能等效變異體」。蛋白質或肽之功能等效變異體包括與所鑑別之蛋白質或肽具有至少40%、較佳50%、較佳60%、較佳70%、較佳75%、較佳80%、較佳85%、較佳90%、較佳95%或更大胺基酸一致性且具有與所關注之肽或蛋白質實質上相同功能的彼等蛋白質或肽。此類變異體在其範疇內包括蛋白質或肽之片段,其中片段包含多肽之截短形式,其中缺失可為1至5、至10、至15、至20、至25個胺基酸,且可在多肽之任一端自殘基1至25延伸,且其中缺失在區內可具有任何長度;或可處於內部位置。本文中之特定多肽之功能等效變異體亦應視為包括由其他細菌物種中之同源基因表現之多肽,例如如先前段落中所例示。
如本文所用,「實質上相同的功能」欲意謂核酸或多肽能夠執行其作為變異體之核酸或多肽的功能。舉例而言,本揭示案之酶之變異體將能夠催化與該酶相同的反應。然而,不應認為該變異體具有與其作為變異體之多肽或核酸相同的活性水準。
可使用多種已知方法評定功能等效變異體是否具有與其作為變異體之核酸或多肽實質上相同的功能。然而,舉例而言,Silver等人(1991, 《植物生理學( Plant Physiol.)》97: 1588-1591)或Zhao等人(2011, 《應用微生物學與生物技術( Appl Microbiol Biotechnol)》, 90:1915-1922)描述的關於異戊二烯合成酶的方法、Green等人(2007, 《植物化學( Phytochemistry)》; 68:176-188)描述的關於法呢烯合成酶的方法、Kuzuyama等人(2000, 《細菌學雜誌( J. Bacteriol.)》182, 891-897)描述的關於1-去氧-D-木酮糖5-磷酸合成酶Dxs的方法、Berndt及Schlegel(1975, 《微生物學檔案( Arch.Microbiol.)》103, 21-30)或Stim-Herndon等人(1995, 《基因( Gene)》 154: 81-85)描述的關於硫解酶的方法、Cabano等人(1997, 《昆蟲生物化學與分子生物學( Insect Biochem.Mol. Biol.)》 27: 499-505)描述的關於HMG-CoA合成酶的方法、Ma等人(2011, 《代謝工程學( Metab.Engin.)》, 13:588-597)描述的關於HMG-CoA還原酶及甲羥戊酸激酶的方法、Herdendorf及Miziorko(2007, 《生物化學( Biochemistry)》, 46: 11780-8)描述的關於磷酸甲羥戊酸激酶的方法及Krepkiy等人(2004, 《蛋白質科學( Protein Sci.)》 13: 1875-1881)描述的關於甲羥戊酸二磷酸去羧酶的方法。如Trutko等人(2005, 《微生物學( Microbiology)》 74: 153-158)所述,亦可使用如磷黴素或甲維林之抑制劑來鑑別DXS及甲羥戊酸途徑之基因。
「過度表現(Over-express)」、「過度表現(over expression)」及類似術語及片語在與本揭示案有關的情況下使用時,應廣義地理解為包括與相同條件下親本微生物之蛋白質(包括核酸)的表現量相比,一或多種蛋白質之表現(包括編碼其之一或多種核酸之表現)的任何增加。不應理解為蛋白質(或核酸)以任何特定水準表現。
「親本微生物」為用於產生本揭示案之重組微生物的微生物。親本微生物可為自然界中出現的微生物(亦即野生型微生物),或先前已經修飾但不表現或不過度表現作為本揭示案之主題的一或多種酶的微生物。因此,本揭示案之重組微生物可經修飾以表現或過度表現一或多種在親本微生物中不表現或不過度表現之酶。
術語核酸「構築體」或「載體」及類似術語應廣義地理解為包括適合用作將遺傳物質轉移至細胞中之運載工具的任何核酸(包括DNA及RNA)。該等術語應理解為包括質體、病毒(包括噬菌體)、黏質體及人工染色體。構築體或載體可包括一或多個調節元件、複製起點、多選殖位點及/或可選標記。在一個特定實施例中,構築體或載體適於允許由構築體或載體編碼之一或多個基因表現。核酸構築體或載體包括裸核酸以及與一或多種藥劑一起調配以便於遞送至細胞的核酸(例如脂質體結合的核酸、含有核酸之生物體)。
如本文中所提及之「萜烯」應廣義地理解為包括由C 5異戊二烯單元連接在一起構成的任何化合物,包括簡單及複雜的萜烯及含氧萜烯化合物,諸如醇、醛及酮。簡單的萜烯存在於諸如針葉樹之植物的精油及樹脂中。更複雜的萜烯包括萜類及維生素A、類胡蘿蔔素色素(諸如番茄紅素)、角鯊烯及橡膠。單萜之實例包括但不限於異戊二烯、蒎烯、橙花醇、檸檬醛、樟腦、薄荷醇、檸檬烯。 倍半萜之實例包括但不限於橙花叔醇、法呢醇。 二萜之實例包括但不限於植醇、維生素A 1。角鯊烯為 三萜之一個實例,胡蘿蔔素(原維生素A 1)為 四萜
「萜烯前體」為在以乙醯CoA及視情況選用之丙酮酸為起始物質形成萜烯的反應期間產生的化合物或中間物。該術語係指在甲羥戊酸(MVA)途徑及視情況存在之DXS途徑中發現的前體化合物或中間物,以及長鏈萜烯之下游前體,諸如FPP及GPP。在特定實施例中,其包括但不限於甲羥戊酸、IPP、二甲基烯丙基焦磷酸(DMAPP)、香葉基焦磷酸(GPP)及法呢基焦磷酸(FPP)。
「DXS途徑」為自丙酮酸及D-甘油醛-3-磷酸至DMAPP或IPP之酶促途徑。其亦稱為去脫氧木酮糖5-磷酸(DXP/DXPS/DOXP或DXS)/甲基赤藻糖醇磷酸(MEP)途徑。
「甲羥戊酸(MVA)途徑」為自乙醯基-CoA至IPP之酶促途徑。 微生物
已知兩種生產萜烯之途徑,去氧木酮糖5-磷酸(DXP/DXPS/DOXP或DXS)/甲基赤藻糖醇磷酸(MEP)途徑(Hunter等人, 2007, 《生物化學雜誌( J. Biol. chem.)》282: 21573-77),以糖酵解之兩個關鍵中間物丙酮酸及D-甘油醛-3-磷酸(G3P)為起始物質,及甲羥戊酸(MVA)途徑(Miziorko, 2011, 《生物化學與生物物理學集刊( Arch Biochem Biophys)》, 505: 131-143),以乙醯基-CoA為起始物質。已研究許多不同類別之微生物是否存在此等途徑中之任一者(Lange等人, 2000, PNAS, 97: 13172-77;Trutko等人, 2005, 《微生物學( Microbiology)》, 74: 153-158;Julsing等人, 2007, 《應用微生物學與生物技術》, 75: 1377-84),但並非一氧化碳營養型產乙酸菌。舉例而言,發現DXS途徑存在於大腸桿菌、芽孢桿菌屬或分枝桿菌屬中,而甲羥戊酸途徑存在於酵母屬、綠屈撓菌屬或黏球菌屬中。
本發明人分析了一氧化碳營養型產乙酸菌自產乙醇梭菌、揚氏梭菌之基因體是否存在兩種途徑中之任一者。在自產乙醇梭菌及揚氏梭菌中鑑別出DXS途徑之所有基因(表1),而甲羥戊酸途徑不存在。此外,不知道諸如自產乙醇梭菌或揚氏梭菌之一氧化碳營養型產乙酸菌會產生任何萜烯作為代謝終產物。 表1:在自產乙醇梭菌及揚氏梭菌中鑑別出的DXS途徑之萜烯生物合成基因
基因/酶 自產乙醇梭菌 揚氏梭菌
1-去氧-D-木酮糖-5-磷酸合成酶DXS(EC:2.2.1.7) SEQ ID NO: 1-2 YP_003779286.1; GI: 300854302, CLJU_c11160
1-去氧-D-木酮糖5-磷酸還原異構酶DXR(EC:1.1.1.267) SEQ ID NO: 3-4 YP_003779478.1; GI:  300854494, CLJU_c13080
2-C-甲基-D-赤藻糖醇4-磷酸胞苷醯基轉移酶IspD(EC:2.7.7.60) SEQ ID NO: 5-6 YP_003782252.1 GI: 300857268, CLJU_c41280
4-二磷酸胞苷-2-C-甲基-D-赤藻糖醇激酶IspE(EC:2.7.1.148) SEQ ID NO: 7-8 YP_003778403.1;GI: 300853419, CLJU_c02110
2-C-甲基-D-赤藻糖醇2,4-環二磷酸合成酶IspF(EC:4.6.1.12) SEQ ID NO: 9-10 YP_003778349.1;GI: 300853365, CLJU_c01570
4-羥基-3-甲基丁-2-烯-1-基二磷酸合成酶IspG(EC:1.17.7.1) SEQ ID NO: 11-12 YP_003779480.1; GI: 300854496, CLJU_c13100
4-羥基-3-甲基丁-2-烯基二磷酸還原酶(EC:1.17.1.2) SEQ ID NO:  13-14 YP_003780294.1; GI:  300855310, CLJU_c21320
在兩種生物體中亦鑑別出用於自異戊二烯單元下游合成萜烯的基因(表2)。
基因/酶 自產乙醇梭菌 揚氏梭菌
香葉基轉移酶Fps(EC:2.5.1.10) SEQ ID NO: 15-16 YP_003779285.1; GI:  300854301, CLJU_c11150
七異戊烯基二磷酸合成酶(EC:2.5.1.10) SEQ ID NO: 17-18 YP_003779312.1; GI: 300854328, CLJU_c11420
八異戊烯基二磷酸合成酶[EC:2.5.1.90] SEQ ID NO: 19-20 YP_003782157.1; GI: 300857173, CLJU_c40310
萜烯為能量密集型化合物,且其合成需要細胞以核苷三磷酸諸如ATP之形式投入能量。使用糖作為受質需要自糖酵解中供應足夠的能量以產生數個分子之ATP。由於丙酮酸及D-甘油醛-3-磷酸(G3P)之可獲得性,使用糖作為受質經由DXS途徑生產萜烯及/或其前體以相對簡單的方式進行,G3P衍生自C5戊糖及C6己糖。因此,此等C5及C6分子相對容易轉化為構成萜烯之C5異戊二烯單元。
對於使用C1受質如CO或CO2之厭氧產乙酸菌,自C1單元合成諸如半半萜類之長分子更加困難。對於長鏈萜烯如C10單萜、C15倍半萜或C40四萜尤其如此。迄今為止,產乙酸菌(原生及重組生物體)中報導之碳原子最多的產物為C4化合物丁醇(Köpke等人, 2011, 《生物技術近期述評( Curr.Opin.Biotechnol.)》 22: 320-325);Schiel-Bengelsdorf及Dürre, 2012, 《歐洲生化學會聯合會快報( FEBS Letters)》: 10.1016/j.febslet.2012.04.043;Köpke等人, 2011, 《美國國家科學院院刊( Proc. Nat. Sci. U.S.A.)》 107: 13087-92;美國專利2011/0236941)及2,3-丁二醇(Köpke等人, 2011, 《應用及環境微生物學(Appl.Environ.Microbiol.)》77:5467-75)。本發明人已表明,使用C1原料CO經由乙醯CoA中間物,令人驚訝地有可能厭氧產生此等長鏈萜烯分子。
厭氧產乙酸菌之伍德-永達爾途徑的能量學剛剛出現,但與在有氧生長條件下或糖醱酵生物體之糖酵解不同,伍德-永達爾途徑中沒有藉由受質水準磷酸化獲得ATP,事實上將CO 2活化為甲酸實際上需要一個ATP分子且所需膜梯度。本發明人指出,重要的是產品形成的途徑為高能效的。本發明人指出,在產乙酸菌中,受質CO或CO 2直接轉化為乙醯基-CoA,此代表通往萜烯及/或其前體之最直接途徑,尤其在與基於糖之系統相比時,僅需要六個反應(圖1)。儘管在一氧化碳營養型產乙酸菌中可用的ATP較少,但本發明人認為,此更直接的途徑可維持更高的代謝通量(由於中間反應之化學動力更高)。高效的代謝通量很重要,因為萜烯生物合成途徑中之數種中間物,諸如關鍵中間物甲羥戊酸及FPP,在沒有有效翻轉時對大多數細菌為有毒的。 儘管具有更高的ATP可用性,但此中間物毒性問題可能成為自糖生產萜烯之瓶頸。
當比較經由甲羥戊酸途徑與DXS途徑自CO生產萜烯前體IPP及DMAPP(圖6)的能量學時,本發明人注意到甲羥戊酸途徑需要較少的核苷三磷酸如ATP、較少的還原當量,且在與DXS途徑相比時亦更直接,自乙醯基-CoA僅具有六個必需反應步驟。此在反應速度及代謝通量方面提供了優勢,且提高了總能源效率。此外,所需酶的數量減少,簡化了生產重組微生物所需的重組方法。
尚未鑑別出具有甲羥戊酸途徑之產乙酸菌,但本發明人已表明,可將甲羥戊酸途徑及視情況選用之DXS途徑引入一氧化碳營養型產乙酸菌,諸如自產乙醇梭菌或揚氏梭菌,以便自C1碳受質CO有效生產萜烯及/或其前體。其預期此適用於所有一氧化碳營養型產乙酸微生物。
此外,從未證明在厭氧條件下使用重組微生物可生產萜烯及/或其前體。異戊二烯之厭氧生產具有提供更安全的操作環境的優勢,因為異戊二烯在氧氣存在下極其易燃,在室溫及大氣壓下的易燃下限(LFL)為1.5-2.0 %,易燃上限(UFL)為2.0-12 %。由於在沒有氧氣的情況下火焰不會發生,故本發明人相信厭氧醱酵過程為合乎需要的,因為其在所有產品濃度、氣體組成、溫度及壓力範圍內會更安全。
如上文所論述,本揭示案提供一種重組微生物,其能夠藉由醱酵包含CO之受質生產一或多種萜烯及/或其前體及視情況存在之一或多種其他產品。
在另一實施例中,微生物適於: 表現甲羥戊酸(MVA)途徑中之一或多種外源酶及/或過度表現甲羥戊酸(MVA)途徑中之一或多種內源酶;及 a)     表現DXS途徑中之一或多種外源酶及/或過度表現DXS途徑中之一或多種內源酶。
在一個實施例中,衍生重組微生物之親本微生物能夠醱酵包含CO之受質以產生乙醯CoA,但不能將乙醯CoA轉化為甲羥戊酸或異戊烯基焦磷酸(IPP),且重組微生物適於表現一或多種參與甲羥戊酸途徑之酶。
可藉由任何數目之重組方法使微生物適於表現或過度表現一或多種酶,包括例如增加微生物內之原生基因的表現(例如藉由引入更強或組成型啟動子來驅動基因之表現)、藉由引入編碼且適於表現特定酶之外源核酸來增加編碼該酶之基因的複本數、引入編碼且適於表現親本微生物內非天然存在之酶的外源核酸。
在一個實施例中,一或多種酶來自甲羥戊酸(MVA)途徑且選自由以下組成之群組: a)     硫解酶(EC 2.3.1.9), b)     HMG-CoA合成酶(EC 2.3.3.10), c)     HMG-CoA還原酶(EC 1.1.1.88), d)     甲羥戊酸激酶(EC 2.7.1.36), e)     磷酸甲羥戊酸激酶(EC 2.7.4.2), f)      甲羥戊酸二磷酸去羧酶(EC 4.1.1.33),及 g)     其中任一者之功能等效變異體。
在另一實施例中,視情況選用之一或多種酶來自DXS途徑且選自由以下組成之群組: a)     1-去氧-D-木酮糖-5-磷酸合成酶DXS(EC:2.2.1.7), b)     1-去氧-D-木酮糖5-磷酸還原異構酶DXR(EC:1.1.1.267), c)     2-C-甲基-D-赤藻糖醇4-磷酸胞苷醯基轉移酶IspD(EC:2.7.7.60), d)     4-二磷酸胞苷-2-C-甲基-D-赤藻糖醇激酶IspE(EC:2.7.1.148), e)     2-C-甲基-D-赤藻糖醇2,4-環二磷酸合成酶IspF(EC:4.6.1.12), f)      4-羥基-3-甲基丁-2-烯-1-基二磷酸合成酶IspG(EC:1.17.7.1), g)     4-羥基-3-甲基丁-2-烯基二磷酸還原酶(EC:1.17.1.2),及 h)     其中任一者之功能等效變異體。
在另一實施例中,表現或過度表現一或多種其他外源或內源酶導致生產萜烯化合物或其前體,其中表現的外源酶或過度表現的內源酶係選自由以下組成之群組: a)     香葉基轉移酶Fps(EC:2.5.1.10), b)     七異戊烯基二磷酸合成酶(EC:2.5.1.10), c)     八異戊烯基二磷酸合成酶(EC:2.5.1.90), d)     異戊二烯合成酶(EC 4.2.3.27), e)     異戊烯基二磷酸δ-異構酶(EC 5.3.3.2), f)      法呢烯合成酶(EC 4.2.3.46 / EC 4.2.3.47),及 g)     其中任一者之功能等效變異體。
