TW202306921A - 具有保留強度的透明玻璃陶瓷製品及其顯示裝置 - Google Patents

具有保留強度的透明玻璃陶瓷製品及其顯示裝置 Download PDF

Info

Publication number
TW202306921A
TW202306921A TW111112803A TW111112803A TW202306921A TW 202306921 A TW202306921 A TW 202306921A TW 111112803 A TW111112803 A TW 111112803A TW 111112803 A TW111112803 A TW 111112803A TW 202306921 A TW202306921 A TW 202306921A
Authority
TW
Taiwan
Prior art keywords
optical film
glass
film structure
layer
article
Prior art date
Application number
TW111112803A
Other languages
English (en)
Inventor
傑明 艾敏
傑森湯瑪士 哈瑞斯
尚登笛 哈特
金暢奎
卡爾威廉 科赫三世
卡洛安東尼科希 威廉斯
林琳
文東建
吳定烘
詹姆士喬瑟夫 布萊斯
夏琳瑪莉 史密斯
杰卡 烏蘭札克
徐廷戈
Original Assignee
美商康寧公司
韓商康寧精密素材股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商康寧公司, 韓商康寧精密素材股份有限公司 filed Critical 美商康寧公司
Publication of TW202306921A publication Critical patent/TW202306921A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3423Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings comprising a suboxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3482Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising silicon, hydrogenated silicon or a silicide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/734Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本文描述一種透明製品,包括:玻璃陶瓷基板,包含彼此相對的第一及第二主表面以及至少40重量%的結晶度;以及光學膜結構,設置在第一主表面上。光學膜結構包含複數個交替的高折射率(RI)及低RI層以及耐刮擦層。該製品亦呈現大於80%的平均適光透射率以及藉由Berkovich硬度測試在約100nm至約500nm的壓痕深度範圍內測量的大於10GPa的最大硬度。玻璃陶瓷基板包含大於85GPa的彈性模量以及大於0.8MPa·√m的斷裂韌性。進一步地,光學膜結構呈現≥700MPa的殘餘壓縮應力以及≥140GPa的彈性模量。

