TW202319809A - Display device with waveguide-based talbot illuminator - Google Patents

Display device with waveguide-based talbot illuminator Download PDF

Info

Publication number
TW202319809A
TW202319809A TW111119299A TW111119299A TW202319809A TW 202319809 A TW202319809 A TW 202319809A TW 111119299 A TW111119299 A TW 111119299A TW 111119299 A TW111119299 A TW 111119299A TW 202319809 A TW202319809 A TW 202319809A
Authority
TW
Taiwan
Prior art keywords
array
waveguide
illuminator
talbot
waveguides
Prior art date
Application number
TW111119299A
Other languages
Chinese (zh)
Inventor
亞力山德勒 寇薛勒夫
傑克 葛利爾
彭楓琳
耿瑩
朱塞佩 卡拉菲奧雷
Original Assignee
美商元平台技術有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/525,211 external-priority patent/US11555961B1/en
Application filed by 美商元平台技術有限公司 filed Critical 美商元平台技術有限公司
Publication of TW202319809A publication Critical patent/TW202319809A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • G02B27/425Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application in illumination systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12097Ridge, rib or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12107Grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/1215Splitter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12176Etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • G02B2027/0114Head-up displays characterised by optical features comprising device for genereting colour display comprising dichroic elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

A waveguide illuminator for illuminating a display panel includes an input waveguide, a waveguide splitter coupled to the input waveguide, and a waveguide array coupled to the waveguide splitter. The waveguide array includes an array of out-couplers out-coupling portions of the split light beam to form an array of out-coupled beam portions for illuminating a display panel. The out-coupled beam portions undergo optical interference and form a Talbot pattern of illumination correlated with pixel array of the display panel, enabling an optical throughput increase by centering individual Talbot peaks on the display panel pixels.

Description

具有基於波導的塔爾伯特照明器的顯示器裝置Display device with waveguide-based Talbot illuminator

本發明係關於照明器、視覺顯示器裝置以及相關組件及模組。 對相關申請案之參考 The present invention relates to luminaires, visual display devices and related components and modules. REFERENCE TO RELATED APPLICATIONS

本申請案主張2021年7月15日申請的標題為「Single Mode Backlight Illuminator」的美國臨時專利申請案第63/222,224號及2021年11月12日申請的美國非臨時專利申請案第17/525211號的優先權,且所述專利申請案以全文引用之方式併入本文中。This application claims U.S. Provisional Patent Application No. 63/222,224, filed July 15, 2021, entitled "Single Mode Backlight Illuminator," and U.S. Nonprovisional Patent Application No. 17/525,211, filed November 12, 2021 No., and said patent application is incorporated herein by reference in its entirety.

視覺顯示器將包括靜止影像、視訊、資料等的資訊提供至檢視者。視覺顯示器在多樣化領域(包括娛樂、教育、工程、科學、專業訓練、廣告)中具有應用,僅舉幾個實例。一些視覺顯示器(諸如電視機)向若干使用者顯示影像,且一些視覺顯示器系統(諸如近眼顯示器(near-eye display;NED))意欲用於個別使用者。Visual displays provide information, including still images, video, data, etc., to a viewer. Visual displays have applications in diverse fields including entertainment, education, engineering, science, professional training, advertising, just to name a few. Some visual displays, such as televisions, display images to several users, and some visual display systems, such as near-eye displays (NEDs), are intended for individual users.

人工實境系統通常包括經配置以向使用者呈現內容之NED(例如,頭戴裝置或一副眼鏡)。近眼顯示器可顯示虛擬物件或組合真實物件與虛擬物件之影像,如在虛擬實境(virtual reality;VR)、擴增實境(augmented reality;AR)或混合實境(mixed reality;MR)應用中。舉例而言,在AR系統中,使用者可藉由觀察「組合器」組件來檢視與周圍環境疊加的虛擬物件之影像(例如,電腦產生之影像(computer-generated image;CGI))。可佩戴式顯示器之組合器典型地對外部光為透明的,但包括一些光路由光學件,以將顯示光引導至使用者之視場中。An artificial reality system typically includes a NED (eg, a headset or a pair of glasses) configured to present content to a user. Near-eye displays can display virtual objects or combine images of real and virtual objects, such as in virtual reality (VR), augmented reality (AR) or mixed reality (MR) applications . For example, in an AR system, a user can view an image of a virtual object (eg, a computer-generated image (CGI)) superimposed with the surrounding environment by observing a "compositor" component. The combiner of a wearable display is typically transparent to external light, but includes some light routing optics to direct display light into the user's field of view.

由於HMD或NED之顯示器通常佩戴於使用者之頭部上,因此大型、龐大、不平衡及/或沉重的顯示器裝置將為繁瑣的,且使用者佩戴起來不舒適。因此,頭戴式顯示器裝置得益於緊湊且高效的配置,包括提供顯示面板之照明的高效光源及照明器、高通量眼部透鏡及影像形成元件串中之其他光學元件。Since the display of an HMD or NED is typically worn on the user's head, a large, bulky, unbalanced and/or heavy display device would be cumbersome and uncomfortable for the user to wear. Head-mounted display devices thus benefit from a compact and efficient configuration, including efficient light sources and illuminators that provide illumination of the display panel, high-flux eye lenses, and other optical elements in the train of image-forming elements.

本發明之一態樣是關於一種顯示器裝置,其包含:顯示面板,其包含在顯示基板上之像素陣列;及波導照明器,其耦接至該顯示面板以用於照明該像素陣列,該波導照明器包含:照明器基板;分光器,其由該照明器基板支撐,用於將輸入光束分光成複數個子光束;波導陣列,其由該照明器基板支撐且平行於該像素陣列之像素列,其中該陣列中之每一波導經配置以在其中導引該複數個子光束中之一子光束;及向外耦合光柵陣列,其耦接至該波導陣列;其中該向外耦合光柵陣列沿著該像素陣列延伸以用於向外耦合所述子光束之部分,以傳播穿過該顯示基板且在該像素陣列之平面處形成塔爾伯特峰值陣列,其中該塔爾伯特峰值陣列中之個別塔爾伯特峰值的位置對應於該像素陣列中之個別像素的位置。One aspect of the present invention relates to a display device comprising: a display panel including a pixel array on a display substrate; and a waveguide illuminator coupled to the display panel for illuminating the pixel array, the waveguide The illuminator includes: an illuminator substrate; a beam splitter, supported by the illuminator substrate, for splitting an input light beam into a plurality of sub-beams; a waveguide array, supported by the illuminator substrate and parallel to the pixel columns of the pixel array, wherein each waveguide in the array is configured to direct one of the plurality of sub-beams therein; and an outcoupling grating array coupled to the waveguide array; wherein the outcoupling grating array is along the The pixel array extends for outcoupling part of the sub-beams to propagate through the display substrate and form an array of Talbot peaks at the plane of the pixel array, wherein individual ones of the array of Talbot peaks The location of the Talbert peak corresponds to the location of individual pixels in the pixel array.

本發明之另一態樣是關於一種用於將包含像素陣列之顯示面板耦接至包含耦接至波導陣列之向外耦合光柵陣列的波導照明器之方法,其中輸入光束之複數個子光束平行於該像素陣列之列而在所述波導中傳播,該方法包含:使用該向外耦合光柵陣列來向外耦合在該波導陣列中傳播的所述子光束之部分,以經由該顯示面板之基板朝向該像素陣列傳播;在該像素陣列之平面處形成塔爾伯特峰值陣列;及調諧該光束之中心波長以使該塔爾伯特峰值陣列中之個別塔爾伯特峰值之位置在該像素陣列中之像素的中心位置上。Another aspect of the invention relates to a method for coupling a display panel comprising an array of pixels to a waveguide illuminator comprising an outcoupling grating array coupled to the waveguide array, wherein the plurality of sub-beams of the input light beam are parallel to The column of the pixel array propagating in the waveguide, the method comprising: using the outcoupling grating array to outcouple the part of the sub-beam propagating in the waveguide array to pass through the substrate of the display panel towards the pixel array propagation; forming an array of Talbot peaks at the plane of the pixel array; and tuning the center wavelength of the light beam so that the positions of individual Talbot peaks in the array of Talbot peaks are within the pixel array at the center of the pixel.

本發明之另一態樣是關於一種用於將包含像素陣列之顯示面板耦接至包含耦接至波導陣列之向外耦合光柵陣列的波導照明器之方法,該方法包含:使用光源來提供具有發射頻寬之輸入光束;使用分光器來將該輸入光束分光成複數個子光束;使該複數個子光束平行於該像素陣列之列而在所述波導中傳播;使用該向外耦合光柵陣列來向外耦合在該波導陣列中傳播的所述子光束之部分,以經由該顯示面板之基板朝向該像素陣列傳播;及在該像素陣列之平面處形成塔爾伯特峰值陣列;其中該塔爾伯特峰值陣列中之所述塔爾伯特峰值的寬度取決於該光源之該發射頻寬,其中所述塔爾伯特峰值之所述寬度大於該像素陣列中之像素的寬度,以用於過度填充所述像素之孔隙以促進該波導照明器至該顯示面板之對準。Another aspect of the invention relates to a method for coupling a display panel comprising an array of pixels to a waveguide illuminator comprising an array of outcoupling gratings coupled to the waveguide array, the method comprising: using a light source to provide a emit an input beam with a wide bandwidth; use a beam splitter to split the input beam into a plurality of sub-beams; make the plurality of sub-beams propagate in the waveguide parallel to the columns of the pixel array; use the out-coupling grating array to coupling a portion of the sub-beams propagating in the waveguide array to propagate through the substrate of the display panel towards the pixel array; and forming an array of Talbot peaks at the plane of the pixel array; wherein the Talbot The width of the Talbot peaks in the peak array depends on the emission bandwidth of the light source, wherein the width of the Talbot peaks is larger than the width of the pixels in the pixel array for overfilling The pixel apertures facilitate alignment of the waveguide illuminator to the display panel.

雖然結合各種具體實例及實例描述本教示,但並不意欲本教示限於此等具體實例。相反,如所屬技術領域中具有通常知識者將瞭解,本教示涵蓋各種替代方案及等效物。本文中敍述本發明之原理、態樣及具體實例以及其特定實例之所有陳述意欲涵蓋其結構等效物及功能等效物兩者。另外,希望此類等效物包括當前已知等效物以及未來開發之等效物兩者,亦即,無論結構如何,所開發之執行相同功能的任何元件。Although the teachings are described in connection with various specific examples and examples, the teachings are not intended to be limited to such specific examples. On the contrary, the present teachings encompass various alternatives and equivalents, as will be appreciated by those of ordinary skill in the art. All statements herein reciting principles, aspects, and specific examples of the invention, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, ie, any elements developed that perform the same function, regardless of structure.

如本文中所使用,術語「第一」、「第二」等並不意欲暗示順序次序,除非明確陳述,否則意欲區分一個元件與另一元件。類似地,方法步驟之依序次序並不暗示其執行之依序次序,除非明確陳述。As used herein, the terms "first," "second," etc. are not intended to imply a sequential order, but are intended to distinguish one element from another unless explicitly stated otherwise. Similarly, the sequential order of method steps does not imply a sequential order in their performance unless explicitly stated.

在包括耦接至照明器之像素陣列的視覺顯示器中,光利用之效率取決於由像素佔據之幾何面積與顯示面板之總面積的比率。對於通常用於近眼及/或頭戴式顯示器中之微型顯示器,該比率可小於50%。顯示面板上之彩色濾光片會進一步阻礙高效背光利用,所述彩色濾光片平均透射不超過30%的入射光。除此之外,基於偏振之顯示面板(諸如液晶(liquid crystal;LC)顯示面板)可能存在50%的偏振損耗。所有此等因素可顯著降低顯示器的光利用率及總插座效率,此係不希望的。In a visual display comprising an array of pixels coupled to an illuminator, the efficiency of light utilization depends on the ratio of the geometric area occupied by the pixels to the total area of the display panel. For microdisplays typically used in near-eye and/or head-mounted displays, this ratio may be less than 50%. Efficient backlight utilization is further hindered by color filters on the display panel, which on average transmit no more than 30% of the incident light. Besides, polarization-based display panels (such as liquid crystal (LC) display panels) may have 50% polarization loss. All of these factors can significantly reduce the light utilization and overall socket efficiency of the display, which is undesirable.

根據本發明,可藉由提供在顯示面板處產生光學功率密度之峰值分佈的波導照明器來改良背光顯示器之光利用率及壁插效率(wall plug efficiency),其中光學功率密度之個別峰值與顯示像素重疊。在照明器發射原色,例如紅色、綠色及藍色,之光的顯示器中,照明光之色彩可與彩色濾光片匹配,或可完全省略彩色濾光片。對於基於偏振之顯示器,所發射光之偏振可與預定義輸入偏振狀態匹配。匹配顯示面板之像素的空間分佈、透射波長及/或透射偏振特性使得吾人能夠顯著地改良顯示光之有用部分,該有用部分在其至檢視者之眼睛的途中並未由顯示面板吸收或反射,從而導致顯示器壁插效率的相當大的改良。According to the present invention, light utilization and wall plug efficiency of backlit displays can be improved by providing a waveguide illuminator that produces a peak distribution of optical power density at the display panel, where the individual peaks of optical power density are related to the display panel. Pixels overlap. In displays where the illuminators emit light of primary colors, such as red, green and blue, the color of the illumination light can be matched to a color filter, or the color filter can be omitted entirely. For polarization-based displays, the polarization of emitted light can be matched to a predefined input polarization state. Matching the spatial distribution, transmitted wavelength and/or transmitted polarization characteristics of the pixels of the display panel enables us to significantly improve the useful portion of the display light that is not absorbed or reflected by the display panel on its way to the viewer's eyes, This results in a considerable improvement in display wall plug efficiency.

