TW202304923A - 製備btk抑制劑之製程 - Google Patents

製備btk抑制劑之製程 Download PDF

Info

Publication number
TW202304923A
TW202304923A TW111116834A TW111116834A TW202304923A TW 202304923 A TW202304923 A TW 202304923A TW 111116834 A TW111116834 A TW 111116834A TW 111116834 A TW111116834 A TW 111116834A TW 202304923 A TW202304923 A TW 202304923A
Authority
TW
Taiwan
Prior art keywords
compound
solvent
catalyst
area
reaction
Prior art date
Application number
TW111116834A
Other languages
English (en)
Other versions
TWI838741B (zh
Inventor
史蒂芬 貝奇曼
盧卡斯 洽提爾
莎琳娜 瑪麗亞 泛特夏
亞列克 費提斯
厄蘇拉 霍夫曼
克里斯蒂安 奧利弗 凱普
勒內 黎伯
柯特 普恩提納
保羅 托莎提
傑生 道格拉斯 威廉斯
Original Assignee
瑞士商赫孚孟拉羅股份公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞士商赫孚孟拉羅股份公司 filed Critical 瑞士商赫孚孟拉羅股份公司
Publication of TW202304923A publication Critical patent/TW202304923A/zh
Application granted granted Critical
Publication of TWI838741B publication Critical patent/TWI838741B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/648Vanadium, niobium or tantalum or polonium
    • B01J23/6482Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/2252Sulfonate ligands
    • B01J31/2256Sulfonate ligands being perfluorinated, i.e. comprising at least one perfluorinated moiety as substructure in case of polyfunctional ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4985Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4211Suzuki-type, i.e. RY + R'B(OR)2, in which R, R' are optionally substituted alkyl, alkenyl, aryl, acyl and Y is the leaving group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