僅舉例而言,各種酶之序列資訊在本文的圖中列出。
在本揭示案之微生物中使用的酶可來源於任何適當來源,包括不同屬及種之細菌或其他生物體。然而,在一個實施例中,酶來源於金黃色葡萄球菌。
在一個實施例中,酶異戊二烯合成酶(ispS)來源於美洲山楊。在另一實施例中,其具有下文SEQ ID NO: 21中例示之核酸序列或為其功能等效變異體。
在一個實施例中,酶去氧木酮糖5-磷酸合成酶來源於自產乙醇梭菌,由SEQ ID NO: 1中例示之核酸序列編碼及/或具有下文SEQ ID NO: 2中例示之胺基酸序列,或為其功能等效變異體。
在一個實施例中,酶1-去氧-D-木酮糖5-磷酸還原異構酶DXR來源於自產乙醇梭菌且由SEQ ID NO: 3中例示之核酸序列編碼,或為其功能等效變異體。
在一個實施例中,酶2-C-甲基-D-赤藻糖醇4-磷酸胞苷醯基轉移酶IspD來源於自產乙醇梭菌且由SEQ ID NO: 5中例示之核酸序列編碼,或為其功能等效變異體。
在一個實施例中,酶4-二磷酸胞苷-2-C-甲基-D-赤藻糖醇激酶IspE來源於自產乙醇梭菌且由SEQ ID NO: 7中例示之核酸序列編碼,或為其功能等效變異體。
在一個實施例中,酶2-C-甲基-D-赤藻糖醇2,4-環二磷酸合成酶IspF來源於自產乙醇梭菌且由SEQ ID NO: 9中例示之核酸序列編碼,或為其功能等效變異體。
在一個實施例中,酶4-羥基-3-甲基丁-2-烯-1-基二磷酸合成酶IspG來源於自產乙醇梭菌且由SEQ ID NO: 11中例示之核酸序列編碼,或為其功能等效變異體。
在一個實施例中,酶4-羥基-3-甲基丁-2-烯基二磷酸還原酶來源於自產乙醇梭菌且由SEQ ID NO: 13中例示之核酸序列編碼,或為其功能等效變異體。
在一個實施例中,酶甲羥戊酸激酶(MK)來源於金黃色葡萄球菌金黃亞種Mu50且由下文SEQ ID NO: 51中例示之核酸序列編碼,或為其功能等效變異體。
在一個實施例中,酶磷酸甲羥戊酸激酶(PMK)來源於金黃色葡萄球菌金黃亞種Mu50且由下文SEQ ID NO: 52中例示之核酸序列編碼,或為其功能等效變異體。
在一個實施例中,酶甲羥戊酸二磷酸去羧酶(PMD)來源於金黃色葡萄球菌金黃亞種Mu50且由下文SEQ ID NO: 53中例示之核酸序列編碼,或為其功能等效變異體。
在一個實施例中,酶異戊烯基二磷酸δ-異構酶(idi)來源於拜氏梭菌且由下文SEQ ID NO: 54中例示之核酸序列編碼,或為其功能等效變異體。
在一個實施例中,酶硫解酶(thIA)來源於丙酮丁醇梭菌ATCC824且由下文SEQ ID NO: 40中例示之核酸序列編碼,或為其功能等效變異體。
在一個實施例中,酶為硫解酶,且為來源於金黃色葡萄球菌金黃亞種Mu50之乙醯基-CoA c-乙醯轉移酶(vraB)且由下文SEQ ID NO: 41中例示之核酸序列編碼,或為其功能等效變異體。
在一個實施例中,酶3-羥基-3-甲基戊二醯基-CoA合成酶(HMGS)來源於金黃色葡萄球菌金黃亞種Mu50且由下文SEQ ID NO: 42中例示之核酸序列編碼,或為其功能等效變異體。
在一個實施例中,酶羥甲基戊二醯基-CoA還原酶(HMGR)來源於金黃色葡萄球菌金黃亞種Mu50且由下文SEQ ID NO: 43中例示之核酸序列編碼,或為其功能等效變異體。
在一個實施例中,酶香葉基轉移酶(ispA)來源於大腸桿菌菌株K-12亞菌株MG1655由下文SEQ ID NO: 56中例示之核酸序列編碼,或為其功能等效變異體。
在一個實施例中,酶七異戊烯基二磷酸合成酶來源於自產乙醇梭菌且由SEQ ID NO: 17中例示之核酸序列編碼,或為其功能等效變異體。
在一個實施例,酶聚異戊烯基合成酶來源於自產乙醇梭菌且由SEQ ID NO: 19中例示之核酸序列編碼,或為其功能等效變異體。
在一個實施例中,酶α-法呢烯合成酶(FS)來源於蘋果且由下文SEQ ID NO: 57中例示之核酸序列編碼,或為其功能等效變異體。
微生物中所用之酶及功能變異體可藉由熟習此項技術者已知的分析鑑別。在特定實施例中,酶異戊二烯合成酶可藉由Silver等人(1991, 《植物生理學( Plant Physiol.)》97: 1588-1591)或Zhao等人(2011, 《應用微生物學與生物技術( Appl Microbiol Biotechnol)》, 90:1915-1922)中概述之方法鑑別。在另一特定實施例中,酶法呢烯合成酶可藉由Green等人, 2007, 《植物化學(Phytochemistry)》; 68:176-188中概述之方法鑑別。在其他特定實施例中,來自甲羥戊酸途徑之酶可藉由Cabano等人(1997, 《昆蟲生物化學與分子生物學( Insect Biochem.Mol. Biol.)》 27: 499-505)關於HMG-CoA合成酶概述的方法、Ma等人(2011, 《代謝工程學( Metab.Engin.)》, 13:588-597)關於HMG-CoA還原酶及甲羥戊酸激酶概述的方法、Herdendorf及Miziorko(2007, 《生物化學( Biochemistry)》, 46: 11780-8)關於磷酸甲羥戊酸激酶概述的方法及Krepkiy等人(2004, 《蛋白質科學( Protein Sci.)》 13: 1875-1881)關於甲羥戊酸二磷酸去羧酶概述的方法鑑別。Ma等人, 2011, 《代謝工程學》13:588-597。DXS途徑之1-去氧-D-木酮糖5-磷酸合成酶可使用Kuzuyama等人(2000, 《細菌學雜誌( J. Bacteriol.)》182, 891-897)中概述之方法分析。如Trutko等人(2005, 《微生物學》 74: 153-158)所述,亦可使用如磷黴素或甲維林之抑制劑來鑑別DXS及甲羥戊酸途徑之基因。
在一個實施例中,微生物包含一或多個外源核酸,其適於增加一或多種內源核酸之表現,且該一或多種內源核酸編碼前文所提及之一或多種酶。在一個實施例中,適於增加表現之一或多個外源核酸為調節元件。在一個實施例中,調節元件為啟動子。在一個實施例中,啟動子為組成型啟動子,較佳在適當醱酵條件下具有高活性。亦可使用誘導型啟動子。在較佳實施例中,啟動子選自包含伍德-永達爾基因簇或磷酸轉乙醯酶/乙酸激酶操縱子啟動子之群組。熟習此項技術者應瞭解,其他可指導表現、較佳在適當醱酵條件下高水準表現之啟動子作為例示實施例之替代物將為有效的。
在一個實施例中,微生物包含一或多個外源核酸,其編碼且適於表現上文提及之一或多種酶。在一個實施例中,微生物包含一或多個外源核酸,其編碼且適於表現至少兩種酶。在其他實施例中,微生物包含一或多個外源核酸,其編碼且適於表現至少三種、至少四種、至少五種、至少六種、至少七種、至少八種、至少九種或更多種酶。
在一個特定實施例,微生物包含一或多個外源核酸,其編碼本揭示案之酶或其功能等效變異體。
微生物可包含一或多個外源核酸。在期望用兩個或更多個遺傳元件(諸如基因或調節元件(例如啟動子))轉型親本微生物的情況下,其可包含在一或多個外源核酸上。
在一個實施例中,一或多個外源核酸為核酸構築體或載體,在一個特定實施例中為質體,其以任何組合編碼前文所提及之一或多種酶。
外源核酸在親本微生物轉型時可保持染色體外,或可整合至親本微生物之基因體中。因此,其可包括額外核苷酸序列,其適於幫助整合(例如允許同源重組及靶向整合至宿主基因體中之區域)或表現及複製染色體外構築體(例如複製起點、啟動子及其他調節元件或序列)。
在一個實施例中,編碼一或多種如上文所提及之酶的外源核酸將進一步包含適於促進一或多種由外源核酸編碼之酶表現的啟動子。在一個實施例中,啟動子為組成型啟動子,較佳在適當醱酵條件下具有高活性。亦可使用誘導型啟動子。在較佳實施例中,啟動子選自包含伍德-永達爾基因簇及磷酸轉乙醯酶/乙酸激酶啟動子之群組。熟習此項技術者應瞭解,其他可指導表現、較佳在適當醱酵條件下高水準表現之啟動子作為例示實施例之替代物將為有效的。
在一個實施例中,外源核酸為表現質體。
在一個特定實施例中,親本微生物係選自一氧化碳營養型產乙酸細菌之群組。在某些實施例中,微生物係選自包含以下之群組:自產乙醇梭菌、揚氏梭菌、拉氏梭菌、食一氧化碳梭菌、德雷克氏梭菌、糞味梭菌、醋酸梭菌、蟻酸醋酸梭菌、大梭菌、食甲基丁酸桿菌、伍氏醋酸桿菌、巴氏嗜鹼菌、生產布勞特氏菌、黏液真桿菌、熱醋酸穆爾氏菌、熱自養穆爾氏菌、卵形鼠孢菌、銀醋酸鼠孢菌、球形鼠孢菌、普氏產醋桿菌及基伍嗜熱厭氧桿菌。
在一個特定實施例中,親本微生物係選自包含物種自產乙醇梭菌、揚氏梭菌及拉氏梭菌之產乙醇、產乙酸梭菌綱之簇及相關分離株。此等包括但不限於菌株自產乙醇梭菌JAI-1T(DSM10061)[Abrini J, Naveau H, Nyns E-J: 《自產乙醇梭菌新物種,自一氧化碳生產乙醇之厭氧細菌(Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide.)》《微生物學檔案》1994, 4: 345-351]、自產乙醇梭菌LBS1560(DSM19630)[Simpson SD, Forster RL, Tran PT, Rowe MJ, Warner IL: 《新穎細菌及其方法(Novel bacteria and methods thereof.)》國際專利2009,WO/2009/064200]、自產乙醇梭菌LBS1561(DSM23693)、揚氏梭菌PETC T(DSM13528 = ATCC 55383)[Tanner RS, Miller LM, Yang D: 《揚氏梭菌新物種,梭菌rRNA同源第I組中之產乙酸物種(Clostridium ljungdahlii sp. nov., an Acetogenic Species in Clostridial rRNA Homology Group I.)》 《國際系統細菌學雜誌》 1993, 43: 232-236]、揚氏梭菌ERI-2(ATCC 55380)[Gaddy JL: 《自廢氣生產乙酸之梭菌菌株(Clostridium stain which produces acetic acid from waste gases.)》美國專利1997,5,593,886]、揚氏梭菌C-01(ATCC 55988)[Gaddy JL, Clausen EC, Ko C-W: 《製備乙酸之微生物方法以及用於自醱酵液提取乙酸之溶劑(Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth.)》美國專利2002,6,368,819]、揚氏梭菌O-52(ATCC 55989)[Gaddy JL, Clausen EC, Ko C-W: 《製備乙酸之微生物方法以及用於自醱酵液提取乙酸之溶劑》美國專利2002,6,368,819]、拉氏梭菌P11 T(ATCC BAA-622)[Huhnke RL, Lewis RS, Tanner RS: 《新穎梭菌物種之分離及表徵(Isolation and Characterization of novel Clostridial Species.)》國際專利2008, WO 2008/028055]、相關分離物,諸如「克薩氏梭菌」[Zahn等人 - 新穎產乙醇物種克薩氏梭菌(Novel ethanologenic species Clostridium coskatii)(美國專利申請案第US20110229947號)]及「梭菌屬種」(Tyurin等人, 2012, 《生物技術研究雜誌》 4: 1-12),或突變菌株,諸如揚氏梭菌OTA-1(Tirado-Acevedo O. 《使用揚氏梭菌自合成氣生產生物乙醇(Production of Bioethanol from Synthesis Gas Using Clostridium ljungdahlii.)》博士論文,北卡羅來納州立大學,2010)。此等菌株在梭菌rRNA簇I內形成子簇,且其16S rRNA基因超過99%一致,具有約30%的類似低GC含量。然而,DNA-DNA重新關聯及DNA指紋實驗表明,此等菌株屬於不同的物種[Huhnke RL, Lewis RS, Tanner RS: 《新穎梭菌物種之分離及表徵》國際專利2008,WO 2008/028055]。
此簇之所有物種具有相似的形態及大小(對數生長的細胞在0.5-0.7 × 3-5 μm之間),為嗜中溫的(最佳生長溫度在30-37℃之間)及嚴格厭氧菌[Tanner RS, Miller LM, Yang D: 《揚氏梭菌新穎物種,梭菌rRNA同源第I組中之產乙酸物種》 《國際系統細菌學雜誌》 1993, 43: 232-236;Abrini J, Naveau H, Nyns E-J: 《自產乙醇梭菌新穎物種,自一氧化碳生產乙醇之厭氧細菌》《微生物學檔案》 1994, 4: 345-351;Huhnke RL, Lewis RS, Tanner RS: 《新穎梭菌物種之分離及表徵》國際專利2008,WO 2008/028055]。此外,其均具有相同的主要系統發育性狀,諸如相同的pH值範圍(pH4-7.5,最佳初始pH值為5.5-6),在含CO氣體上之強自養生長,生長速率相似及代謝概況相似,以乙醇及乙酸作為主要醱酵終產物且在某些條件下形成少量2,3-丁二醇及乳酸。[Tanner RS, Miller LM, Yang D: 《揚氏梭菌新物種,梭菌rRNA同源第I組中之產乙酸物種》 《國際系統細菌學雜誌》 1993, 43: 232-236;Abrini J, Naveau H, Nyns E-J: 《自產乙醇梭菌新穎物種,自一氧化碳生產乙醇之厭氧細菌》《微生物學檔案》 1994, 4: 345-351;Huhnke RL, Lewis RS, Tanner RS: 《新穎梭菌物種之分離及表徵》國際專利2008,WO 2008/028055]。在所有三個物種中亦觀察到吲哚生產。然而,該等物種在各種糖(例如鼠李糖、阿拉伯糖)、酸(例如葡糖酸鹽、檸檬酸鹽)、胺基酸(例如精胺酸、組胺酸)或其他受質(例如甜菜鹼、丁醇)之受質利用方面存在差異。此外,發現一些物種對某些維生素(例如硫胺素、生物素)為營養缺陷型,而其他則不是。
在一個實施例中,親本一氧化碳營養型產乙酸微生物係選自由以下組成之群組:自產乙醇梭菌、揚氏梭菌、拉氏梭菌、食一氧化碳梭菌、德雷克氏梭菌、糞味梭菌、黏液丁酸桿菌、食甲基丁酸桿菌、伍氏醋酸桿菌、巴氏嗜鹼菌、生產布勞特氏菌、黏液真桿菌、熱醋酸穆爾氏菌、熱自養穆爾氏菌、普氏產醋桿菌及基伍嗜熱厭氧桿菌。
在第一或第二態樣之一個特定實施例中,親本微生物係選自包含以下之一氧化碳營養型梭菌綱群組:自產乙醇梭菌、揚氏梭菌、拉氏梭菌、食一氧化碳梭菌、德雷克氏梭菌、糞味梭菌、醋酸梭菌、蟻酸醋酸梭菌、大梭菌。
在一個實施例中,微生物係選自包含物種自產乙醇梭菌、揚氏梭菌及「拉氏梭菌」之一氧化碳營養型梭菌綱之簇及相關分離株。此等包括但不限於菌株自產乙醇梭菌JAI-1 T(DSM10061)(Abrini, Naveau及Nyns, 1994)、自產乙醇梭菌LBS1560(DSM19630)(WO/2009/064200)、自產乙醇梭菌LBS1561(DSM23693)、揚氏梭菌PETC T(DSM13528 = ATCC 55383)(Tanner, Miller及Yang, 1993)、揚氏梭菌ERI-2(ATCC 55380)(美國專利5,593,886)、揚氏梭菌C-01(ATCC 55988)(美國專利6,368,819)、揚氏梭菌O-52(ATCC 55989)(美國專利6,368,819)或「拉氏梭菌P11 T」(ATCC BAA-622)(WO 2008/028055),及相關分離株,諸如「克薩氏梭菌」(美國專利2011/0229947)、「梭菌屬種MT351」 (Michael Tyurin及Kiriukhin, 2012)及其突變菌株,諸如揚氏梭菌OTA-1(Tirado-Acevedo O. 《使用揚氏梭菌自合成氣生產生物乙醇》博士論文,北卡羅來納州立大學,2010)。