與雷射照明組合之單模式或少數模式波導(例如,脊形波導)允許高效地控制諸如色彩及方向性之光特性。當光以單一空間模式傳播時,輸出可為繞射受限且高度定向的。單模式傳播允許吾人在波導上之特定點處向外耦合光,且使得在需要時能夠併入聚焦向外耦合器。雷射照明之窄光譜使得能夠進行大色域顯示。此外,單模式波導可保持偏振,此導致來自背光單元之高度偏振輸出而無需偏振器。Single- or minority-mode waveguides (eg, ridge waveguides) combined with laser illumination allow efficient control of light properties such as color and directionality. When light propagates in a single spatial mode, the output can be diffraction limited and highly directional. Single mode propagation allows us to outcouple light at specific points on the waveguide and enables the incorporation of focusing outcouplers if desired. The narrow spectrum of laser illumination enables large color gamut displays. Furthermore, the single-mode waveguide can maintain polarization, which results in a highly polarized output from the backlight unit without the need for polarizers.

塔爾伯特效應可用以產生顯示面板之峰值照明。與此方法相關聯之一個挑戰為照明器至顯示面板之對準,需要該對準以使照明圖案之光點與顯示面板之像素對齊。可使用光源之波長調諧來調諧關於顯示面板之像素的塔爾伯特圖案。在一些具體實例中,照明光之波長光譜足夠寬以過度填充顯示面板之像素的孔隙。The Talbot effect can be used to generate peak illumination of display panels. One challenge associated with this approach is the alignment of the illuminator to the display panel, which is required to align the spots of the illumination pattern with the pixels of the display panel. The Talbert pattern with respect to the pixels of the display panel can be tuned using wavelength tuning of the light source. In some embodiments, the wavelength spectrum of the illumination light is broad enough to overfill the apertures of the pixels of the display panel.

根據本發明,提供一種顯示器裝置,其包含一顯示面板及耦接至該顯示面板之一波導照明器。該顯示面板在顯示基板上具有像素陣列。該波導照明器包括:一照明器基板;一分光器,其由該照明器基板支撐,用於將一輸入光束分光成複數個子光束;一波導陣列,其由該照明器基板支撐且平行於該像素陣列之像素列,其中該陣列中之每一波導經配置以在其中導引該複數個子光束中之一子光束;及一向外耦合光柵陣列,其耦接至該波導陣列。該向外耦合光柵陣列沿著該像素陣列延伸以用於向外耦合所述子光束之部分以傳播穿過該顯示基板且在該像素陣列之一平面處形成一塔爾伯特峰值陣列。該塔爾伯特峰值陣列中之個別塔爾伯特峰值之位置對應於該像素陣列中之個別像素的位置。According to the present invention, a display device is provided, which includes a display panel and a waveguide illuminator coupled to the display panel. The display panel has a pixel array on a display substrate. The waveguide illuminator includes: an illuminator substrate; a beam splitter, supported by the illuminator substrate, for splitting an input light beam into a plurality of sub-beams; a waveguide array, supported by the illuminator substrate and parallel to the A pixel column of a pixel array, wherein each waveguide in the array is configured to guide a sub-beam of the plurality of sub-beams therein; and an outcoupling grating array coupled to the waveguide array. The outcoupling grating array extends along the pixel array for outcoupling portions of the sub-beams to propagate through the display substrate and form an array of Talbot peaks at a plane of the pixel array. The positions of individual Talbot peaks in the array of Talbot peaks correspond to the positions of individual pixels in the pixel array.

可提供一光源以用於產生該輸入光束,且將該輸入光束耦合至該分光器。光源可在波長上可調諧,且可使個別塔爾伯特峰值之位置取決於光源之波長。波長可經選擇而使得塔爾伯特峰值在像素陣列之像素的中心位置上。塔爾伯特峰值陣列中之塔爾伯特峰值的寬度通常取決於光源之發射頻寬。在一些具體實例中,可使得塔爾伯特峰值之寬度大於像素陣列中之像素的寬度,以用於過度填充像素之孔隙以促進波導照明器至顯示面板之對準。A light source may be provided for generating the input beam and coupling the input beam to the beam splitter. The light source can be tuned in wavelength, and the position of individual Talbot peaks can be made to depend on the wavelength of the light source. The wavelength can be selected such that the Talbot peak is at the center of the pixel of the pixel array. The width of the Talbot peaks in the Talbot peak array usually depends on the emission bandwidth of the light source. In some embodiments, the width of the Talbot peak can be made larger than the width of the pixels in the pixel array for overfilling the voids of the pixels to facilitate alignment of the waveguide illuminator to the display panel.

在一些具體實例中,波導陣列包含脊形波導。該向外耦合光柵陣列中之所述光柵可形成於該波導陣列之所述脊形波導中。In some embodiments, the array of waveguides includes ridge waveguides. The gratings in the outcoupling grating array may be formed in the ridge waveguides of the waveguide array.

在光源為用於提供包含複數個色彩通道之光之輸入光束的多色光源之具體實例中,分光器經配置以將複數個色彩通道中之多個色彩通道耦合至波導陣列中之個別波導中。波導陣列中之每一波導可經配置以在其中導引複數個色彩通道中之每一者的光。在此等具體實例中,波導照明器可進一步包括在向外耦合光柵陣列與顯示面板之基板之間的光學路徑中的色彩選擇性反射器。In embodiments where the light source is a polychromatic light source for providing an input beam of light comprising a plurality of color channels, the beam splitter is configured to couple a plurality of color channels of the plurality of color channels into individual waveguides in the array of waveguides . Each waveguide in the array of waveguides can be configured to guide light therein for each of a plurality of color channels. In such embodiments, the waveguide illuminator may further include a color selective reflector in the optical path between the outcoupling grating array and the substrate of the display panel.

該色彩選擇性反射器可經配置以針對該複數個色彩通道中之不同色彩通道之光提供不同光學路徑長度。為此,該色彩選擇性反射器可包括二向色反射器之堆疊,所述二向色反射器經配置以反射由該向外耦合光柵陣列向外耦合之所述子光束之所述部分,以反向傳播穿過該照明器基板以照射至該像素陣列之所述像素上。替代地或另外,該分光器可經配置以將該複數個色彩通道中之不同色彩通道耦合至該波導陣列之不同波導中,所述不同波導安置於該照明器基板內之不同深度處。The color selective reflector can be configured to provide different optical path lengths for light of different ones of the plurality of color channels. To this end, the color selective reflector may comprise a stack of dichroic reflectors configured to reflect said portion of said sub-beams outcoupled by the outcoupling grating array, Backpropagating through the illuminator substrate to illuminate onto the pixels of the pixel array. Alternatively or additionally, the beamsplitter may be configured to couple different ones of the plurality of color channels into different waveguides of the array of waveguides disposed at different depths within the illuminator substrate.

根據本發明,提供一種用於將包含一像素陣列之一顯示面板耦接至包含耦接至一波導陣列之一向外耦合光柵陣列的一波導照明器之方法,其中一輸入光束之複數個子光束平行於該像素陣列之列而在所述波導中傳播。該方法包括:使用該向外耦合光柵陣列來向外耦合在該波導陣列中傳播的所述子光束之部分,以經由該顯示面板之一基板朝向該像素陣列傳播;在該像素陣列之一平面處形成一塔爾伯特峰值陣列;及調諧該光束之一中心波長以使該塔爾伯特峰值陣列中之個別塔爾伯特峰值之位置在該像素陣列中之像素的中心位置上。該方法可進一步包括:使用一光源來提供該輸入光束;及使用耦接至該波導陣列之一分光器來對由該光源提供之該輸入光束進行分光。According to the invention there is provided a method for coupling a display panel comprising an array of pixels to a waveguide illuminator comprising an outcoupling grating array coupled to an array of waveguides, wherein sub-beams of an input light beam are parallel The columns of the pixel array propagate in the waveguide. The method includes: using the outcoupling grating array to outcouple a portion of the sub-beams propagating in the waveguide array to propagate towards the pixel array via a substrate of the display panel; at a plane of the pixel array forming an array of Talbot peaks; and tuning a central wavelength of the light beam so that individual Talbot peaks in the array of Talbot peaks are located at the centers of pixels in the pixel array. The method may further include: using a light source to provide the input light beam; and using a beam splitter coupled to the waveguide array to split the input light beam provided by the light source.

在該方法使用多色光源來提供包含複數個色彩通道之光的輸入光束的具體實例中,該方法可進一步包括在該向外耦合光柵陣列與該顯示面板之間的一光學路徑中使用一色彩選擇性反射器,以針對該複數個色彩通道中之不同色彩通道的該光提供不同光學路徑長度。該方法亦可包括使用一分光器將該複數個色彩通道中之不同色彩通道耦合至該波導陣列中之不同波導中,所述不同波導安置於該照明器之一基板內的不同深度處。In embodiments where the method uses a polychromatic light source to provide an input beam of light comprising a plurality of color channels, the method may further include using a color in an optical path between the outcoupling grating array and the display panel. A selective reflector to provide different optical path lengths for the light of different ones of the plurality of color channels. The method may also include using a beamsplitter to couple different ones of the plurality of color channels into different waveguides in the array of waveguides disposed at different depths within a substrate of the illuminator.

根據本發明,進一步提供一種一種用於將包含一像素陣列之一顯示面板耦接至包含耦接至一波導陣列之一向外耦合光柵陣列的一波導照明器之方法。該方法包括:使用一光源來提供具有一發射頻寬之一輸入光束;使用一分光器來將該輸入光束分光成複數個子光束;使該複數個子光束平行於該像素陣列之列而在所述波導中傳播;使用該向外耦合光柵陣列來向外耦合在該波導陣列中傳播的所述子光束之部分,以經由該顯示面板之一基板朝向該像素陣列傳播;在該像素陣列之一平面處形成一塔爾伯特峰值陣列。According to the invention there is further provided a method for coupling a display panel comprising an array of pixels to a waveguide illuminator comprising an array of outcoupling gratings coupled to an array of waveguides. The method includes: using a light source to provide an input light beam with an emission bandwidth; using a beam splitter to split the input light beam into a plurality of sub-beams; making the plurality of sub-beams parallel to the columns of the pixel array in the propagating in a waveguide; using the outcoupling grating array to outcouple a portion of the sub-beams propagating in the waveguide array to propagate towards the pixel array via a substrate of the display panel; at a plane of the pixel array Form a Talbot peak array.

塔爾伯特峰值陣列中之塔爾伯特峰值的寬度可通常取決於光源之發射頻寬。可使得塔爾伯特峰值之寬度大於像素陣列中之像素的寬度,以用於過度填充像素之孔隙以促進波導照明器至顯示面板之對準。The width of the Talbot peaks in an array of Talbot peaks may generally depend on the emission bandwidth of the light source. The width of the Talbot peak can be made larger than the width of the pixels in the pixel array for overfilling the voids of the pixels to facilitate alignment of the waveguide illuminator to the display panel.

在光源為提供包含複數個色彩通道之光的輸入光束的多色光源且分光器將複數個色彩通道中之多個色彩通道耦合至波導陣列中之個別波導中之具體實例中,該方法可進一步包括在該向外耦合光柵陣列與該顯示面板之間的一光學路徑中使用一色彩選擇性反射器,以針對該複數個色彩通道中之不同色彩通道的該光提供不同光學路徑長度。In the embodiment where the light source is a polychromatic light source providing an input beam of light comprising a plurality of color channels and the beam splitter couples a plurality of color channels of the plurality of color channels into individual waveguides in the waveguide array, the method may further Including using a color selective reflector in an optical path between the outcoupling grating array and the display panel to provide different optical path lengths for the light of different ones of the plurality of color channels.

在一些具體實例中,該分光器可將該複數個色彩通道中之不同色彩通道耦合至該波導陣列中之不同波導中,所述不同波導安置於該照明器之一基板內的不同深度處。In some embodiments, the beamsplitter can couple different ones of the plurality of color channels into different waveguides in the array of waveguides disposed at different depths within a substrate of the illuminator.

現參考圖1,波導照明器104包括支撐輸入波導106以用於導引輸入光束108之照明器基板101。輸入光束108可由光源110(例如,雷射源)提供。本文中,術語「波導」表示將光傳播限定在兩個維度(如光線)中且在單一橫向模式中或在若干橫向模式(例如至多12個傳播模式)中導引光的光導引結構。波導可為筆直的、彎曲的等。波導之一個實例為脊型波導(ridge-type waveguide)。波導照明器104可實施於光子積體電路(photonic integrated circuit;PIC)中。Referring now to FIG. 1 , a waveguide illuminator 104 includes an illuminator substrate 101 supporting an input waveguide 106 for guiding an input light beam 108 . The input light beam 108 may be provided by a light source 110 (eg, a laser source). Herein, the term "waveguide" denotes a light-guiding structure that confines light propagation in two dimensions (eg, light rays) and guides light in a single transverse mode or in several transverse modes (eg, up to 12 propagating modes). The waveguides may be straight, curved, etc. One example of a waveguide is a ridge-type waveguide. The waveguide illuminator 104 may be implemented in a photonic integrated circuit (PIC).

