TW202308833A - 加成製造中人工智慧反饋控制系統、方法及媒介 - Google Patents
加成製造中人工智慧反饋控制系統、方法及媒介 Download PDFInfo
- Publication number
- TW202308833A TW202308833A TW111133260A TW111133260A TW202308833A TW 202308833 A TW202308833 A TW 202308833A TW 111133260 A TW111133260 A TW 111133260A TW 111133260 A TW111133260 A TW 111133260A TW 202308833 A TW202308833 A TW 202308833A
- Authority
- TW
- Taiwan
- Prior art keywords
- sample
- image
- computing system
- property
- artificial intelligence
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/10—Formation of a green body
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/80—Data acquisition or data processing
- B22F10/85—Data acquisition or data processing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/90—Means for process control, e.g. cameras or sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/209—Heads; Nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
- B29C64/393—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/29—Graphical models, e.g. Bayesian networks
- G06F18/295—Markov models or related models, e.g. semi-Markov models; Markov random fields; Networks embedding Markov models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/64—Three-dimensional objects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2203/00—Controlling
- B22F2203/03—Controlling for feed-back
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/8422—Investigating thin films, e.g. matrix isolation method
- G01N2021/8438—Mutilayers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8883—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges involving the calculation of gauges, generating models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/047—Probabilistic or stochastic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/01—Probabilistic graphical models, e.g. probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/06—Recognition of objects for industrial automation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/12—Acquisition of 3D measurements of objects
- G06V2201/121—Acquisition of 3D measurements of objects using special illumination
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Multimedia (AREA)
- Medical Informatics (AREA)
- Mathematical Physics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Analytical Chemistry (AREA)
- Databases & Information Systems (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Automation & Control Theory (AREA)
- Biochemistry (AREA)
- Signal Processing (AREA)
- General Factory Administration (AREA)
- Control Of Non-Electrical Variables (AREA)
- Optical Integrated Circuits (AREA)
Abstract
使用人工智慧的積層製造系統可從一物體的列印層的所產生的形貌影像中識別該列印層中的異常。該積層製造系統也可以使用人工智慧來確定所識別的異常與一或多個列印參數之間的關聯,並適應地調整一或多個列印參數。該積層製造系統也可以使用人工智慧來最佳化一或多個列印參數,而達到期望的機械、光學及/或電性質。
Description
本文與在加成(積層)製造中用於提供人工智慧回饋控制的機制有關。
積層製造系統,例如3D印表機及單元印表機,被廣泛用於沉積多層天然的、合成的或生物材料,以經由擠出、燒結、光聚合、機械合成或電流體力量的過程來製造物體。積層製造的過程經由層沉積流程來製造物體,其中積層製造印表機不斷添加連續層,直到完成列印物體。
通常,由積層製造印表機列印的物體是基於生產設計。可以使用三維建模軟體(例如,CAD程式)來為物體建立期望規格的生產設計。然後,切層程式可以將生產設計轉換為數字控制碼(例如,G碼),其將該設計劃分為多個層,然後可以用於指示積層製造印表機列印生產設計的每個個別層的實體表示。積層製造的目標是列印一個與生產設計的規格密切相關的物體。
根據生產設計的規模和複雜程度,所列印物體可能需要幾個小時到幾天才能完成。目前的積層製造系統受限於它們可以提供的回饋類型以及它們在列印物體的每一層之後可以採取的校正動作。通常在整個物體被
列印完之前不提供回饋。當在物體的列印過程期間提供回饋時,通常用於確定是停止還是繼續列印物體的目的。
在一些積層製造系統中,當光照在物體上時,由所列印物體產生的陰影提供反饋。這種方法是有限的,因為陰影會阻礙所列印物體的多個區域並妨礙精確的反饋。積層製造中的精確回饋對於維持品質及可再現的列印物體是有用的。
因此,期望為物體的每個列印層提供人工智慧回饋控制(AIFC),以便在物體的列印過程期間可以採取及時的校正動作。還希望提供AIFC以實現列印物體的所需機械、光學及/或電性質,以及實現與其生產設計非常相似的列印物體,或改進生產設計。
根據一些實施方式,提供了在積層製造中用於人工智慧回饋控制的系統、方法、及媒體。更特別的是,在一些實施例中,提供了積層製造系統,該系統包括:被配置為以逐層方式列印一物體的列印頭;用於向該物體的一列印層的一表面提供照明的照明源;被配置為擷取該列印層的一影像的影像感測器;以及至少一硬體處理器,被配置為:接收經擷取影像;產生該列印層的三維形貌影像;使用第一人工智慧演算法,從所產生的形貌影像識別出該列印層中的異常;使用第二人工智慧演算法,確定所識別的異常與一或多個列印參數之間的關聯;以及分配數值給一或多個列印參數。
在一些實施例中,提供了用於積層製造的方法,該方法包括:接收經擷取影像,該經擷取影像是由影像感測器產生,該影像感測器被配置以擷取以逐層方式列印的物體的列印層的影像;使用硬體處理器產生該列
印層的三維形貌影像;使用第一人工智慧演算法,從所產生的形貌影像識別出該列印層中的異常;使用第二人工智慧演算法,確定所識別的異常與一或多個列印參數之間的關聯;以及分配數值給一或多個列印參數。
在一些實施例中,提供了一種包含多個電腦可執行指令的非暫態電腦可讀取媒體,當由處理器執行該多個電腦可執行指令時,導致該處理器執行一種用於積層製造的方法,該方法包括:接收經擷取影像,該經擷取影像是由影像感測器產生,該影像感測器被配置以擷取以逐層方式列印的物體的列印層的影像;產生該列印層的三維形貌影像;使用第一人工智慧演算法,從所產生的形貌影像識別出該列印層中的異常;使用第二人工智慧演算法,確定所識別的異常與一或多個列印參數之間的關聯;以及分配數值給一或多個列印參數。
110:數字控制碼產生器
120:影像感測器
130:光源
140:列印頭
145:線材供應系統
150:底板
160:控制模組
170:影像產生器
180:影像分析器
210:發光二極體(LED)環
230:LED支架
300:介面
400:擷取影像
600、800:流程
610、620、630、640、650、660、670、680、810、820、830:步驟
第1圖是根據一些實施方式的積層製造系統的範例。
第2圖是可與根據一些實施方式的積層製造印表機一起使用的相機及光源的範例。
第3圖是根據一些實施方式供操作者輸入列印參數至數字控制碼產生器的介面的範例。
第4圖是根據一些實施方式可被擷取的列印層影像的範例,其顯示在沉積線材中的非預期間隙。
第5A圖、第5B圖及第5C圖是根據一些實施方式可被擷取的各種列印層影像的範例,其顯示列印層中的非預期螺紋狀人造物及其它破裂。
第6圖是根據一些實施方式的(高階)積層製造列印操作的範例。
第7A圖是根據一些實施方式用於列印層的一組設定點的模擬的範例,該模擬可被包含在數字控制碼中。
第7B圖是根據一些實施方式行進的列印路徑可能看起來如何的模擬的範例。
第8圖是根據一些實施方式的用於基於不同的填充密度和填充圖案來學習異常模式及異常率的訓練過程、以及這些異常模式及異常率如何影響列印物體的機械性質的範例。
根據所揭露主題的一些實施方式,提供了用於積層製造人工智慧回饋控制(AIFC)的多種機制(其可以包括系統、方法、裝置、設備等)。例如,與生產設計相比,AIFC可有用於最佳化積層製造系統的列印參數,以實現期望的機械、光學及/或電性質及/或列印物體的期望準確度。AIFC還可用於識別列印層中的異常並在列印過程中採取校正動作。