此等菌株在梭菌rRNA簇I內形成子簇(Collins等人, 1994),在16S rRNA基因水準上具有至少99%一致性,儘管藉由DNA-DNA重新關聯及DNA指紋實驗確定為不同的物種(WO 2008/028055,美國專利2011/0229947)。
此簇之菌株由共同特徵定義,具有相似的基因型及表型,且其均具有相同的能量守恆及醱酵代謝模式。此簇之菌株缺乏細胞色素且經由Rnf複合體保存能量。
此簇之所有菌株的基因體大小為約4.2 MBp(Köpke等人, 2010),GC組成為約32 mol%(Abrini等人, 1994;Köpke等人, 2010;Tanner等人, 1993)(WO 2008/028055;美國專利2011/0229947)且具有編碼伍德-永達爾途徑之酶(一氧化碳去氫酶、甲醯基-四氫葉酸合成酶、亞甲基-四氫葉酸去氫酶、甲醯基-四氫葉酸環水解酶、亞甲基-四氫葉酸還原酶及一氧化碳去氫酶/乙醯基-CoA合成酶)、氫化酶、甲酸去氫酶、Rnf複合體(rnfCDGEAB)、丙酮酸:鐵氧化還原蛋白氧化還原酶、醛:鐵氧化還原蛋白氧化還原酶的保守必需關鍵基因操縱子(Köpke等人, 2010, 2011)。儘管核酸及胺基酸序列存在差異,但已發現負責氣體吸收的伍德-永達爾途徑基因的組織及數量在所有物種中相同(Köpke等人, 2011)。
該等菌株均具有相似的形態及大小(對數生長的細胞在0.5-0.7 × 3-5 μm之間),為嗜中溫的(最佳生長溫度在30-37℃之間)及嚴格厭氧菌(Abrini等人, 1994;Tanner等人, 1993)(WO 2008/028055)。此外,其均具有相同的主要系統發育性狀,諸如相同的pH值範圍(pH4-7.5,最佳初始pH值為5.5-6),在含CO氣體上之強自養生長,生長速率相似及代謝概況相似,以乙醇及乙酸作為主要醱酵終產物且在某些條件下形成少量2,3-丁二醇及乳酸(Abrini等人, 1994;Köpke等人, 2011;Tanner等人, 1993)。然而,該等物種在各種糖(例如鼠李糖、阿拉伯糖)、酸(例如葡糖酸鹽、檸檬酸鹽)、胺基酸(例如精胺酸、組胺酸)或其他受質(例如甜菜鹼、丁醇)之受質利用方面存在差異。發現一些物種對某些維生素(例如硫胺素、生物素)為營養缺陷型,而其他則不是。在一系列此等生物體中,已顯示出將羧酸還原成其相應的醇(Perez, Richter, Loftus及Angenent, 2012)。
因此,所描述之性狀並非如自產乙醇梭菌或揚氏梭菌之生物體所特有的,而是一氧化碳營養型乙醇合成梭菌綱的一般性狀。因此,可預計本揭示案在此等菌株中均能發揮作用,儘管在效能上可能存在差異。
本揭示案之重組一氧化碳營養型產乙酸微生物可使用此項技術中已知用於產生重組微生物之任何數目之技術由親本一氧化碳營養型產乙酸微生物及一或多種外源核酸製備。僅舉例而言,轉型(包括轉導或轉染)可藉由電穿孔、電融合、超音波處理、聚乙二醇介導之轉型、結合或化學及天然感受態來實現。適合的轉型技術描述於例如Sambrook J, Fritsch EF, Maniatis T: 《分子選殖:實驗室手冊》, Cold Spring Harbour Laboratory Press, Cold Spring Harbour, 1989中。
電穿孔已被描述用於數種一氧化碳營養型產乙酸菌,如揚氏梭菌(Köpke等人, 2010;Leang, Ueki, Nevin及Lovley, 2012)(PCT/NZ2011/000203;WO2012/053905)、自產乙醇梭菌(PCT/NZ2011/000203;WO2012/053905)、伍氏醋酸桿菌(Strätz, Sauer, Kuhn及Dürre, 1994)或熱醋酸穆爾氏菌(Kita等人, 2012)且為用於許多梭菌綱之標準方法,諸如丙酮丁醇梭菌(Mermelstein, Welker, Bennett及Papoutsakis, 1992)、解纖維素梭菌(Jennert, Tardif, Young及Young, 2000)或熱纖梭菌(MV Tyurin, Desai及Lynd, 2004)。
電融合已被描述用於產乙酸梭菌MT351(Tyurin及Kiriukhin, 2012)。
原噬菌體Prasanna Tamarapu Parthasarathy誘導已被描述用於一氧化碳營養型產乙酸菌以及糞味梭菌(, 2010, 《在糞味梭菌ATCC 25775中開發基因修飾系統用於產生突變異體(Development of a Genetic Modification System in Clostridium scatologenesATCC 25775 for Generation of Mutants)》, 西肯塔基大學碩士項目)。
結合已描述為產乙酸菌艱難梭菌(Herbert, O'Keeffe, Purdy, Elmore及Minton, 2003)及許多其他梭菌綱包括丙酮丁醇梭菌(Williams, Young及Young, 1990)的首選方法。
在一個實施例中,親本菌株使用CO作為其唯一的碳及能量來源。
在一個實施例中,親本微生物為自產乙醇梭菌或揚氏梭菌。在一個特定實施例中,微生物為自產乙醇梭菌DSM23693。在另一特定實施例中,微生物為揚氏梭菌DSM13528(或ATCC55383)。 核酸
本揭示案亦提供一或多種用於產生本揭示案之重組微生物的核酸或核酸構築體。
在一個實施例中,核酸包含編碼甲羥戊酸(MVA)途徑及視情況存在之DXS途徑中之一或多種酶的序列,當在微生物中表現時,允許微生物藉由醱酵包含CO之受質生產一或多種萜烯及/或其前體。在一個特定實施例中本揭示案提供編碼兩種或更多種酶之核酸,當在微生物中表現時,允許微生物藉由醱酵包含CO之受質生產一或多種萜烯及/或其前體。在一個實施例中,本揭示案之核酸編碼三種、四種、五種或更多種此類酶。
在一個實施例中,由核酸編碼之一或多種酶來自甲羥戊酸(MVA)途徑且係選自由以下組成之群組: a)     硫解酶(EC 2.3.1.9), b)     HMG-CoA合成酶(EC 2.3.3.10), c)     HMG-CoA還原酶(EC 1.1.1.88), d)     甲羥戊酸激酶(EC 2.7.1.36), e)     磷酸甲羥戊酸激酶(EC 2.7.4.2), f)      甲羥戊酸二磷酸去羧酶(EC 4.1.1.33),及 g)     其中任一者之功能等效變異體。
在另一實施例中,由核酸編碼之一或多種視情況存在之酶來自DXS途徑且係選自由以下組成之群組: a)     1-去氧-D-木酮糖-5-磷酸合成酶DXS(EC:2.2.1.7), b)     1-去氧-D-木酮糖5-磷酸還原異構酶DXR(EC:1.1.1.267), c)     2-C-甲基-D-赤藻糖醇4-磷酸胞苷醯基轉移酶IspD(EC:2.7.7.60), d)     4-二磷酸胞苷-2-C-甲基-D-赤藻糖醇激酶IspE(EC:2.7.1.148), e)     2-C-甲基-D-赤藻糖醇2,4-環二磷酸合成酶IspF(EC:4.6.1.12), f)      4-羥基-3-甲基丁-2-烯-1-基二磷酸合成酶IspG(EC:1.17.7.1), g)     4-羥基-3-甲基丁-2-烯基二磷酸還原酶(EC:1.17.1.2),及 h)     其中任一者之功能等效變異體。
在另一實施例中,核酸編碼一或多種其他酶,該等酶經表現或過度表現以導致生產萜烯化合物及/或其前體,其中表現的外源酶或過度表現的內源酶係選自由以下組成之群組: a)     香葉基轉移酶Fps(EC:2.5.1.10), b)     七異戊烯基二磷酸合成酶(EC:2.5.1.10), c)     八異戊烯基二磷酸合成酶(EC:2.5.1.90), d)     異戊二烯合成酶(EC 4.2.3.27), e)     異戊烯基二磷酸δ-異構酶(EC 5.3.3.2), f)      法呢烯合成酶(EC 4.2.3.46 / EC 4.2.3.47),及 g)     其中任一者之功能等效變異體。
編碼上述酶中之每一者的例示性胺基酸序列及核酸序列提供於本文中或可獲自GenBank,如上文所提及。然而,考慮到本文、GenBank及其他資料庫中所含之資訊以及遺傳密碼,技術人員將容易理解編碼該等酶或其功能等效變異體之替代核酸序列。
在另一實施例中,編碼來源於丙酮丁醇梭菌ATCC824之硫解酶(thIA)的核酸由下文SEQ ID NO: 40中例示之核酸序列編碼,或為其功能等效變異體。
在另一實施例中,編碼硫解酶之核酸由下文SEQ ID NO: 41中例示之核酸序列編碼,或為其功能等效變異體,其中該硫解酶為來源於金黃色葡萄球菌金黃亞種Mu50之乙醯基-CoA c-乙醯轉移酶(vraB)。
在另一實施例中,編碼來源於金黃色葡萄球菌金黃亞種Mu50之3-羥基-3-甲基戊二醯基-CoA合成酶(HMGS)的核酸由下文SEQ ID NO: 42中例示之核酸序列編碼,或為其功能等效變異體。
在另一實施例中,編碼來源於金黃色葡萄球菌金黃亞種Mu50之羥甲基戊二醯基-CoA還原酶(HMGR)的核酸由下文SEQ ID NO: 43中例示之核酸序列編碼,或為其功能等效變異體。
在另一實施例中,編碼來源於金黃色葡萄球菌金黃亞種Mu50之甲羥戊酸激酶(MK)的核酸由下文SEQ ID NO: 51中例示之核酸序列編碼,或為其功能等效變異體。
在另一實施例中,編碼來源於金黃色葡萄球菌金黃亞種Mu50之磷酸甲羥戊酸激酶(PMK)的核酸由下文SEQ ID NO: 52中例示之核酸序列編碼,或為其功能等效變異體。
在另一實施例中,編碼來源於金黃色葡萄球菌金黃亞種Mu50之甲羥戊酸二磷酸去羧酶(PMD)的核酸由下文SEQ ID NO: 53中例示之核酸序列編碼,或為其功能等效變異體。
在另一實施例中,編碼來源於自產乙醇梭菌之去氧木酮糖5-磷酸合成酶的核酸由SEQ ID NO: 1中例示之核酸序列編碼及/或具有下文SEQ ID NO: 2中例示之胺基酸序列,或為其功能等效變異體。
在一個實施例中,編碼1-去氧-D-木酮糖5-磷酸還原異構酶DXR(EC:1.1.1.267)之核酸具有序列SEQ ID NO: 3,或為其功能等效變異體。
在一個實施例中,編碼2-C-甲基-D-赤藻糖醇4-磷酸胞苷醯基轉移酶IspD(EC:2.7.7.60)之核酸具有序列SEQ ID NO: 5,或為其功能等效變異體。
在一個實施例中,編碼4-二磷酸胞苷-2-C-甲基-D-赤藻糖醇激酶IspE(EC:2.7.1.148)之核酸具有序列SEQ ID NO: 7,或為其功能等效變異體。
在一個實施例中,編碼2-C-甲基-D-赤藻糖醇2,4-環二磷酸合成酶IspF(EC:4.6.1.12)之核酸具有序列SEQ ID NO: 9,或為其功能等效變異體。
在一個實施例中,編碼4-羥基-3-甲基丁-2-烯-1-基二磷酸合成酶IspG(EC:1.17.7.1)之核酸具有序列SEQ ID NO: 11或為其功能等效變異體。
在一個實施例中,編碼4-羥基-3-甲基丁-2-烯基二磷酸還原酶(EC:1.17.1.2)之核酸具有序列SEQ ID NO: 13,或為其功能等效變異體。
在另一實施例中,編碼來源於大腸桿菌菌株K-12亞菌株MG1655之香葉基轉移酶(ispA)的核酸由下文SEQ ID NO: 56中例示之核酸序列編碼,或為其功能等效變異體。
在一個實施例中,編碼七異戊烯基二磷酸合成酶之核酸具有序列SEQ ID NO: 17或為其功能等效變異體。
在一個實施例中,編碼八異戊烯基二磷酸合成酶(EC:2.5.1.90)之核酸,其中八異戊烯基二磷酸合成酶為聚異戊烯基合成酶,由序列SEQ ID NO: 19編碼,或為其功能等效變異體。
在一個實施例中,編碼來源於美洲山楊之異戊二烯合成酶(ispS)的核酸例示於下文SEQ ID NO: 21中,或為其功能等效變異體。
在另一實施例中,編碼來源於拜氏梭菌之異戊烯基二磷酸δ-異構酶(idi)的核酸由下文SEQ ID NO: 54中例示之核酸序列編碼,或為其功能等效變異體。
在另一實施例中,編碼來源於蘋果之α-法呢烯合成酶(FS)的核酸由下文SEQ ID NO: 57中例示之核酸序列編碼,或為其功能等效變異體。
在一個實施例中,本揭示案之核酸將進一步包含啟動子。在一個實施例中,啟動子允許基因在其控制下之組成性表現。然而,亦可採用誘導型啟動子。熟習此項技術者將容易理解本揭示案中使用的啟動子。較佳地,啟動子可在適當醱酵條件下引導高水準表現。在一個特定實施例中,使用伍德-永達爾簇啟動子。在另一實施例中,使用磷酸轉乙醯酶/乙酸激酶啟動子。在另一個實施例中,丙酮酸:鐵氧化還原蛋白氧化還原酶啟動子、Rnf複合體操縱子啟動子或ATP合成酶操縱子啟動子。在一個特定實施例中,啟動子來自自產乙醇梭菌。
本揭示案之核酸在親本微生物轉型時可保持在染色體外,或可適於整合至微生物之基因體中。因此,本揭示案之核酸可包括額外核苷酸序列,其適於幫助整合(例如允許同源重組及靶向整合至宿主基因體中之區域)或穩定表現及複製染色體外構築體(例如複製起點、啟動子及其他調節序列)。
在一個實施例中,核酸為核酸構築體或載體。在一個特定實施例中,核酸構築體或載體為表現構築體或載體,然而本揭示案涵蓋其他構築體及載體,諸如用於選殖之構築體及載體。在一個特定實施例中,表現構築體或載體為質體。
應瞭解,必要時,本揭示案之表現構築體/載體除啟動子以及適用於表現其他蛋白質之其他基因之外,亦可含有任何數目之調節元件。在一個實施例中,表現構築體/載體包括一個啟動子。在另一實施例中,表現構築體/載體包括兩個或更多個啟動子。在一個特定實施例中,表現構築體/載體包括各有待表現之基因的一個啟動子。在一個實施例中,表現構築體/載體包括一或多個核糖體結合位點,較佳為各有待表現之基因的核糖體結合位點。
熟習此項技術者應瞭解,本文所述之核酸序列及構築體/載體序列可含有標準連接子核苷酸,諸如核糖體結合位點及/或限制位點所需之連接子核苷酸。此類連接子序列不應解釋為必需的且不提供對所定義序列之限制。
核酸及核酸構築體,包括本揭示案之表現構築體/載體可使用此項技術中任何數目之標準技術構築。舉例而言,可使用化學合成或重組技術。此類技術描述於例如Sambrook等人(《分子選殖:實驗室手冊》, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989)中。其他例示性技術描述於之後的本文實例部分中。基本上,個別基因及調節元件將可操作地彼此連接,使得基因可表現形成所需蛋白質。一般熟習此項技術者應瞭解適用於本揭示案之載體。然而,舉例而言,以下載體可為適合的:pMTL80000載體、pIMP1、pJIR750及下文實例部分中例示之質體。
應瞭解,本揭示案之核酸可呈任何適當形式,包括RNA、DNA或cDNA。
本揭示案亦提供包含本文所述之核酸中之任一或多者的宿主生物體,尤其微生物,且包括病毒、細菌及酵母菌。 產生生物體之方法
一或多種外源核酸可以裸核酸形式遞送至親本微生物,或可與一或多種藥劑一起調配以有助於轉型過程(例如,脂質結合核酸、含有核酸之生物體)。若適當,一或多種核酸可為DNA、RNA或其組合。在某些實施例中可使用限制性抑制劑;參見例如Murray, N.E.等人 (2000) 《分子與細胞生物學評論( Microbial.Molec.Biol. Rev.)》 64, 412.)