本發明提供製備布魯頓酪胺酸激酶 (「BTK」) 抑制劑化合物 2-{3'-羥基甲基-1-甲基-5-[5-((S)-2-甲基-4-氧雜環丁烷-3-基-哌嗪-1-基)-吡啶-2-基胺基]-6-側氧-1,6-二氫-[3,4']聯吡啶-2'-基}-7,7-二甲基-3,4,7,8-四氫-2H,6H-環戊[4,5]吡咯并[1,2-a]吡嗪-1-酮之方法。

Description

製備 BTK 抑制劑之製程
本發明提供製備布魯頓酪胺酸激酶 (「BTK」) 抑制劑化合物 2-{3'-羥基甲基-1-甲基-5-[5-((S)-2-甲基-4-氧雜環丁烷-3-基-哌嗪-1-基)-吡啶-2-基胺基]-6-側氧-1,6-二氫-[3,4']聯吡啶-2'-基}-7,7-二甲基-3,4,7,8-四氫-2H,6H-環戊[4,5]吡咯并[1,2-a]吡嗪-1-酮之方法。
本揭露一般涉及製備布魯頓氏酪胺酸激酶 (「BTK」) 抑制劑化合物 2-{3'-羥基甲基-1-甲基-5-[5-((S)-2-甲基-4-氧雜環丁烷-3-基-哌嗪-1-基)-吡啶-2-基胺基]-6-側氧-1,6-二氫-[3,4']聯吡啶-2'-基}-7,7-二甲基-3,4,7,8-四氫-2H,6H-環戊[4,5]吡咯并[1,2-a]吡嗪-1-酮的方法。本揭露進一步一般涉及製備前述 BTK 抑制劑化合物合成中之中間體,諸如三環內醯胺化合物的方法。
下述結構之 BTK 抑制劑化合物 2-{3'-羥基甲基-1-甲基-5-[5-((S)-2-甲基-4-氧雜環丁烷-3-基-哌嗪-1-基)-吡啶-2-基胺基]-6-側氧-1,6-二氫-[3,4']聯吡啶-2'-基}-7,7-二甲基-3,4,7,8-四氫-2H,6H-環戊[4,5]吡咯并[1,2-a]吡嗪-1-酮:
Figure 02_image003
從美國公開 US 2013/0116235 A1 已知作為 BTK 抑制劑,其可用於治療疾病或病症,諸如彼等選自免疫病症、癌症、心血管疾病、病毒感染、發炎、代謝/內分泌功能病症及神經系統病症者。US 2013/0116235 全文藉由引用併入本文。可使用 2-{3'-羥基甲基-1-甲基-5-[5-((S)-2-甲基-4-氧雜環丁烷-3-基-哌嗪-1-基)-吡啶-2-基胺基]-6-側氧-1,6-二氫-[3,4']聯吡啶-2'-基}-7,7-二甲基-3,4,7,8-四氫-2H,6H-環戊[4,5]吡咯并[1,2-a]吡嗪-1-酮之替代性名稱,但以所示化學結構為準。一種此類替代性名稱為 (S)-2-(3'-(羥基甲基)-1-甲基-5-((5-(2-甲基-4-(氧雜環丁烷-3-基)哌嗪-1-基)吡啶-2-基)胺基)-6-側氧-1,6-二氫-[3,4'-聯吡啶]-2'-基)-7,7-二甲基-2,3,4,6,7,8-六氫-1H-環戊[4,5]吡咯并[1,2 a]吡嗪-1-酮。US 2013/0116235 公開揭露一種用於製備 2-{3'-羥基甲基-1-甲基-5-[5-((S)-2-甲基-4-氧雜環丁烷-3-基-哌嗪-1-基)-吡啶-2-基胺基]-6-側氧-1,6-二氫-[3,4']聯吡啶-2'-基}-7,7-二甲基-3,4,7,8-四氫-2H,6H-環戊[4,5]吡咯并[1,2-a]吡嗪-1-酮 之可用方法,但該方法需要進行層析純化且產率低。
一種用於製備 2-{3'-羥基甲基-1-甲基-5-[5-((S)-2-甲基-4-氧雜環丁烷-3-基-哌嗪-1-基)-吡啶-2-基胺基]-6-側氧-1,6-二氫-[3,4']聯吡啶-2'-基}-7,7-二甲基-3,4,7,8-四氫-2H,6H-環戊[4,5]吡咯并[1,2-a]吡嗪-1-酮之可用製程從 US 2018/0230155 並且從 Zhang, H. 等人,「Development of an Efficient Manufacturing Process for Reversible Bruton’s Tyrosine Kinase Inhibitor GDC-0853」, Org.Process Res. Dev.2018, 22, 8, 978–990 進一步獲知。US 2018/0230155 及 Zhang 出版物藉由引用整體併入本文。