Description

具有保留強度的透明玻璃陶瓷製品及其顯示裝置
本申請案係根據專利法主張於2021年4月1日提出申請之美國臨時申請案第63/169,376號及2021年11月24日提出申請之美國臨時申請案第63/282,720號之優先權權益。這些申請案中之每一者的整體內容藉由引用而為了所有目的併入本文。
本揭示係關於用於保護光學製品及顯示裝置的透明製品,更特定為具有玻璃陶瓷基板的透明製品,玻璃陶瓷基板具有設置於其上的光學膜結構,光學膜結構呈現各種光學及機械效能屬性,包括高硬度、適光透射率、低透射顏色、抗損傷性、高模量、高斷裂韌性、及/或保留強度。
具有玻璃基板的覆蓋製品通常用於保護電子產品及系統內的關鍵裝置及部件(例如,行動裝置、智慧型手機、平板電腦、手持裝置、車載顯示器、及具有顯示器、相機、光源、及/或感測器的其他電子裝置)。這些覆蓋製品亦可以用於建築製品、運輸製品(例如,用於汽車應用、火車、飛行器、航海器等的製品)、家電製品、或需要一定透明度、耐刮擦性、耐磨性、或其組合的任何製品。
使用覆蓋玻璃製品的這些應用通常需要機械及環境耐久性、抗破損性、抗損傷性、耐刮擦性、及強大的光學效能特徵的組合。舉例而言,覆蓋製品可能需要在可見光譜中呈現高透光率、低反射率、及/或低透射顏色。在一些應用中,覆蓋製品需要覆蓋及保護顯示裝置、相機、感測器、及/或光源。
在這些應用中,已經成功使用組合玻璃基板與光學硬塗佈的習知覆蓋製品。然而,在這些應用中使用的裝置通常仍然受到抗損傷性的限制,更特定為受到意外撞擊事件(例如,裝置掉落)的限制。儘管使用聚合物基板及/或低模量、高韌性聚合物塗佈的其他方式已經成功用於改善抗損傷性,但是這些方式傾向降低裝置等級的耐刮擦性,而可能降低光學效能,或者可能需要增加顯示功率,以用於補償光學效能的損失。其他覆蓋製品使用玻璃陶瓷或陶瓷基板,其相較於玻璃基板,具有更高的硬度及模量等級。但是這些方式是受限的成功,相較於使用透過離子交換處理強化的玻璃基板的覆蓋製品方式,玻璃陶瓷及陶瓷基板通常被認為具有較差的光學性質。
使用玻璃或玻璃陶瓷基板與光學膜結構的習知覆蓋製品可能會受到製品等級的機械效能降低的影響。更特定言之,在這些基板上包括光學膜結構在光學效能及某些機械性質(例如,耐刮擦性)方面提供優勢;然而,這些基板與光學膜結構的習知組合(例如,利用高模量及/或硬度改善耐刮擦性的最佳化)導致所得到的製品的強度等級較差。應注意,基板上的光學膜結構的存在可能不利地將製品的強度等級降低到低於沒有光學膜結構的裸露形式的基板的強度等級。
因此,需要用於保護光學製品及裝置的改善的覆蓋製品,更特定為具有高硬度、適光透射率、及低透射顏色以及抗損傷性、高模量、及/或高斷裂韌性的透明製品。此外,需要在包括光學膜結構之後的保持或基本上保持裸露基板強度等級(例如,處於或高於應用驅動閾值)的前述透明製品。本揭示解決了這些需要及其他需要。
根據本揭示的態樣,提供一種透明製品,包括:玻璃陶瓷基板,包含第一及第二主表面,該等主表面彼此相對;以及光學膜結構,定義外表面,光學膜結構係設置在第一主表面上。玻璃陶瓷基板包含至少40重量%的結晶度。進一步地,光學膜結構包含複數個交替的高折射率(RI)及低RI層以及耐刮擦層。該製品亦呈現大於80%的平均適光透射率、在0度至10度的入射角下利用少於4的D65照明體的透射顏色√(a* 2+b* 2)、及藉由Berkovich硬度測試在距離光學膜結構的外表面的約100nm至約500nm的壓痕深度範圍內測量的大於10GPa的最大硬度。進一步地,該玻璃陶瓷基板包含大於85GPa的彈性模量以及大於0.8MPa·√m的斷裂韌性。
根據本揭示的另一態樣,提供一種透明製品,包括:玻璃陶瓷基板,包含第一及第二主表面,該等主表面彼此相對;以及光學膜結構,定義外表面,光學膜結構係設置在第一主表面上。玻璃陶瓷基板包含至少40重量%的結晶度。進一步地,光學膜結構包含複數個交替的高折射率(RI)及低RI層以及耐刮擦層。該製品亦呈現大於80%的平均適光透射率、在0度至10度的入射角下利用少於4的D65照明體的透射顏色√(a* 2+b* 2)、及利用具有1000g負載的維氏壓痕損傷測試所測試的具有少於160微米的平均最大線性尺寸或少於25000μm 2的橫向裂紋面積的橫向裂紋區域。
根據本揭示的進一步態樣,提供一種透明製品,包括:玻璃陶瓷基板,具有約1.52或更大的折射率並包含第一及第二主表面,該等主表面彼此相對;以及光學膜結構,定義外表面,光學膜結構係設置在第一主表面上。玻璃陶瓷基板包含至少40重量%的結晶度。進一步地,光學膜結構包含複數個交替的高折射率(RI)及低RI層以及耐刮擦層。該製品亦呈現大於80%的平均適光透射率以及在0度至10度的入射角下利用少於4的D65照明體的透射顏色√(a* 2+b* 2)。此外,光學膜結構包含外結構與內結構,耐刮擦層係設置在外結構與內結構之間。進一步地,光學膜結構的內結構經配置以基本上匹配玻璃陶瓷基板與耐刮擦層之間的光學阻抗。玻璃陶瓷基板亦包含大於85GPa的彈性模量以及大於0.8MPa·√m的斷裂韌性。
根據本揭示的態樣,提供一種透明製品,包括:玻璃陶瓷基板,包含第一及第二主表面,該等主表面彼此相對;以及光學膜結構,包含內表面及外表面,光學膜結構的內表面係設置在第一主表面上。玻璃陶瓷基板包含至少40重量%的結晶度。進一步地,光學膜結構包含複數個交替的高折射率(RI)層及低RI層以及耐刮擦層。該製品亦呈現大於80%的平均適光透射率以及藉由Berkovich硬度測試在距離光學膜結構的外表面的約100nm至約500nm的壓痕深度範圍內測量的大於10GPa的最大硬度。玻璃陶瓷基板包含大於85GPa的彈性模量以及大於0.8MPa·√m的斷裂韌性。進一步地,光學膜結構呈現大於或等於700MPa的殘餘壓縮應力以及大於或等於140GPa的彈性模量。
根據本揭示的另一態樣,提供一種透明製品,包括:玻璃陶瓷基板,包含第一及第二主表面,該等主表面彼此相對;以及光學膜結構,包含內表面及外表面,光學膜結構的內表面係設置在第一主表面上。玻璃陶瓷基板包含至少40重量%的結晶度。進一步地,光學膜結構包含複數個交替的高折射率(RI)層及低RI層以及耐刮擦層。該製品亦呈現大於80%的平均適光透射率以及藉由Berkovich硬度測試在距離光學膜結構的外表面的約100nm至約500nm的壓痕深度範圍內測量的大於10GPa的最大硬度。玻璃陶瓷基板包含大於85GPa的彈性模量以及大於0.8MPa·√m的斷裂韌性。進一步地,光學膜結構呈現700MPa至1100MPa的殘餘壓縮應力以及140GPa至200GPa的彈性模量。此外,該製品呈現在光學膜結構的外表面處於張力下的環對環測試中的700MPa或更大的平均破損應力。
根據本揭示的進一步態樣,提供一種透明製品,包括:玻璃陶瓷基板,包含第一及第二主表面,該等主表面彼此相對;以及光學膜結構,包含內表面及外表面,光學膜結構的內表面係設置在第一主表面上。玻璃陶瓷基板包含至少75重量%的結晶度、二矽酸鋰相、及少於100nm的平均結晶大小。進一步地,光學膜結構包含複數個交替的高折射率(RI)層及低RI層以及耐刮擦層。光學膜結構具有約200nm至約5000nm的總物理厚度,而耐刮擦層具有約100nm至約4000nm的物理厚度。光學膜結構呈現約140GPa至180GPa的彈性模量。進一步地,該製品呈現在光學膜結構的外表面處於張力下的環對環測試中的700MPa或更大的平均破損應力。
根據本揭示的其他態樣,提供一種顯示裝置,包括前述透明製品中之一或更多者,其中每一製品作為顯示裝置的保護外罩。
根據本揭示的另一態樣,提供一種製造透明製品的方法,包括以下步驟:提供玻璃陶瓷基板,包含第一及第二主表面,該等主表面彼此相對;以及在基板上沉積光學膜結構,光學膜結構包含內表面及外表面,其中光學膜結構的內表面係設置在第一主表面上。玻璃陶瓷基板包含至少40重量%的結晶度。進一步地,光學膜結構包含複數個交替的高折射率(RI)層及低RI層以及耐刮擦層。該製品亦呈現大於80%的平均適光透射率以及藉由Berkovich硬度測試在距離光學膜結構的外表面的約100nm至約500nm的壓痕深度範圍內測量的大於10GPa的最大硬度。玻璃陶瓷基板包含大於85GPa的彈性模量以及大於0.8MPa·√m的斷裂韌性。進一步地,進行沉積光學膜結構的步驟而使得光學膜結構呈現大於或等於700MPa的殘餘壓縮應力以及大於或等於140GPa的彈性模量。
在隨後的具體實施方式中將闡述額外特徵及優勢,而該領域具有通常知識者可根據該描述而部分理解額外特徵及優勢,或藉由實踐本文中(包括隨後的具體實施方式、申請專利範圍、及附隨圖式)所描述的實施例而瞭解額外特徵及優勢。
在下列實施方式中,基於解釋而非限制之目的,闡述揭示具體細節的示例性實施例,以提供針對本揭示的各種原理的徹底理解。然而,受益於本揭示的該領域具有通常知識者應理解,可以在與本文所示的具體細節不同的其他實施例中實踐本揭示。此外,可以省略針對習知裝置、方法、及材料的描述,以避免模糊本揭示的各種原理的描述。最後,在任何適用處,類似的元件符號係表示類似的元件。
本文所表示之範圍可為從「約」一個特定值及/或到「約」另一特定值。當表示這樣的範圍時,另一實施例包括從一個特定值及/或到另一特定值。同樣地,當以使用前置詞「約」的近似方式表示值時,將可瞭解到特定值將形成另一實施例。可以進一步瞭解範圍的每一端點明顯與另一端點有關,並獨立於另一端點。
本文所使用的方向術語(例如,「上」、「下」、「右」、「左」、「前方」、「後方」、「頂部」、「底部」)係僅對於參照圖式的圖示成立,而不預期為暗示絕對定向。
除非另外明確陳述,否則並不視為本文所述任何方法必須建構為以特定順序施行其步驟。因此,在方法請求項並不實際記載其步驟之順序或者不在請求項或敘述中具體說明步驟係限制於特定順序的情況中,在任何方面都不以任何方式推斷其順序。這適用於為了說明的任何可能非表述基礎,包括對於佈置或操作流程之佈置的邏輯主題;文法組織或標點所推衍的通用意義;在說明書中所敘述之實施例的數量或類型。
如本文所使用,除非上下文明確另外指示,否則單數型「一」、「一個」與「該」包括複數指稱。因此,舉例而言,除非上下文明確另外指示,否則對於一「部件」的參照包括具有二或更多個部件的態樣。
如本文所使用,術語「設置」包括使用此項技術中任何已知或已開發的方法將材料塗佈、沉積、及/或形成在表面上。所設置的材料可以構成如本文所定義的層。如本文所使用,片語「設置於……上」包括將材料形成至表面上以使得材料與表面直接接觸之步驟,以及利用設置於材料與表面之間的一或更多種中介材料將材料形成於表面上的實施例。一或更多種中介材料可以構成如本文所定義的層。
如本文所使用,術語「低RI層」及「高RI層」係指稱根據本揭示的透明製品的光學膜結構的層的折射率(「RI」)的相對值(亦即,低RI層<高RI層)。因此,低RI層的折射率值少於高RI層的折射率值。進一步地,如本文所使用,「低RI層」及「低折射率層」可以互換,而含義相同。同樣地,「高RI層」及「高折射率層」可以互換,而含義相同。
如本文所使用,術語「強化基板」係指稱經過化學強化的本揭示的透明製品所使用的基板,例如,透過將基板的表面中的較小離子交換成較大離子的離子交換而強化的基板。然而,該領域已知的其他強化方法(例如,熱回火或利用部分的基板之間的熱膨脹係數的不匹配以產生壓縮應力與中心張力區域)可以用於形成強化基板。
本文所使用的「Berkovich壓痕器硬度測試」與「Berkovich硬度測試」可以互換使用,以指稱藉由利用鑽石Berkovich壓痕器針對表面進行壓痕來測量材料在其表面上的硬度的測試。Berkovich壓痕器硬度測試包括利用鑽石Berkovich壓痕器針對本揭示的透明製品的單一光學膜結構或外光學膜結構的最外表面(例如,暴露表面)進行壓痕,以將壓痕形成為約50nm至約1000nm的範圍的壓痕深度(或者外或內光學膜結構的整個厚度,以較小者為準),並沿著整個壓痕深度範圍或此壓痕深度的一部分(例如,約100nm至約600nm的範圍內)測量此壓痕的最大硬度,通常使用Oliver, W.C.與Pharr, G. M.在J. Mater. Res., Vol. 7, No. 6, 1992, 1564-1583的「An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments」以及Oliver, W.C.與Pharr, G.M.在J. Mater. Res., Vol. 19, No. 1, 2004, 3-20的「Measurement of Hardness and Elastic Modulus by Instrument Indentation: Advances in Understanding and Refinements to Methodology」所提出的方法。如本文所使用,「硬度」及「最大硬度」中之每一者可互換地指稱沿著壓痕深度的範圍所測量的最大硬度,而不是平均硬度。
如本文所使用,進行「維氏壓痕損傷測試」以測量使用玻璃陶瓷基板的本揭示的透明製品及習知透明製品的抗損傷性。使用100g及1000g的準靜態負載的維氏壓痕器進行測試。根據測試,使用維氏壓痕器尖端進行一系列壓痕測試,壓痕器尖端係為具有方形底座及相對面之間的136度的夾角的稜錐形。在壓痕及壓痕器卸載之後,根據測試進行光學顯微鏡以產生壓痕表面的圖像,而這些圖像伴隨著透過聚焦離子束掃描電子顯微鏡(FIB-SEM)取得的橫截面圖像。此外,藉由測量及量化所觀察的損傷區的大小,評估這些圖像以估計損傷。更特定言之,藉由測量損傷區的平均最大線性尺寸(例如,以μm為單位)及/或損傷區的橫向裂紋區域(例如,以μm 2為單位),可以決定100g及1000g的負載中之一或二者處的維氏測試的損傷區的大小。
如本文所使用,進行「斜坡負載刮擦測試」以測量使用玻璃陶瓷基板的本揭示的透明製品及習知透明製品的耐刮擦性。使用具有90˚錐體及3.6mm半徑尖端的錐形鑽石壓痕器進行測試,其中刮痕具有500μm的長度,刮擦速度係為50μm/秒,負載從0mN斜升至320mN、360mN、或400mN的峰值負載。在進行測試後,藉由測量從刮擦路徑的中心開始的橫向裂紋長度來估計損傷。可以進行測試的變體,其中峰值負載在連續測試中封頂,並記錄負載,其中首先觀察到橫向裂紋。
如本文所使用,進行「石榴石刮擦測試」以測量使用玻璃陶瓷基板的本揭示的透明製品及習知透明製品的耐刮擦性。使用150號石榴石砂紙單次進行測試,在約0.6x0.6cm的接觸區域上施加4kg的負載。在此刮擦事件之後,藉由使用具有6mm直徑孔隙的Konica-Minolta CM700D的SCE測量的刮擦區域中的散射反射光來量化刮擦的等級。
如本文所使用,術語「環對環測試」或「ROR測試」係指稱用於決定本揭示的透明製品以及比較製品的破損強度或應力(以MPa為單位)的測試。分別使用12.7mm及25.4mm的直徑的高強度鋼製成的加載及支撐環的測試設備進行每一ROR測試。此外,加載及支撐環的承載表面經機械加工成約0.0625吋的半徑,以最小化環與透明製品之間的接觸區域中的應力集中。此外,加載環係放置在透明製品的最外主表面上(例如,在其光學膜結構的外表面上),而支撐環係放置在透明製品的最內主表面上(例如,在其基板的第二主表面上)。加載環包含使加載環能夠鉸接並確保測試樣品的適當對準及均勻加載的機構。此外,藉由利用1.2mm/min的加載速率將加載環抵靠到透明製品來進行每一ROR測試。ROR測試中的術語「平均」係為基於針對五(5)個樣品進行的破損應力測量的數學平均。此外,除非在本揭示的具體實例中另有說明,否則本文所述的所有破損應力值及測量係指稱來自將製品的外表面置於拉伸狀態的ROR測試的測量,如2018年7月5日所公開的標題「Coated Articles with Optical Coatings Having Residual Compressive Stress」的國際公開號WO2018/125676所述,並藉由引用整體併入本文。每一ROR測試中的破損通常發生在與處於拉伸狀態的加載環相對的樣品一側,而有限元素建模係用於在破損的位置處提供從破損加載到破損應力的適當轉換。亦應理解,可以採用其他破損強度測試來決定本揭示的透明製品的破損強度,其中依據測試條件、測試樣品幾何形狀、及該領域具有通常知識者所理解的其他技術考慮的差異來建立本揭示中所報告的ROR值及結果的適當相關性。然而,除非另有說明,根據ROR測試測量本揭示的透明製品以及比較製品所報告的所有平均破損強度值。
如本文所使用,術語「透射率」係定義為透射通過材料(例如,製品、基板、或其光學膜或部分)的給定波長範圍內的入射光學功率的百分比。術語「反射率」係類似地定義為從材料(例如,製品、基板、或其光學膜或部分)反射的給定波長範圍內的入射光學功率的百分比。可以使用特定線寬來測量透射率及反射率。如本文所使用,「平均透射率」係指稱在所定義的波長範圍內透射通過材料的入射光功率的平均量。如本文所使用,「平均反射率」係指稱藉由材料反射的入射光功率的平均量。
如本文所使用,「適光反射率」係藉由分別根據人眼的靈敏度對反射率或透射率與波長頻譜進行加權來浴中分別進行模擬人眼的回應。根據已知慣例(例如,CIE顏色空間慣例),適光反射率亦可以定義為反射光的光照度或三色刺激的Y值。如本文所使用,針對380nm至720nm的波長範圍的「平均適光反射率」在下列等式中係定義為與眼睛的光譜反應有關的光譜反射率R(λ)乘以照明體光譜I(λ)與CIE的顏色匹配函數ȳ(λ):
Figure 02_image001
此外,「平均反射率」可以根據該領域具有通常知識者所理解的測量原理在可見光譜或其他波長範圍(例如,在840nm至950nm的紅外光譜等)內決定。除非另有說明,本揭示所報告或以其他方式引用的所有反射率值均與透過基板的主表面與本揭示的透明製品的光學膜結構二者的測試相關聯(例如,「雙表面」平均適光反射率)。在指定「一個表面」或「第一表面」反射率的情況下,透過與光吸收劑的光學黏合消除來自製品的後表面的反射率,而允許僅測量第一表面的反射率。
透明製品在電子裝置中的可使用性(例如,作為保護外罩)可以與製品中的反射率的總量有關。適光反射率對於使用可見光的顯示裝置來說特別重要。在與裝置相關聯的透鏡及/或顯示器上方的覆蓋透明製品中的較低反射率可以減少裝置中的會產生「重影圖像」的多重反射。因此,反射率係與相關聯於裝置的圖像品質具有重要關係,更特定為其顯示器與任何其他光學部件(例如,相機的透鏡)。較低反射率的顯示器亦可以實現較佳的顯示器可讀性、減少眼睛疲勞、及更快的使用者回應時間(例如,在汽車顯示器中,顯示器的可讀性亦與駕駛者安全相關)。較低反射率的顯示器亦可以允許降低顯示器能量消耗,並增加裝置電池壽命,因為相較於標準顯示器,較低反射率的顯示器的顯示亮度可以降低,同時在明亮的周圍環境中仍然維持顯示器可讀性的目標等級。
如本文所使用,「適光透射率」在下列等式中係定義為與眼睛的光譜反應有關的光譜透射率T(λ)乘以照明體光譜I(λ)與CIE的顏色匹配函數ȳ(λ):
Figure 02_image003
此外,「平均透光率」或「平均適光透光率」可以根據該領域具有通常知識者所理解的測量原理在可見光譜或其他波長範圍(例如,在840nm至950nm的紅外光譜等)內決定。除非另有說明,本揭示及請求項所報告或以其他方式引用的所有透射率值均與透過基板的主表面與透明製品的光學膜結構(例如,第1A圖至第1D圖所示及描述於下的玻璃陶瓷基板110、主表面112、114、及光學膜結構120)二者(例如,「雙表面」平均適光透射率)。
如本文所使用,「透射顏色」及「反射顏色」係指稱關於在D65照明體下的CIEL*,a*,b*比色系統中的透過本揭示的透明製品的透射或反射顏色。更具體而言,因為透過D65照明體在例如從0度至10度的入射角範圍內的透過透明製品(例如,第1A圖至第1D圖所示及描述於下的玻璃陶瓷基板110、主表面112、114、及光學膜結構120)的基板的主表面的透射或反射來測量這些顏色座標,所以「透射顏色」及「反射顏色」係藉由√(a* 2+b* 2)給定。
一般而言,本揭示係關於採用玻璃陶瓷基板(包括強化玻璃陶瓷基板)上的光學膜結構的透明製品。此外,這些透明製品可以包括具有受控透射率及顏色的高硬度光學塗佈的光學透明的高韌性且高模量的玻璃陶瓷基板。鑑於基板與光學膜結構的此組合,透明製品可以呈現高硬度、耐刮擦性、及抗損傷性,同時亦呈現透明性、高透光率、低霧度、及低色度。此外,本揭示的透明製品可以有利地呈現與其裸玻璃陶瓷基板的破損強度等級相同或基本上接近的破損強度等級。
在這些透明製品的一些實例中,玻璃陶瓷基板的韌性(K 1C)的範圍可以是1.15MPa·√m,而基板的模量可以是約103GPa。玻璃陶瓷可以包含具有二矽酸鋰、透鋰長石、及殘餘玻璃相的混合微結構的奈米結構材料。基板的高韌性及模量值讓組合的光學結構與基板系統能夠具有較高的撓曲強度及抗破裂性,這對於利用高模量塗佈及光學膜結構塗佈的玻璃基板的撓曲強度的已知降低來說很重要。此外,本揭示的光學膜結構可以具有約16GPa或更高的硬度,而賦予玻璃陶瓷基板較高的耐刮擦性及抗壓痕損傷性。光學膜結構可以包含由SiO 2、SiO xN y、及/或Si 3N 4層所組成的多層光學干涉膜。硬塗佈製品(例如,其上設置光學膜結構的玻璃陶瓷基板)可以具有大於80%的總適光平均光學透射率以及少於2或少於1的製品透射顏色√(a* 2+b* 2)。此外,本揭示的實施例亦關於一種包含這些透明製品的電子裝置。
本揭示的透明製品可以用於電子裝置內或電子裝置的其他部分中的顯示器、相機鏡頭、感測器、及/或光源部件的保護及/或外罩以及其他部件(例如,按鈕、喇叭、麥克風等)的保護。具有保護功能的這些透明製品採用設置在玻璃陶瓷基板上的光學膜結構,而使得製品呈現高硬度、高抗損傷性、及所期望的光學性質(包括高適光透射率與低透射顏色)的組合。光學膜結構可以包括結構內的任何不同位置處的耐刮擦層。此外,這些製品的光學膜結構可以包括複數個交替的高及低折射率層,其中每一高折射率層及耐刮擦層包含氮化物或氧氮化物,而每一低折射率層包含氧化物。
關於機械性質,藉由在光學膜結構中的100nm至約500nm的範圍內的壓痕深度上方的Berkovich硬度測試所測量的本揭示的透明製品所呈現的最大硬度可以是10GPa或更大、或12GPa或更大(或在一些情況下甚至大於14GPa)。這些製品中採用的玻璃陶瓷基板的彈性模量可以大於85GPa,或者在一些情況下大於95GPa。這些基板所呈現的斷裂韌性亦可以大於0.8MPa·√m,或者在一些情況下大於1MPa·√m。
在置於張力下的這些製品的光學膜結構的外表面的環對環(ROR)測試中所測量的本揭示的透明製品所呈現的平均破損應力等級亦可以是700MPa或更大、750MPa或更大、800MPa或更大、或甚至850MPa或更大。本質上,相對於其裸玻璃陶瓷基板,這些製品等級平均破損應力等級出乎意料地表示具有光學膜結構的製品的破損強度並未經歷任何損失或者並未經歷任何實質損失。此外,在本揭示的一些態樣中,相較於其裸基板的破損強度,本揭示的透明製品的破壞強度可能經歷一些降低,但保留的破損強度高於特定最終用途應用的較佳閾值。
亦如本揭示所述,可以透過透明製品中採用的光學膜結構的組成物、排列、及/或處理的控制來實現前述有利的製品等級破損應力等級。應注意,可以調整光學膜結構的組成物、排列、及/或處理,以取得至少700MPa(例如,700至1100MPa)的殘餘壓縮應力等級以及至少140GPa(例如,140至170GPa、或140至180GPa)的彈性模量。這些光學膜結構機械性質出乎意料地與採用這些光學膜結構的透明製品中的在置於張力下的製品的光學膜結構的外表面的ROR測試中所測量的700MPa或更大的平均破損應力等級相關。
就光學性質而言,本揭示的透明製品所呈現的以0至10度的入射角透過基板的主表面的平均適光透射率可以大於80%、大於90%、或甚至大於95%。此外,在一些情況下,透明製品所呈現的在入射角為0至10度、0至20度、0至60度、或0至90度的所有入射角的低透射顏色√(a* 2+b* 2)可以少於4、少於3、少於2、或少於1。
參照第1A圖至第1D圖,根據一或更多個實施例的透明製品100可以包括玻璃陶瓷基板110,以及定義設置在基板110上的外表面120a與內表面120b的光學膜結構120。基板110包括相對的主表面112、114以及相對的次表面116、118。光學膜結構120係圖示於第1A圖至第1D圖中,其內表面120b設置在第一相對主表面112上,並且圖示為沒有光學膜結構設置在第二相對主表面114上。然而,在一些實施例中,光學膜結構120中之一或更多者可以設置在第二相對主表面114上及/或相對次表面116、118中之一或二者上。
光學膜結構120包括至少一種材料層。如本文所使用,術語「層」可以包括單一層,或者可以包括一或更多個子層。這樣的子層可以彼此直接接觸。子層可以由相同材料或者二或更多種不同材料形成。在一或更多個替代實施例中,這樣的子層可以具有設置於其間的不同材料之中介層。在一或更多個實施例中,層可以包括一或更多個相連且不間斷的層,及/或一或更多個不連續且間斷的層(亦即,具有形成為相鄰於彼此的不同材料之層)。可以藉由該領域中的任何已知方法(包括離散沉積或連續沉積處理)形成層或子層。在一或更多個實施例中,可以僅使用連續沉積處理來形成層,或者可替代地僅使用離散沉積處理來形成層。
在一或更多個實施例中,可以藉由真空沉積技術(例如,化學氣相沉積(例如,電漿增強化學氣相沉積(PECVD)、低壓化學氣相沉積、大氣壓化學氣相沉積、及電漿增強大氣壓化學氣相沉積)、物理氣相沉積(例如,反應性或非反應性濺射或雷射剝蝕)、熱或電子束蒸發、及/或原子層沉積)將單層或多層的光學膜結構120沉積至玻璃陶瓷基板110。亦可以使用液體式方法(例如,噴塗、浸塗、旋塗、或槽塗(例如,使用溶膠凝膠材料))。通常,氣相沉積技術可以包括可以用於生產薄膜的各種真空沉積方法。舉例而言,物理氣相沉積使用物理處理(例如,加熱或濺射)來產生材料的蒸氣,然後沉積於所塗佈的物體上。製造光學膜結構120的較佳方法可以包括反應濺射、金屬模式反應濺射、及PECVD處理。
光學膜結構120的厚度的範圍可以是約100nm至約10微米。舉例而言,光學膜結構120的厚度可以大於或等於約200nm、300nm、325nm、350nm、375nm、400nm、500nm、600nm、700nm、800nm、900nm、1微米、2微米、3微米、4微米、5微米、6微米、7微米、甚至8微米,並且少於或等於約10微米。
在一些實施例中,如第1A圖、第1B圖、及第1D圖所示,光學膜結構120被分成外結構130a與內結構130b,其中耐刮擦層150(如下文進一步詳述)設置在結構130a與130b之間。在這些實施例中,外及內光學膜結構130a及130b可以具有相同厚度或不同厚度,並且每一者包含一或更多層。在其他實施例中,如第1C圖所示,光學膜結構120包括內結構130b並且不包括與外結構130a相當的外結構(參見第1A圖及第1B圖)。