本揭示案之微生物可使用此項技術中已知用於產生重組微生物之任何數目之技術由親本微生物及一或多個外源核酸製備。僅藉助於實例,轉型(包括轉導或轉染)可藉由電穿孔、超音波處理、聚乙二醇介導之轉型、化學或天然感受態或綴合來實現。合適的轉化技術例如描述於Sambrook J, Fritsch EF, Maniatis T:分子克隆(Molecular Cloning):實驗室手冊(A laboratory Manual),冷泉港實驗室出版社(Cold Spring Harbour Laboratory Press),冷泉港(Cold Spring Harbour), 1989中。
在某些實施例中,由於在待轉型微生物中具有活性之限制系統,有必要將待引入微生物中之核酸甲基化。此可使用多種技術進行,包括下文所描述之彼等技術,且進一步例示於下文實例部分中。
舉例而言,在一個實施例中,本揭示案之重組微生物藉由包含以下步驟之方法產生: b)     將(i)如本文所述之表現構築體/載體及(ii)包含甲基轉移酶基因之甲基化構築體/載體引入穿梭微生物中; c)     表現甲基轉移酶基因; d)     自穿梭微生物中分離一或多個構築體/載體;及 e)     將一或多個構築體/載體引入目標微生物中。
在一個實施例中,組成性表現步驟B之甲基轉移酶基因。在另一實施例中,誘導步驟B之甲基轉移酶基因之表現。
穿梭微生物為促進構成表現構築體/載體之核酸序列之甲基化的微生物,較佳為限制陰性微生物。在特定實施例中,穿梭微生物為限制陰性大腸桿菌( E. coli)、枯草芽孢桿菌(Bacillus subtilis)或乳酸乳球菌( Lactococcus lactis)。
甲基化構築體/載體包含編碼甲基轉移酶之核酸序列。
一旦表現構築體/載體及甲基化構築體/載體引入穿梭微生物中,則誘導存在於甲基化構築體/載體上之甲基轉移酶基因。誘導可藉由任何合適的啟動子系統實現,但在本揭示案之一個特定實施例中,甲基化構築體/載體包含誘導型lac啟動子且藉由添加乳糖或其類似物,更佳地為異丙基-β-D-硫代-半乳糖苷(IPTG)來誘導。其他合適的啟動子包括ara、tet或T7系統。在本揭示案之另一實施例中,甲基化構築體/載體啟動子為組成型啟動子。
在一個特定實施例中,甲基化構築體/載體具有對穿梭微生物之一致性具有特異性之複製起點,使得存在於甲基化構築體/載體上之任何基因表現於穿梭微生物中。較佳地,表現構築體/載體具有對目的微生物之一致性具有特異性之複製起點,使得存在於表現構築體/載體上之任何基因表現於目的微生物中。
甲基轉移酶之表現導致存在於表現構築體/載體上之基因之甲基化。表現構築體/載體可接著根據多種已知方法中之任一者自穿梭微生物分離。僅藉助於實例,下文所描述之實例部分中所描述之方法可用於分離表現構築體/載體。
在一個特定實施例中,兩個構築體/載體同時分離。
可使用任何數目之已知方法將表現構築體/載體引入至目的微生物中。然而,藉助於實例,可使用下文實例部分中所描述之方法。由於表現構築體/載體經甲基化,因此存在於表現構築體/載體上之核酸序列能夠併入至目的微生物中且成功地表現。
據設想,可將甲基轉移酶基因引入至穿梭微生物中且過度表現。因此,在一個實施例中,所得甲基轉移酶可使用已知方法收集且活體外用於甲基化表現質體。可接著將表現構築體/載體引入至目的微生物中以用於表現。在另一實施例中,將甲基轉移酶基因引入至穿梭微生物之基因體中,隨後將表現構築體/載體引入至穿梭微生物中,自穿梭微生物分離一或多個構築體/載體,且接著將表現構築體/載體引入至目的微生物中。
據設想,如上文所定義之表現構築體/載體及甲基化構築體/載體可組合以提供物質組合物。此組合物在避開限制障壁機制以產生本揭示案之重組微生物方面具有特定效用。
在一個特定實施例中,表現構築體/載體及/或甲基化構築體/載體為質體。
一般熟習此項技術者將瞭解用於產生本揭示案之微生物之多種合適的甲基轉移酶。然而,藉助於實例,可使用枯草芽孢桿菌噬菌體ΦT1甲基轉移酶及後文實例中所描述之甲基轉移酶。在一個實施例中,甲基轉移酶具有SEQ ID NO: 60之胺基酸序列或為其功能等效變異體。考慮到所需甲基轉移酶及基因密碼之序列,將容易瞭解編碼合適的甲基轉移酶之核酸。在一個實施例中,編碼甲基轉移酶之核酸如下文實例中所述(例如SEQ ID NO: 63之核酸,或為其功能等效變異體)。
適於允許表現甲基轉移酶基因之任何數目之構築體/載體可用於產生甲基化構築體/載體。然而,舉例而言,可使用下文實例部分中所述之質體。 生產方法
本揭示案提供一種藉由微生物醱酵生產一或多種萜烯及/或其前體且視情況生產一或多種其他產物之方法,其包含使用本揭示案之重組微生物醱酵包含CO之受質。較佳地,一或多種萜烯及/或其前體為主要醱酵產物。本揭示案之方法可用於減少來自工業製程之總大氣碳排放。
較佳地,醱酵包含使用本揭示案之重組微生物在生物反應器中厭氧醱酵受質以生產至少一或多種萜烯及/或其前體的步驟。
在一個實施例中,一或多種萜烯及/或其前體係選自甲羥戊酸、IPP、二甲基烯丙基焦磷酸(DMAPP)、異戊二烯、香葉基焦磷酸(GPP)、法呢基焦磷酸(FPP)及法呢烯。
代替直接自萜類關鍵中間物IPP及DMAPP生產異戊二烯,隨後用其合成長鏈萜烯,亦可直接經由香葉基轉移酶合成長鏈萜烯,諸如C10單萜類或C15倍半萜類(參見表6)。自C15倍半萜類結構單元法呢基-PP可生產法呢烯,其與乙醇類似,可用作運輸燃料。
在一個實施例中,該方法包含以下步驟: (a)     將包含CO之受質提供至含有本揭示案之一或多種微生物之培養物的生物反應器中;及 (b) 厭氧醱酵生物反應器中之培養物以生產至少一或多種萜烯及/或其前體。
在一個實施例中,該方法包含以下步驟: a)     捕獲由於工業製程產生的含CO氣體; b)     藉由含有本揭示案之一或多種微生物的培養物對含CO氣體進行厭氧醱酵以生產至少一或多種萜烯及/或其前體。
在本發明之一實施例中,藉由微生物醱酵之氣態受質為含有CO之氣態受質。氣態受質可為作為工業製程之副產物獲得或來自一些其他來源(諸如來自汽車排出之煙)的含CO廢氣。在某些實施例中,工業製程選自由以下組成之群組:鐵類金屬產品製造(諸如軋鋼廠)、非鐵產品製造、石油精煉過程、煤炭氣化、電力生產、炭黑生產、氨生產、甲醇生產及焦炭製造。在此等實施例中,含CO氣體可在其排放至大氣中之前使用任何便利方法自工業製程捕獲。CO可為合成氣(包含一氧化碳及氫氣之氣體)之組分。自工業製程產生之CO通常燃燒以產生CO 2,且因此本揭示案在減少CO 2溫室氣體排放及生產用作生物燃料之萜烯方面具有特定效用。取決於含CO氣態受質之組成,亦可能需要在將其引入醱酵之前對其進行處理以移除任何非所需雜質,諸如粉塵顆粒。舉例而言,可使用已知方法過濾或洗滌氣態受質。
應瞭解,為了使細菌之生長及CO至至少一或多種萜烯及/或其前體發生,除了含CO之受質氣體之外,需要將適合的液體培養基進料至生物反應器中。受質及培養基可以連續、分批或分批進料方式饋入生物反應器中。培養基將含有足以准許所用微生物生長之維生素及礦物質。適用於使用CO醱酵以生產萜烯及/或其前體之厭氧培養基為此項技術中已知的。舉例而言,合適的培養基描述為Biebel(2001)。在本揭示案之一個實施例中,培養基如下文實例部分中所描述。
醱酵應理想地在適當的條件下進行,以使CO至至少一或多種萜烯及/或其前體醱酵發生。應考慮之反應條件包括壓力、溫度、氣體流速、液體流速、培養基pH、培養基氧化還原電位、攪拌速率(若使用連續攪拌槽反應器)、接種物水準、確保液相中之CO不會變成限制性之最大氣體受質濃度及避免產物抑制之最大產物濃度。
另外,常常需要增加受質流之CO濃度(或氣態受質中之CO分壓),且因此提高CO為受質之醱酵反應之效率。在增加之壓力下操作允許CO自氣相轉移至液相之速率顯著增加,其中其可由微生物吸收作為碳源以生產至少一或多種萜烯及/或其前體。此又意謂當生物反應器維持在高壓而非大氣壓力下時,滯留時間(定義為生物反應器中之液體體積除以輸入氣體流動速率)可減少。最佳反應條件將部分地取決於所使用之本揭示案之特定微生物。然而,一般而言,較佳的為在高於環境壓力之壓力下進行醱酵。此外,因為既定CO至至少一或多種萜烯及/或其前體的轉化率部分為受質滯留時間之函數,且實現所需滯留時間又決定了生物反應器之所需體積,所以使用加壓系統可大大減小所需生物反應器之體積,且因此降低醱酵設備之資金成本。根據美國專利第5,593,886號中給出之實例,反應器體積可與反應器操作壓力之增加成線性比例地減小,亦即在10個大氣壓下操作之生物反應器僅需要為在1個大氣壓下操作之彼等生物反應器之體積的十分之一。
藉助於實例,已描述在高壓下進行氣體至乙醇醱酵之益處。舉例而言,WO 02/08438描述在30 psig及75 psig之壓力下進行的氣體至乙醇醱酵,分別得到150 g/l/天及369 g/l/天之乙醇產率。然而,發現在大氣壓下使用類似培養基及輸入氣體組合物進行之實例醱酵每天每公升產生少10倍與20倍之間的乙醇。
亦需要引入含CO之氣態受質之速率應確保液相中CO之濃度不變成限制性的。此係因為CO受限條件之結果可為一或多種產物由培養物消耗。
用於饋入醱酵反應之氣流之組成可對該反應之效率及/或成本具有顯著影響。舉例而言,O 2可降低厭氧醱酵過程之效率。在醱酵過程的階段中,在醱酵之前或之後對不需要的或不必要的氣體進行處理會增加此類階段之負擔(例如當氣流在進入生物反應器之前被壓縮時,不必要的能量可能用於壓縮醱酵中不需要的氣體)。因此,可能需要處理受質流,尤其衍生自工業來源之受質流,以移除非所需組分且增加所需組分之濃度。
在某些實施例中,本揭示案之細菌之培養物維持於水性培養基中。較佳地,水性培養基為基本厭氧微生物生長培養基。合適的培養基為此項技術中已知的且描述於例如美國專利第5,173,429號及第5,593,886號以及WO 02/08438中,且如下文實例部分中所描述。
萜烯及/或其前體或含有一或多種萜烯、其前體及/或一或多種其他產物之混合流可藉由此項技術中已知的方法自醱酵液回收,該等方法諸如分餾或蒸發、滲透蒸發、氣體汽提及萃取醱酵,包括例如液-液萃取。
在本揭示案之某些較佳實施例中,一或多種萜烯及/或其前體及一或多種產物係藉由以下步驟自醱酵液回收:自生物反應器連續移出培養液之一部分,自該培養液分離微生物細胞(宜藉由過濾進行),及自該培養液回收一或多種產物。醇可適宜地例如藉由蒸餾回收。丙酮可例如藉由蒸餾回收。所產生之任何酸可例如藉由吸附於活性炭上來回收。所分離微生物細胞較佳地返回至醱酵生物反應器。在移除任何醇及酸之後剩餘之不含細胞之滲透物亦較佳地返回至醱酵生物反應器中。可將額外營養物(諸如B維生素)添加至不含細胞之滲透物中以在滲透物返回至生物反應器之前補充營養培養基。
此外,若如上文所描述調節培養液之pH以增強乙酸對活性炭之吸附,則在返回至生物反應器之前,應將pH重新調節至與醱酵生物反應器中之培養液之pH類似的pH。 用於異戊烯醇/異戊二烯醇途徑之酶(表3):
途徑圖中酶名稱之縮寫 全名 # 基因 E.C.編號 實例
生物體(基因體寄存編號) 基因名稱 基因座標籤
KAT1(硫解酶) 3-酮醯基-CoA硫解酶 (亦稱乙醯基-CoA C-乙醯轉移酶) 1 2.3.1.16或2.3.1.9 丙酮丁醇梭菌(NC_003030.1) thl CA_C2873
CtfAB CoA轉移酶 2 2.8.3.9 丙酮丁醇梭菌 (NC_003030.1) ctfA,ctfB CA_P0163 CA_P0164
HMGCOAS 3-羥甲基戊二醯-CoA合成酶 1 2.3.3.10 糞腸球菌(AF290092.1) 釀酒酵母 (NC_001145.3) mvaShmgS YML126C(用於釀酒酵母hmgS)
MGCH 甲基戊二醯-CoA水合酶 1 4.2.1.18 惡臭假單胞菌(NC_002947.4) liuC PP_4066
MCCC 3-甲基巴豆醯-CoA羧化酶 2 6.4.1.4 銅綠假單胞菌(AE004091.2) liuB, liuD PA2014 PA2012
ACOAR 醯基-CoA還原酶 1 1.2.1.10 拜氏梭菌(AF157306.2) cbjALD   
ADH 醇去氫酶 1 1.1.1.2 大腸桿菌(NC_000913.3) yahK b0325
Ptb-buk 磷酸轉丁醯酶-丁酸激酶 2 2.3.1.19 2.7.2.7 丙酮丁醇梭菌(NC_003030.1) ptb,buk CA_C3076 CA_C3075
ADC 乙醯乙酸去羧酶 1 4.1.1.4 丙酮丁醇梭菌(AE001438.3) adc CA_P0165
HIVS 羥基異戊酸合成酶 1 2.3.3.10 金黃色葡萄球菌(BAU36102.1) mvaS (BAU36102.1為單基因記錄)
3HBZCT 羥基異戊酸硫酯酶    1 (或2) 3.1.2.2 大腸桿菌(NC_000913.3) yciA b1253
HPHL 羥基異戊基-CoA水解酶 1 4.2.1.17 大腸桿菌(NC_000913.3) fadB b3846
HMGCOARx 羥甲基戊二醯-CoA還原酶 1 1.1.1.88 梅瓦隆假單胞菌(M24015.1) mvaA (M24015.1為單基因記錄)
MK 甲羥戊酸激酶 1 2.7.1.36 釀酒酵母(NC_001145.3) Erg12 YMR208W
DMD 二磷酸甲羥戊酸去羧酶 1 4.1.1.33 釀酒酵母(AY693152.1) Mvd1 YNR043W
PMK 磷酸甲羥戊酸激酶 1 2.7.4.2 釀酒酵母(NC_001145.3) Erg8 YMR220W
IDI 異戊烯基二磷酸異構酶 1 5.3.3.2 大腸桿菌(NC_000913.3) idi b2889
DMPPK 二甲基烯丙基二磷酸激酶(亦稱異戊烯基二磷酸激酶(IPK)) 1 2.7.4.26 詹氏甲烷球菌(NC_000909.1) ipkA MJ0044
DMPK 二甲基烯丙基磷酸激酶               
PMVD 磷酸甲羥戊酸去羧酶 1 4.1.1.99 沃氏嗜鹽富饒菌(CP001956.1) mvaD HVO_1412
DMP酶 磷酸酶 1 3.1.3.- 大腸桿菌(NC_000913.3) aphA b4055
實例
現將參考以下非限制性實例更詳細地描述本揭示案。 實例1 - 在自產乙醇梭菌中表現異戊二烯合成酶以自CO生產異戊二烯
本發明人已在諸如自產乙醇梭菌及揚氏梭菌之一氧化碳營養型產乙酸菌中鑑別出萜烯生物合成基因重組生物體經工程改造以生產異戊二烯。一些植物諸如楊樹會自然釋放異戊二烯,以保護其葉子免受UV輻射。楊樹之異戊二烯合成酶(EC 4.2.3.27)基因經密碼子最佳化且引入一氧化碳營養型產乙酸菌自產乙醇梭菌中,以自CO生產異戊二烯。該酶將萜類生物合成之關鍵中間物DMAPP(二甲基烯丙基二磷酸)以不可逆反應轉化為異戊二烯(圖1)。 菌株及生長條件:
