TW202305430A - Waveguide illuminator with optical interference mitigation - Google Patents

Waveguide illuminator with optical interference mitigation Download PDF

Info

Publication number
TW202305430A
TW202305430A TW111120236A TW111120236A TW202305430A TW 202305430 A TW202305430 A TW 202305430A TW 111120236 A TW111120236 A TW 111120236A TW 111120236 A TW111120236 A TW 111120236A TW 202305430 A TW202305430 A TW 202305430A
Authority
TW
Taiwan
Prior art keywords
waveguide
sub
array
beams
illuminator
Prior art date
Application number
TW111120236A
Other languages
Chinese (zh)
Inventor
亞力山德勒 寇薛勒夫
朱塞佩 卡拉菲奧雷
傑克 葛利爾
彭楓琳
耿瑩
Original Assignee
美商元平台技術有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/556,895 external-priority patent/US11555962B1/en
Application filed by 美商元平台技術有限公司 filed Critical 美商元平台技術有限公司
Publication of TW202305430A publication Critical patent/TW202305430A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/1215Splitter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0078Side-by-side arrangements, e.g. for large area displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

A waveguide illuminator includes an input waveguide, a waveguide splitter coupled to the input waveguide, and a waveguide array coupled to the waveguide splitter. The waveguide array includes an array of out-couplers out-coupling portions of the split light beam to form an array of out-coupled beam portions for illuminating a display panel. To reduce optical interference, the waveguide illuminator may have two interlaced waveguide arrays energized by two different light sources. Output polarizations of neighboring light pixels of a display illuminated with such waveguide illuminator may be orthogonal to each other. The frames to be displayed may be broken down into sequentially displayed sub-frames with interleaved pixels.

Description

具有光學干擾減緩的波導照明器Waveguide Illuminators with Optical Interference Mitigation

本揭露係關於照明器、視覺顯示器裝置及相關組件及模組。 相關申請案之參考 The present disclosure relates to luminaires, visual display devices and related components and modules. References to related applications

本申請案主張2021年7月15日申請的標題為「Single Mode Backlight Illuminator」的美國臨時專利申請案第63/222,224號及2021年12月20日申請的美國非臨時專利申請案第17/556,895號的優先權,且這些專利申請案以全文引用之方式併入本文中。This application claims U.S. Provisional Patent Application No. 63/222,224, filed July 15, 2021, entitled "Single Mode Backlight Illuminator," and U.S. Nonprovisional Patent Application No. 17/556,895, filed December 20, 2021 No., and these patent applications are incorporated herein by reference in their entirety.

視覺顯示器將包含靜止影像、視訊、資料等的資訊提供至觀察者。視覺顯示器在多樣化領域(包含娛樂、教育、工程、科學、專業訓練、廣告)中具有應用,僅舉幾個實例。一些視覺顯示器(諸如電視機)向若干使用者顯示影像,且一些視覺顯示器系統(諸如近眼顯示器(near-eye display;NED))意欲用於個別使用者。Visual displays provide information, including still images, video, data, etc., to a viewer. Visual displays have applications in diverse fields including entertainment, education, engineering, science, professional training, advertising, just to name a few. Some visual displays, such as televisions, display images to several users, and some visual display systems, such as near-eye displays (NEDs), are intended for individual users.

人工實境系統通常包含配置以向使用者呈現內容之NED(例如,耳機或一對眼鏡)。近眼顯示器可顯示虛擬物件或組合真實物件與虛擬物件之影像,如在虛擬實境(virtual reality;VR)、擴增實境(augmented reality;AR)或混合實境(mixed reality;MR)應用中。舉例而言,在AR系統中,使用者可藉由觀察「組合器」組件來觀察與周圍環境疊置的虛擬物件之影像(例如,電腦產生之影像(computer-generated image;CGI))。可穿戴顯示器之組合器典型地對外部光為透明的,但包含一些光路由光學件,以將顯示光引導至使用者之視場中。An artificial reality system typically includes a NED (eg, a headset or a pair of glasses) configured to present content to a user. Near-eye displays can display virtual objects or combine images of real and virtual objects, such as in virtual reality (VR), augmented reality (AR) or mixed reality (MR) applications . For example, in an AR system, a user can observe an image of a virtual object (eg, a computer-generated image (CGI)) superimposed on the surrounding environment by observing a "compositor" component. The combiner of a wearable display is typically transparent to external light, but includes some light routing optics to direct display light into the user's field of view.

由於HMD或NED之顯示器通常穿戴於使用者之頭部上,因此具有較重電池之較大、大型、不平衡及/或較重顯示裝置將為繁瑣的且使用者穿戴為不舒適的。因此,頭戴式顯示器裝置可得益於緊湊且高效的配置,包含提供顯示面板之照明的高效光源及照明器、高通量眼部透鏡及影像形成訓練中之其他光學元件。Since the display of an HMD or NED is typically worn on the user's head, a large, bulky, unbalanced and/or heavy display device with a heavier battery would be cumbersome and uncomfortable for the user to wear. Thus, head-mounted display devices can benefit from a compact and efficient configuration, including efficient light sources and illuminators that provide illumination of the display panel, high-throughput eye lenses, and other optical elements in image-forming training.

本發明的一態樣為一種波導照明器,其包括:第一及第二波導分光器,其配置以分別接收第一及第二光束,用於將該第一及第二光束分別分開為第一及第二複數個子光束;第一及第二波導陣列,其分別耦接至該第一及第二波導分光器,且配置以分別傳播該第一及第二複數個子光束之子光束,其中該第一及第二波導陣列之波導為交錯的且彼此平行走向;及成列的輸出耦合器之陣列,該陣列中之每一列輸出耦合器沿著該波導之長度耦接至該第一或第二波導陣列中之波導,用於形成該第一及第二複數個子光束之交錯輸出耦合子光束部分的二維陣列。An aspect of the present invention is a waveguide illuminator, which includes: first and second waveguide beam splitters configured to respectively receive first and second light beams for splitting the first and second light beams into first and second light beams respectively one and second plurality of sub-beams; first and second waveguide arrays, respectively coupled to the first and second waveguide beam splitters, and configured to propagate sub-beams of the first and second plurality of sub-beams, respectively, wherein the The waveguides of the first and second waveguide arrays are interleaved and run parallel to each other; and an array of columns of output couplers, each column of output couplers in the array being coupled to the first or second waveguide along the length of the waveguide The waveguides in the two-waveguide array are used to form a two-dimensional array of interleaved out-coupled sub-beam portions of the first and second plurality of sub-beams.

在根據本發明的前述態樣之波導照明器中,該第一及第二波導陣列在該第一及第二波導陣列之相對末端處耦接至該第一及第二波導分光器,使得該第一及第二複數個子光束之這些子光束在各別波導陣列中反向傳播。In the waveguide illuminator according to the foregoing aspect of the present invention, the first and second waveguide arrays are coupled to the first and second waveguide splitters at opposite ends of the first and second waveguide arrays, such that the The sub-beams of the first and second plurality of sub-beams counter-propagate in respective waveguide arrays.

在根據本發明的前述態樣之波導照明器中,所述輸出耦合器中之相鄰列之輸出耦合器在沿著該第一及第二波導陣列之這些波導的一方向上相對於彼此偏移以形成菱形陣列之輸出耦合器。In the waveguide illuminator according to the foregoing aspect of the invention, output couplers of adjacent columns of said output couplers are offset relative to each other in a direction along the waveguides of the first and second waveguide arrays To form a diamond array of output couplers.

根據本發明的前述態樣之波導照明器進一步包括分別地耦接至該第一及第二波導分光器,用於向該第一及第二波導分光器提供該第一及第二光束之第一及第二半導體光源。The waveguide illuminator according to the foregoing aspect of the present invention further includes a first light beam respectively coupled to the first and second waveguide beam splitters for providing the first and second light beams to the first and second waveguide beam splitters. One and the second semiconductor light source.

在根據本發明的前述態樣之波導照明器中,該第一及第二半導體光源配置以發射相同色彩通道之不同波長的光。In the waveguide illuminator according to the foregoing aspect of the present invention, the first and second semiconductor light sources are configured to emit light of different wavelengths of the same color channel.

在根據本發明的前述態樣之波導照明器中,該第一及第二半導體光源包括不同發射波長之雷射二極體。In the waveguide illuminator according to the aforementioned aspect of the present invention, the first and second semiconductor light sources include laser diodes with different emission wavelengths.

根據本發明的前述態樣之波導照明器進一步包括控制器,其耦接至該第一及第二半導體光源且配置以按時間依序方式交替地操作該第一及第二半導體光源。The waveguide illuminator according to the foregoing aspects of the present invention further includes a controller coupled to the first and second semiconductor light sources and configured to alternately operate the first and second semiconductor light sources in a time-sequential manner.

本發明的另一態樣為一種顯示裝置,其包括:顯示面板,其包括二維像素陣列;及波導照明器,其配置以照明該顯示面板且包括:波導分光器,其配置以接收光束且將該光束分開為複數個子光束;波導陣列,其耦接至該波導分光器且配置以在其中傳播這些子光束,該波導陣列之波導彼此平行走向;及成列的輸出耦合器之陣列,該陣列中之每一列輸出耦合器沿著該波導之長度耦接至該波導陣列中之波導,用於形成輸出耦合子光束部分之二維陣列;及空間變體偏振器,其安置於該顯示面板下游且配置以傳播第一偏振狀態之輸出耦合子光束部分且阻擋第二正交偏振狀態的輸出耦合相鄰子光束部分。Another aspect of the present invention is a display device, which includes: a display panel including a two-dimensional pixel array; and a waveguide illuminator configured to illuminate the display panel and including: a waveguide beam splitter configured to receive a light beam and splitting the beam into a plurality of sub-beams; an array of waveguides coupled to the waveguide splitter and configured to propagate the sub-beams therein, the waveguides of the waveguide array running parallel to each other; and an array of output couplers in columns, the each column of output couplers in the array coupled to a waveguide in the waveguide array along the length of the waveguide for forming a two-dimensional array of outcoupled sub-beam portions; and a spatially variant polarizer disposed on the display panel downstream and configured to propagate the outcoupling sub-beam portion of the first polarization state and block the outcoupling adjacent sub-beam portion of the second orthogonal polarization state.

在根據本發明的另一態樣所述之顯示裝置中,該空間變體偏振器包括偏振傳輸軸之正交定向的橫向接合的線性偏振器區段。In the display device according to another aspect of the present invention, the spatially variant polarizer comprises transversely joined linear polarizer segments oriented orthogonally to the polarization transfer axes.

在根據本發明的另一態樣所述之顯示裝置中,相同偏振方向之該線性偏振器區段以棋盤圖案配置。In the display device according to another aspect of the present invention, the linear polarizer segments with the same polarization direction are arranged in a checkerboard pattern.

在根據本發明的另一態樣所述之顯示裝置中,該空間變體偏振器包括線性偏振器及該線性偏振器下游之空間變體波板,該空間變體波板包括以棋盤圖案配置之不同光軸方向之橫向接合的波板區段。In the display device according to another aspect of the present invention, the spatially variable polarizer includes a linear polarizer and a spatially variable waveplate downstream of the linear polarizer, and the spatially variable waveplate includes The waveplate sections that are joined transversely in different optical axis directions.