如本文所揭露的,在一些實施例中,人工智慧可用於從本文所述的積層製造中學習及改進,並輸出回饋、資訊、資料及/或指令(“AIFC”)。人工智慧演算法可以單獨或組合的方式包括以下中的一個或多個:機器學習、隱藏馬可夫模型(hidden Markov models)、遞迴類神經網路(recurrent neural networks)、卷積類神經網路(convolutional neural networks)、貝氏符號法(Bayesian symbolic methods)、通用對抗網路(general adversarial networks)、支援向量機(support vector machines)及/或任何其他合適的人工智慧演算法。雖然AIFC基於AI演算法,但AIFC還可以使用不是基於人工智慧演算法、在積層製造期間收集的資料。
第1圖顯示了根據所揭露主題的一些實施方式的可以實現AIFC的示例性積層製造系統100。在高階,根據一些實施方式,積層製造系統100的基本元件包括數字控制碼產生器110、積層製造印表機115、影像產生器170及影像分析器180。積層製造印表機115可包括影像感測器120、光源130、列印頭140,線材供應系統145、底板150及控制模組160。用於積層製造系統100的元件的功能可以結合在單個元件中或分佈在幾個元件中。在一些實施例中,一些元件(例如,數字控制碼產生器110、影像產生器170及/或影像分析器180)的功能可以從積層製造印表機115遠端執行。
注意,積層製造系統100可包括未顯示的其他合適的元件。附加地或替代地,可以省略積層製造系統100中包括的一些元件。
儘管以下描述涉及伴隨熔融沈積成型積層製造印表機使用AIFC,但在一些實施例中,本文所述的AIFC可與任何合適的3D列印技術一起使用,包括立體光固化成型技術(SLA)、電子束熔化、直接金屬沉積(電動流體動力學印刷)及選擇性雷射燒結。
在一些實施例中,積層製造印表機115可包括一個或多個影像感測器120,用於在列印過程中擷取影像及/或視訊。影像感測器120可以被配置為在列印物體的每一層的同時及/或之後擷取物體的影像(或視訊)。影像感測器120可以是例如電荷耦合裝置(CCD)或互補式金屬氧化物半導體(CMOS)感測器,如可用於數位相機及/或攝影機中的感測器。影像感測器120還可以包括用於擷取物體的熱影像及/或視訊並執行溫度計算的紅外線(IR)攝影機。影像感測器120可以相對於底板150及/或列印頭140位於不同的位置和角度。
在一些實施例中,積層製造印表機115可包括單一光源130或多個光源(例如,多光向量),其位於相對於底板150及/或相對於影像感測器
120的不同位置及角度(例如,光源可以圍繞影像感測器120周圍被放置)。照明可以根據尺寸、所使用的光源的數量及/或照明的位置及角度而變化。照明可以用於照亮物體的列印層,使得影像感測器120可以擷取物體的影像及/或視訊。
擷取的影像及/或視訊可以儲存在記憶體中,並且可以用於建立列印層的三維形貌影像及/或其他合適的影像,如本文結合影像產生器170所討論的。
第2圖顯示了可與積層製造印表機115一起使用的相機120及光源130的示例。第2圖包括被放置在LED支架230中的發光二極體(LED)環210圍繞的相機120。在一些實施例中,控制模組160控制LED環210內的各個LED,確定應該照亮哪些LED。LED環210內的各個LED的控制可以藉由用於產生列印層影像的形貌成像技術的要求來確定。
如上所述,積層製造印表機115還可包括一或多個列印頭140及一或多個底板150。列印頭140及/或底板150可相對於另一個以X(寬度)、Y(長度)及Z(高度)維度移動。列印頭140可以固定由線材供應系統145供應的線材,該線材經由一或多個列印頭140的一或多個噴嘴以逐層方式擠出。在一些實施例中,列印頭噴嘴的溫度可以被控制來加熱儲存在列印頭140中的線材,以使線材保持可以被沉積的可流動形式(例如,當列印頭140及/或底板150相對於另一個移動,及/或當列印頭140及/或底板150靜止時)。擠出的材料可以熔合至底板150(如第一擠出層的情況)或先前沉積的擠出層。可以控制的列印頭140及/或底板150的其他方面包括,例如列印頭140及/或底板150在移動期間遵循的路徑、當在生產設計的各層之間轉換時列印頭及/或底板150沿Z軸維度相對於另一個移動的量、列印頭140及/或底板150相對於另一個的方向、列印頭140及/或底板150的移動速度、以及
列印頭140沉積線材的量及速率。在一些實施例中,列印路徑可以由至少兩組X-Y-Z坐標定義。在操作期間,可以控制列印頭及/或底板相對於另一個移動,並且列印頭可以以期望的填充圖案釋放線材。在一些實施例中,列印頭140及/或底板150可以由來自數字控制碼產生器110的碼及/或控制模組160控制。
在一些實施例中,底板150可以被加熱到預定溫度並且可以在不同方向上定向。
在一些實施例中,控制模組160(在一些實施例中可包括控制器及控制者介面),可控制積層製造系統100的元件(例如,數字控制碼產生器110、影像感測器120、光源130、列印頭140、底板150、影像產生器170及影像分析器180)的任何合適的一或多個設定(例如,溫度、速度、方向等)、以及通訊、操作(例如,擷取列印物體的影像、啟用光源130等)、以及由積層製造系統的元件執行的計算及積層製造系統的元件之間的計算。控制系統108可以包括任何合適的硬體(在一些實施例中可以執行軟體),例如電腦、微處理器、微控制器、專用積體電路(ASIC)、現場可程式閘陣列(FGPA)、以及數位信號處理器(DSP)(其中任何一個可稱為硬體處理器)、編碼器、讀取編碼器的電路、記憶體裝置(包括一或多個EPROMS、一或多個EEPROM、動態隨機存取記憶體(“DRAM”)、靜態隨機存取記憶體(“SRAM”)及/或快閃記憶體)、及/或任何其他合適的硬體元件。在一些實施例中,積層製造系統100內的各個元件可包括其自己的軟體、韌體及/或硬體,以控制各個元件並與積層製造系統100中的其他元件通訊。
在一些實施例中,控制模組160與積層製造系統100的其他元件之間的通訊、及/或控制模組160與積層製造印表機115內的其他元件之間的通訊可以使用任何合適的通訊技術,例如類比技術(例如,中繼邏輯)、數
位技術(例如,RS232、乙太網路或無線)、網路技術(例如,區域網路(LAN)、廣域網路(WAN)、網際網路)、藍芽技術、近場通訊技術、安全RF技術及/或任何其他合適的通訊技術。
在一些實施例中,可以使用任何合適的輸入裝置(例如,鍵盤、滑鼠或搖桿)將操作者輸入傳送到控制模組160。
除了第1圖中所示的元件之外,積層製造印表機115還可以包括其他元件,例如溫度感測器、濕度感測器、用於測量加速度以及列印頭140的任何非預期運動(例如搖晃、顫抖等)的加速度計,以及用於顯示影像的顯示監視器。積層製造印表機115還可包括一或多個致動器,用於定向及/或移動影像感測器120、照明源130、列印頭140及/或底板150。
第1圖還顯示了數字控制碼產生器110。在一些實施例中,數字控制碼產生器110可以被配置為接收要被列印的物體的三維設計(例如,電腦輔助設計(CAD)模型)(這裡稱為“生產設計”)。可以能夠以數字控制碼產生器110處理的任何合適格式(例如,標準曲面細分語言(.stl)、繪圖標準(DWS)或繪圖(DWG)文件格式)接收生產設計。
數字控制碼產生器110可以被配置為將生產設計轉換為用於積層製造印表機115的指令以列印生產設計的實體表示。在一些實施例中,如結合第3圖所述,數字控制碼產生器110可以包括用於讓操作者輸入某些列印參數的介面。列印參數還可以包括但不限於以下的一個或多個:積層製造機115的列印特徵(例如,列印頭尺寸、擠出的線材類型、3D列印技術等);列印路徑;線材供給率;生產設計的規格(例如,經列印設計看起來應該是什麼樣的、期望的機械、光學及/或電性質等)。
基於一或多個列印參數,數字控制碼產生器110可以應用切層演算法以使生產設計與在Z方向上以預定距離間隔開的平行平面相交以產生二
維或三維層。例如,如果要列印的物體在Z方向上為5mm並且所期望的層厚度在Z方向上為0.2mm,那麼可以將物體的生產設計切成25層,它們在Z方向上厚度為0.2mm。除了切割生產設計之外,數字控制碼產生器110還可以被配置為基於以下一個或多個產生要列印的每個層的數字控制碼:列印參數;來自當前列印的列印物體的一個或多個先前列印層的AIFC;來自其他列印物體的AIFC(其中一些可能被納入生產設計);以及積層製造印表機115的列印特徵。
在其他實施方式中,切層演算法可以被配置為僅確定第一層並且為該第一層產生數字控制碼。可以基於以下的一個或多個來產生用於列印物體的每個後續層的數字控制碼:來自當前列印的列印物體的一個或多個先前列印層的AIFC;來自其他列印物體的AIFC(其中一些可能被納入生產設計);用於列印物體的生產設計的所期望機械、光學及/或電性質和規格;由操作者輸入的輸入參數及/或積層製造印表機115的列印特徵。在一些實施例中,可以完全省略切層演算法,並且可以基於以下中的一個或多個產生數字控制碼:來自其他列印物體的AIFC(其中一些可能被納入生產設計);用於列印物體的生產設計的所期望機械、光學及/或電性質和規格;操作者輸入的輸入參數;及/或積層製造印表機115的列印特徵。在一些實施例中,數字控制碼產生器還可以考慮不可控變量(即,無需人為干預的不可控變量),例如,包括但不限於,積層製造印表機115的環境濕度、溫度和光照、電壓變化、磨損以及可用於列印頭140的總線材供應。
第3圖顯示了根據所揭露主題的一些實施方式的用於讓操作者將列印參數輸入至數字控制碼產生器110中的示例介面300。
注意,介面300可以包括用於控制未顯示的其他合適列印參數的欄位。附加地或替代地,在一些實施例中可以省略介面300中包括的一些列印
參數。此外,介面300中包括的任何及所有列印參數可替代地由數字控制碼產生器自動產生,而不是由操作者輸入。在一些實施例中,操作者可以輸入用於生產設計的第一層的列印參數,且數字控制碼產生器110可以使用人工智慧演算法及本文揭露的其他方法來產生用於列印設計的後續層的列印參數。
如圖所示,介面300可以包括控制列印品質參數(例如層高度、殼厚度及縮回)的欄位。
層高度是指列印物體的層的高度。層的高度會影響列印解析度。例如,與較高層相比,短層可以產生更詳細的列印及更光滑的表面。但是,具有較短層的物體可能需要更長時間來列印。相反地,較高的層可以對應於較低解析度的列印及較粗糙的表面。包括高層的物體可以比具有較短層的相同物體更快地被列印。在一些實施例中可以使用任何合適的層高度。
殼厚度是指列印物體的外壁的厚度。在一些實施例中可以使用任何合適的殼厚度。
縮回是指當列印頭移動到沒有指定列印的區域時,確保沒有線材從列印頭擠出。在一些實施例中,可以啟用或停用縮回。
介面300還可以包括控制列印速度設定的欄位,用於控制列印頭速度及/或底板速度。列印速度是指列印頭列印時列印頭及/或底板移動的速度。在一些實施例中可以使用任何合適的列印速度。基於列印速度,可以計算需要擠出的材料量(即供給率)。在一些實施例中可以使用任何合適的供給率。
介面300還可以包括控制溫度設定的欄位,用於控制列印頭溫度及/或底板溫度。當列印速度改變時,可能需要改變列印頭的溫度,以確保擠
出的線材被充分加熱以進行沉積。在一些實施例中可以使用任何合適的列印頭溫度。
介面300還可以包括控制填充密度及填充圖案設定的欄位。
填充密度是指在物體內列印的結構,並且可以例如由百分比來指定。在一些實施例中可以使用任何合適的填充密度。100%填充密度是指沒有預期間隙的固體填充密度。
填充圖案是指填充的圖案。在一些實施例中可以使用任何合適的填充圖案。例如,在一些實施例中,填充圖案可包括蜂窩、三角形、網格及矩形。填充密度及填充圖案會影響列印重量、列印物體強度、總列印時間及外部性質。填充圖案還可以影響機械、光學及/或電性質。在一些實施例中,可以為特定層或為整個物體設定填充密度及填充圖案。
此外,介面300可以包括用於控制支撐設定的欄位,包括支撐類型及平台黏合型態。