所有次選殖步驟均在大腸桿菌中使用標準菌株及生長調節進行,如前所述(Sambrook等人, 《分子選殖:實驗室手冊(Molecular Cloning: A laboratory Manual)》, Cold Spring Harbour Laboratory Press, Cold Spring Harbour, 1989;Ausubel等人, 《分子生物學現代方法(Current protocols in molecular biology)》, John Wiley & Sons, Ltd., Hoboken, 1987)。
自產乙醇梭菌DSM10061及DSM23693(DSM10061之衍生物)係獲自DSMZ(德國微生物及細胞培養物保藏中心,Inhoffenstraße 7 B, 38124 Braunschweig, Germany)。使用嚴格的厭氧條件及技術在37℃下進行生長(Hungate, 1969, 《微生物學方法(Methods in Microbiology)》, 第3B卷.Academic Press, New York: 117-132;Wolfe, 1971, 《微生物生理學進展( Adv. Microb.Physiol.)》, 6: 107-146)。使用無酵母提取物之化學成分確定的PETC培養基(表1)及含有30 psi一氧化碳之軋鋼廠廢氣(收集自新西蘭Glenbrook之新西蘭鋼鐵廠;組成:44% CO、32% N 2、22% CO 2、2% H 2)作為唯一的碳及能量來源。 表1
培養基組分 1.0 L 培養基之濃度
NH 4Cl 1 g
KCl 0.1 g
MgSO 4.7H 2O 0.2 g
NaCl 0.8 g
KH 2PO 4 0.1 g
CaCl 2 0.02 g
痕量金屬溶液 10 ml
沃爾夫氏維生素溶液 10 ml
刃天青(2 g/L儲備液) 0.5 ml
NaHCO 3 2 g
還原劑 0.006-0.008 % (v/v)
蒸餾水 補足至1 L,pH 5.5(用HCl調節)
沃爾夫氏維生素溶液 每升儲備液
生物素 2 mg
葉酸 2 mg
鹽酸吡哆醇 10 mg
核黃素 5 mg
菸鹼酸 5 mg
D-(+)-泛酸鈣 5 mg
維生素B 12 0.1 mg
對胺基苯甲酸 5 mg
硫辛酸 5 mg
硫胺素 5 mg
蒸餾水 補足至1 L
痕量金屬溶液 每升儲備液
氮基三乙酸 2 g
MnSO 4.H 2O 1 g
Fe (SO 4) 2(NH 4) 2.6H 2O 0.8 g
CoCl 2.6H 2O 0.2 g
ZnSO 4.7H 2O 0.2 mg
CuCl 2.2H 2O 0.02 g
NaMoO 4.2H 2O 0.02 g
Na 2SeO 3 0.02 g
NiCl 2.6H 2O 0.02 g
Na 2WO 4.2H 2O 0.02 g
蒸餾水 補足至1 L
還原劑儲備液 100 Ml 儲備液
NaOH 0.9 g
半胱胺酸鹽酸鹽 4 g
Na 2S 4 g
蒸餾水 補足至100 mL
表現質體之構築:
在本揭示案中使用標準重組DNA及分子選殖技術(Sambrook J, Fritsch EF, Maniatis T: 《分子選殖:實驗室手冊》, Cold Spring Harbour Laboratory Press, Cold Spring Harbour, 1989;Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K: 《分子生物學現代方法》John Wiley & Sons, Ltd., Hoboken, 1987)。美洲山楊之異戊二烯合成酶(AAQ16588.1;GI:33358229)經密碼子最佳化(SEQ ID NO: 21)且合成。使用自產乙醇梭菌之丙酮酸:鐵氧化還原蛋白氧化還原酶的啟動子區(SEQ ID NO: 22)來表現該基因。
使用Bertram及Dürre (1989)之改良方法分離自產乙醇梭菌DSM23693之基因體DNA。收穫100 ml隔夜培養物(6,000 × g,15 min,4℃),用磷酸鉀緩衝液(10 mM,pH 7.5)洗滌且懸浮於1.9 ml STE緩衝液(50 mM Tris-HCl,1 mM EDTA,200 mM蔗糖;pH 8.0)中。添加300 µl溶菌酶(~100,000 U)且將混合物在37℃下培育30分鐘,接著添加280 µl 10 % (w/v) SDS且再培育10分鐘。在室溫下,藉由添加240 µl EDTA溶液(0.5 M,pH 8)、20 µl Tris-HCl(1 M,pH 7.5)及10 µl RNase A(Fermentas Life Sciences)消化RNA。隨後,添加100 µl 蛋白酶K(0.5 U)且在37℃下進行蛋白水解1-3小時。最後,添加600 µl過氯酸鈉(5 M),接著進行苯酚-氯仿萃取及異丙醇沈澱。以分光光度法檢查DNA數量及品質。丙酮酸:鐵氧化還原蛋白氧化還原酶啟動子序列係使用寡核苷酸Ppfor-NotI-F(SEQ ID NO: 23:AAGCGGCCGCAAAATAGTTGATAATAATGC)及Ppfor-NdeI-R(SEQ ID NO: 24:TACGCATATGAATTCCTCTCCTTTTCAAGC)使用iProof高保真DNA聚合酶(Bio-Rad Laboratories)及以下程式藉由PCR擴增:在98℃下初始變性30秒,接著為32個循環的變性(98℃持續10秒)、黏合(50-62℃持續30-120秒)及延伸(72℃持續30-90秒),隨後為最終延伸步驟(72℃持續10分鐘)。 異戊二烯合成酶表現質體之構築:
在大腸桿菌DH5α-T1 R(Invitrogen)及XL1-Blue MRF' Kan(Stratagene)中進行表現質體之構築。在第一步驟中,使用 NotI及 NdeI限制位點將擴增的P pfor啟動子區選殖至大腸桿菌-梭菌穿梭載體pMTL85141(FJ797651.1;Nigel Minton, University of Nottingham;Heap等人, 2009)中,產生質體pMTL85146。作為第二步驟,使用限制位點 NdeIEcoRIispS選殖至pMTL85146中,產生質體pMTL 85146-ispS(圖2,SEQ ID NO: 25)。 自產乙醇梭菌中之轉型及表現
在轉型之前,如美國專利2011/0236941中所述,使用由自產乙醇梭菌、拉氏梭菌及揚氏梭菌之甲基轉移酶基因設計之甲基化質體(SEQ ID NO: 64)上共表現的合成雜合II型甲基轉移酶(SEQ ID NO: 63)在大腸桿菌中對DNA進行活體內甲基化。
表現質體及甲基化質體均轉型至限制性陰性大腸桿菌XL1-Blue MRF' Kan(Stratagene)之相同細胞中,此可能歸因於其相容性革蘭氏(-)複製起點(表現質體中之高複本ColE1及甲基化質體中之低複本p15A)。藉由添加1 mM IPTG誘導活體內甲基化,且使用QIAGEN Plasmid Midi Kit(QIAGEN)分離甲基化質體。所得混合物用於自產乙醇梭菌DSM23693之轉型實驗,但僅豐富的(高複本)表現質體具有革蘭氏(+)複製起點( repL),允許其在梭菌綱中複製。 轉型至自產乙醇梭菌中:
在完全轉型實驗期間,自產乙醇梭菌DSM23693在補充有1 g/L酵母提取物及10 g/L果糖以及30 psi軋鋼廠廢氣(收集自新西蘭Glenbrook之新西蘭鋼鐵廠;組成:44% CO、32% N 2、22% CO 2、2% H 2)作為碳源之PETC培養基(表1)中生長。
為了製備勝任細胞,將50 ml自產乙醇梭菌DSM23693培養物繼代培養至新鮮培養基中連續3天。此等細胞用於接種含有40 mM DL-蘇胺酸之50 ml PETC培養基,OD 600nm為0.05。當培養物之OD 600nm達到0.4時,將細胞轉移至厭氧室中且在4,700 × g及4℃下收穫。培養物用冰冷的電穿孔緩衝液(270 mM蔗糖、1 mM MgCl 2、7 mM磷酸鈉,pH 7.4)洗滌兩次,且最後懸浮於600 µl體積之新鮮電穿孔緩衝液中。將此混合物轉移至電極間隙為0.4 cm、含有1 µg甲基化質體混合物之預冷的電穿孔光析槽中,且立即使用Gene pulser Xcell電穿孔系統(Bio-Rad)進行脈衝,設置如下:2.5 kV、600Ω及25 μF。實現3.7-4.0 ms之時間常數。將培養物轉移至5 ml新鮮培養基中。使用配備有試管支架之Spectronic Helios Epsilon分光光度計(Thermo)在600 nm之波長下監測細胞的再生。在生物質最初下降後,細胞再次開始生長。一旦生物質自該點翻倍,則收穫細胞,將其懸浮於200 μl新鮮培養基中且接種在具有適當抗生素4 μg/ml克拉黴素或15 μg/ml甲碸黴素之選擇性PETC盤(含有1.2 % Bacto™瓊脂(BD))上。在37℃下用30 psi軋鋼廠氣體接種4-5天後,可見菌落。
菌落用於接種2 ml具有抗生素之PETC培養基。當發生生長時,將培養物按比例擴大至5 ml及後來的50 ml體積,其中30 psi軋鋼廠氣體作為唯一的碳源。 確認成功轉型:
為了驗證DNA轉移,使用Zyppy質體微型製備套組(Zymo)由10 ml培養體積進行質體微型製備。由於梭菌外切核酸酶活性導致分離質體之品質不足以進行限制性消化[Burchhardt及Dürre, 1990],因此用分離質體與寡核苷酸對colE1-F(SEQ ID NO: 65:CGTCAGACCCCGTAGAAA)加colE1-R(SEQ ID NO: 66:CTCTCCTGTTCCGACCCT)進行PCR。使用iNtRON Maximise Premix PCR kit(Intron Bio Technologies)進行PCR,條件如下:在94℃下初始變性2分鐘,接著為35個循環的變性(94℃持續20秒)、黏合(55℃持續20秒)及延伸(72℃持續60秒),隨後為最終延伸步驟(72℃持續5分鐘)。
為了確認純系之身分,自50 ml自產乙醇梭菌DSM23693培養物中分離基因體DNA(參見上文)。使用寡核苷酸fD1(SEQ ID NO: 67:ccgaattcgtcgacaacAGAGTTTGATCCTGGCTCAG)及rP2 (SEQ ID NO: 68:cccgggatccaagcttACGGCTACCTTGTTACGACTT)[Weisberg等人, 1991]及iNtRON Maximise Premix PCR套組(Intron Bio Technologies)對16s rRNA基因進行PCR,條件如下:在94℃下初始變性2分鐘,接著為35個循環之變性(94℃持續20秒)、黏合(55℃持續20秒)及延伸(72℃持續60秒),隨後為最終延伸步驟(72℃持續5分鐘)。定序結果與自產乙醇梭菌(Y18178,GI:7271109)之16s rRNA基因( rrsA)至少99.9%一致。 異戊二烯合成酶基因之表現
進行qRT-PCR實驗以確認引入的異戊二烯合成酶基因在自產乙醇梭菌中成功表現。
攜帶異戊二烯合成酶質體pMTL 85146-ispS之培養物及無質體之對照培養物在50 mL血清瓶及PETC培養基(表1)中生長,以30 psi軋鋼廠廢氣(收集自新西蘭Glenbrook之新西蘭鋼鐵廠;組成:44% CO、32% N 2、22% CO 2、2% H 2)作為唯一的能量及碳源。在對數生長期取0.8 mL樣品,OD 600nm為約0.5,且與1.6 mL RNA保護試劑(Qiagen)混合。將混合物離心(6,000 × g,5 min,4℃),將細胞沈澱物在液氮中速凍且儲存於-80℃下,直至RNA提取。使用RNeasy Mini Kit(Qiagen)根據手冊之方案5分離總RNA。藉由使混合物通過注射器10次進行細胞破壞,且在50 µL無RNase/DNase的水中溶離。使用DNA-free™套組(Ambion)進行DNase I處理後,接著使用SuperScript III反轉錄酶套組(Invitrogen, Carlsbad, CA, USA)進行反轉錄步驟。使用Agilent Bioanalyzer 2100(Agilent Technologies, Santa Clara, CA, USA)、Qubit螢光計(Invitrogen, Carlsbad, CA, USA)且藉由凝膠電泳檢查RNA。對每個寡核苷酸對進行非RT對照。所有qRT-PCR反應均使用MyiQ™單色偵測系統(Bio-Rad Laboratories, Carlsbad, CA, USA)一式兩份進行,總反應體積為15 µL,具有25 ng cDNA模板、67 nM各寡核苷酸(表2)及1x iQ™ SYBR® Green Supermix(Bio-Rad Laboratories, Carlsbad, CA, USA)。反應條件為95℃持續3分鐘,接著為95℃持續15秒、55℃持續15秒及72℃持續30秒的40個循環。為了偵測寡核苷酸二聚化或其他擴增假像,在qPCR(在1℃下58℃至95℃之38個循環)完成之後立即進行解鏈曲線分析。各cDNA樣品包括兩個管家基因(鳥苷酸激酶及甲酸四氫葉酸連接酶)用於標準化。使用相對表現軟體工具(REST ©) 2008 V2.0.7 (38)進行相對基因表現之測定。跨越4個對數單位之cDNA稀釋系列用於生成標準曲線及所得擴增效率以計算mRNA濃度。 表2:qRT-PCR之寡核苷酸
目標 寡核苷酸名稱 DNA序列(5`至3`) SEQ ID NO:
鳥苷酸激酶( gnk GnK-F TCAGGACCTTCTGGAACTGG 108
GnK-R ACCTCCCCTTTTCTTGGAGA 109
甲酸四氫葉酸連接酶(FoT4L) FoT4L-F CAGGTTTCGGTGCTGACCTA 110
FoT4L-F AACTCCGCCGTTGTATTTCA 111
   ispS-F AGG CTG AAT TTC TTA CAC TTC TTG A 69
異戊二烯合成酶 ispS-R GTA ACT CCA TCA AAT CCT CCA CTA C 70
雖然沒有觀察到野生型菌株使用寡核苷酸對ispS的擴增,但攜帶質體pMTL 85146-ispS之菌株量測到使用ispS寡核苷酸對的信號,證實ispS基因之成功表現。 實例2 - 表現異戊烯基二磷酸δ-異構酶以在關鍵萜烯前體DMAPP(二甲基烯丙基二磷酸)與IPP(異戊烯基二磷酸)之間進行轉化