在根據本發明的另一態樣所述之顯示裝置中,相同光軸方向之該波板區段以棋盤圖案配置。In the display device according to another aspect of the present invention, the wave plate segments in the same optical axis direction are arranged in a checkerboard pattern.

本發明的又一態樣為一種顯示裝置,其包括:顯示面板,其包括二維像素陣列;及波導照明器,其配置以照明該顯示面板且包括:波導分光器,其配置以接收光束且將該光束分開為複數個子光束;波導陣列,其耦接至該波導分光器且配置以在其中傳播這些子光束,該波導陣列之波導彼此平行走向;及成列的輸出耦合器之陣列,該陣列中之每一列輸出耦合器沿著該波導之長度耦接至該波導陣列中之波導,用於形成對應於該顯示面板之該二維像素陣列之輸出耦合子光束部分的二維陣列。Still another aspect of the present invention is a display device, which includes: a display panel including a two-dimensional pixel array; and a waveguide illuminator configured to illuminate the display panel and including: a waveguide beam splitter configured to receive a light beam and splitting the beam into a plurality of sub-beams; an array of waveguides coupled to the waveguide splitter and configured to propagate the sub-beams therein, the waveguides of the waveguide array running parallel to each other; and an array of output couplers in columns, the Each column of output couplers in the array is coupled to a waveguide in the waveguide array along the length of the waveguide for forming a two-dimensional array of outcoupled sub-beam portions corresponding to the two-dimensional pixel array of the display panel.

根據本發明的又一態樣所述之顯示裝置進一步包括控制器,其可操作地耦接至該顯示面板且配置以致使該顯示面板以時間依序方式顯示複數個子影像,這些子影像加起來為待向使用者顯示之影像。The display device according to yet another aspect of the present invention further includes a controller operatively coupled to the display panel and configured to cause the display panel to display a plurality of sub-images in a time-sequential manner, the sub-images adding up to is the image to be displayed to the user.

在根據本發明的又一態樣所述之顯示裝置中,該複數個子影像之不同子影像的像素為交錯的。In the display device according to still another aspect of the present invention, pixels of different sub-images of the plurality of sub-images are interlaced.

在根據本發明的又一態樣所述之顯示裝置中,該複數個子影像之不同子影像的像素以互補棋盤圖案安置。In the display device according to still another aspect of the present invention, pixels of different sub-images of the plurality of sub-images are arranged in a complementary checkerboard pattern.

在根據本發明的又一態樣所述之顯示裝置中,該複數個子影像包括具有交錯像素之第一子影像及第二子影像,使得該第一子影像中之每一像素具有該第二子影像之至少兩個相鄰像素。In the display device according to another aspect of the present invention, the plurality of sub-images include a first sub-image and a second sub-image with interlaced pixels, so that each pixel in the first sub-image has the second sub-image At least two adjacent pixels of the sub-image.

在根據本發明的又一態樣所述之顯示裝置中,該第一子影像中之每一像素具有該第二子影像之至少三個相鄰像素。In the display device according to still another aspect of the present invention, each pixel in the first sub-image has at least three adjacent pixels in the second sub-image.

在根據本發明的又一態樣所述之顯示裝置中,該顯示面板包括透射光閥陣列。In the display device according to still another aspect of the present invention, the display panel includes a transmissive light valve array.

在根據本發明的又一態樣所述之顯示裝置中,該顯示面板包括液晶層。In the display device according to still another aspect of the present invention, the display panel includes a liquid crystal layer.

雖然結合各種具體實例及實例描述了本教示,但並不意欲本教示限於此類具體實例。相反,如所屬領域中具有通常知識者將瞭解,本教示涵蓋各種替代方案及等效物。本文中敍述本揭露之原理、態樣及具體實例以及其特定實例之所有陳述意欲涵蓋其結構等效物及功能等效物兩者。另外,希望此等等效物包含當前已知等效物以及未來開發的等效物兩者,亦即,無論結構如何,所開發的執行相同功能的任何元件。While the teachings have been described in connection with various specific examples and examples, the teachings are not intended to be limited to such specific examples. On the contrary, the present teachings encompass various alternatives and equivalents, as will be appreciated by those of ordinary skill in the art. All statements herein reciting principles, aspects, and examples of the disclosure, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, ie, any elements developed that perform the same function, regardless of structure.

如本文所使用,術語「第一」、「第二」諸如此類並不意欲暗示依序次序,除非明確規定否則意欲區分一個元件與另一元件。類似地,方法步驟之依序次序並不暗示其執行之依序次序,除非明確規定。圖1、圖7及圖8中,類似編號指類似元件。亦在圖3A、圖3B至圖6A、圖6B中,類似編號指類似元件。As used herein, the terms "first," "second," and the like are not intended to imply a sequential order, but are intended to distinguish one element from another unless expressly stated otherwise. Similarly, the sequential order of method steps does not imply a sequential order for their performance unless expressly stated. In FIG. 1 , FIG. 7 and FIG. 8 , like numbers refer to like elements. Also in FIGS. 3A, 3B to 6A, 6B, like numbers refer to like elements.

在包含耦接至照明器之像素陣列的視覺顯示器中,光利用率之效率取決於由像素佔據之幾何面積與顯示面板之總面積的比率。對於通常用於近眼及/或頭戴式顯示器中之微型顯示器,該比率可小於50%。顯示面板上之彩色濾光片會進一步阻礙高效背光利用率,這些彩色濾光片平均透射不超過30%之入射光。除此之外,基於偏振之顯示面板(諸如液晶(liquid crystal;LC)顯示面板)可能存在50%之偏振損耗。所有此等因素均顯著縮減了顯示器之光利用率及總壁插效率,此係不希望的。In a visual display comprising an array of pixels coupled to an illuminator, the efficiency of light utilization depends on the ratio of the geometric area occupied by the pixels to the total area of the display panel. For microdisplays typically used in near-eye and/or head-mounted displays, this ratio may be less than 50%. Efficient backlight utilization is further hampered by color filters on the display panel, which transmit no more than 30% of the incident light on average. In addition, polarization-based display panels (such as liquid crystal (LC) display panels) may have 50% polarization loss. All of these factors significantly reduce the light utilization of the display and the overall wall plug efficiency, which is undesirable.

根據本揭露,背光顯示器之光利用率及壁插效率可藉由提供包含與顯示面板之像素對準之輸出耦合器陣列之波導照明器來改良。在照明器發射原色,例如紅色、綠色及藍色之光的顯示器中,照明光之色彩可與彩色濾光片匹配,或可完全省略彩色濾光片。對於基於偏振之顯示器,所發射光之偏振可與預定義輸入偏振狀態匹配。匹配顯示面板之像素的空間分佈、透射波長及/或透射偏振特性使得吾人能夠顯著地改良顯示光之有用部分,該有用部分在其至觀察者之眼睛的途中並未由顯示面板吸收或反射,且因此顯著改良顯示器之壁插效率。According to the present disclosure, light utilization and wall plug efficiency of backlit displays can be improved by providing a waveguide illuminator comprising an array of output couplers aligned with the pixels of the display panel. In displays where the illuminators emit light of primary colors, such as red, green and blue, the color of the illumination light can be matched to color filters, or the color filters can be omitted entirely. For polarization-based displays, the polarization of emitted light can be matched to a predefined input polarization state. Matching the spatial distribution, transmitted wavelength and/or transmitted polarization characteristics of the pixels of the display panel allows us to significantly improve the useful portion of the display light which is not absorbed or reflected by the display panel on its way to the observer's eye, And thus the wall-plug efficiency of the display is significantly improved.

與雷射照明組合之單模式或少數模式波導(例如,具有至多12個傳播模式之脊形波導)允許高效地控制諸如色彩及方向性之光特性。當光以單一空間模式傳播時,輸出可為繞射受限且高度定向的。單模式傳播亦允許吾人使光在波導上之特定點中輸出耦合且併入聚焦像素,這些聚焦像素可將光聚焦至顯示面板之像素中同時避免像素間區域中之散射。雷射照明之窄光譜使得能夠進行大色域顯示。此外,單模式波導可保持偏振,此導致來自背光單元之高度偏振輸出而無需偏振器。Single- or minority-mode waveguides (eg, ridge waveguides with up to 12 propagation modes) combined with laser illumination allow efficient control of light properties such as color and directionality. When light propagates in a single spatial mode, the output can be diffraction limited and highly directional. Single-mode propagation also allows us to have light outcoupled in specific points on the waveguide and incorporated into focusing pixels that can focus the light into the pixels of the display panel while avoiding scattering in the inter-pixel regions. The narrow spectrum of laser illumination enables large color gamut displays. Furthermore, the single-mode waveguide can maintain polarization, which results in a highly polarized output from the backlight unit without the need for polarizers.

由於傳播光之相干性質,基於單模式波導之照明器可易於由輸出耦合相干光之不同子光束之間的光學干擾引起之光斑圖案形成。根據本揭露,可藉由確保照明光之相鄰輸出耦合子光束並不在使用者之眼睛的視網膜上彼此干擾而減輕光斑形成之效應。因此,可例如藉由毀壞相鄰子光束之間的相干性,藉由確保其偏振為相互正交的,及/或藉由確保兩個相鄰子光束中之僅一者在任何給定時間下到達使用者之眼睛來達成。Due to the coherent nature of propagating light, illuminators based on single-mode waveguides can be prone to speckle patterns caused by optical interference between different sub-beams of outcoupled coherent light. According to the present disclosure, the effect of speckle formation can be mitigated by ensuring that adjacent outcoupled beamlets of illumination light do not interfere with each other on the retina of the user's eye. Thus, it is possible, for example, by destroying the coherence between adjacent beamlets, by ensuring that their polarizations are mutually orthogonal, and/or by ensuring that only one of two adjacent beamlets is at any given time Down to the user's eyes to achieve.

根據本揭露,提供一種波導照明器,其包括配置以分別接收第一及第二光束之第一及第二波導分光器,用於分別將第一及第二光束分開為第一及第二複數個之子光束。第一及第二波導陣列分別耦接至第一及第二波導分光器,且配置以分別傳播第一及第二複數個子光束之子光束。第一及第二波導陣列之波導為交錯式且彼此平行走向(run)。波導照明器包含輸出耦合器之列的陣列。該陣列之輸出耦合器的每一列沿著波導之長度耦接至第一或第二波導陣列之波導,用於形成第一及第二複數個子光束之交錯輸出耦合子光束部分的二維陣列。According to the present disclosure, there is provided a waveguide illuminator comprising first and second waveguide beam splitters configured to receive first and second light beams, respectively, for splitting the first and second light beams into first and second pluralities, respectively Son of Beam. The first and second waveguide arrays are respectively coupled to the first and second waveguide beam splitters, and configured to propagate sub-beams of the first and second plurality of sub-beams respectively. The waveguides of the first and second waveguide arrays are staggered and run parallel to each other. The waveguide illuminator includes an array of columns of output couplers. Each column of output couplers of the array is coupled to a waveguide of the first or second waveguide array along the length of the waveguide for forming a two-dimensional array of interleaved outcoupled beamlet portions of the first and second plurality of beamlets.