一些列印物體可能具有懸垂部分,因此可能需要支撐以防止擠出的線材在列印過程中掉落。支撐設定可用於指定支撐放置的位置。在一些實施例中可以使用任何合適的支撐設定。
平台黏合設定可用於改善列印層與底板150的黏附力。可指定的不同類型的平台黏合設定包括:筏設定,其在列印物體的底層及底板之間添加粗網格形式的額外線材;邊緣設定,在列印物體的第一層周圍添加額外的線材線;以及裙邊設定,在第一列印層上的物體周圍添加一排線材。使用某些平台黏合設定可以幫助減少列印物體中的翹曲量。在一些實施例中可以使用任何合適的平台黏合設定。
介面300還可以包括與物體放置及方向相關的欄位設定。這些設定包括列印物體在底板150上的位置,以及列印物體在底板150上的方向。在一些實施例中可以使用任何合適的物體放置及/或方向設定。
在一些實施例中,產生的數字控制碼可以描述用於列印頭140及/或底板150的相對移動的列印路徑。列印路徑可以由X-Y-Z維度(設定點)中的兩組坐標、以及指定在設定點之間移動的方式的指令來定義。所產生的數字控制碼可以指定列印頭140及/底板150相對於另一個的移動(同時在沿著列印路徑的一對連續點之間移動)的速度、在一對連續點之間線材的溫度(或列印頭噴嘴的溫度)、及/或在一對連續點之間的線材的供給率。產生的數字控制碼可以指定列印頭140應該擠出線材的位置,及/或它應該避免釋放線材的位置。產生的數字控制碼中包括的所有參數也被認為是“列印參數”。
上述一或多個列印參數以及不可控變量可以影響列印物體的性質,例如層異常、表面粗糙度、列印解析度、總構建時間、用於列印物體所使用的擠出材料的量、以及列印物體的機械、光學及/或電性質。機械性質可包括最大抗拉強度(Rm)、屈服強度(Rp2%)、斷裂伸長度(A%)、楊氏模數(E)、疲勞(σd)、柏松比(Poisson's ratio)、質量、及比重。光學性質可包括吸收、反射、透射、及折射。電性質可包括電阻率及傳導率。所揭露的機械、光學及電性質僅是示例,而非旨在限制。
AIFC可用於將被列印物體所期望的機械性質、光學性質、電性質及/或任何合適的性質最佳化。列印物體時,AIFC也可用於採取校正動作。校正動作可以包括改變目前正在列印的物體的下一層或目標未來層的列印參數。在一些實施例中,AIFC可用於改進生產設計。
如第1圖中所示,積層製造系統100可包括影像產生器170,其可處理物體的列印層的擷取影像及/或視訊。在一些實施例中,影像產生器170可包括配置用於儲存擷取影像及/或視訊以及用於從擷取的影像及/或視訊產生列印層的三維形貌影像、及/或其他合適影像的硬體或軟體。
可以使用具有預定義大小、數量及位置的照射光的不同形貌成像技術(包括但不限於,聚焦成形演算法(shape-from-focus algorithm)、光影重建演算法(shape-from-shading algorithm)、光度立體演算法(photometric stereo algorithm)及傅立葉疊層繞射調變演算法(Fourier ptychography modulation algorithm)),以產生每個列印層的一或多個三維形貌影像。產生的形貌影像可以提供與列印物體及/或部分列印物體的完成層相關的容量資訊、列印物體及/或部分列印物體的每層的總尺寸、列印物體及/或部分列印物體的每層的特徵、以及在列印物體及/或部分列印物體的一或多層上發現的有關異常(諸如量、分佈、異常類型等)的資訊。
可以適用於積層製造系統100中的影像產生器170的聚焦成形演算法的示例由Said Pertuz等人(“Analysis of Focus Measure Operators for Shape-from-Focus,”Pattern Recognition,vol.45,issue 5,pp.1415-1432)描述,其全部內容在此引入作為參考。所揭露的方法僅是示例,並非旨在進行限制。
可以適用於積層製造系統100中的影像產生器170的光影重建演算法的示例由Byungil Kim等人(“Depth and Shape from Shading using the Photometric Stereo method,”CVGIP:Image Understanding,vol.54,no.3,pp 416-427,1991)描述,其全部內容在此引入作為參考。所揭露的方法僅是示例,並非旨在進行限制。
可適用於積層製造系統100中的影像產生器170的光度立體演算法的示例由Jose R.A.Torreao(“Estimating 3-D Shape from the Optical Flow of Photometric Stereo Images,”Proceedings of the 6th Ibero-American Conference on AI:Progress in Artificial Intelligence(IBERAMIA 1998),Helder Coelho(Ed.),Springer-Verlag,London,UK,UK,253-261)於“從光度立體影像的光流估計三維形狀”描述,其全部內容在此引入作為參考。所揭露的方法僅是示例,並非旨在進行限制。
可以適用於積層製造系統100中的影像產生器170的傅立葉疊層繞射調變演算法的示例由Guoan Zeng等人(“Wide-field High-resolution Fourier Ptychographic Microscopy,”Nature Photonics,vol.7,pp.739-745,2013),其全部內容在此引入作為參考。所揭露的方法僅是示例,並非旨在進行限制。
在一些實施例中,由影像產生器170產生的形貌影像及/或其他合適的影像可以提供諸如異常速率及分佈、異常類型、沿著列印路徑的各點處的沉積線材等資訊。例如,如第4圖所示,列印層的擷取影像400顯示沉積線材中的非預期間隙。在另一組示例中,如第5A圖、第5B圖及第5C圖中所示,各列印層的擷取影像在列印層中顯示出非預期的螺紋狀人造物及其他破裂。
在一些實施例中,影像分析器180可以被配置為從影像產生器170接收產生的形貌影像及/或其他合適的影像,並且在視覺上認知及識別列印層上的一或多個異常。在一些實施例中,這可以藉由比較以下來識別差異而完成:如從二維或三維形貌影像獲得的列印層的實際特徵、偵測到的列印層的列印路徑圖、及/或層影像;以及如產生的數字碼及/或層的生產設計中所指定的列印層的特徵。在一些實施例中,可以使用一或多個人工智慧演算法以基於差異識別異常。這些異常可以包括例如實際列印層及生產設
計之間的差異,及/或列印層相關於:層的周邊尺寸;設定點之間沉積線材的尺寸;填充密度;填充圖案;表面粗糙度;列印路徑;及/或任何其他變化的產生數字碼。異常的識別可以包括對異常進行分類,以及識別其大小、形狀、X-Y-Z位置及/或任何其他合適的特徵。在一些實施例中,可以使用任何合適的人工智慧演算法。例如,在一些實施例中,人工智慧演算法可以單獨或組合的包括以下中的一或多個:機器學習;隱藏馬可夫模型;遞迴類神經網路;卷積類神經網路;貝氏符號法;通用對抗網路;支援向量機;及/或任何其他合適的人工智慧演算法。
在一些實施例中,不基於人工智慧的演算法可用於識別異常。
在一些實施例中,影像分析器180可以被預程式化以識別列印層的接收影像中某些異常(例如,列印層中非預期的間隙或捲曲的邊緣、翹曲或不均勻的圖案、過度擠壓的點、螺紋狀或其他外來人造物及/或任何其他破裂)。基於預程式化的異常,影像分析器180可以處理完成的列印層的產生影像,以確定處理的影像是否包括與預程式化的異常類似的任何異常,並識別列印層上的任何這種異常的一或多個位置。
在一些實施例中,影像分析器180還可以被配置為確定並記錄偵測到的異常與一或多個列印參數之間的相關性。例如,藉由使用合適的人工智慧演算法,影像分析器可以確定可能與偵測到的異常相關的一或多個列印參數。例如,影像分析器180可以發現以下示例相關性:當列印頭處於特定溫度而不是其他溫度時發生的中斷;某些列印速度而非其他列印速度會導致大量意外間隙;以及某些填充圖案、在物體的某些位置、會引起某種類型的異常。
在一些實施例中,回應於偵測到被偵測異常與一或多個列印圖案之間的相關性,影像分析器180可以提供改變物體的一或多層、或是將來要
列印的一或多個物體被列印的方式的資訊、資料及/或指令。例如,在一些實施例中,影像分析器可以將所發現的相關及/或用於適應地調整列印參數設定的指令傳送到數字控制碼產生器110、控制模組160及/或任何其他裝置。然後,針對目前正在列印的物體的任何後續層,數字控制碼產生器110及/或控制模組160可以使用該資訊來對數字控制碼中的列印參數作出調整。在一些實施例中,可以調整列印參數,使得下一層或任何未來層補償在先前層中發現的異常。例如,如果在列印層中偵測到非預期的間隙,則下一層的數字控制碼可以包括在沉積位於間隙上方的線材時填充間隙的指令。在另一示例中,當在物體的下部發現非預期間隙時,物體的上部中的對稱層的數字控制碼可包括補償間隙的指令。
在一些實施例中,影像分析器180可以被配置為測量完成的列印物體的機械、光學及/或電性質。
在一些實施例中,影像分析器180可以被配置為偵測一或多個列印參數與列印層及/或完成的列印物體中的少數異常之間的相關性。在進一步的實施例中,影像分析器180可以被配置為偵測一或多個列印參數與完成的列印物體所測得的機械、光學及/或電性質之間的相關性。響應於偵測到一或多個這樣的相關性,影像分析可以提供資訊、資料及/或指令,這些資訊、資料及/或指令改變了物體的一或多層或將來要列印的一或多個物體被列印的方式。在一些實施例中,影像分析器180可以將資訊、資料及/或指令提供給例如三維建模軟體,以改進生產設計。
在一些實施例中,影像分析器180可以使用用於列印層的產生的形貌影像及/或其他產生的影像、以及用於列印層的所產生數字控制碼,以學習不可控變量(即,沒有人為干預的不可控變量)及產生的列印頭運動之間的關係,以及學習沉積層中的異常(例如,列印層中的非預期的間隙或
捲曲的邊緣、翹曲或不均勻的圖案、過度擠出的點,與數字控制碼中指定的列印路徑的偏差、非預期的螺紋狀或其他外來人造物及/或任何其他破裂)。響應於偵測到不可控變量與所得到的列印頭運動之間的相關性以及異常,影像分析器180可以提供改變物體的一或多層或將來要列印的一或多個物體被列印的方式的資訊、資料及/或指令。
在一些實施例中,關於相關性的資訊可用於訓練如本文所述的一或多個AI機制。
在一些實施例中,在列印一層之後,影像分析器180可以被配置為將完成的列印層與一或多個先前層進行比較以偵測及記錄異常、比較及記錄異常率及模式、並提供指令至數字控制碼產生器110及/或控制模組160,以調整列印參數而使物體的整體設計最佳化(例如,獲得期望的機械、光學及/或電性質或實現非常類似於生產設計的列印設計)或最佳化列印工作的操作(例如,加速沉積速率、或最小化所需材料的量)。完成的層和先前的層之間用以識別異常的比較還可以用於更好地將因果關係分配給積層製造系統100的列印參數,並且對部分列印物體的下一層或任何後續層進行適當的調整,以及最佳化類似或不同物體的未來列印工作。
在一些實施例中,影像分析器180可以被配置為分析部分列印物體的目前及/或先前層的總異常率,並且基於來自類似列印工作的AIFC,向數字控制碼產生器110及/或控制模組160提供指令,以調整部分列印物體的下一層及/或任何未來層的列印參數,以獲得期望的機械、光學及/或電性質。
在一些實施例中,在列印一層之後,可以使用不基於人工智慧的演算法來識別與正在使用的特定積層製造印表機的特定校準相關的異常。可以對後續層及未來列印工作的數字控制碼進行適當調整,以說明特定積層製造印表機的校準。
