JP2021517525A - 積層造形における人工知能フィードバック制御のためのシステム、方法および媒体 - Google Patents

積層造形における人工知能フィードバック制御のためのシステム、方法および媒体 Download PDF

Info

Publication number
JP2021517525A
JP2021517525A JP2020553621A JP2020553621A JP2021517525A JP 2021517525 A JP2021517525 A JP 2021517525A JP 2020553621 A JP2020553621 A JP 2020553621A JP 2020553621 A JP2020553621 A JP 2020553621A JP 2021517525 A JP2021517525 A JP 2021517525A
Authority
JP
Japan
Prior art keywords
print
layer
anomaly
image
artificial intelligence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020553621A
Other languages
English (en)
Other versions
JP7054268B2 (ja
Inventor
シー プットマン,マシュー
シー プットマン,マシュー
ピンスキー,バディム
ウィリアムス,ジェームス
リモージュ,ダマス
アスウィン,ラーギャフ ニルマルスワレン
アスウィン,ラーギャフ ニルマルスワレン
クリス,マリオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanotronics Imaging Inc
Original Assignee
Nanotronics Imaging Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanotronics Imaging Inc filed Critical Nanotronics Imaging Inc
Publication of JP2021517525A publication Critical patent/JP2021517525A/ja
Priority to JP2022050282A priority Critical patent/JP7307509B2/ja
Application granted granted Critical
Publication of JP7054268B2 publication Critical patent/JP7054268B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/29Graphical models, e.g. Bayesian networks
    • G06F18/295Markov models or related models, e.g. semi-Markov models; Markov random fields; Networks embedding Markov models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/64Three-dimensional objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2203/00Controlling
    • B22F2203/03Controlling for feed-back
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • G01N2021/8438Mutilayers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8883Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges involving the calculation of gauges, generating models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/047Probabilistic or stochastic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/088Non-supervised learning, e.g. competitive learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/06Recognition of objects for industrial automation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/12Acquisition of 3D measurements of objects
    • G06V2201/121Acquisition of 3D measurements of objects using special illumination

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Medical Informatics (AREA)
  • Mathematical Physics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Analytical Chemistry (AREA)
  • Databases & Information Systems (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automation & Control Theory (AREA)
  • Biochemistry (AREA)
  • Signal Processing (AREA)
  • General Factory Administration (AREA)
  • Control Of Non-Electrical Variables (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

人工知能を用いた積層造形システムは、印刷層の生成されたトポグラフィー画像から、対象物の印刷層内の異常を識別することができる。積層造形システムはまた、人工知能を用いて、識別された異常と1つまたは複数の印刷パラメータとの間の相関を決定し、1つまたは複数の印刷パラメータを最適に調整することができる。積層造形システムはまた、人工知能を用いて、1つまたは複数の印刷パラメータを最適化し、所望の機械的、光学的および/または電気的特性を達成することができる。