波導分光器112耦接至輸入波導106。波導分光器112之功能為將輸入光束108分光成複數個子光束114。波導116之陣列耦接至波導分光器112以用於在波導116中導引子光束114。波導116如所說明平行於彼此而排列。每一波導116經配置以將子光束114中之一者自波導分光器112導引至波導116之末端129。A waveguide splitter 112 is coupled to the input waveguide 106 . The function of the waveguide beam splitter 112 is to split the input beam 108 into a plurality of sub-beams 114 . An array of waveguides 116 is coupled to waveguide splitter 112 for directing sub-beams 114 in waveguides 116 . The waveguides 116 are aligned parallel to each other as illustrated. Each waveguide 116 is configured to direct one of the sub-beams 114 from the waveguide splitter 112 to the end 129 of the waveguide 116 .

向外耦合光柵120之列119的陣列係由波導照明器104之基板101支撐。向外耦合光柵120之每一列119沿著波導116之長度耦接至波導陣列的波導116,以用於向外耦合在波導116中傳播之子波束114中之一者的部分122。由向外耦合器120之所有列119向外耦合的部分122形成子光束部分122之二維陣列,其自波導陣列向外耦合且以例如銳角或直角之角度退出至基板101。子光束部分122之二維陣列的X及Y間距可但不必匹配由波導照明器104照明之顯示面板的X及Y間距。The array of columns 119 of outcoupling gratings 120 is supported by the substrate 101 of the waveguide illuminator 104 . Each column 119 of outcoupling gratings 120 is coupled to the waveguides 116 of the waveguide array along the length of the waveguides 116 for outcoupling a portion 122 of one of the sub-beams 114 propagating in the waveguides 116 . Portions 122 outcoupled by all columns 119 of outcouplers 120 form a two-dimensional array of sub-beam portions 122 that are outcoupled from the waveguide array and exit to substrate 101 at an angle such as an acute or right angle. The X and Y pitches of the two-dimensional array of sub-beam portions 122 may, but need not, match the X and Y pitches of the display panel illuminated by the waveguide illuminator 104 .

現參考圖2,波導照明器204包括光源210及PIC 234。光源210將輸入光束208提供至PIC 234。PIC 234包括耦接至光源210之光學調度電路241。光學調度電路241經配置以接收光束208且將其分光成在個別波導中傳播之複數個子光束。為將光束208分光成複數個子光束,光學調度電路241可包括藉由波導245而耦接至彼此的1×2波導分光器244之二元樹狀結構(binary tree)。光學調度電路241之其他配置係可能的,例如,其可基於馬赫-曾德爾(Mach-Zehnder)干涉計、平板波導干涉計等之樹狀結構,且可包括不同波長(例如,不同色彩通道之波長)下之光源組件的個別波導樹狀結構(waveguide tree)。Referring now to FIG. 2 , waveguide illuminator 204 includes light source 210 and PIC 234 . Light source 210 provides input beam 208 to PIC 234 . PIC 234 includes optical scheduling circuitry 241 coupled to light source 210 . Optical scheduling circuitry 241 is configured to receive light beam 208 and split it into a plurality of sub-beams that propagate in individual waveguides. To split the light beam 208 into a plurality of sub-beams, the optical scheduling circuit 241 may include a binary tree of 1×2 waveguide splitters 244 coupled to each other by waveguides 245 . Other configurations of the optical scheduling circuit 241 are possible, e.g. it may be based on a tree structure of Mach-Zehnder interferometers, slab waveguide interferometers, etc. and may include different wavelengths (e.g. different color channels) The individual waveguide tree structure (waveguide tree) of the light source component under the wavelength).

PIC 234進一步包括耦接至光學調度電路241以用於自光學調度電路241接收子光束的波導216之陣列。波導216平行於彼此排列以在其中傳播子光束。PIC 234進一步包括光學耦接至用於向外耦合在波導216中傳播之子波束的部分的波導陣列之波導216的向外耦合光柵220之陣列。如圖所示,向外耦合光柵220平行於XY平面而安置,且執行與圖1之波導照明器104的向外耦合光柵120相同或類似的功能。向外耦合光柵220將子光束部分自各別波導216向外耦合以傳播穿過顯示面板之基板,且歸因於在與向外耦合光柵220之陣列隔開的塔爾伯特平面處的塔爾伯特效應而形成光學功率密度峰值陣列,如將在下文更詳細地解釋。PIC 234 further includes an array of waveguides 216 coupled to optical scheduling circuitry 241 for receiving sub-beams from optical scheduling circuitry 241 . The waveguides 216 are arranged parallel to each other to propagate the sub-beams therein. The PIC 234 further includes an array of outcoupling gratings 220 optically coupled to the waveguides 216 of the waveguide array for outcoupling portions of the sub-beams propagating in the waveguides 216 . As shown, outcoupling grating 220 is disposed parallel to the XY plane and performs the same or similar function as outcoupling grating 120 of waveguide illuminator 104 of FIG. 1 . The outcoupling grating 220 outcouples the sub-beam portions from the respective waveguides 216 to propagate through the substrate of the display panel, and due to the Talbert plane at the Talbot plane separated from the array of outcoupling gratings 220 The Burt effect forms an array of optical power density peaks, as will be explained in more detail below.

圖3A至圖3C說明圖2之PIC 234的可能實施。首先參考圖3A及圖3B,PIC照明器304包括基板306及由基板306支撐且沿著待照明顯示面板之像素陣列排列的波導307之陣列。在圖3A中所展示之PIC照明器304中,波導307包括用於在紅色波長下輸送光之「紅色波導」307R的陣列、用於在綠色波長下輸送光之「綠色波導」307G的陣列,及用於在藍色波長下輸送光之「藍色波導」307B的陣列。處於不同波長之光308可由多波長光源310產生,且藉由光學調度電路319分佈於不同波導307R、307G及307B中,該光學調度電路為PIC之一部分。光學調度電路319之功能為沿Y方向擴展光,且將光重新路由至波導307之陣列中。光學調度電路319可包括分光器之二元樹狀結構,類似於圖2之光學調度電路241。顯示面板之一列像素可分別跨越紅色、綠色及藍色通道之所有波導307R、307G及307B安置,所述波導在圖3A中豎直地延伸。像素列在圖3A中以虛線矩形313概述。3A-3C illustrate possible implementations of the PIC 234 of FIG. 2 . Referring first to FIGS. 3A and 3B , a PIC illuminator 304 includes a substrate 306 and an array of waveguides 307 supported by the substrate 306 and arranged along an array of pixels of a display panel to be illuminated. In the PIC illuminator 304 shown in Figure 3A, the waveguides 307 include an array of "red waveguides" 307R for delivering light at red wavelengths, an array of "green waveguides" 307G for delivering light at green wavelengths, and an array of "blue waveguides" 307B for transporting light at blue wavelengths. Light 308 at different wavelengths can be generated by a multi-wavelength light source 310 and distributed among the different waveguides 307R, 307G and 307B by optical scheduling circuitry 319, which is part of the PIC. The function of the optical scheduling circuit 319 is to spread the light in the Y direction and reroute the light into the array of waveguides 307 . Optical scheduling circuit 319 may include a binary tree structure of optical splitters, similar to optical scheduling circuit 241 of FIG. 2 . A column of pixels of a display panel may be disposed across all waveguides 307R, 307G and 307B of the red, green and blue channels, respectively, which extend vertically in FIG. 3A. Columns of pixels are outlined in dashed rectangles 313 in FIG. 3A .

圖3B為顯示面板之單一像素303下方的三個色彩通道波導之放大視圖。三個色彩子像素中之每一者分別對應於影像之紅色(R)、綠色(G)及藍色(B)通道中之一者。可例如以RGGB方案提供多於三個色彩子像素。光部分可由圖3C中展示之各別光柵312R、312G及312B自脊形波導307R、307G及307B向外耦合或重定向,從而形成用於每一色彩通道之對應光柵陣列。光柵312R、312G及312B可線性調頻以用於在沿波導之方向上(亦即,在圖3A及圖3B中豎直地,亦即沿著X軸)聚焦向外耦合光束。此外,光柵凹槽可彎曲,以在圖3A及圖3B中的水平方向上,亦即沿著Y軸聚集光。在圖3C之實例中,光柵312R、312G及312B分別形成於波導307R、307G及307B中,但在一些具體實例中,光柵陣列可分開形成且光學耦接至波導307之陣列。FIG. 3B is an enlarged view of three color channel waveguides under a single pixel 303 of a display panel. Each of the three color sub-pixels corresponds to one of the red (R), green (G) and blue (B) channels of the image, respectively. More than three color sub-pixels may be provided, for example in an RGGB scheme. Light portions may be coupled out or redirected from ridge waveguides 307R, 307G, and 307B by respective gratings 312R, 312G, and 312B shown in Figure 3C, forming a corresponding grating array for each color channel. The gratings 312R, 312G, and 312B are chirpable for focusing the outcoupling light beam in a direction along the waveguide (ie, vertically in Figures 3A and 3B, ie, along the X-axis). Furthermore, the grating grooves can be curved to concentrate light in the horizontal direction in FIGS. 3A and 3B , ie along the Y-axis. In the example of FIG. 3C , gratings 312R, 312G, and 312B are formed in waveguides 307R, 307G, and 307B, respectively, but in some embodiments, grating arrays may be separately formed and optically coupled to the array of waveguides 307 .

為了在圖3B中的水平方向上聚焦向外耦合光束,可提供1D微透鏡318,如所展示。本文中,術語「1D微透鏡」表示主要在一個維度中聚焦光之透鏡,例如圓柱形透鏡。可替代1D透鏡提供2D透鏡,亦即在兩個正交平面中聚焦光的透鏡。安置於光柵312R、312G及312B與像素303R、303G及303B之間的光學路徑中之微透鏡318的陣列可用以至少部分地使由光柵312R、312G及312B重定向之光聚焦以用於傳播穿過對應子像素303R、303G及303B。圖3B中展示一個白色像素303之配置。可針對顯示面板之每一白色像素重複白色像素配置。To focus the outcoupled beams in the horizontal direction in FIG. 3B , a ID microlens 318 may be provided, as shown. Herein, the term "1D microlens" denotes a lens that focuses light primarily in one dimension, such as a cylindrical lens. An alternative to a 1D lens is to provide a 2D lens, ie a lens that focuses light in two orthogonal planes. An array of microlenses 318 disposed in the optical path between gratings 312R, 312G, and 312B and pixels 303R, 303G, and 303B may be used to at least partially focus light redirected by gratings 312R, 312G, and 312B for propagation through through the corresponding sub-pixels 303R, 303G and 303B. The configuration of one white pixel 303 is shown in FIG. 3B. The white pixel configuration can be repeated for each white pixel of the display panel.

圖4A說明使用圖1之波導照明器104的顯示器裝置400。亦可使用圖2之波導照明器204及/或圖3A之PIC照明器304。圖4A之顯示器裝置400包括由波導照明器104照明之顯示面板402。顯示面板402包括由顯示基板408支撐之像素406的陣列。作為非限制性實例,顯示面板402可為液晶(LC)面板,其包括一對基板之間的LC流體之薄層,所述基板中之一者攜載界定透射性LC像素之電極之陣列。光源110提供輸入光束108,該輸入光束由分光器112分光為在波導陣列之波導116中傳播之子光束,如上文參考圖1所解釋。向外耦合光柵120將子光束114之部分122自波導照明器104向外耦合,使得向外耦合光束部分122傳播穿過顯示基板408,且歸因於下文在圖5及圖6中進一步說明之塔爾伯特效應在像素406之陣列處形成光學功率密度峰值422之陣列(圖4B)。光學功率密度峰值422之位置(圖4)對應於像素406之位置,例如光學功率密度峰值422可在像素406的中心位置上。歸因於光學功率密度峰值422在像素406的中心位置上,大部分照明光傳播穿過像素406且並不由不透明像素間區域407阻擋,從而改良總體光通量且因此改良顯示器裝置400之壁插效率。如所展示,每一個像素406可提供一個峰值422。在一些具體實例中,峰值422之間的距離可等於 M乘以 p,其中 P為像素陣列之間距,且 M為≥1之整數。舉例而言,在其中在照明光之若干波長下產生塔爾伯特圖案之具體實例中,可為像素陣列中之每色彩子像素提供在特定色彩通道之波長下的一個峰值422,若干子像素形成一個RGB像素。 FIG. 4A illustrates a display device 400 using the waveguide illuminator 104 of FIG. 1 . The waveguide illuminator 204 of FIG. 2 and/or the PIC illuminator 304 of FIG. 3A may also be used. The display device 400 of FIG. 4A includes a display panel 402 illuminated by the waveguide illuminator 104 . Display panel 402 includes an array of pixels 406 supported by a display substrate 408 . As a non-limiting example, display panel 402 may be a liquid crystal (LC) panel comprising a thin layer of LC fluid between a pair of substrates, one of which carries an array of electrodes defining transmissive LC pixels. A light source 110 provides an input beam 108 which is split by a beam splitter 112 into sub-beams propagating in waveguides 116 of the waveguide array, as explained above with reference to FIG. 1 . The outcoupling grating 120 outcouples a portion 122 of the sub-beam 114 from the waveguide illuminator 104 such that the outcoupled beam portion 122 propagates through the display substrate 408 and due to the The Talbot effect forms an array of optical power density peaks 422 at the array of pixels 406 (FIG. 4B). The location of the optical power density peak 422 ( FIG. 4 ) corresponds to the location of the pixel 406 , for example, the optical power density peak 422 may be at the center of the pixel 406 . Due to the optical power density peak 422 being at the center of the pixel 406, most of the illumination light travels through the pixel 406 and is not blocked by the opaque inter-pixel region 407, improving the overall light flux and thus wall plug efficiency of the display device 400. As shown, each pixel 406 may provide a peak 422 . In some embodiments, the distance between the peaks 422 may be equal to M times p , where P is the distance between pixel arrays, and M is an integer ≧1. For example, in an embodiment where a Talbot pattern is generated at several wavelengths of illumination light, each color subpixel in the pixel array may be provided with one peak 422 at the wavelength of a particular color channel, several subpixels Form an RGB pixel.