在一些實施例中,其中第一及第二波導陣列在第一及第二波導陣列之相對末端處耦接至第一及第二波導分光器,使得第一及第二複數個子光束之子光束在各別波導陣列中反向傳播(counter-propagate)。輸出耦合器之相鄰列之輸出耦合器可在沿著第一及第二波導陣列之波導的方向上相對於彼此偏移以形成輸出耦合器之菱形陣列。波導照明器可進一步包含分別地耦接至第一及第二波導分光器之第一及第二半導體光源,用於向第一及第二波導分光器提供第一及第二光束。第一及第二半導體光源可配置以發射相同色彩通道之不同波長之光。第一及第二半導體光源可包含不同發射波長之雷射二極體。控制器可耦接至第一及第二半導體光源。控制器可配置以按時間依序方式交替地操作第一及第二半導體光源。In some embodiments, wherein the first and second waveguide arrays are coupled to the first and second waveguide beamsplitters at opposite ends of the first and second waveguide arrays, such that sub-beams of the first and second plurality of sub-beams are at counter-propagate in the respective waveguide arrays. The output couplers of adjacent columns of output couplers may be offset relative to each other in a direction along the waveguides of the first and second waveguide arrays to form a diamond-shaped array of output couplers. The waveguide illuminator may further include first and second semiconductor light sources respectively coupled to the first and second waveguide beam splitters for providing the first and second light beams to the first and second waveguide beam splitters. The first and second semiconductor light sources can be configured to emit light of different wavelengths of the same color channel. The first and second semiconductor light sources may comprise laser diodes with different emission wavelengths. The controller can be coupled to the first and second semiconductor light sources. The controller may be configured to alternately operate the first and second semiconductor light sources in a time-sequential manner.

根據本揭露,提供一種顯示裝置,其包括:顯示面板,其包括二維像素陣列;本揭露之波導照明器;及空間變體偏振器。波導照明器配置以照明顯示面板。波導照明器可包含:波導分光器,其配置成接收光束且將該光束分開為複數個子光束;波導陣列,其耦接至波導分光器且配置以在其中傳播子光束,波導陣列之波導彼此平行走向;及輸出耦合器之列的陣列,該陣列之輸出耦合器的每一列沿著波導之長度耦接至波導陣列之波導,用於形成輸出耦合子光束部分的二維陣列。空間變體偏振器可安置於顯示面板下游且配置以傳播第一偏振狀態之輸出耦合子光束部分且阻擋第二正交極化狀態之輸出耦合相鄰子光束部分。According to the present disclosure, there is provided a display device, which includes: a display panel including a two-dimensional pixel array; the waveguide illuminator of the present disclosure; and a spatially variable polarizer. A waveguide illuminator is configured to illuminate the display panel. The waveguide illuminator may include: a waveguide beam splitter configured to receive a beam of light and split the beam into a plurality of sub-beams; a waveguide array coupled to the waveguide beam splitter and configured to propagate the sub-beams therein, the waveguides of the waveguide array being parallel to each other and an array of columns of output couplers, each column of output couplers of the array coupled to a waveguide of the waveguide array along the length of the waveguide for forming a two-dimensional array of outcoupled sub-beam portions. A spatially variant polarizer may be disposed downstream of the display panel and configured to propagate an outcoupled beamlet portion of a first polarization state and block an outcoupled adjacent beamlet portion of a second orthogonal polarization state.

空間變體偏振器可包含偏振傳輸軸之正交定向的橫向接合的線性偏振器區段。相同偏振方向之線性偏振器區段可以棋盤圖案配置。空間變體偏振器可包含線性偏振器及線性偏振器下游之空間變體波板,該空間變體波板包括以棋盤圖案配置之不同光軸方向之橫向接合的波板區段。相同光軸方向之波板區段可以棋盤圖案配置。A spatially variant polarizer may comprise transversely joined linear polarizer segments oriented orthogonally with polarization transfer axes. Linear polarizer segments of the same polarization direction can be arranged in a checkerboard pattern. A spatially varying polarizer may comprise a linear polarizer and a spatially varying waveplate downstream of the linear polarizer, the spatially varying waveplate comprising transversely joined waveplate segments of different optical axis orientations arranged in a checkerboard pattern. The wave plate sections with the same optical axis direction can be arranged in a checkerboard pattern.

根據本揭露,進一步提供一種顯示器裝置,其包括顯示面板及本揭露之波導照明器。顯示面板可包含可形成於液晶層中之二維像素陣列,例如,透射光閥陣列。波導照明器可包含:波導分光器,其配置成接收光束且將該光束分開為複數個子光束;波導陣列,其耦接至波導分光器且配置以在其中傳播子光束,波導陣列之波導彼此平行走向;及輸出耦合器之列的陣列,陣列之輸出耦合器的每一列沿著波導之長度耦接至波導陣列之波導,用於形成對應於顯示面板之二維像素陣列的輸出耦合子光束部分之二維陣列。According to the present disclosure, a display device is further provided, which includes a display panel and the waveguide illuminator of the present disclosure. The display panel may include a two-dimensional array of pixels, eg, an array of transmissive light valves, that may be formed in a liquid crystal layer. The waveguide illuminator may include: a waveguide beam splitter configured to receive a beam of light and split the beam into a plurality of sub-beams; a waveguide array coupled to the waveguide beam splitter and configured to propagate the sub-beams therein, the waveguides of the waveguide array being parallel to each other direction; and an array of columns of output couplers, each column of the output couplers of the array being coupled to a waveguide of the waveguide array along the length of the waveguide for forming an outcoupled sub-beam portion corresponding to a two-dimensional pixel array of a display panel The two-dimensional array.

顯示裝置可進一步包含控制器,其可操作地耦接至顯示面板且配置以致使顯示面板以時間依序方式顯示複數個子影像,這些子影像加起來為待向使用者顯示之影像。複數個子影像之不同子影像的像素可彼此交錯。舉例而言,複數個子影像之不同子影像的像素可以互補棋盤圖案安置。複數個子影像可包含具有交錯像素之第一及第二子影像,使得第一子影像中之每一像素具有第二子影像之至少兩個相鄰像素。第一子影像中之每一像素可具有第二子影像之至少三個相鄰像素。The display device may further include a controller operatively coupled to the display panel and configured to cause the display panel to display in a time-sequential manner a plurality of sub-images that add up to an image to be displayed to a user. Pixels of different sub-images of the plurality of sub-images may be interleaved with each other. For example, pixels of different sub-images of the plurality of sub-images may be arranged in a complementary checkerboard pattern. The plurality of sub-images may include first and second sub-images having interlaced pixels such that each pixel in the first sub-image has at least two adjacent pixels of the second sub-image. Each pixel in the first sub-image may have at least three neighboring pixels of the second sub-image.

現在參見圖1,波導照明器100包含支撐輸入波導106之基底101,該輸入波導106用於導引由諸如雷射源之光源110提供之輸入光束108。本文中,術語「波導」標示將光傳播限定在兩個維度(如光線)中且在單一橫向模式中或在若干橫向模式(例如至多12個傳播模式)中導引光的光導引結構。波導可為筆直的、彎曲的等。線性波導之一個實例為脊型波導。波導照明器100可實施於光子積體電路(photonic integrated circuit;PIC)中。Referring now to FIG. 1, a waveguide illuminator 100 includes a substrate 101 supporting an input waveguide 106 for guiding an input beam 108 provided by a light source 110, such as a laser source. Herein, the term "waveguide" designates a light-guiding structure that confines light propagation in two dimensions (eg light rays) and guides light in a single transverse mode or in several transverse modes (eg up to 12 propagation modes). The waveguides may be straight, curved, etc. One example of a linear waveguide is a ridge waveguide. The waveguide illuminator 100 may be implemented in a photonic integrated circuit (PIC).

波導分光器112耦接至輸入波導106。波導分光器112之功能為將輸入光束108分開為複數個子光束114。波導陣列116耦接至波導分光器112以用於在波導116中導引子光束114。波導116如所示出平行於彼此而走向。每一波導116配置以將子光束114中之一者自波導分光器112導引至波導116之末端129。A waveguide splitter 112 is coupled to the input waveguide 106 . The function of the waveguide beam splitter 112 is to split the input beam 108 into a plurality of sub-beams 114 . The waveguide array 116 is coupled to the waveguide splitter 112 for guiding the sub-beams 114 in the waveguides 116 . The waveguides 116 are shown running parallel to each other. Each waveguide 116 is configured to direct one of the sub-beams 114 from the waveguide splitter 112 to the end 129 of the waveguide 116 .

輸出耦合器120之列119的陣列係由波導照明器100之基底101支撐。輸出耦合器120之每一列119沿著波導116之長度耦接至波導116中之一者,用於輸出耦合在波導116中傳播之子光束114中之一者的部分122。由輸出耦合器120之所有列119輸出耦合之部分122形成子光束部分122之二維陣列,該子光束部分122自波導陣列輸出耦合且以一角度(包含銳角或直角)發射至基底101。子光束部分122之二維陣列的X間距及Y間距可經選擇以匹配由波導照明器100照明之顯示面板的X間距及Y間距。The array of columns 119 of output couplers 120 is supported by the base 101 of the waveguide illuminator 100 . Each column 119 of output couplers 120 is coupled to one of the waveguides 116 along the length of the waveguides 116 for outcoupling a portion 122 of one of the sub-beams 114 propagating in the waveguide 116 . Portions 122 outcoupled by all columns 119 of output couplers 120 form a two-dimensional array of sub-beam portions 122 that are outcoupled from the waveguide array and emitted to substrate 101 at an angle, including acute or right. The X-pitch and Y-pitch of the two-dimensional array of sub-beam portions 122 may be selected to match the X-pitch and Y-pitch of a display panel illuminated by waveguide illuminator 100 .

參考圖2且進一步參考圖1,顯示裝置200包含圖1之波導照明器100,或本文中揭露之任何其他波導照明器。波導照明器100耦接至顯示面板202(圖2)。例如在色彩通道之波長處的半導體光源之光源201可以光學方式耦接至照明器100以用於將光束108提供至照明器100。顯示面板202包含安置且配置以接收來自照明器100之輸出耦合子光束部分122之陣列的顯示像素220之二維陣列,例如,透射光閥陣列。為了確保有效地使用子光束部分122,可使顯示像素220之位置及間距與輸出耦合器120之陣列之位置及間距在X方向及Y方向兩者上匹配。顯示像素220之間距可實質上等於輸出耦合器120陣列之一間距。Referring to FIG. 2 with further reference to FIG. 1 , a display device 200 includes the waveguide illuminator 100 of FIG. 1 , or any other waveguide illuminator disclosed herein. The waveguide illuminator 100 is coupled to a display panel 202 (FIG. 2). A light source 201 , such as a semiconductor light source at a wavelength of a color channel, may be optically coupled to the luminaire 100 for providing a light beam 108 to the luminaire 100 . Display panel 202 includes a two-dimensional array of display pixels 220 , eg, an array of transmissive light valves, disposed and configured to receive an array of outcoupled beamlet portions 122 from illuminator 100 . To ensure efficient use of sub-beam portions 122, the position and pitch of display pixels 220 and the array of output couplers 120 can be matched in both the X and Y directions. The pitch between display pixels 220 may be substantially equal to the pitch of the array of output couplers 120 .