Description

本開示は、積層造形における人工知能フィードバック制御を提供するためのメカニズムに関する。
3Dプリンタおよびセル・プリンタなどの積層造形システムは、天然、合成または生物材料の複数層を堆積させ、押出、焼結、光重合、メカノ合成または電気流体力学力のプロセスを介して対象物を製造するために広く用いられている。積層造形のプロセスは、層堆積プロセスを介して対象物を製造し、印刷対象物が完成するまで、積層造形プリンタは、連続した層を追加し続ける。
一般的に、積層造形プリンタによって印刷される対象物は、生産設計に基づく。3次元モデリング・ソフトウェア(例えば、CADプログラム)を用いて、対象物のための生産設計を所望の仕様に作成することができる。次に、スライス・プログラムは、生産設計を数値制御符号(例えば、G符号)に変換することができ、数値制御符号は、設計を多くの層に分割し、次に、積層造形プリンタに、生産設計の個々の層の物理的表現を印刷するように指示するために用いることができる。積層造形の目的は、生産設計の仕様に厳密に従う対象物を印刷することである。
印刷対象物は、生産設計のサイズおよび複雑さに応じて、完了するのに数時間から数日までかかり得る。現在の積層造形システムは、それらが提供可能なフィードバックのタイプ、および対象物の各層が印刷された後にそれらがとり得る修正処置、に制限される。しばしば、対象物全体が印刷されるまで、フィードバックは提供されない。対象物のための印刷プロセスの間にフィードバックが提供されるとき、それは、通常、対象物の印刷を停止すべきかまたは継続すべきかを決定するためである。
いくつかの積層造形システムにおいて、フィードバックは、光が対象物上に当たっているときに印刷対象物によって作成される陰影によって提供される。陰影が印刷対象物の領域を妨げ、正確なフィードバックを阻むので、この方法は制限される。積層造形における正確なフィードバックは、品質および再生可能な印刷対象物を維持するために有用である。
したがって、対象物のための印刷プロセスの間、タイムリな修正処置をとることができるように、対象物の各印刷層のために人工知能フィードバック制御(AIFC)を提供することが望ましい。印刷対象物の所望の機械的、光学的および/または電気的特性を達成するとともに、その生産設計に非常に類似するかまたは生産設計を改善する印刷対象物を達成するために、AIFCを提供することもまた望ましい。
いくつかの実施形態に従って、積層造形における人工知能フィードバック制御のためのシステム、方法および媒体が提供される。より詳細には、いくつかの実施形態では、積層造形システムが提供され、システムは、層方法によって層内の対象物を印刷するように構成される印刷ヘッドと、照明を対象物の印刷層の表面に当てるための照明光源と、印刷層の画像をキャプチャするように構成される画像センサと、少なくとも1つのハードウェア・プロセッサと、を備え、少なくとも1つのハードウェア・プロセッサは、キャプチャ画像を受信し、印刷層の3次元トポグラフィー画像を生成し、第1の人工知能アルゴリズムを用いて、生成されたトポグラフィー画像から印刷層内の異常を識別し、第2の人工知能アルゴリズムを用いて、識別された異常と1つまたは複数の印刷パラメータとの間の相関を決定し、値を1つまたは複数の印刷パラメータに割り当てるように構成される。
いくつかの実施形態において、積層造形のための方法が提供され、方法は、層方法によって層内で印刷される対象物の印刷層の画像をキャプチャするように構成される画像センサによって生成されるキャプチャ画像を受信するステップと、ハードウェア・プロセッサを用いて、印刷層の3次元トポグラフィー画像を生成するステップと、第1の人工知能アルゴリズムを用いて、生成されたトポグラフィー画像から印刷層内の異常を識別するステップと、第2の人工知能アルゴリズムを用いて、識別された異常と1つまたは複数の印刷パラメータとの間の相関を決定するステップと、値を1つまたは複数の印刷パラメータに割り当てるステップと、を含む。
いくつかの実施形態において、コンピュータ実行可能命令を含む非一時的コンピュータ可読媒体が提供され、コンピュータ実行可能命令は、プロセッサによって実行されるとき、プロセッサに、層方法によって層内で印刷される対象物の印刷層の画像をキャプチャするように構成される画像センサによって生成されるキャプチャ画像を受信するステップと、印刷層の3次元トポグラフィー画像を生成するステップと、第1の人工知能アルゴリズムを用いて、生成されたトポグラフィー画像から印刷層内の異常を識別するステップと、第2の人工知能アルゴリズムを用いて、識別された異常と1つまたは複数の印刷パラメータとの間の相関を決定するステップと、値を1つまたは複数の印刷パラメータに割り当てるステップと、を含む、積層造形のための方法を実行させる。
いくつかの実施形態に従う積層造形システムの一例である。
いくつかの実施形態に従う積層造形プリンタで使用可能なカメラおよび光源の一例である。
いくつかの実施形態に従って、オペレータが印刷パラメータを数値制御符号生成器内に入力するためのインタフェースの一例である。
いくつかの実施形態に従ってキャプチャ可能な堆積するフィラメントにおける予想外のギャップを示す印刷層の画像の一例である。
いくつかの実施形態によってキャプチャし得る印刷層内の意図しない糸のようなアーチファクトおよび他の破壊を示すさまざまな印刷層の画像の例である。
いくつかの実施形態による、(高いレベルでの)積層造形印刷動作の一例である。
いくつかの実施形態による、数値制御符号内に含まれ得る印刷層のための設定点のセットのシミュレーションの一例である。
いくつかの実施形態による、横断された印刷経路がどのように見え得るかのシミュレーションの一例である。
いくつかの実施形態による、異なる充填密度および充填パターンに基づいて異常パターンおよび異常率を学習するための訓練プロセス、および、それらの異常パターンおよび異常率が印刷対象物の機械的特性にどのような影響を及ぼすかを示す一例である。
開示された内容のいくつかの実施形態に従って、積層造形の人工知能フィードバック制御(AIFC)のためのメカニズム(システム、方法、デバイス、装置などを含むことができる)が提供される。AIFCは、例えば、積層造形システムの印刷パラメータを最適化するのに有用であり、生産設計と比較して、印刷対象物の所望の機械的、光学的および/または電気的特性および/または所望の精度を達成することができる。AIFCは、印刷層内の異常を識別し、印刷プロセスの間、修正処置をとるのに有用となり得る。
本願明細書において開示されるように、いくつかの実施形態では、人工知能を用いて、本願明細書において記載されている積層造形から学習し、改善し、フィードバック、情報、データおよび/または命令を出力することができる(「AIFC」)。人工知能アルゴリズムは、単独または組み合わせて、以下の1つまたは複数を含むことができる。機械学習、隠れマルコフ・モデル、リカレント・ニューラル・ネットワーク、畳み込みニューラル・ネットワーク、ベイジアン記号法、敵対的生成ネットワーク、サポート・ベクトル・マシン、および/または、他の任意の適切な人工知能アルゴリズム。AIFCは、AIアルゴリズムに基づくが、AIFCはまた、人工知能アルゴリズムに基づかない積層造形の間に収集されたデータを用いることもできる。
図1は、開示された内容のいくつかの実施形態に従ってAIFCを実施することができる一例の積層造形システム100を示す。いくつかの実施形態によれば、積層造形システム100の基本構成要素は、高いレベルで、数値制御符号生成器110、積層造形プリンタ115、画像生成器170および画像分析器180を含む。積層造形プリンタ115は、画像センサ120、光源130、印刷ヘッド140、フィラメント供給システム145、ビルド・プレート150および制御モジュール160を含むことができる。積層造形システム100のための構成要素の機能は、単一の構成要素に結合可能であるかまたはいくつかの構成要素全体に及ぶことができる。いくつかの実施形態において、構成要素(例えば、数値制御符号生成器110、画像生成器170および/または画像分析器180)のいくつかの機能は、積層造形プリンタ115から遠隔で実行可能である。
積層造形システム100が、図示されない他の適切な構成要素を含むことができることに留意されたい。追加的にまたは代替的に、積層造形システム100内に含まれる構成要素のいくつかは省略可能である。
以下の説明は熱溶解積層法の積層造形プリンタを有するAIFCを用いることに言及するが、いくつかの実施形態では、本願明細書において記載されているAIFCは、ステレオリソグラフィ(SLA)、電子ビーム溶解、直接金属堆積(電気流体力学印刷)および選択的レーザー焼結を含む任意の適切な3次元印刷技術で使用可能である。
いくつかの実施形態において、積層造形プリンタ115は、印刷プロセスの間、画像および/または映像をキャプチャするための1つまたは複数の画像センサ120を含むことができる。画像センサ120は、対象物の各層の印刷の間および/または印刷の後、対象物の画像(または映像)をキャプチャするように構成可能である。画像センサ120は、例えば、デジタル・スチル・カメラおよび/またはデジタル・ビデオ・カメラにおいて用いられ得るような電荷結合素子(CCD)または相補形金属酸化膜半導体(CMOS)センサとすることができる。画像センサ120はまた、対象物の熱画像および/または映像をキャプチャし、温度計算を実行するための赤外線(IR)カメラを含むこともできる。画像センサ120は、ビルド・プレート150および/または印刷ヘッド140に対して異なる位置および角度に位置することができる。
いくつかの実施形態において、積層造形プリンタ115は、単一の光源130、または、ビルド・プレート150に対しておよび/または画像センサ120に対して異なる位置および角度に位置する複数の光源(例えば、多重光ベクトル)を含むことができる(例えば、光源は、画像センサ120の周りに円周方向に位置することができる)。照明は、用いられる光源のサイズ、数および/または照明の位置および角度によって変えることができる。画像センサ120が対象物の画像および/または映像をキャプチャすることができるように、照明を用いて、対象物の印刷層を照射することができる。
キャプチャした画像および/または映像は、メモリに保存され、画像生成器170に関連して本願明細書において述べられるように、印刷層の3次元トポグラフィー画像および/または他の適切な画像を作成することができる。
図2は、積層造形プリンタ115で使用可能なカメラ120および光源130の一例を示す。図2は、LEDホルダー230内にある発光ダイオード(LED)リング210に囲まれているカメラ120を含む。いくつかの実施形態において、制御モジュール160は、LEDリング210内の個々のLEDを制御し、どのLEDが照射すべきかを決定する。LEDリング210内の個々のLEDの制御は、印刷層の画像を生成するために用いられるトポグラフィー撮像技術の要件によって決定され得る。
上述したように、積層造形プリンタ115はまた、1つまたは複数の印刷ヘッド140および1つまたは複数のビルド・プレート150を含むことができる。印刷ヘッド140および/またはビルド・プレート150は、X(幅)、Y(長さ)およびZ(高さ)次元において他方に対して移動することができる。印刷ヘッド140は、フィラメント供給システム145によって供給され、印刷ヘッド140の1つまたは複数のノズルを通して層方法によって層内に押し出される、フィラメントを保持することができる。いくつかの実施形態において、印刷ヘッド・ノズルの温度は、制御され、印刷ヘッド140内に保存されるフィラメントを加熱し、フィラメントを堆積可能な流動可能な形に保つことができる(例えば、印刷ヘッド140および/またはビルド・プレート150が他方に対して移動するとき、および/または、印刷ヘッド140および/またはビルド・プレート150が静止しているとき)。押し出された材料は、(第1の押し出し層の場合のように)ビルド・プレート150に対して、または、以前に堆積された押し出し層に対して溶融することができる。制御可能な印刷ヘッド140および/またはビルド・プレート150の他の態様は、例えば、印刷ヘッド140および/またはビルド・プレート150が移動の間たどる経路、生産設計の層の間で移行するとき、印刷ヘッドおよび/またはビルド・プレート150がZ軸次元法に沿って他方に対して移動する量、印刷ヘッド140および/またはビルド・プレート150の他方に対する配向、印刷ヘッド140および/またはビルド・プレート150の移動の速度、および、印刷ヘッド140が堆積するフィラメントの量および率を含む。いくつかの実施形態において、印刷経路は、少なくとも2セットのX−Y−Z座標によって定義可能である。動作中に、印刷ヘッドおよび/またはビルド・プレートは、他方に対する移動を制御することができ、印刷ヘッドは、所望の充填パターンでフィラメントを放出することができる。いくつかの実施形態において、印刷ヘッド140および/またはビルド・プレート150は、数値制御符号生成器110および/または制御モジュール160からの符号によって制御可能である。
いくつかの実施形態において、ビルド・プレート150は、所定の温度まで加熱可能であり、異なる方向に配向可能である。
いくつかの実施形態において、制御モジュール160は、いくつかの実施形態では、コントローラおよびコントローラインタフェースを含むことができ、積層造形システム100の構成要素(例えば、数値制御符号生成器110、画像センサ120、光源130、印刷ヘッド140、ビルド・プレート150、画像生成器170および画像分析器180)の任意の適切な1つまたは複数の設定(例えば、温度、速度、配向など)、ならびに、積層造形システムの構成要素によって、および、構成要素間で実行される通信、動作(例えば、印刷対象物の画像をキャプチャすること、光源130を使用可能にすることなど)および計算を制御することができる。制御システム108は、(いくつかの実施形態ではソフトウェアを実行することができる)任意の適切なハードウェア、例えば、コンピュータ、マイクロプロセッサ、マイクロコントローラ、特定用途向け集積回路(ASIC)、フィールドプログラマブル・ゲート・アレイ(FGPA)およびデジタル信号プロセッサ(DSP)(これらのいずれかは、ハードウェア・プロセッサとも呼ぶことができる)、エンコーダ、エンコーダを読み込む回路、メモリ・デバイス(1つまたは複数のEPROM、1つまたは複数のEEPROM、ダイナミック・ランダム・アクセス・メモリ(「DRAM」)、スタティック・ランダム・アクセス・メモリ(「SRAM」)および/またはフラッシュ・メモリを含む)および/または他の任意の適切なハードウェア要素を含むこともできる。いくつかの実施形態では、積層造形システム100内の個別の構成要素は、それ自体のソフトウェア、ファームウェアおよび/またはハードウェアを含み、個別の構成要素を制御し、積層造形システム100内の他の構成要素と通信することができる。
いくつかの実施形態において、制御モジュール160と積層造形システム100の他の構成要素との間の通信および/または制御モジュール160と積層造形プリンタ115内の他の構成要素との間の通信は、任意の適切な通信技術、例えば、アナログ技術(例えば、リレー・ロジック)、デジタル技術(例えば、RS232、イーサネットまたは無線)、ネットワーク技術(例えば、ローカル・エリア・ネットワーク(LAN)、ワイド・エリア・ネットワーク(WAN)、インターネット)、ブルートゥース(登録商標)技術、近距離無線通信技術、セキュアRF技術および/または他の任意の適切な通信技術を用いることができる。
いくつかの実施形態において、オペレータ入力は、任意の適切な入力装置(例えば、キーボード、マウスまたはジョイスティック)を用いて、制御モジュール160と通信することができる。