形成於塔爾伯特峰值422之陣列的光束部分122藉由像素406之陣列在空間上調變,且朝向眼部透鏡423傳播。眼部透鏡423準直光束部分122,且將其朝向顯示器裝置400之人眼窗口424重定向。眼部透鏡423之功能為自由顯示面板402顯示之線性域中之影像在人眼窗口424處之角度域中形成影像。本文中,術語「影像」意謂影像之個別像素係由具有色彩及/或亮度的光束之座標表示的影像,該座標表示彼等像素之色彩及/或亮度。因此,術語「角度域中之影像」意謂影像之個別像素係由具有色彩及/或亮度的光束之光束角表示的影像,該光束角表示彼等像素之色彩及/或亮度。The beam portions 122 formed in the array of Talbot peaks 422 are spatially modulated by the array of pixels 406 and propagate towards the eye lens 423 . The eye lens 423 collimates and redirects the light beam portion 122 towards the human eye window 424 of the display device 400 . The function of the eye lens 423 is to form an image in the angular domain at the human eye window 424 from the image in the linear domain displayed by the display panel 402 . Herein, the term "image" means an image in which individual pixels of the image are represented by coordinates of light beams having color and/or brightness, the coordinates indicating the color and/or brightness of those pixels. Thus, the term "image in the angular domain" means an image in which individual pixels of an image are represented by the beam angle of a light beam having color and/or brightness, which represents the color and/or brightness of those pixels.

圖5作為光學功率密度圖展示顯示面板402之顯示基板408(圖4A)中之塔爾伯特條紋圖案500。圖5中的水平方向為穿過顯示面板402之基板的厚度方向。塔爾伯特條紋圖案500源自於平行於圖4A中之XY平面而安置之第一平面501。向外耦合光柵120安置於第一平面501中。光在圖5中自左至右傳播,在距第一平面501之各種距離處形成光學功率密度峰值之陣列。第一平面501處之光學功率密度分佈在與第一平面501間隔開塔爾伯特圖案週期 T之第二平面502處重複,該塔爾伯特圖案週期 T在此實例中等於0.5 mm。像素406之陣列可位於第二平面502處。對於向外耦合光柵120之陣列安置於接合顯示基板408之照明器的表面處之具體實例,如圖4A中所示,塔爾伯特圖案週期(在顯示基板408之厚度的方向上)可簡單地等於基板之厚度。 FIG. 5 shows a Talbot fringe pattern 500 in the display substrate 408 ( FIG. 4A ) of the display panel 402 as an optical power density diagram. The horizontal direction in FIG. 5 is the thickness direction passing through the substrate of the display panel 402 . The Talbot fringe pattern 500 originates from a first plane 501 arranged parallel to the XY plane in FIG. 4A. The outcoupling grating 120 is arranged in the first plane 501 . Light propagates from left to right in FIG. 5 forming an array of optical power density peaks at various distances from the first plane 501 . The optical power density distribution at the first plane 501 is repeated at the second plane 502 spaced apart from the first plane 501 by a Talbot pattern period T , which in this example is equal to 0.5 mm. The array of pixels 406 may be located at the second plane 502 . For the specific example where the array of outcoupling gratings 120 is disposed at the surface of the illuminator bonded to the display substrate 408, as shown in FIG. 4A, the Talbot pattern period (in the direction of the thickness of the display substrate 408) can be simply The ground is equal to the thickness of the substrate.

更一般而言,根據以下等式(1),外部耦接光柵之平面與像素之平面之間的距離D可僅包括塔爾伯特圖案之一部分,或若干此類圖案More generally, the distance D between the plane of the externally coupled grating and the plane of the pixel may comprise only a portion of a Talbert pattern, or several such patterns, according to equation (1) below

D= K T 2/ ( N λ),                         (1) D = KT2 /( ), (1)

其中 KN為≥1之整數,且其中 λ為顯示基板408中之光束之波長。在以上等式(1)中, K為塔爾伯特圖案之重複之次數,且 N界定具有較高間距之塔爾伯特峰值的子平面。舉例而言,在與第一平面501及第二平面502間隔開0.25 mm之中間平面503處,間距加倍。 Where K and N are integers ≥ 1, and where λ is the wavelength of the light beam in the display substrate 408 . In equation (1) above, K is the number of repetitions of the Talbot pattern, and N defines sub-planes with higher spacing Talbot peaks. For example, at the intermediate plane 503 , which is spaced 0.25 mm from the first plane 501 and the second plane 502 , the spacing is doubled.

轉至圖6,藉由在波導116中傳播之子光束114的不同部分之間的光學干涉形成在顯示基板408內部的光學功率密度分佈之塔爾伯特圖案600。由此,光學功率密度峰值422相對於顯示面板402之像素406的位置取決於由向外耦合光柵120向外耦合之子光束114部分之間的相對相位。相對相位取決於波長;因此,光學功率密度峰值422可藉由調諧子光束114之波長而移位。提供波長可調諧之源(例如,可調諧雷射)及調諧波長使得吾人能夠使光學功率密度峰值422在顯示面板402之像素406的中心位置上。當調諧光源110之波長時,光學功率密度峰值422如箭頭630所指示而移位。Turning to FIG. 6 , a Talbot pattern 600 of optical power density distribution inside the display substrate 408 is formed by optical interference between different portions of the beamlets 114 propagating in the waveguide 116 . Thus, the position of the optical power density peak 422 relative to the pixel 406 of the display panel 402 depends on the relative phase between the portions of the sub-beams 114 that are outcoupled by the outcoupling grating 120 . The relative phase is wavelength dependent; thus, the optical power density peak 422 can be shifted by tuning the wavelength of the sub-beam 114 . Providing a wavelength-tunable source (eg, a tunable laser) and tuning the wavelength allows us to center the optical power density peak 422 on the pixel 406 of the display panel 402 . When the wavelength of the light source 110 is tuned, the optical power density peak 422 shifts as indicated by arrow 630 .

在圖7中進一步說明波長調諧原理。示意圖700描繪子光束114之向外耦合部分的光學路徑。第一路徑對係以實線展示。第一路徑對在像素間區域407處產生局部干涉最大值721。左側路徑長度701A等於 a,且右側路徑長度701B等於 b+ c。局域干涉最大值之條件可寫為: The principle of wavelength tuning is further illustrated in FIG. 7 . Schematic 700 depicts the optical path of the outcoupled portion of sub-beam 114 . The first path pair is shown in solid lines. The first path pair produces a local interference maximum 721 at the inter-pixel region 407 . The left path length 701A is equal to a , and the right path length 701B is equal to b + c . The condition for the local interference maximum can be written as:

b+ c- a = nλ,(2) b + c - a = nλ, (2)

其中 n為整數,且 λ為對應媒體中之子光束114之波長。 Where n is an integer, and λ is the wavelength of the sub-beam 114 in the corresponding medium.

第二路徑對702A、702B以虛線展示。第二路徑對產生在像素406的中心位置上的局部干涉最大值722。左側路徑長度702A等於 a',且右側路徑長度702B等於 b+ c',其中 b為相鄰向外耦合光柵120之間的距離。在此情況下,局部干涉最大值之條件可寫為 The second path pair 702A, 702B is shown in dashed lines. The second path pair produces a local interference maximum 722 at the center location of the pixel 406 . The left path length 702A is equal to a′ and the right path length 702B is equal to b + c′ , where b is the distance between adjacent outcoupling gratings 120 . In this case, the condition for the local interference maximum can be written as

b+ c'a ' = nλ(3a) b + c'a ' = nλ (3a)

藉由選擇波長 λ使得滿足條件(3a),局部干涉最大值722(亦即,塔爾伯特光學功率密度峰值422)可在像素406的中心位置上。當 c'= a'時,如圖7中所說明,條件(3a)簡化為 By choosing the wavelength λ such that condition (3a) is satisfied, the local interference maximum 722 (ie, the Talbot optical power density peak 422 ) can be at the center of the pixel 406 . When c' = a' , as illustrated in Figure 7, condition (3a) reduces to

b = nλ(3b) b = nλ (3b)

藉由調諧光源110之波長而調整塔爾伯特圖案600之局部干涉最大值722之位置使吾人能夠最大化在組裝顯示器裝置400時由波導照明器104發射之光穿過顯示面板102的透射。此調整可尤其有益於具有約若干微米之小像素的微型顯示面板及緊密像素間距。Adjusting the location of the local interference maxima 722 of the Talbot pattern 600 by tuning the wavelength of the light source 110 enables us to maximize the transmission of light emitted by the waveguide illuminator 104 through the display panel 102 when the display device 400 is assembled. This adjustment can be especially beneficial for micro display panels with small pixels on the order of microns and tight pixel pitches.

代替調諧光源之波長,吾人可提供具有足夠寬的頻寬之光源,使得塔爾伯特峰值過度填充顯示面板之像素的孔隙。參考圖8之說明性實例,示意圖800描繪由向外耦合光柵120向外耦合之子光束114之部分的光學路徑802。在此實例中,假定在光源之中心波長處滿足條件(3b),使得局部干涉最大值出現於顯示面板402之像素406之中心處。塔爾伯特峰值822之陣列中的塔爾伯特峰值822之寬度取決於光源110之發射頻寬。藉由選擇光源之足夠寬的發射頻寬,可使塔爾伯特峰值822足夠寬,使得塔爾伯特峰值寬度大於顯示面板之像素406的寬度(孔隙)。換言之,塔爾伯特峰值822過度填充像素406之孔隙以促進波導照明器104至顯示面板102之對準。Instead of tuning the wavelength of the light source, we can provide a light source with a bandwidth sufficiently wide that the Talbot peaks overfill the apertures of the pixels of the display panel. Referring to the illustrative example of FIG. 8 , schematic diagram 800 depicts optical path 802 of a portion of sub-beam 114 outcoupled by outcoupling grating 120 . In this example, it is assumed that condition (3b) is satisfied at the center wavelength of the light source such that a local interference maximum occurs at the center of the pixel 406 of the display panel 402 . The width of the Talbot peaks 822 in the array of Talbot peaks 822 depends on the emission bandwidth of the light source 110 . By selecting a sufficiently wide emission bandwidth of the light source, the Talbot peak 822 can be wide enough that the Talbot peak width is larger than the width (aperture) of the pixel 406 of the display panel. In other words, the Talbot peak 822 overfills the void of the pixel 406 to facilitate alignment of the waveguide illuminator 104 to the display panel 102 .