在一些實施例中,如果列印層或多個層中的異常超過某些預定容許量,則可以在完成之前停止列印物體的列印工作。為失敗的列印工作收集的資料可以向數字控制碼產生器110、控制模組160及/或收集與由積層製造印表機115執行的列印處理有關的訓練資料的任何電腦系統提供資訊、資料及/或指令。
在一些實施例中,影像分析器180還可以被配置為傳送列印物體的異常資料(例如,異常的分佈、模式及速率),以及對三維建模軟體的自動推薦的列印調整,以消除或修改與異常相對應的設計中的結構。
進一步參考第1圖至第3圖,第6圖顯示了根據所揭露主題的一些實施例的高階、使用AIFC的積層製造列印操作的示例。在一些實施例中,積層製造流程600可以使用積層製造系統100。
在610,向數字控制碼產生器110提供指定列印物體看起來應該是什麼樣的生產設計、以及列印物體的期望的機械、光學及/或電性質。在一些實施例中,由操作者輸入一些初始列印參數。在一些實施例中,生產設計被提供給數字控制碼產生器110以及使用AIFC的影像分析器180,確定生產設計的期望的機械、光學及/或電性質。
在一些實施例中,操作者可以輸入用於影像分析器180的一組規則,以在積層製造列印過程中解決衝突的目標。例如,使用者可以指定實現列印物體的最佳機械性質應該優先於:列印速度;生產設計的完整性;以及減少使用的線材量。操作者還可以指定對於列印物體最重要的機械、光學及/或電性質,使得影像分析器180可以提供用於調整使那些機械、光學及/或電性質最佳化的列印參數的指令。
在620處,數字控制碼產生器110可以基於以下中的一個或多個產生用於列印物體層的數字控制碼:由操作者輸入的輸入參數、積層製造印
表機115的列印特徵;生產設計的規格(包括機械、光學及/或電性質);來自部分列印物體的一或多個先前列印層的AIFC及/或來自其他列印物體的AIFC。產生的數字控制碼可以包括供列印頭140及/或底板150要行經的一組設定點(例如,多個X-Y-Z坐標)。第7A圖顯示了可能包括在數字控制碼中的列印層的一組設定點的示例模擬。產生的數字控制碼還可以包括定義列印頭及/或底板應如何行經各個設定點的指令。例如,在第7B圖中顯示了基於所包括的指令,行進的列印路徑可能看起來如何的示例模擬。
在一些實施例中,所產生的數字控制碼還可以指定某些列印參數,包括但不限於設定點之間列印頭140及/或底板150的速度、在設定點之間列印頭140的噴嘴及/或底板150的溫度、在設定點之間沉積的線材量、設定點之間的填充密度及設定點之間的填充圖案。
在630處,列印頭140可以根據由數字控制碼產生器110及/或控制模組160提供的指令來沉積用於生產設計的層的線材。
在640處,光源130可以基於指定的形貌成像技術及/或(如上所述的)其他成像技術照射列印層。
在650處,影像感測器120可以擷取被照射的列印層的影像。
在660處,影像產生器170可以基於由影像感測器120擷取的影像產生列印層的一或多個形貌影像及/或任何其他合適的影像。在一些實施例中,列印層的產生影像可包括一系列平鋪或聯結在一起的擷取影像。
在進一步的實施例中,可以從由影像產生器170產生的一或多個形貌影像及/或其他合適的影像確定列印層的實際列印路徑。
在670處,影像分析器180可以使用列印層的所產生的形貌影像及/或其他產生的影像,以及列印層的所產生的數字控制碼,以確定及記錄擠壓層中的異常(例如,非預期的間隙或捲曲邊緣、翹曲或不均勻的圖案、
過度擠壓的點,與數字控制碼中指定的列印路徑的偏差、非預期的螺紋狀或其他外來人造物及/或列印層中的任何其他破裂)。
在一些實施例中,影像分析器180可以從包含在產生的數字控制碼中的設定點及指令中擷取及繪製列印層的列印路徑。影像分析器可以將繪製的列印路徑轉換為像素,並且將像素覆蓋在從列印層的產生影像獲得的列印路徑上,並確定像素與列印路徑之間的差異。在一些實施例中,影像分析器180可以將從列印層的產生影像獲得的列印路徑轉換為坐標系統中的列印點,並將這些列印點與沿著從產生的數字控制碼擷取的繪製路徑的列印點進行比較。
如果從產生的影像獲得的列印層的列印路徑與從產生的數字控制碼中擷取的列印路徑相同,則它們之間的差異將為零或接近零。大於零的數字描述了在實際列印路徑及產生的數字控制碼中指定的列印路徑之間偵測到的錯誤量。列印路徑的比較還可以指出沿列印路徑發生錯誤的位置。
在680處,影像分析器180可以分析影像分析器從列印層及/或先前層偵測到的異常的數量及異常的類型(包括實際路徑與在所產生的數字控制碼中的列印路徑之間的偏差)。基於來自其他列印工作的AIFC,影像分析器180可以確定是否應該對部分列印物體的下一層或後續層的列印參數進行任何調整,以實現關於偵測到的異常的所期望的機械、光學及/或電性質。例如,如果基於偵測到的異常,針對部分列印物體的目前及/或先前層,影像分析器180確定完成列印物體的機械性質將弱於期望的,則影像分析器180可以指示數字控制碼產生器110及/或控制模組160調整下一層或任何後續層上的某些列印參數(例如,增加填充密度及/或改變填充圖案),以便可以實現所期望的機械性質。
在一些實施例中,對於為列印物體沉積的每一層或任何數量的層重複操作610-680。影像分析器180可以使用在每一層獲得的資料以及來自其他列印工作的AIFC來修改下一層及/或後續層的列印參數,以實現列印物體的期望的機械、光學及/或電性質及/或期望的設計。在進一步的實施例中,可以測量完成的列印物體的機械、光學及/或電性質。
執行流程600的特定部分的時間的劃分可以變化,而且沒有劃分或不同的劃分也在本文揭露主題的範圍內。注意,在一些實施例中,可以在任何合適的時間執行流程600的方塊。應當理解,在一些實施例中,本文描述的流程600的至少一些部分可以以任何次序或順序執行,不限於在第6圖中顯示及描述的次序及順序。此外,在一些實施例中,在適當時或並行地,可以基本上同時執行本文描述的流程600的一些部分。附加地或替代地,在一些實施例中可以省略流程600的一些部分。
流程600可以任何合適的硬體及/或軟體實現。例如,在一些實施例中,流程600可以在影像分析器180或數字控制碼產生器110中實現。
在一些實施例中,對於相似或不同的物體,影像分析器180可以學習列印物體的每一層的異常圖案,以使得影像分析器180能夠在(例如,如結合第6圖所描述的)列印流程期間在層等級自適應地調整列印參數,以實現期望的機械、光學及/或電性質。
某些列印參數影響列印物體的機械、光學及/或電性質。例如,填充密度及填充圖案可以影響機械性質,如最大抗拉強度(Rm)、屈服強度(Rp2%)、斷裂伸長度(A%)、楊氏模數(E)、疲勞(σd)、柏松比(Poisson's ratio)、質量及比重。
為了理解異常圖案及某些列印參數如何實際影響列印物體的機械、光學及/或電性質,可以多次列印物體,同時改變對列印物體的機械、
光學及/或電性質有影響的列印參數。每個列印物體的異常圖案可以在例如結合第6圖所述的層等級(例如,在670處)確定及記錄。另外,可以測量及記錄每個列印物體的機械、光學及/或電性質。
第8圖顯示了根據一些實施例的用於基於不同的填充密度及填充圖案來學習異常圖案及異常率以及這些異常圖案及異常率如何影響列印物體的機械性質的訓練流程的示例800。
在810處,可以識別影響物體的機械性質的一或多個列印參數。例如,當填充密度及填充圖案影響物體的機械性質時可以被識別。在一些實施例中,人工智慧演算法可用於識別影響物體的機械性質的其他列印參數。
在820處,可以列印預定數量(“一組”)的目標物體,並且已經識別出影響目標物體的機械性質的一或多個列印參數可以對於整個組保持相同。例如,可以列印組中的每個物體,指定相同的填充圖案及填充密度列印參數。
在830處,如結合第6圖的670所描述的,可以針對組中的每個列印物體在層等級偵測並記錄異常。例如,可以為每個層確定實際列印路徑與從產生的控制碼中擷取的列印路徑之間的差異。在列印組中的每個目標物體之後,可以測量及記錄該目標物體的機械性質。
在830之後,流程800可以循環回到820,並且可以不同的填充密度及/或填充圖案列印另一預定數量的目標物體。
可以根據需要多次重複820和830,以訓練影像分析器180學習異常圖案及不同的識別的列印參數(例如,填充密度及填充圖案)如何影響物體的機械性質。每次列印預定數量的目標物體(“一組”)時,可以改變所識別的參數(例如,填充密度及/或填充圖案)。下表反映了目標物體的示例組及其指定的填充密度及填充圖案列印參數:
在一些實施例中,對於列印物體的每一層保持恆定的填充密度及填充圖案列印參數。在其他實施例中,針對物體的不同層而變化填充密度及/或填充圖案,這取決於層的位置或隨機。
一旦影像分析器180已經了解了不同的異常率及圖案以及所識別的列印參數(例如,不同的填充密度及填充圖案)如何影響物體的機械性質,在列印工作期間(例如,在層等級)影像分析器可以自適應地調整所識別的列印參數的值,以達到所期望的機械性質。例如,影像分析器180可以偵測到部分列印物體的列印層具有某種異常率及圖案,如果未調整填充密度及填充圖案,則該圖案一旦完成就可能導致列印物體的低於平均的機械性質。然後,影像分析器180可以調整下一層及/或任何後續層的填充率及填充圖案列印參數,以實現期望的機械性質,同時還試圖減少異常的發生。
可以執行類似的流程以學習異常圖案如何影響物體的光學及/或電性質。例如,可以識別影響物體的光學及/或電性質的列印參數。如上所述控制多組目標物體的識別的列印參數,可以列印多組目標物體。一旦影像分析器180已經學習到不同的異常率及圖案以及所識別的列印參數如何影
響物體的電及/或光學性質,影像分析器可以在列印工作期間,在層等級自適應地調整所識別的列印參數的值,以實現期望的電及/或光學性質。
可以執行類似的流程以用於學習不可控變量(即,無人為干預的不可控變量)如何影響物體的機械、光學及/或電性質。例如,可以識別影響物體的機械、光學及/或電性質的不可控變量。如上所述控制多組目標物體的所識別的不可控變量,可以列印多組目標物體。一旦影像分析器180已經學習到不同的異常率及圖案以及所識別的列印不可控變量如何影響物體的機械、電及/或光學性質,影像分析器可以在列印工作期間,在層等級自適應地調整列印參數的值,以補償不可控的變量並實現所期望的電及/或光學性質。
執行流程800的特定部分的時間的劃分可以變化,而且沒有劃分或不同的劃分也在本文揭露主題的範圍內。注意,在一些實施例中,可以在任何合適的時間執行流程800的方塊。應當理解,在一些實施例中,本文描述的流程800的至少一些部分可以以任何次序或順序執行,不限於在第8圖中顯示及描述的次序及順序。此外,在一些實施例中,在適當時或並行地,可以基本上同時執行本文描述的流程800的一些部分。附加地或替代地,在一些實施例中可以省略流程800的一些部分。
流程800可以任何合適的硬體及/或軟體實現。例如,在一些實施例中,流程800可以在影像分析器180或數字控制碼產生器110中實現。
在一些實施例中,影像分析器180可以使用列印層的產生的形貌影像及/或其他產生的影像(如第6圖660中所述)、以及列印層的產生的數字控制碼,以學習列印參數與產生的列印頭運動之間的關係、以及學習擠出層中的異常(例如,列印層中的非預期的間隙或捲曲邊緣、翹曲或不均勻的圖案、過度擠出的點、捲曲的邊緣、與數字控制碼中指定的列印路徑的
偏差、非預期的螺紋狀或其他外來人造物及/或任何其他破裂)。影像分析器180還可以反轉習得的關係以計算最佳數字控制碼輸入參數,該參數將導致期望的列印頭運動並最小化擠出層中的異常。更具體地,人工智慧演算法的輸入變量可以包括:列印頭的先前測量位置(以表示);造成列印頭的先前位置的控制碼列印參數(以θ i-1表示);以及列印頭的目前測量位置(以表示)。輸出變量可以是造成列印頭目前位置的數字控制碼參數(以θ表示)。輸入變量及輸出變量可以一起作為人工智慧演算法的單一訓練樣本。單一列印層可以產生數百個這樣的訓練樣本。這些訓練樣本,以及先前層中的異常知識、生產設計的期望規格、積層製造印表機的列印特徵及/或環境條件可用於計算最佳列印參數以產生期望的列印頭運動。在一些實施例中,訓練樣本、以及先前層中的異常知識、生產設計的期望規格、積層製造印表機的特徵及/或環境條件可用於計算最佳列印參數、以及在後續層中用於列印路徑的X-Y-Z設定點的最佳位置及指令。