図1に示される構成要素に加えて、積層造形プリンタ115はまた、他の構成要素、例えば、温度センサ、湿度センサ、印刷ヘッド140の加速および任意の予想外の動き(例えば衝撃、振動など)を測定するための加速度計および画像を表示するためのディスプレイ・モニタを含むことができる。積層造形プリンタ115はまた、画像センサ120、照明光源130、印刷ヘッド140および/またはビルド・プレート150を配向および/または移動させるための1つまたは複数のアクチュエータを含むことができる。
図1はまた、数値制御符号生成器110を示す。いくつかの実施形態において、数値制御符号生成器110は、印刷される対象物の3次元設計(例えば、キャド(CAD)モデル)(本願明細書において、「生産設計」と称される)を受信するように構成可能である。生産設計は、数値制御符号生成器110によって処理可能な任意の適切なフォーマット(例えば、スタンダード・テッセレーション・ランゲージ(.stl)、ドローイング・スタンダード(DWS)またはドローイング(DWG)ファイル・フォーマット)で受信可能である。
数値制御符号生成器110は、生産設計を積層造形プリンタ115用の命令に変換し、生産設計の物理的表現を印刷するように構成可能である。いくつかの実施形態において、数値制御符号生成器110は、オペレータが、図3に関連して記載されている特定の印刷パラメータを入力するためのインタフェースを含むことができる。印刷パラメータはまた、これらに限定されるものではないが、以下の1つまたは複数を含む。積層造形機械115の印刷特徴(例えば、印刷ヘッド・サイズ、押出加工されるフィラメントのタイプ、3D印刷技術など)、印刷経路、フィラメント供給率、および、生産設計の仕様(例えば、印刷設計がどのように見えなければならないか、設計の所望の機械的、光学的および/または電気的特性など)。
1つまたは複数の印刷パラメータに基づいて、数値制御符号生成器110は、スライス・アルゴリズムを適用し、Z方向に所定の距離で離れている平行面で生産設計と交差し、2次元または3次元の層を作成することができる。例えば、印刷される対象物がZ方向に5mmであり、所望の層厚がZ方向に0.2mmである場合、対象物の生産設計は、Z方向において0.2mm厚である25層にスライス可能である。生産設計をスライスすることに加えて、数値制御符号生成器110は、以下の1つまたは複数に基づいて印刷される各層のための数値制御符号を生成するようにさらに構成可能である。印刷パラメータ、現在印刷している印刷対象物の1つまたは複数の前の印刷層からのAIFC、他の印刷対象物からのAIFC(それらのいくつかは、生産設計に組み込まれてもよい)、および、積層造形プリンタ115の印刷特徴。
他の実施形態において、スライス・アルゴリズムは、第1の層のみを決定し、その第1の層のための数値制御符号を生成するように構成可能である。印刷対象物のその後の層の各々のための数値制御符号は、以下の1つまたは複数に基づいて生成可能である。現在印刷している印刷対象物の1つまたは複数の前の印刷層からのAIFC、他の印刷対象物からのAIFC(それらのいくつかは、生産設計に組み込まれてもよい)、印刷対象物の生産設計のための所望の機械的、光学的および/または電気的特性および仕様、および、オペレータによって入力される入力パラメータおよび/または積層造形プリンタ115の印刷特徴。いくつかの実施形態において、スライス・アルゴリズムは、完全に省略可能であり、数値制御符号は、以下の1つまたは複数に基づいて生成可能である。他の印刷対象物からのAIFC(それらのいくつかは、生産設計に組み込まれてもよい)、印刷対象物の生産設計のための所望の機械的、光学的および/または電気的特性および仕様、オペレータによって入力される入力パラメータ、および/または、積層造形プリンタ115の印刷特徴。いくつかの実施形態において、数値制御符号生成器はまた、制御できない変数(すなわち、人間の介入なしで制御できない変数)を考慮することもでき、制御できない変数は、例えば、これらに限定されるものではないが、周囲湿度、温度および露光量、電圧変化、積層造形プリンタ115の摩耗および印刷ヘッド140に利用できる全フィラメント供給を含む。
図3は、開示された内容のいくつかの実施形態に従って、オペレータが印刷パラメータを数値制御符号生成器110内に入力するためのインタフェース300の一例を示す。
インタフェース300が図示されない他の適切な印刷パラメータを制御するフィールドを含むことができることに留意されたい。追加的にまたは代替的に、インタフェース300内に含まれる印刷パラメータのいくつかは、いくつかの実施形態では、省略可能である。さらに、インタフェース300内に含まれる任意のおよびすべての印刷パラメータは、代替的には、数値制御符号生成器によって自動的に生成可能であり、オペレータによって入力可能ではない。いくつかの実施形態において、オペレータは、生産設計の第1の層のための印刷パラメータを入力することができ、数値制御符号生成器110は、人工知能アルゴリズムおよび本願明細書において開示される他の方法を用いて、印刷設計のその後の層のための印刷パラメータを生成することができる。
示されるように、インタフェース300は、層高さ、シェル厚さおよび退避機構のような印刷品質パラメータを制御するフィールドを含むことができる。
層高さは、印刷対象物の層の高さを意味する。層の高さは、印刷解像度に影響を及ぼし得る。例えば、短い層は、より高い層よりも、より詳細な印刷およびより滑らかな表面を作成することができる。しかしながら、より短い層を有する対象物は、印刷により長くかかり得る。反対に、より高い層は、より低解像度印刷およびより粗い表面に対応し得る。高い層を含む対象物は、より短い層を有する同じ対象物よりも、より迅速に印刷され得る。いくつかの実施形態では、任意の適切な層高さを用いることができる。
シェル厚さは、印刷対象物の外壁の厚さを意味する。いくつかの実施形態では、任意の適切なシェル厚差を用いることができる。
退避機構は、印刷ヘッドが、特定される印刷がない領域の上を移動するとき、フィラメントが印刷ヘッドから押出加工されないことを確実にすることを意味する。いくつかの実施形態において、退避機構を、有効にすることができ、または無効にすることができる。
インタフェース300はまた、印刷ヘッド速度および/またはビルド・プレート速度を制御するための印刷速度設定を制御するフィールドを含むことができる。印刷速度は、印刷ヘッドが印刷するとき、印刷ヘッドおよび/またはビルド・プレートがどのくらい速く移動するかを意味する。いくつかの実施形態では、任意の適切な印刷速度を用いることができる。印刷速度に基づいて、押出加工される必要がある材料の量(すなわち、供給率)を計算することができる。いくつかの実施形態では、任意の適切な供給率を用いることができる。
インタフェース300はまた、印刷ヘッド温度および/またはビルド・プレート温度を制御するための温度設定を制御するフィールドを含むことができる。押し出されたフィラメントが堆積のために十分に加熱されることを確実にするために、印刷速度が変化するとき、印刷ヘッドの温度を変えることが必要になり得る。いくつかの実施形態では、任意の適切な印刷ヘッド温度を用いることができる。
インタフェース300はまた、充填密度および充填パターン設定を制御するフィールドを含むことができる。
充填密度は、対象物の内側で印刷される構造を意味し、例えば、パーセンテージによって特定可能である。いくつかの実施形態では、任意の適切な充填密度を用いることができる。100%の充填密度は、意図されたギャップのない固体の充填密度を意味する。
充填パターンは、充填のパターンを意味する。いくつかの実施形態では、任意の適切な充填パターンを用いることができる。例えば、いくつかの実施形態では、充填パターンは、ハニカム、三角、グリッドおよび矩形を含むことができる。充填密度および充填パターンは、印刷重量、印刷対象物の強度、全体の印刷時間および外部特性に影響し得る。充填パターンはまた、機械的、光学的および/または電気的特性に影響し得る。いくつかの実施形態では、充填密度および充填パターンは、特定の層のために、または、対象物全体のために設定可能である。
さらに、インタフェース300は、サポート・タイプおよびプラットフォーム粘着タイプを含むサポート設定を制御するフィールドを含むことができる。
いくつかの印刷対象物は、突出部分を有することがあり、それゆえ、印刷プロセスの間、押し出されたフィラメントが落下するのを防止するためサポートを必要とし得る。サポート設定を用いて、サポートをどこに配置できるかを特定することができる。いくつかの実施形態では、任意の適切なサポート設定を用いることができる。
プラットフォーム粘着設定を用いて、印刷層のビルド・プレート150に対する粘着性を改善することができる。特定可能なプラットフォーム粘着設定の異なるタイプは、以下を含む。印刷対象物の基層とビルド・プレートとの間に厚いグリッドの形で余分のフィラメントを追加するラフト設定、印刷対象物の第1の層の周りにフィラメントの余分の線を追加するブリム設定、第1の印刷層上の対象物の周りにフィラメントの線を追加するスカート設定。特定のプラットフォーム粘着設定を用いることは、印刷対象物における反りの量を減少させるのを助けることができる。いくつかの実施形態では、任意の適切なプラットフォーム粘着設定を用いることができる。
インタフェース300はまた、対象物の配置および配向に関連したフィールド設定を含むことができる。これらの設定は、ビルド・プレート150上の印刷対象物の位置およびビルド・プレート150上の印刷対象物の配向を含む。いくつかの実施形態では、任意の適切な対象物配置および/または配向の設定を用いることができる。
いくつかの実施形態において、生成された数値制御符号は、印刷ヘッド140および/またはビルド・プレート150の相対運動のための印刷経路を記載することができる。印刷経路は、X−Y−Z次元における2セットの座標(設定点)によって、および、設定点の間で移動する方法を特定する命令によって定義可能である。生成された数値制御符号は、印刷経路に沿って一対の連続点の間で移動する間の印刷ヘッド140および/またはビルド・プレート150の互いに対する移動速度、一対の連続点の間のフィラメントの温度(または印刷ヘッド・ノズルの温度)および/または一対の連続点の間のフィラメントの供給率を特定することができる。生成された数値制御符号は、印刷ヘッド140がどこでフィラメントを押出加工しなければならないか、および/または、それがどこでフィラメントを放出することを控えなければならないかを特定することができる。生成された数値制御符号内に含まれるすべてのパラメータはまた、「印刷パラメータ」と考えられる。
上述した印刷パラメータの1つまたは複数は、制御できない変数と同様に、印刷対象物の特性、例えば層の異常、表面粗さ、印刷解像度、全ビルド時間、印刷対象物に用いられる押し出し材料の量ならびに印刷対象物の機械的、光学的および/または電気的特性に影響を及ぼし得る。機械的特性は、最大引張強度(Rm)、降伏強度(Rp2%)、破断点伸び(A%)、ヤング率(E)、疲労(σd)、ポアソン率、質量および比重を含むことができる。光学的特性は、吸収、反射、透過および屈折を含むことができる。電気的特性は、電気抵抗率および導電率を含むことができる。開示された機械的、光学的および電気的特性は、単なる例であり、限定することを意図するものではない。
AIFCを用いて、所望の機械的特性、光学的特性、電気的特性および/または印刷される対象物の任意の適切な特徴のために最適化することができる。AIFCはまた、対象物を印刷するとき、修正処置をとるために用いることもできる。修正処置は、現在印刷されている対象物の次の層または目標の将来の層の印刷パラメータを変えることを含むことができる。いくつかの実施形態において、AIFCを用いて、生産設計を改善することができる。
図1に示すように、積層造形システム100は、対象物の印刷層のキャプチャ画像および/または映像を処理することができる画像生成器170を含むことができる。いくつかの実施形態において、画像生成器170は、キャプチャ画像および/または映像を格納するとともに、キャプチャ画像および/または映像から、印刷層の3次元トポグラフィー画像および/または他の適切な画像を生成するように構成されるハードウェアまたはソフトウェアを含むことができる。
照明光の所定のサイズ、数および位置を有する異なるトポグラフィー撮像技術(シェイプ・フロム・フォーカス・アルゴリズム、シェイプ・フロム・シェーディング・アルゴリズム、フォトメトリック・ステレオ・アルゴリズムおよびフーリエ・サイコグラフィー・モジュレーション・アルゴリズムを含むがこれらに限定されるものではない)を用いて、各印刷層の1つまたは複数の3次元トポグラフィー画像を生成することができる。生成されたトポグラフィー画像は、印刷対象物および/または部分的な印刷対象物の完成された層に関連した容積情報、印刷対象物および/または部分的な印刷対象物の各層の全体の寸法、印刷対象物および/または部分的な印刷対象物の各層の特徴、ならびに、印刷対象物および/または部分的な印刷対象物の1つまたは複数の層で見つかる異常(例えば量、分布、異常タイプなど)に関する情報を提供することができる。
積層造形システム100内の画像生成器170の使用のために適合可能なシェイプ・フロム・フォーカス・アルゴリズムの一例は、Said Pertuzらによる「Analysis of Focus Measure Operators for Shape−from−Focus」、Pattern Recognition、第45巻、第5号、1415〜1432頁に記載されており、参照によりその全体が本願明細書に組み込まれる。開示された方法は、単なる一例であり、限定的であることを意図しない。
積層造形システム100内で画像生成器170の使用のために適合可能なシェイプ・フロム・シェーディング・アルゴリズムの一例は、Byungil Kimらによる「Depth and Shape from Shading using the Photometric Stereo method」、CVGIP:Image Understanding、第54巻、第3号、416〜427頁、1991に記載されており、参照によりその全体が本願明細書に組み込まれる。開示された方法は、単なる一例であり、限定的であることを意図しない。
積層造形システム100内で画像生成器170の使用のために適合可能なフォトメトリック・ステレオ・アルゴリズムの一例は、Jose R.A.Torreaoによる「Estimating 3−D Shape from the Optical Flow of Photometric Stereo Images」、Proceedings of the 6th Ibero−American Conference on AI:Progress in Artificial Intelligence(IBERAMIA1998)、Helder Coelho(編集)、Springer−Verlag、ロンドン、英国、英国、253−261に記載されており、参照によりその全体が本願明細書に組み込まれる。開示された方法は、単なる一例であり、限定的であることを意図しない。
積層造形システム100内の画像生成器170の使用のために適合可能なフーリエ・サイコグラフィー・モジュレーション・アルゴリズムの一例は、Guoan Zengらによる「Wide−field High−resolution Fourier Ptychographic Microscopy」、Nature Photonics、第7巻、739〜745頁、2013に記載されており、参照によりその全体が本願明細書に組み込まれる。開示された方法は、単なる一例であり、限定的であることを意図しない。
いくつかの実施形態において、トポグラフィー画像および/または画像生成器170によって生成される他の適切な画像は、異常率および分布、異常タイプ、印刷経路に沿ったさまざまな点での堆積するフィラメントなどのような情報を提供することができる。例えば、図4に示すように、印刷層のキャプチャ画像400は、堆積するフィラメントの予想外のギャップを示す。他のセットの例では、図5A、5Bおよび5Cに示すように、さまざまな印刷層のキャプチャ画像は、印刷層内の予想外の糸のようなアーチファクトおよび他の破壊を示す。