在顯示器裝置400(圖4A)之一些具體實例中,光源110係提供包括複數個色彩通道之輸入光束的多色光源。由於塔爾伯特距離 D取決於如由上文等式(1)界定之波長,因此波導照明器之光學配置需要經調適以使用於不同色彩通道的塔爾伯特平面在顯示面板之像素陣列處重疊。在分光器112(圖1及圖4)經配置以將複數個色彩通道中之多個色彩通道耦合至個別波導116中的具體實例中,多個色彩通道之光在個別波導116中傳播,且自同一平面向外耦合。為了確保不同色彩通道之塔爾伯特平面在顯示面板402之顯示像素406的陣列處重疊(圖4),可提供光學組件以使向外耦合光柵120與像素406之平面之間的光學路徑為波長相依性的。參考圖9,作為非限制性說明性實例,波導照明器904包括圖2之照明器204的元件。光學調度電路241之波導結構(包括波導分光器且耦接線性波導與筆直線性波導220之陣列)形成於由照明器基板954支撐之核心層952中。照明器904進一步包括在形成於核心層952中之向外耦合陣列220之陣列與顯示面板之基板908之間的光束208之光學路徑中的色彩選擇性反射器956。色彩選擇性反射器956經配置以針對不同波長(亦即,針對不同色彩通道之光)之光束組件提供不同光學路徑長度。為此,色彩選擇性反射器956可包括在反射器基板964內之不同深度(亦即,不同Z座標)處的由反射器基板964支撐之第一反射器961、第二反射器962及第三反射器963之堆疊。第一反射器961及第二反射器962可為二向色反射器。第一反射器961反射第一波長之光且透射第二及第三波長之光,且第二反射器962透射第一及第三波長之光,且反射第二波長之光。第三反射器963可為反射所有波長之光的100%鏡,或亦可為僅反射第三波長之光以減少色彩通道串擾的二向色鏡。 In some embodiments of display device 400 (FIG. 4A), light source 110 is a polychromatic light source that provides an input light beam that includes a plurality of color channels. Since the Talbot distance D depends on the wavelength as defined by equation (1) above, the optical configuration of the waveguide illuminator needs to be adapted for the Talbot planes of the different color channels in the pixel array of the display panel overlapping. In the embodiment in which beamsplitter 112 ( FIGS. 1 and 4 ) is configured to couple multiple of the plurality of color channels into individual waveguides 116 , light from the multiple color channels propagates in individual waveguides 116 , and Coupling out from the same plane. To ensure that the Talbot planes of the different color channels overlap at the array of display pixels 406 of the display panel 402 ( FIG. 4 ), optical components may be provided such that the optical path between the outcoupling grating 120 and the plane of pixels 406 is wavelength dependent. Referring to FIG. 9 , as a non-limiting illustrative example, waveguide illuminator 904 includes elements of illuminator 204 of FIG. 2 . The waveguide structure of the optical scheduling circuit 241 (including the array of waveguide splitters and coupling linear waveguides and straight linear waveguides 220 ) is formed in a core layer 952 supported by an illuminator substrate 954 . The illuminator 904 further includes a color selective reflector 956 in the optical path of the light beam 208 between the array of outcoupling arrays 220 formed in the core layer 952 and the substrate 908 of the display panel. Color selective reflector 956 is configured to provide different optical path lengths for beam components of different wavelengths (ie, for light of different color channels). To this end, the color selective reflector 956 may include a first reflector 961 , a second reflector 962 and a second reflector 964 supported by the reflector substrate 964 at different depths (i.e., different Z coordinates) within the reflector substrate 964. A stack of three reflectors 963 . The first reflector 961 and the second reflector 962 may be dichroic reflectors. The first reflector 961 reflects light of the first wavelength and transmits light of the second and third wavelengths, and the second reflector 962 transmits light of the first and third wavelengths and reflects light of the second wavelength. The third reflector 963 may be a 100% mirror reflecting all wavelengths of light, or may also be a dichroic mirror reflecting only the third wavelength of light to reduce color channel crosstalk.

在操作中,光束208攜載第一光束分量271、第二光束分量272及第三光束分量273,其分別用於攜載第一波長、第二波長及第三波長下之光。舉例而言,第一光束分量271、第二光束分量272及第三光束分量273可分別處於紅色、綠色及藍色波長。向外耦合光柵220向外耦合攜載所有光束分量之光部分212。第一光束分量271由第一反射器961反射,其中其餘光束分量272及273透射穿過。第二光束分量272由第二反射器962反射,其中第三光束分量273透射穿過。最後,第三光束分量273由第三反射器963反射。由於分光傳播,不同光束分量將在其到達顯示面板之基板908之前傳播不同距離。不同距離可經選擇以針對不同波長之光補償至塔爾伯特平面之不同距離,如由上文等式(1)所界定,從而使峰值塔爾伯特圖案在顯示面板之像素平面處重疊。色彩選擇性反射器956反射由向外耦合光柵220之陣列向外耦合之子光束之部分(亦即,不同波長或色彩之光束分量),以反向傳播穿過照明器基板954以照射至顯示面板之像素上。In operation, light beam 208 carries a first beam component 271 , a second beam component 272 and a third beam component 273 for carrying light at a first wavelength, a second wavelength and a third wavelength, respectively. For example, the first beam component 271 , the second beam component 272 and the third beam component 273 may be at red, green and blue wavelengths, respectively. The outcoupling grating 220 outcouples the light portion 212 carrying all beam components. The first beam component 271 is reflected by the first reflector 961 , wherein the remaining beam components 272 and 273 are transmitted therethrough. The second beam component 272 is reflected by the second reflector 962 , through which the third beam component 273 is transmitted. Finally, the third beam component 273 is reflected by the third reflector 963 . Due to split beam propagation, different beam components will travel different distances before they reach the substrate 908 of the display panel. The different distances can be chosen to compensate for the different distances to the Talbot plane for different wavelengths of light, as defined by equation (1) above, so that the peak Talbot patterns overlap at the pixel plane of the display panel . The color selective reflector 956 reflects portions of the sub-beams (i.e., beam components of different wavelengths or colors) outcoupled by the array of outcoupling gratings 220 for backpropagation through the illuminator substrate 954 to illuminate the display panel on the pixel.

參考圖10,波導照明器1004類似於圖1之波導照明器104,包括類似元件,且可實施為PIC。圖10之波導照明器1004進一步包括用於將第一光源1051、第二光源1052及第三光源1053(例如雷射源)之光耦合至波導照明器1004中之第一向內耦合器1041、第二向內耦合器1042及第三向內耦合器1043,例如邊緣向內耦合器。第一光源1051、第二光源1052及第三光源1053可分別發射第一色彩通道、第二色彩通道及第三色彩通道之光1061、1062及1063,諸如紅色通道之紅光、綠色通道之綠光及藍色通道之藍光。Referring to FIG. 10, waveguide illuminator 1004 is similar to waveguide illuminator 104 of FIG. 1, includes similar components, and may be implemented as a PIC. The waveguide illuminator 1004 of FIG. 10 further includes a first inward coupler 1041 for coupling the light of the first light source 1051, the second light source 1052 and the third light source 1053 (such as a laser source) into the waveguide illuminator 1004, The second in-coupler 1042 and the third in-coupler 1043 are, for example, edge in-couplers. The first light source 1051, the second light source 1052, and the third light source 1053 can respectively emit light 1061, 1062, and 1063 of the first color channel, the second color channel, and the third color channel, such as red light of the red channel and green light of the green channel. Blue light of light and blue channel.

波長多工器1070耦接至第一向內耦接器1041、第二向內耦接器1042及第三向內耦接器1043,以用於將第一色彩通道、第二色彩通道及第三色彩通道之光1061、1062及1063分別組合至輸入光束108中,且將輸入光束108耦合至輸入波導106中。圖10中之縮寫「CWM」表示「粗略」波長多工器,其波長隔開20nm或更大。波導分光器1012為圖1之波導照明器104之波導分光器112之具體實例。圖10之波導分光器1012包括用於將輸入光束108分光成 N個部分1008之1× N分光器1072,其中 N為整數,該N個部分各自在 N個輸出波導1016中之一者中傳播。1× N分光器1072可包括例如如在圖2之波導照明器204中配置成二元樹狀結構的1×2分光器之陣列。 N個部分1008可全部具有相同光學功率。 The wavelength multiplexer 1070 is coupled to the first inward coupler 1041, the second inward coupler 1042 and the third inward coupler 1043, for combining the first color channel, the second color channel and the third inward coupler 1043 The light 1061 , 1062 and 1063 of the three color channels are respectively combined into the input beam 108 and the input beam 108 is coupled into the input waveguide 106 . The abbreviation "CWM" in Figure 10 means a "coarse" wavelength multiplexer with wavelengths separated by 20nm or more. The waveguide beam splitter 1012 is a specific example of the waveguide beam splitter 112 of the waveguide illuminator 104 in FIG. 1 . The waveguide splitter 1012 of FIG. 10 includes a 1× N splitter 1072 for splitting the input light beam 108 into N portions 1008, where N is an integer, each of which propagates in one of the N output waveguides 1016 . 1xN beamsplitter 1072 may comprise, for example, an array of 1x2 beamsplitters arranged in a binary tree structure as in waveguide illuminator 204 of FIG. 2 . N sections 1008 may all have the same optical power.

波導分光器1012進一步包括 N個波長解多工器1074,其各自耦接至 N個輸出波導1016中之一特定者,以用於分別分離第一色彩通道、第二色彩通道及第三色彩通道之光1061、1062及1063,以耦合至波導陣列1080中之不同波導116且在其中傳播不同色彩通道之光。不同波導可安置於照明器基板內之不同深度處,以確保第一色彩通道、第二色彩通道及第三色彩通道之光1061、1062及1063的塔爾伯特平面在顯示面板之像素陣列平面上重疊。換言之,波導陣列1080中之波導的不同深度可經選擇,使得不同色彩通道之光的塔爾伯特峰值聚焦於像素平面處。 The waveguide splitter 1012 further includes N wavelength demultiplexers 1074, each coupled to a specific one of the N output waveguides 1016 for separating the first color channel, the second color channel, and the third color channel, respectively. Lights 1061, 1062, and 1063 are coupled to different waveguides 116 in the waveguide array 1080 and propagate light of different color channels therein. Different waveguides can be placed at different depths within the illuminator substrate to ensure that the Talbot planes of the light 1061, 1062 and 1063 of the first, second and third color channels are in the plane of the pixel array of the display panel Overlap. In other words, the different depths of the waveguides in the waveguide array 1080 can be selected such that the Talbot peaks of the light of the different color channels are focused at the pixel plane.

轉至圖11,進一步參考圖1、圖4A及圖4B,呈現用於將顯示面板(例如,圖4A之顯示面板402)耦接至波導照明器(例如,圖1及圖4A之波導照明器104)之方法1100。方法1100之可選步驟用虛線矩形表示。圖11之方法1100可包括使用光源(例如圖4A之光源110)來提供(1102)輸入光束。光源110可為單色或多色光源。方法1100可包括使用分光器(例如,耦接至波導陣列116之分光器112)來對由光源110提供之輸入光束進行分光(1104)。方法1100包括使用向外耦合光柵(例如向外耦合光柵120(圖4A))之陣列來向外耦合(1108)在波導陣列中傳播之子波束的部分,以經由顯示面板402之基板408朝向像素陣列406傳播。在像素陣列406之平面處形成(1110)塔爾伯特峰值(例如圖4B中之塔爾伯特峰值422)之陣列。調諧(1112)由光源108提供之光束108的中心波長,以使塔爾伯特峰值陣列中的個別塔爾伯特波峰422的位置在像素陣列中之像素406之中心位置上。Turning to FIG. 11 , with further reference to FIGS. 1 , 4A, and 4B , a method for coupling a display panel (eg, display panel 402 of FIG. 4A ) to a waveguide illuminator (eg, the waveguide illuminator of FIGS. 1 and 4A ) is presented. 104) of method 1100. Optional steps of method 1100 are indicated by dashed rectangles. The method 1100 of FIG. 11 may include providing ( 1102 ) an input light beam using a light source, such as the light source 110 of FIG. 4A . The light source 110 can be a monochromatic or polychromatic light source. Method 1100 may include splitting an input light beam provided by light source 110 using a beam splitter (eg, beam splitter 112 coupled to waveguide array 116 ) ( 1104 ). Method 1100 includes using an array of outcoupling gratings, such as outcoupling grating 120 ( FIG. 4A ), to outcouple ( 1108 ) portions of sub-beams propagating in an array of waveguides toward pixel array 406 via substrate 408 of display panel 402 . spread. An array of Talbot peaks (eg, Talbert peaks 422 in FIG. 4B ) is formed ( 1110 ) at the plane of pixel array 406 . The center wavelength of light beam 108 provided by light source 108 is tuned (1112) so that the location of individual Talbot peaks 422 in the array of Talbot peaks are centered on pixels 406 in the pixel array.

在光源110為產生攜載複數個色彩通道之光之輸入光束的多色光源之具體實例中,方法1100可包括使用分光器將複數個色彩通道中之多個色彩通道耦合(1105)至波導陣列中之個別波導中,接著在波導陣列中之每一波導中導引(1106)複數個色彩通道中之每一者的光。可在向外耦合光柵陣列與顯示面板之間的光學路徑中使用(圖11;1109)色彩選擇性反射器(例如,圖9之色彩選擇性反射器956),以針對複數個色彩通道中之不同色彩通道的光提供不同光學路徑長度,如上文參考圖9所解釋。In the embodiment where light source 110 is a polychromatic light source that generates an input light beam carrying light from a plurality of color channels, method 1100 may include coupling (1105) a plurality of color channels of the plurality of color channels to a waveguide array using a beam splitter In individual waveguides therein, light for each of the plurality of color channels is then guided (1106) in each waveguide in the array of waveguides. A color selective reflector (eg, color selective reflector 956 of FIG. 9 ) may be used in the optical path between the outcoupling grating array and the display panel (FIG. 11; 1109) to target one of the plurality of color channels Light of different color channels provides different optical path lengths, as explained above with reference to FIG. 9 .