前體DMAPP(二甲基烯丙基二磷酸)及IPP(異戊烯基二磷酸)之可用性及平衡對於萜烯的生產至關重要。雖然DXS途徑同樣合成IPP及DMAPP,但在甲羥戊酸途徑中,唯一的產物為IPP。生產異戊二烯僅需要前體DMAPP與異戊二烯合成酶一起存在,而為了生產高級萜烯及萜類,需要具有等量的IPP及DMAPP可用於藉由香葉基轉移酶生產香葉基-PP。 異戊烯基二磷酸δ-異構酶表現質體之構築:
來自拜氏梭菌之編碼異戊烯基二磷酸δ-異構酶(YP_001310174.1)之異戊烯基二磷酸δ-異構酶基因 idi(基因ID:5294264)選殖至 ispS下游。該基因係使用寡核苷酸 Idi-Cbei-SacI-F       (SEQ ID NO: 26:GTGAGCTCGAAAGGGGAAATTAAATG)及Idi-Cbei-KpnI-R(SEQ ID NO: 27:ATGGTACCCCAAATCTTTATTTAGACG)自使用與上文關於自產乙醇梭菌所述相同的方法獲得的拜氏梭菌NCIMB8052之基因體DNA擴增。使用 SacIKpnI限制位點將PCR產物選殖至載體pMTL 85146-ispS中,產生質體pMTL85146-ispS-idi(SEQ ID NO: 28)。使用限制酶 PmeI及 FseI將抗生素抗性標記自 catP交換至 ermB(自載體pMTL82254(FJ797646.1;Nigel Minton, University of Nottingham;Heap等人, 2009)釋放,形成質體pMTL85246-ispS-idi(圖3)。
在自產乙醇梭菌中之轉型及表現係如關於質體pMTL 85146-ispS所述進行。在成功轉型後,在50 mL 50 mL血清瓶及PETC培養基(表1)中進行生長實驗,以30 psi軋鋼廠廢氣(收集自新西蘭Glenbrook之新西蘭鋼鐵廠;組成:44% CO、32% N 2、22% CO 2、2% H 2)作為唯一的能量及碳源。為了確認已成功引入,如先前所述自轉型體進行質體微型製備DNA。使用靶向colE1(colE1-F:SEQ ID NO: 65:CGTCAGACCCCGTAGAAA及colE1-R:SEQ ID NO: 66:CTCTCCTGTTCCGACCCT)、ermB(ermB-F:SEQ ID NO: 106:TTTGTAATTAAGAAGGAG及ermB-R:SEQ ID NO: 107:GTAGAATCCTTCTTCAAC)及idi(Idi-Cbei-SacI-F:SEQ ID NO: 26:GTGAGCTCGAAAGGGGAAATTAAATG及Idi-Cbei-KpnI-R:SEQ ID NO: 27:ATGGTACCCCAAATCTTTATTTAGACG)之寡核苷酸對而對分離的質體進行的PCR確認轉型成功(圖8)。類似地,自此等轉型體中提取基因體DNA,且使用寡核苷酸fD1及rP2(參見上文)得到的16s rRNA擴增子證實與自產乙醇梭菌(Y18178,GI:7271109)之16S rRNA基因99.9%一致。
如上所述,使用針對異戊烯基二磷酸δ-異構酶基因 idi(idi-F,SEQ ID NO: 71:ATA CGT GCT GTA GTC ATC CAA GAT A及idiR,SEQ ID NO: 72:TCT TCA AGT TCA CAT GTA AAA CCC A)之寡核苷酸對及來自攜帶質體pMTL 85146-ispS-idi之自產乙醇梭菌之血清瓶生長實驗的樣品進行基因表現之成功確認。亦觀察到異戊二烯合成酶基因ispS之信號(圖14)。 實例3 - DXS途徑之過度表現
為了提高通過DXS途徑的流量,該途徑之基因經過度表現。該途徑之初始步驟係將丙酮酸及D-甘油醛-3-磷酸(G3P)轉化為去氧木酮糖5-磷酸(DXP/DXPS/DOXP),由去氧木酮糖5-磷酸合成酶(DXS)催化。 DXS過度表現表現質體之構築:
如上文關於其他基因所述,用寡核苷酸Dxs-SalI-F(SEQ ID NO: 29:GCAGTCGACTTTATTAAAGGGATAGATAA)及Dxs-XhoI-R(SEQ ID NO: 30:TGCTCGAGTTAAAATATATGACTTACCTCTG)自基因體DNA擴增自產乙醇梭菌之 dxs基因。隨後用 SalIXhoI將擴增對基因選殖至質體pMTL85246-ispS-idi中,產生質體pMTL85246-ispS-idi-dxs(SEQ ID NO: 31及圖4)。使用表3中給出之寡核苷酸進行DNA定序,證實 ispSididxs之成功選殖,沒有發生突變(圖5)。 ispSidi基因分別如實例1及2中所述。 表3:用於定序之寡核苷酸
寡核苷酸名稱 DNA序列(5`至3`) SEQ ID NO:
M13R CAGGAAACAGCTATGAC 32
異戊二烯-seq1 GTTATTCAAGCTACACCTTT 33
異戊二烯-seq2 GATTGGTAAAGAATTAGCTG 34
異戊二烯-seq3 TCAAGAAGCTAAGTGGCT 35
異戊二烯-seq4 CTCACCGTAAAGGAACA 36
異戊二烯-seq5 GCTAGCTAGAGAAATTAGAA 37
異戊二烯-seq6 GGAATGGCAAAATATCTTGA 38
異戊二烯-seq7 GAAACACATCAGGGAATATT 39
自產乙醇梭菌中之轉型及表現
在自產乙醇梭菌中之轉型及表現係如關於質體pMTL 85146-ispS所述進行。在成功轉型後,在50 mL 50 mL血清瓶及PETC培養基(表1)中進行生長實驗,以30 psi軋鋼廠廢氣(收集自新西蘭Glenbrook之新西蘭鋼鐵廠;組成:44% CO、32% N 2、22% CO 2、2% H 2)作為唯一的能量及碳源。如上文所述自在OD 600nm= 0.75時收集之樣品中進行基因表現的確認。寡核苷酸對dxs-F(SEQ ID NO: 73:ACAAAGTATCTAAGACAGGAGGTCA)及dxs-R(SEQ ID NO: 74:GATGTCCCACATCCCATATAAGTTT)用於量測基因 dxs在野生型菌株及攜帶質體pMTL 85146-ispS-idi-dxs之菌株中的表現。發現與野生型相比,攜帶質體之菌株中的mRNA水準增加超過3倍(圖15)。在提取RNA之前對生物質進行標準化。 實例4 - 甲羥戊酸途徑之引入及表現
甲羥戊酸途徑(圖7)之第一步驟由硫解酶催化,該酶將兩分子乙醯基-CoA轉化為乙醯乙醯基-CoA(及HS-CoA)。此酶已由同一發明人在一氧化碳營養型產乙酸菌自產乙醇梭菌及揚氏梭菌中成功表現(美國專利2011/0236941)。已設計甲羥戊酸途徑之其餘基因的構築體。 甲羥戊酸表現質體之構築:
使用標準重組DNA及分子選殖技術(Sambrook, J.及Russell, D., 《分子選殖:實驗室手冊第3版》, Cold Spring Harbour Lab Press, Cold Spring Harbour, NY, 2001)。經由甲羥戊酸途徑之上部合成甲羥戊酸所需的三個基因,亦即硫解酶(thlA/vraB)、HMG-CoA合成酶(HMGS)及HMG-CoA還原酶(HMGR)經密碼子最佳化為操縱子(P ptaack-thlA/vraB-HMGS-P atp-HMGR)。
自產乙醇梭菌之磷酸轉乙醯酶/乙酸激酶操縱子啟動子(P pta-ack)(SEQ ID NO: 61)用於表現硫解酶及HMG-CoA合成酶,而自產乙醇梭菌之ATP合成酶的啟動子區(P atp)用於表現HMG-CoA還原酶。硫解酶之兩種變異體,即來自丙酮丁醇梭菌之 thlA及來自金黃色葡萄球菌之 vraB,經合成且側接 NdeI及 EcoRI限制位點用於進一步次選殖。HMG-CoA合成酶(HMGS)及HMG-CoA還原酶(HMGR)均自金黃色葡萄球菌合成且分別側接 EcoRI- SacIKpnI- XbaI限制位點用於進一步次選殖。所有使用的最佳化DNA序列在表4中給出。 表4:甲羥戊酸表現質體之序列
描述 來源 SEQ ID NO:
硫解酶( thlA 丙酮丁醇梭菌ATCC 824; NC_003030.1; GI: 1119056 40
乙醯基-CoA c-乙醯轉移酶(vraB) 金黃色葡萄球菌金黃亞種Mu50; NC_002758.2;區:652965..654104;包括GI: 15923566 41
3-羥基-3-甲基戊二醯基-CoA合成酶(HMGS) 金黃色葡萄球菌金黃亞種Mu50;NC_002758.2;區:2689180..2690346;包括GI: 15925536 42
羥甲基戊二醯基-CoA還原酶(HMGR) 金黃色葡萄球菌金黃亞種Mu50;NC_002758.2;區:互補序列(2687648..2688925);包括GI: 15925535 43
磷酸轉乙醯酶-乙酸激酶操縱子(P pta-ack 自產乙醇梭菌DSM10061 44
ATP合成酶啟動子( P atp 自產乙醇梭菌DSM10061 45
使用寡核苷酸pUC57-F(SEQ ID NO: 46:AGCAGATTGTACTGAGAGTGC)及pUC57-R(SEQ ID NO: 47:ACAGCTATGACCATGATTACG)及pUC57- Patp-HMGR作為模板擴增ATP合成酶啟動子(P atp )以及羥甲基戊二醯基-CoA還原酶(HMGR)。2033 bp擴增片段用SacI及XbaI消化且連接至大腸桿菌-梭菌穿梭載體pMTL 82151(FJ7976;Nigel Minton, University of Nottingham, UK;Heap等人, 2009, 《微生物學方法雜誌( J Microbiol Methods.)》78: 79-85),產生質體pMTL 82151-Patp-HMGR(SEQ ID NO: 76)。
使用寡核苷酸EcoRI-HMGS_F(SEQ ID NO: 77:AGCCGTGAATTCGAGGCTTTTACTAAAAACA)及EcoRI-HMGS_R(SEQ ID NO: 78:AGGCGTCTAGATGTTCGTCTCTACAAATAATT)自密碼子合成的質體pGH-seq3.2擴增3-羥基-3-甲基戊二醯基-CoA合成酶(HMGS)。1391 bp擴增片段用SacI及EcoRI消化且連接至先前形成的質體pMTL 82151-Patp-HMGR,得到pMTL 82151-HMGS-Patp-HMGR(SEQ ID NO: 79)。產生的質體pMTL 82151-HMGS-Patp-HMGR(SEQ ID NO: 79)及P ptaack-thlA/vraB之1768 bp密碼子最佳化操縱子均用 NotI及 EcoRI切割。進行連接且隨後轉型至大腸桿菌XL1-Blue MRF' Kan中,得到質體pMTL8215- P ptaack-thlA/vraB-HMGS-P atp-HMGR(SEQ ID NO: 50)。
經由甲羥戊酸途徑之底部由甲羥戊酸合成萜類關鍵中間物所需的五個基因,亦即甲羥戊酸激酶(MK)、磷酸甲羥戊酸激酶(PMK)、甲羥戊酸二磷酸去羧酶(PMD)、異戊烯基二磷酸δ-異構酶(idi)及異戊二烯合成酶(ispS)由ATG:Biosynthetics GmbH(德國梅爾茨豪森)進行密碼子最佳化。甲羥戊酸激酶(MK)、磷酸甲羥戊酸激酶(PMK)及甲羥戊酸二磷酸去羧酶(PMD)係獲自金黃色葡萄球菌。
自產乙醇梭菌之RNF複合體(P rnf)的啟動子區(SEQ ID NO: 62)用於表現甲羥戊酸激酶(MK)、磷酸甲羥戊酸激酶(PMK)及甲羥戊酸二磷酸去羧酶(PMD),而自產乙醇梭菌之丙酮酸:鐵氧化還原蛋白氧化還原酶(P for)的啟動子區(SEQ ID NO: 22)用於表現異戊烯基二磷酸δ-異構酶(idi)及異戊二烯合成酶(ispS)。使用的所有DNA序列在表5中給出。經密碼子最佳化之Prnf-MK係自合成的質體pGH- Prnf-MK-PMK-PMD用寡核苷酸NotI-XbaI-Prnf-MK_F(SEQ ID NO: 80:ATGCGCGGCCGCTAGGTCTAGAATATCGATACAGATAAAAAAATATATAATACAG)及SalI-Prnf-MK_R(SEQ ID NO: 81:TGGTTCTGTAACAGCGTATTCACCTGC)擴增。隨後用NotI及SalI將擴增的基因選殖至質體pMTL83145(SEQ ID NO: 49)中,產生質體pMTL8314-Prnf-MK(SEQ ID NO: 82)。此所得質體及2165 bp密碼子最佳化片段PMK-PMD隨後用SalI及HindIII消化。進行連接,得到質體pMTL 8314-Prnf-MK-PMK-PMD(SEQ ID NO: 83)。
無甲羥戊酸途徑之異戊二烯表現質體係藉由將側接限制位點AgeI及NheI之異戊二烯合成酶(ispS)連接至先前形成的法呢烯質體pMTL 8314-Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS(SEQ ID NO:91),產生質體pMTL8314-Prnf-MK-PMK-PMD-Pfor-idi-ispS(SEQ ID NO:84)而形成。最終異戊二烯表現質體pMTL 8314-Pptaack-thlA-HMGS-Patp-HMGR-Prnf-MK-PMK-PMD-Pfor-idi-ispS(SEQ ID NO:58,圖10)係藉由使用限制位點NotI及XbaI將pMTL8215- Pptaack-thlA-HMGS-Patp-HMGR(SEQ ID NO: 50)之4630 bp Pptaack-thlA-HMGS-Patp-HMGR片段與pMTL 8314-Prnf-MK-PMK-PMD-Pfor-idi-ispS(SEQ ID NO: 84)連接而成。 表5:甲羥戊酸途徑之異戊二烯表現質體序列
描述 來源 SEQ ID NO:
甲羥戊酸激酶(MK) 金黃色葡萄球菌金黃亞種Mu50; NC_002758.2;區:665080..665919;包括GI:15923580 51
磷酸甲羥戊酸激酶(PMK) 金黃色葡萄球菌金黃亞種Mu50; NC_002758.2;區:666920..667996;包括GI:15923582 52
甲羥戊酸二磷酸去羧酶(PMD) 金黃色葡萄球菌金黃亞種Mu50;NC_002758.2;區:665924..666907;包括GI:15923581 53
異戊二烯合成酶(isIS) 美洲山楊之異戊二烯合成酶(AAQ16588.1;GI:33358229) 21