いくつかの実施形態において、画像分析器180は、生成されたトポグラフィー画像および/または他の適切な画像を画像生成器170から受信し、印刷層上の1つまたは複数の異常を視覚的に認識し、識別するように構成可能である。いくつかの実施形態において、これは、以下を比較して違いを識別することによって行うことができる。2次元または3次元のトポグラフィー画像から得られるような印刷層、印刷層の検出された印刷経路マップおよび/または層の画像の実際の特徴、および、生成された数値符号および/または層のための生産設計において特定されるような印刷層の特徴。いくつかの実施形態において、1つまたは複数の人工知能アルゴリズムを用いて、違いに基づいて異常を識別することができる。これらの異常は、例えば、実際の印刷層と生産設計および/または以下に対する印刷層のための生成された数値符号の違いを含むことができる。層の周辺の寸法、設定点の間の堆積するフィラメントの寸法、充填密度、充填パターン、表面粗さ、印刷経路、および/または、他の任意の変化。異常の識別は、異常を分類すること、ならびに、そのサイズ、形状、X−Y−Z位置および/または他の任意の適切な特徴を識別することを含むことができる。いくつかの実施形態では、任意の適切な人工知能アルゴリズムを用いることができる。例えば、いくつかの実施形態では、人工知能アルゴリズムは、単独あるいは組み合わせて、以下の1つまたは複数を含むことができる。機械学習、隠れマルコフ・モデル、リカレント・ニューラル・ネットワーク、畳み込みニューラル・ネットワーク、ベイジアン記号法、敵対的生成ネットワーク、サポート・ベクトル・マシン、および/または、他の任意の適切な人工知能アルゴリズム。
いくつかの実施形態においては、人工知能に基づかないアルゴリズムを用いて、異常を識別することができる。
いくつかの実施形態において、画像分析器180は、予めプログラムされ、印刷層の受信画像内の特定の異常(例えば、予想外のギャップまたはカールした端、歪んだまたは不均一なパターン、過剰な押出の点、糸のようであるか他の異質なアーチファクトおよび/または印刷層内の他の任意の破壊)を認識することができる。予めプログラムされた異常に基づいて、画像分析器180は、生成された画像を完成された印刷層のために処理し、処理された画像が予めプログラムされた異常に類似の異常を含むか否かを判定し、印刷層上の任意のこの種の異常の1つまたは複数の場所を識別することができる。
いくつかの実施形態において、画像分析器180は、検出異常と1つまたは複数の印刷パラメータとの間の相関を決定し、記録するようにさらに構成可能である。例えば、適切な人工知能アルゴリズムを用いて、画像分析器は、検出異常と相関し得る1つまたは複数の印刷パラメータを決定することができる。例えば、画像分析器180は、以下の例の相関を発見することができる。印刷ヘッドが他ではない特定の温度であるとき、破壊が発生すること、他ではない特定の印刷速度が、多数の予想外のギャップを生じること、および、対象物の特定の位置における特定の充填パターンが、異常の特定のタイプを生じること。
いくつかの実施形態において、検出異常と1つまたは複数の印刷パターンとの間の相関を検出することに応答して、画像分析器180は、印刷されている対象物または将来印刷される1つまたは複数の対象物の1つまたは複数の層が印刷される方法を変える情報、データおよび/または命令を提供することができる。例えば、いくつかの実施形態では、画像分析器は、発見される相関および/または印刷パラメータ設定を最適に調整するための命令を数値制御符号生成器110、制御モジュール160および/または他の任意のデバイスに通信することができる。次に、数値制御符号生成器110および/または制御モジュール160は、情報を用いて、現在印刷されている対象物の任意のその後の層のための数値制御符号における印刷パラメータの調整を行うことができる。いくつかの実施形態において、次の層または任意の将来の層が、前の層で見つかった異常を補償するように、印刷パラメータを調整することができる。例えば、予想外のギャップが印刷層において検出される場合、次の層のための数値制御符号は、ギャップの上に位置するフィラメントを堆積させるとき、ギャップを充填する命令を含むことができる。他の例では、予想外のギャップが対象物の下部で見つかるとき、対象物の上部における対称層のための数値制御符号は、ギャップを補償する命令を含むことができる。
いくつかの実施形態において、画像分析器180は、完成された印刷対象物を機械的、光学的および/または電気的に測定するように構成可能である。
いくつかの実施形態において、画像分析器180は、1つまたは複数の印刷パラメータと印刷層および/または完成された印刷対象物におけるわずかな異常との間の相関を検出するように構成可能である。さらなる実施形態において、画像分析器180は、1つまたは複数の印刷パラメータと完成された印刷対象物の測定された機械的、光学的および/または電気的特性との間の相関を検出するように構成可能である。1つまたは複数のこの種の相関を検出することに応答して、画像分析器は、印刷されている対象物または将来印刷される1つまたは複数の対象物の1つまたは複数の層が印刷される方法を変える情報、データおよび/または命令を提供することができる。いくつかの実施形態において、画像分析器180は、情報、データおよび/または命令を例えば3次元モデリング・ソフトウェアに提供し、生産設計を改善することができる。
いくつかの実施形態において、画像分析器180は、印刷層のための生成されたトポグラフィー画像および/または他の生成された画像ならびに印刷層のための生成された数値制御符号を用いて、制御できない変数(すなわち、人間の介入なしで制御できない変数)と結果得られる印刷ヘッドの動きとの間の関係を学習することができ、ならびに、堆積層内の異常(例えば、予想外のギャップまたはカールした端、歪んだまたは不均一なパターン、過剰な押出の点、数値制御符号において特定される印刷経路からの偏差、予想外の糸のようであるか他の異質なアーチファクトおよび/または印刷層内の他の任意の破壊)を学習することができる。制御できない変数と結果得られる印刷ヘッドの動きとの間の相関を異常と同様に検出することに応答して、画像分析器180は、印刷されている対象物または将来印刷される1つまたは複数の対象物の1つまたは複数の層が印刷される方法を変える情報、データおよび/または命令を提供することができる。
いくつかの実施形態において、相関に関する情報を用いて、本願明細書において記載されている多くのAIメカニズムの1つを訓練することができる。
いくつかの実施形態において、層が印刷された後、画像分析器180は、完成された印刷層を1つまたは複数の前の層と比較し、異常を検出および記録し、異常率およびパターンを比較および記録し、命令を数値制御符号生成器110および/または制御モジュール160に提供し、印刷パラメータを調整し、対象物の全体設計を最適化する(例えば、所望の機械的、光学的および/または電気的特性を得る、または、生産設計に酷似している印刷設計を達成する)、または、印刷ジョブの動作を最適化する(例えば、堆積速度をスピードアップする、または、必要な材料の量を最小化する)ように構成可能である。また、異常を識別するために、完成された層と以前の層との間の比較を用いて、積層造形システム100の印刷パラメータに対する因果関係をより良く割り当て、部分的な印刷対象物の次の層または任意のその後の層の適切な調整を行い、ならびに、類似または異なる対象物の将来の印刷ジョブを最適化することができる。
いくつかの実施形態において、画像分析器180は、部分的な印刷対象物の現在の層および/または前の層のための全体の異常率を分析し、類似の印刷ジョブからのAIFCに基づいて、命令を数値制御符号生成器110および/または制御モジュール160に提供し、部分的な印刷対象物の次の層および/または任意の将来の層のための印刷パラメータを調整し、所望の機械的、光学的および/または電気的特性を得るように構成可能である。
いくつかの実施形態において、層が印刷された後、人工知能に基づかないアルゴリズムを用いて、使用されている特定の積層造形プリンタの特定の較正に関連する異常を識別することができる。適切な調整は、その後の層および将来の印刷ジョブのための数値制御符号に対して、特定の積層造形プリンタの較正を考慮して行われる。
いくつかの実施形態において、1つまたは複数の印刷層内の異常が特定の所定の許容度を上回る場合、印刷対象物のための印刷ジョブは、完成の前に停止可能である。失敗した印刷ジョブのために収集されるデータは、情報、データおよび/または命令を数値制御符号生成器110、制御モジュール160および/または積層造形プリンタ115によって実行される印刷処理に関連した訓練データを収集する任意のコンピュータ・システムに提供することができる。
いくつかの実施形態において、画像分析器180は、印刷対象物のための異常データ(例えば、異常の分布、パターンおよび率)および自動的に推奨される印刷調整を3次元モデリング・ソフトウェアに送信し、異常に対応する設計における構造を除去または修正するようにさらに構成可能である。
図6は、図1から図3をさらに参照しながら、開示された内容のいくつかの実施形態に従って、高いレベルで、AIFCを用いた積層造形印刷動作の一例を示す。いくつかの実施形態において、積層造形プロセス600は、積層造形システム100を用いることができる。
610において、生産設計は、印刷対象物がどのように見えなければならないかを特定し、印刷対象物のための所望の機械的、光学的および/または電気的特性は、数値制御符号生成器110に提供される。いくつかの実施形態において、いくつかの最初の印刷パラメータは、オペレータによって入力される。いくつかの実施形態において、生産設計は、数値制御符号生成器110に提供され、画像分析器180は、AIFCを用いて、生産設計のための所望の機械的、光学的および/または電気的特性を決定する。
いくつかの実施形態において、オペレータは、画像分析器180のための規則セットを入力し、積層造形印刷プロセスの間、矛盾するゴールを解決することができる。例えば、ユーザは、印刷対象物の最適な機械的特性を達成することが、以下のことより優先すべきであることを特定することができる。印刷速度、生産設計に対する完全性、および、用いられるフィラメントの量の減少。オペレータはまた、どのような機械的、光学的および/または電気的特性が印刷対象物にとって最も重要かを特定することができるので、画像分析器180は、機械的、光学的および/または電気的特性を最適化する印刷パラメータを調整する命令を提供することができる。
620において、数値制御符号生成器110は、以下の1つまたは複数に基づいて、印刷対象物の層のための数値制御符号を生成することができる。オペレータによって入力される入力パラメータ、積層造形プリンタ115の印刷特徴、生産設計の仕様(機械的、光学的および/または電気的特性を含む)、部分的な印刷対象物の1つまたは複数の前の印刷層からのAIFCおよび/または他の印刷対象物からのAIFC。生成された数値制御符号は、横断する印刷ヘッド140および/またはビルド・プレート150のための設定点のセット(例えば、複数のX−Y−Z座標)を含むことができる。図7Aは、数値制御符号内に含まれ得る印刷層のための設定点セットの一例のシミュレーションを示す。生成された数値制御符号はまた、印刷ヘッドおよび/またはビルド・プレートがどのように個々の設定点を横断しなければならないかを定義する命令を含むことができる。横断された印刷経路が、含まれた命令に基づいて、どのように見え得るかの一例のシミュレーションは、例えば、図7Bに示される。
いくつかの実施形態において、生成された数値制御符号はまた、特定の印刷パラメータを特定することができ、特定の印刷パラメータは、設定点の間の印刷ヘッド140および/またはビルド・プレート150の速度、設定点の間の印刷ヘッド140および/またはビルド・プレート150のノズルの温度、設定点の間に堆積するフィラメントの量、設定点の間の充填密度および設定点の間の充填パターンを含むがこれらに限定されるものではない。
630において、印刷ヘッド140は、数値制御符号生成器110および/または制御モジュール160により提供される命令に従って、生産設計の層のためのフィラメントを堆積させることができる。
640において、光源130は、特定されたトポグラフィー撮像技術および/または(上述したような)他の撮像技術に基づいて、印刷層を照射することができる。
650において、画像センサ120は、照明された印刷層の画像をキャプチャすることができる。
660において、画像生成器170は、画像センサ120によってキャプチャされた画像に基づいて、印刷層の1つまたは複数のトポグラフィー画像および/または他の任意の適切な画像を生成することができる。いくつかの実施形態において、印刷層の生成された画像は、タイル化されるまたは貼り合わせられる一連のキャプチャ画像を含むことができる。
さらなる実施形態において、印刷層のための実際の印刷経路は、1つまたは複数のトポグラフィー画像、および/または、画像生成器170によって生成される他の適切な画像から決定可能である。
670において、画像分析器180は、生成されたトポグラフィー画像および/または他の生成された画像を印刷層のために用いるとともに、生成された数値制御符号を印刷層のために用いて、押し出し層内の異常(例えば、予想外のギャップまたはカールした端、歪んだまたは不均一なパターン、過剰な押出の点、数値制御符号において特定される印刷経路からの偏差、予想外の糸のようであるか他の異質なアーチファクトおよび/または印刷層内の他の任意の破壊)を決定し、記録することができる。
いくつかの実施形態において、画像分析器180は、生成された数値制御符号内に含まれる設定点および命令から印刷層のための印刷経路を抽出し、プロットすることができる。画像分析器は、プロットされた印刷経路をピクセルに変換し、印刷層のために生成された画像から得られる印刷経路の上にピクセルをオーバレイし、ピクセルと印刷経路との間の違いを判定することができる。いくつかの実施形態において、画像分析器180は、印刷層のための生成された画像から得られる印刷経路を座標系の印刷点に変換し、これらの印刷点を比較し、生成された数値制御符号から抽出されるプロットされた経路に沿って点を印刷することができる。
生成された画像から得られるような印刷層のための印刷経路が、生成された数値制御符号から抽出された印刷経路と同じである場合、それらの間の違いはゼロまたはほぼゼロである。ゼロより大きい数は、実際の印刷経路と生成された数値制御符号において特定される印刷経路との間で検出されるエラーの量を記載する。印刷経路の比較はまた、エラーが印刷経路上のどこで発生したかを示すことができる。
680において、画像分析器180は、異常の数および画像分析器が印刷層および/または前の層から検出した異常のパターン(実際の経路と生成された数値制御符号における印刷経路との間の偏差を含む)を分析することができる。他の印刷ジョブからのAIFCに基づいて、画像分析器180は、部分的な印刷対象物の次の層またはその後の層の印刷パラメータに調整を行わなければならないかを決定し、検出異常からみて所望の機械的、光学的および/または、電気的特性を達成することができる。例えば、検出異常に基づいて、部分的な印刷対象物の現在の層および/または前の層のために、画像分析器180が完成された印刷対象物のための機械的特性が要求より弱いことを決定する場合、画像分析器180は、数値制御符号生成器110および/または制御モジュール160に、次の層または任意のその後の層における特定の印刷パラメータを調整する(例えば、充填密度を増加させるおよび/または充填パターンを変える)ように指示し、所望の機械的特性を達成することができる。
いくつかの実施形態において、動作610−680は、各層、または、任意の数の層を繰り返して、印刷対象物を堆積する。画像分析器180は、各層で得られたデータおよび他の印刷ジョブからのAIFCを用いて、次の層および/またはその後の層のための印刷パラメータを修正し、印刷対象物の所望の機械的、光学的および/または電気的特性および/または所望の設計を達成することができる。さらなる実施形態において、完成された印刷対象物の機械的、光学的および/または電気的特性を測定することができる。