顯示裝置200可進一步包含可操作地耦接至光源201及顯示面板202以用於為光源201供能同時提供用於設定顯示像素220之個別光學透射值或其他性質(諸如偏振轉換性質)的控制信號之控制器250。在一些具體實例中,顯示面板202可包含液晶層204,其中顯示像素220配置以個別地及可控制地轉換或調諧個別子光束部分122之偏振狀態,例如旋轉線性偏振狀態。在此類具體實例中,光源201可為發射線性偏振光的偏振光源。可提供線性偏振器228以將由顯示像素220賦予之子光束部分122之偏振分佈轉換為表示待顯示之影像的光學功率密度分佈或亮度分佈。將偏振分佈轉換為光學功率密度或亮度分佈之偏振器通常稱為分析儀。液晶像素與分析儀組合形成具有可控制光學透射之光閥像素陣列。The display device 200 may further include operably coupled to the light source 201 and the display panel 202 for powering the light source 201 while providing controls for setting individual optical transmission values or other properties (such as polarization conversion properties) of the display pixels 220 Signal controller 250 . In some embodiments, the display panel 202 may include a liquid crystal layer 204 in which the display pixels 220 are configured to individually and controllably switch or tune the polarization state of individual beamlet portions 122, eg, rotate the linear polarization state. In such specific examples, light source 201 may be a polarized light source that emits linearly polarized light. A linear polarizer 228 may be provided to convert the polarization distribution of the sub-beam portions 122 imparted by the display pixels 220 into an optical power density distribution or brightness distribution representative of the image to be displayed. A polarizer that converts a polarization distribution into an optical power density or brightness distribution is often called an analyzer. The liquid crystal pixels are combined with an analyzer to form an array of pixels with light valves with controllable optical transmission.

形成於線性偏振器228下游之影像處於線性域,其中所顯示之影像之像素座標對應於顯示像素220之XY座標。眼部透鏡230可用於在人眼窗口226處將線性域中之影像轉換為角度域中之影像以供眼睛280直接觀測。本文中,術語「角度域中之影像」指所顯示之影像之像素座標對應於子光束部分122之射線角度的影像。在具有可調諧偏振旋轉器之具體實例中,光源201可發射偏振光,且波導照明器100可保留彼偏振狀態。在一些具體實例中,可使得波導照明器100對外部光214為透明的。The image formed downstream of the linear polarizer 228 is in the linear domain, where the pixel coordinates of the displayed image correspond to the XY coordinates of the display pixels 220 . The eye lens 230 can be used to convert an image in the linear domain to an image in the angular domain at the eye window 226 for direct observation by the eye 280 . Herein, the term “image in the angle domain” refers to an image in which the pixel coordinates of the displayed image correspond to the ray angles of the sub-beam portion 122 . In an embodiment with a tunable polarization rotator, light source 201 can emit polarized light, and waveguide illuminator 100 can preserve that polarization state. In some embodiments, waveguide illuminator 100 can be made transparent to external light 214 .

與使用相干光源照明顯示面板(例如照明顯示面板202之光源201)相關聯之一個潛在問題為光斑圖案形成。由於光源201之相干性質,可由眼睛280觀測光斑。One potential problem associated with using a coherent light source to illuminate a display panel, such as light source 201 illuminating display panel 202, is speckle pattern formation. Due to the coherent nature of the light source 201, the light spot can be observed by the eye 280.

圖3示出此類光斑圖案之來源。圖3為圖2之顯示器200的放大圖,具有傳播穿過相鄰顯示像素220A、220B、由眼部透鏡230重導引及由眼睛280之透鏡/角膜380集中於眼睛280之視網膜302上的相鄰子光束部分122之光路徑320A、320B。由於整個成像訓練之缺陷性質(包含眼部透鏡230及眼睛透鏡/角膜380),相鄰顯示像素220A及220B之影像328A及328B在某種程度上可重疊於視網膜302上。光學干擾圖案300可呈現於相鄰顯示像素220A及顯示像素220B之影像328A與影像328B之間的重疊區域中。光學干擾圖案300將亦在其他相鄰像素影像之間出現,為清楚起見而未圖示。光學干擾圖案300形成之最終結果為整個可見影像為高度光斑的,從而產生觀測到之影像的分散不自然外觀。Figure 3 shows the origin of such speckle patterns. 3 is a magnified view of display 200 of FIG. Light paths 320A, 320B of adjacent sub-beam portions 122 . Due to the defective nature of the overall imaging exercise (including eye lens 230 and eye lens/cornea 380 ), images 328A and 328B of adjacent display pixels 220A and 220B may overlap to some extent on retina 302 . Optical interference pattern 300 may be present in an overlapping region between image 328A and image 328B of adjacent display pixel 220A and display pixel 220B. The optical interference pattern 300 will also appear between other adjacent pixel images, not shown for clarity. The net result of the formation of the optical interference pattern 300 is that the overall visible image is highly speckle, resulting in a distracting, unnatural appearance of the observed image.

減緩光學干擾圖案300之一種方法為提供具有複數個相位不相關光源之波導照明器。此類光源可處於略微不同發射波長,使得由此等來源發射之光束在重疊時不繪示可見干擾圖案。針對非限制性說明性實例參考圖4A,波導照明器400A類似於圖1之波導照明器100,包含類似元件,可實施為PIC,且可用於圖2之顯示裝置200。類似於波導照明器100,圖4A之波導照明器400A包含基底401,該基底401支撐用於導引由第一光源410(例如,諸如雷射二極體之半導體光源)提供之第一輸入光束408的第一輸入波導406。第一波導分光器412耦接至第一輸入波導406。第一波導分光器412之功能為將第一輸入光束408分開為第一複數個子光束414。第一陣列之波導416耦接至第一波導分光器412以用於在第一陣列之波導416中傳播子光束414。波導416如所示出彼此平行走向。每一波導416配置以導引子光束414中之一者。輸出耦合器420之以對應於個別波導416之列配置的第一陣列由基底401支撐。輸出耦合器420之每一列沿著波導416之長度耦接至第一波導陣列之一個波導416,用於輸出耦合在波導416中傳播之子光束414中之一者的部分422。部分422形成輸出耦合子光束部分之第一二維陣列。One approach to mitigate optical interference pattern 300 is to provide a waveguide illuminator with a plurality of phase-independent light sources. Such light sources may be at slightly different emission wavelengths such that beams emitted by such sources do not show visible interference patterns when overlapping. Referring to FIG. 4A for a non-limiting illustrative example, waveguide illuminator 400A is similar to waveguide illuminator 100 of FIG. 1 , includes similar elements, may be implemented as a PIC, and may be used in display device 200 of FIG. 2 . Similar to the waveguide illuminator 100, the waveguide illuminator 400A of FIG. 4A includes a substrate 401 supporting a first input light beam provided by a first light source 410 (eg, a semiconductor light source such as a laser diode) for guiding 408 of the first input waveguide 406 . The first waveguide splitter 412 is coupled to the first input waveguide 406 . The function of the first waveguide beam splitter 412 is to split the first input beam 408 into a first plurality of sub-beams 414 . The waveguides 416 of the first array are coupled to the first waveguide splitter 412 for propagating the sub-beams 414 in the waveguides 416 of the first array. The waveguides 416 are shown running parallel to each other. Each waveguide 416 is configured to guide one of the sub-beams 414 . A first array of output couplers 420 configured in columns corresponding to individual waveguides 416 is supported by substrate 401 . Each column of output couplers 420 is coupled to one waveguide 416 of the first array of waveguides along the length of the waveguides 416 for outcoupling a portion 422 of one of the sub-beams 414 propagating in the waveguides 416 . Section 422 forms a first two-dimensional array of outcoupled sub-beam sections.

波導照明器400A進一步包含用於在基底401之相對側處導引由第二光源411(例如,諸如雷射二極體之半導體光源)提供之第二輸入光束409的第二輸入波導407。第二波導分光器413耦接至第二輸入波導407以用於將第二輸入光束409分開為第二複數個子光束415。波導417之第二陣列耦接至第二波導分光器413以用於在波導417中傳播子光束415。第二波導陣列之波導417彼此平行且在第一波導陣列之波導416之間走向,亦即第一波導陣列之波導416與第一波導陣列之波導416為交錯的。第一波導分光器412及第二波導分光器413安置於第一及第二波導陣列之相對末端處,亦即在圖4A中之陣列的左方及右方。The waveguide illuminator 400A further comprises a second input waveguide 407 for guiding a second input light beam 409 provided by a second light source 411 (eg, a semiconductor light source such as a laser diode) at an opposite side of the substrate 401 . The second waveguide splitter 413 is coupled to the second input waveguide 407 for splitting the second input beam 409 into a second plurality of sub-beams 415 . A second array of waveguides 417 is coupled to a second waveguide splitter 413 for propagating sub-beams 415 in waveguides 417 . The waveguides 417 of the second waveguide array are parallel to each other and run between the waveguides 416 of the first waveguide array, that is, the waveguides 416 of the first waveguide array and the waveguides 416 of the first waveguide array are interlaced. The first waveguide splitter 412 and the second waveguide splitter 413 are disposed at opposite ends of the first and second waveguide arrays, ie to the left and right of the arrays in FIG. 4A .

第二波導陣列之每一波導417配置以導引一個子光束415。以列配置之輸出耦合器421之第二陣列由基底401支撐。輸出耦合器421之每一列沿著波導417之長度耦接至第二波導陣列之波導417中之一者,用於輸出耦合部分423,從而形成輸出耦合子光束部分之第二二維陣列。第一輸入光束408及第二輸入光束409可沿著並行波導416、波導417對自波導照明器400A之兩個相對側啟動至各別交錯式波導陣列中。Each waveguide 417 of the second waveguide array is configured to guide one sub-beam 415 . A second array of output couplers 421 arranged in columns is supported by substrate 401 . Each column of output couplers 421 is coupled along the length of waveguides 417 to one of the waveguides 417 of the second waveguide array for outcoupling sections 423, thereby forming a second two-dimensional array of outcoupled sub-beam sections. The first input beam 408 and the second input beam 409 can be launched into respective interleaved waveguide arrays from two opposite sides of the waveguide illuminator 400A along the parallel waveguide 416, waveguide 417 pair.

輸出耦合光束部分422及部分423之兩個陣列為交錯的,此為第一及第二波導陣列之波導416及波導417的結果,且對應輸出耦合器420及輸出耦合器421交錯,如所示出。自第一輸入光束408及第二輸入光束409分開之子光束414及子光束415以相反方向傳播,亦即其反向傳播。第一光源410及第二光源411可配置以發射不同波長之光,例如,相同色彩通道之波長;舉例而言,第一光源410及第二光源411可包含不同發射波長之雷射二極體,使得無穩定光學干擾圖案形成為可能的。圖4中所示出之交錯配置允許吾人減小或完全消除相鄰輸出耦合光束部分422及部分423之間的非所要光學干擾效應,從而減小或消除光斑圖案形成之不利影響。The two arrays of outcoupled beam sections 422 and 423 are interleaved as a result of waveguides 416 and 417 of the first and second waveguide arrays, and correspondingly output couplers 420 and 421 are interleaved as shown out. The sub-beams 414 and 415 split from the first input beam 408 and the second input beam 409 propagate in opposite directions, ie counterpropagate thereof. The first light source 410 and the second light source 411 may be configured to emit light of different wavelengths, for example, wavelengths of the same color channel; for example, the first light source 410 and the second light source 411 may comprise laser diodes emitting at different wavelengths , making stable optical interference pattern formation possible. The staggered configuration shown in FIG. 4 allows one to reduce or completely eliminate unwanted optical interference effects between adjacent out-coupled beam portions 422 and 423, thereby reducing or eliminating the adverse effect of speckle pattern formation.