圖12說明用於將顯示面板(例如,圖4A之顯示面板402)耦接至波導照明器(例如,圖1及圖4A之波導照明器104及/或圖10之波導照明器1004)之方法1200。方法1200包括使用光源以提供(1202)具有充分寬之發射頻寬的輸入光束。使用分光器(例如,圖1中之分光器112或圖10中之分光器1012)來將輸入光束分光(圖12;1204)為複數個子光束。使該複數個子光束平行於像素陣列之列而在波導中傳播(1206)。使用向外耦合光柵陣列向外耦合(1208)在波導陣列中傳播之子光束的部分,以經由顯示面板之基板朝向像素陣列傳播,如例如圖4A中所說明。方法1200進一步包括在像素陣列之平面處形成(1210)塔爾伯特峰值陣列,如例如圖4B中所說明。塔爾伯特峰值陣列中之塔爾伯特峰值的寬度取決於光源之發射頻寬。為了促進波導照明器至顯示面板之對準,頻寬應足夠寬,使得塔爾伯特峰值之寬度大於像素陣列中的像素之寬度,用於過度填充像素之孔隙,如上文所解釋且在圖8中所說明。12 illustrates a method for coupling a display panel (eg, display panel 402 of FIG. 4A ) to a waveguide illuminator (eg, waveguide illuminator 104 of FIGS. 1 and 4A and/or waveguide illuminator 1004 of FIG. 10 ). 1200. Method 1200 includes using a light source to provide (1202) an input beam of light having a sufficiently wide emission bandwidth. A beam splitter (eg, beam splitter 112 in FIG. 1 or beam splitter 1012 in FIG. 10 ) is used to split ( FIG. 12 ; 1204 ) the input beam into a plurality of sub-beams. The plurality of sub-beams is propagated in the waveguide parallel to the columns of the pixel array (1206). Portions of the sub-beams propagating in the waveguide array are outcoupled ( 1208 ) using an outcoupling grating array to propagate through the substrate of the display panel towards the pixel array, as illustrated for example in FIG. 4A . Method 1200 further includes forming ( 1210 ) an array of Talbert peaks at the plane of the pixel array, as illustrated, for example, in FIG. 4B . The width of the Talbot peaks in the Talbot peak array depends on the emission bandwidth of the light source. To facilitate the alignment of the waveguide illuminator to the display panel, the bandwidth should be wide enough such that the width of the Talbot peak is greater than the width of the pixels in the pixel array for overfilling the voids of the pixels, as explained above and in Fig. 8 explained.

在一些具體實例中,光源可包括用於提供包含複數個色彩通道之光的輸入光束之多色光源。分光器112可將複數個色彩通道中之多個色彩通道耦合至波導陣列中之個別波導116中。在此等具體實例中,方法1200亦可包括在向外耦合光柵陣列與顯示面板之間的光學路徑中使用色彩選擇性反射器(例如,圖9之色彩選擇性反射器956),以針對複數個色彩通道中之不同色彩通道的光提供不同光學路徑長度(1209處的虛線矩形)。或者,不同色彩通道之光可耦合於波導陣列中之不同波導中,如例如在圖10之波導照明器1004中。對於此等具體實例,攜載不同色彩通道之光的波導可安置於照明器之基板內的不同深度處,以達成針對複數個色彩通道之之不同色彩通道的光提供不同光學路徑長度的相同目標。In some embodiments, the light source may include a polychromatic light source for providing an input light beam comprising light of a plurality of color channels. Optical splitter 112 may couple multiple color channels of the plurality of color channels into individual waveguides 116 in the array of waveguides. In these embodiments, method 1200 can also include using a color selective reflector (eg, color selective reflector 956 of FIG. 9 ) in the optical path between the outcoupling grating array and the display panel to target the complex Light from different ones of the color channels provides different optical path lengths (dashed rectangle at 1209). Alternatively, light of different color channels may be coupled into different waveguides in a waveguide array, as in, for example, waveguide illuminator 1004 of FIG. 10 . For these embodiments, the waveguides carrying the light of the different color channels can be placed at different depths within the substrate of the illuminator to achieve the same goal of providing different optical path lengths for the light of different ones of the plurality of color channels .

轉至圖13,虛擬實境(VR)近眼顯示器1300包括框架1301,其對於每隻眼睛支撐:光源1302;波導照明器1306,其以可操作方式耦接至光源1302且包括本文中所揭示之波導照明器中的任一者;(光源可建置至照明器中);顯示面板1318,其包括顯示像素陣列,其中波導照明器1306中的向外耦合光柵之位置與顯示面板1318之偏振調諧像素之位置協調;及眼部透鏡1332,其用於將由顯示面板1318產生的線性域中的影像轉換為角度域中的影像以供在人眼窗口1326處直接觀測。展示為黑色圓點之複數個人眼窗口照明器1362可置放於波導照明器1306的面對人眼窗口1326之一側上。可針對每一人眼窗口1326提供眼睛追蹤相機1342。Turning to FIG. 13, a virtual reality (VR) near-eye display 1300 includes a frame 1301 supporting, for each eye: a light source 1302; a waveguide illuminator 1306 operably coupled to the light source 1302 and including the Either of the waveguide illuminators; (the light source can be built into the luminaire); a display panel 1318 comprising an array of display pixels where the position of the outcoupling grating in the waveguide illuminator 1306 is tuned to the polarization of the display panel 1318 positional coordination of pixels; and an eye lens 1332 for converting the image in the linear domain generated by the display panel 1318 into an image in the angular domain for direct observation at the human eye window 1326 . A plurality of eye window illuminators 1362 , shown as black dots, may be placed on the side of waveguide illuminator 1306 facing eye window 1326 . An eye-tracking camera 1342 may be provided for each eye window 1326 .

眼睛追蹤相機1342之目的為判定使用者之兩隻眼睛之位置及/或位向。人眼窗口照明器1362照明對應人眼窗口1326處之眼睛,以使眼睛追蹤相機1342獲得眼睛之影像並且提供參考反射,亦即閃光。閃光可充當擷取眼睛影像中之參考點,從而藉由判定眼睛瞳孔影像相對於閃光影像之位置來促進眼睛凝視方向判定。為了避免因人眼窗口照明器1362之光分散使用者之注意力,可使得人眼窗口照明器發射對於使用者而言不可見之光。舉例而言,紅外光可用於照明人眼窗口1326。The purpose of the eye tracking camera 1342 is to determine the position and/or orientation of the user's two eyes. The eye window illuminator 1362 illuminates the eye corresponding to the eye window 1326 so that the eye tracking camera 1342 obtains an image of the eye and provides a reference reflection, ie, a flash. The flash of light can serve as a reference point in capturing the image of the eye, thereby facilitating eye gaze direction determination by determining the position of the eye pupil image relative to the flash image. In order to avoid distracting the user's attention by the light of the eye window illuminator 1362, the eye window illuminator can be made to emit light that is invisible to the user. For example, infrared light may be used to illuminate the window 1326 of the human eye.

轉至圖14,HMD 1400為AR/VR可佩戴式顯示系統之實例,為了較大程度沉浸至AR/VR環境中,該AR/VR可佩戴式顯示系統圍封使用者之面部。HMD 1400可產生完全虛擬的3D影像。HMD 1400可包括可緊固在使用者頭部周圍的前本體1402及條帶1404。前本體1402經配置以用於以可靠且舒適之方式置放在使用者之眼睛前方。顯示系統1480可安置於前本體1402中以向使用者呈現AR/VR影像。顯示系統1480可包括本文中所揭示之顯示器裝置及照明器中之任一者。前本體1402之側面1406可為不透明或透明的。Turning to FIG. 14 , HMD 1400 is an example of an AR/VR wearable display system that encloses the user's face for maximum immersion in the AR/VR environment. HMD 1400 can produce completely virtual 3D images. The HMD 1400 can include a front body 1402 and a strap 1404 that can be fastened around a user's head. The front body 1402 is configured for placement in front of the user's eyes in a secure and comfortable manner. The display system 1480 can be disposed in the front body 1402 to present AR/VR images to the user. Display system 1480 may include any of the display devices and illuminators disclosed herein. The sides 1406 of the front body 1402 may be opaque or transparent.

在一些具體實例中,前本體1402包括定位器1408及用於追蹤HMD 1400之加速度之慣性量測單元(inertial measurement unit;IMU)1410,及用於追蹤HMD 1400之位置的位置感測器1412。IMU 1410為基於自位置感測器1412中之一或多者接收到之量測信號而產生指示HMD 1400之位置之資料的電子裝置,所述位置感測器回應於HMD 1400之運動而產生一或多個量測信號。位置感測器1412之實例包括:一或多個加速度計、一或多個陀螺儀、一或多個磁力計、偵測運動之另一合適類型的感測器、用於IMU 1410之錯誤校正的一種類型之感測器,或其某一組合。位置感測器1412可位於IMU 1410外部、IMU 1410內部,或在外部與在內部之某一組合。In some embodiments, the front body 1402 includes a positioner 1408 and an inertial measurement unit (IMU) 1410 for tracking the acceleration of the HMD 1400 and a position sensor 1412 for tracking the position of the HMD 1400 . IMU 1410 is an electronic device that generates data indicative of the position of HMD 1400 based on measurement signals received from one or more of position sensors 1412 that generate a position in response to motion of HMD 1400. or multiple measurement signals. Examples of position sensors 1412 include: one or more accelerometers, one or more gyroscopes, one or more magnetometers, another suitable type of sensor to detect motion, error correction for IMU 1410 A type of sensor, or some combination thereof. Position sensor 1412 may be located external to IMU 1410, internal to IMU 1410, or some combination of external and internal.

定位器1408由虛擬實境系統之外部成像裝置追蹤,使得虛擬實境系統可追蹤整個HMD 1400之位置及位向。由IMU 1410及位置感測器1412所產生之資訊可與藉由追蹤定位器1408所獲得之位置及位向進行比較,以改良HMD 1400之位置及位向之追蹤準確度。當使用者在3D空間中移動及轉動時,準確位置及位向對於向使用者呈現適當虛擬景物為至關重要的。The locator 1408 is tracked by an external imaging device of the virtual reality system, so that the virtual reality system can track the position and orientation of the entire HMD 1400 . Information generated by IMU 1410 and position sensor 1412 can be compared with the position and orientation obtained by tracking locator 1408 to improve the tracking accuracy of the position and orientation of HMD 1400 . As the user moves and turns in 3D space, accurate position and orientation are critical to presenting the user with an appropriate virtual scene.

HMD 1400可進一步包括深度相機總成(depth camera assembly;DCA)1411,其擷取描述環繞HMD 1400中之一些或所有之局部區域之深度資訊的資料。為了在3D空間中判定HMD 1400之位置及位向之較佳準確度,深度資訊可與來自IMU 1410之資訊進行比較。HMD 1400 may further include a depth camera assembly (DCA) 1411 that captures data describing depth information surrounding some or all of the localized areas in HMD 1400 . The depth information may be compared with information from the IMU 1410 for better accuracy in determining the position and orientation of the HMD 1400 in 3D space.

HMD 1400可進一步包括用於即時判定使用者眼睛之位向及位置的眼睛追蹤系統1414。眼睛之所獲得位置及位向亦允許HMD 1400判定使用者之凝視方向且相應地調整由顯示系統1480所產生之影像。所判定凝視方向及聚散角度可用於調整顯示系統1480以減少聚散調節衝突。方向及聚散亦可用於如本文中所揭示之顯示器的出射光瞳轉向。此外,經判定聚散及凝視角度可用於與使用者交互、突出物件、將物件帶到前景、產生額外物件或指標等。亦可提供音訊系統,其包括例如建置於前本體1402中之一組小型揚聲器。The HMD 1400 may further include an eye tracking system 1414 for determining the orientation and position of the user's eyes in real time. The obtained position and orientation of the eyes also allows the HMD 1400 to determine the direction of the user's gaze and adjust the image generated by the display system 1480 accordingly. The determined gaze direction and vergence angle can be used to adjust the display system 1480 to reduce vergence accommodation conflicts. Direction and vergence may also be used for exit pupil steering of displays as disclosed herein. In addition, the determined vergence and gaze angle can be used to interact with the user, highlight objects, bring objects to the foreground, generate additional objects or indicators, and the like. An audio system including, for example, a set of small speakers built into the front body 1402 may also be provided.

本發明之具體實例可包括人工實境系統,或可結合人工實境系統來實施。人工實境系統在向使用者呈現之前以某一方式調整經由感測所獲得之關於外部世界的感官資訊,諸如可視資訊、音訊、接觸(體感)資訊、加速度、平衡等。作為非限制性實例,人工實境可包括虛擬實境(virtual reality;VR)、擴增實境(augmented reality;AR)、混合實境(mixed reality;MR)、複合實境或其某一組合及/或衍生物。人工實境內容可包括完全生成內容或與所擷取(例如,真實世界)內容組合之生成內容。人工實境內容可包括視訊、音訊、軀體或觸覺反饋或其某一組合。此內容中之任一者可在單個通道中或在多個通道中呈現,諸如在對檢視者產生三維效應之立體視訊中。此外,在一些具體實例中,人工實境亦可與用於例如在人工實境中創建內容及/或以其他方式用於人工實境中(例如,在人工實境中執行活動)之應用、產品、配件、服務或其某一組合相關聯。提供人工實境內容之人工實境系統可實施於各種平台上,包括穿戴式顯示器,諸如連接至主機電腦系統之HMD、獨立式HMD、具有眼鏡之形狀因數的近眼顯示器、行動裝置或計算系統,或能夠將人工實境內容提供至一或多個檢視者之任何其他硬體平台。 Embodiments of the present invention may include an artificial reality system, or may be implemented in conjunction with an artificial reality system. The artificial reality system adjusts sensory information about the external world obtained through sensing in a certain way before presenting it to the user, such as visual information, audio, contact (somatosensory) information, acceleration, balance, etc. As non-limiting examples, artificial reality may include virtual reality (VR), augmented reality (AR), mixed reality (MR), composite reality, or some combination thereof and/or derivatives. Artificial reality content may include fully generated content or generated content combined with captured (eg, real world) content. Artificial reality content may include video, audio, physical or tactile feedback, or some combination thereof. Any of this content may be presented in a single channel or in multiple channels, such as in stereoscopic video which produces a three-dimensional effect to the viewer. Additionally, in some embodiments, AR may also be used in conjunction with applications, such as those used to create content in AR and/or otherwise used in AR (e.g., to perform activities in AR), products, accessories, services or a combination thereof. Artificial reality systems that provide artificial reality content can be implemented on a variety of platforms, including wearable displays such as HMDs connected to a host computer system, standalone HMDs, near-eye displays with a form factor of glasses, mobile devices or computing systems, Or any other hardware platform capable of delivering artificial reality content to one or more viewers.