プロセス600の特定の部分がいつ実行されるかの分割は、変化させることができ、分割がないことまたは異なる分割は、本願明細書において開示される内容の範囲内である。いくつかの実施形態では、プロセス600のブロックは、任意の適切な時間において実行可能であることに留意されたい。本願明細書において記載されているプロセス600の部分の少なくとも一部が、いくつかの実施形態において図6に関連して図示および記載されている順序およびシーケンスに限定されるものではなく、任意の順序またはシーケンスで実行可能であることを理解されたい。また、本願明細書において記載されているプロセス600のいくつかの部分は、いくつかの実施形態において、実質的に、必要に応じて同時に、または、並列に実行可能である。追加的にまたは代替的に、プロセス600のいくつかの部分は、いくつかの実施形態では、省略可能である。
プロセス600は、任意の適切なハードウェアおよび/またはソフトウェアにおいて実施可能である。例えば、いくつかの実施形態では、プロセス600は、画像分析器180または数値制御符号生成器110において実施可能である。
いくつかの実施形態において、画像分析器180は、印刷対象物の各層の異常パターンを学習し、画像分析器180が、類似または異なる対象物(例えば、図6に関連して記載されているような)の印刷プロセスの間、層レベルでの印刷パラメータを最適に調整し、所望の機械的、光学的および/または電気的特性を達成することができる。
特定の印刷パラメータは、印刷対象物の機械的、光学的および/または電気的特性に影響を及ぼす。例えば、充填密度および充填パターンは、最大引張強度(Rm)、降伏強度(Rp2%)、破断点伸び(A%)、ヤング率(E)、疲労(σd)、ポアソン率、質量および比重のような機械的特性に影響を及ぼし得る。
異常パターンおよび特定の印刷パラメータが印刷対象物の機械的、光学的および/または電気的特性に実際にどのように影響を及ぼすか理解することで、印刷対象物の機械的、光学的および/または電気的特性に影響を及ぼす印刷パラメータを変化させながら、対象物を複数回印刷することができる。各印刷対象物のための異常パターンは、記載されているような、例えば図6に関連して(例えば670において)層レベルで決定可能かつ記録可能である。加えて、各印刷対象物の機械的、光学的および/または電気的特性を測定および記録することができる。
図8は、いくつかの実施形態に従って、異なる充填密度および充填パターンに基づいて異常パターンおよび異常率を学習するための訓練プロセスの一例800を示すとともに、それらの異常パターンおよび異常率が印刷対象物の機械的特性にどのように影響を及ぼすのかを示す。
810において、対象物の機械的特性に影響を及ぼす1つまたは複数の印刷パラメータを識別することができる。例えば、充填密度および充填パターンは、対象物の機械的特性に影響を及ぼすものとして識別可能である。いくつかの実施形態において、人工知能アルゴリズムを用いて、対象物の機械的特性に影響を及ぼす他の印刷パラメータを識別することができる。
820において、目標対象物の所定数(「グループ」)を印刷することができ、目標対象物の機械的特性に影響を及ぼすと識別された1つまたは複数の印刷パラメータを、グループ全体のために同一に保つことができる。例えば、グループの各対象物は、同じ充填パターンおよび充填密度の印刷パラメータを特定して印刷可能である。
830において、図6の670に関連して記載されているように、グループ内の各印刷対象物の層レベルで異常を検出し、記録することができる。例えば、実際の印刷経路と生成された制御符号から抽出される印刷経路との間の違いは、各層毎に決定可能である。グループ内の各目標対象物が印刷された後、その目標対象物の機械的特性を測定し、記録することができる。
830の後、プロセス800は820に戻ることができ、目標対象物の他の所定数は、異なる充填密度および/または充填パターンで印刷可能である。
820および830は、画像分析器180を訓練し、異常パターンおよび異なる識別された印刷パラメータ(例えば、充填密度および充填パターン)が対象物の機械的特性にどのように影響を及ぼすのかを学習するのに必要な回数だけ繰り返すことができる。目標対象物の所定数が印刷されるたびに(「グループ」)、識別されたパラメータ(例えば、充填密度および/または充填パターン)を変えることができる。下表は、目標対象物のための例のグループ、および、それらの特定された充填密度および充填パターンの印刷パラメータを反映する。
Figure 2021517525
いくつかの実施形態において、充填密度および充填パターンの印刷パラメータは、印刷対象物の各層のために一定の状態に保たれる。他の実施形態において、充填密度および/または充填パターンは、層がどこに位置するかに応じて、または、無作為に対象物の異なる層によって変化する。
一旦画像分析器180が異なる異常率およびパターンおよび識別された印刷パラメータ(例えば、異なる充填密度および充填パターン)が対象物の機械的特性にどのように影響を及ぼすのかについて学習すると、画像分析器は、印刷ジョブの間(例えば、層レベルで)、識別された印刷パラメータのための値を適切に調整し、所望の機械的特性を達成することができる。例えば、充填密度および充填パターンが調整されなかった場合、画像分析器180は、部分的な印刷対象物の印刷層が、一旦完成された印刷対象物の基準以下の機械的特性になるであろう特定の異常率およびパターンを有するということを検出することができる。次に、画像分析器180は、次の層および/または任意のその後の層のための充填率および充填パターンの印刷パラメータを調整し、所望の機械的特性を達成するとともに、異常の発生を減少するようにも試みることができる。
類似のプロセスは、異常パターンが対象物の光学的および/または電気的特性にどのように影響を及ぼすのかを学習するために実行可能である。例えば、対象物の光学的および/または電気的特性に影響を及ぼす印刷パラメータを識別することができる。目標対象物のグループは、印刷され、上述したように目標対象物のグループにわたり識別された印刷パラメータを制御することができる。一旦画像分析器180が異なる異常率およびパターンおよび識別された印刷パラメータが対象物の電気的および/または光学的特性にどのように影響を及ぼすのかを学習すると、画像分析器は、印刷ジョブの間層レベルで識別された印刷パラメータのための値を適切に調整し、所望の電気的および/または光学的特性を達成することができる。
類似のプロセスは、制御できない変数(すなわち、人間の介入なしで制御できない変数)が対象物の機械的、光学的および/または電気的特性にどのように影響を及ぼすかを学習するために実行可能である。例えば、対象物の機械的、光学的および/または電気的特性に影響を及ぼす制御できない変数を識別することができる。目標対象物のグループは、印刷され、上述したように目標対象物にわたり識別された制御できない変数を制御する。一旦画像分析器180が異なる異常率およびパターンおよび識別された印刷の制御できない変数が対象物の機械的、電気的および/または光学的特性にどのように影響を及ぼすのかを学習すると、画像分析器は、印刷ジョブの間層レベルで印刷パラメータのための値を適切に調整し、制御できない変数を補償し、所望の電気的および/または光学的特性を達成することができる。
プロセス800の特定の部分がいつ実行されるかの分割は、変化させることができ、分割がないことまたは異なる分割は、本願明細書において開示される内容の範囲内である。いくつかの実施形態では、プロセス800のブロックは、任意の適切な時間において実行可能であることに留意されたい。本願明細書において記載されているプロセス800の部分の少なくとも一部が、いくつかの実施形態において図8に関連して図示および記載されている順序およびシーケンスに限定されるものではなく、任意の順序またはシーケンスで実行可能であることを理解されたい。また、本願明細書において記載されているプロセス800のいくつかの部分は、いくつかの実施形態において、実質的に、必要に応じて同時に、または、並列に実行可能である。追加的にまたは代替的に、プロセス800のいくつかの部分は、いくつかの実施形態では、省略可能である。
プロセス800は、任意の適切なハードウェアおよび/またはソフトウェアにおいて実施可能である。例えば、いくつかの実施形態では、プロセス800は、画像分析器180または数値制御符号生成器110において実施可能である。
いくつかの実施形態において、画像分析器180は、生成されたトポグラフィー画像、および/または、(図6の660にて説明したように)印刷層のための他の生成された画像、ならびに、印刷層のための生成された数値制御符号を用いて、印刷パラメータと結果得られる印刷ヘッドの動きとの間の関係を学習することができ、ならびに、押し出し層内の異常(例えば、予想外のギャップまたはカールした端、歪んだまたは不均一なパターン、過剰な押出の点、カールした端、数値制御符号において特定される印刷経路からの偏差、予想外の糸のようであるか他の異質なアーチファクトおよび/または印刷層内の他の任意の破壊)を学習することができる。画像分析器180はまた、学習した関係を逆にして、結果として所望の印刷ヘッドの動きを生じ、押し出された層内の異常を最小化する最適な数値制御符号入力パラメータを計算することもできる。より詳しくは、人工知能アルゴリズムに対する入力変数は、以下を含むことができる。印刷ヘッドの中で以前の測定位置(
Figure 2021517525
によって表される)、結果として印刷ヘッドの以前の位置になった制御コード印刷パラメータ(θi-1によって表される)、および、印刷ヘッドの現在の測定位置(
Figure 2021517525
によって表される)。そして、出力変数は、結果として印刷ヘッドの現在の位置(θによって表される)になった数値制御符号パラメータとすることができる。入力変数および出力変数は、一緒に、人工知能アルゴリズムのための単一の訓練サンプルとして機能することができる。単一の印刷層は、結果としてこの種の数百の訓練サンプルを生ずることができる。これらの訓練サンプルは、前の層内の異常についての知識、生産設計の所望の仕様、積層造形プリンタの印刷特徴および/または周囲条件とともに、最適な印刷パラメータを計算し、所望の印刷ヘッドの動きを生成するために用いることができる。いくつかの実施形態では、訓練サンプルは、前の層内の異常についての知識、生産設計の所望の仕様、積層造形プリンタの特徴および/または周囲条件とともに、最適な印刷パラメータならびにその後の層のX−Y−Z設定点の最適配置および印刷経路のための命令を計算するために用いることができる。
いくつかの実施形態において、画像分析器180はまた、印刷パラメータと層の全体の特徴との間の関係を学習するために適用可能である。例えば、画像分析器180は、押し出された層内の異常の総数、印刷ヘッドおよび/またはビルド・プレートの動きが生成された数値制御符号における印刷経路の命令にどれくらい酷似していたかおよび充填密度を特定したかを学習するために適用可能である。いくつかの実施形態において、画像分析器180は、学習した関係を逆にして、所望の機械的、光学的および/または電気的特性を含む、結果として生産設計の仕様に最も酷似する層を生ずる印刷パラメータを計算することができる。
いくつかの実施形態において、画像分析器180は、生成されたトポグラフィー画像、および/または、印刷層のための生成された他の画像、ならびに、印刷層のための生成された数値制御符号を用いて、制御できない変数(すなわち、人間の介入なしで制御できない変数)と結果得られる印刷ヘッドの動きとの間の関係を学習することができ、ならびに、堆積層内の異常(例えば、予想外のギャップまたはカールした端、歪んだまたは不均一なパターン、過剰な押出の点、数値制御符号において特定される印刷経路からの偏差、予想外の糸のようであるか他の異質なアーチファクトおよび/または印刷層内の他の任意の破壊)を学習することができる。画像分析器180が、制御できない変数が閾値許容度を越えて、結果得られる印刷ヘッドの動きおよび/または堆積層内の異常に反対の影響を及ぼすということを発見する場合、画像分析器180は、制御モジュール160に警報を送信することができる。制御モジュール160は、警報を受信すると、警告を積層造形システム100のディスプレイ上に表示することができ、および/または、Eメール、テキストまたは他の任意の適切な電子メカニズムを介してオペレータに警告することができる。いくつかの実施形態において、画像分析器180は、Eメール、テキストまたは他の任意の適切な電子メカニズムを介してオペレータに直接警告するように構成可能である。例えば、いくつかの実施形態では、画像分析器180が、周囲湿度、温度および/または光が結果得られる印刷ヘッドの動きに悪影響を及ぼしている、または、層内の異常の数が所定の許容度を越えていると判定する場合、画像分析器180は、制御モジュール160および/またはオペレータに警報を送信することができる。いくつかの実施形態において、画像分析器180が、積層造形プリンタ115の摩耗および/または印刷ヘッド140が利用できるフィラメントの総量(例えば、フィラメントの少量)が結果得られる印刷ヘッドの動きに悪影響を及ぼしている、または、層内の異常の数が所定の許容度を越えていると判定する場合、画像分析器180は、制御モジュール160および/またはオペレータに警報を送信し、積層造形プリンタを交換し、および/または、フィラメントを補充することができる。いくつかの実施形態において、画像分析器180が、電圧変化が結果得られる印刷ヘッドの動きに悪影響を及ぼしている、または、層内の異常の数が所定の許容度を越えていると判定する場合、画像分析器180は、制御モジュール160および/またはオペレータに警報を送信し、電圧源を点検することができる。
いくつかの実施形態では、任意の適切なコンピュータ可読媒体を用いて、本願明細書において記載されている機能および/またはプロセスを実行するための命令を格納することができる。例えば、いくつかの実施形態では、コンピュータ可読媒体は、一時的または非一時的とすることができる。例えば、非一時的コンピュータ可読媒体は、非一時的磁気媒体(例えばハード・ディスク、フロッピー・ディスクなど)、非一時的光学媒体(例えばコンパクト・ディスク、デジタル・ビデオ・ディスク、ブルーレイ・ディスクなど)、非一時的半導体媒体(例えばフラッシュ・メモリ、電気的プログラム可能ROM(EPROM)、電気的消去可能ROM(EEPROM)など)のような媒体、伝送の間一過性ではないかまたは永続性の任意の外見を欠いている任意の適切な媒体および/または任意の適切な有形媒体を含むことができる。他の例として、一時的コンピュータ可読媒体は、ネットワーク、ワイヤ、導体、光ファイバ、回路および伝送の間一過性ではないかまたは永続性の任意の外見を欠いていない任意の適切な媒体および/または任意の適切な有形媒体上の信号を含むことができる。
本願明細書において記載されている例(ならびに「のような」、「例えば」、「含む」などとして言い表される条項)の提供は、請求された内容を具体例に制限するものとして解釈されるべきでなく、むしろ、例は、多数の可能な態様のいくつかを示すことのみを意図している。また、本願明細書で用いられているように、メカニズムの用語がハードウェア、ソフトウェア、ファームウェアまたはそれらの任意の適切な組み合わせを含むことができることに留意されたい。
積層造形システムおよび方法は、これらの例示の実施形態を具体的に参照して詳細に説明してきた。しかしながら、さまざまな修正および変更を、上述した明細書の開示の精神および範囲内で行うことができることは明らかであり、このような修正および変更は、この開示の均等物および一部とみなされるべきである。本発明の範囲は、以下の請求項によってのみ限定されるものである。