對於用於製備 2-{3'-羥基甲基-1-甲基-5-[5-((S)-2-甲基-4-氧雜環丁烷-3-基-哌嗪-1-基)-吡啶-2-基胺基]-6-側氧-1,6-二氫-[3,4']聯吡啶-2'-基}-7,7-二甲基-3,4,7,8-四氫-2H,6H-環戊[4,5]吡咯并[1,2-a]吡嗪-1-酮及其中間體化合物的改進方法存在需求。例如,需要具有更高產率、更低副產物存在或其組合的改進方法。
本揭露之一個態樣涉及製備化合物 190 或其立體異構物、幾何異構物、互變異構物或鹽之方法。該方法包含:形成包含化合物 170、化合物 181、鈀催化劑、包含水之溶劑系統及鹼的反應混合物,其中鈀催化劑與化合物 170 之當量比為約 0.001:1 至小於 0.005:1。使反應混合物根據以下方案反應以形成包含化合物 190 (或其立體異構物、幾何異構物、互變異構物或鹽) 之反應產物混合物:
Figure 02_image005
在一些態樣中,Pd 催化劑包含含有膦配位基及至少一個鈀-碳鍵的鈀(II) 物種。在一些態樣中,產生鈀-碳鍵的片段為下式之烯丙基衍生物:
Figure 02_image007
, 其中 R 6至 R 10中之各者係獨立地選自由 H、視情況經取代之 C 1-6烷基、視情況經取代之 C 6芳基及視情況經取代之雜芳基所組成之群組;且 R 6與 R 10可視情況一起來形成包含芳香環之稠合雙環。在一些態樣中,基於化合物 170,化合物 190 (或其立體異構物、幾何異構物、互變異構物或鹽) 的產率為至少 50%。
本揭露的一個態樣涉及一種減少 Suzuki 偶合反應中副產物形成的方法。該方法包含:形成包含化合物 170、化合物 181、鈀催化劑、包含水之溶劑系統及鹼的反應混合物,其中鈀催化劑與化合物 170 之當量比為約 0.001:1 至小於 0.005:1,以及根據以下方案使反應混合物反應以形成包含化合物 190 (或其立體異構物、幾何異構物、互變異構物或鹽) 的反應產物混合物:
Figure 02_image009
在一些態樣中,Pd 催化劑包含含有膦配位基及至少一個鈀-碳鍵的鈀(II) 物種。在一些態樣中,產生鈀-碳鍵的片段為下式之烯丙基衍生物:
Figure 02_image007
, 其中 R 6至 R 10中之各者係獨立地選自由 H、視情況經取代之 C 1-6烷基、視情況經取代之 C 6芳基及視情況經取代之雜芳基所組成之群組;且 R 6與 R 10可視情況一起來形成包含芳香環之稠合雙環。在一些態樣中,基於化合物 190 (或其立體異構物、幾何異構物、互變異構物或鹽),所得反應產物混合物中二聚體雜質之含量為小於 0.3 面積%,其中二聚體雜質具有以下結構:
Figure 02_image012
在一些態樣中,基於化合物 190 (或其立體異構物、幾何異構物、互變異構物或鹽),所得反應產物混合物中酮及醇雜質之結合含量為小於 0.25 面積%,其中酮及醇雜質具有以下結構:
Figure 02_image014
本揭露的一個態樣涉及一種提升 Suzuki 偶合反應中產率的方法。該方法包含:形成包含化合物 170、化合物 181、鈀催化劑、包含水之溶劑系統及鹼的反應混合物,其中鈀催化劑與化合物 170 之當量比為約 0.001:1 至小於 0.005:1,以及根據以下方案使反應混合物反應以形成包含化合物 190 (或其立體異構物、幾何異構物、互變異構物或鹽) 的反應產物混合物:
Figure 02_image016
在一些態樣中,Pd 催化劑包含含有膦配位基及至少一個鈀-碳鍵的鈀(II) 物種。在一些態樣中,產生鈀-碳鍵的片段為下式之烯丙基衍生物:
Figure 02_image007
, 其中 R 6至 R 10中之各者係獨立地選自由 H、視情況經取代之 C 1-6烷基、視情況經取代之 C 6芳基及視情況經取代之雜芳基所組成之群組;且 R 6與 R 10可視情況一起來形成包含芳香環之稠合雙環。在一些態樣中,基於化合物 170,化合物 190 (或其立體異構物、幾何異構物、互變異構物或鹽) 的產率為至少 80% 或至少 85%。
本揭露之一個態樣涉及製備化合物 180 或其立體異構物、其幾何異構物、其互變異構物或其鹽之方法。該方法包含:形成包含化合物 140、碳上鉑/釩催化劑、溶劑及氫的第一反應混合物,以及根據以下方案使第一反應混合物反應以形成包含化合物 141 的第一反應產物混合物:
Figure 02_image019
該方法進一步包含:形成包含化合物 141、化合物 90、鈀催化劑、催化劑配位基、鹼及溶劑的第二反應混合物,以及根據以下方案使第二反應混合物反應以形成包含化合物 180 的第二反應產物混合物:
Figure 02_image021
在一些態樣中,基於化合物 140,化合物 141 之產率為至少 90% 或至少 95%,且基於化合物 141,化合物 180 之產率為至少 60%、至少 70%、至少 80%,並且化合物 180 之純度為至少 95%、至少 98% 或至少 99%。
本揭露之另一態樣涉及一種包含至少 98.5 w/w% 化合物 190 或其立體異構物、幾何異構物、互變異構物或鹽的組成物,
Figure 02_image023
,並且其中 (a)  基於化合物 190 (或其立體異構物、幾何異構物、互變異構物或鹽),二聚體雜質之含量為小於 0.15 面積%,其中二聚體雜質具有以下結構
Figure 02_image012
;和 (b)  基於化合物 190 (或其立體異構物、幾何異構物、互變異構物或鹽),醇及酮雜質之結合含量為小於 0.35 面積%,其中醇及酮雜質具有以下結構
Figure 02_image026
相關申請的交叉引用
本申請案主張 2021 年 6 月 23 日申請之歐洲申請案第 21181156.7 號及 2021 年 5 月 5 日申請之歐洲申請案第 21172180.8 號之優先權權益,該等申請案之內容以全文引用之方式併入。
現在將詳細參考本發明之某些實施例,其實例於所附隨之結構及式中說明。儘管將結合列舉的實施例描述本發明,但應理解它們並非旨在將本發明限制於彼等實施例。相反地,本發明旨在涵括可包括於藉由申請專利範圍所限定之本發明範疇內的全部替代、修飾及等效物。本領域技術人員將認識到許多與本文所述的彼等方法及材料相似或等效的任何方法及材料,它們可以用於本方面的實施中。本發明絕不限於所描述的方法及材料。如果併入之文獻、專利及類似材料中之一項或多項與本申請案不同或矛盾 (包括但不限於所定義之術語、術語用法、所述之技術等),則以本申請案為準。除非另有定義,否則本文所使用之所有技術及科學術語具有與一般熟習本發明所屬技術者通常所理解相同的含義。儘管與本文所述之彼等相似或等同的方法及材料皆可用於本發明之實施或測試,但適合之方法及材料描述如下。本文所提及之所有公開案、專利申請案、專利及其他參考文獻均以全文引用的方式併入。 定義