本發明之範疇不受本文所描述之特定具體實例限制。實際上,其他各種具體實例及修改,除本文中所描述之彼等之外,將自前述描述及附圖對於所屬技術領域中具通常知識者可顯而易見。因此,此等其他具體實例及修改意欲屬於本發明之範圍內。另外,儘管本文中已出於特定目的在特定環境中之特定實施方式之上下文中描述本發明,但所屬技術領域中具有通常知識者將認識到,其有效性不限於此,且本發明可出於任何數目個目的有益地實施於任何數目個環境中。因此,下文闡述之申請專利範圍應鑒於如本文中所描述之本發明之全部範圍及精神來解釋。The scope of the invention is not limited by the particular embodiments described herein. Indeed, various other embodiments and modifications, in addition to those described herein, will be apparent to those skilled in the art from the foregoing description and drawings. Accordingly, such other embodiments and modifications are intended to be within the scope of this invention. Additionally, while the invention has been described herein in the context of particular implementations in particular environments for specific purposes, those skilled in the art will recognize that its validity is not limited thereto and that the present invention may be presented Beneficially implemented in any number of environments for any number of purposes. Accordingly, the claims set forth below should be construed in view of the full scope and spirit of the invention as described herein.

101:照明器基板 104:波導照明器 106:輸入波導 108:輸入光束 110:光源 112:波導分光器 114:子光束 116:波導 119:列 120:向外耦合光柵/向外耦合器 122:部分 129:末端 204:波導照明器 208:輸入光束 210:光源 212:光部分 216:波導 220:向外耦合光柵 234:PIC 241:光學調度電路 244:1×2波導分光器 245:波導 271:第一光束分量 272:第二光束分量 273:第三光束分量 303:像素 303B:子像素 303G:子像素 303R:子像素 304:PIC照明器 306:基板 307:波導 307B:藍色波導 307G:綠色波導 307R:紅色波導 308:光 310:多波長光源 312B:光柵 312G:光柵 312R:光柵 313:虛線矩形 318:1D微透鏡 319:光學調度電路 400:顯示器裝置 402:顯示面板 406:像素 407:像素間區域 408:顯示基板 422:光學功率密度峰值 423:眼部透鏡 424:人眼窗口 500:塔爾伯特條紋圖案 501:第一平面 502:第二平面 503:中間平面 600:塔爾伯特圖案 630:箭頭 700:示意圖 701A:左側路徑長度 701B:右側路徑長度 702A:左側路徑長度 702B:第二路徑 721:局部干涉最大值 722:局部干涉最大值 800:示意圖 802:光學路徑 822:塔爾伯特峰值 904:波導照明器 908:基板 952:核心層 954:照明器基板 956:色彩選擇性反射器 961:第一反射器 962:第二反射器 963:第三反射器 964:反射器基板 1004:波導照明器 1008:部分 1012:波導分光器 1016:輸出波導 1041:第一向內耦合器 1042:第二向內耦合器 1043:第三向內耦合器 1051:第一光源 1052:第二光源 1053:第三光源 1061:光 1062:光 1063:光 1070:波長多工器 1072:1× N分光器 1074:波長解多工器 1080:波導陣列 1100:方法 1102:步驟 1104:步驟 1105:步驟 1106:步驟 1108:步驟 1109:步驟 1110:步驟 1112:步驟 1200:方法 1202:步驟 1204:步驟 1206:步驟 1208:步驟 1209:步驟 1210:步驟 1300:虛擬實境(VR)近眼顯示器 1301:框架 1302:光源 1306:波導照明器 1318:顯示面板 1326:人眼窗口 1332:眼部透鏡 1342:眼睛追蹤相機 1362:人眼窗口照明器 1400:HMD 1402:前本體 1404:條帶 1406:側面 1408:定位器 1410:慣性量測單元 1411:深度相機總成 1412:位置感測器 1414:眼睛追蹤系統 1480:顯示系統 101: Illuminator substrate 104: Waveguide illuminator 106: Input waveguide 108: Input beam 110: Light source 112: Waveguide beam splitter 114: Sub-beam 116: Waveguide 119: Column 120: Outcoupling grating/outcoupler 122: Part 129: Terminal 204: Waveguide Illuminator 208: Input Beam 210: Light Source 212: Optical Section 216: Waveguide 220: Outcoupling Grating 234: PIC 241: Optical Scheduling Circuit 244: 1×2 Waveguide Splitter 245: Waveguide 271: PI First beam component 272: second beam component 273: third beam component 303: pixel 303B: subpixel 303G: subpixel 303R: subpixel 304: PIC illuminator 306: substrate 307: waveguide 307B: blue waveguide 307G: green waveguide 307R: red waveguide 308: light 310: multi-wavelength light source 312B: grating 312G: grating 312R: grating 313: dotted line rectangle 318: 1D microlens 319: optical scheduling circuit 400: display device 402: display panel 406: pixel 407: between pixels Region 408: Display Substrate 422: Optical Power Density Peak 423: Eye Lens 424: Human Eye Window 500: Talbot Stripe Pattern 501: First Plane 502: Second Plane 503: Middle Plane 600: Talbot Pattern 630: Arrow 700: Schematic 701A: Left Path Length 701B: Right Path Length 702A: Left Path Length 702B: Second Path 721: Local Interference Max 722: Local Interference Max 800: Schematic 802: Optical Path 822: Talber Extra Peak 904: Waveguide Illuminator 908: Substrate 952: Core Layer 954: Illuminator Substrate 956: Color Selective Reflector 961: First Reflector 962: Second Reflector 963: Third Reflector 964: Reflector Substrate 1004 : waveguide illuminator 1008: part 1012: waveguide splitter 1016: output waveguide 1041: first in-coupler 1042: second in-coupler 1043: third in-coupler 1051: first light source 1052: second light source 1053: third light source 1061: light 1062: light 1063: light 1070: wavelength multiplexer 1072: 1× N optical splitter 1074: wavelength demultiplexer 1080: waveguide array 1100: method 1102: step 1104: step 1105: step 1106: Step 1108: Step 1109: Step 1110: Step 1112: Step 1200: Method 1202: Step 1204: Step 1206: Step 1208: Step 1209: Step 1210: Step 1300: Virtual Reality (VR) Near Eye Display 1301: Frame 1302 : Light Source 1306: Waveguide Illuminator 1318: Display Panel 1326: Human Eye Window 1332: Eye Lens 1342: Eye Tracking Camera 1362: Human Eye Window Illuminator 1400: HMD 1402: Front Body 1404: Strip 1406: Side 1408: Positioning 1410: Inertial Measurement Unit 1411: Depth Camera Assembly 1412: Position Sensor 1414: Eye Tracking System 1480: Display System

現將結合圖式描述例示性具體實例,其中:Illustrative embodiments will now be described in conjunction with the drawings, in which:

[圖1]為本發明之波導照明器之示意性平面圖;[Fig. 1] is a schematic plan view of the waveguide illuminator of the present invention;

[圖2]為圖1照明器之一具體實例之示意性平面圖;[Fig. 2] is a schematic plan view of a specific example of the illuminator in Fig. 1;

[圖3A]為在脊形波導上具有表面起伏光柵之本發明之多色波導照明器之俯視示意圖;[FIG. 3A] is a schematic top view of the polychromatic waveguide illuminator of the present invention with surface relief gratings on the ridge waveguide;

[圖3B]為與顯示面板之單一RGB像素疊加的圖3A之多色波導照明器之一部分的俯視示意圖;[FIG. 3B] is a schematic top view of a portion of the polychromatic waveguide illuminator of FIG. 3A superimposed on a single RGB pixel of the display panel;

[圖3C]為圖3A之多色波導照明器之脊形波導的三維示意圖;[FIG. 3C] is a three-dimensional schematic diagram of the ridge waveguide of the polychromatic waveguide illuminator of FIG. 3A;

[圖4A]為本發明之顯示器裝置之示意性橫截面圖;[FIG. 4A] is a schematic cross-sectional view of a display device of the present invention;

[圖4B]為圖4A之顯示器裝置的像素陣列之放大橫截面圖,該像素陣列與像素陣列處之照明光的峰值塔爾伯特光學功率密度分佈疊加;[ FIG. 4B ] is an enlarged cross-sectional view of a pixel array of the display device of FIG. 4A superimposed with a peak Talbert optical power density distribution of illumination light at the pixel array;

[圖5]為穿過圖4A之顯示器裝置之顯示面板基板的厚度之光學功率密度分佈之計算塔爾伯特圖;[ FIG. 5 ] is a calculated Talbert diagram of the optical power density distribution through the thickness of the display panel substrate of the display device of FIG. 4A ;

[圖6]為圖4A之顯示器裝置之側視橫截面圖,其展示顯示基板內部的光學功率密度之塔爾伯特圖案;[ FIG. 6 ] is a side cross-sectional view of the display device of FIG. 4A showing a Talbot pattern showing optical power density inside the substrate;

[圖7]為圖6之橫截面圖之示意圖,其說明塔爾伯特峰值位置之波長調諧的原理;[FIG. 7] is a schematic diagram of the cross-sectional view of FIG. 6, illustrating the principle of wavelength tuning of the Talbert peak position;

[圖8]為圖6之橫截面圖之示意圖,其說明以寬頻照明光過度填充之像素孔隙過度填充原理;[ FIG. 8 ] is a schematic diagram of the cross-sectional view of FIG. 6 , which illustrates the principle of overfilling pixel voids overfilled with broadband illumination light;

[圖9]為具有內埋式二向色鏡之波導照明器之具體實例的橫截面分解視圖;[ FIG. 9 ] is a cross-sectional exploded view of a specific example of a waveguide illuminator with a built-in dichroic mirror;

[圖10]為圖4A之波導照明器之多色具體實例的示意圖;[FIG. 10] is a schematic diagram of a multi-color embodiment of the waveguide illuminator of FIG. 4A;

[圖11]為用於藉由波長調諧將波導照明器耦接至顯示面板之方法的流程圖;[ FIG. 11 ] is a flowchart of a method for coupling a waveguide illuminator to a display panel by wavelength tuning;

[圖12]為用於藉由像素孔隙過度填充將波導照明器耦接至顯示面板的方法之流程圖;[ FIG. 12 ] is a flowchart of a method for coupling a waveguide illuminator to a display panel by pixel aperture overfilling;

[圖13]為具有一副眼鏡之外觀尺寸的本發明之擴增實境(augmented reality;AR)顯示器之視圖;及[ Fig. 13 ] is a view of an augmented reality (augmented reality; AR) display of the present invention having the appearance size of a pair of glasses; and

[圖14]為本發明之頭戴式顯示器(head-mounted display;HMD)之三維視圖。[ FIG. 14 ] is a three-dimensional view of a head-mounted display (HMD) of the present invention.