異戊烯基二磷酸δ-異構酶(idi) 拜氏梭菌NCIMB 8052;YP_001310174.1;區:互補序列(3597793..3598308);包括GI:150017920 54
RNF複合體啟動子(P rnf 自產乙醇梭菌DSM10061 55
實例5 - 在自產乙醇梭菌中引入法呢烯合成酶以經由甲羥戊酸途徑自CO生產法呢烯
代替直接自萜類關鍵中間物IPP及DMAPP生產異戊二烯,隨後用其合成長鏈萜烯,亦可直接經由香葉基轉移酶合成長鏈萜烯,諸如C10單萜類或C15倍半萜類(參見表6)。自C15倍半萜類結構單元法呢基-PP可生產法呢烯,其與乙醇類似,可用作運輸燃料。 法呢烯表現質體之構築
經由甲羥戊酸途徑自IPP及DMAPP合成法呢烯所需的兩個基因,亦即香葉基轉移酶(ispA)及α-法呢烯合成酶(FS)經密碼子最佳化。香葉基轉移酶(ispA)係獲自大腸桿菌菌株K-12亞菌株MG1655,且α-法呢烯合成酶(FS)係獲自蘋果。使用的所有DNA序列在表6中給出。經由甲羥戊酸途徑idi_F(SEQ ID NO: 86:AGGCACTCGAGATGGCAGAGTATATAATAGCAGTAG)及idi_R2(SEQ ID NO:87:AGGCGCAAGCTTGGCGCACCGGTTTATTTAAATATCTTATTTTCAGC)自合成的質體pMTL83245-Pfor-FS-idi(SEQ ID NO: 85)擴增經密碼子最佳化之idi。隨後用XhoI及HindIII將擴增的基因選殖至質體pMTL83245-Pfor中,產生質體pMTL83245-Pfor-idi(SEQ ID NO: 88)。此所得質體及法呢烯合成酶(FS)之1754 bp密碼子最佳化片段隨後用HindIII及NheI消化。進行連接,得到質體pMTL83245-Pfor-idi-FS(SEQ ID NO: 89)。ispA及pMTL83245-Pfor-idi-FS之946 bp片段隨後用AgeI及HindIII消化且連接以產生所得質體pMTL83245-Pfor-idi-ispA-FS(SEQ ID NO: 90)。無上部甲羥戊酸途徑之法呢烯表現質體係藉由將pMTL83245-Pfor-idi-ispA-FS之2516 bp Pfor-idi-ispA-FS片段與pMTL 8314-Prnf-MK-PMK-PMD連接而成,產生質體pMTL 8314-Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS(SEQ ID NO: 91)。最終法呢烯表現質體pMTL83145-thlA-HMGS-Patp-HMGR-Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS(SEQ ID NO: 59及圖18)係藉由使用限制位點NotI及XbaI將pMTL8215- Pptaack-thlA-HMGS-Patp-HMGR(SEQ ID NO: 50)之4630 bp Pptaack-thlA-HMGS-Patp-HMGR片段與pMTL 8314-Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS(SEQ ID NO: 91)連接而成。 6 :甲羥戊酸途徑之法呢烯表現質體序列
描述 來源 SEQ ID NO:
香葉基轉移酶(ispA) 大腸桿菌菌株K-12亞菌株MG1655;NC_000913.2;區:互補序列(439426..440325);包括GI:16128406 56
α-法呢烯合成酶(FS) 蘋果; AY787633.1;GI:60418690 57
轉型至自產乙醇梭菌中
如實例1中所述在自產乙醇梭菌中進行轉型及表現。 確認轉型成功
藉由使用選擇性地擴增pMTL831xxx系列質體上之一部分革蘭氏陽性複製子及大部分cat基因的寡核苷酸repHF(SEQ ID NO: 92:AAGAAGGGCGTATATGAAAACTTGT)及catR(SEQ ID NO: 93:TTCGTTTACAAAACGGCAAATGTGA)進行菌落PCR來確認pMTL8314-Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS(SEQ ID NO: 59)之存在。產生1584 bp的條帶(圖16)。 下部甲羥戊酸途徑在自產乙醇梭菌中之表現
如上文實例1中所述確認下部甲羥戊酸路徑基因甲羥戊酸激酶(MK SEQ ID NO: 51)、磷酸甲羥戊酸激酶(PMK SEQ ID NO: 52)、甲羥戊酸二磷酸去羧酶(PMD SEQ ID NO: 53)、異戊基二磷酸δ-異構酶(idi;SEQ ID NO: 54)、香葉基轉移酶(ispA;SEQ ID NO: 56)及法呢烯合成酶(FS SEQ ID NO: 57)之表現。使用表7中列出之寡核苷酸。 表7:用於偵測質體pMTL8314Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS(SEQ ID NO: 91)攜帶之下部甲羥戊酸途徑中之基因表現道寡核苷酸清單
目標 寡核苷酸名稱 DNA序列(5'至3') SEQ ID NO:
甲羥戊酸激酶 MK-RTPCR-F GTGCTGGTAGAGGTGGTTCA 94
MK-RTPCR-R CCAAGTATGTGCTGCACCAG 95
磷酸甲羥戊酸激酶 PMK-RTPCR-F ATATCAGACCCACACGCAGC 96
PMK-RTPCR-R AATGCTTCATTGCTATGTCACATG 97
甲羥戊酸二磷酸去羧酶 PMD-RTPCR-F GCAGAAGCAAAAGGCAGCAAT 98
PMD-RTPCR-R TTGATCCAAGATTTGTAGCATGC 99
異戊基二磷酸δ-異構酶 idi-RTPCR-F GGACAAACACTTGTTGTAGTCACC 100
idi-RTPCR-R TCAAGTTCGCAAGTAAATCCCA 101
香葉基轉移酶 ispA-RTPCR-F ACCAGCAATGGATGATGACGATG 102
ispA-RTPCR-R AGTTTGTAAAGCGTCACCTGC 103
法呢烯合成酶 FS-RTPCR-F AAGCTAGTAGATGGTGGGCT 104
FS-RTPCR-R AATGCTACACCTACTGCGCA 105
確認下部甲羥戊酸途徑中所有基因表達之Rt-PCR資料顯示在圖18中,此資料亦概括於表8中。 表8:基因甲羥戊酸激酶(MK SEQ ID NO: 51)、磷酸甲羥戊酸激酶(PMK SEQ ID NO: 52)、甲羥戊酸二磷酸去羧酶(PMD SEQ ID NO: 53)、異戊基二磷酸δ-異構酶(idi SEQ ID NO: 54)、香葉基轉移酶(ispA SEQ ID NO: 56)及法呢烯合成酶(FS SEQ ID NO: 57)之平均CT值。 對於取自甲羥戊酸進料實驗之兩種起始培養物的兩個獨立樣品(參見下文)。
基因 樣品1(Ct平均值) 樣品2(Ct平均值)
MK 21.9 20.82
PMK 23.64 22.81
PMD 24 22.83
Idi 24.23 27.54
ispA 23.92 23.22
FS 21.28(單Ct) 21.95(單Ct)
HK (rho) 31.5 28.88
自甲羥戊酸生產 α- 法呢烯
在確認質體pMTL8314-Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS成功轉型後,在250 ml血清瓶中之50 ml PETC培養基(表1)中進行生長實驗,以30 psi軋鋼廠廢氣(收集自新西蘭Glenbrook之新西蘭鋼鐵廠;組成:44% CO、32% N 2、22% CO 2、2% H 2)作為唯一的能量及碳源。所有培養物均在37℃下在適合固定血清瓶之定軌震盪器上培育。轉型體首先生長至OD600為0.4,隨後繼代培養至補充有1 mM甲羥戊酸之新鮮培養基中。在同一時間自同一培養物中建立無甲羥戊酸酸之對照。在各時間點採集用於GC-MS(氣相層析-質譜分析)之樣品。圖17顯示2種對照培養物及2種進料1 mM甲羥戊酸之培養物的代表性生長曲線。在實驗開始後66小時及90小時採集的樣品中偵測到法呢烯(圖19-21)。 藉由氣相層析 - 質譜分析偵測 α- 法呢烯
對於α-法呢烯之GC-MS偵測,藉由添加2 ml己烷且在密封的玻璃巴氏管中劇烈震盪以混合來對5 ml培養物進行己烷提取。隨後將管在音波處理水浴中培育5分鐘以促進相分離。將400 µl己烷提取物轉移至GC瓶中且加載至自動加載器上。樣品在VARIAN GC3800 MS4000離子阱GC/MS(Varian Inc, CA, USA.Now Agilent Technologies)上進行分析,配備膜厚0.25 µm之EC-1000管柱(Grace Davidson, OR, USA)、Varian MS工作站(Varian Inc, Ca. Now Agilent Technologies, CA, USA)及NIST MS Search 2.0(Agilent Technologies, CA, USA)。進樣量為1 µl,氦氣載氣流動速率為1 ml/min。
已在本文中參考某些較佳實施例描述本揭示案,以便使讀者能夠在無不當實驗的情況下實踐本揭示案。然而,一般熟習此項技術者將容易地認識到,在不脫離本揭示案之範圍的情況下,許多組分及參數可一定程度上經改變或修改或經已知等效物取代。應瞭解,此類修改及等效物併入本文中,如同個別地闡述一般。提供名稱、標題或其類似物以增強讀者對本文件之理解且不應理解為限制本揭示案之範圍。
上文及下文所引用之所有申請案、專利及公開案(若存在)之全部揭示內容以引用的方式併入本文中。然而,參考本說明書中之任何申請案、專利及公開案不會且不應視為承認或以任何形式暗示其構成有效先前技術或形成世界上任何國家之公共常識的一部分。
在整個本說明書及隨後的任何申請專利範圍中,除非上下文另有要求,否則詞語「包含(comprise)」、「包含(comprising)」及其類似詞語應在包容的意義上而不是在排他的意義上解釋,亦即在「包括但不限於」的意義上解釋。
本文中所引用之所有參考文獻,包含公開案、專利申請案及專利均特此以引用之方式併入,該引用程度就如同個別且具體地指示各參考文獻以引用之方式併入且全文闡述於本文中一般。在本說明書中對任何先前技術之參考並非且不應視為承認先前技術形成任何國家所致力領域之公共常識的一部分。
除非本文中另外規定或明顯地與上下文相矛盾,否則在描述揭示內容之上下文中(尤其在以下申請專利範圍之上下文中)使用術語「一(a/an)」及「該(the)」及類似參考物解釋為涵蓋單數及複數兩者。除非另外指出,否則術語「包括」、「具有」、「包含」及「含有」應理解為開放性術語(亦即,意謂「包含但不限於」)。術語「基本上由……組成」將組成、製程或方法之範疇限制於指定材料或步驟,或實質上不影響該組成、製程或方法之基本及新穎特性的材料或步驟。使用替代物(例如「或」)應理解為意謂替代物之一者、兩者或其任何組合。如本文中所使用,除非另外規定,否則術語「約」意謂指定範疇、值或結構之±20%。
除非另外規定,否則本文中值範圍之敍述僅意欲充當個別提及屬於該範圍內之各獨立值的簡寫方法,且各獨立值併入至本說明書中,如同在本文中個別列舉一般。舉例而言,除非另外規定,否則任何濃度範圍、百分比範圍、比率範圍、整數範圍、大小範圍或厚度範圍將理解為包含所列舉範圍內之任何整數值,且適當時包含其分數(諸如,整數之十分之一及百分之一)。
除非本文中另外規定或另外明顯與上下文矛盾,否則本文中所描述之所有方法可以任何合適之次序執行。除非另外主張,否則使用本文中所提供之任何及所有實例或例示性語言(例如,「諸如」)僅意欲更好地闡明本揭示案,且不對本揭示案之範疇造成限制。本說明書中之語言均不應解釋為指示任何非主張之要素對於本揭示案之實踐為必不可少的。
本文中描述本揭示案之較佳實施例。在閱讀前文之描述時,彼等較佳實施例之變化對於一般熟習此項技術者可變得顯而易見。本發明者期望熟習此項技術者適當時採用此類變化,且本發明者意欲以不同於本文中特定描述之其他方式來實施本揭示案。相應地,本揭示案包含如適用法律准許之隨附於本文之申請專利範圍中所陳述之主題的所有修改及等效物。此外,除非本文中另外規定或另外明顯與上下文矛盾,否則本揭示案涵蓋上述要素在其所有可能變化中之任何組合。
本揭示案之此等及其他態樣,應視為在其所有新穎態樣中,將參考附圖自以下僅藉助於實例給出之描述而變得顯而易見。
圖1:生產萜烯之途徑圖,本申請案中所述之基因目標用粗箭頭突出顯示。
圖2:質體pMTL 85146-ispS之基因圖譜
圖3:質體pMTL 85246-ispS-idi之基因圖譜
圖4:質體pMTL 85246-ispS-idi-dxs之基因圖譜
圖5:質體pMTL 85246-ispS-idi-dxs之定序結果
圖6:經由DXS及甲羥戊酸途徑由CO生產萜烯之能量學比較
圖7:甲羥戊酸途徑
圖8:瓊脂糖凝膠電泳影像,證實自產乙醇梭菌轉型體中存在異戊二烯表現質體pMTL 85246-ispS-idi。泳道1及20顯示100 bp Plus DNA Ladder。泳道3-6、9-12、15-18顯示以來自4個不同純系之分離質體作為模板的PCR,各純系之順序如下:colE1、ermB及idi。泳道2、8及14顯示無模板作為陰性對照的PCR,各泳道之順序如下:colE1、ermB及idi。泳道7、13及19顯示以來自大腸桿菌之pMTL 85246-ispS-idi作為陽性對照的PCR,各泳道之順序如下:colE1、ermB及idi。
圖9:甲羥戊酸表現質體pMTL8215-Pptaack-thlA-HMGS-Patp-HMGR
圖10:異戊二烯表現質體pMTL 8314-Pptaack-thlA-HMGS-Patp-HMGR-Prnf-MK-PMK-PMD-Pfor-idi-ispS
圖11:法呢烯表現質體pMTL8314-Pptaack-thlA-HMGS-Patp-HMGR-Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS
圖12:質體pMTL 85246-ispS-idi-dxs之基因圖譜
圖13:攜帶質體pMTL 85146-ispS之自產乙醇梭菌基因表現實驗的擴增圖
圖14:攜帶質體pMTL 85246-ispS-idi之自產乙醇梭菌基因表現實驗的擴增圖
圖15:攜帶質體pMTL 85246-ispS-idi-dxs之自產乙醇梭菌基因表現實驗的擴增圖