再次參照第1A圖至第1D圖所示的透明製品100,光學膜結構120包括一或更多個耐刮擦層150。舉例而言,第1A圖至第1D圖所示的透明製品100包括具有設置在玻璃陶瓷基板110的主表面112上方的耐刮擦層150的光學膜結構120。根據一個實施例,耐刮擦層150可以包含選自Si uAl vO xN y、Ta 2O 5、Nb 2O 5、AlN、AlN x、SiAl xN y、AlN x/SiAl xN y、Si 3N 4、AlO xN y、SiO xN y、SiN y、SiN x:H y、HfO 2、TiO 2、ZrO 2、Y 2O 3、Al 2O 3、MoO 3、類鑽石碳、或其組合的一或更多種材料。用於耐刮擦層150的示例性材料可以包括無機碳化物、氮化物、氧化物、類鑽石材料、或其組合。用於耐刮擦層150的合適材料的實例包括金屬氧化物、金屬氮化物、金屬氮氧化物、金屬碳化物、金屬碳氧化物、及/或其組合。示例性金屬包括B、Al、Si、Ti、V、Cr、Y、Zr、Nb、Mo、Sn、Hf、Ta、及W。可以用於耐刮擦層150的材料的具體實例可以包括Al 2O 3、AlN、AlO xN y、Si 3N 4、SiO xN y、Si uAl vO xN y、鑽石、類鑽石碳、Si xC y、Si xO yC z、ZrO 2、TiO xN y、及其組合。在一些實施方案中,耐刮擦層150可以包括Si 3N 4、SiN y、SiO xN y、及其組合。在實施例中,透明製品100中採用的耐刮擦層150中之每一者呈現大於約1MPa√m的斷裂韌性值,並且同時呈現藉由Berkovich硬度測試所測量的大於約10GPa的硬度值。
如第1A圖至第1D圖所示的透明製品100中的示例性形式所示,相較於其他層(例如,低RI層130A、高RI層130B、封蓋層131等),耐刮擦層150中之每一者可以相對較厚(例如,大於或等於約50nm、75nm、100nm、150nm、200nm、250nm、300nm、325nm、350nm、375nm、400nm、425nm、450nm、475nm、500nm、525nm、550nm、575nm、600nm、700nm、800nm、900nm、1微米、2微米、3微米、4微米、5微米、6微米、7微米、或甚至8微米)。舉例而言,耐刮擦層150的厚度可以是約50nm至約10微米、約100nm至約10微米、約150nm至約10微米、約500nm至7500nm、約500nm至約6000nm、約500nm至約5000nm,以及前述範圍之間的所有厚度等級及範圍。在其他實施方案中,耐刮擦層150的厚度可以是約100nm至約10000nm、約1000nm至約3000nm、或約1500nm至約2500nm。
如第1A圖至第1D圖所示並且如上所概述,本揭示的透明製品100包括具有外結構130a及內結構130b中之一或更多者的光學膜結構120。外及內結構130a、130b中之每一者分別包括複數個交替的低及高折射率(RI)層130A及130B。根據實施例,外及內結構130a、130b中之每一者包括二或更多層(例如,低RI層130A及高RI層130B,或者低RI層130A、高RI層130B、及低RI層130A)的週期132。此外,光學膜結構120的外及內結構130a、130b中之每一者可以包括複數個週期132(例如,1至30個週期、1至25個週期、1至20個週期,以及前述範圍內的所有週期)。此外,週期132的數量、外及內結構130a、130b的層數量、及/或給定週期132內的層數量可以不同,或者可以相同。此外,在一些實施方案中,複數個交替的低RI及高RI層130A及130B以及耐刮擦層150的總量的範圍可以是6至50層、6至40層、6至30層、6至28層、6至26層、6至24層、6至22層、6至20層、6至18層、6至16層、6至14層,以及前述值之間的層及層量的所有範圍。
作為實例,在第1A圖至第1D圖中,外或內結構130a、130b的週期132可以包括低RI層130A及高RI層130B。當外及內結構130a及130b中之任一或二者中包括複數個週期時,低RI層130A(指定為「L」)與高RI層130B(指定為「H」)可以利用下列的層順序交替:L/H/L/H…或H/L/H/L…,而使得低RI層130A及高RI層130B沿著光學膜結構120的外及內結構130a、130b的物理厚度交替。
在透明製品100的實施方案中,如第1A圖所示,外及內結構130a及130b的週期132的數量可以配置成使得外結構130a包括至少四(4)層(例如,交替的低及高RI層130A及130B),而內結構130b包括至少七(7)層(例如,交替的低RI及高RI層130A、130B的二個週期132,以及交替的低RI/高RI/低RI層130A、130B的三(3)層的附加週期132)。此外,在此實施方案中,光學膜結構120包括:在外結構130a上方的封蓋層131(在結構及厚度上與低RI層130A類似);以及在外及內結構130a及130b之間的耐刮擦層150。
在透明製品100的實施方案中,如第1B圖所示,外及內結構130a及130b的週期132的數量可以配置成使得外結構130a包括至少二(2)層(例如,交替的低及高RI層130A及130B),而內結構130b包括至少七(7)層(例如,交替的低RI及高RI層130A、130B的二個週期132,以及交替的低RI/高RI/低RI層130A、130B的三(3)層的附加週期132)。此外,在此實施方案中,光學膜結構120包括:在外結構130a上方的封蓋層131(在結構及厚度上與低RI層130A類似);以及在外及內結構130a及130b之間的耐刮擦層150。
根據透明製品100的另一實施方案,如第1C圖所示,內結構130b的週期132的數量包括至少七(7)層(例如,交替的低RI及高RI層130A、130B的二個週期132,以及交替的低RI/高RI/低RI層130A、130B的三層的附加週期132)。此外,在此實施方案中,光學膜結構120包括:耐刮擦層150上方的封蓋層131(在結構及厚度上與低RI層130A類似);以及在內結構130b上方的耐刮擦層150。
根據透明製品100的進一步實施方案,如第1D圖所示,外及內結構130a及130b的週期132的數量可以配置成使得外結構130a包括至少六(6)層(例如,交替的低及高RI層130A及130B),而內結構130b包括至少七(7)層(例如,交替的低RI及高RI層130A、130B的二個週期132,以及交替的低RI/高RI/低RI層130A、130B的三(3)層的附加週期132)。此外,在此實施方案中,光學膜結構120包括:在外結構130a上方的封蓋層131(在結構及厚度上與低RI層130A類似);以及在外及內結構130a及130b之間的耐刮擦層150。
根據第1A圖至第1D圖所示的透明製品100的一些實施例,光學膜結構120的最外封蓋層131可以並未暴露,而是具有設置在其上的頂部塗佈140。在透明製品100的一些實施方案中,光學膜結構120的每一高RI層130B以及外及內結構130a、130b包含氮化物、含矽氮化物(例如,SiN y、Si 3N 4)、氧氮化物、或含矽氧氮化物(例如,SiAl xO yN z或SiO xN y)。此外,根據一些實施例,光學膜結構120的每一低RI層130A以及外及內結構130a、130b包含氧化物或含矽氧化物(例如,SiO 2、SiO x、或摻雜Al、N或F的SiO 2)。
在第1A圖至第1D圖所示的透明製品100的一或更多個實施例中,當與低RI層130A及/或封蓋層131一起使用時,術語「低RI」包括約1.3至約1.7或1.75的折射率範圍。在一或更多個實施例中,當與高RI層130B及/或耐刮擦層150一起使用時,術語「高RI」包括約1.7至約2.5(例如,約1.85或更大)的折射率範圍。在一或更多個實施例中,當與週期132的可選擇的第三層一起使用時,術語「中等RI」包括約1.55至約1.8的折射率範圍。在一些實施例中,低RI、高RI、及/或中等RI的範圍可以重疊;然而,在多數情況下,光學膜結構120的外及內結構130a、130b中之每一者的層具有關於RI的一般關係:低RI<中等RI<高RI(其中「中等RI」可適用於三層週期的情況)。在一或更多個實施例中,低RI層130A(及/或封蓋層131)與高RI層130B(及/或耐刮擦層150)中之每一者的折射率的差異可以是約0.01或更大、約0.05或更大、約0.1或更大、或甚至約0.2或更大。
適用於第1A圖至第1D圖所示的透明製品100的光學膜結構120的外及內結構130a及130b的示例性材料包括但不限於SiO 2、SiO x、Al 2O 3、SiAl xO y、GeO 2、SiO、AlO xN y、AlN、AlN x、SiAl xN y、SiN x、SiO xN y、SiAl xO yN z、Ta 2O 5、Nb 2O 5、TiO 2、ZrO 2、TiN、MgO、MgF 2、BaF 2、CaF 2、SnO 2、HfO 2、Y 2O 3、MoO 3、DyF 3、YbF 3、YF 3、CeF 3、類鑽石碳、及其組合。用於低RI層130A的合適材料的一些實例包括但不限於SiO 2、SiO x、Al 2O 3、SiAl xO y、GeO 2、SiO、AlO xN y、SiO xN y、SiAl xO yN z、MgO、MgAl xO y、MgF 2、BaF 2、CaF 2、DyF 3、YbF 3、YF 3、及CeF 3。在透明製品100的一些實施方案中,其低RI層130A中之每一者包括含矽氧化物(例如,SiO 2或SiO x)。用於低RI層130A的材料的氮含量可以最小化(例如,在如Al 2O 3及MgAl xO y的材料中)。用於高RI層130B的合適材料的一些實例包括但不限於SiAl xO yN z、Ta 2O 5、Nb 2O 5、AlN、AlN x、SiAl xN y、AlN x/SiAl xN y、Si 3N 4、AlO xN y、SiO xN y、SiN y、SiN x:H y、HfO 2、TiO 2、ZrO 2、Y 2O 3、Al 2O 3、MoO 3、及類鑽石碳。根據一些實施方案,外及內結構130a、130b的每一高RI層130B包括含矽氮化物或含矽氮氧化物(例如,Si 3N 4、SiN y、或SiO xN y)。在一或更多個實施例中,高RI層130B中之每一者可以具有高硬度(例如,大於8GPa的硬度),並且上面列出的高RI材料可以包含高硬度及/或耐刮擦性。
用於高RI層130B的材料的氧含量可以最小化(尤其是在SiN x材料中)。此外,示例性SiO xN y高RI材料可以包含約0原子%至約20原子%的氧或約5原子%至約15原子%的氧,同時包括30原子%至約50原子%的氮。前述材料可以被氫化而多達約30重量%。在期望具有中等折射率的材料作為中等RI層的情況下,一些實施例可以使用AlN及/或SiO xN y。應理解,耐刮擦層150可以包含所揭示的適用於高RI層130B的任何材料。
在透明製品100的一或更多個實施例中,光學膜結構120包括可以整合為高RI層130B的耐刮擦層150,而一或更多個低RI層130A、高RI層130B、及/或封蓋層131可以定位於耐刮擦層150上方。此外,關於耐刮擦層150,如第1A圖至第1D圖所示,可選擇的頂部塗佈140亦可以定位於層150上方。耐刮擦層150可以交替地定義為整個光學膜結構120及/或外及內結構130a、130b中的最厚的高RI層130B。不受理論的束縛,認為透明製品100可以在將相對少量的材料沉積於耐刮擦層150上方時,在壓痕深度處呈現增加的硬度。然而,在耐刮擦層150上方包括低RI與高RI層130A、130B可以增強透明製品100的光學性質。在一些實施例中,可以將相對少的層(例如,僅1、2、3、4或5層)定位於耐刮擦層150上方,而這些層中之每一者可以相對薄(例如,小於100nm、小於75nm、小於50nm、或甚至小於25nm)。
在一或更多個實施例中,第1A圖至第1D圖所示的透明製品100可以包括設置在光學膜結構120的外結構130a上的一或更多個附加頂部塗佈140。在一或更多個實施例中,附加頂部塗佈140可以包括易於清潔的塗佈。2014年4月24日公開的標題為「Process for Making of Glass Articles with Optical and Easy-to-Clean Coatings」的美國專利申請公開號2014/0113083描述了合適的易於清潔的塗佈的實例,其藉由引用整體併入本文。易於清潔的塗佈的厚度的範圍可以是約5nm至約50nm,並且可以包括已知材料(例如,氟化矽烷)。易於清潔的塗佈可替代地或附加地包含低摩擦塗佈或表面加工。示例性低摩擦塗佈材料可以包括類鑽石碳、矽烷(例如,氟化矽烷)、膦酸酯、烯烴、及炔烴。在一些實施例中,頂部塗佈140的易於清潔的塗佈的厚度的範圍可以是約1nm至約40nm、約1nm至約30nm、約1nm至約25nm、約1nm至約20nm、約1nm至約15nm、約1nm至約10nm、約5nm至約50nm、約10nm至約50nm、約15nm至約50nm、約7nm至約20nm、約7nm至約15nm、約7nm至約12nm、約7nm至約10nm、約1nm至約90nm、約5nm至約90nm、約10nm至約90nm、或約5nm至約100nm,以及其間的所有範圍及子範圍。
頂部塗佈140可以包括一或更多個耐刮擦層,一或更多個耐刮擦層包含所揭示的適用於耐刮擦層150的任何材料。在一些實施例中,附加頂部塗佈140包括易於清潔的材料與耐刮擦材料的組合。在一個實例中,組合包括易於清潔的材料與類鑽石碳。這樣的附加頂部塗佈140的厚度的範圍可以是約5nm至約20nm。可以在單獨的層中提供附加塗佈140的成分。舉例而言,類鑽石碳可以設置為第一層,而易於清潔的材料可以設置為類鑽石碳的第一層上的第二層。第一層與第二層的厚度的範圍可以是上面針對附加塗佈所提供的範圍。舉例而言,類鑽石碳的第一層的厚度可以是約1nm至約20nm或約4nm至約15nm(或更具體為約10nm),而易於清潔的材料的第二層的厚度可以是約1nm至約10nm(或更具體為約6nm)。類鑽石塗佈可以包括四面體非晶碳(Ta-C)、Ta-C:H、及/或a-C-H。
根據第1A圖至第1D圖所示的透明製品100的實施例,光學膜結構120的外及內結構130a、130b的高RI層130B中之每一者的物理厚度的範圍可以是約5nm至2000nm、約5nm至1500nm、約5nm至1000nm,以及這些值之間的所有厚度及厚度範圍。舉例而言,這些高RI層130B的物理厚度可以是5nm、10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm、100nm、250nm、500nm、750nm、1000nm、1250nm、1500nm、1750nm、2000nm,以及這些等級之間的所有厚度值。此外,內結構130b的高RI層130B中之每一者的物理厚度的範圍可以是約5nm至500nm、約5nm至400nm、約5nm至300nm,以及這些值之間的所有厚度及厚度範圍。作為實例,這些高RI層130B中之每一者的物理厚度可以是5nm、10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm、100nm、200nm、300nm、400nm、500nm,以及這些等級之間的所有厚度值。此外,根據第1A圖至第1D圖所示的透明製品100的一些實施例,外及內結構130a、130b的低RI層130A中之每一者的物理厚度可以是約5nm至300nm、約5nm至250nm、約5nm至200nm,以及這些值之間的所有厚度及厚度範圍。舉例而言,這些低RI層130A中之每一者的物理厚度可以是5nm、10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm、100nm、150nm、200nm、250nm、300nm,以及這些等級之間的所有厚度值。
在一或更多個實施例中,光學膜結構120的外及內結構130a、130b的至少一者(例如,低RI層130A或高RI層130B)可以包括特定光學厚度(或光學厚度範圍)。如本文所使用,術語「光學厚度」係指稱層的物理厚度與折射率的乘積。在一或更多個實施例中,外及內結構130a、130b的層中之至少一者的光學厚度的範圍可以是約2nm至約200nm、約10nm至約100nm、約15nm至約100nm、約15nm至約500nm、或約15nm至約5000nm。在一些實施例中,外及內結構130a、130b的所有層中之每一者的光學厚度的範圍可以是約2nm至約200nm、約10nm至約100nm、約15nm至約100nm、約15nm至約500nm、或約15nm至約5000nm。在一些實施例中,外及內結構130a、130b之一或兩者中之至少一層具有約50nm或更大的光學厚度。在一些實施例中,低RI層130A中之每一者的光學厚度的範圍係為約2nm至約200nm、約10nm至約100nm、約15nm至約100nm、約15nm至約500nm、或約15nm至約5000nm。在一些實施例中,高RI層130B中之每一者的光學厚度的範圍係為約2nm至約200nm、約10nm至約100nm、約15nm至約100nm、約15nm至約500nm、或約15nm至約5000nm。在具有三層週期132的實施例中,中等RI層中之每一者的光學厚度的範圍係為約2nm至約200nm、約10nm至約100nm、約15nm至約100nm、約15nm至約500nm、或約15nm至約5000nm。在一些實施例中,耐刮擦層150係為光學膜結構120中的最厚層,及/或具有高於膜結構中的任何其他層的折射率。
第1A圖至第1D圖所示的透明製品100的玻璃陶瓷基板110可以包括具有非晶及結晶部分的無機材料。基板110可以由人造材料及/或天然存在的材料(例如,石英)形成。在一些具體實施例中,玻璃陶瓷基板110可以特定排除聚合物、塑膠、及/或金屬基板。玻璃陶瓷基板110的特徵可以是包括鹼的基板(亦即,基板包括一或更多種鹼)。在一或更多個實施例中,玻璃陶瓷基板110所呈現的折射率的範圍係為約1.5至約1.6。在具體實施例中,使用ROR測試所測量的使用至少5個、至少10個、至少15個、或至少20個樣本來決定平均破損應變值的在一或更多個相對的主要表面上的表面處所呈現的玻璃陶瓷基板110的平均破損應變可以是0.5%或更大、0.6%或更大、0.7%或更大、0.8%或更大、0.9%或更大、1%或更大、1.1%或更大、1.2%或更大、1.3%或更大、1.4%或更大、1.5%或更大、或甚至2%或更大。在具體實施例中,在一或更多個相對的主要表面上的表面處所呈現的玻璃陶瓷基板110的平均破損應變係為約1.2%、約1.4%、約1.6%、約1.8%、約2.2%、約2.4%、約2.6%、約2.8%、或約3%或更大。
術語「破損應變」係指稱裂紋同時在光學膜結構120的外或內結構130a、130b、玻璃陶瓷基板110、或二者傳播而並未施加額外負載所處的應變,其如本文所定義典型地導致給定材料、層、或膜中的劇變破損,且甚至橋接至另一材料、層、或膜。換言之,在沒有玻璃陶瓷基板110的破裂的情況下,光學膜結構120(亦即,包括外及/或內結構130a、130b)的破裂構成破損,而基板110的破裂亦構成破損。當與平均破損應變或任何其他性質結合使用時,術語「平均」係基於對於5個樣本的這樣的性質之測量的數學平均。典型地,裂紋開始出現應變測量在正常實驗室條件下是可重複的,而在多個樣本中所測量的裂紋開始出現應變的標準偏差可能低至觀察應變的0.01%。本文所使用的平均破損應變係使用環對環拉伸測試來進行測量。然而,除非另有說明,否則本文所述的破損應變測量係指稱來自環對環測試的測量,如2018年7月5日所公開的標題「Coated Articles with Optical Coatings Having Residual Compressive Stress」的國際公開號WO2018/125676所述,並藉由引用整體併入本文。
合適的玻璃陶瓷基板110所呈現的彈性模量(或楊氏模量)的範圍可以是約60GPa至約130GPa。在一些情況下,基板110的彈性模量的範圍可以是約70GPa至約120GPa、約80GPa至約110GPa、約80GPa至約100GPa、約80GPa至約90GPa、約85GPa至約110GPa、約85GPa至約105GPa、約85GPa至約100GPa、約85GPa至約95GPa,以及其間的所有範圍及子範圍(例如,約103GPa)。在一些實施方案中,基板110的彈性模量可以大於85GPa、大於90GPa、大於95GPa、或甚至大於100GPa。在一些實例中,楊氏模量可以藉由聲波共振(ASTM E1875)、共振超音波光譜、或使用Berkovich壓痕器的奈米壓痕來進行測量。此外,合適的玻璃陶瓷基板110所呈現的剪切模量的範圍可以是約20GPa至約60GPa、約25GPa至約55GPa、約30GPa至約50GPa、約35GPa至約50GPa,以及其間的剪切模量範圍及子範圍(例如,約43GPa)。在一些實施方案中,玻璃陶瓷基板110的剪切模量可以大於35GPa,或者甚至大於40GPa。此外,在一些情況下,玻璃陶瓷基板110所呈現的斷裂韌性可以大於0.8MPa∙√m、大於0.9MPa∙√m、大於1MPa∙√m 、或甚至大於1.1MPa∙√m (例如,約1.15MPa∙√m)。
在一或更多個實施例中,玻璃陶瓷基板110包括一或更多種玻璃陶瓷材料,並且可以經強化或未經強化。在一或更多個實施例中,玻璃陶瓷基板110可以包含一或更多種結晶相(例如,可能與結構中的殘餘玻璃結合的二矽酸鋰、偏矽酸鋰、透鋰長石、β石英、及/或β鋰輝石)。在實施例中,玻璃陶瓷基板110包含二矽酸鹽相。在另一實施方案中,玻璃陶瓷基板110包含二矽酸鹽相以及透鋰長石相。根據實施例,玻璃陶瓷基板110具有至少40重量%的結晶度。在一些實施方案中,玻璃陶瓷基板110的結晶度係為至少約40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、或更大(以重量計),其中殘餘物係為玻璃相。此外,根據一些實施例,玻璃陶瓷基板110的結晶相中之每一者的平均結晶大小係少於100nm、少於75nm、少於50nm、少於40nm、少於30nm、以及在這些等級內或少於這些等級的所有結晶大小。根據一個示例性實施例,玻璃陶瓷基板110包含二矽酸鋰與透鋰長石相,其中具有40重量%的二矽酸鋰、45重量%的透鋰長石,且其餘為殘餘玻璃(亦即,約85%的結晶,約15%的殘餘非晶/玻璃);每一結晶相具有大部分平均結晶大小在10nm至50nm的範圍內的晶體。
在本揭示的透明製品100(參見例如第1A圖至第1D圖)中採用的玻璃陶瓷基板110的實施例所呈現的折射率可以高於習知玻璃基板或強化玻璃基板的折射率。舉例而言,玻璃陶瓷基板110的折射率的範圍可以是約1.52至1.65、約1.52至1.64、約1.52至1.62、或約1.52至1.60,以及前述範圍內的所有折射率(例如,在589nm的可見光波長下測量)。因此,通常針對玻璃基板及其折射率範圍最佳化的習知光學塗佈不一定適用於本揭示的透明製品100的玻璃陶瓷基板110。更特定言之,可以針對基板110與耐刮擦層150之間的光學膜結構120的層進行改性,以實現由玻璃陶瓷基板110與耐刮擦層150之間的過渡區所產生的低反射率及低顏色。此層重新設計要求亦可以描述為玻璃陶瓷基板110與耐刮擦層150之間的光學阻抗匹配。
根據實施方案,玻璃陶瓷基板110是基本上光學清澈、透明、且沒有光散射。在這樣的實施例中,在光學波長區間內,基板110所呈現的平均光透射率可以是約80%或更大、約81%或更大、約82%或更大、約83%或更大、約84%或更大、約85%或更大、約86%或更大、約87%或更大、約88%或更大、約89%或更大、約90%或更大、約91%或更大、約92%或更大、約93%或更高、或甚至約94%或更大。在一些實施例中,這些光反射值及光透射值可以是總反射率或總透射率(考慮玻璃陶瓷基板110的二個主要表面上的反射率或透射率),或者可以在基板110的單側上觀察(不考慮相對表面114,而僅在主表面112上測量)。除非另有說明,否則基板110單獨的平均反射率或透射率係在相對於主表面112約0度的入射照射角度下測量(然而,可以在45度或60度的入射照射角度下提供這種測量)。
附加或可替代地,出於美學原因及/或功能性原因,玻璃陶瓷基板110的物理厚度可以隨其維度之一或更多者而變化。舉例而言,相較於基板110的較為中心的區域而言,基板110的邊緣可以較厚。基板110的長度、寬度、及物理厚度維度亦可以根據製品100的應用或用途而變化。
可以使用各種不同的處理來提供玻璃陶瓷基板110。舉例而言,在基板110包括非晶部分或相(例如,玻璃)的情況下,各種形成方法可以包括浮式玻璃處理及向下拉伸處理(例如,熔合拉伸及狹槽拉伸)。
一旦形成,則可以將玻璃陶瓷基板110強化,以形成強化基板。如本文所使用的術語「強化基板」可以指稱經過化學強化的基板,例如,透過將基板之表面中的較小離子交換成較大離子的離子交換而強化的基板。然而,該領域已知的其他強化方法(例如,熱回火或利用部分的基板之間的熱膨脹係數的不匹配以產生壓縮應力與中心張力區域)可以用於形成強化基板。
在藉由離子交換處理來化學強化玻璃陶瓷基板110的情況下,基板110的表面層中的離子藉由具有相同價數或氧化態的較大離子代替或交換。通常藉由將基板浸入含有較大離子的熔融鹽浴中,以與基板中的較小離子交換而進行離子交換處理。該領域具有通常知識者應理解,用於離子交換處理的參數包括但不限於浴的組成物與溫度、浸入時間、玻璃陶瓷基板110在鹽浴(或浴)中浸入的次數、使用多鹽浴、附加步驟(例如,退火、清洗、及類似者),且通常藉由基板110的組成以及由加強操作而導致的基板110的壓縮應力層的所期望的壓縮應力(CS)深度(或層的深度)來決定。舉例而言,含鹼金屬玻璃陶瓷基板的離子交換可以藉由浸入至少一個含有鹽(例如但不限於較大鹼金屬離子的硝酸鹽、硫酸鹽、氯化物)的熔融浴中實現。熔融鹽浴的溫度通常在約380℃至約530℃的範圍內,而浸入時間係在約15分鐘至約40小時的範圍內。然而,亦可以使用與上述不同的溫度與浸入時間。
藉由離子交換實現的化學強化程度可以基於中心張力(CT)、表面CS、壓縮深度(DOC)(亦即,基板中的應力狀態從壓縮改變為拉伸的點)、及鉀離子層深度(DOL)的參數進行量化。壓縮應力(包括表面CS)係藉由使用商業可取得的儀器(如由Orihara Industrial Co., Ltd(日本)製造的FSM-6000)的表面應力計(FSM)測量。表面應力測量取決於與玻璃陶瓷材料的雙折射有關的應力光學係數(SOC)的精確測量。然後,根據標題為「Standard Test Method for Measurement of Glass Stress-Optical Coefficient」的ASTM標準C770-16所述的程序C(玻璃碟方法)測量SOC,其內容藉由引用整體併入本文。折射近場(RNF)方法或散射光偏光鏡(SCALP)技術可以用於測量應力分佈曲線。當使用RNF方法來測量應力分佈曲線時,在RNF方法中使用SCALP所提供的最大CT值。更特定言之,RNF所測量的應力分佈曲線係為力平衡的,並校準成SCALP測量所提供的最大CT值。RNF方法係描述於標題「Systems and Methods for Measuring a Profile Characteristic of a Glass Sample」的美國專利案8,854,623中,其藉由引用整體併入本文。更特定言之,RNF方法包括將玻璃陶瓷製品放置成與參考方塊相鄰,產生在正交偏振之間以1Hz與50Hz之間的速率切換的偏振切換光束,測量偏振切換光束中的功率量,以及產生偏振切換參考訊號,其中正交偏振中之每一者的測量功率量係在彼此的50%之內。該方法進一步包括將偏振切換光束通過不同深度的玻璃樣品與參考方塊而發射進入玻璃樣品,然後使用中繼光學系統將所發射的偏振切換光束中繼到訊號光電偵測器,其中訊號光電偵測器係產生偏振切換偵測器訊號。該方法亦包括將偵測器訊號除以參考訊號,以形成標準化的偵測器訊號,以及從標準化的偵測器訊號來決定玻璃陶瓷樣品的分佈曲線特徵。使用該領域已知的散射光偏光鏡(SCALP)技術來測量最大CT值。