在一些具體實例中,圖4A之波導照明器400A可包含耦接至第一光源410及第二光源411之控制器450。控制器450可配置以按時間依序方式交替地操作第一半導體光源410及第二半導體光源411以抑制相鄰輸出耦合光束部分422及部分423之間的干擾。當第一光源410及第二光源411以時間依序方式操作時,即使當第一光源410及第二光源411之發射光譜完全或部分重疊時亦無干擾出現。In some embodiments, the waveguide illuminator 400A of FIG. 4A can include a controller 450 coupled to the first light source 410 and the second light source 411 . The controller 450 may be configured to alternately operate the first semiconductor light source 410 and the second semiconductor light source 411 in a time-sequential manner to suppress interference between adjacent out-coupled beam portions 422 and 423 . When the first light source 410 and the second light source 411 are operated in a time-sequential manner, no interference occurs even when the emission spectra of the first light source 410 and the second light source 411 completely or partially overlap.

在一些具體實例中,第一輸入光束408及第二輸入光束409可由耦接至光束分光器之同一雷射源發射,其中第一輸入光束408與第二輸入光束409之間的足夠路徑長度破壞相位相干性且抑制輸出區域內部任何地方的干擾。針對非限制性說明性實例參考圖4B,波導照明器400B類似於圖4A之波導照明器400A,包含類似元件,可實施於PIC中,且可用於圖2之顯示裝置200。圖4B之波導照明器400B具有單一光源,特定而言第一光源410;及光源分光器477,例如50/50分光器,其耦接至第一光源410以用於將由第一光源410提供之光分開為第一輸入光束408及第二輸入光束409,且將第一輸入光束408及第二輸入光束409分別耦接至第一波導分光器412及第二波導分光器413。來自第一光源410至第一波導分光器412及第二波導分光器413之光學路徑長度差大於第一光源410之相干長度。在圖4B中,路徑長度差大致等於自光源分光器477走向至第二波導分光器413之輔助波導478的長度。In some embodiments, the first input beam 408 and the second input beam 409 may be emitted by the same laser source coupled to the beam splitter, wherein sufficient path length between the first input beam 408 and the second input beam 409 destroys Phase coherent and rejects interference anywhere inside the output area. Referring to FIG. 4B for a non-limiting illustrative example, waveguide illuminator 400B is similar to waveguide illuminator 400A of FIG. 4A , includes similar elements, can be implemented in a PIC, and can be used in display device 200 of FIG. 2 . The waveguide illuminator 400B of FIG. 4B has a single light source, specifically the first light source 410; The light is split into a first input beam 408 and a second input beam 409, and the first input beam 408 and the second input beam 409 are coupled to a first waveguide beam splitter 412 and a second waveguide beam splitter 413, respectively. The difference in optical path length from the first light source 410 to the first waveguide beam splitter 412 and the second waveguide beam splitter 413 is greater than the coherence length of the first light source 410 . In FIG. 4B , the path length difference is approximately equal to the length of the auxiliary waveguide 478 going from the light source beam splitter 477 to the second waveguide beam splitter 413 .

在近眼顯示器中,光學干擾及相關聯非所要光斑圖案形成由對應於用重疊於使用者之眼睛的視網膜上之波導照明器照明之顯示面板之相鄰像素的相鄰子光束部分產生。如上文參考圖3所解釋,此類子光束光點重疊由擴大視網膜上之相鄰像素之影像的光學系統中之缺陷產生。因此,增加來自照明器之相鄰子光束部分之光點之間的距離可產生非所要干擾之減少及光斑圖案之抑制。此類距離增加可藉由謹慎地選擇照明光之空間圖案來達成。參考圖5,針對非限制性說明性實例,圖2之顯示裝置200之具體實例500可使用圖4A之波導照明器400A或圖4B之波導照明器400B。在圖5中,顯示面板202之像素220形成用厚虛線繪示之像素的矩形陣列。輸出耦合器之相鄰列之輸出耦合器420及輸出耦合器421在波導416、417之方向上(亦即在圖5中水平地)相對於彼此偏移,以形成輸出耦合器420、421之菱形陣列,矩形像素陣列之像素220中之每一者仍用輸出耦合器之菱形陣列的輸出耦合器420、421中之一者照明。此類配置使得輸出耦合器420、421能夠彼此間隔開更遠,從而減小由相鄰輸出耦合器420、421輸出耦合之子光束部分之間的光學干擾之強度,且因此抑制光斑圖案形成。In near-eye displays, optical interference and associated unwanted speckle pattern formation results from adjacent sub-beam portions corresponding to adjacent pixels of a display panel illuminated with a waveguide illuminator overlying the retina of the user's eye. As explained above with reference to FIG. 3 , such sub-beam spot overlap results from imperfections in the optical system that magnify the image of adjacent pixels on the retina. Thus, increasing the distance between the spots of adjacent sub-beam portions from the illuminator can result in a reduction of unwanted interference and suppression of speckle patterns. Such distance increases can be achieved by carefully choosing the spatial pattern of the illumination light. Referring to FIG. 5, for a non-limiting illustrative example, an embodiment 500 of the display device 200 of FIG. 2 may use the waveguide illuminator 400A of FIG. 4A or the waveguide illuminator 400B of FIG. 4B. In FIG. 5, the pixels 220 of the display panel 202 form a rectangular array of pixels depicted with thick dashed lines. The output couplers 420 and output couplers 421 of adjacent columns of output couplers are offset relative to each other in the direction of the waveguides 416, 417 (ie, horizontally in FIG. Each of the pixels 220 of the diamond-shaped, rectangular array of pixels is still illuminated with one of the output couplers 420, 421 of the diamond-shaped array of output couplers. Such a configuration enables the output couplers 420, 421 to be spaced farther apart from each other, thereby reducing the intensity of optical interference between sub-beam portions outcoupled by adjacent output couplers 420, 421, and thus suppressing speckle pattern formation.

亦可藉由確保相鄰輸出耦合子光束部分具有正交偏振狀態來抑制或減輕相鄰輸出耦合子光束部分之間的光學干擾。為此,空間變體偏振器可置放於顯示面板下游,例如,圖2之顯示裝置200的顯示面板202。舉例而言,參考圖6且進一步參考圖2,空間變體偏振器600(圖6)可代替線性偏振器/分析儀228(圖2)置放,在圖6中所示之具體實例中,空間變體偏振器600包含具有偏振傳輸軸之正交定向的橫向接合的線性偏振器區段601、602。空間變體偏振器600因此配置以傳播第一偏振狀態之輸出耦合子光束部分,且阻擋第二正交偏振狀態之輸出耦合相鄰子光束部分。所投射相鄰子光束部分122將正交偏振且因此其之間的光學干擾將被抑制。Optical interference between adjacent out-coupling sub-beam portions can also be suppressed or mitigated by ensuring that adjacent out-coupling sub-beam portions have orthogonal polarization states. To this end, a spatially varying polarizer may be placed downstream of a display panel, eg, display panel 202 of display device 200 of FIG. 2 . For example, referring to FIG. 6 and with further reference to FIG. 2 , spatially varying polarizer 600 ( FIG. 6 ) may be placed in place of linear polarizer/analyzer 228 ( FIG. 2 ), and in the specific example shown in FIG. 6 , The spatially variant polarizer 600 comprises transversely joined linear polarizer segments 601, 602 with orthogonally oriented polarization transfer axes. Spatially variant polarizer 600 is thus configured to propagate outcoupling sub-beam portions of a first polarization state and block outcoupling adjacent sub-beam portions of a second orthogonal polarization state. Projected adjacent sub-beam portions 122 will be orthogonally polarized and thus optical interference between them will be suppressed.

顯示面板202可經校準以取決於每一給定像素220之對應偏振器定向而充當不同波板。在不同線性偏振下透射穿過像素220之光將不經受光學干擾。透射偏振定向之棋盤圖案增加像素220與相同偏振狀態之子光束部分122之間的距離,從而減小其在使用者之眼睛之視網膜處重疊的似然性,如上文參考圖3所解釋。The display panel 202 can be calibrated to act as different waveplates depending on the corresponding polarizer orientation of each given pixel 220 . Light transmitted through pixel 220 under different linear polarizations will not experience optical interference. The checkerboard pattern of transmission polarization orientations increases the distance between pixels 220 and beamlet portions 122 of the same polarization state, thereby reducing the likelihood of them overlapping at the retina of the user's eye, as explained above with reference to FIG. 3 .

現在參考圖7A及7B且進一步參考圖2,空間變體偏振器700可代替線性偏振器/分析儀228置放。在所繪示具體實例中,空間變體偏振器700包含均一線性偏振器710及均一線性偏振器710下游之空間變體波板720。空間變體波板720包含不同光軸方向之橫向接合的波板區段721、722。對於半波波板,方向可相差45度。同一光軸方向之波板區段721、722可以互補棋盤圖案配置,如所繪示。Referring now to FIGS. 7A and 7B and with further reference to FIG. 2 , a spatially variant polarizer 700 may be placed in place of the linear polarizer/analyzer 228 . In the depicted example, the spatially varying polarizer 700 includes a uniform linear polarizer 710 and a spatially varying waveplate 720 downstream of the uniform linear polarizer 710 . The space variant waveplate 720 comprises transversely joined waveplate sections 721 , 722 of different optical axis directions. For half-wave boards, the directions can vary by 45 degrees. The wave plate segments 721, 722 in the same optical axis direction can be arranged in a complementary checkerboard pattern, as shown.

在本揭露之一些具體實例中,由相干照明引起之顯示裝置中之光學干擾/光斑效應可藉由控制顯示器之個別像素以僅提供用於非相鄰像素之非零光學功率密度來減緩,其中所有像素最終以時間依序方式供能。為此,圖2之顯示裝置200之控制器250可配置以致使顯示面板202以時間依序方式顯示複數個子影像,這些子影像加起來為待向使用者顯示之影像。In some embodiments of the present disclosure, optical interference/speckle effects in display devices caused by coherent illumination can be mitigated by controlling individual pixels of the display to provide non-zero optical power density only for non-adjacent pixels, where All pixels are ultimately powered in a time-sequential manner. To this end, the controller 250 of the display device 200 of FIG. 2 may be configured to cause the display panel 202 to display a plurality of sub-images in a time-sequential manner, which add up to an image to be displayed to the user.

參見圖8,針對非限制性說明性實例,待向使用者顯示之影像800包含由置放於個別像素中之數字表示的亮度值之二維陣列。第一子影像801及第二子影像802加起來為影像800。換言之,第一子影像801及第二子影像802之對應像素值加起來為影像800之像素值。舉例而言,影像800之像素820具有值17。此值由具有零值之第一子影像801的像素821與具有值17之第二子影像802的像素822之總和表示。類似地,影像800之像素830具有值64。此值由具有值64之第一子影像801的像素831與具有零值之第二子影像802的像素832之總和表示。Referring to FIG. 8, for a non-limiting illustrative example, an image 800 to be displayed to a user includes a two-dimensional array of brightness values represented by numbers placed in individual pixels. The sum of the first sub-image 801 and the second sub-image 802 is an image 800 . In other words, the sum of the corresponding pixel values of the first sub-image 801 and the second sub-image 802 is the pixel value of the image 800 . For example, pixel 820 of image 800 has a value of 17. This value is represented by the sum of a pixel 821 of the first sub-image 801 having a value of zero and a pixel 822 of the second sub-image 802 having a value of 17. Similarly, pixel 830 of image 800 has a value of 64. This value is represented by the sum of a pixel 831 of the first sub-image 801 having a value of 64 and a pixel 832 of the second sub-image 802 having a value of zero.