在一些實施例中,還可以應用影像分析器180來學習列印參數與層的整體特徵之間的關係。例如,可應用影像分析器180來學習擠出層中的異常總數、列印頭及/或底板的運動與產生的數字控制碼中的列印路徑指令的接近程度、以及指定的填充密度。在一些實施例中,影像分析器180可以反轉習得的關係來計算列印參數,該列印參數將導致最接近生產設計的規格的一層,包括期望的機械、光學及/或電性質。
在一些實施例中,影圖像分析器180可以使用列印層產生的形貌影像及/或其他產生的影像、以及列印層的產生的數字控制碼,以學習不可控變量(即,沒有人為干預的不可控的變量)及產生的列印頭運動之間的關係,以及學習沉積層中的異常(例如,列印層中的非預期的間隙或捲曲的邊緣、翹曲或不均勻的圖案、過度擠出的點、與數字控制碼中指定的列印
路徑的偏差、非預期的螺紋狀或其他外來人造物及/或任何其他破裂)。如果影像分析器180發現不可控變量對產生的列印頭運動及/或沉積層中的異常產生不利影響(超出閾值容差),則影像分析器180可以向控制模組160發送警報。一旦接收到警報,控制模組160可以在積層製造系統100的顯示器上顯示警告及/或經由電子郵件、文本或任何其他合適的電子機制警告操作者。在一些實施例中,影像分析器180可以被配置為經由電子郵件、文本或任何其他合適的電子機制直接警告操作者。例如,在一些實施例中,如果影像分析器180確定環境濕度、溫度及/或光負面地影響所得到的列印頭運動或者層中的異常數量超出預定容差,則影像分析器180可以向控制模組160及/或操作者發送警告。在一些實施例中,如果影像分析器180確定積層製造印表機115的磨損及/或列印頭140可用的總線材量(例如,少量線材)對產生的列印頭運動產生負面影響或者層中的異常數量超出預定容差,則影像分析器180可以向控制模組160及/或操作者發送警報,以替換積層製造印表機及/或重新填充線材。在一些實施例中,如果影像分析器180確定電壓變化負面地影響所得到的列印頭運動或者層中的異常數量超過預定容差,則影像分析器180可以向控制模組160及/或操作者發送警報以檢查電壓源。
在一些實施例中,任何合適的電腦可讀媒體可用於儲存用於執行本文描述的功能及/或流程的指令。例如,在一些實施例中,電腦可讀媒體可以是暫態的或非暫態的。例如,非暫態電腦可讀媒體可以包括諸如非暫態磁性媒體(諸如硬碟、軟磁碟等)、非暫態光學媒體(諸如光碟、數位影音光碟、藍光光碟等)、非暫態半導體媒體(如快閃記憶體、電性可程式化唯讀記憶體(EPROM)、電性可抹除可程式化唯讀記憶體(EEPROM)等)、在傳輸過程中不會短暫或缺乏任何持久性的表象的任何合適的媒體、
及/或任何合適的有形媒體。作為另一個例子,暫態電腦可讀媒體可以包括網路上、導線、導體、光纖、電路、以及在傳輸過程中短暫或缺乏任何持久性的表象的任何合適的媒體中的信號、及/或任何合適的無形媒體中的信號。
本文描述的示例(以及表述為“諸如”、“例如”、“包括”等的子句)的提供不應被解釋為將所請求的主題限制於特定示例;相反地,這些例子僅用於說明許多可能方面中的一些。還應注意,如本文所使用的,術語機制可以包含硬體、軟體、韌體或其任何合適的組合。
已經具體參考這些示出的實施例詳細描述了積層製造系統及方法。然而,很明顯的是,可以在如前述說明書中描述的本揭露內容的精神及範圍內進行各種修改及改變,並且這些修改及改變被認為是本揭露內容的等同物及本揭露內容的一部分。本發明的範圍僅受以下申請專利範圍的限制。
110:數字控制碼產生器
120:影像感測器
130:光源
140:列印頭
145:線材供應系統
150:底板
160:控制模組
170:影像產生器
180:影像分析器
Claims (20)
- 一種製造系統,包括:一影像感測器,被配置以擷取一樣品的一第一影像;以及至少一硬體處理器,被配置以:從該影像感測器接收該第一影像;得到對於該樣品的一或多個所需的性質;基於該第一影像,產生該樣品的一第二影像;使用一第一人工智慧演算法從該第二影像識別該樣品上的一異常,該第一人工智慧演算法被配置以偵測該樣品上的異常;使用被配置以確定所識別的異常與複數個處理參數中的一個處理參數之間的關聯的一第二人工智慧演算法,確定所識別的異常與用於處理該樣品的該複數個處理參數中的該一個處理參數之間的一關聯;調整將由該製造系統使用以處理該樣品的該複數個處理參數中的該一個處理參數的一數值;以及使用該複數個處理參數中的該一個處理參數的該數值,使該製造系統繼續處理該樣品,以實質達到該一或多個所需要的性質。
- 如請求項1所述的製造系統,其中基於該第一影像,產生該樣品的該第二影像包括:對該第一影像施以一聚焦成形演算法、一光影重建演算法、一光度立體演算法、以及一傅立葉疊層繞射調變演算法之一。
- 如請求項1所述的製造系統,其中使用該第一人工智慧演算法從該第二影像識別該樣品上的該異常包括:比較該第二影像與用於該樣品的一生產設計。
- 如請求項1所述的製造系統,其中該至少一硬體處理器更被配置以:識別影響該樣品的一機械性質、一光學性質以及一電性質的至少一者的一處理參數;在該樣品經歷一第一處理步驟之後,測量該機械性質、該光學性質以及該電性質的該至少一者;確定該樣品的一異常率;以及確定該異常率以及該處理參數對於該樣品的該機械性質、該光學性質以及該電性質的該至少一者的一影響、以及該處理參數對於該樣品的該機械性質、該光學性質、以及該電性質的該至少一者的一影響。
- 如請求項1所述的製造系統,其中該至少一硬體處理器更被配置以:識別影響該樣品的一機械性質、一光學性質以及一電性質的至少一者的一處理參數;在該樣品經歷一第一處理步驟之後,測量該機械性質、該光學性質以及該電性質的該至少一者;確定該樣品的一異常圖案;以及確定該異常圖案對該樣品的該機械性質、該光學性質以及該電性質的該至少一者的一影響、以及該處理參數對於該樣品的該機械性質、該光學性質、以及該電性質的該至少一者的一影響。
- 如請求項1所述的製造系統,其中該至少一硬體處理器更被配置以:訓練該第一人工智慧演算法,以識別訓練樣品的訓練影像上的異常。
- 如請求項1所述的製造系統,其中該至少一硬體處理器更被配置以:訓練該第二人工智慧演算法,以識別訓練異常與訓練處理參數之間的關聯。
- 一種電腦實施的方法,包括:由一計算系統從一製造系統的一影像感測器接收一樣品的一第一影像;由該計算系統得到對於該樣品的一或多個所需的性質;由該計算系統基於該第一影像產生該樣品的一第二影像;由該計算系統使用一第一人工智慧演算法從該第二影像識別該樣品上的一異常,該第一人工智慧演算法被配置以偵測該樣品上的異常;使用被配置以確定所識別的異常與複數個處理參數中的一個處理參數之間的關聯的一第二人工智慧演算法,由該計算系統確定所識別的異常與用於處理該樣品的該複數個處理參數中的該一個處理參數之間的一關聯;由該計算系統調整將由該製造系統使用以處理該樣品的該複數個處理參數中的該一個處理參數的一數值;以及使用該複數個處理參數中的該一個處理參數的該數值,由該計算系統使該製造系統繼續處理該樣品,以實質達到該一或多個所需要的性質。
- 如請求項8所述的電腦實施的方法,其中由該計算系統基於該第一影像產生該樣品的該第二影像包括:對該第一影像應用一聚焦成形演算法、一光影重建演算法、一光度立體演算法、以及一傅立葉疊層繞射調變演算法之一。
- 如請求項8所述的電腦實施的方法,其中由該計算系統使用該第一人工智慧演算法從該第二影像識別該樣品上的該異常包括:比較該第二影像與用於該樣品的一生產設計。
- 如請求項8所述的電腦實施的方法,更包括:由該計算系統識別影響該樣品的一機械性質、一光學性質以及一電性質的至少一者的一處理參數;在該樣品經歷一第一處理步驟之後,由該計算系統測量該機械性質、該光學性質、以及該電性質的該至少一者;由該計算系統確定該樣品的一異常率;以及由該計算系統確定該異常率對該樣品的該機械性質、該光學性質以及該電性質的該至少一者的一影響、以及該處理參數對該樣品的該機械性質、該光學性質以及該電性質的該至少一者的一影響。
- 如請求項8所述的電腦實施的方法,更包括:由該計算系統識別影響該樣品的一機械性質、一光學性質以及一電性質的至少一者的一處理參數;在該樣品經歷一第一處理步驟之後,由該計算系統測量該機械性質、該光學性質以及該電性質的該至少一者;由該計算系統確定該樣品的一異常圖案;以及由該計算系統確定該異常圖案對該樣品的該機械性質、該光學性質以及該電性質的該至少一者的一影響、以及該處理參數對該樣品的該機械性質、該光學性質以及該電性質的該至少一者的一影響。
- 如請求項8所述的電腦實施的方法,更包括:由該計算系統訓練該第一人工智慧演算法,以識別訓練樣品的訓練影像上的異常。
- 如請求項8所述的電腦實施的方法,更包括:由該計算系統訓練該第二人工智慧演算法,以識別訓練異常與訓練處理參數之間的關聯。
- 一種非暫態電腦可讀取媒體,包含一或多個指令序列,當由一處理器執行時,該一或多個指令序列使一計算系統進行操作,該操作包括:由該計算系統從一製造系統的一影像感測器接收一樣品的一第一影像;由該計算系統得到對於該樣品的一或多個所需的性質;由該計算系統基於該第一影像產生該樣品的一第二影像;由該計算系統使用一第一人工智慧演算法從該第二影像識別該樣品上的一 異常,該第一人工智慧演算法被配置以偵測該樣品上的異常;由該計算系統使用一第二人工智慧演算法確定所識別的異常與用於處理該樣品的複數個處理參數中的一個處理參數之間的一關聯,該第二人工智慧演算法被配置以確定所識別的異常與該複數個處理參數中的該一個處理參數之間的關聯;由該計算系統調整將由該製造系統使用以處理該樣品的該複數個處理參數中的該一個處理參數的一數值;以及由該計算系統使用該複數個處理參數中的該一個處理參數的該數值使該製造系統繼續處理該樣品,以實質達到該一或多個所需的性質。
- 如請求項15所述的非暫態電腦可讀取媒體,其中由該計算系統基於該第一影像產生該樣品的該第二影像包括:對該第一影像應用一聚焦成形演算法、一光影重建演算法、一光度立體演算法、以及一傅立葉疊層繞射調變演算法之一。
- 如請求項15所述的非暫態電腦可讀取媒體,其中由該計算系統使用該第一人工智慧演算法從該第二影像識別該樣品上的該異常包括:比較該第二影像與用於該樣品的一生產設計。
- 如請求項15所述的非暫態電腦可讀取媒體,更包括:由該計算系統識別影響該樣品的一機械性質、一光學性質以及一電性質的至少一者的一處理參數;在該樣品經歷一第一處理步驟之後,由該計算系統測量該機械性質、該光學性質以及該電性質的該至少一者;由該計算系統確定該樣品的一異常率;以及由該計算系統確定該異常率對該樣品的該機械性質、該光學性質以及該電性質的該至少一者的一影響、以及該處理參數對該樣品的該機械性質、該光學性質以及該電性質的該至少一者的一影響。
- 如請求項15所述的非暫態電腦可讀取媒體,更包括:由該計算系統識別影響該樣品的一機械性質、一光學性質以及一電性質的至少一者的一處理參數;在該樣品經歷一第一處理步驟之後,由該計算系統測量該機械性質、該光學性質以及該電性質的該至少一者;由該計算系統確定該樣品的一異常圖案;以及由該計算系統確定該異常圖案對該樣品的該機械性質、該光學性質以及該電性質的該至少一者的一影響、以及該處理參數對該樣品的該機械性質、該光學性質以及該電性質的該至少一者的一影響。