在透明製品100的一個實施例中(參見第1A圖至第1D圖),強化玻璃陶瓷基板110的表面CS可以是200MPa或更大、250MPa或更大、300MPa或更大、或350MPa或更大。在另一實施方案中,強化玻璃陶瓷基板所呈現的表面壓縮應力(CS)可以是約200MPa至約600MPa、約200MPa至約500MPa、約200MPa至約400MPa、約225MPa至約400MPa、約250MPa至約400MPa,以及前述範圍內的所有CS子範圍及值。強化基板110的DOL可以是1μm至5μm、1μm至10μm、或1μm至15μm,及/或中心張力(CT)可以是50MPa或更大、75MPa或更大、100MPa或更大、125MPa或更大(例如,80MPa、90MPa、或100MPa或更大),但少於250MPa(例如,200MPa或更少、175MPa或更少、150MPa或更少等)。在具有玻璃陶瓷基板110(玻璃陶瓷基板110的CT係為約50MPa至約200MPa或80MPa至約200MPa)的透明製品100的這種實施方案中,玻璃陶瓷基板110的厚度應限制為約0.6mm或更少,以確保基板不會易碎。針對採用較厚基板的實施方案(例如,具有多達0.8mm、0.9mm、或甚至多達1.0mm的厚度),CT的上限應保持低於200MPa的等級,以確保基板不會易碎(例如,針對0.8mm的厚度的150MPa)。
玻璃陶瓷基板110的壓縮深度(DOC)可以是0.1•t(基板的厚度(t))至約0.25•t(例如,約0.15•t至約0.25•t、約0.15•t至約0.25•t、或約0.15•t至約0.20•t,以及前述範圍之間的所有DOC值)。舉例而言,相較於經離子交換的玻璃基板的DOC係為15%或更少,玻璃陶瓷基板110的DOC可以是基板的厚度的20%。在實施例中,基板材料的壓縮深度可以是基板110的厚度的約8%至約20%。應注意,前述DOC值係從基板110的主表面112或114中之一者進行測量。因此,針對600μm的厚度的基板110,DOC可以是基板的厚度的20%,距離基板110的主表面112、114中之每一者約120μm,或針對整個基板總共240μm。在一或更多個具體實施例中,強化玻璃陶瓷基板110可以呈現下列機械性質中之一或更多者:約200MPa至約400MPa的表面CS、大於30μm的DOL、約0.08•t至約0.25•t的DOC、及約80MPa至約200MPa的CT。
根據本揭示的實施例,藉由在基板110中的100nm至約500nm的範圍內的壓痕深度上方的Berkovich硬度測試所測量的玻璃陶瓷基板110(其上並未設置針對測量目的的光學膜結構120)所呈現的最大硬度可以是8.5GPa或更大、9GPa或更大、或9.5GPa或更大(或者在一些情況下甚至大於10GPa)。舉例而言,藉由在基板110中的100nm至約500nm的範圍內的壓痕深度上方的Berkovich硬度測試所測量的玻璃陶瓷基板110所呈現的最大硬度可以是8.5GPa、8.75GPa、9GPa、9.25GPa、9.5GPa、9.75GPa、10GPa、及更高的硬度等級。此外,使用200g負載測量的本揭示的玻璃陶瓷基板110所呈現的維氏硬度可以大於700、或甚至大於800。此外,本揭示的玻璃陶瓷基板110所呈現的莫氏硬度可以大於6.5、或甚至大於7。
如前所述,玻璃陶瓷基板110可以是非強化或經強化,並且具有合適的組成物以支援強化。針對玻璃陶瓷基板110的合適的玻璃陶瓷的實例可以包括Li 2O-Al 2O 3-SiO 2系統(亦即,LAS系統)玻璃陶瓷、MgO-Al 2O 3-SiO 2系統(亦即,MAS系統)玻璃陶瓷、及/或包括主要結晶相的玻璃陶瓷,主要結晶相包括β-石英固溶體、β-鋰輝石、堇青石、及二矽酸鋰。可以使用本文所揭示的化學強化處理來強化玻璃陶瓷基板。在一或更多個實施例中,可以在Li 2SO 4熔融鹽中強化MAS系統玻璃陶瓷基板,而可以藉此讓2Li +與Mg 2+的交換發生。
根據本揭示的透明製品100的一些實施例,玻璃陶瓷基板110可以是具有下列組成物的LAS系統:70-80%的SiO 2、5-10%的Al 2O 3、10-15%的Li 2O、0.01-1%的Na 2O、0.01-1%的K 2O、0.1-5%的P 2O 5、及0.1-7%的ZrO 2(基於氧化物的重量%)。在本揭示的透明製品100的一些實施方案中,玻璃陶瓷基板110可以是具有下列組成物的LAS系統:70-80%的SiO 2、5-10%的Al 2O 3、10-15%的Li 2O、0.01-1%的Na 2O、0.01-1%的K 2O、0.1-5%的P 2O 5、及0.1-5%的ZrO 2(基於氧化物的重量%)。根據另一實施例,玻璃陶瓷基板110可以是具有下列組成物的LAS系統:70-75%的SiO 2、5-10%的Al 2O 3、10-15%的Li 2O、0.05-1%的Na 2O、0.1-1%的K 2O、1-5%的P 2O 5、2-7%的ZrO 2、及0.1-2%的CaO(基於氧化物的重量%)。根據進一步實施例,玻璃陶瓷基板110可以具有下列組成物:71-72%的SiO 2、6-8%的Al 2O 3、10-13%的Li 2O、0.05-0.5%的Na 2O、0.1-0.5%的K 2O、1.5-4%的P 2O 5、4-7%的ZrO 2、及0.5-1.5%的CaO(基於氧化物的重量%)。一般而言,玻璃陶瓷基板110的這些組成物對於本揭示的透明製品100是有利的,因為呈現低霧度等級、高透明度、高斷裂韌性、及高彈性模量,並且可離子交換。
根據透明製品100的實施例,利用本揭示的組成物中之任一者來選擇玻璃陶瓷基板110,並進一步處理成本揭示的結晶度等級,以呈現高斷裂韌性(例如,大於1MPa·√m)與高彈性模量(例如,大於100GPa)的組合。這些機械性質可以衍生於呈現相對高的模量的結晶相(例如,二矽酸鋰相)的存在;以及包括一些殘餘玻璃相的最終玻璃陶瓷基板110的微結構。應注意,殘餘玻璃相(及其含鹼組成物)確保玻璃陶瓷基板110可以離子交換強化至高等級的中心張力(CT)(例如,大於80MPa)及壓縮應力(CS)(例如,大於200MPa)。此外,可以選擇陶瓷化(亦即,後熔融處理、熱加工條件)以最小化玻璃陶瓷基板110的晶粒大小,而使得晶粒大小係小於可見光的波長,藉此確保基板110及製品100是透明或基本上透明。最後,有利地選擇玻璃陶瓷基板110的組成物及處理,以實現高斷裂韌性、高彈性模量、及光學透明度的平衡,以確保透明製品100隨著採用這些基板110及光學膜結構120而呈現機械及光學性質的此平衡,以及令人驚訝的抗損傷性的等級。
根據一或更多個實施例的玻璃陶瓷基板110可以在基板110的各個部分中具有約100μm至約5mm的物理厚度。舉例而言,示例性基板110的物理厚度範圍係為約100μm至約500μm(例如,100、200、300、400、或500μm)、約500μm至約1000μm(例如,500、600、700、800、900、或1000μm)、及約500μm至約1500μm(例如,500、750、1000、1250、或1500μm)。在一些實施方案中,基板110的物理厚度可以大於約1mm(例如,約2、3、4、或5mm)。在一或更多個具體實施例中,基板110的物理厚度可以是2mm或更小,或1mm或更小。可以針對基板110進行酸拋光或以其他方式加工,以移除或減少表面缺陷的影響。
關於第1A圖至第1D圖所示的透明製品100的硬度,通常在塗佈比底下的基板更硬的奈米壓痕測量方法(例如,藉由使用Berkovich壓痕器)中,所測量的硬度可能最初由於在淺壓痕深度(例如,少於25nm或少於50nm)處的塑性區的發展而看起來增加,然後在較深的壓痕深度(例如,50nm至約500nm或1000nm)處增加並到達最大值或穩定期間。此後,由於底下的基板的影響,硬度在又更深的壓痕深度處開始降低。在使用具有比光學膜結構120更大的硬度的玻璃陶瓷基板110的情況下,可以看到相同效果;然而,由於底下的基板的影響,在較深的壓痕深度處的硬度會增加。
進一步關於第1A圖至第1D圖所示的透明製品100,可以選擇壓痕深度範圍以及在某些壓痕深度範圍內的硬度值,以識別本文所述的光學膜結構120的特定硬度回應以及其外及內結構130a、130b的層,而不受底下的玻璃陶瓷基板110的影響。當利用Berkovich壓痕器來測量光學膜結構120的硬度(當設置於基板110上時),材料的永久變形區域(塑性區)係與材料的硬度相關聯。在壓痕期間,彈性應力場遠遠超出永久變形區域。隨著壓痕深度的增加,表觀硬度與模量受到應力場與底下的基板110相互作用的影響。基板110在硬度上的影響係發生在較深的壓痕深度處(亦即,通常在大於光學膜結構120的總厚度的約10%的深度處)。此外,進一步的複雜性在於硬度回應需要一定的最小負載,以在壓痕處理期間產生完全的可塑性。在一定的最小負載之前,硬度通常展現增加的趨勢。
在光學膜結構120中的較小的壓痕深度(亦可以特徵化為較小負載)(例如,多達約50nm)處,材料的表觀硬度呈現為相對於壓痕深度急劇增加。此較小的壓痕深度範圍並不代表硬度的真實度量,而是反映上述塑性區的發展,而與壓痕器的有限曲率半徑相關。在中等壓痕深度處,表觀硬度接近最大等級。在較深的壓痕深度處,隨著壓痕深度的增加,玻璃陶瓷基板110的影響變得更加明顯。一旦壓痕深度超過光學塗佈厚度的約30%,則硬度可能開始急劇下降。
在一或更多個實施例中,藉由在100nm至約500nm的壓痕深度上方或在100nm至約900nm的壓痕深度上方的Berkovich硬度測試所測量的第1A圖至第1D圖所示的透明製品100所呈現的最大硬度可以是約10GPa或更大、約11GPa或更大、約12GPa或更大、13GPa或更大、或14GPa或更大。舉例而言,藉由在100nm至約500nm的壓痕深度上方的Berkovich硬度測試而從光學膜結構120的外表面120a測量的透明製品100所呈現的最大硬度可以是10GPa、11GPa、12GPa、13GPa、14GPa、15GPa、16GPa、17GPa、18GPa、19GPa、20GPa、或更大。在一些實施方案中,100nm的壓痕深度處的透明製品100的最大硬度係大於10GPa、11GPa、12GPa、13GPa、14GPa、15GPa、16GPa、17GPa、18GPa、或19GPa。在一些實施方案中,500nm的壓痕深度處的透明製品100的最大硬度係大於10GPa、12GPa、14GPa、16GPa、17GPa、18GPa、或19GPa。此外,根據一些實施方案,藉由100nm至約500nm、約100nm至約900nm、或約200nm至約900nm的範圍內的壓痕深度上方的Berkovich硬度測試而從光學膜結構120的外表面120a測量的透明製品100所呈現的最大硬度可以是約10GPa或更大、約12GPa或更大、約14GPa或更大、15GPa或更大、16GPa或更大、17GPa或更大、或甚至18GPa或更大。
在本揭示的一或更多個實施例中,如第1A圖至第1D圖所示,在置於張力下的這些製品的光學膜結構120的外表面120a的環對環(ROR)測試中所測量的透明製品100所呈現的平均破損應力等級亦可以是700MPa或更大、750MPa或更大、800MPa或更大、或甚至850MPa或更大。本質上,相對於其裸玻璃陶瓷基板,這些製品等級平均破損應力等級出乎意料地表示具有光學膜結構120的透明製品100的破損強度並未經歷任何損失或者並未經歷任何實質損失。在一些實施例中,在置於張力下的製品的光學膜結構120的外表面120a的環對環(ROR)測試中所測量的透明製品100所呈現的平均破損應力等級係為700MPa、725MPa、750MPa、775MPa、800MPa、825MPa、850MPa、875MPa、900MPa、925MPa、950MPa、975MPa、1000MPa、1025MPa、1050MPa、1075MPa、1100MPa,以及前述值之間的所有平均破損應力等級。
再次參照具有700MPa或更大的平均ROR破損應力等級的透明製品100(參見第1A圖至第1D圖),應理解,這些破損應力等級可以透過透明製品100中採用的光學膜結構120的組成物的控制、佈置、及/或處理來實現。應注意,可以調整光學膜結構120的組成物、排列、及/或處理,以取得至少700MPa(例如,700至1100MPa)的殘餘壓縮應力等級以及至少140GPa(例如,140至170GPa、或140至180GPa)的彈性模量。這些光學膜結構120的機械性質出乎意料地與採用這些光學膜結構的透明製品100中的在置於張力下的製品的光學膜結構的外表面120a的ROR測試中所測量的700MPa或更大的平均破損應力等級相關(參見第7圖及第8圖,以及下面隨後的相應描述)。根據透明製品100的一些實施例,光學膜結構120呈現700MPa至850MPa的殘餘壓縮應力以及約140GPa至165GPa的彈性模量。在透明製品100的一些實施例中,光學膜結構120呈現750MPa至950MPa的殘餘壓縮應力以及約140GPa至175GPa的彈性模量。在透明製品100的一些實施方案中,光學膜結構120呈現850MPa至1100MPa的殘餘壓縮應力以及約140GPa至195GPa的彈性模量。
進一步關於光學膜結構120的殘餘壓縮應力與彈性模量等級(以及硬度等級),可以透過調整低RI層130A、高RI層130B、封蓋層131、及耐刮擦層150的化學計量及/或厚度來控制這些性質。在實施例中,光學膜結構120所呈現的殘餘壓縮應力與彈性模量等級(以及硬度等級)可以透過調整用於濺射結構120的層(特定為其高RI層130B與耐刮擦層150)的處理條件來控制。在一些實施方案中,舉例而言,可以採用反應濺射處理來沉積包含含矽氮化物或含矽氮氧化物的高RI層130B。此外,這些高RI層130B可以藉由在包含氬氣(例如,以50至150sccm的流動速率)、氮氣(例如,以200至250sccm的流動速率)、及氧氣的反應氣體環境中將功率施加至矽濺射靶來沉積,其中殘餘壓縮應力與彈性模量等級很大程度上取決於所選擇的氧氣流動速率。舉例而言,可以根據前述的氬氣及氮氣流動條件採用相對低的氧氣流動速率(例如,45sccm)來產生具有SiO xN y化學計量的高RI層130B,而使得其光學膜結構120呈現約942MPa的殘餘壓縮應力、17.8GPa的硬度、及162.6GPa的彈性模量。作為另一實例,可以根據前述的氬氣及氮氣流動條件採用相對高的氧氣流動速率(例如,65sccm)來產生具有SiO xN y化學計量的高RI層130B,而使得其光學膜結構120呈現約913MPa的殘餘壓縮應力、16.4GPa的硬度、及148.4GPa的彈性模量。因此,可以控制光學膜結構120(特定為其高RI層130B及耐刮擦層150)的化學計量,以實現目標殘餘壓縮應力與彈性模量等級,這未預期地與透明製品100中的有利的高平均破損應力等級相關聯(例如,大於或等於700MPa)。
進一步關於第1A圖至第1D圖所示的透明製品100的硬度,可以具體表示高RI層130B及/或耐刮擦層150的材料的硬度的特徵。在一些實施例中,藉由Berkovich壓痕器硬度測試測量的高RI層130B及/或耐刮擦層150的最大硬度可以是約10GPa或更大、約12GPa或更大、約15GPa或更大、約18GPa或更大、或甚至約20GPa或更大。給定層(例如,高RI層130B)的硬度可以藉由分析透明製品100來測量,其中所測量的層係為光學膜結構120中的最上層。若要測量硬度的層是埋入層,則可以藉由生產不包括覆蓋層的透明製品且隨後測試製品的硬度來測量其硬度。透明製品100、光學膜結構120、外及內結構130a、130b、高RI層130B、及/或耐刮擦層150可以沿著約50nm或更大或約100nm或更大的壓痕深度來呈現這種所測量的硬度值,並且可以在連續壓痕深度範圍內保持高於某個硬度值。在實施例中,連續壓痕深度範圍可以是約100nm至約300nm、約100nm至約400nm、約100nm至約500nm、約100nm至約600nm、約200nm至約300nm、約200nm至約400nm、約200nm至約500nm、約200nm至約600nm、約200nm至約800nm、約200nm至約1000nm、約300nm至約500nm、約300nm至約800nm、或約300nm至約1000nm。在一或更多個實施例中,透明製品100所呈現的硬度係大於玻璃陶瓷基板110的硬度(可以在移除光學膜結構120的情況下在主表面112或114上測量)。
根據實施例,在400至700nm的光學波長範圍內,在垂直入射、0至10度、0至20度、0至30度、0至40度、0至50度、或甚至0至60度下,第1A圖至第1D圖所示的透明製品100所呈現的平均雙側或雙表面(亦即,透過玻璃陶瓷基板110的二個主表面112、114)的適光透射率或平均可見光透射率可以是約80%或更大、約85%或更大、約90%或更大、約91%或更大、約92%或更大、約93%或更大、或甚至約94%或更大。在一些實施例中,在紅外光譜(例如,940nm)中,在垂直入射、0至10度、0至20度、0至30度、0至40度、0至50度、或甚至0至60度下,透明製品100所呈現的平均雙側透射率可以是約80%或更大、約85%或更大、約90%或更大、約91%或更大、約92%或更大、約93%或更大、或甚至約94%或更大。
根據一些實施方案,在垂直入射、0至10度、或0至90度的所有入射角下測量的第1A圖至第1D圖所示的透明製品100利用D65照明體所呈現的藉由√(a* 2+b* 2)給定的透射顏色可以少於4、少於3.5、少於3、少於2.5、少於2、少於1.5、或甚至少於1。舉例而言,在垂直入射、0至10度、或0至90度的所有入射角下測量的透明製品100所呈現的透射顏色可以少於4、3.75、3.5、3.25、3、2.75、2.5、2.25、2、1.9、1.8、1.7、1.6、1.5、1.4、1.3、1.2、1.1、1.0、0.9、0.8、0.7、0.6、0.5、或甚至更低。
根據實施例,在垂直入射或0至10度下,第1A圖至第1D圖所示的透明製品100所呈現的在400至700nm的光學波長範圍內通過基板110的一個或兩個主表面(亦即,第一表面或雙表面反射率)的平均單側或第一表面(亦即,透過基板110的主表面112、114中之一者)的適光反射率或平均反射率可以少於約15%、少於約13%、少於約12%、少於約10%、少於約8%、少於約6%、少於約4%、少於約2%、或甚至少於1%。舉例而言,透明製品100所呈現的第一表面平均適光反射率可以少於20%、少於10%、少於5%、少於2%、少於1%、或甚至少於0.8%。
根據一些實施方案,在垂直入射、0至10度、或0至90度的所有入射角下測量的第1A圖至第1D圖所示的透明製品100利用D65照明體所呈現的藉由√(a* 2+b* 2)給定的第一表面(亦即,通過基板110的主表面112、114中之一者)反射顏色可以少於10、少於8、少於6、少於4、少於3、或甚至少於2。舉例而言,在垂直入射、0至10度、或0至90度的所有入射角下測量的透明製品100所呈現的反射顏色可以少於10、9、8、7、6、5、4、3.75、3.5、3.25、3、2.75、2.5、2.25、2、1.9、1.8、1.7、1.6、1.5、1.4、1.3、1.2、1.1、1、或甚至更低。
在一些實施方案中,在垂直入射或0至10度下,第1A圖至第1D圖所示的透明製品100在500至600nm的光波長範圍內所呈現的平均適光透射率或反射率或平均透射率或反射率的最大到最小振盪可以少於2%、少於1.8%、少於約1.5%、少於約1.0%、少於約0.9%、少於0.75%、或甚至少於0.5%。舉例而言,在垂直入射或0至10度下,透明製品100的透射或反射光譜所呈現的振盪可以是1.9%、1.8%、1.7%、1.6%、1.5%、1.4%、1.3%、1.2%、1.1%、1.0%、0.9%、0.85%、0.75%、0.6%、0.5%、甚至更低。應注意,這些振盪透射率及反射率值係以絕對反射率或透射率單位表示,反射率及透射率二者的刻度係為0-100%。因此,具有1%平均適光反射率與少於0.5%反射率振蕩的透明製品100的實施例將在指定波長範圍內具有0.5%與1.5%之間的反射率值的範圍。
如前所述,第1A圖至第1D圖所示的透明製品100呈現高抗損傷及耐刮擦性。根據實施方案,本揭示的透明製品100呈現利用具有1000g負載的維氏壓痕損傷測試所測試的具有少於160微米或甚至少於150微米的平均最大線性尺寸的橫向裂紋區域。根據利用1000g負載的相同維氏壓痕損傷測試,具有經離子交換的玻璃基板的習知透明製品所呈現的損傷等級指示具有大於180微米或甚至大於200微米的平均最大線性尺寸的橫向裂紋區域。類似地,本揭示的透明製品100呈現利用具有1000g負載的維氏壓痕損傷測試所測試的具有少於25000μm 2或甚至少於20000μm 2的最大橫向裂紋面積的橫向裂紋區域。根據利用1000g負載的相同維氏壓痕損傷測試,具有經離子交換的玻璃基板的習知透明製品所呈現的損傷等級指示具有大於30000μm 2的最大橫向裂紋面積的橫向裂紋區域。
根據另一實施方案,本揭示的透明製品100(參見第1A圖至第1D圖)所呈現的利用光學膜結構120的外表面120a上的錐形鑽石壓痕器的斜坡負載刮痕測試所測試的針對橫向裂紋形成的負載閾值係為約340mN或更大、360mN或更大、380mN或更大、或甚至400mN或更大。相較之下,在相同的測試條件下使用斜坡負載刮痕測試進行測試,具有經離子交換的玻璃基板的習知透明製品呈現針對橫向裂紋形成的約320mN或更少的負載閾值。此外,根據另一實施例,本揭示的透明製品100在多達360mN的峰值負載的斜坡負載刮痕測試下的測試中呈現距離刮痕路徑的中心少於20μm的橫向裂紋形式的可見損傷。相較之下,在相同的測試條件下,具有經離子交換的玻璃基板的習知透明製品呈現至少50μm的橫向裂紋形式的可見損傷。
根據進一步實施方案,在承受石榴石刮痕測試之後,透明製品100所呈現的光學膜結構120的外表面120a的漫反射率(亦即,SCE值)係少於測試刮擦區域的0.1%,少於0.05%、或甚至少於0.005%。舉例而言,在承受石榴石刮痕測試之後,透明製品100所呈現的漫反射率可以是0.001%、0.005%、0.01%、0.05%、0.075%、0.09%,以及少於0.1%的其他漫反射率值。
本文所揭示的透明製品100(例如,如第1A圖至第1D圖所示)可以結合到裝置製品(例如,具有顯示器(或顯示裝置製品)的裝置製品(例如,消費性電子產品,包括行動電話、平板電腦、電腦、導航系統、可穿戴式裝置(例如,手錶)、及類似者)、現實增強顯示器、平視顯示器、眼鏡式顯示器、建築裝置製品、運輸裝置製品(例如,車輛、火車、飛行器、航海器等)、器具裝置製品、或可受益於透明性、耐刮擦性、耐磨性、抗損傷性、或其組合的任何裝置)。第5A圖及第5B圖圖示結合本文所揭示的任何製品(例如,與第1A圖至第1D圖所示的透明製品100一致)的示例性裝置製品。具體而言,第5A圖及第5B圖圖示消費性電子裝置500,包括:殼體502,具有前表面504、後表面506、及側表面508;電子部件(未圖示),至少部分地位於殼體內側或完全位於殼體內側,並至少包括控制器、記憶體、及在殼體的前表面處或與前表面相鄰的顯示器510;以及覆蓋基板512,在殼體的前表面處或前表面上方,而位於顯示器上方。在一些實施例中,覆蓋基板512可以包括本文揭示的任何透明製品100。 實例
下列實例描述本揭示所提供的各種特徵及優點,以及並未意欲限制本揭示及所附請求項。
在這些實例(實例1-3;以及實例4A-7C)與比較例(亦即,比較例1、5A、5B、及7)中,根據本揭示的方法以及表1-3及表7-10C中之每一者所述來形成透明製品。更具體而言,除非另有說明,否則在旋轉鼓式塗佈器中使用金屬模式反應濺射處理來形成這些實例的光學膜結構,其中在金屬沉積及電感耦合電漿(ICP)(氣體反應)區中獨立控制濺射功率。反應氣體(例如,N 2氣體及O 2氣體)在ICP(氣體反應)區中與金屬靶隔離。此外,金屬濺射區僅採用惰性氣體流(亦即,Ar氣體)。
使用Agilent Cary 5000 UV-Vis-NIR分光光度計測量根據這些實例製備的實驗樣品的光透射及反射性質。使用本揭示先前概述的Berkovich硬度測試方法取得下列實例所報告的透明製品的硬度值。更具體而言,先前針對本揭示的透明製品100概述(第1A圖至第1D圖以及對應描述)的與強化玻璃陶瓷基板組合的本發明實例(實例1-3)在可見光譜中呈現透射率及反射率的低顏色值以及相對較小的反射率及透射率振盪。此外,先前亦針對本揭示的透明製品100概述的本發明實施例(實例4A-7C)呈現或預期呈現有利的平均破損強度等級(例如,大於700MPa)。
比較例1
針對此實例製備包括強化玻璃基板的比較透明製品,其結構如下表1所示。玻璃基板係為具有550μm的厚度與1.509的折射率的經離子交換的鋁矽酸鹽玻璃基板。基板具有下列組成物:61.81%的SiO 2;3.9%的B 2O 3;19.69%的Al 2O 3;12.91%的Na 2O;0.018%的K 2O;1.43%的MgO;0.019%的Fe 2O 3;以及0.223%的SnO 2(基於氧化物的重量%)。使用熔融鹽浴來針對基板進行強化,以實現850MPa的最大壓縮應力(CS)與40μm的層深度(DOL)。此外,根據美國專利公開號2020/0158916中闡述的氣相沉積條件來沉積光學膜結構的層,其主要部分藉由引用併入本文。 表1-比較例1,具有強化玻璃基板的透明製品設計
材料 折射率(@550nm) 厚度(nm,除非另有說明)
中等 空氣 1.0 N/A
13 SiO 2 1.478 88.5
12 SiN x 2.022 143.6
11 SiO 2 1.478 16.8
10 SiN x 2.022 40.9
9 SiO 2 1.478 10.6
8 SiO xN y 1.953 2000
7 SiO 2 1.478 8.8
6 SiO xN y 1.953 44.8
5 SiO 2 1.478 30.1
4 SiO xN y 1.953 26.4
3 SiO 2 1.478 53.7
2 SiO xN y 1.953 9.6
1 SiO 2 1.478 25
基板 經離子交換的玻璃 1.509 550微米
實例1
針對此實例製備包括強化玻璃陶瓷基板的透明製品,其結構如下表2所示。玻璃陶瓷基板係為具有600μm的厚度與1.531的折射率的經離子交換的LAS玻璃陶瓷基板。此外,玻璃陶瓷基板具有下列組成物:74.5%的SiO 2;7.53%的Al 2O 3;2.1%的P 2O 5;11.3%的Li 2O;0.06%的Na 2O;0.12%的K 2O;4.31%的ZrO 2;0.06%的Fe 2O 3;以及0.02%的SnO 2(基於氧化物的重量%)。此外,玻璃陶瓷基板根據下列排程進行陶瓷化:(a)以5℃/min從室溫升溫至580℃;(b)在580℃下保持2.75小時;(c)以2.5℃/min升溫至755℃;(d)在755℃下保持0.75小時;以及(e)以爐速冷卻至室溫。在陶瓷化之後,玻璃陶瓷基板在60%的KNO 3/40%的NaNO 3+0.12%的LiNO 3(重量%)的熔融鹽浴中在500℃下進行6小時的離子交換強化。此外,根據美國專利公開號2020/0158916中闡述的氣相沉積條件來沉積光學膜結構的層,其主要部分藉由引用併入本文。
再次參照此實例的透明製品,在玻璃陶瓷基板與耐刮擦層(例如,表2中的層8)之間配置光學膜結構的層(例如,表2中的層1-7),以實現基板110與耐刮擦層之間的過渡區所產生的低反射率及低顏色。光學膜結構的內結構內的此層配置亦可以描述為玻璃陶瓷基板與耐刮擦層之間的光學阻抗匹配。另外,從表2可以看出,光學膜結構的內結構中的低RI層的體積少於約59%(亦即,層1、3、5及7,總計57.1%),而光學膜結構的內結構中的高RI層的體積大於約41%(亦即,層2、4及6,總計42.9%)。 表2-實例1,具有強化玻璃陶瓷基板的透明製品設計