當指示取代基之數目時,術語「一個或多個」指代從一個取代基到最高可能的取代數目之範圍,亦即藉由取代基替換一個氫直到替換全部氫。術語「取代基」表示替換母體分子上之氫原子的一個原子或一組原子。術語「經取代」表示指定基團帶有一個或多個取代基。當任何基團可以攜帶多個取代基並且提供多種可能的取代基時,該等取代基係經獨立地選擇且不必相同。術語「未經取代」意為特定基團不帶有取代基。術語「視情況經取代」意為特定基團未經取代或經一個或多個獨立地選自可能的取代基之群組之取代基取代。當指示取代基之數目時,術語「一個或多個」意為從一個取代基到最高可能的取代數目,亦即藉由取代基替換一個氫直到替換全部氫。
如本文所用,「烷基」指代單價直鏈或支鏈飽和烴部分,其僅由碳及氫原子組成,具有 1 至 20 個碳原子。「低級烷基」指代一至六個碳原子的烷基,亦即 C 1-C 6烷基。烷基之示例包括但不限於甲基、乙基、丙基、異丙基、異丁基、二級丁基、三級丁基、戊基、正己基、辛基、十二烷基等。烷基可以視情況經取代,諸如經一個或多個鹵素取代。
如本文所用,「環烷基」指代由單環狀或多環狀環組成的碳環部分。如本文所定義,環烷基可以視情況經取代。環烷基之示例包括但不限於環丙基、環丁基、環戊基、環己基 (亦即「Cy」)、環庚基等。多環狀環結構包括稠合及橋接之雙環、稠合及橋接之多環以及螺環烴環系統,諸如,舉例而言,雙環[2.2.1]庚烷、蒎烷、雙環[2.2.2]辛烷、金剛烷及降莰烯( norborene)。環烷基可以是飽和的或部分不飽和的 (例如,環烯基)。
如本文所用,「芳基」指代 6 至 20 個碳原子 (C 6-C 20) 的單價芳香烴基團。芳基包括雙環基團,該等雙環基團包含與飽和、部分不飽和之環或芳香碳環狀環稠合之芳香環。典型之芳基包括但不限於衍生自苯 (苯基)、經取代之苯、萘、蒽、聯苯、茚基、二氫茚基、1,2-二氫萘、1,2,3,4-四氫萘基的基團等。芳基視情況獨立地經一個或多個本文所述之取代基取代。在一些態樣中,芳基可以經烷基、環烷基、鹵素或鹵代烷基取代。
如本文所用,「烷氧基」指代具有結構 -OR 的部分,其中 R 為如本文所定義之烷基部分。烷氧基部分之示例包括但不限於甲氧基、乙氧基、異丙氧基等。
如本文所用,「鹵代烷基」指代如本文所定義的烷基,其中一個或多個氫原子已由相同或不同的鹵素替換。示例性鹵代烷基包括 -CH 2Cl、-CH 2CF 3、-CH 2CCl 3、-CF 3、CHF 2等。
如本文所用,「鹵素」指代氯、氟、溴及碘。
如本文所用,「胺基」指代具有結構 -NRR’ 的部分,其中 R 及 R’ 各自為氫,「單烷基胺基」指代其中 R 及 R’ 中之一者為氫且 R 及 R’ 中之另一者為烷基的此類結構,「二烷基胺基」指代 R 及 R’ 各自為烷基的此類結構。
如本文所用,如本文所用的「視情況經取代」指代可以未經取代或經特定基團取代的部分。取代基之示例包括但不限於羥基、烷基、烷氧基、鹵基、鹵代烷基、側氧、胺基、單烷基胺基或二烷基胺基。
如本文所用,「手性」指代具有鏡像配偶體之不可重疊性的分子,而術語「非手性」指代可疊合在其鏡像配偶體上的分子。
如本文所用,「立體異構物」指代具有相同化學組成,但原子或基團在空間上之排列不同的化合物。
如本文所使用,「非鏡像異構物」指代具有兩個或更多個手性中心並且其分子並非彼此之鏡像的立體異構物。非鏡像異構物具有不同的物理特性,例如,熔點、沸點、光譜特性及反應性。非鏡像異構物之混合物可以在高解析度分析規程(諸如電泳及層析術)下分離。
如本文所用,術語「鏡像異構物」指代化合物之兩個立體異構物,該等立體異構物並非彼此之不可重疊鏡像。