- 如請求項15所述的非暫態電腦可讀取媒體,更包括:由該計算系統訓練該第一人工智慧演算法,以識別訓練樣品的訓練影像上的異常;以及由該計算系統訓練該第二人工智慧演算法,以識別訓練異常與訓練處理參數之間的關聯。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/943,442 | 2018-04-02 | ||
US15/943,442 US10518480B2 (en) | 2018-04-02 | 2018-04-02 | Systems, methods, and media for artificial intelligence feedback control in additive manufacturing |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202308833A true TW202308833A (zh) | 2023-03-01 |
TWI817697B TWI817697B (zh) | 2023-10-01 |
Family
ID=68056754
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108110747A TWI779183B (zh) | 2018-04-02 | 2019-03-27 | 加成製造中人工智慧反饋控制系統、方法及媒介 |
TW112133393A TWI845406B (zh) | 2018-04-02 | 2019-03-27 | 加成製造中人工智慧反饋控制系統、方法及媒介 |
TW111133260A TWI817697B (zh) | 2018-04-02 | 2019-03-27 | 加成製造中人工智慧反饋控制系統、方法及媒介 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108110747A TWI779183B (zh) | 2018-04-02 | 2019-03-27 | 加成製造中人工智慧反饋控制系統、方法及媒介 |
TW112133393A TWI845406B (zh) | 2018-04-02 | 2019-03-27 | 加成製造中人工智慧反饋控制系統、方法及媒介 |
Country Status (6)
Country | Link |
---|---|
US (3) | US10518480B2 (zh) |
EP (2) | EP3774281B1 (zh) |
JP (2) | JP7054268B2 (zh) |
CN (2) | CN112118949B (zh) |
TW (3) | TWI779183B (zh) |
WO (1) | WO2019195095A1 (zh) |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3369014B1 (en) * | 2015-10-28 | 2021-11-03 | Siemens Industry Software Inc. | System and method for optimizing tool paths based on thermal/structural simulations of a part being produced via a 3d-printer |
US20220405434A1 (en) * | 2017-05-08 | 2022-12-22 | Physna Inc. | System and methods for 3d model evaluation using triangle mesh hashing |
EP3635687B1 (en) * | 2017-05-08 | 2022-07-13 | Physna Inc. | System and methods for 3d model evaluation |
WO2019177981A1 (en) * | 2018-03-10 | 2019-09-19 | Postprocess Technologies, Inc. | System and method of manufacturing an additively manufactured object |
US11084225B2 (en) | 2018-04-02 | 2021-08-10 | Nanotronics Imaging, Inc. | Systems, methods, and media for artificial intelligence process control in additive manufacturing |
WO2020028807A1 (en) | 2018-08-03 | 2020-02-06 | Walmart Apollo, Llc | Mobile assembly apparatus |
US11733684B2 (en) * | 2018-09-27 | 2023-08-22 | Hewlett-Packard Development Company, L.P. | Overlaying production data on rendered 3D printed object |
US11931950B2 (en) * | 2018-09-28 | 2024-03-19 | Lawrence Livermore National Security, Llc | Machine learning informed control systems for extrusion printing processes |
US11256231B2 (en) * | 2019-02-27 | 2022-02-22 | The Boeing Company | Object design using machine-learning model |
US11776072B2 (en) * | 2019-04-25 | 2023-10-03 | Shibaura Machine Co., Ltd. | Machine learning method, information processing device, computer program product, and additive manufacturing monitoring system |
JP7494448B2 (ja) * | 2019-06-25 | 2024-06-04 | 株式会社ジェイテクト | 付加製造物の品質推定装置 |
US11014295B2 (en) * | 2019-07-02 | 2021-05-25 | Saudi Arabian Oil Company | Fabrication of composite parts by additive manufacturing and microstructure topology optimization |
US11472122B2 (en) | 2019-07-02 | 2022-10-18 | Saudi Arabian Oil Company | Fabrication of composite parts by additive manufacturing and microstructure topology customization |
US20220281177A1 (en) * | 2019-08-27 | 2022-09-08 | The Regents Of The University Of California | Ai-powered autonomous 3d printer |
KR20220054673A (ko) | 2019-09-10 | 2022-05-03 | 나노트로닉스 이미징, 인코포레이티드 | 제조 공정을 위한 시스템, 방법 및 매체 |
US11100221B2 (en) | 2019-10-08 | 2021-08-24 | Nanotronics Imaging, Inc. | Dynamic monitoring and securing of factory processes, equipment and automated systems |
WO2021073717A1 (de) * | 2019-10-14 | 2021-04-22 | Wacker Chemie Ag | 3d-druckvorrichtung und verfahren zur herstellung von objekten mit erhöhter druckqualität |
AU2020430115A1 (en) | 2020-02-20 | 2022-08-25 | Inkbit, LLC | Multi-material scanning for additive fabrication |
WO2021168308A1 (en) * | 2020-02-21 | 2021-08-26 | Nanotronics Imaging, Inc. | Systems, methods, and media for manufacturing processes |
US11086988B1 (en) | 2020-02-28 | 2021-08-10 | Nanotronics Imaging, Inc. | Method, systems and apparatus for intelligently emulating factory control systems and simulating response data |
AT17186U1 (de) * | 2020-03-11 | 2021-08-15 | Progress Maschinen & Automation Ag | 3D-Druckvorrichtung, insbesondere für die Bauindustrie |
EP3925760A3 (en) * | 2020-04-03 | 2022-03-23 | Ricoh Company, Ltd. | Data output apparatus, three-dimensional fabrication system, and data output method |
DE102020111747A1 (de) | 2020-04-30 | 2021-11-04 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren und Vorrichtung zur additiven Herstellung von Bauteilen |
TWI724921B (zh) * | 2020-06-16 | 2021-04-11 | 中華學校財團法人中華科技大學 | 具即時監控3d列印裝置之系統 |
WO2021257988A1 (en) * | 2020-06-18 | 2021-12-23 | Nanotronics Imaging, Inc. | Systems, methods, and media for manufacturing processes |
EP3936262A1 (de) * | 2020-07-09 | 2022-01-12 | Stephanie Ness | Verfahren zur schichtweisen fertigung eines dreidimensionalen objekts, mit gezielter beleuchtung von kornrändern |