材料 折射率(@550nm) 厚度(nm,除非另有說明) 透明製品100的示例性元件 (參見第1A圖至第1D圖)
中等 空氣 1.0 N/A N/A
13 SiO 2 1.478 88.5 131
12 SiN x 2.022 143.6 130B
11 SiO 2 1.478 16.8 130A
10 SiN x 2.022 40.9 130B
9 SiO 2 1.478 10.6 130A
8 SiO xN y 1.953 2000 150及/或130B
7 SiO 2 1.478 8.7 130A
6 SiO xN y 1.953 45.8 130B
5 SiO 2 1.478 29.7 130A
4 SiO xN y 1.953 28.1 130B
3 SiO 2 1.478 51.4 130A
2 SiO xN y 1.953 12.2 130B
1 SiO 2 1.478 25 130A
基板 經離子交換的透明玻璃陶瓷 1.531 600微米 110
實例2及3
針對這些實例製備包括強化玻璃陶瓷基板的透明製品,其結構如下表3所示。玻璃陶瓷基板係為具有600μm的厚度與1.531的折射率的經離子交換的LAS玻璃陶瓷基板。此外,玻璃陶瓷基板具有下列組成物:74.5%的SiO 2;7.53%的Al 2O 3;2.1%的P 2O 5;11.3%的Li 2O;0.06%的Na 2O;0.12%的K 2O;4.31%的ZrO 2;0.06%的Fe 2O 3;以及0.02%的SnO 2(基於氧化物的重量%)。此外,玻璃陶瓷基板根據下列排程進行陶瓷化:(a)以5℃/min從室溫升溫至580℃;(b)在580℃下保持2.75小時;(c)以2.5℃/min升溫至755℃;(d)在755℃下保持0.75小時;以及(e)以爐速冷卻至室溫。在陶瓷化之後,玻璃陶瓷基板在60%的KNO 3/40%的NaNO 3+0.12%的LiNO 3(重量%)的熔融鹽浴中在500℃下進行6小時的離子交換強化。此外,根據美國專利公開號2020/0158916中闡述的氣相沉積條件來沉積光學膜結構的層,其主要部分藉由引用併入本文。 表3-實例2及3,具有強化玻璃陶瓷基板的透明製品設計
材料 折射率(@550nm) 實例2 實例3 透明製品100的示例性元件(參見第1A圖至第1D圖)
厚度(nm,除非另有說明) 厚度(nm,除非另有說明)
中等 空氣 1.0 N/A      
9 SiO 2 1.478 14 14 131
8 SiO xN y 1.953 2000 5000 150及/或130B
7 SiO 2 1.478 8.7 8.7 130A
6 SiO xN y 1.953 45.8 45.8 130B
5 SiO 2 1.478 29.7 29.7 130A
4 SiO xN y 1.953 28.1 28.1 130B
3 SiO 2 1.478 51.4 51.4 130A
2 SiO xN y 1.953 12.2 12.2 130B
1 SiO 2 1.478 25 25 130A
基板 經離子交換的透明玻璃陶瓷 1.531 600微米 600微米 110
實例1-3與比較例1的機械性質
參照第2圖,提供從Berkovich硬度測試進入比較例1及實例1-3透明製品的外表面的測量硬度(GPa)與位移(nm)的圖。根據本揭示先前概述的Berkovich硬度測試,使用KLA Instruments G200 奈米壓痕器上的Berkovich鑽石尖端經由奈米壓痕來測量包括光學膜結構的製品中之每一者的硬度值。
如第2圖所示,由於較小量的抗反射層以及設置在最厚的SiO xN y層(例如,耐刮擦層)上方的SiO 2材料,實例2及3的硬度值較高。實例1-3在500到1000nm的壓痕深度處的相較於比較例1的較高硬度值亦與實例1-3的底下的經離子交換的玻璃陶瓷基板的相較於比較例1的底下的經離子交換的玻璃陶瓷基板的較高硬度相關。此外,下面的表4總結根據第2圖的實例1-3及比較例1的測量的Berkovich鑽石奈米壓痕硬度與深度的關係。此外,表4包括這些樣品的彈性模量測量。 表4-實例1-3及比較例1的硬度與彈性模量性質
實例 硬度(GPa) 彈性模量(GPa)
100nm的深度 500nm的深度 最大 最大
比較例1 14.0 17.6 17.8 173.7
實例1 13.6 17.8 18.2 181.3
實例2 20.2 19.2 20.3 229.7
實例3 18.7 19.2 19.4 220.6
實例1-3與比較例1的光學性質
下面的表5及表6分別總結實例1-3及比較例1的光學透射率及反射率性質。更特定言之,使用Agilent Cary 5000 UV-Vis-NIR分光光度計測量根據這些實例(實例1-3及比較例1)製備的實驗樣品的光透射及反射性質。藉由這些實例中之每一者的基板的二個主表面與光學膜結構測量表5中列出的光學透射率性質。此外,應注意,藉由這些實例中之每一者的基板的主表面中之一或二者與光學膜結構測量表6中列出的光學反射率性質。 表5-實例1-3及比較例1的光學透射率指標
光學透射率 適光平均%T(Y) L* a* b*
比較例1 94.76 97.42 -0.04 0.89
實例1 93.96 96.84 -0.09 1.33
實例2 86.58 94.06 -0.14 0.86
實例3 86.08 93.45 -0.18 1.55
表6-實例1-3及比較例1的光學反射率指標,包括2個表面(1個塗佈表面與1個未塗佈表面)以及1個表面(僅塗佈表面)反射率指標。
光學反射率 適光平均%R(Y) L* a* b*
2個表面%R 比較例1 4.52 25.68 -0.37 -0.64
實例1 4.74 26.14 -0.42 -0.27
實例2 12.24 40.82 0.03 1.34
實例3 11.97 40.25 0.02 1.59
1個表面%R 比較例1 0.58 6.08 -0.87 -1.41
實例1 0.61 6.86 -1.12 -2.28
實例2 8.85 35.02 0.08 1.17
實例3 8.46 34.05 0.10 1.50
實施例1-3及比較例1的刮痕及損傷測試結果
本發明實例1-3呈現如石榴石刮痕測試所量化的針對嚴重刮痕事件的出色抗性。此測試係單次利用150號石榴石砂紙所組成,其中在約0.6x0.6cm的接觸面積上施加4kg的負載。在此刮擦事件之後,藉由使用具有6mm直徑孔隙的Konica-Minolta CM700D的SCE測量的刮擦區域中的散射反射光來量化刮擦的等級。相較於未塗佈的化學強化鋁矽酸鹽玻璃的約0.25%或更高的平均(亦即,針對沒有塗佈或光學膜結構的經離子交換的玻璃基板,以及針對具有<10nm的減少摩擦但不會改變玻璃製品的硬度的氟矽烷ETC塗佈的經離子交換的玻璃基板),實例1-3在石榴石刮痕測試之後,漫反射率(SCE)值係低於0.005%。
本發明實例亦在承受近似真實世界應力情景的測試(例如,智慧型手機掉落到堅硬而粗糙的表面上)時展示優異的抗損傷性。更特定言之,實例1與比較例1承受具有360mN的最大負載的斜坡負載刮痕測試。參照第3圖,此圖分別包括在斜坡負載刮痕測試之後的具有玻璃基板及光學膜結構的比較透明製品(比較例1)與具有玻璃陶瓷基板及光學膜結構的透明製品(實例1)的外表面的兩張光學顯微照片。從第3圖可以看出,比較例1中的橫向裂紋的程度係距離刮痕路徑的中心至少50微米。相較之下,實例1中的可見損傷的程度係距離刮痕路徑的中心少於約20微米。
此外,實例1與比較例1承受具有不同負載等級的斜坡負載刮痕測試,以決定與損傷開始出現(亦即,橫向裂紋形成)相關的最大負載。更特定言之,在此測試中,在損傷開始出現之前,實例1承受多達約400mN的連續加載。相較之下,在此測試中,在損傷開始出現之前,比較例1承受多達約320mN的連續加載等級。
類似地,實例1與比較例1承受具有1000g負載的維氏壓痕損傷測試。參照第4圖,此圖分別包括在維氏壓痕損傷測試之後的具有玻璃基板及光學膜結構的比較透明製品(比較例1)與具有玻璃陶瓷基板及光學膜結構的透明製品(實例1)的外表面的兩張光學顯微照片。從第4圖可以看出,比較例1中的可見的橫向裂紋的程度從壓痕的中心平均延伸超過100μm(對應的最大線性損傷程度平均大於約200微米,而損傷面積係大於約30000μm 2)。相較之下,實例1中的可見損傷的程度延伸少於約70μm(對應的線性損傷程度平均少於約150μm,而損傷面積係少於約20000μm 2)。
實例4A及4B
針對此實例製備包括強化玻璃陶瓷基板的透明製品,其結構如下表7所示。玻璃陶瓷基板係為具有600μm的厚度與1.53的折射率的經離子交換的LAS玻璃陶瓷基板。此外,玻璃陶瓷基板具有下列組成物:74.5%的SiO 2;7.53%的Al 2O 3;2.1%的P 2O 5;11.3%的Li 2O;0.06%的Na 2O;0.12%的K 2O;4.31%的ZrO 2;0.06%的Fe 2O 3;以及0.02%的SnO 2(基於氧化物的重量%)。此外,玻璃陶瓷基板根據下列排程進行陶瓷化:(a)以5℃/min從室溫升溫至580℃;(b)在580℃下保持2.75小時;(c)以2.5℃/min升溫至755℃;(d)在755℃下保持0.75小時;以及(e)以爐速冷卻至室溫。在陶瓷化之後,玻璃陶瓷基板在60%的KNO 3/40%的NaNO 3+0.12%的LiNO 3(重量%)的熔融鹽浴中在500℃下進行6小時的離子交換強化。此外,根據美國專利公開號2020/0158916中闡述的氣相沉積條件來沉積光學膜結構的層,其主要部分藉由引用併入本文。
再次參照此實例的透明製品,在玻璃陶瓷基板與耐刮擦層(例如,表7中的層8)之間配置光學膜結構的層(例如,表7中的層1-7),以實現基板110與耐刮擦層之間的過渡區所產生的低反射率及低顏色。此外,光學膜結構中的層的佈置以及結構中的高RI層的化學計量經配置以取得用於確保在ROR測試中測量的超過700MPa的透明製品的平均破損強度等級的光學膜結構中的殘餘壓縮應力、硬度、及彈性模量等級。此外,如表7所述,高RI層的化學計量的有意變化導致這些層的折射率發生變化。 表7-實例4A及4B,具有強化玻璃陶瓷基板的透明製品設計
材料 折射率(@550nm) 厚度(nm,除非另有說明) 透明製品100的示例性元件 (參見第1A圖至第1D圖)
中等 空氣 1.0 N/A N/A
11 SiO 2 1.476 58-64 131
10 SiO xN y 1.74-2.1 30-42 130B
9 SiO 2 1.476 17-20 130A
8 SiO xN y 1.74-1.95 1900-2100 150及/或130B
7 SiO 2 1.476 8.7-9.2 130A
6 SiO xN y 1.74-1.95 45-53 130B
5 SiO 2 1.476 30-31 130A
4 SiO xN y 1.74-1.95 27-34 130B
3 SiO 2 1.476 50-53 130A
2 SiO xN y 1.74-1.95 11-17 130B
1 SiO 2 1.476 25 130A
基板 經離子交換的透明玻璃陶瓷 1.53 600μm 110
進一步關於此實例,實例4A及4B的高RI層經製備及配置而使得包含SiO xN y的高RI層分別具有1.75及1.88的折射率。應注意,根據表7所概述的設計而配置這些樣品的光學膜結構(實例4A及4B)。根據習知反應濺射處理來沉積實例4A及4B的低RI層,並根據反應濺射處理及根據下列條件來沉積高RI層:濺射功率=6-7kW、ICP功率=2-4kW、氬氣流動速率(金屬濺射區)=50-150sccm(較佳為70-90sccm)、氬氣流動速率(ICP區)=0-100sccm(例如,80sccm)、氧氣流動速率(ICP區)=35-65sccm、及氮氣流動速率(ICP區)=200-250sccm。應注意,改變氧氣流動速率以產生具有受控SiO xN y化學計量的高RI層,這會影響折射率、彈性模量、殘餘壓縮應力、及硬度,其中金屬濺射區中的氬氣流動亦用於控制膜密度、模量、硬度、及應力。
現在參照第6A圖及第6B圖,分別提供在Berkovich硬度測試中的在此實例的二個透明製品的光學膜結構(實例4A及4B)的外表面上測量的硬度(GPa)及彈性模量(GPa)與位移(nm)的關係的圖。從第6A圖中的資料可以看出,這些樣品中之每一者在從約100nm至約500nm(或至約900nm)的壓痕深度處分別呈現約18及16GPa的最大硬度等級。從第6B圖中的資料可以明顯看出,這些樣品中之每一者在約100nm的壓痕深度處分別呈現約180GPa及160GPa的彈性模量等級。因此,很明顯地,此實例的光學膜結構中的高RI層的化學計量可以改變,而導致具有變化但可控的機械性質(包括彈性模量及硬度)的光學膜結構。
實例4C
在此實例中,具有根據表8的玻璃陶瓷基板與光學膜結構(參見下文)配置的光學膜結構的四個透明製品是應力建模的主題。更特定言之,這些製品進行建模,並考慮其光學膜結構的殘餘壓縮應力及彈性模量等級來評估平均ROR破損強度。此外,這四個製品採用表8的光學膜結構,進一步配置成具有SiO xN y高RI層,而使得光學膜結構分別呈現140GPa(實例4C1)、150GPa(實例4C2)、160GPa(實例4C3)、及170GPa(實例4C4)的彈性模量等級。
在此實例中進行建模時,做出下列假設。針對本揭示的具有剛性及硬光學膜結構及玻璃陶瓷基板的透明製品,傳播光學膜結構中的預先存在的缺陷所需的施加應變遠低於傳播基板中的預先存在的缺陷所需的應變本身,主要是因為易碎光學膜結構比玻璃陶瓷基板更具有剛性。因此,假設光學膜結構首先發生破損,一旦裂紋驅動力超過玻璃陶瓷基板的抗斷裂性,裂紋就會穿透基板,而導致最終的系統災難性破損。然後,進行基於斷裂力學的數值建模(經由有限元素分析),在樣品中插入一系列裂紋,當裂紋尖端應力強度因子(K I)等於外部施加彎曲負載下的玻璃陶瓷基板的斷裂韌性(K IC)時,決定應變等級。然後,依據假設的大小範圍為0.1至2.5μm的裂紋在基板中的缺陷分佈來計算平均保留強度。 表8-實例4C,具有強化玻璃陶瓷基板的透明製品設計
材料 折射率(@550nm) 厚度(nm,除非另有說明) 透明製品100的示例性元件 (參見第1A圖至第1D圖)
中等 空氣 1.0 N/A N/A
13 SiO 2 1.478 88.5 131
12 SiO xN y 1.7-1.9 143.6 130B
11 SiO 2 1.478 16.8 130A
10 SiO xN y 1.7-1.9 40.9 130B
9 SiO 2 1.478 10.6 130A
8 SiO xN y 1.7-1.9 2000 150及/或130B
7 SiO 2 1.478 8.7 130A
6 SiO xN y 1.7-1.9 45.8 130B
5 SiO 2 1.478 29.7 130A
4 SiO xN y 1.7-1.9 28.1 130B
3 SiO 2 1.478 51.4 130A
2 SiO xN y 1.7-1.9 12.2 130B
1 SiO 2 1.478 25 130A
基板 經離子交換的透明玻璃陶瓷 1.531 600μm 110
現在參照第7圖,提供在ROR測試中測量的平均製品破損應力(MPa)與針對具有不同彈性模量值(實例4C1-4C4)的此實例的光學膜結構的透明製品建模的光學膜結構殘餘應力(MPa)的圖表。從圖表中可以看出,維持至少700MPa的光學膜結構殘餘應力,並將光學膜結構的彈性模量控制成170GPa或更少,可以確保至少750MPa的光學膜結構的破損應力。此外,若光學膜結構的彈性模量維持在約140GPa至約170GPa,則提高光學膜結構中的殘餘壓縮應力傾向於將平均破損應力從750MPa提高到遠高於850MPa的等級。
實例5
製備並測試實際的透明製品樣品,以驗證第7圖所示及先前描述的前述建模結果。現在參照第8圖,提供在ROR測試中測量的此實例的具有不同光學膜結構的透明製品及比較透明製品的平均製品等級破損應力(MPa)的箱線圖。在第8圖中,報告下列五(5)個樣品群組的平均ROR破損應力等級:(a)沒有光學膜結構的玻璃陶瓷基板的對照組(比較例5A);(b)使用玻璃陶瓷基板與習知光學膜結構的透明製品的對照組(比較例5B);(c)採用根據此實例的光學膜結構的本發明透明製品,其中殘餘壓縮應力係為740MPa,彈性模量係為170GPa,而硬度係為17.7GPa(實例5D1);(d)採用根據此實例的光學膜結構的本發明透明製品,其中殘餘壓縮應力係為915MPa,彈性模量係為175GPa,而硬度係為18.6GPa(實例5D2);(e)採用根據此實例的光學膜結構的本發明透明製品,其中殘餘壓縮應力係為838MPa,彈性模量係為157GPa,而硬度係為16.0GPa(實例5D3)。
更具體而言,此實例的樣品(比較例5A及5B;以及實例5D1-5D3)採用如先前實例所概述的玻璃陶瓷基板及離子交換條件。此外,根據表7所列出的11層設計製造實例5D1-5D3的光學膜結構,其中針對高RI層的化學計量進行調整,以取得殘餘壓縮應力、彈性模量、及硬度性質(參見第8圖及以上所述);以及針對設計中的各層的厚度進行微調。根據習知反應濺射處理來沉積此實例的樣品(亦即,實例5D1-5D3)的低RI層,並根據反應濺射處理及根據下列條件來沉積高RI層:濺射功率=6-7kW、ICP功率=2-4kW、氬氣流動速率(金屬濺射區)=50-150sccm(較佳為70-90sccm)、氬氣流動速率(ICP區)=0-100sccm(例如,80sccm)、氧氣流動速率(ICP區)=35-65sccm、及氮氣流動速率(ICP區)=200-250sccm。應注意,改變氧氣流動速率以產生具有受控SiO xN y化學計量的高RI層,這會影響折射率、彈性模量、殘餘壓縮應力、及硬度,其中金屬濺射區中的氬氣流動亦用於控制膜密度、模量、硬度、及應力。
此外,根據與表7所列出的設計基本上類似的設計製備比較例5B的習知光學膜結構;然而,此比較例中的所有高RI層均利用SiO xN y化學計量製備,而使得其呈現大於200GPa的彈性模量以及約1.94至2.04的折射率。更特定言之,利用SiO xN y化學計量或接近Si 3N 4的SiNx組成物藉由將氧氣流動速率(ICP區)降低至低於30sccm(例如,0-25sccm)的等級來生產比較例5B的高RI層,其中濺射功率=6-9kW,ICP功率=2-4kW,氬氣流動速率(金屬濺射區)=100-500sccm,氬氣流動速率(ICP區)=80sccm,氮氣流動速率(ICP區)=100-250sccm。
從第8圖可以看出,實驗結果與第7圖的建模結果相關。此外,很明顯地,此實例的本發明透明製品(實例5D1-5D3)呈現超過具有並未針對本揭示的目標殘餘壓縮應力與彈性模量等級進行最佳化的習知光學膜結構設計的對照組(約525MPa)的平均ROR破損應力等級(分別為700MPa、800MPa、及850MPa)。
實例6A及6B
針對此實例製備包括強化玻璃陶瓷基板的透明製品,其結構如下表9A及9B所示(分別為實例6A及6B)。玻璃陶瓷基板係為具有600μm的厚度與1.53的折射率的經離子交換的LAS玻璃陶瓷基板。此外,玻璃陶瓷基板具有下列組成物:74.5%的SiO 2;7.53%的Al 2O 3;2.1%的P 2O 5;11.3%的Li 2O;0.06%的Na 2O;0.12%的K 2O;4.31%的ZrO 2;0.06%的Fe 2O 3;以及0.02%的SnO 2(基於氧化物的重量%)。此外,玻璃陶瓷基板根據下列排程進行陶瓷化:(a)以5℃/min從室溫升溫至580℃;(b)在580℃下保持2.75小時;(c)以2.5℃/min升溫至755℃;(d)在755℃下保持0.75小時;以及(e)以爐速冷卻至室溫。在陶瓷化之後,玻璃陶瓷基板在60%的KNO 3/40%的NaNO 3+0.12%的LiNO 3(重量%)的熔融鹽浴中在500℃下進行6小時的離子交換強化。此外,根據美國專利公開號2020/0158916中闡述的氣相沉積條件來沉積光學膜結構的層,其主要部分藉由引用併入本文。
再次參照此實例的透明製品,在玻璃陶瓷基板與耐刮擦層(例如,表9A及9B中的層8)之間配置光學膜結構的層(例如,表9A及9B中的層1-7),以實現基板110與耐刮擦層之間的過渡區所產生的低反射率及低顏色。此外,光學膜結構中的層的佈置以及結構中的高RI層的化學計量經配置以取得用於確保在ROR測試中測量的超過700MPa的透明製品的平均破損強度等級的光學膜結構中的殘餘壓縮應力與彈性模量等級(例如,實例6A的約160GPa以及實例6B的約150GPa)。根據習知反應濺射處理來沉積此實例的樣品(亦即,實例6A及6B)的低RI層,並根據反應濺射處理及根據下列條件來沉積高RI層:濺射功率=6-7kW、ICP功率=2-4kW、氬氣流動速率(金屬濺射區)=50-150sccm(較佳為70-90sccm)、氬氣流動速率(ICP區)=0-100sccm(例如,80sccm)、氧氣流動速率(ICP區)=35-65sccm、及氮氣流動速率(ICP區)=200-250sccm。應注意,改變氧氣流動速率以產生具有受控SiO xN y化學計量的高RI層,這會影響折射率、彈性模量、殘餘壓縮應力、及硬度,其中金屬濺射區中的氬氣流動亦用於控制膜密度、模量、硬度、及應力。 表9A-實例6A,具有強化玻璃陶瓷基板的透明製品設計
材料 折射率(@550nm) 厚度(nm,除非另有說明) 透明製品100的示例性元件 (參見第1A圖至第1D圖)
中等 空氣 1.0 N/A N/A
11 SiO 2 1.477 59.8 131
10 SiO xN y 1.829 38.62 130B
9 SiO 2 1.477 17.98 130A
8 SiO xN y 1.829 1925 150及/或130B
7 SiO 2 1.477 8.93 130A
6 SiO xN y 1.829 49.13 130B
5 SiO 2 1.477 30.24 130A
4 SiO xN y 1.829 30.58 130B
3 SiO 2 1.477 51.41 130A
2 SiO xN y 1.829 13.88 130B
1 SiO 2 1.477 25 130A
基板 經離子交換的透明玻璃陶瓷 1.53 600μm 110
表9B-實例6B,具有強化玻璃陶瓷基板的透明製品設計
材料 折射率(@550nm) 厚度(nm,除非另有說明) 透明製品100的示例性元件 (參見第1A圖至第1D圖)
中等 空氣 1.0 N/A N/A
11 SiO 2 1.477 58.42 131
10 SiO xN y 1.744 40.85 130B
9 SiO 2 1.477 18.54 130A
8 SiO xN y 1.744 2020 150及/或130B
7 SiO 2 1.477 9.04 130A
6 SiO xN y 1.744 52.13 130B
5 SiO 2 1.477 30.36 130A
4 SiO xN y 1.744 33.32 130B
3 SiO 2 1.477 50.44 130A
2 SiO xN y 1.744 16.46 130B
1 SiO 2 1.477 25 130A
基板 經離子交換的透明玻璃陶瓷 1.53 600μm 110
實例7A-7C
針對此實例製備包括強化玻璃陶瓷基板的透明製品,其結構如下表10A-10C所示(分別為實例7A-7C)。玻璃陶瓷基板係為具有600μm的厚度與1.533的折射率的經離子交換的LAS玻璃陶瓷基板。此外,玻璃陶瓷基板具有下列組成物:74.5%的SiO 2;7.53%的Al 2O 3;2.1%的P 2O 5;11.3%的Li 2O;0.06%的Na 2O;0.12%的K 2O;4.31%的ZrO 2;0.06%的Fe 2O 3;以及0.02%的SnO 2(基於氧化物的重量%)。此外,玻璃陶瓷基板根據下列排程進行陶瓷化:(a)以5℃/min從室溫升溫至580℃;(b)在580℃下保持2.75小時;(c)以2.5℃/min升溫至755℃;(d)在755℃下保持0.75小時;以及(e)以爐速冷卻至室溫。在陶瓷化之後,玻璃陶瓷基板在60%的KNO 3/40%的NaNO 3+0.12%的LiNO 3(重量%)的熔融鹽浴中在500℃下進行6小時的離子交換強化。此外,根據美國專利公開號2020/0158916中闡述的氣相沉積條件來沉積光學膜結構的層,其主要部分藉由引用併入本文。
再次參照此實例的透明製品,在玻璃陶瓷基板與耐刮擦層(例如,表10A-10C中的層8)之間配置光學膜結構的層(例如,表10A-10C中的層1-7),以實現基板110與耐刮擦層之間的過渡區所產生的低反射率及低顏色。此外,光學膜結構中的層的佈置以及結構中的高RI層的化學計量經配置以取得用於確保在ROR測試中測量的超過700MPa的透明製品的平均破損強度等級的光學膜結構中的殘餘壓縮應力與彈性模量等級(例如,實例7A的約160GPa、實例7B的約160GPa、及實例7C的約150GPa)。進一步關於實例7B及7C的光學膜結構,並非這些設計中的所有高RI層都具有約150至160GPa的彈性模量;然而,作為本文中最厚及最有影響的層的耐刮擦層係配置成具有大約150至160GPa的彈性模量等級。根據習知反應濺射處理來沉積此實例的樣品(亦即,實例7A-7C)的低RI層,並根據反應濺射處理及根據下列條件來沉積包含SiO xN y的高RI層:濺射功率=6kW、氬氣流動速率=80-100sccm、氧氣流動速率=35-65sccm、及氮氣流動速率=250sccm。應注意,改變氧氣流動速率,以產生具有受控SiO xN y化學計量的高RI層,這會影響折射率、彈性模量、殘餘壓縮應力、及硬度。
此外,實例7B及7C中的厚的耐刮擦層上方的高RI層包含SiO xN y或接近Si 3N 4的SiNx組成物。因為這些層基本上比包含SiO xN y的耐刮擦層更薄,所以對於光學膜結構的整體機械性質(例如,彈性模量、殘餘壓縮應力、及硬度)的影響較少。此外,如下列條件來處理這些SiNx層:濺射功率=6-9kW,ICP功率=2-4kW,氬氣流動速率(金屬濺射區)=100-500sccm,氬氣流動速率(ICP區)=80sccm,氧氣流動速率(ICP區)=0-25sccm,氮氣流動速率=100-250sccm。 表10A-實例7A,具有強化玻璃陶瓷基板的透明製品設計
材料 折射率(@550nm) 厚度(nm,除非另有說明) 透明製品100的示例性元件 (參見第1A圖至第1D圖)
中等 空氣 1.0 N/A N/A
15 SiO 2 1.477 101.73 131
14 SiO xN y 1.829 101.87 130B
13 SiO 2 1.477 20.74 130A
12 SiO xN y 1.829 44.48 130B
11 SiO 2 1.477 49.76 130A
10 SiO xN y 1.829 46.24 130B
9 SiO 2 1.477 21.92 130A
8 SiO xN y 1.829 1954.06 150及/或130B
7 SiO 2 1.477 8.86 130A
6 SiO xN y 1.829 49.18 130B
5 SiO 2 1.477 30.09 130A
4 SiO xN y 1.829 30.66 130B
3 SiO 2 1.477 51.23 130A
2 SiO xN y 1.829 13.97 130B
1 SiO 2 1.477 25 130A