子影像801及802可以時間依序方式由控制器250顯示,亦即一個接一個快速顯示,使得使用者之眼睛將其整合為單一影像。複數個子影像之不同子影像的像素可為交錯的,例如,具有非零亮度值之不同子影像的像素可以互補棋盤圖案安置,如圖8中所示出。非零像素值之交錯確保無來自相鄰像素之光可干擾使用者之眼睛視網膜。最終結果將為可見光斑/干擾圖案之抑制。The sub-images 801 and 802 may be displayed by the controller 250 in a time-sequential manner, ie displayed rapidly one after the other, so that the user's eyes integrate them into a single image. The pixels of different sub-images of the plurality of sub-images may be interleaved, for example, the pixels of different sub-images with non-zero intensity values may be arranged in a complementary checkerboard pattern, as shown in FIG. 8 . The interleaving of non-zero pixel values ensures that no light from adjacent pixels can interfere with the retina of the user's eye. The end result will be suppression of visible speckles/interference patterns.

可提供超過兩個子影像,其中同一原理為像素亮度值加起來為所要影像。取決於子影像之總數目及第一子影像之像素的邊界或框內位置,像素可具有第二影像之至少一個相鄰像素、第二子影像之至少兩個相鄰像素或至少三個或四個相鄰像素。對於定義,相鄰像素在本文中定義為共用至少一個側面邊界。More than two sub-images can be provided, where the same principle is that the pixel intensity values add up to the desired image. Depending on the total number of sub-images and the boundary or frame position of the pixels of the first sub-image, a pixel may have at least one adjacent pixel of the second image, at least two adjacent pixels of the second sub-image, or at least three or four adjacent pixels. For definition, adjacent pixels are defined herein as sharing at least one side border.

應進一步注意,本文中所揭露之光學干擾/光斑減緩配置及方法並不互斥,且可以互補方式使用。舉例而言,在圖4A及圖4B中所示出之交錯波導中之子光束的反向傳播可由對應光源之時間依序供能補充,藉助於圖7A及圖7B中所呈現之分析儀提供輸出交錯偏振,及/或以時間依序方式提供子影像。可藉由圖8中所示出之時間依序子影像顯示器或藉由本文中所揭露之其他方法補充時間依序光源供能。時間依序子影像顯示器可藉由棋盤輸出偏振補充等等。It should be further noted that the optical interference/speckle mitigation arrangements and methods disclosed herein are not mutually exclusive and may be used in a complementary manner. For example, the counter-propagation of the sub-beams in the interleaved waveguides shown in Figures 4A and 4B can be supplemented by the time-sequential energization of the corresponding light sources, providing the output by means of the analyzer presented in Figures 7A and 7B Interleave polarization, and/or provide sub-images in a time-sequential manner. The time-sequential light source energization can be supplemented by the time-sequential sub-image display shown in FIG. 8 or by other methods disclosed herein. Time-sequential sub-image displays can be complemented by checkerboard output polarization, etc.

參見圖9,虛擬實境(VR)近眼顯示器900包含訊框901,其對於每一眼睛支撐:光源902;波導照明器906,其以可操作方式耦接至光源902,該波導照明器906包含本文中所揭露之波導照明器中的任一者;顯示面板918,其包含顯示像素陣列,其中波導照明器906中的輸出耦合光柵之位置與顯示面板918之偏振調諧像素之位置協調;及眼部透鏡932,其用於將由顯示面板918產生的線性域中的影像轉換為角度域中的影像以供在人眼窗口926處直接觀測。繪示為黑色圓點之複數個人眼窗口照明器962可置放於波導照明器906的面對人眼窗口926之一側上。可針對每一人眼窗口926提供眼睛追蹤攝影機942。Referring to FIG. 9, a virtual reality (VR) near-eye display 900 includes a frame 901 that supports, for each eye: a light source 902; a waveguide illuminator 906 operatively coupled to the light source 902, the waveguide illuminator 906 including Any of the waveguide illuminators disclosed herein; a display panel 918 comprising an array of display pixels in which the positions of the outcoupling gratings in the waveguide illuminator 906 are coordinated with the positions of the polarization tuning pixels of the display panel 918; and the eye The external lens 932 is used to convert the image in the linear domain generated by the display panel 918 into an image in the angular domain for direct observation at the human eye window 926 . A plurality of eye window illuminators 962 , shown as black dots, may be placed on the side of waveguide illuminator 906 facing eye window 926 . Eye tracking cameras 942 may be provided for each eye window 926 .

眼睛追蹤攝影機942之目的為判定使用者之兩個眼睛之位置及/或定向。人眼窗口照明器962在對應人眼窗口926處照明眼睛,以允許眼睛追蹤攝影機942能夠獲得眼睛之影像,以及提供參考反射亦即閃光。閃光可充當擷取眼睛影像中之參考點,從而藉由判定眼睛光瞳影像相對於閃光影像之位置來促進眼睛凝視方向判定。為了避免因人眼窗口照明器962之光分散使用者之注意力,可使得人眼窗口照明器962發射對於使用者而言不可見之光。舉例而言,紅外光可用於照明人眼窗口926。The purpose of the eye tracking camera 942 is to determine the position and/or orientation of the user's two eyes. The eye window illuminator 962 illuminates the eye at the corresponding eye window 926 to allow the eye tracking camera 942 to obtain an image of the eye and to provide a reference reflection, ie, a flash. The flash of light can serve as a reference point in capturing an image of the eye, thereby facilitating eye gaze direction determination by determining the position of the eye pupil image relative to the flash image. In order to avoid distracting the user's attention by the light of the eye window illuminator 962, the eye window illuminator 962 can be made to emit light that is invisible to the user. For example, infrared light can be used to illuminate the window 926 of the human eye.

參見圖10,HMD 1000為AR/VR穿戴顯示系統之實例,為了較大程度沉浸至AR/VR環境中該AR/VR穿戴顯示系統圍封使用者之正面。HMD 1000可產生完全虛擬的3D影像。HMD 1000可包含可緊固在使用者之頭部周圍的前本體1002及條帶1004。前本體1002配置以用於以可靠且舒適之方式置放在使用者之眼睛前方。顯示系統1080可安置於前本體1002中以向使用者呈現AR/VR影像。顯示系統1080可包含本文中所揭露之顯示裝置及照明器中之任一者。前主體1002之側1006可為不透射的或透明的。Referring to FIG. 10 , HMD 1000 is an example of an AR/VR wearable display system, and the AR/VR wearable display system encloses the user's front for greater immersion in the AR/VR environment. HMD 1000 can produce completely virtual 3D images. The HMD 1000 can include a front body 1002 and a strap 1004 that can be secured around a user's head. The front body 1002 is configured for placement in front of the user's eyes in a secure and comfortable manner. The display system 1080 can be disposed in the front body 1002 to present AR/VR images to the user. Display system 1080 may include any of the display devices and illuminators disclosed herein. The side 1006 of the front body 1002 may be transmissive or transparent.

在一些具體實例中,前主體1002包含用於HMD 1000之追蹤加速度之定位器1008及慣性量測單元(inertial measurement unit;IMU)1010,及用於追蹤HMD 1000之位置之位置感測器1012。IMU 1010為基於自位置感測器1012中之一或多者接收到之量測信號而產生指示HMD 1000之位置之資料的電子裝置,該電子裝置回應於HMD 1000之運動而產生一或多個量測信號。位置感測器1012之實例包含:一或多個加速度計、一或多個陀螺儀、一或多個磁力計、偵測運動之另一合適類型的感測器、用於IMU 1010之錯誤校正的一種類型之感測器或其某一組合。位置感測器1012可位於IMU 1010之外部、IMU 1010之內部或其某一組合。In some embodiments, the front body 1002 includes a positioner 1008 and an inertial measurement unit (IMU) 1010 for tracking the acceleration of the HMD 1000 , and a position sensor 1012 for tracking the position of the HMD 1000 . IMU 1010 is an electronic device that generates data indicative of the position of HMD 1000 based on measurement signals received from one or more of position sensors 1012, the electronic device generating one or more measurement signal. Examples of position sensors 1012 include: one or more accelerometers, one or more gyroscopes, one or more magnetometers, another suitable type of sensor to detect motion, error correction for IMU 1010 A type of sensor or a combination thereof. Position sensor 1012 may be located external to IMU 1010, internal to IMU 1010, or some combination thereof.

定位器1008由虛擬實境系統之外部成像裝置追蹤,使得虛擬實境系統可追蹤整個HMD 1000之位置及定向。由IMU 1010及位置感測器1012產生之資訊可與藉由追蹤定位器1008獲得之位置及定向進行比較,用於改良HMD 1000之位置及定向之追蹤準確度。當使用者在3D空間中移動及轉動時,準確位置及定向對於向使用者呈現適當虛擬景物為至關重要的。The locator 1008 is tracked by an external imaging device of the virtual reality system so that the virtual reality system can track the position and orientation of the entire HMD 1000 . Information generated by IMU 1010 and position sensor 1012 may be compared with the position and orientation obtained by tracking locator 1008 and used to improve the tracking accuracy of HMD 1000's position and orientation. As the user moves and turns in 3D space, accurate position and orientation are critical to presenting the proper virtual scene to the user.

HMD 1000可進一步包含深度攝影機組合件(depth camera assembly;DCA)1011,其擷取描述環繞HMD 1000之一些或所有之局部區域之深度資訊的資料。深度資訊可與來自IMU 1010之資訊進行比較,為了在3D空間中判定HMD 1000之位置及定向之較好準確度。HMD 1000 may further include a depth camera assembly (DCA) 1011 that captures data describing depth information surrounding some or all of the local area of HMD 1000 . The depth information can be compared with information from IMU 1010 for better accuracy in determining the position and orientation of HMD 1000 in 3D space.

HMD 1000可進一步包含用於即時判定使用者之眼睛之定向及位置之眼睛追蹤系統1014。眼睛之所獲得位置及定向亦允許HMD 1000以判定使用者之凝視方向且相應地調整由顯示系統1080產生之影像。所判定凝視方向及聚散角度可用於調整顯示系統1080以減少聚散調節衝突。方向及聚散亦可用於如本文中所揭露之顯示器的出射光瞳轉向。此外,經判定聚散度及凝視角度可用於與使用者互動、突出物體、將物體帶到前景、產生額外物體或指標等。音訊系統亦可提供包含例如建置於前主體1002中之較小揚聲器集。The HMD 1000 may further include an eye tracking system 1014 for determining the orientation and position of the user's eyes in real time. The obtained position and orientation of the eyes also allows the HMD 1000 to determine the direction of the user's gaze and adjust the image generated by the display system 1080 accordingly. The determined gaze direction and vergence angle can be used to adjust the display system 1080 to reduce vergence accommodation conflicts. Direction and vergence may also be used for exit pupil steering of displays as disclosed herein. In addition, the determined vergence and gaze angle can be used to interact with the user, highlight objects, bring objects to the foreground, generate additional objects or indicators, and the like. The audio system may also provide a smaller set of speakers including, for example, built into the front body 1002 .