CN116133829A (zh) * | 2020-08-11 | 2023-05-16 | 易升腾知识产权有限责任公司 | 优化3d打印中的打印工艺参数 |
US11335443B1 (en) | 2020-09-07 | 2022-05-17 | OpenNano Pte. Ltd. | Phenotypic patient data derivation from economic data |
US20230289947A1 (en) * | 2020-09-15 | 2023-09-14 | Massachusetts Institute Of Technology | Systems and methods for in-situ, real-time additive manufacturing analysis |
TW202212158A (zh) * | 2020-09-22 | 2022-04-01 | 美商益森頓股份有限公司 | 用於判定成品三維列印部件之估計條件之數值控制碼轉 |
WO2022064573A1 (ja) * | 2020-09-23 | 2022-03-31 | 三菱重工業株式会社 | 敵対的生成ネットワークを用いた生産条件生成システム、及びその生産条件生成方法並びに生産条件生成プログラム |
CN114368148A (zh) * | 2020-10-15 | 2022-04-19 | 三纬国际立体列印科技股份有限公司 | 多密度内填充的切层与打印方法 |
US20220134647A1 (en) * | 2020-11-02 | 2022-05-05 | General Electric Company | In-process optical based monitoring and control of additive manufacturing processes |
CN112620652B (zh) * | 2020-11-27 | 2022-09-27 | 哈尔滨工业大学 | 一种电弧增材制造过程的自适应控制系统及方法 |
KR102486714B1 (ko) * | 2020-12-31 | 2023-01-10 | 서울시립대학교 산학협력단 | 3d 콘크리트 프린터의 인공지능 기반 토출제어 시스템 |
US11654634B2 (en) | 2021-06-08 | 2023-05-23 | International Business Machines Corporation | Three-dimensional printing using generative adversarial network techniques |
CN113579253B (zh) * | 2021-07-19 | 2022-11-11 | 华中科技大学 | 一种增材制造多尺度温度场在线监测的方法和装置 |
CN113650286B (zh) * | 2021-08-05 | 2022-05-10 | 嘉兴学院 | 一种电场驱动熔融喷射沉积微结构的控制方法 |
WO2023059618A1 (en) * | 2021-10-07 | 2023-04-13 | Additive Monitoring Systems, Llc | Structured light part quality monitoring for additive manufacturing and methods of use |
US20230226771A1 (en) * | 2022-01-19 | 2023-07-20 | Markforged, Inc | Apparatus and method for performing in-process testing for verification of print parameters in a 3d printing apparatus |
GB202204072D0 (en) * | 2022-03-23 | 2022-05-04 | Cambridge Entpr Ltd | Method, apparatus and system for closed-loop control of a manufacturing process |
CN114953464B (zh) * | 2022-04-07 | 2024-05-31 | 深圳市猿人创新科技有限公司 | 3d打印机智能诊断方法、装置、电子设备及存储介质 |
US20230342908A1 (en) * | 2022-04-22 | 2023-10-26 | Baker Hughes Oilfield Operations Llc | Distortion prediction for additive manufacturing using image analysis |
CN115416283B (zh) * | 2022-08-31 | 2024-05-24 | 上海大学 | 针对皮肤表皮层模型的生物3d打印制备系统及3d打印方法 |
EP4450261A1 (en) * | 2023-04-21 | 2024-10-23 | C.M.S. S.p.A. | Method and apparatus of manufacturing products |
CN117283743B (zh) * | 2023-11-23 | 2024-02-02 | 绵阳华远同创科技有限公司 | 一种树脂生产成型加工流程预测控制系统及方法 |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2597778B2 (ja) * | 1991-01-03 | 1997-04-09 | ストラタシイス,インコーポレイテッド | 三次元対象物組み立てシステム及び組み立て方法 |
IL148073A0 (en) * | 1999-09-03 | 2002-09-12 | American Inter Metallics Inc | Apparatus and methods for the production of powders |
US7853351B2 (en) | 2002-02-21 | 2010-12-14 | Gary John Corey | CNC machine tool and integrated machine tool controller incorporating 3D and up to 8-axes real time interactive tool compensation |
EP1437882B1 (en) * | 2002-12-11 | 2011-03-23 | Agfa Graphics N.V. | Method for creating 3-D prints |
JP4075670B2 (ja) | 2003-04-09 | 2008-04-16 | トヨタ自動車株式会社 | 変化情報認識装置および変化情報認識方法 |
US20050031186A1 (en) * | 2003-08-10 | 2005-02-10 | Luu Victor Van | Systems and methods for characterizing a three-dimensional sample |
JP2005345359A (ja) * | 2004-06-04 | 2005-12-15 | Ricoh Co Ltd | 走行体マークセンサ、回転体駆動装置及び画像形成装置 |
CN101943896B (zh) | 2010-07-16 | 2012-02-29 | 浙江大学 | 数控机床误差的轨迹再生补偿方法 |
RU2553796C2 (ru) * | 2011-01-28 | 2015-06-20 | Аркам Аб | Способ изготовления трехмерного тела |
JP5732888B2 (ja) * | 2011-02-14 | 2015-06-10 | ソニー株式会社 | 表示装置及び表示方法 |
CN104254768A (zh) * | 2012-01-31 | 2014-12-31 | 3M创新有限公司 | 用于测量表面的三维结构的方法和设备 |
US9274065B2 (en) | 2012-02-08 | 2016-03-01 | Rapiscan Systems, Inc. | High-speed security inspection system |
US20140039662A1 (en) | 2012-07-31 | 2014-02-06 | Makerbot Industries, Llc | Augmented three-dimensional printing |
WO2014172687A2 (en) | 2013-04-18 | 2014-10-23 | Massachusetts Institute Of Technology, Inc. | Methods and apparati for implementing programmable pipeline for three-dimensional printing including multi-material applications |
JP2016529474A (ja) * | 2013-06-13 | 2016-09-23 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | 少なくとも1つの物体を光学的に検出する検出器 |
WO2014210374A1 (en) | 2013-06-27 | 2014-12-31 | Massachusetts Institute Of Technology | System and method for designing three-dimensional objects |
US9855698B2 (en) | 2013-08-07 | 2018-01-02 | Massachusetts Institute Of Technology | Automatic process control of additive manufacturing device |
US9724876B2 (en) | 2013-12-13 | 2017-08-08 | General Electric Company | Operational performance assessment of additive manufacturing |
JP6367560B2 (ja) | 2014-01-20 | 2018-08-01 | ローランドディー.ジー.株式会社 | 三次元造形装置および三次元造形方法 |
US9747394B2 (en) | 2014-03-18 | 2017-08-29 | Palo Alto Research Center Incorporated | Automated design and manufacturing feedback for three dimensional (3D) printability |
US10252466B2 (en) | 2014-07-28 | 2019-04-09 | Massachusetts Institute Of Technology | Systems and methods of machine vision assisted additive fabrication |