Claims (21)

  1. 積層造形システムであって、
    層方法によって層内の対象物を印刷するように構成される印刷ヘッドと、
    照明を前記対象物の印刷層の表面に提供するための照明光源と、
    前記印刷層の画像をキャプチャするように構成される画像センサと、
    少なくとも1つのハードウェア・プロセッサと、
    を備え、前記少なくとも1つのハードウェア・プロセッサは、
    キャプチャ画像を受信し、
    前記対象物のための1つまたは複数の所望の機械的特性を得、
    前記印刷層の3次元トポグラフィー画像を生成し、
    印刷層内の異常を検出するように構成される第1の人工知能アルゴリズムを用いて、前記生成されたトポグラフィー画像から前記印刷層内の異常を識別し、
    前記識別された異常と、前記印刷層を印刷するために用いられる充填密度および充填パターンのうちの1つとの間の相関を、識別された異常と前記充填密度および前記充填パターンのうちの前記1つとの間の相関を決定するように構成される第2の人工知能アルゴリズムを用いて、決定し、
    前記対象物のその後の層を印刷する前記印刷ヘッドにより用いられる前記充填密度および前記充填パターンのうちの前記1つの値を調整し、
    前記充填密度および前記充填パターンのうちの前記1つのための前記値を用いて、前記対象物の前記その後の層が前記印刷ヘッドによって印刷され、前記1つまたは複数の所望の機械的特性を実質的に達成する、
    ように構成される、積層造形システム。
  2. 前記印刷層の前記3次元トポグラフィー画像は、シェイプ・フロム・フォーカス・アルゴリズム、シェイプ・フロム・シェーディング・フォーカス・アルゴリズム、フォトメトリック・ステレオ・アルゴリズム、およびフーリエ・サイコグラフィー・モジュレーション・アルゴリズムのうちの1つを用いて生成される、請求項1に記載の積層造形システム。
  3. 前記第1の人工知能アルゴリズムおよび前記第2の人工知能アルゴリズムのうちの少なくとも1つは、機械学習、隠れマルコフ・モデル、リカレント・ニューラル・ネットワーク、畳み込みニューラル・ネットワーク、ベイジアン記号法、サポート・ベクトル・マシンおよび敵対的生成ネットワークのうちの少なくとも1つを含む、請求項1に記載の積層造形システム。
  4. 前記異常を識別することは、前記生成された3次元トポグラフィー画像と、前記印刷層のための生成された数値制御符号、前記印刷対象物の1つまたは複数の前の層、前記印刷対象物のための生産設計のうちの少なくとも1つと、を比較することによって実行される、請求項1に記載の積層造形システム。
  5. 前記少なくとも1つのハードウェア・プロセッサは、
    前記対象物の機械的特性、光学的特性および電気的特性のうちの少なくとも1つに影響を及ぼす印刷パラメータを識別し、
    前記対象物が印刷された後、前記機械的特性、前記光学的特性および前記電気的特性のうちの前記少なくとも1つを測定し、
    前記対象物の異常率および異常パターンのうちの少なくとも1つを決定し、
    前記異常率および前記異常パターンのうちの前記少なくとも1つならびに前記印刷パラメータが、前記対象物の前記機械的特性、前記光学的特性および前記電気的特性のうちの前記少なくとも1つにどのように影響を及ぼすかを決定する、
    ようにさらに構成される、
    請求項1に記載の積層造形システム。
  6. 印刷パラメータを識別することは、人工知能アルゴリズムを用いる、請求項5に記載の積層造形システム。
  7. 前記異常率および前記異常パターンのうちの前記少なくとも1つ、ならびに前記印刷パラメータが、前記機械的特性、前記光学的特性および前記電気的特性のうちの前記少なくとも1つ、にどのように影響を及ぼすかを決定することは、人工知能アルゴリズムを用いる、請求項5に記載の積層造形システム。
  8. 積層造形のための方法であって、
    層方法によって層内で印刷される対象物の印刷層の画像をキャプチャするように構成される画像センサによって生成されるキャプチャ画像を受信するステップと、
    前記対象物のための1つまたは複数の所望の機械的特性を得るステップと、
    ハードウェア・プロセッサを用いて、前記印刷層の3次元トポグラフィー画像を生成するステップと、
    印刷層内の異常を検出するように構成される第1の人工知能アルゴリズムを用いて、前記生成されたトポグラフィー画像から前記印刷層内の異常を識別するステップと、
    前記識別された異常と、前記印刷層を印刷するために用いられる充填密度および充填パターンのうちの1つと、の間の相関を、識別された異常と前記充填密度および前記充填パターンのうちの前記1つとの間の相関を決定するように構成される第2の人工知能アルゴリズムを用いて、決定するステップと、
    印刷ヘッドにより用いられる前記充填密度および前記充填パターンのうちの前記1つのための値を調整し、前記対象物のその後の層を印刷するステップと、
    前記充填密度および前記充填パターンのうちの前記1つのための前記値を用いて、前記対象物の前記その後の層を前記印刷ヘッドに印刷させ、前記1つまたは複数の所望の機械的特性を実質的に達成するステップと、
    を含む方法。
  9. 前記印刷層の前記3次元トポグラフィー画像は、シェイプ・フロム・フォーカス・アルゴリズム、シェイプ・フロム・シェーディング・フォーカス・アルゴリズム、フォトメトリック・ステレオ・アルゴリズム、およびフーリエ・サイコグラフィー・モジュレーション・アルゴリズムのうちの1つを用いて生成される、請求項8に記載の方法。
  10. 前記第1の人工知能アルゴリズムおよび前記第2の人工知能アルゴリズムのうちの少なくとも1つは、機械学習、隠れマルコフ・モデル、リカレント・ニューラル・ネットワーク、畳み込みニューラル・ネットワーク、ベイジアン記号法、サポート・ベクトル・マシンおよび敵対的生成ネットワークのうちの少なくとも1つを含む、請求項8に記載の方法。
  11. 前記異常を識別するステップは、前記生成された3次元トポグラフィー画像と、前記印刷層のための生成された数値制御符号、前記印刷対象物の1つまたは複数の前の層、および前記印刷対象物のための生産設計のうちの少なくとも1つと、を比較することによって実行される、請求項8に記載の方法。
  12. 前記対象物の機械的特性、光学的特性および電気的特性のうちの少なくとも1つに影響を及ぼす印刷パラメータを識別するステップと、
    前記対象物が印刷された後、前記機械的特性、前記光学的特性および前記電気的特性のうちの前記少なくとも1つを測定するステップと、
    前記対象物の異常率および異常パターンのうちの少なくとも1つを決定するステップと、
    前記異常率および前記異常パターンのうちの前記少なくとも1つならびに前記印刷パラメータが、前記対象物の前記機械的特性、前記光学的特性および前記電気的特性のうちの前記少なくとも1つにどのように影響を及ぼすかを決定するステップと、
    をさらに含む、
    請求項8に記載の方法。
  13. 印刷パラメータを識別するステップは、人工知能アルゴリズムを用いる、請求項12に記載の方法。
  14. 前記異常率および前記異常パターンのうちの前記少なくとも1つ、ならびに前記印刷パラメータが、前記対象物の前記機械的特性、前記光学的特性および前記電気的特性のうちの前記少なくとも1つ、にどのように影響を及ぼすかを決定するステップは、人工知能アルゴリズムを用いる、請求項12に記載の方法。
  15. コンピュータ実行可能命令を含む非一時的コンピュータ可読媒体であって、前記コンピュータ実行可能命令は、プロセッサによって実行されるとき、前記プロセッサに、
    層方法によって層内で印刷される対象物の印刷層の画像をキャプチャするように構成される画像センサによって生成されるキャプチャ画像を受信するステップと、
    前記対象物のための1つまたは複数の所望の機械的特性を得るステップと、
    前記印刷層の3次元トポグラフィー画像を生成するステップと、
    印刷層内の異常を検出するように構成される第1の人工知能アルゴリズムを用いて、前記生成されたトポグラフィー画像から前記印刷層内の異常を識別するステップと、
    前記識別された異常と、前記印刷層を印刷するために用いられる充填密度および充填パターンのうちの1つと、の間の相関を、識別された異常と前記充填密度および前記充填パターンのうちの前記1つとの間の相関を決定するように構成される第2の人工知能アルゴリズムを用いて、決定するステップと、
    印刷ヘッドにより用いられる前記充填密度および前記充填パターンのうちの前記1つのための値を調整し、前記対象物のその後の層を印刷するステップと、
    前記充填密度および前記充填パターンのうちの前記1つのための前記値を用いて、前記対象物の前記その後の層を前記印刷ヘッドに印刷させ、前記1つまたは複数の所望の機械的特性を実質的に達成するステップと、
    を含む、積層造形のための方法を実行させる、非一時的コンピュータ可読媒体。
  16. 前記印刷層の前記3次元トポグラフィー画像は、シェイプ・フロム・フォーカス・アルゴリズム、シェイプ・フロム・シェーディング・フォーカス・アルゴリズム、フォトメトリック・ステレオ・アルゴリズムおよびフーリエ・サイコグラフィー・モジュレーション・アルゴリズムのうちの1つを用いて生成される、請求項15に記載の非一時的コンピュータ可読媒体。
  17. 前記第1の人工知能アルゴリズムおよび前記第2の人工知能アルゴリズムのうちの少なくとも1つは、機械学習、隠れマルコフ・モデル、リカレント・ニューラル・ネットワーク、畳み込みニューラル・ネットワーク、ベイジアン記号法、サポート・ベクトル・マシンおよび敵対的生成ネットワークのうちの少なくとも1つを含む、請求項15に記載の非一時的コンピュータ可読媒体。
  18. 前記異常を識別するステップは、前記生成された3次元トポグラフィー画像と、前記印刷層のための生成された数値制御符号、前記印刷対象物の1つまたは複数の前の層、および前記印刷対象物のための生産設計、のうちの少なくとも1つと、を比較することによって実行される、請求項15に記載の非一時的コンピュータ可読媒体。
  19. 前記方法は、
    前記対象物の機械的特性、光学的特性および電気的特性のうちの少なくとも1つに影響を及ぼす印刷パラメータを識別するステップと、
    前記対象物が印刷された後、前記機械的特性、前記光学的特性および前記電気的特性のうちの前記少なくとも1つを測定するステップと、
    前記対象物の異常率および異常パターンのうちの少なくとも1つを決定するステップと、
    前記異常率および前記異常パターンのうちの前記少なくとも1つ、ならびに前記印刷パラメータが、前記対象物の前記機械的特性、前記光学的特性および前記電気的特性のうちの前記少なくとも1つ、にどのように影響を及ぼすかを決定するステップと、
    をさらに含む、
    請求項15に記載の非一時的コンピュータ可読媒体。
  20. 印刷パラメータを識別するステップは、人工知能アルゴリズムを用いる、請求項19に記載の非一時的コンピュータ可読媒体。
  21. 前記異常率および前記異常パターンのうちの前記少なくとも1つならびに前記印刷パラメータが、前記対象物の前記機械的特性、前記光学的特性および前記電気的特性のうちの前記少なくとも1つにどのように影響を及ぼすかを決定するステップは、人工知能アルゴリズムを用いる、請求項19に記載の非一時的コンピュータ可読媒体。
JP2020553621A 2018-04-02 2019-03-29 積層造形における人工知能フィードバック制御のためのシステム、方法および媒体 Active JP7054268B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022050282A JP7307509B2 (ja) 2018-04-02 2022-03-25 積層造形における人工知能フィードバック制御のためのシステム、方法および媒体