基板 經離子交換的透明玻璃陶瓷 1.533 600μm 110
表10B-實例7B,具有強化玻璃陶瓷基板的透明製品設計
材料 折射率(@550nm) 厚度(nm,除非另有說明) 透明製品100的示例性元件 (參見第1A圖至第1D圖)
中等 空氣 1.0 N/A N/A
13 SiO 2 1.476 96.74 131
12 Si 3N 4 2.014 146.13 130B
11 SiO 2 1.476 23.14 130A
10 Si 3N 4 2.014 35.95 130B
9 SiO 2 1.476 15.18 130A
8 SiO xN y 1.829 2001.57 150及/或130B
7 SiO 2 1.476 8.86 130A
6 SiO xN y 1.829 49.18 130B
5 SiO 2 1.476 30.09 130A
4 SiO xN y 1.829 30.66 130B
3 SiO 2 1.476 51.23 130A
2 SiO xN y 1.829 13.97 130B
1 SiO 2 1.476 25 130A
基板 經離子交換的透明玻璃陶瓷 1.533 600μm 110
表10C-實例7C,具有強化玻璃陶瓷基板的透明製品設計
材料 折射率(@550nm) 厚度(nm,除非另有說明) 透明製品100的示例性元件 (參見第1A圖至第1D圖)
中等 空氣 1.0 N/A N/A
13 SiO 2 1.476 96.36 131
12 Si 3N 4 2.014 142.58 130B
11 SiO 2 1.476 25.15 130A
10 Si 3N 4 2.014 29.48 130B
9 SiO 2 1.476 15.47 130A
8 SiO xN y 1.744 2111.16 150及/或130B
7 SiO 2 1.476 8.96 130A
6 SiO xN y 1.744 52.21 130B
5 SiO 2 1.476 30.17 130A
4 SiO xN y 1.744 33.42 130B
3 SiO 2 1.476 50.24 130A
2 SiO xN y 1.744 16.58 130B
1 SiO 2 1.476 25 130A
基板 經離子交換的透明玻璃陶瓷 1.533 600μm 110
現在參照第9A圖,提供此實例的三個透明製品(實例7A-7C)在0°至90°的入射角下測量的單側反射顏色的圖。從資料可以看出,針對第9A圖中的各種a*、b*座標,實例7A-7C的反射顏色等級少於9(亦即,√(a* 2+b* 2))。
現在參照第9B圖,提供此實例的三個透明製品(實例7A-7C)與比較製品(比較例7)在垂直入射角下測量的兩側透射率與波長的圖。更特定言之,比較製品(比較例7)係為具有一些玻璃陶瓷基板以及具有類似於實例7A-7C的層配置的光學膜結構的透明製品。但是,比較例7設計的所有高RI層呈現大於200GPa的彈性模量。從資料可以看出,在可見光譜(約420nm至700nm)及940nm的紅外光譜中在垂直入射角下的實例7A-7C所呈現的平均透射率係大於92%。相較之下,在940nm紅外光譜中的比較例的透射率較低(約88%)。
現在參照第9C圖,提供此實例的三個透明製品(實例7A-7C)與比較製品(比較例7)在垂直入射角下測量的兩側反射率與波長的圖。從資料可以看出,實例7A-7C所呈現的平均反射率在可見光譜(約450nm至700nm)中係少於2%,而在940nm的紅外光譜中係少於4%。相較之下,在940nm的紅外光譜中的比較例的平均反射率較高(約8%)。
如本文所概述,本揭示的第一態樣係為一種透明製品,包括:玻璃陶瓷基板,包含第一及第二主表面,該等主表面彼此相對;以及光學膜結構,定義外表面,光學膜結構係設置在第一主表面上。玻璃陶瓷基板包含至少40重量%的結晶度。進一步地,光學膜結構包含複數個交替的高折射率(RI)及低RI層以及耐刮擦層。該製品亦呈現大於80%的平均適光透射率、在0度至10度的入射角下利用少於4的D65照明體的透射顏色√(a* 2+b* 2)、及藉由Berkovich硬度測試在距離光學膜結構的外表面的約100nm至約500nm的壓痕深度範圍內測量的大於10GPa的最大硬度。進一步地,該玻璃陶瓷基板包含大於85GPa的彈性模量以及大於0.8MPa·√m的斷裂韌性。
如本文所概述,本揭示的第二態樣係為根據第一態樣的透明製品,其中基板包含大於95GPa的彈性模量以及大於1.0MPa·√m的斷裂韌性。
如本文所概述,本揭示的第三態樣係為根據第一態樣或第二態樣的透明製品,其中製品呈現藉由Berkovich硬度測試在距離光學膜結構的外表面的約100nm至約500nm的壓痕深度範圍內測量的大於14GPa的最大硬度。
如本文所概述,本揭示的第四態樣係為根據第一至第三態樣中之任一者的透明製品,其中製品呈現大於90%的平均適光透射率,並且製品在0度至10度的入射角下利用少於2的D65照明體進一步呈現透射顏色√(a* 2+b* 2)。
如本文所概述,本揭示的第五態樣係為根據第一至第四態樣中之任一者的透明製品,其中玻璃陶瓷基板包含至少75重量%的結晶度。
如本文所概述,本揭示的第六態樣係為根據第一至第五態樣中之任一者的透明製品,其中玻璃陶瓷基板包含二矽酸鋰相。
如本文所概述,本揭示的第七態樣係為根據第六態樣的透明製品,其中玻璃陶瓷基板進一步包含透鋰長石相。
如本文所概述,本揭示的第八態樣係為根據第一至第七態樣中之任一者的透明製品,其中每一高RI層及耐刮擦層包含Si 3N 4、SiN y、及SiO xN y中之一或更多者,而每一低RI層包含SiO 2及SiO x中之一或更多者,且其中每一高RI層進一步具有約5nm至約300nm的厚度,每一低RI層具有約5nm至約300nm的厚度,而耐刮擦層具有約200nm至約10000nm的厚度。
如本文所概述,本揭示的第九態樣係為根據第一至第八態樣中之任一者的透明製品,其中光學膜結構包含外結構與內結構,耐刮擦層係設置在外結構與內結構之間。
如本文所概述,本揭示的第十態樣係為根據第一至第九態樣中之任一者的透明製品,其中製品呈現少於1%的透射霧度。
如本文所概述,本揭示的第十一態樣係為根據第一至第十態樣中之任一者的透明製品,其中玻璃陶瓷基板經化學強化,並具有約200MPa至約400MPa的表面壓縮應力以及約1μm至15μm的層壓縮深度。
如本文所概述,本揭示的第十二態樣係為根據第十一態樣的透明製品,其中玻璃陶瓷基板進一步呈現約80MPa至約200MPa的最大中心張力(CT)值,且其中基板進一步具有約0.6mm或更少的厚度。
如本文所概述,本揭示的第十三態樣係為一種透明製品,包括:玻璃陶瓷基板,包含第一及第二主表面,該等主表面彼此相對;以及光學膜結構,定義外表面,光學膜結構係設置在第一主表面上。玻璃陶瓷基板包含至少40重量%的結晶度。進一步地,光學膜結構包含複數個交替的高折射率(RI)及低RI層以及耐刮擦層。該製品亦呈現大於80%的平均適光透射率、在0度至10度的入射角下利用少於4的D65照明體的透射顏色√(a* 2+b* 2)、及利用具有1000g負載的維氏壓痕損傷測試所測試的具有少於160微米的平均最大線性尺寸或少於25000μm 2的橫向裂紋面積的橫向裂紋區域。
如本文所概述,本揭示的第十四態樣係為根據第十三態樣的透明製品,其中在光學膜結構的外表面上利用錐形鑽石壓痕器的斜坡負載刮痕測試所測試的製品呈現針對橫向裂紋形成的約340mN或更大的負載閾值。
如本文所概述,本揭示的第十五態樣係為根據第十三態樣或第十四態樣的透明製品,其中製品呈現大於90%的平均適光透射率,並且製品在0度至10度的入射角下利用少於2的D65照明體進一步呈現透射顏色√(a* 2+b* 2)。
如本文所概述,本揭示的第十六態樣係為根據第十三至第十五態樣中之任一者的透明製品,其中玻璃陶瓷基板包含至少75重量%的結晶度。
如本文所概述,本揭示的第十七態樣係為根據第十三至第十六態樣中之任一者的透明製品,其中玻璃陶瓷基板包含二矽酸鋰相。
如本文所概述,本揭示的第十八態樣係為根據第十七態樣的透明製品,其中玻璃陶瓷基板進一步包含透鋰長石相。
如本文所概述,本揭示的第十九態樣係為根據第十三至第十八態樣中之任一者的透明製品,其中每一高RI層及耐刮擦層包含Si 3N 4、SiN y、及SiO xN y中之一或更多者,而每一低RI層包含SiO 2及SiO x中之一或更多者,且其中每一高RI層進一步具有約5nm至約300nm的厚度,每一低RI層具有約5nm至約300nm的厚度,而耐刮擦層具有約200nm至約10000nm的厚度。
如本文所概述,本揭示的第二十態樣係為根據第十三至第十九態樣中之任一者的透明製品,其中光學膜結構包含外結構與內結構,耐刮擦層係設置在外結構與內結構之間。
如本文所概述,本揭示的第二十一態樣係為根據第十三至第二十態樣中之任一者的透明製品,其中製品呈現少於1%的透射霧度。
如本文所概述,本揭示的第二十二態樣係為根據第十三至第二十一態樣中之任一者的透明製品,其中玻璃陶瓷基板經化學強化,並具有約200MPa至約400MPa的表面壓縮應力以及約1μm至15μm的層壓縮深度。
如本文所概述,本揭示的第二十三態樣係為根據第二十二態樣的透明製品,其中玻璃陶瓷基板進一步呈現約80MPa至約200MPa的最大中心張力(CT)值,且其中基板進一步具有約0.6mm或更少的厚度。
如本文所概述,本揭示的第二十四態樣係為一種透明製品,包括:玻璃陶瓷基板,具有約1.52或更大的折射率並包含第一及第二主表面,該等主表面彼此相對;以及光學膜結構,定義外表面,光學膜結構係設置在第一主表面上。玻璃陶瓷基板包含至少40重量%的結晶度。進一步地,光學膜結構包含複數個交替的高折射率(RI)及低RI層以及耐刮擦層。該製品亦呈現大於80%的平均適光透射率以及在0度至10度的入射角下利用少於4的D65照明體的透射顏色√(a* 2+b* 2)。此外,光學膜結構包含外結構與內結構,耐刮擦層係設置在外結構與內結構之間。進一步地,光學膜結構的內結構經配置以基本上匹配玻璃陶瓷基板與耐刮擦層之間的光學阻抗。玻璃陶瓷基板亦包含大於85GPa的彈性模量以及大於0.8MPa·√m的斷裂韌性。
如本文所概述,本揭示的第二十五態樣係為根據第二十四態樣的透明製品,其中製品呈現藉由Berkovich硬度測試在距離光學膜結構的外表面的約100nm至約500nm的壓痕深度範圍內測量的大於14GPa的最大硬度。
如本文所概述,本揭示的第二十六態樣係為根據第二十四態樣或第二十五態樣的透明製品,其中製品呈現利用具有1000g負載的維氏損傷測試所測試的具有少於160微米的平均最大線性尺寸或少於25000μm 2的橫向裂紋面積的橫向裂紋區域。
如本文所概述,本揭示的第二十七態樣係為根據第二十四至第二十六態樣中之任一者的透明製品,其中製品呈現大於90%的平均適光透射率,並且製品在0度至10度的入射角下利用少於2的D65照明體進一步呈現透射顏色√(a* 2+b* 2)。
如本文所概述,本揭示的第二十八態樣係為根據第二十四至第二十七態樣中之任一者的透明製品,其中每一高RI層及耐刮擦層包含Si 3N 4、SiN y、及SiO xN y中之一或更多者,每一低RI層包含SiO 2及SiO x中之一或更多者。
如本文所概述,本揭示的第二十九態樣係為根據第二十四至第二十八態樣中之任一者的透明製品,其中每一高RI層具有約5nm至約300nm的厚度,每一低RI層具有約5nm至約300nm的厚度,而耐刮擦層具有約200nm至約10000nm的厚度。
如本文所概述,本揭示的第三十態樣係為根據第二十四至第二十九態樣中之任一者的透明製品,其中光學膜結構的內結構中的低RI層的體積係少於約59%,而光學膜結構的內結構中的高RI層的體積係大於約41%。
如本文所概述,本揭示的第三十一態樣係為根據第二十四至第三十態樣中之任一者的透明製品,其中製品呈現少於1%的透射霧度。
如本文所概述,本發明的第三十二態樣係為一種顯示裝置,包含第一至第十二態樣中之任一者的透明製品,其中透明製品作為用於顯示裝置的保護外罩。
如本文所概述,本發明的第三十三態樣係為一種顯示裝置,包含第十三至第二十三態樣中之任一者的透明製品,其中透明製品作為用於顯示裝置的保護外罩。
如本文所概述,本發明的第三十四態樣係為一種顯示裝置,包含第二十四至第三十一態樣中之任一者的透明製品,其中透明製品作為用於顯示裝置的保護外罩。
如本文所概述,本揭示的第三十五態樣係關於一種透明製品,包括:玻璃陶瓷基板,包含第一及第二主表面,該等主表面彼此相對;以及光學膜結構,包含內表面及外表面,光學膜結構的內表面係設置在第一主表面上。玻璃陶瓷基板包含至少40重量%的結晶度。進一步地,光學膜結構包含複數個交替的高折射率(RI)層及低RI層以及耐刮擦層。該製品亦呈現大於80%的平均適光透射率以及藉由Berkovich硬度測試在距離光學膜結構的外表面的約100nm至約500nm的壓痕深度範圍內測量的大於10GPa的最大硬度。玻璃陶瓷基板包含大於85GPa的彈性模量以及大於0.8MPa·√m的斷裂韌性。進一步地,光學膜結構呈現大於或等於700MPa的殘餘壓縮應力以及大於或等於140GPa的彈性模量。
根據本揭示的第三十六態樣,提供第三十五態樣,其中製品在0度至10度的入射角下利用少於4的D65照明體呈現透射顏色√(a* 2+b* 2)。
根據本揭示的第三十七態樣,提供第三十五或三十六態樣,其中玻璃陶瓷基板包含大於95GPa的彈性模量以及大於1.0MPa·√m的斷裂韌性。
根據本揭示的第三十八態樣,提供第三十五至第三十七態樣中之任一者,其中製品呈現藉由Berkovich硬度測試在距離光學膜結構的外表面的約100nm至約500nm的壓痕深度範圍內測量的大於12GPa的最大硬度。
根據本揭示的第三十九態樣,提供第三十五至第三十八態樣中之任一者,其中製品呈現大於90%的平均適光透射率,並且製品在0度至10度的入射角下利用少於2的D65照明體進一步呈現透射顏色√(a* 2+b* 2)。
根據本揭示的第四十態樣,提供第三十五至第三十九態樣中之任一者,其中玻璃陶瓷基板包含至少75重量%的結晶度。
根據本揭示的第四十一態樣,提供第三十五至第四十態樣中之任一者,其中玻璃陶瓷基板包含二矽酸鋰相。
根據本揭示的第四十二態樣,提供第四十一態樣,其中玻璃陶瓷基板進一步包含透鋰長石相。
根據本揭示的第四十三態樣,提供第三十五至第四十二態樣中之任一者,其中每一高RI層及該耐刮擦層包含含矽氮化物或含矽氮氧化物,而每一低RI層包含含矽氧化物,且其中每一高RI層進一步具有約5nm至約300nm的厚度,每一低RI層具有約5nm至約300nm的厚度,而耐刮擦層具有約100nm至約10000nm的厚度。
根據本揭示的第四十四態樣,提供第四十三態樣,其中第一低RI層係設置成與基板的第一主表面直接接觸,且其中耐刮擦層進一步具有約1000nm至約3000nm的厚度。
根據本揭示的第四十五態樣,提供第三十五至第四十四態樣中之任一者,其中玻璃陶瓷基板經化學強化,並具有約200MPa至約400MPa的表面壓縮應力以及約1μm至約15μm的層壓縮深度。
根據本揭示的第四十六態樣,提供第四十五態樣,其中玻璃陶瓷基板進一步呈現約80MPa至約200MPa的最大中心張力(CT)值,且其中基板進一步具有約0.6mm或更少的厚度。
本揭示的第四十七態樣係關於一種透明製品,包括:玻璃陶瓷基板,包含第一及第二主表面,該等主表面彼此相對;以及光學膜結構,包含內表面及外表面,光學膜結構的內表面係設置在第一主表面上。玻璃陶瓷基板包含至少40重量%的結晶度。進一步地,光學膜結構包含複數個交替的高折射率(RI)層及低RI層以及耐刮擦層。該製品亦呈現大於80%的平均適光透射率以及藉由Berkovich硬度測試在距離光學膜結構的外表面的約100nm至約500nm的壓痕深度範圍內測量的大於10GPa的最大硬度。玻璃陶瓷基板包含大於85GPa的彈性模量以及大於0.8MPa·√m的斷裂韌性。進一步地,光學膜結構呈現700MPa至1100MPa的殘餘壓縮應力以及140GPa至200GPa的彈性模量。此外,該製品呈現在光學膜結構的外表面處於張力下的環對環測試中的700MPa或更大的平均破損應力。
根據本揭示的第四十八態樣,提供第四十七態樣,其中製品呈現在光學膜結構的外表面處於張力下的環對環測試中的800MPa或更大的平均破損應力。
根據本揭示的第四十九態樣,提供第四十七態樣或第四十八態樣,其中光學膜結構呈現140GPa至180GPa的彈性模量。
根據本揭示的第五十態樣,提供第四十七至第四十九態樣中之任一者,其中製品在0度至10度的入射角下利用少於4的D65照明體呈現透射顏色√(a* 2+b* 2)。
根據本揭示的第五十一態樣,提供第四十七至第五十態樣中之任一者,其中玻璃陶瓷基板包含大於95GPa的彈性模量以及大於1.0MPa·√m的斷裂韌性。
根據本揭示的第五十二態樣,提供第四十七至第五十一態樣中之任一者,其中製品呈現藉由Berkovich硬度測試在距離光學膜結構的外表面的約100nm至約500nm的壓痕深度範圍內測量的大於12GPa的最大硬度。
根據本揭示的第五十三態樣,提供第四十七至第五十二態樣中之任一者,其中製品呈現大於90%的平均適光透射率,並且製品在0度至10度的入射角下利用少於1的D65照明體進一步呈現透射顏色√(a* 2+b* 2)。
根據本揭示的第五十四態樣,提供第四十七至第五十三態樣中之任一者,其中玻璃陶瓷基板包含至少75重量%的結晶度、二矽酸鋰相、及透鋰長石相。
根據本揭示的第五十五態樣,提供第四十七至第五十四態樣中之任一者,其中每一高RI層及該耐刮擦層包含含矽氮化物或含矽氮氧化物,而每一低RI層包含含矽氧化物,且其中每一高RI層進一步具有約5nm至約300nm的厚度,每一低RI層具有約5nm至約300nm的厚度,而耐刮擦層具有約100nm至約10000nm的厚度。
根據本揭示的第五十六態樣,提供第五十五態樣,其中第一低RI層係設置成與基板的第一主表面直接接觸,且其中耐刮擦層進一步具有約1000nm至約3000nm的厚度。
根據本揭示的第五十七態樣,提供第四十七至第五十六態樣中之任一者,其中玻璃陶瓷基板經化學強化,並具有約200MPa至約400MPa的表面壓縮應力以及約1μm至15μm的層壓縮深度。
根據本揭示的第五十八態樣,提供第五十七態樣,其中玻璃陶瓷基板進一步呈現約80MPa至約200MPa的最大中心張力(CT)值,且其中基板進一步具有約0.6mm或更少的厚度。
根據本揭示的第五十九態樣,提供第四十七至第五十八態樣中之任一者,其中光學膜結構呈現700MPa至850MPa的殘餘壓縮應力以及約140GPa至165GPa的彈性模量。
根據本揭示的第六十態樣,提供第四十七至第五十八態樣中之任一者,其中光學膜結構呈現750MPa至950MPa的殘餘壓縮應力以及約140GPa至175GPa的彈性模量。
根據本揭示的第六十一態樣,提供第四十七至第五十八態樣中之任一者,其中光學膜結構呈現850MPa至1100MPa的殘餘壓縮應力以及約140GPa至195GPa的彈性模量。
本揭示的第六十二態樣係關於一種透明製品,包括:玻璃陶瓷基板,包含第一及第二主表面,該等主表面彼此相對;以及光學膜結構,包含內表面及外表面,光學膜結構的內表面係設置在第一主表面上。玻璃陶瓷基板包含至少75%的結晶度、二矽酸鋰相、及少於100nm的平均結晶大小。進一步地,光學膜結構包含複數個交替的高折射率(RI)層及低RI層以及耐刮擦層。光學膜結構具有約200nm至約5000nm的總物理厚度,而耐刮擦層具有約100nm至約4000nm的物理厚度。光學膜結構呈現約140GPa至180GPa的彈性模量。進一步地,該製品呈現在光學膜結構的外表面處於張力下的環對環測試中的700MPa或更大的平均破損應力。
根據本揭示的第六十三態樣,提供第六十二態樣,其中製品呈現大於80%的平均適光透射率。
根據本揭示的第六十四態樣,提供了第六十二態樣或第六十三態樣,其中製品呈現藉由Berkovich硬度測試在距離光學膜結構的外表面的約100nm至約500nm的壓痕深度範圍內測量的大於10GPa的最大硬度。
根據本揭示的第六十五態樣,提供了第六十二至第六十四態樣中之任一者,其中製品在0度至10度的入射角下利用少於4的D65照明體呈現透射顏色√(a* 2+b* 2)。
根據本揭示的第六十六態樣,提供第六十二至第六十五態樣中之任一者,其中每一高RI層及該耐刮擦層包含含矽氮化物或含矽氮氧化物,而每一低RI層包含含矽氧化物,且其中每一高RI層進一步具有約5nm至約300nm的厚度,每一低RI層具有約5nm至約300nm的厚度,而耐刮擦層具有約100nm至約10000nm的厚度。
根據本揭示的第六十七態樣,提供第六十六態樣,其中耐刮擦層具有1500nm至2500nm的厚度,而複數個交替的高RI層及低RI層與耐刮擦層的總量的範圍係為六(6)層至二十五(25)層。
根據本揭示的第六十八態樣,提供第三十五至第四十六態樣中之任一者,其中透明製品作為用於顯示裝置的保護外罩。
根據本揭示的第六十九態樣,提供第四十七至第六十一態樣中之任一者,其中透明製品作為用於顯示裝置的保護外罩。
根據本揭示的第七十態樣,提供了第六十二至第六十七態樣之任一者,其中透明製品作為用於顯示裝置的保護外罩。
本揭示的第七十一態樣係關於一種製造透明製品的方法,包括以下步驟:提供玻璃陶瓷基板,包含第一及第二主表面,該等主表面彼此相對;以及在基板上沉積光學膜結構,光學膜結構包含內表面及外表面,其中光學膜結構的內表面係設置在第一主表面上。玻璃陶瓷基板包含至少40重量%的結晶度。進一步地,光學膜結構包含複數個交替的高折射率(RI)層及低RI層以及耐刮擦層。該製品亦呈現大於80%的平均適光透射率以及藉由Berkovich硬度測試在距離光學膜結構的外表面的約100nm至約500nm的壓痕深度範圍內測量的大於10GPa的最大硬度。玻璃陶瓷基板包含大於85GPa的彈性模量以及大於0.8MPa·√m的斷裂韌性。進一步地,進行沉積光學膜結構的步驟而使得光學膜結構呈現大於或等於700MPa的殘餘壓縮應力以及大於或等於140GPa的彈性模量。
根據本揭示的第七十二態樣,提供第七十一態樣,其中進一步進行沉積光學膜結構的步驟,而藉由反應濺射沉積處理來沉積高RI層及耐刮擦層,其中控制氧氣流動速率,而使得光學薄膜結構呈現大於或等於700MPa的殘餘壓縮應力以及大於或等於140GPa的彈性模量。
如本文所概述,本揭示的第七十三態樣係為一種透明製品,包括:玻璃陶瓷基板,包含第一及第二主表面,該等主表面彼此相對;以及光學膜結構,定義外表面,光學膜結構係設置在第一主表面上。玻璃陶瓷基板包含約1.52或更大的折射率、至少75重量%的結晶度、二矽酸鋰相、及透鋰長石相。玻璃陶瓷基板亦包含70-80%的SiO 2、5-10%的Al 2O 3、10-15%的Li 2O、0.01-1%的Na 2O、0.01-1%的K 2O、0.1-5%的P 2O 5、及0.1-7%的ZrO 2(基於氧化物的重量%)。光學膜結構包含複數個交替的高折射率(RI)及低RI層以及耐刮擦層。每一高RI層及耐刮擦層包含Si 3N 4、SiN y、及SiO xN y中之一或更多者,而每一低RI層包含SiO 2及SiO x中之一或更多者。每一高RI層具有約5nm至約300nm的厚度,每一低RI層具有約5nm至約300nm的厚度,而耐刮擦層具有約200nm至約10000nm的厚度。該製品呈現大於80%的平均適光透射率以及少於1%的透射霧度。該製品亦在0度至10度的入射角下利用少於4的D65照明體呈現透射顏色√(a* 2+b* 2)。該製品進一步呈現藉由Berkovich硬度測試在距離光學膜結構的外表面的約100nm至約500nm的壓痕深度範圍內測量的大於10GPa的最大硬度。玻璃陶瓷基板亦包含大於85GPa的彈性模量以及大於0.8MPa·√m的斷裂韌性。
如本文所概述,本揭示的第七十四態樣係為根據第七十三態樣的透明製品,其中光學膜結構包含外結構與內結構,耐刮擦層係設置在外結構與內結構之間。
如本文所概述,本揭示的第七十五態樣係為根據第七十三態樣或第七十四態樣的透明製品,其中玻璃陶瓷基板經化學強化,並具有約200MPa至約400MPa的表面壓縮應力以及約1μm至約15μm的層壓縮深度。
如本文所概述,本揭示的第七十六態樣係為根據第七十三至第七十五態樣中之任一者的透明製品,其中玻璃陶瓷基板進一步包含0.1-1.5%的CaO。
如本文所概述,本揭示的第七十七態樣係為根據第七十三至第七十六態樣中之任一者的透明製品,其中該製品作為用於顯示裝置的保護外罩。
可以在基本上不悖離本揭示的精神及各種原理的情況下,針對本揭示的上述實施例進行許多變化及修改。所有這些修改及變化意欲包括在本揭示的範圍內,並藉由申請專利範圍所保護。
100:透明製品 110:玻璃陶瓷基板 112:主表面 114:主表面 116:次表面 118:次表面 120:光學膜結構 120a:外表面 120b:內表面 130A:低RI層 130B:高RI層 130a:外結構 130b:內結構 131:封蓋層 132:週期 140:頂部塗佈 150:耐刮擦層 500:消費性電子裝置 502:殼體 504:前表面 506:後表面 508:側表面 510:顯示器 512:覆蓋基板
應瞭解,上述一般描述與以下詳細描述二者僅為示例性,並且意欲提供用於理解申請專利範圍之本質及特性之概述或框架。茲包括隨附圖式以提供進一步理解,且將該等隨附圖式併入本說明書且構成本說明書之一部分。圖式圖示一或更多個實施例,且連同描述一起說明各種實施例之原理及操作,其中:
第1A圖係為根據本揭示的實施例的透明玻璃陶瓷製品(例如,用於顯示裝置)的橫截面側視圖;
第1B圖係為根據本揭示的實施例的透明玻璃陶瓷製品的橫截面側視圖;
第1C圖係為根據本揭示的實施例的透明玻璃陶瓷製品的橫截面側視圖;
第1D圖係為根據本揭示的實施例的透明玻璃陶瓷製品的橫截面側視圖;
第2圖係為針對具有玻璃基板及光學膜結構的比較透明製品與根據本揭示的實施例的具有玻璃陶瓷基板及光學膜結構的透明製品的外表面的Berkovich硬度測試的測量硬度與位移的圖;
第3圖分別包括在斜坡負載刮痕測試之後的具有玻璃基板及光學膜結構的比較透明製品與根據本揭示的實施例的具有玻璃陶瓷基板及光學膜結構的透明製品的外表面的兩張光學顯微照片;
第4圖分別包括在維氏壓痕損傷測試之後的具有玻璃基板及光學膜結構的比較透明製品與根據本揭示的實施例的具有玻璃陶瓷基板及光學膜結構的透明製品的外表面的兩張光學顯微照片;
第5A圖係為合併本文所揭示的任何透明製品的示例性電子裝置的平面圖;
第5B圖係為第5A圖的示例性電子裝置的透視圖;
第6A圖及第6B圖係為本揭示的兩種透明製品的光學膜結構的Berkovich硬度測試中所測量的硬度及彈性模量與位移的圖;
第7圖係為針對呈現不同彈性模量值的具有本揭示的光學膜結構的透明製品進行建模的平均製品破損應力與光學膜結構殘餘應力的圖表;
第8圖係為針對具有不同光學膜結構的本揭示的透明製品與比較透明製品的在環對環測試中所測量的平均製品破損應力的箱形圖;
第9A圖係為針對本揭示的三種透明製品的在0°至90°的入射角下所測量的單側反射顏色的圖;
第9B圖係為針對本揭示的三種透明製品與比較製品的在法線入射角下所測量的兩側透射率與波長的圖;以及
第9C圖係為針對本揭示的三種透明製品的在法線入射角下所測量的兩側反射率與波長的圖。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
100:透明製品
110:玻璃陶瓷基板
112:主表面
114:主表面
116:次表面
118:次表面
120:光學膜結構
120a:外表面
120b:內表面
130A:低RI層
130B:高RI層
130a:外結構
130b:內結構
131:封蓋層
132:週期
140:頂部塗佈
150:耐刮擦層