US20160096318A1 (en) * | 2014-10-03 | 2016-04-07 | Disney Enterprises, Inc. | Three dimensional (3d) printer system and method for printing 3d objects with user-defined material parameters |
US20160167306A1 (en) | 2014-12-11 | 2016-06-16 | Massachusetts Institute Of Technology | Systems and methods of hierarchical material design for additive fabrication |
US9895845B2 (en) | 2015-02-16 | 2018-02-20 | Arevo Inc. | Method and a system to optimize printing parameters in additive manufacturing process |
US10046522B2 (en) * | 2015-02-26 | 2018-08-14 | Stratasys, Inc. | Surface angle model evaluation process for additive manufacturing |
CN104890238B (zh) * | 2015-04-30 | 2017-05-24 | 北京敏速自动控制设备有限公司 | 三维打印方法及系统 |
US20170056970A1 (en) | 2015-08-24 | 2017-03-02 | Desktop Metal, Inc. | Control of a three-dimensional printing process using estimated thermal parameters |
FR3046370B1 (fr) * | 2015-12-31 | 2018-02-16 | Ecole Centrale De Nantes | Procede et systeme pour le reglage d'un dispositif de fabrication additive |
US10850495B2 (en) | 2016-01-29 | 2020-12-01 | Massachusetts Institute Of Technology | Topology optimization with microstructures |
WO2017136206A1 (en) | 2016-02-01 | 2017-08-10 | Seurat Technologies, Inc. | Additive manufacturing simulation system and method |
US10639718B2 (en) | 2016-03-03 | 2020-05-05 | Desktop Metal, Inc. | Molten material interfaces for magnetohydrodynamic metal manufacturing |
US20170252812A1 (en) | 2016-03-03 | 2017-09-07 | Desktop Metal, Inc. | Spread forming deposition |
CN107180451A (zh) * | 2016-03-09 | 2017-09-19 | 北京大学口腔医院 | 三维打印方法和装置 |
US10118337B2 (en) | 2016-06-06 | 2018-11-06 | Xerox Corporation | Electrostatic 3-D printer controlling layer topography using aerosol applicator |
US20180036964A1 (en) | 2016-08-08 | 2018-02-08 | General Electric Company | Method and system for inspection of additive manufactured parts |
EP3496934A4 (en) | 2016-08-09 | 2020-04-01 | Arevo, Inc. | SYSTEMS AND METHODS FOR STRUCTURAL ANALYSIS AND PRINTING OF PARTS |
US9656429B1 (en) * | 2016-08-09 | 2017-05-23 | Arevo, Inc. | Systems and methods for structurally analyzing and printing parts |
US11097464B2 (en) | 2016-08-26 | 2021-08-24 | Massachusetts Institute Of Technology | Systems, devices, and methods for inkjet-based three-dimensional printing |
US20180236540A1 (en) | 2017-02-21 | 2018-08-23 | Desktop Metal, Inc. | Jetting nanoparticle mixtures for fabrication of metal parts |
CN106802626A (zh) | 2017-03-07 | 2017-06-06 | 武汉理工大学 | 数控机床g代码内嵌参数的热误差补偿方法及其系统 |
-
2018
- 2018-04-02 US US15/943,442 patent/US10518480B2/en active Active
-
2019
- 2019-03-27 TW TW108110747A patent/TWI779183B/zh active
- 2019-03-27 TW TW112133393A patent/TWI845406B/zh active
- 2019-03-27 TW TW111133260A patent/TWI817697B/zh active
- 2019-03-29 CN CN201980032570.XA patent/CN112118949B/zh active Active
- 2019-03-29 EP EP19781688.7A patent/EP3774281B1/en active Active
- 2019-03-29 JP JP2020553621A patent/JP7054268B2/ja active Active
- 2019-03-29 CN CN202210941812.0A patent/CN115302780A/zh active Pending
- 2019-03-29 EP EP23177462.1A patent/EP4230385A1/en active Pending
- 2019-03-29 WO PCT/US2019/024795 patent/WO2019195095A1/en unknown
- 2019-12-20 US US16/723,212 patent/US11097490B2/en active Active
-
2021
- 2021-08-23 US US17/445,660 patent/US20210387421A1/en active Pending
-
2022
- 2022-03-25 JP JP2022050282A patent/JP7307509B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP7054268B2 (ja) | 2022-04-13 |
EP3774281B1 (en) | 2023-06-07 |
US20210387421A1 (en) | 2021-12-16 |
TW202408784A (zh) | 2024-03-01 |
TWI779183B (zh) | 2022-10-01 |
US11097490B2 (en) | 2021-08-24 |
US10518480B2 (en) | 2019-12-31 |
US20190299536A1 (en) | 2019-10-03 |
JP2021517525A (ja) | 2021-07-26 |
JP2022084860A (ja) | 2022-06-07 |
US20200247061A1 (en) | 2020-08-06 |
EP3774281A4 (en) | 2021-12-15 |
EP3774281A1 (en) | 2021-02-17 |
TW201945162A (zh) | 2019-12-01 |
TWI817697B (zh) | 2023-10-01 |
CN112118949A (zh) | 2020-12-22 |
CN112118949B (zh) | 2022-08-26 |
EP4230385A1 (en) | 2023-08-23 |
TWI845406B (zh) | 2024-06-11 |
JP7307509B2 (ja) | 2023-07-12 |
WO2019195095A1 (en) | 2019-10-10 |
CN115302780A (zh) | 2022-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI779183B (zh) | 加成製造中人工智慧反饋控制系統、方法及媒介 | |
US11731368B2 (en) | Systems, methods, and media for artificial intelligence process control in additive manufacturing | |
KR102584982B1 (ko) | 적층 제조에서 인공 지능 공정 제어를 위한 시스템, 방법 및 매체 | |
EP3162474B1 (en) | Imaging device, additive manufacturing system including an imaging device and method of operating such system | |
US10556381B2 (en) | Three-dimensional printer with force detection | |
JP6923268B2 (ja) | 溶融プール監視システム及び付加製造プロセスにおけるエラー検出方法 | |
EP3495904A1 (en) | Method and apparatus for predicting manufacturing parameters of a product to be manufactured in a 3d-printing process | |
Abdelrahman et al. | Quality certification and control of polymer laser sintering: layerwise temperature monitoring using thermal imaging | |
CN117957078A (zh) | 信息处理装置、测量系统、造型系统、信息处理方法、造型方法以及信息输出装置 |