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/943,442 2018-04-02
US15/943,442 US10518480B2 (en) 2018-04-02 2018-04-02 Systems, methods, and media for artificial intelligence feedback control in additive manufacturing
PCT/US2019/024795 WO2019195095A1 (en) 2018-04-02 2019-03-29 Systems, methods, and media for artificial intelligence feedback control in additive manufacturing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022050282A Division JP7307509B2 (ja) 2018-04-02 2022-03-25 積層造形における人工知能フィードバック制御のためのシステム、方法および媒体

Publications (2)

Publication Number Publication Date
JP2021517525A true JP2021517525A (ja) 2021-07-26
JP7054268B2 JP7054268B2 (ja) 2022-04-13

Family

ID=68056754

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020553621A Active JP7054268B2 (ja) 2018-04-02 2019-03-29 積層造形における人工知能フィードバック制御のためのシステム、方法および媒体
JP2022050282A Active JP7307509B2 (ja) 2018-04-02 2022-03-25 積層造形における人工知能フィードバック制御のためのシステム、方法および媒体

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022050282A Active JP7307509B2 (ja) 2018-04-02 2022-03-25 積層造形における人工知能フィードバック制御のためのシステム、方法および媒体

Country Status (6)

Country Link
US (3) US10518480B2 (ja)
EP (2) EP3774281B1 (ja)
JP (2) JP7054268B2 (ja)
CN (2) CN112118949B (ja)
TW (3) TWI779183B (ja)
WO (1) WO2019195095A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021003813A (ja) * 2019-06-25 2021-01-14 株式会社ジェイテクト 付加製造物の品質推定装置
JP7498284B2 (ja) 2020-02-20 2024-06-11 インクビット, エルエルシー 付加製造のための複数材料走査

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3369014B1 (en) * 2015-10-28 2021-11-03 Siemens Industry Software Inc. System and method for optimizing tool paths based on thermal/structural simulations of a part being produced via a 3d-printer
US20220405434A1 (en) * 2017-05-08 2022-12-22 Physna Inc. System and methods for 3d model evaluation using triangle mesh hashing
EP3635687B1 (en) * 2017-05-08 2022-07-13 Physna Inc. System and methods for 3d model evaluation
WO2019177981A1 (en) * 2018-03-10 2019-09-19 Postprocess Technologies, Inc. System and method of manufacturing an additively manufactured object
US11084225B2 (en) 2018-04-02 2021-08-10 Nanotronics Imaging, Inc. Systems, methods, and media for artificial intelligence process control in additive manufacturing
WO2020028807A1 (en) 2018-08-03 2020-02-06 Walmart Apollo, Llc Mobile assembly apparatus
US11733684B2 (en) * 2018-09-27 2023-08-22 Hewlett-Packard Development Company, L.P. Overlaying production data on rendered 3D printed object
US11931950B2 (en) * 2018-09-28 2024-03-19 Lawrence Livermore National Security, Llc Machine learning informed control systems for extrusion printing processes
US11256231B2 (en) * 2019-02-27 2022-02-22 The Boeing Company Object design using machine-learning model
US11776072B2 (en) * 2019-04-25 2023-10-03 Shibaura Machine Co., Ltd. Machine learning method, information processing device, computer program product, and additive manufacturing monitoring system
US11014295B2 (en) * 2019-07-02 2021-05-25 Saudi Arabian Oil Company Fabrication of composite parts by additive manufacturing and microstructure topology optimization
US11472122B2 (en) 2019-07-02 2022-10-18 Saudi Arabian Oil Company Fabrication of composite parts by additive manufacturing and microstructure topology customization
US20220281177A1 (en) * 2019-08-27 2022-09-08 The Regents Of The University Of California Ai-powered autonomous 3d printer
KR20220054673A (ko) 2019-09-10 2022-05-03 나노트로닉스 이미징, 인코포레이티드 제조 공정을 위한 시스템, 방법 및 매체
US11100221B2 (en) 2019-10-08 2021-08-24 Nanotronics Imaging, Inc. Dynamic monitoring and securing of factory processes, equipment and automated systems
WO2021073717A1 (de) * 2019-10-14 2021-04-22 Wacker Chemie Ag 3d-druckvorrichtung und verfahren zur herstellung von objekten mit erhöhter druckqualität
WO2021168308A1 (en) * 2020-02-21 2021-08-26 Nanotronics Imaging, Inc. Systems, methods, and media for manufacturing processes
US11086988B1 (en) 2020-02-28 2021-08-10 Nanotronics Imaging, Inc. Method, systems and apparatus for intelligently emulating factory control systems and simulating response data
AT17186U1 (de) * 2020-03-11 2021-08-15 Progress Maschinen & Automation Ag 3D-Druckvorrichtung, insbesondere für die Bauindustrie
EP3925760A3 (en) * 2020-04-03 2022-03-23 Ricoh Company, Ltd. Data output apparatus, three-dimensional fabrication system, and data output method
DE102020111747A1 (de) 2020-04-30 2021-11-04 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zur additiven Herstellung von Bauteilen
TWI724921B (zh) * 2020-06-16 2021-04-11 中華學校財團法人中華科技大學 具即時監控3d列印裝置之系統
WO2021257988A1 (en) * 2020-06-18 2021-12-23 Nanotronics Imaging, Inc. Systems, methods, and media for manufacturing processes
EP3936262A1 (de) * 2020-07-09 2022-01-12 Stephanie Ness Verfahren zur schichtweisen fertigung eines dreidimensionalen objekts, mit gezielter beleuchtung von kornrändern
CN116133829A (zh) * 2020-08-11 2023-05-16 易升腾知识产权有限责任公司 优化3d打印中的打印工艺参数
US11335443B1 (en) 2020-09-07 2022-05-17 OpenNano Pte. Ltd. Phenotypic patient data derivation from economic data
US20230289947A1 (en) * 2020-09-15 2023-09-14 Massachusetts Institute Of Technology Systems and methods for in-situ, real-time additive manufacturing analysis
TW202212158A (zh) * 2020-09-22 2022-04-01 美商益森頓股份有限公司 用於判定成品三維列印部件之估計條件之數值控制碼轉
WO2022064573A1 (ja) * 2020-09-23 2022-03-31 三菱重工業株式会社 敵対的生成ネットワークを用いた生産条件生成システム、及びその生産条件生成方法並びに生産条件生成プログラム
CN114368148A (zh) * 2020-10-15 2022-04-19 三纬国际立体列印科技股份有限公司 多密度内填充的切层与打印方法
US20220134647A1 (en) * 2020-11-02 2022-05-05 General Electric Company In-process optical based monitoring and control of additive manufacturing processes
CN112620652B (zh) * 2020-11-27 2022-09-27 哈尔滨工业大学 一种电弧增材制造过程的自适应控制系统及方法
KR102486714B1 (ko) * 2020-12-31 2023-01-10 서울시립대학교 산학협력단 3d 콘크리트 프린터의 인공지능 기반 토출제어 시스템
US11654634B2 (en) 2021-06-08 2023-05-23 International Business Machines Corporation Three-dimensional printing using generative adversarial network techniques
CN113579253B (zh) * 2021-07-19 2022-11-11 华中科技大学 一种增材制造多尺度温度场在线监测的方法和装置
CN113650286B (zh) * 2021-08-05 2022-05-10 嘉兴学院 一种电场驱动熔融喷射沉积微结构的控制方法
WO2023059618A1 (en) * 2021-10-07 2023-04-13 Additive Monitoring Systems, Llc Structured light part quality monitoring for additive manufacturing and methods of use
US20230226771A1 (en) * 2022-01-19 2023-07-20 Markforged, Inc Apparatus and method for performing in-process testing for verification of print parameters in a 3d printing apparatus
GB202204072D0 (en) * 2022-03-23 2022-05-04 Cambridge Entpr Ltd Method, apparatus and system for closed-loop control of a manufacturing process
CN114953464B (zh) * 2022-04-07 2024-05-31 深圳市猿人创新科技有限公司 3d打印机智能诊断方法、装置、电子设备及存储介质
US20230342908A1 (en) * 2022-04-22 2023-10-26 Baker Hughes Oilfield Operations Llc Distortion prediction for additive manufacturing using image analysis
CN115416283B (zh) * 2022-08-31 2024-05-24 上海大学 针对皮肤表皮层模型的生物3d打印制备系统及3d打印方法
EP4450261A1 (en) * 2023-04-21 2024-10-23 C.M.S. S.p.A. Method and apparatus of manufacturing products
CN117283743B (zh) * 2023-11-23 2024-02-02 绵阳华远同创科技有限公司 一种树脂生产成型加工流程预测控制系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345359A (ja) * 1991-01-03 1993-12-27 Internatl Business Mach Corp <Ibm> 三次元対象物組み立てシステム及び組み立て方法
JP2016533925A (ja) * 2013-08-07 2016-11-04 マサチューセッツ インスティテュート オブ テクノロジー 付加製造装置の自動プロセス制御
JP2017217911A (ja) * 2016-06-06 2017-12-14 ゼロックス コーポレイションXerox Corporation エアロゾルアプリケータを使用した静電型3dプリンタ制御層トポグラフィ