Claims (23)

  1. 一種透明製品,包含: 一玻璃陶瓷基板,包含一第一及一第二主表面,該等主表面彼此相對;以及 一光學膜結構,定義一外表面,該光學膜結構係設置在該第一主表面上, 其中該玻璃陶瓷基板包含至少40重量%的一結晶度, 其中該光學膜結構包含複數個交替的高折射率(RI)及低RI層以及一耐刮擦層, 其中該製品呈現大於80%的一平均適光透射率, 其中該製品在0度至10度的入射角下利用少於4的一D65照明體呈現一透射顏色√(a* 2+b* 2), 其中該製品呈現藉由一Berkovich硬度測試在距離該光學膜結構的該外表面的約100nm至約500nm的一壓痕深度範圍內測量的大於10GPa的一最大硬度,以及 其中該玻璃陶瓷基板進一步包含大於85GPa的一彈性模量以及大於0.8MPa·√m的一斷裂韌性。
  2. 如請求項1所述的透明製品,其中該製品呈現藉由一Berkovich硬度測試在距離該光學膜結構的該外表面的約100nm至約500nm的一壓痕深度範圍內測量的大於14GPa的一最大硬度。
  3. 如請求項1或2所述的透明製品,其中該玻璃陶瓷基板包含至少75重量%的一結晶度、一二矽酸鋰相、及一透鈣長石相。
  4. 如請求項1或2所述的透明製品,其中每一高RI層及該耐刮擦層包含Si 3N 4、SiN y、及SiO xN y中之一或更多者,而每一低RI層包含SiO 2及SiO x中之一或更多者,且其中每一高RI層進一步具有約5nm至約300nm的一厚度,每一低RI層具有約5nm至約300nm的一厚度,而該耐刮擦層具有約200nm至約10000nm的一厚度。
  5. 如請求項1或2所述的透明製品,其中該光學膜結構包含一外結構與一內結構,該耐刮擦層係設置在該外結構與內結構之間。
  6. 如請求項1或2所述的透明製品,其中該製品進一步呈現利用具有1000g負載的一維氏壓痕損傷測試所測試的具有少於160微米的一平均最大線性尺寸或少於25000μm 2的一橫向裂紋面積的一橫向裂紋區域。
  7. 如請求項1或2所述的透明製品,其中該玻璃陶瓷基板具有約1.52或更大的一折射率,且其中該光學膜結構的該內結構進一步經配置以基本上匹配該玻璃陶瓷基板與該耐刮擦層之間的一光阻抗。
  8. 一種顯示裝置,包含請求項1或2所述的透明製品,其中該透明製品作為該顯示裝置的一保護外罩。
  9. 一種透明製品,包含: 一玻璃陶瓷基板,包含一第一及一第二主表面,該等主表面彼此相對;以及 一光學膜結構,包含一內表面及一外表面,光學膜結構的該內表面係設置在該第一主表面上, 其中該玻璃陶瓷基板包含至少40重量%的一結晶度, 其中該光學膜結構包含複數個交替的高折射率(RI)層及低RI層以及一耐刮擦層, 其中該製品呈現大於80%的一平均適光透射率, 其中該製品呈現藉由一Berkovich硬度測試在距離該光學膜結構的該外表面的約100nm至約500nm的一壓痕深度範圍內測量的大於10GPa的一最大硬度, 其中該玻璃陶瓷基板包含大於85GPa的一彈性模量以及大於0.8MPa·√m的一斷裂韌性,以及 其中該光學膜結構進一步呈現大於或等於700MPa的一殘餘壓縮應力以及大於或等於140GPa的一彈性模量。
  10. 如請求項9所述的透明製品,其中該玻璃陶瓷基板包含至少75重量%的一結晶度、一二矽酸鋰相、及一透鈣長石相。
  11. 如請求項9或10所述的透明製品,其中每一高RI層及該耐刮擦層包含一含矽氮化物或一含矽氮氧化物,而每一低RI層包含一含矽氧化物,且其中每一高RI層進一步具有約5nm至約300nm的一厚度,每一低RI層具有約5nm至約300nm的一厚度,而該耐刮擦層具有約100nm至約10000nm的一厚度。
  12. 如請求項11所述的透明製品,其中一第一低RI層係設置成與該基板的該第一主表面直接接觸,且其中該耐刮擦層進一步具有約1000nm至約3000nm的一厚度。
  13. 如請求項9或10所述的透明製品,其中該玻璃陶瓷基板經化學強化,並具有約200MPa至約400MPa的一表面壓縮應力以及約1μm至約15μm的一層壓縮深度,其中該玻璃陶瓷基板進一步呈現約80MPa至約200MPa的一最大中心張力(CT)值,且其中該基板進一步具有約0.6mm或更少的一厚度。
  14. 一種顯示裝置,包含請求項9或10所述的透明製品,其中該透明製品作為該顯示裝置的一保護外罩。
  15. 一種透明製品,包含: 一玻璃陶瓷基板,包含一第一及一第二主表面,該等主表面彼此相對;以及 一光學膜結構,包含一內表面及一外表面,光學膜結構的該內表面係設置在該第一主表面上, 其中該玻璃陶瓷基板包含至少40重量%的一結晶度, 其中該光學膜結構包含複數個交替的高折射率(RI)層及低RI層以及一耐刮擦層, 其中該製品呈現大於80%的一平均適光透射率, 其中該製品呈現藉由一Berkovich硬度測試在距離該光學膜結構的該外表面的約100nm至約500nm的一壓痕深度範圍內測量的大於10GPa的一最大硬度, 其中該玻璃陶瓷基板包含大於85GPa的一彈性模量以及大於0.8MPa·√m的一斷裂韌性, 其中該光學膜結構呈現700MPa至1100MPa的一殘餘壓縮應力以及140GPa至200GPa的一彈性模量,以及 其中該製品進一步呈現在該光學膜結構的該外表面處於張力下的一環對環測試中的700MPa或更大的一平均破損應力。
  16. 如請求項15所述的透明製品,其中該製品呈現在該光學膜結構的該外表面處於張力下的一環對環測試中的800MPa或更大的一平均破損應力,且其中該光學膜結構進一步呈現140GPa至180GPa的一彈性模量。
  17. 如請求項15或16所述的透明製品,其中該玻璃陶瓷基板包含至少75重量%的一結晶度、一二矽酸鋰相、及一透鈣長石相。
  18. 如請求項15或16所述的透明製品,其中每一高RI層及該耐刮擦層包含一含矽氮化物或一含矽氮氧化物,而每一低RI層包含一含矽氧化物,且其中每一高RI層進一步具有約5nm至約300nm的一厚度,每一低RI層具有約5nm至約300nm的一厚度,而該耐刮擦層具有約100nm至約10000nm的一厚度。
  19. 如請求項18所述的透明製品,其中一第一低RI層係設置成與該基板的該第一主表面直接接觸,且其中該耐刮擦層進一步具有約1000nm至約3000nm的一厚度。
  20. 如請求項15或16所述的透明製品,其中該玻璃陶瓷基板經化學強化,並具有約200MPa至約400MPa的一表面壓縮應力以及約1μm至約15μm的一層壓縮深度,其中該玻璃陶瓷基板進一步呈現約80MPa至約200MPa的一最大中心張力(CT)值,且其中該基板進一步具有約0.6mm或更少的一厚度。
  21. 如請求項15或16所述的透明製品,其中該玻璃陶瓷基板包含至少75重量%的一結晶度、一二矽酸鋰相、及少於100nm的一平均結晶大小,其中該光學膜結構具有約200nm至約5000nm的一總物理厚度,其中該耐刮擦層具有約100nm至約4000nm的一物理厚度,其中該光學膜結構呈現約140GPa至180GPa的一彈性模量。
  22. 如請求項21所述的透明製品,其中該耐刮擦層具有1500nm至2500nm的一厚度,而該等複數個交替的高RI層及低RI層與耐刮擦層的該總量的範圍係為六(6)層至二十五(25)層。
  23. 一種顯示裝置,包含請求項15或16所述的透明製品,其中該透明製品作為該顯示裝置的一保護外罩。
TW111112803A 2021-04-01 2022-04-01 具有保留強度的透明玻璃陶瓷製品及其顯示裝置 TW202306921A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163169376P 2021-04-01 2021-04-01
US63/169,376 2021-04-01
US202163282720P 2021-11-24 2021-11-24
US63/282,720 2021-11-24