圖16:PCR檢查質體pMTL8314Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS之存在。預期條帶大小1584 bp。DNA標記Fermentas 1kb DNA梯。
圖17:攜帶質體pMTL8314Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS之經轉型自產乙醇梭菌的生長曲線。
圖18:RT-PRC資料,顯示基因甲羥戊酸激酶(MK SEQ ID NO: 51)、磷酸甲羥戊酸激酶(PMK SEQ ID NO: 52)、甲羥戊酸二磷酸去羧酶(PMD SEQ ID NO: 53)、異戊基二磷酸δ-異構酶(idi SEQ ID NO: 54)、香葉基轉移酶(ispA SEQ ID NO: 56)及法呢烯合成酶(FS SEQ ID NO: 57)。
圖19:在攜帶pMTL8314Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS之1 mM甲羥戊酸加標培養物中存在法呢烯之GC-MS偵測及構形。GC-MS層析圖掃描出含有質量為93之離子的峰。層析圖1及2為經轉型之自產乙醇梭菌,3為與自產乙醇梭菌樣品同時運行的β-法呢烯標準品。4為在M9葡萄糖上生長的攜帶質體pMTL8314Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS之大腸桿菌,顯示α-法呢烯產生,且5為在大腸桿菌樣品時運行的β-法呢烯標準品。大腸桿菌與自產乙醇梭菌樣品之間滯留時間的差異歸因於儀器的微小變化。然而,在兩種情況下,β-法呢烯標準品與所產生的α-法呢烯之間滯留時間的差異完全相同,其與質譜之匹配一起證實自產乙醇梭菌中產生α-法呢烯。
圖20:圖19中標記1A及2A之峰的MS譜圖。MS譜圖與NIST資料庫譜圖(圖21)匹配,證實該峰為α-法呢烯。
圖21:來自NIST質譜資料庫之α-法呢烯的MS譜圖。
圖22:實際最大異戊二烯醇選擇性計算。
圖23:途徑1:類異戊二烯醇(IPA)途徑。
圖24:途徑2:IPA途徑 + Ptb-buk。
圖25:途徑3:經由丙酮之IPA途徑。
圖26:途徑4:經由丙酮之IPA途徑 + Ptb-buk。
圖27:途徑5:甲羥戊酸途徑。
圖28:途徑6:甲羥戊酸途徑 + IPP旁路。
圖29:途徑1-6之代謝物。
TW202309264A_111131509_SEQL.xml

Claims (27)

  1. 一種能夠自氣態受質生產產品的經基因工程改造之微生物,該微生物包含編碼一組外源酶之核酸,該組外源酶包含至少乙醯基-CoA合成酶及以下中之至少一者:  a)   編碼一組外源酶之核酸,該組外源酶包含i)酮基-醯基-CoA硫解酶(KAT1),ii) 3-羥基-3-甲基戊二醯基輔酶A(HMG-CoA)合成酶,iii)甲基戊二醯基-CoA水合酶(MGCH),iv) 3-甲基巴豆醯基-CoA羧化酶(MCCC),v)醯基-CoA還原酶(ACOAR),及vi)醇去氫酶(ADH); b)  編碼一組外源酶之核酸,該組外源酶包含i) KAT1,ii) HMG-CoA合成酶,iii) MGCH、MCCC,iv)磷酸轉丁醯酶丁酸激酶(Ptb-buk),v)乙醛-鐵氧化還原蛋白氧化還原酶(AOR),及vi)(ADH); c)   編碼一組外源酶之核酸,該組外源酶包含i) KAT1或PTAr及ACKr,ii) CoA轉移酶A/B(CtfAB),iii)乙醯乙酸去羧酶(ADC)或ADC及羥基異戊酸合成酶(HIVS),iv)羥基異戊酸硫酯酶(3HBZCT),v)羥基異戊基-CoA水解酶(HPHL),vi) ACOAR,及vii) ADH; d)  編碼一組外源酶之核酸,該組外源酶包含i) KAT1或PTAr及ACKr,ii) CoA轉移酶A/B(CtfAB),iii) ADC或ADC及HIVS,iv) 3HBZCT,v) HPHL,vi) Ptb-buk,vii) AOR及ADH; e)   編碼一組外源酶之核酸,該組外源酶包含i) KAT1,ii) HMG-CoA合成酶,iii) 3-羥基-3-甲基戊二醯基輔酶A(HMG-CoA)還原酶,iv)甲羥戊酸激酶(MK),v)磷酸甲羥戊酸激酶(PMK),vi)二磷酸甲羥戊酸去羧酶(DMD),vii)異戊烯基二磷酸異構酶(IDI),viii)二甲基烯丙基二磷酸激酶(DMPKK),及ix)二甲基烯丙基磷酸激酶(DMPK); f)   編碼一組外源酶之核酸,該組外源酶包含i) KAT1,ii) HMG-CoA合成酶,iii) 3-羥基-3-甲基戊二醯基輔酶A(HMG-CoA)還原酶,iv)甲羥戊酸激酶(MK),v)磷酸甲羥戊酸去羧酶(PMVD),vi)異戊烯基磷酸異構酶(IPI),及vii)異戊二烯基磷酸酶(DMPase); g)  編碼一組外源酶之核酸,該組外源酶包含i)硫解酶、醯基-CoA乙醯轉移酶或聚酮合成酶,ii) β-酮醯基-CoA還原酶或β-羥醯基-CoA去氫酶,iii) β-羥醯基-CoA去水酶,iv)反式-烯醯基-CoA還原酶或丁醯基-CoA去氫酶/電子轉移黃素蛋白AB(Bcd-EtfAB),v)形成醇的醯基-CoA還原酶或形成醛的醯基-CoA羧酸還原酶,vi)水解酶或ADH,及vii)醇去水酶;及 其中該微生物為固定C1之微生物且該產品為類異戊二烯醇。
  2. 如請求項1之微生物,其中該類異戊二烯醇為異戊烯醇。
  3. 如請求項2之微生物,其進一步包含編碼一組能夠將異戊烯醇轉化為異戊二烯醇之外源酶的核酸。
  4. 如請求項1之微生物,其進一步包含編碼一組能夠將異戊烯醇轉化為二甲基烯丙基焦磷酸(DMAPP)之酶的核酸。
  5. 如請求項3之微生物,其進一步包含編碼一組能夠將異戊二烯醇轉化為異戊烯基二磷酸(IPP)之外源酶的核酸。
  6. 如請求項4之微生物,其進一步包含編碼選自由異戊烯基二磷酸異構酶及香葉基轉移酶組成之群組之外源酶的核酸。
  7. 如請求項4之微生物,其進一步包含編碼外源酶異戊烯基二磷酸異構酶及香葉基轉移酶兩者的核酸。
  8. 如請求項7之微生物,其進一步包含編碼一組選自檸檬烯合成酶、蒎烯合成酶、法呢烯合成酶或其任何組合之外源酶的核酸。
  9. 如請求項4之微生物,其進一步包含編碼包含異戊二烯合成酶之外源酶的核酸。
  10. 如請求項1之微生物,其具有一氧化碳去氫酶。
  11. 如請求項1之微生物,其進一步包含對DXS途徑之破壞性突變。
  12. 如請求項11之微生物,其中該破壞性突變為基因剔除。
  13. 如請求項1之微生物,其中該等外源酶包含至少e)與a)、b)、c)、d)、f)及g)中之任一或多者串聯的組合。
  14. 如請求項1之微生物,其中該等編碼外源酶之核酸經密碼子最佳化。
  15. 如請求項1之微生物,其中該等編碼外源酶之核酸整合至該微生物之基因體中。
  16. 如請求項1之微生物,其中該等編碼外源酶之核酸摻入質體中。
  17. 如請求項1之微生物,其中該等編碼外源酶之核酸係藉由組成型啟動子調節。
  18. 一種用於生產類異戊二烯醇之方法,其藉由使用至少一種選自由一氧化碳及二氧化碳組成之群組之C1化合物作為碳源培養如請求項1之微生物,以使該微生物生產該類異戊二烯醇。
  19. 一種用於生產類異戊二烯醇、類異戊二烯醇衍生物或萜烯前體之方法,其藉由提供至少一種選自由一氧化碳及二氧化碳組成之群組之C1化合物與如請求項1之微生物接觸,以使該微生物由該C1化合物生產該類異戊二烯醇、類異戊二烯醇衍生物或萜烯前體。
  20. 如請求項18之方法,其中向該微生物提供包含氫氣之氣體。
  21. 如請求項18之方法,其中該類異戊二烯醇被回收。
  22. 如請求項19之方法,其中向該微生物提供包含氫氣之氣體。
  23. 如請求項19之方法,其中該萜烯前體被回收。
  24. 如請求項18之方法,其中該C1化合物衍生自選自由以下組成之群組的工業製程:鐵類金屬產品製造、非鐵產品製造、石油精煉、煤炭氣化、電力生產、炭黑生產、氨生產、甲醇生產及焦炭製造。
  25. 如請求項18之方法,其中該C1化合物為合成氣。
  26. 如請求項1之微生物,其中該微生物係選自由以下組成之群組:自產乙醇梭菌( Clostridium autoethanogenum)、揚氏梭菌( Clostridium ljungdahlii)、拉氏梭菌( Clostridium ragsdalei)、食一氧化碳梭菌( Clostridium carboxidivorans)、德雷克氏梭菌( Clostridium drakei)、糞味梭菌( Clostridium scatologenes)、醋酸梭菌( Clostridium aceticum)、蟻酸醋酸梭菌( Clostridium formicoaceticum)、大梭菌( Clostridium magnum)、鉤蟲貪銅菌( Cupriavidus necator)、熱醋酸穆爾氏菌( Moorella thermoacetica)、熱自養穆爾氏菌( Moorella thermautotrophica)及其任何組合。
  27. 如請求項1之微生物,其中該類異戊二烯醇轉化為選自由以下組成之群組的萜烯:萜類、維生素A、番茄紅素、角鯊烯、異戊二烯、蒎烯、橙花醇、檸檬醛、樟腦、薄荷醇、檸檬烯、橙花叔醇、法呢醇、法呢烯、植醇、胡蘿蔔素、沉香醇及其任何組合。
TW111131509A 2021-08-24 2022-08-22 用於生產類異戊二烯醇及衍生物之微生物醱酵 TW202309264A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163260534P 2021-08-24 2021-08-24
US63/260,534 2021-08-24

Publications (1)

Publication Number Publication Date
TW202309264A true TW202309264A (zh) 2023-03-01

Family

ID=85323377

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111131509A TW202309264A (zh) 2021-08-24 2022-08-22 用於生產類異戊二烯醇及衍生物之微生物醱酵

Country Status (8)

Country Link
US (1) US20230090600A1 (zh)
EP (1) EP4392564A1 (zh)
KR (1) KR20240046579A (zh)
CN (1) CN117836419A (zh)
AU (1) AU2022334334A1 (zh)
CA (1) CA3228407A1 (zh)
TW (1) TW202309264A (zh)
WO (1) WO2023028459A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2728285A1 (en) * 2008-03-03 2009-09-11 Joule Unlimited, Inc. Engineered co2 fixing microorganisms producing carbon-based products of interest
EP2516656B1 (en) * 2009-12-22 2014-06-04 Global Bioenergies Process for the production of isoprenol from mevalonate employing a diphosphomevalonate decarboxylase
CN104039844A (zh) * 2011-08-04 2014-09-10 丹尼斯科美国公司 利用乙酰乙酰辅酶a合酶产生异戊二烯、类异戊二烯前体和类异戊二烯
AU2012332996A1 (en) * 2011-10-07 2014-04-24 Danisco Us Inc. Utilization of phosphoketolase in the production of mevalonate, isoprenoid precursors, and isoprene
US9410164B2 (en) * 2011-10-11 2016-08-09 Metabolic Explorer Biosynthesis pathway for prenol in a recombinant microorganism

Also Published As

Publication number Publication date
WO2023028459A1 (en) 2023-03-02
CA3228407A1 (en) 2023-03-02
AU2022334334A1 (en) 2024-02-22
CN117836419A (zh) 2024-04-05
KR20240046579A (ko) 2024-04-09
EP4392564A1 (en) 2024-07-03
US20230090600A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
US11459589B2 (en) Microbial fermentation for the production of terpenes
US10316337B2 (en) Genetically engineered bacterium for the production of isobutylene
AU2011318676B2 (en) Production of butanol from carbon monoxide by a recombinant microorganism
US20230090600A1 (en) Microbial fermentation for the production of isoprenoid alcohols and derivatives
CN113840909A (zh) 从气态底物发酵生产2-苯乙醇
TWI811184B (zh) 包括產能醱酵路徑之經基因工程改造之細菌
TW202128984A (zh) 包括產能醱酵路徑之經基因工程改造之細菌
EA043734B1 (ru) Генетически сконструированная бактерия, содержащая энергогенерирующий ферментативный путь