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL148073A0 (en) * 1999-09-03 2002-09-12 American Inter Metallics Inc Apparatus and methods for the production of powders
US7853351B2 (en) 2002-02-21 2010-12-14 Gary John Corey CNC machine tool and integrated machine tool controller incorporating 3D and up to 8-axes real time interactive tool compensation
EP1437882B1 (en) * 2002-12-11 2011-03-23 Agfa Graphics N.V. Method for creating 3-D prints
JP4075670B2 (ja) 2003-04-09 2008-04-16 トヨタ自動車株式会社 変化情報認識装置および変化情報認識方法
US20050031186A1 (en) * 2003-08-10 2005-02-10 Luu Victor Van Systems and methods for characterizing a three-dimensional sample
JP2005345359A (ja) * 2004-06-04 2005-12-15 Ricoh Co Ltd 走行体マークセンサ、回転体駆動装置及び画像形成装置
CN101943896B (zh) 2010-07-16 2012-02-29 浙江大学 数控机床误差的轨迹再生补偿方法
RU2553796C2 (ru) * 2011-01-28 2015-06-20 Аркам Аб Способ изготовления трехмерного тела
JP5732888B2 (ja) * 2011-02-14 2015-06-10 ソニー株式会社 表示装置及び表示方法
CN104254768A (zh) * 2012-01-31 2014-12-31 3M创新有限公司 用于测量表面的三维结构的方法和设备
US9274065B2 (en) 2012-02-08 2016-03-01 Rapiscan Systems, Inc. High-speed security inspection system
US20140039662A1 (en) 2012-07-31 2014-02-06 Makerbot Industries, Llc Augmented three-dimensional printing
WO2014172687A2 (en) 2013-04-18 2014-10-23 Massachusetts Institute Of Technology, Inc. Methods and apparati for implementing programmable pipeline for three-dimensional printing including multi-material applications
JP2016529474A (ja) * 2013-06-13 2016-09-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 少なくとも1つの物体を光学的に検出する検出器
WO2014210374A1 (en) 2013-06-27 2014-12-31 Massachusetts Institute Of Technology System and method for designing three-dimensional objects
US9724876B2 (en) 2013-12-13 2017-08-08 General Electric Company Operational performance assessment of additive manufacturing
JP6367560B2 (ja) 2014-01-20 2018-08-01 ローランドディー.ジー.株式会社 三次元造形装置および三次元造形方法
US9747394B2 (en) 2014-03-18 2017-08-29 Palo Alto Research Center Incorporated Automated design and manufacturing feedback for three dimensional (3D) printability
US10252466B2 (en) 2014-07-28 2019-04-09 Massachusetts Institute Of Technology Systems and methods of machine vision assisted additive fabrication
US20160096318A1 (en) * 2014-10-03 2016-04-07 Disney Enterprises, Inc. Three dimensional (3d) printer system and method for printing 3d objects with user-defined material parameters
US20160167306A1 (en) 2014-12-11 2016-06-16 Massachusetts Institute Of Technology Systems and methods of hierarchical material design for additive fabrication
US9895845B2 (en) 2015-02-16 2018-02-20 Arevo Inc. Method and a system to optimize printing parameters in additive manufacturing process
US10046522B2 (en) * 2015-02-26 2018-08-14 Stratasys, Inc. Surface angle model evaluation process for additive manufacturing
CN104890238B (zh) * 2015-04-30 2017-05-24 北京敏速自动控制设备有限公司 三维打印方法及系统
US20170056970A1 (en) 2015-08-24 2017-03-02 Desktop Metal, Inc. Control of a three-dimensional printing process using estimated thermal parameters
FR3046370B1 (fr) * 2015-12-31 2018-02-16 Ecole Centrale De Nantes Procede et systeme pour le reglage d'un dispositif de fabrication additive
US10850495B2 (en) 2016-01-29 2020-12-01 Massachusetts Institute Of Technology Topology optimization with microstructures
WO2017136206A1 (en) 2016-02-01 2017-08-10 Seurat Technologies, Inc. Additive manufacturing simulation system and method
US10639718B2 (en) 2016-03-03 2020-05-05 Desktop Metal, Inc. Molten material interfaces for magnetohydrodynamic metal manufacturing
US20170252812A1 (en) 2016-03-03 2017-09-07 Desktop Metal, Inc. Spread forming deposition
CN107180451A (zh) * 2016-03-09 2017-09-19 北京大学口腔医院 三维打印方法和装置
US20180036964A1 (en) 2016-08-08 2018-02-08 General Electric Company Method and system for inspection of additive manufactured parts
EP3496934A4 (en) 2016-08-09 2020-04-01 Arevo, Inc. SYSTEMS AND METHODS FOR STRUCTURAL ANALYSIS AND PRINTING OF PARTS
US9656429B1 (en) * 2016-08-09 2017-05-23 Arevo, Inc. Systems and methods for structurally analyzing and printing parts
US11097464B2 (en) 2016-08-26 2021-08-24 Massachusetts Institute Of Technology Systems, devices, and methods for inkjet-based three-dimensional printing
US20180236540A1 (en) 2017-02-21 2018-08-23 Desktop Metal, Inc. Jetting nanoparticle mixtures for fabrication of metal parts
CN106802626A (zh) 2017-03-07 2017-06-06 武汉理工大学 数控机床g代码内嵌参数的热误差补偿方法及其系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345359A (ja) * 1991-01-03 1993-12-27 Internatl Business Mach Corp <Ibm> 三次元対象物組み立てシステム及び組み立て方法
JP2016533925A (ja) * 2013-08-07 2016-11-04 マサチューセッツ インスティテュート オブ テクノロジー 付加製造装置の自動プロセス制御
JP2017217911A (ja) * 2016-06-06 2017-12-14 ゼロックス コーポレイションXerox Corporation エアロゾルアプリケータを使用した静電型3dプリンタ制御層トポグラフィ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021003813A (ja) * 2019-06-25 2021-01-14 株式会社ジェイテクト 付加製造物の品質推定装置
JP7494448B2 (ja) 2019-06-25 2024-06-04 株式会社ジェイテクト 付加製造物の品質推定装置
JP7498284B2 (ja) 2020-02-20 2024-06-11 インクビット, エルエルシー 付加製造のための複数材料走査

Also Published As

Publication number Publication date
JP7054268B2 (ja) 2022-04-13
EP3774281B1 (en) 2023-06-07
US20210387421A1 (en) 2021-12-16
TW202408784A (zh) 2024-03-01
TWI779183B (zh) 2022-10-01
US11097490B2 (en) 2021-08-24
US10518480B2 (en) 2019-12-31
US20190299536A1 (en) 2019-10-03
JP2022084860A (ja) 2022-06-07
US20200247061A1 (en) 2020-08-06
EP3774281A4 (en) 2021-12-15
EP3774281A1 (en) 2021-02-17
TW201945162A (zh) 2019-12-01
TWI817697B (zh) 2023-10-01
CN112118949A (zh) 2020-12-22
CN112118949B (zh) 2022-08-26
EP4230385A1 (en) 2023-08-23
TWI845406B (zh) 2024-06-11
JP7307509B2 (ja) 2023-07-12
WO2019195095A1 (en) 2019-10-10
TW202308833A (zh) 2023-03-01
CN115302780A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
JP7054268B2 (ja) 積層造形における人工知能フィードバック制御のためのシステム、方法および媒体
US11731368B2 (en) Systems, methods, and media for artificial intelligence process control in additive manufacturing
KR102584982B1 (ko) 적층 제조에서 인공 지능 공정 제어를 위한 시스템, 방법 및 매체
EP3377251B1 (en) An additive manufacturing method and apparatus
CN107438494B (zh) 用于激光加工的视觉预览
CN111168062B (zh) 用于检测增材制造处理中的错误的熔池监测系统和方法
EP3495904A1 (en) Method and apparatus for predicting manufacturing parameters of a product to be manufactured in a 3d-printing process
EP3667565A1 (en) Method for melt pool monitoring using machine learning
CN112589098A (zh) 用于操作喷射三维(3d)物体打印机的金属滴以补偿液滴尺寸变化的方法和系统
US20230173608A1 (en) Height Measurement Techniques and Uses Thereof
US20230173545A1 (en) Method and system for classifying additive manufactured objects
Rettenberger et al. Fault Detection in 3D-Printing with Deep Learning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220325

R150 Certificate of patent or registration of utility model

Ref document number: 7054268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150