Publications (1)

Publication Number Publication Date
TW202306921A true TW202306921A (zh) 2023-02-16

Family

ID=81326210

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111112803A TW202306921A (zh) 2021-04-01 2022-04-01 具有保留強度的透明玻璃陶瓷製品及其顯示裝置

Country Status (6)

Country Link
US (2) US20220317340A1 (zh)
EP (1) EP4313892A1 (zh)
JP (1) JP2024513421A (zh)
KR (1) KR20240017342A (zh)
TW (1) TW202306921A (zh)
WO (1) WO2022212464A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220317340A1 (en) * 2021-04-01 2022-10-06 Corning Incorporated Transparent glass-ceramic articles with retained strength and display devices with the same

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140098178A (ko) 2011-11-30 2014-08-07 코닝 인코포레이티드 광학 코팅 및 etc 코팅을 가진 유리 물품 제조 방법
US8854623B2 (en) 2012-10-25 2014-10-07 Corning Incorporated Systems and methods for measuring a profile characteristic of a glass sample
CN105517976A (zh) 2013-03-28 2016-04-20 陶瓷技术-Etec有限责任公司 具有功能涂层的陶瓷
US9703011B2 (en) 2013-05-07 2017-07-11 Corning Incorporated Scratch-resistant articles with a gradient layer
US9684097B2 (en) * 2013-05-07 2017-06-20 Corning Incorporated Scratch-resistant articles with retained optical properties
US9366784B2 (en) * 2013-05-07 2016-06-14 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US10160688B2 (en) 2013-09-13 2018-12-25 Corning Incorporated Fracture-resistant layered-substrates and articles including the same
US20150274585A1 (en) 2014-03-26 2015-10-01 Apple Inc. Asymmetric chemical strengthening
DE102014104799B4 (de) 2014-04-03 2021-03-18 Schott Ag Substrat mit einer Beschichtung zur Erhöhung der Kratzfestigkeit, Verfahren zu dessen Herstellung und dessen Verwendung
US9359243B2 (en) 2014-05-13 2016-06-07 Corning Incorporated Transparent glass-ceramic articles, glass-ceramic precursor glasses and methods for forming the same
DK3572384T3 (da) 2014-10-08 2021-01-04 Corning Inc Højstyrkeglaskeramik med petalit- og lithiumsilicatstrukturer
KR102645524B1 (ko) 2016-07-11 2024-03-11 코닝 인코포레이티드 비-평면형 기판의 코팅 및 그의 제조 방법
KR20230037667A (ko) 2016-12-30 2023-03-16 코닝 인코포레이티드 잔류 압축 응력을 갖는 광학 코팅(optical coating)이 있는 코팅된 제품
WO2018175195A1 (en) 2017-03-21 2018-09-27 Corning Incorporated Hardcoated glass-ceramic articles
CN209690550U (zh) * 2017-05-08 2019-11-26 康宁股份有限公司 制品以及包含该制品的玻璃和消费者电子产品
CN111417604A (zh) 2017-11-29 2020-07-14 康宁股份有限公司 制造经涂覆的基于玻璃的部件的方法
US10723649B2 (en) * 2017-11-30 2020-07-28 Corning Incorporated Black lithium silicate glass ceramics
TWI821234B (zh) * 2018-01-09 2023-11-11 美商康寧公司 具光改變特徵之塗覆製品及用於製造彼等之方法
KR102618611B1 (ko) 2018-07-16 2023-12-27 코닝 인코포레이티드 개선된 특성을 갖는 유리 세라믹 물품 및 이의 제조 방법
WO2020102231A2 (en) 2018-11-13 2020-05-22 Corning Incorporated Chemically strengthened lithium disilicate-petalite glass- ceramics
TW202031486A (zh) 2018-11-15 2020-09-01 美商康寧公司 光學膜結構、具有光學膜結構的無機氧化物製品以及製造其的方法
KR20210110807A (ko) 2018-11-21 2021-09-09 코닝 인코포레이티드 경도 및 인성을 갖는 보호 코팅을 갖는 유리, 유리-세라믹 및 세라믹 물품
EP3948367A2 (en) * 2019-03-27 2022-02-09 Corning Incorporated Optical coatings of non-planar substrates and methods for the production thereof
US11542193B2 (en) 2019-06-27 2023-01-03 Corning Incorporated Glass-ceramic and methods of making the same
US20220268967A1 (en) 2021-02-22 2022-08-25 Apple Inc. Electronic Devices Having Glass Layers With Scratch Resistant Coatings
US20220317340A1 (en) * 2021-04-01 2022-10-06 Corning Incorporated Transparent glass-ceramic articles with retained strength and display devices with the same
WO2023163966A1 (en) * 2022-02-25 2023-08-31 Corning Incorporated Coated articles having non-planar substrates and methods for the production thereof
WO2023183180A1 (en) * 2022-03-21 2023-09-28 Corning Incorporated Cover articles with high hardness and anti-reflective properties for infrared sensors
WO2023215206A1 (en) * 2022-05-03 2023-11-09 Corning Incorporated Transparent articles with high shallow hardness and display devices with the same

Also Published As

Publication number Publication date
KR20240017342A (ko) 2024-02-07
US20220317340A1 (en) 2022-10-06
JP2024513421A (ja) 2024-03-25
US20230244004A1 (en) 2023-08-03
WO2022212464A1 (en) 2022-10-06
EP4313892A1 (en) 2024-02-07
US11927722B2 (en) 2024-03-12

Similar Documents

Publication Publication Date Title
JP6815356B2 (ja) 耐破壊性を有する多層基体、および耐破壊性を有する多層基体を含む物品
TWI783998B (zh) 反射的、著色的或顏色偏移的抗刮塗層和製品
TWI744249B (zh) 高光穿透與抗刮抗反射物件
CN108802863B (zh) 具有耐久性和耐划痕性的防反射制品
KR102466199B1 (ko) 비-평면형 기판의 코팅 및 그의 제조 방법
KR102591065B1 (ko) 얇고, 내구성 있는 반사-방지 구조를 갖는 무기산화물 물품
TWI783937B (zh) 耐刮且光學透明之材料及製品
US20240036236A1 (en) Cover glass articles for camera lens and sensor protection and apparatus with the same
KR20190100934A (ko) 잔류 압축 응력을 갖는 광학 코팅(optical coating)이 있는 코팅된 제품
KR20210091222A (ko) 광학 필름 구조물, 광학 필름 구조물을 갖는 무기 산화물 물품, 및 이를 제조하는 방법
TW201908262A (zh) 包含具有硬度與韌性之保護塗層的玻璃、玻璃陶瓷及陶瓷製品
US20230010461A1 (en) Articles with thin, durable anti-reflection coatings with extended infrared transmission
US11927722B2 (en) Glass-ceramic articles having specified elastic modulus and fracture toughness
CN111132945B (zh) 具有受控的粗糙度和微结构的涂层
US20230301002A1 (en) Cover articles with high hardness and anti-reflective properties for infrared sensors
TW202401041A (zh) 具有非平面基板之塗覆製品及其生產方法
CN117164248A (zh) 具有保留强度的透明玻璃陶瓷制品及包含它的显示设备
US20230301003A1 (en) Cover articles with durable optical structures and functional coatings, and methods of making the same
TWI833788B (zh) 具有薄且耐久之抗反射結構的無機氧化物物件
CN114207481B (zh) 具有抗反射涂层的制品
TW202409672A (zh) 具有高淺層硬度的透明製品及具有該透明製品的顯示裝置