101:照明器基板 101: Illuminator substrate

104:波導照明器 104: Waveguide illuminator

106:輸入波導 106: Input waveguide

108:輸入光束 108: Input beam

110:光源 110: light source

112:波導分光器 112: waveguide splitter

114:子光束 114: sub-beam

116:波導 116: waveguide

119:列 119: column

120:向外耦合光柵/向外耦合器 120: Outcoupling grating / outcoupler

122:部分 122: part

129:末端 129: end

Claims (20)

一種顯示器裝置,其包含: 顯示面板,其包含在顯示基板上之像素陣列;及 波導照明器,其耦接至該顯示面板以用於照明該像素陣列,該波導照明器包含: 照明器基板; 分光器,其由該照明器基板支撐,用於將輸入光束分光成複數個子光束; 波導陣列,其由該照明器基板支撐且平行於該像素陣列之像素列,其中該陣列中之每一波導經配置以在其中導引該複數個子光束中之一子光束;及 向外耦合光柵陣列,其耦接至該波導陣列; 其中該向外耦合光柵陣列沿著該像素陣列延伸以用於向外耦合所述子光束之部分,以傳播穿過該顯示基板且在該像素陣列之平面處形成塔爾伯特峰值陣列,其中該塔爾伯特峰值陣列中之個別塔爾伯特峰值的位置對應於該像素陣列中之個別像素的位置。 A display device comprising: a display panel comprising an array of pixels on a display substrate; and A waveguide illuminator coupled to the display panel for illuminating the pixel array, the waveguide illuminator comprising: illuminator substrate; a beam splitter, supported by the illuminator substrate, for splitting the input light beam into a plurality of sub-beams; an array of waveguides supported by the illuminator substrate parallel to the columns of pixels of the pixel array, wherein each waveguide in the array is configured to guide a sub-beam of the plurality of sub-beams therein; and an outcoupling grating array coupled to the waveguide array; wherein the outcoupling grating array extends along the pixel array for outcoupling part of the sub-beams to propagate through the display substrate and form an array of Talbot peaks at the plane of the pixel array, wherein The positions of individual Talbot peaks in the array of Talbot peaks correspond to the positions of individual pixels in the pixel array. 如請求項1之顯示器裝置,其進一步包含用於將該輸入光束提供至該分光器之光源。The display device according to claim 1, further comprising a light source for providing the input light beam to the beam splitter. 如請求項2之顯示器裝置,其中該光源在波長上為可調諧的; 其中在操作中,所述個別塔爾伯特峰值之所述位置取決於該光源之該波長,其中該波長經選擇以使得所述塔爾伯特峰值在該像素陣列中之像素的中心位置上。 The display device of claim 2, wherein the light source is tunable in wavelength; wherein in operation said position of said individual Talbot peak depends on the wavelength of the light source, wherein the wavelength is selected such that said Talbot peak is centered on a pixel in the pixel array . 如請求項2之顯示器裝置,其中該光源具有一發射頻寬; 其中在操作中,該塔爾伯特峰值陣列中之所述塔爾伯特峰值的寬度取決於該光源之該發射頻寬,其中所述塔爾伯特峰值之所述寬度大於該像素陣列中之像素的寬度,以用於過度填充所述像素之孔隙以促進該波導照明器至該顯示面板之對準。 The display device as claimed in claim 2, wherein the light source has an emission bandwidth; Wherein in operation, the width of the Talbot peak in the Talbot peak array depends on the emission bandwidth of the light source, wherein the width of the Talbot peak is larger than that in the pixel array The width of the pixel is used to overfill the aperture of the pixel to facilitate the alignment of the waveguide illuminator to the display panel. 如請求項2之顯示器裝置,其中該光源為多色光源以用於提供包含複數個色彩通道之光的該輸入光束。The display device according to claim 2, wherein the light source is a polychromatic light source for providing the input beam of light comprising a plurality of color channels. 如請求項5之顯示器裝置,其中該分光器經配置以將該複數個色彩通道中之多個色彩通道耦合至該波導陣列中之個別波導中,其中該波導陣列中之每一波導經配置以在其中導引該複數個色彩通道中之每一者的該光。The display device of claim 5, wherein the beam splitter is configured to couple a plurality of color channels of the plurality of color channels to individual waveguides in the waveguide array, wherein each waveguide in the waveguide array is configured to The light of each of the plurality of color channels is directed therein. 如請求項6之顯示器裝置,其中該波導照明器進一步包含在該向外耦合光柵陣列與該顯示面板之該基板之間的光學路徑中的色彩選擇性反射器,其中該色彩選擇性反射器經配置以針對該複數個色彩通道中之不同色彩通道的該光提供不同光學路徑長度。The display device of claim 6, wherein the waveguide illuminator further comprises a color selective reflector in the optical path between the outcoupling grating array and the substrate of the display panel, wherein the color selective reflector passes through configured to provide different optical path lengths for the light of different ones of the plurality of color channels. 如請求項7之顯示器裝置,其中該色彩選擇性反射器包含二向色反射器之堆疊,其經配置以反射由該向外耦合光柵陣列向外耦合之所述子光束之所述部分,以反向傳播穿過該照明器基板以照射至該像素陣列之所述像素上。The display device of claim 7, wherein the color selective reflector comprises a stack of dichroic reflectors configured to reflect the portion of the sub-beams outcoupled by the outcoupling grating array to Backpropagation passes through the illuminator substrate to illuminate onto the pixels of the pixel array. 如請求項5之顯示器裝置,其中該分光器經配置以將該複數個色彩通道中之不同色彩通道耦合至該波導陣列之不同波導中,其中所述不同波導安置於該照明器基板內之不同深度處。The display device of claim 5, wherein the beam splitter is configured to couple different color channels of the plurality of color channels to different waveguides of the waveguide array, wherein the different waveguides are disposed in different waveguides of the illuminator substrate. depth. 如請求項1之顯示器裝置,其中該波導陣列包含脊形波導,且其中該向外耦合光柵陣列中之所述光柵形成於該波導陣列中的所述脊形波導中。The display device of claim 1, wherein the waveguide array comprises ridge waveguides, and wherein the gratings in the outcoupling grating array are formed in the ridge waveguides in the waveguide array. 一種用於將包含像素陣列之顯示面板耦接至包含耦接至波導陣列之向外耦合光柵陣列的波導照明器之方法,其中輸入光束之複數個子光束平行於該像素陣列之列而在所述波導中傳播,該方法包含: 使用該向外耦合光柵陣列來向外耦合在該波導陣列中傳播的所述子光束之部分,以經由該顯示面板之基板朝向該像素陣列傳播; 在該像素陣列之平面處形成塔爾伯特峰值陣列;及 調諧該光束之中心波長以使該塔爾伯特峰值陣列中之個別塔爾伯特峰值之位置在該像素陣列中之像素的中心位置上。 A method for coupling a display panel comprising an array of pixels to a waveguide illuminator comprising an array of outcoupling gratings coupled to an array of waveguides, wherein a plurality of sub-beams of an input light beam are parallel to the columns of the array of pixels in said Propagated in a waveguide, the method involves: using the outcoupling grating array to outcouple a portion of the sub-beams propagating in the waveguide array to propagate through the substrate of the display panel towards the pixel array; forming an array of Talbot peaks at the plane of the pixel array; and The center wavelength of the beam is tuned so that the positions of individual Talbot peaks in the array of Talbot peaks are at the center positions of pixels in the pixel array. 如請求項11之方法,其進一步包含使用一光源來提供該輸入光束。The method of claim 11, further comprising using a light source to provide the input light beam. 如請求項12之方法,其進一步包含使用耦接至該波導陣列之分光器來對由該光源提供之該輸入光束進行分光。The method of claim 12, further comprising splitting the input light beam provided by the light source using a beam splitter coupled to the waveguide array. 如請求項11之方法,其進一步包含使用多色光源來提供包含複數個色彩通道之光的該輸入光束。The method of claim 11, further comprising using a polychromatic light source to provide the input light beam comprising light of a plurality of color channels. 如請求項14之方法,其進一步包含: 使用分光器來將該複數個色彩通道中之多個色彩通道耦合至該波導陣列中之個別波導中;及 在該波導陣列中之每一波導中導引該複數個色彩通道中之每一者的該光。 The method of claim 14, further comprising: using a beam splitter to couple color channels of the plurality of color channels into individual waveguides of the array of waveguides; and The light of each of the plurality of color channels is guided in each waveguide in the array of waveguides. 如請求項15之方法,其進一步包含在該向外耦合光柵陣列與該顯示面板之間的光學路徑中使用色彩選擇性反射器,以針對該複數個色彩通道中之不同色彩通道的該光提供不同光學路徑長度。The method of claim 15, further comprising using a color selective reflector in the optical path between the outcoupling grating array and the display panel to provide the light for different color channels of the plurality of color channels Different optical path lengths. 如請求項14之方法,其進一步包含: 使用分光器將該複數個色彩通道中之不同色彩通道耦合至該波導陣列中之不同波導中,其中所述不同波導安置於該照明器之基板內的不同深度處。 The method of claim 14, further comprising: Different ones of the plurality of color channels are coupled into different waveguides in the array of waveguides using a beam splitter, wherein the different waveguides are disposed at different depths within the substrate of the illuminator. 一種用於將包含像素陣列之顯示面板耦接至包含耦接至波導陣列之向外耦合光柵陣列的波導照明器之方法,該方法包含: 使用光源來提供具有發射頻寬之輸入光束; 使用分光器來將該輸入光束分光成複數個子光束; 使該複數個子光束平行於該像素陣列之列而在所述波導中傳播; 使用該向外耦合光柵陣列來向外耦合在該波導陣列中傳播的所述子光束之部分,以經由該顯示面板之基板朝向該像素陣列傳播;及 在該像素陣列之平面處形成塔爾伯特峰值陣列; 其中該塔爾伯特峰值陣列中之所述塔爾伯特峰值的寬度取決於該光源之該發射頻寬,其中所述塔爾伯特峰值之所述寬度大於該像素陣列中之像素的寬度,以用於過度填充所述像素之孔隙以促進該波導照明器至該顯示面板之對準。 A method for coupling a display panel comprising an array of pixels to a waveguide illuminator comprising an array of outcoupling gratings coupled to a waveguide array, the method comprising: using a light source to provide an input beam with an emission bandwidth; using a beam splitter to split the input beam into a plurality of sub-beams; propagating the plurality of sub-beams in the waveguide parallel to the columns of the pixel array; using the outcoupling grating array to outcouple a portion of the sub-beams propagating in the waveguide array to propagate through the substrate of the display panel towards the pixel array; and forming an array of Talbot peaks at the plane of the pixel array; Wherein the width of the Talbot peak in the Talbot peak array depends on the emission bandwidth of the light source, wherein the width of the Talbot peak is greater than the width of a pixel in the pixel array for overfilling the voids of the pixels to facilitate alignment of the waveguide illuminator to the display panel. 如請求項18之方法,其中: 該光源為多色光源,其提供包含複數個色彩通道之光的該輸入光束; 該分光器將該複數個色彩通道中之多個色彩通道耦合至該波導陣列中之個別波導中;且 該方法進一步包含在該向外耦合光柵陣列與該顯示面板之間的光學路徑中使用色彩選擇性反射器,以針對該複數個色彩通道中之不同色彩通道的該光提供不同光學路徑長度。 The method of claim 18, wherein: the light source is a polychromatic light source providing the input light beam comprising light of a plurality of color channels; the optical splitter couples color channels of the plurality of color channels into individual waveguides of the array of waveguides; and The method further includes using a color selective reflector in an optical path between the outcoupling grating array and the display panel to provide different optical path lengths for the light of different ones of the plurality of color channels. 如請求項18之方法,其中: 該光源為多色光源,其提供包含複數個色彩通道之光的該輸入光束; 該分光器將該複數個色彩通道中之不同色彩通道耦合至該波導陣列中之個別波導中;且 所述不同波導安置於該照明器之基板內的不同深度處。 The method of claim 18, wherein: the light source is a polychromatic light source providing the input light beam comprising light of a plurality of color channels; the optical splitter couples different ones of the plurality of color channels into individual waveguides in the waveguide array; and The different waveguides are disposed at different depths within the substrate of the illuminator.
TW111119299A 2021-07-15 2022-05-24 Display device with waveguide-based talbot illuminator TW202319809A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163222224P 2021-07-15 2021-07-15
US63/222,224 2021-07-15
US17/525,211 US11555961B1 (en) 2021-07-15 2021-11-12 Display device with waveguide-based talbot illuminator
US17/525,211 2021-11-12

Publications (1)

Publication Number Publication Date
TW202319809A true TW202319809A (en) 2023-05-16

Family

ID=82846239

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111119299A TW202319809A (en) 2021-07-15 2022-05-24 Display device with waveguide-based talbot illuminator

Country Status (3)

Country Link
EP (1) EP4370827A1 (en)
TW (1) TW202319809A (en)
WO (1) WO2023287897A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911018A (en) * 1994-09-09 1999-06-08 Gemfire Corporation Low loss optical switch with inducible refractive index boundary and spaced output target
EP3243093A4 (en) * 2015-01-10 2018-09-19 LEIA Inc. Diffraction grating-based backlighting having controlled diffractive coupling efficiency
US10345506B1 (en) * 2018-07-16 2019-07-09 Shenzhen Guangjian Technology Co., Ltd. Light projecting method and device
US10838132B1 (en) * 2018-08-21 2020-11-17 Facebook Technologies, Llc Diffractive gratings for eye-tracking illumination through a light-guide
US10976483B2 (en) * 2019-02-26 2021-04-13 Facebook Technologies, Llc Variable-etch-depth gratings

Also Published As

Publication number Publication date
EP4370827A1 (en) 2024-05-22
WO2023287897A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
US11143866B2 (en) Waveguide including volume Bragg gratings
US20200117005A1 (en) Waveguide for conveying multiple portions of field of view
WO2022120253A1 (en) Display device with transparent illuminator
US20230045957A1 (en) Multi-source light-guiding illuminator
US20220179211A1 (en) Display device with transparent illuminator
TW202319809A (en) Display device with waveguide-based talbot illuminator
US11555961B1 (en) Display device with waveguide-based talbot illuminator
JP2023537897A (en) Beam scanner with PIC input and near-eye display based thereon
CN117642575A (en) Display device with waveguide-based taber illuminator
US11619774B2 (en) Talbot pattern illuminator and display based thereon
TW202305430A (en) Waveguide illuminator with optical interference mitigation
TW202307493A (en) Waveguide array illuminator with light scattering mitigation
TW202305427A (en) Waveguide illuminator having slab waveguide portion
CN117642676A (en) Waveguide illuminator for reducing optical interference
WO2023287915A1 (en) Waveguide illuminator having waveguide array
US20230418105A1 (en) Lighting unit with zonal illumination of a display panel
CN116762024A (en) Display device with transparent illuminator
CN117581060A (en) Waveguide array illuminator with light scattering mitigation
CN117642576A (en) Waveguide illuminator with slab waveguide portion
TW202344891A (en) Adjustable focal length illuminator for a display panel