本揭露之具體實例可包含人工實境系統,或可結合人工實境系統一起實施。人工實境系統在向使用者展示之前以某一方式調整經由感測獲得之關於外部世界之感官資訊,諸如視覺資訊、音訊、接觸(體感)資訊、加速度、平衡等。藉助於非限制性實例,人工實境可包含虛擬實境(VR)、擴增實境(AR)、混合實境(MR)、複合實境或其某一組合及/或衍生物。人工實境內容可包含完全生成內容或與所擷取(例如,真實世界)內容組合之所生成內容。人工實境內容可包含視訊、音訊、軀體或觸覺反饋或其某一組合。此內容中之任一者可在單一通道中或在多個通道中,諸如在產生三維效應之立體視訊中向觀察者呈現。此外,在一些具體實例中,人工實境亦可與用於例如在人工實境中創建內容及/或以其他方式用於人工實境中(例如,在人工實境中執行活動)之應用、產品、配件、服務或其某一組合相關聯。提供人工實境內容之人工實境系統可實施於各種平台上,包含穿戴顯示器,諸如連接至主機電腦系統之HMD、獨立式HMD、具有眼鏡之板型的近眼顯示器、行動裝置或計算系統,或能夠將人工實境內容提供至一或多個觀察者之任何其他硬體平台。 Embodiments of the present disclosure may include an artificial reality system, or may be implemented in combination with an artificial reality system. The artificial reality system adjusts sensory information about the external world obtained through sensing in a certain way before displaying it to the user, such as visual information, audio, contact (somatosensory) information, acceleration, balance, etc. By way of non-limiting example, artificial reality may include virtual reality (VR), augmented reality (AR), mixed reality (MR), composite reality, or some combination and/or derivative thereof. Artificial reality content may include fully generated content or generated content combined with captured (eg, real world) content. Artificial reality content may include video, audio, physical or tactile feedback, or some combination thereof. Any of this content may be presented to the viewer in a single channel or in multiple channels, such as in stereoscopic video producing a three-dimensional effect. Additionally, in some embodiments, AR may also be used in conjunction with applications, such as those used to create content in AR and/or otherwise used in AR (e.g., to perform activities in AR), products, accessories, services or a combination thereof. Artificial reality systems that provide artificial reality content can be implemented on a variety of platforms, including wearable displays such as HMDs connected to a host computer system, standalone HMDs, tablet-style near-eye displays with glasses, mobile devices or computing systems, or Any other hardware platform capable of providing artificial reality content to one or more observers.

本揭示之範疇不受本文中所描述之特定具體實例限制。實際上,其他各種具體實例及修改,除本文中所描述之彼等之外,將自前述描述及附圖對於所屬技術領域中具有通常知識者顯而易見。因此,此類其他具體實例及修改意欲屬於本揭露之範疇內。另外,儘管本文中已出於特定目的在特定環境中之特定實施方式之上下文中描述本揭露,但所屬領域中具有通常知識者將認識到,其有效性不限於此,且本揭露可出於任何數目個目的有益地實施於任何數目個環境中。因此,下文所闡述之申請專利範圍應鑒於如本文中所描述之本揭露之全部範圍及精神來解釋。The scope of the present disclosure is not limited by the particular embodiments described herein. Indeed, various other embodiments and modifications, in addition to those described herein, will be apparent to those skilled in the art from the foregoing description and drawings. Accordingly, such other embodiments and modifications are intended to be within the scope of this disclosure. Additionally, although the disclosure has been described herein for a specific purpose in the context of a particular implementation in a particular environment, those of ordinary skill in the art will recognize that its validity is not limited thereto and that the disclosure may be derived from Any number of objects are beneficially implemented in any number of environments. Accordingly, the claims set forth below should be construed in view of the full scope and spirit of the disclosure as described herein.

100:波導照明器 101:基底 106:輸入波導 108:輸入光束 110:光源 112:波導分光器 114:子光束 116:波導陣列 119:列 120:輸出耦合器 122:子光束部分 129:末端 200:顯示裝置 201:光源 202:顯示面板 204:液晶層 214:光 220:顯示像素 220A:顯示像素 220B:顯示像素 226:人眼窗口 228:線性偏振器 230:眼部透鏡 250:控制器 280:眼睛 300:光學干擾圖案 302:視網膜 320A:光路徑 320B:光路徑 328A:影像 328B:影像 380:角膜 400A:波導照明器 400B:波導照明器 401:基底 406:第一輸入波導 407:第二輸入波導 408:第一輸入光束 409:第二輸入光束 410:第一光源 411:第二光源 412:第一波導分光器 413:第二波導分光器 414:第一複數個子光束 415:第二複數個子光束 416:第一波導 417:波導 420:輸出耦合器 421:輸出耦合器 422:部分 423:部分 450:控制器 477:光源分光器 478:輔助波導 500:具體實例 600:空間變體偏振器 601:區段 602:區段 700:空間變體偏振器 710:均一線性偏振器 720:空間變體波板 721:區段 722:區段 800:影像 801:第一子影像 802:第二子影像 820:像素 821:像素 822:像素 830:像素 831:像素 832:像素 900:虛擬實境近眼顯示器 901:訊框 902:光源 906:波導照明器 918:顯示面板 926:人眼窗口 932:眼部透鏡 942:眼睛追蹤攝影機 962:人眼窗口照明器 1000:HMD 1002:前本體 1004:條帶 1006:側 1008:定位器 1010:慣性量測單元 1011:深度攝影機組合件 1012:位置感測器 1014:眼睛追蹤系統 1080:顯示系統 100: waveguide illuminator 101: Base 106: Input waveguide 108: Input beam 110: light source 112: waveguide splitter 114: sub-beam 116: waveguide array 119: column 120: output coupler 122: sub-beam part 129: end 200: display device 201: light source 202: display panel 204: liquid crystal layer 214: light 220: display pixels 220A: display pixels 220B: display pixels 226: Human eye window 228: Linear polarizer 230: eye lens 250: controller 280: eyes 300: Optical Interference Pattern 302: retina 320A: Optical path 320B: light path 328A: Image 328B: Image 380: Cornea 400A: Waveguide illuminator 400B: Waveguide illuminator 401: base 406: first input waveguide 407: second input waveguide 408: The first input beam 409: Second input beam 410: The first light source 411: Second light source 412: The first waveguide splitter 413: Second waveguide splitter 414: the first plurality of sub-beams 415: the second plurality of sub-beams 416: The first waveguide 417: Waveguide 420: output coupler 421: output coupler 422: part 423: part 450: controller 477: light source beam splitter 478: Auxiliary waveguide 500: specific examples 600: Space variant polarizer 601: section 602: segment 700: Spatial variant polarizer 710: Uniform Linear Polarizer 720:Space variant wave plate 721: section 722: section 800: Image 801: the first sub-image 802: Second sub-image 820: pixels 821: pixels 822: pixels 830: pixels 831: pixel 832: pixels 900:Virtual reality near-eye display 901: frame 902: light source 906: Waveguide illuminator 918: display panel 926: Human eye window 932: eye lens 942:eye tracking camera 962: Human eye window illuminator 1000:HMD 1002: front body 1004: strip 1006: side 1008: Locator 1010: Inertial measurement unit 1011:Depth camera assembly 1012: Position sensor 1014:Eye Tracking System 1080: display system

將結合圖式描述例示性具體實例,其中: [圖1]為本揭露之波導照明器之示意性平面視圖; [圖2]為使用圖1之波導照明器的顯示裝置之示意圖; [圖3]為圖2之顯示裝置的放大視圖,繪示眼睛之視網膜上之相鄰像素之間的光學干擾; [圖4A]為使用兩個光源及交錯波導之波導照明器具體實例的示意性平面視圖; [圖4B]為使用光源、分光器及交錯波導之波導照明器具體實例的示意性平面視圖; [圖5]為圖2之顯示裝置之具體實例的放大正視圖,繪示光柵輸出耦合器及顯示面板像素的相對配置; [圖6]為用於本揭露之波導照明器的空間變體偏振器之平面視圖,該空間變化偏振器包含正交定向之線性偏振器區段的棋盤圖案; [圖7A及7B]分別為用於本揭露之波導照明器之空間變體偏振器具體實例之平面及側視圖,包含接著波板之棋盤圖案的線性偏振器; [圖8]為示出用於干擾減少之交錯子影像的原理之三維圖; [圖9]為具有一對眼鏡之板型之本揭露之擴增實境(AR)顯示器的視圖;以及 [圖10]為本揭露之頭戴式顯示器(HMD)之三維視圖。 Illustrative specific examples will be described in conjunction with the drawings, in which: [Fig. 1] is a schematic plan view of the waveguide illuminator disclosed in the present disclosure; [Fig. 2] is a schematic diagram of a display device using the waveguide illuminator of Fig. 1; [ FIG. 3 ] is an enlarged view of the display device of FIG. 2 , illustrating optical interference between adjacent pixels on the retina of the eye; [FIG. 4A] is a schematic plan view of an embodiment of a waveguide illuminator using two light sources and interleaved waveguides; [FIG. 4B] is a schematic plan view of a specific example of a waveguide illuminator using a light source, a beam splitter, and an interleaved waveguide; [ FIG. 5 ] is an enlarged front view of a specific example of the display device of FIG. 2 , showing the relative arrangement of grating output couplers and display panel pixels; [ FIG. 6 ] is a plan view of a spatially varying polarizer comprising a checkerboard pattern of orthogonally oriented linear polarizer segments for use in a waveguide illuminator of the present disclosure; [FIGS. 7A and 7B] Plan and side views, respectively, of embodiments of spatially variable polarizers for use in waveguide illuminators of the present disclosure, including linear polarizers followed by a checkerboard pattern of waveplates; [ FIG. 8 ] is a three-dimensional diagram illustrating the principle of interlaced sub-images for interference reduction; [ FIG. 9 ] is a view of an augmented reality (AR) display of the present disclosure in the form of a pair of glasses; and [ FIG. 10 ] is a three-dimensional view of the head-mounted display (HMD) of the present disclosure.

400A:波導照明器 400A: Waveguide illuminator

401:基底 401: base

406:第一輸入波導 406: first input waveguide

407:第二輸入波導 407: second input waveguide

408:第一輸入光束 408: The first input beam

409:第二輸入光束 409: Second input beam

410:第一光源 410: The first light source

411:第二光源 411: Second light source

412:第一波導分光器 412: The first waveguide splitter

413:第二波導分光器 413: Second waveguide splitter

414:第一複數個子光束 414: the first plurality of sub-beams

415:第二複數個子光束 415: the second plurality of sub-beams

416:第一波導 416: The first waveguide

417:波導 417: Waveguide

420:輸出耦合器 420: output coupler

421:輸出耦合器 421: output coupler

422:部分 422: part

423:部分 423: part

450:控制器 450: controller

Claims (20)

一種波導照明器,其包括: 第一及第二波導分光器,其配置以分別接收第一及第二光束,用於將該第一及第二光束分別分開為第一及第二複數個子光束; 第一及第二波導陣列,其分別耦接至該第一及第二波導分光器,且配置以分別傳播該第一及第二複數個子光束之子光束,其中該第一及第二波導陣列之波導為交錯的且彼此平行走向;及 成列的輸出耦合器之陣列,該陣列中之每一列輸出耦合器沿著該波導之長度耦接至該第一或第二波導陣列中之波導,用於形成該第一及第二複數個子光束之交錯輸出耦合子光束部分的二維陣列。 A waveguide illuminator comprising: first and second waveguide beam splitters configured to receive first and second light beams, respectively, for splitting the first and second light beams into first and second pluralities of sub-beams, respectively; first and second waveguide arrays, which are respectively coupled to the first and second waveguide beam splitters, and configured to propagate sub-beams of the first and second plurality of sub-beams, respectively, wherein the first and second waveguide arrays the waveguides are interleaved and run parallel to each other; and an array of output couplers in columns, each column of output couplers in the array coupled to a waveguide in the first or second waveguide array along the length of the waveguide for forming the first and second plurality of The interleaving of the beams outputs a two-dimensional array of coupled sub-beam portions. 如請求項1之波導照明器,其中該第一及第二波導陣列在該第一及第二波導陣列之相對末端處耦接至該第一及第二波導分光器,使得該第一及第二複數個子光束之這些子光束在各別波導陣列中反向傳播。The waveguide illuminator of claim 1, wherein the first and second waveguide arrays are coupled to the first and second waveguide splitters at opposite ends of the first and second waveguide arrays, such that the first and second These sub-beams of the two plurality of sub-beams counter-propagate in respective waveguide arrays. 如請求項1之波導照明器,其中所述輸出耦合器中之相鄰列之輸出耦合器在沿著該第一及第二波導陣列之這些波導的一方向上相對於彼此偏移以形成菱形陣列之輸出耦合器。The waveguide illuminator of claim 1, wherein output couplers of adjacent columns of said output couplers are offset relative to each other in a direction along the waveguides of said first and second waveguide arrays to form a diamond-shaped array the output coupler. 如請求項1之波導照明器,其進一步包括分別地耦接至該第一及第二波導分光器,用於向該第一及第二波導分光器提供該第一及第二光束之第一及第二半導體光源。The waveguide illuminator as claimed in claim 1, further comprising a first light source respectively coupled to the first and second waveguide splitters for providing the first and second light beams to the first and second waveguide splitters. and a second semiconductor light source. 如請求項4之波導照明器,其中該第一及第二半導體光源配置以發射相同色彩通道之不同波長的光。The waveguide illuminator according to claim 4, wherein the first and second semiconductor light sources are configured to emit light of different wavelengths in the same color channel. 如請求項4之波導照明器,其中該第一及第二半導體光源包括不同發射波長之雷射二極體。The waveguide illuminator according to claim 4, wherein the first and second semiconductor light sources include laser diodes with different emission wavelengths. 如請求項4之波導照明器,其進一步包括控制器,其耦接至該第一及第二半導體光源且配置以按時間依序方式交替地操作該第一及第二半導體光源。The waveguide illuminator according to claim 4, further comprising a controller coupled to the first and second semiconductor light sources and configured to alternately operate the first and second semiconductor light sources in a time-sequential manner. 一種顯示裝置,其包括: 顯示面板,其包括二維像素陣列;及 波導照明器,其配置以照明該顯示面板且包括: 波導分光器,其配置以接收光束且將該光束分開為複數個子光束; 波導陣列,其耦接至該波導分光器且配置以在其中傳播這些子光束,該波導陣列之波導彼此平行走向;及 成列的輸出耦合器之陣列,該陣列中之每一列輸出耦合器沿著該波導之長度耦接至該波導陣列中之波導,用於形成輸出耦合子光束部分之二維陣列;及 空間變體偏振器,其安置於該顯示面板下游且配置以傳播第一偏振狀態之輸出耦合子光束部分且阻擋第二正交偏振狀態的輸出耦合相鄰子光束部分。 A display device comprising: a display panel comprising a two-dimensional pixel array; and A waveguide illuminator configured to illuminate the display panel and comprising: a waveguide beam splitter configured to receive a light beam and split the light beam into a plurality of sub-beams; a waveguide array coupled to the waveguide splitter and configured to propagate the sub-beams therein, the waveguides of the waveguide array running parallel to each other; and an array of output couplers in columns, each column of output couplers in the array coupled to a waveguide in the waveguide array along the length of the waveguide for forming a two-dimensional array of outcoupled sub-beam portions; and A spatially variant polarizer disposed downstream of the display panel and configured to propagate outcoupled beamlet portions of a first polarization state and block outcoupled adjacent beamlet portions of a second orthogonal polarization state. 如請求項8之顯示裝置,其中該空間變體偏振器包括偏振傳輸軸之正交定向的橫向接合的線性偏振器區段。The display device of claim 8, wherein the spatially variant polarizer comprises transversely joined linear polarizer segments oriented orthogonally to polarization transfer axes. 如請求項9之顯示裝置,其中相同偏振方向之該線性偏振器區段以棋盤圖案配置。The display device according to claim 9, wherein the linear polarizer segments with the same polarization direction are arranged in a checkerboard pattern. 如請求項8之顯示裝置,其中該空間變體偏振器包括線性偏振器及該線性偏振器下游之空間變體波板,該空間變體波板包括以棋盤圖案配置之不同光軸方向之橫向接合的波板區段。The display device according to claim 8, wherein the spatially variable polarizer includes a linear polarizer and a spatially variable wave plate downstream of the linear polarizer, and the spatially variable wave plate includes transverse directions of different optical axis directions arranged in a checkerboard pattern Bonded corrugated plate sections. 如請求項11之顯示裝置,其中相同光軸方向之該波板區段以棋盤圖案配置。The display device according to claim 11, wherein the wave plate segments in the same optical axis direction are arranged in a checkerboard pattern. 一種顯示裝置,其包括: 顯示面板,其包括二維像素陣列;及 波導照明器,其配置以照明該顯示面板且包括: 波導分光器,其配置以接收光束且將該光束分開為複數個子光束; 波導陣列,其耦接至該波導分光器且配置以在其中傳播這些子光束,該波導陣列之波導彼此平行走向;及 成列的輸出耦合器之陣列,該陣列中之每一列輸出耦合器沿著該波導之長度耦接至該波導陣列中之波導,用於形成對應於該顯示面板之該二維像素陣列之輸出耦合子光束部分的二維陣列。 A display device comprising: a display panel comprising a two-dimensional pixel array; and A waveguide illuminator configured to illuminate the display panel and comprising: a waveguide beam splitter configured to receive a light beam and split the light beam into a plurality of sub-beams; a waveguide array coupled to the waveguide splitter and configured to propagate the sub-beams therein, the waveguides of the waveguide array running parallel to each other; and an array of output couplers in columns, each column of output couplers in the array coupled to a waveguide in the waveguide array along the length of the waveguide for forming an output corresponding to the two-dimensional pixel array of the display panel Two-dimensional array of coupled sub-beam sections. 如請求項13之顯示裝置,其進一步包括控制器,其可操作地耦接至該顯示面板且配置以致使該顯示面板以時間依序方式顯示複數個子影像,這些子影像加起來為待向使用者顯示之影像。The display device of claim 13, further comprising a controller operatively coupled to the display panel and configured to cause the display panel to display a plurality of sub-images in a time-sequential manner, the sub-images summed up for future use The displayed image. 如請求項14之顯示裝置,其中該複數個子影像之不同子影像的像素為交錯的。The display device according to claim 14, wherein pixels of different sub-images of the plurality of sub-images are interlaced. 如請求項15之顯示裝置,其中該複數個子影像之不同子影像的像素以互補棋盤圖案安置。The display device according to claim 15, wherein pixels of different sub-images of the plurality of sub-images are arranged in a complementary checkerboard pattern. 如請求項15之顯示裝置,其中該複數個子影像包括具有交錯像素之第一子影像及第二子影像,使得該第一子影像中之每一像素具有該第二子影像之至少兩個相鄰像素。The display device according to claim 15, wherein the plurality of sub-images includes a first sub-image and a second sub-image with interlaced pixels such that each pixel in the first sub-image has at least two phases of the second sub-image neighboring pixels. 如請求項17之顯示裝置,其中該第一子影像中之每一像素具有該第二子影像之至少三個相鄰像素。The display device according to claim 17, wherein each pixel in the first sub-image has at least three adjacent pixels of the second sub-image. 如請求項14之顯示裝置,其中該顯示面板包括透射光閥陣列。The display device according to claim 14, wherein the display panel comprises a transmissive light valve array. 如請求項19之顯示裝置,其中該顯示面板包括液晶層。The display device according to claim 19, wherein the display panel includes a liquid crystal layer.
TW111120236A 2021-07-15 2022-05-31 Waveguide illuminator with optical interference mitigation TW202305430A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163222224P 2021-07-15 2021-07-15
US63/222,224 2021-07-15
US17/556,895 US11555962B1 (en) 2021-07-15 2021-12-20 Waveguide illuminator with optical interference mitigation
US17/556,895 2021-12-20

Publications (1)

Publication Number Publication Date
TW202305430A true TW202305430A (en) 2023-02-01

Family

ID=82742687

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111120236A TW202305430A (en) 2021-07-15 2022-05-31 Waveguide illuminator with optical interference mitigation

Country Status (3)

Country Link
EP (1) EP4370961A1 (en)
TW (1) TW202305430A (en)
WO (1) WO2023287605A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8797620B2 (en) * 2011-12-20 2014-08-05 Ergophos, Llc Autostereoscopic display assembly based on digital semiplanar holography
US10444704B2 (en) * 2016-10-21 2019-10-15 Sony Interactive Entertainment Inc. Dynamic display using holographic recorded pixels
US10110863B2 (en) * 2016-11-30 2018-10-23 Microvision, Inc. Speckle reduction in multi-laser beam scanning display
WO2022120253A1 (en) * 2020-12-04 2022-06-09 Facebook Technologies, Llc Display device with transparent illuminator
WO2022120250A1 (en) * 2020-12-04 2022-06-09 Facebook Technologies, Llc Patterned backlight for display panel

Also Published As

Publication number Publication date
EP4370961A1 (en) 2024-05-22
WO2023287605A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
US11143866B2 (en) Waveguide including volume Bragg gratings
US11280997B1 (en) Low-obliquity pupil relay for tiltable reflectors
US11555962B1 (en) Waveguide illuminator with optical interference mitigation
US20230045957A1 (en) Multi-source light-guiding illuminator
US20220050286A1 (en) Beam scanner with pic input and display based thereon
TW202305430A (en) Waveguide illuminator with optical interference mitigation
EP4256383A1 (en) Display device with transparent illuminator
TW202319809A (en) Display device with waveguide-based talbot illuminator
CN117642676A (en) Waveguide illuminator for reducing optical interference
TW202307493A (en) Waveguide array illuminator with light scattering mitigation
TW202305427A (en) Waveguide illuminator having slab waveguide portion
US11619774B2 (en) Talbot pattern illuminator and display based thereon
CN117642575A (en) Display device with waveguide-based taber illuminator
WO2023287915A1 (en) Waveguide illuminator having waveguide array
CN117581060A (en) Waveguide array illuminator with light scattering mitigation
TW202331348A (en) Lightguide with radial pupil replication and visual display based thereon
CN116762024A (en) Display device with transparent illuminator
TW202319790A (en) Geometrical waveguide illuminator and display based thereon
CN117642576A (en) Waveguide illuminator with slab waveguide portion
TW202334683A (en) Self-lit display panel
TW202332947A (en) Self-lit display panel
CN118043589A (en) Geometric waveguide illuminator and display based on same