本文所使用之立體化學定義及慣例通常遵循 S. P. Parker 編撰, McGraw-Hill Dictionary of Chemical Terms(1984) McGraw-Hill Book Company, New York;及 Eliel, E. 與 Wilen, S., “Stereochemistry of Organic Compounds”, John Wiley & Sons, Inc., New York, 1994。本發明之化合物可含有不對稱或手性中心,且因此以不同的立體異構形式存在。本發明化合物的所有立體異構形式,包括但不限於非對映異構物、對映異構物及阻轉異構物,以及它們的混合物,例如外消旋混合物,形成本發明的一部分。許多有機化合物以光學活性形式存在,亦即,它們具有旋轉平面偏振光平面的能力。在描述光學活性化合物時,前綴 D 及 L 或者 R 及 S 用於表示分子圍繞其手性中心的絕對組態。前綴d和 1 或者 (+) 及 (-) 為用於表示該化合物對平面偏振光的旋轉符號,其中 (-) 或 1 表示該化合物為左旋。帶有 (+) 或 d 前綴的化合物為右旋。對於給定的化學結構,此等立體異構物是相同者,但它們是彼此之鏡像。特定的立體異構物也可以稱為鏡像異構物,並且此等異構物之混合物通常稱為鏡像異構物混合物。鏡像異構物之 50:50 混合物稱為外消旋混合物或外消旋物,它們可能出現在化學反應或過程中沒有立體選擇或立體特異性的地方。術語「外消旋混合物」及「外消旋物」指代兩種鏡像異構物種的等莫耳混合物,其不具旋光性。可藉由手性分離方法 (例如超臨界流體層析 (SFC)) 自外消旋混合物分離鏡像異構物。在經分離之鏡像異構物中,手性中心處組態之指定可以為暫定的,而立體化學的確定有待諸如 x 射線晶體學資料。
如本文所用,術語「互變異構物」或「互變異構形式」指代可經由低能障壁互變之具有不同能量之結構異構物。例如,質子互變異構物(亦稱為質子異變的互變異構物)包括經由質子遷移發生之相互轉化,諸如酮基-烯醇及亞胺-烯胺異構化。價互變異構物包括藉由一些鍵結電子之重組實現之互變。
如本文所用,術語「鹽」指代酸加成鹽及鹼加成鹽。「酸加成鹽」指代與無機酸諸如鹽酸、氫溴酸、硫酸、硝酸、碳酸、磷酸形成的鹽,及與選自脂肪族、脂環族、芳香族、芳脂族、雜環、羧酸及磺酸類有機酸之有機酸諸如甲酸、乙酸、丙酸、乙醇酸、葡萄糖酸、乳酸、丙酮酸、草酸、蘋果酸、馬來酸、丙二酸、琥珀酸、延胡索酸、酒石酸、檸檬酸、天冬胺酸、抗壞血酸、麩胺酸、鄰胺苯甲酸、苯甲酸、桂皮酸、苦杏仁酸、撲酸、苯乙酸、甲磺酸 (mesylate)、乙磺酸、對甲苯磺酸及柳酸形成的鹽。「鹼加成鹽」指代與有機或無機鹼形成的鹽。
如本文所用,「無機鹼」一般包括鈉鹽、鉀鹽、銨鹽、鈣鹽、鎂鹽、鐵鹽、鋅鹽、銅鹽、錳鹽及鋁鹽。非限制性示例包括磷酸鹽,諸如磷酸氫二鉀、磷酸二氫鉀、磷酸三鉀、磷酸氫二鈉、磷酸二氫鈉、磷酸三鈉、磷酸氫二銨、磷酸二氫銨及磷酸三銨;乙酸鹽,諸如乙酸鉀、乙酸鈉及乙酸銨;甲酸鹽,諸如甲酸鉀及甲酸鈉;碳酸鹽,諸如碳酸鉀、碳酸鈉、碳酸氫鉀及碳酸氫鈉;以及鹼金屬氫氧化物,諸如氫氧化鋰、氫氧化鈉及氫氧化鉀。無機鹼可以單獨使用,也可以上述兩種或兩種以上組合使用。
如本文所用,「有機鹼」一般包括一級胺、二級胺及三級胺,經取代之胺 (包括天然存在的經取代之胺)、環狀胺及鹼性離子交換樹脂,諸如吡啶、異丙胺、三甲胺、二乙胺、三乙胺、三乙醇胺、二異丙胺、乙醇胺、2-二乙胺基乙醇、三甲胺、二環己胺、離胺酸、精胺酸、組胺酸、咖啡因、普魯卡因、海巴明 (hydrabamine)、膽鹼、甜菜鹼、乙二胺、葡萄糖胺、甲基還原葡糖胺 (methylglucamine)、可可鹼、嘌呤類、哌嗪、哌啶、N-乙基哌啶及多胺樹脂類。
如本文所用,「非極性溶劑」指代在任何原子上沒有顯著之部分電荷的溶劑或其中極性鍵以其等之部分電荷的影響抵消的方式排列的溶劑。非極性溶劑的非限制性示例包括戊烷、己烷、庚烷、環戊烷、環己烷、苯、甲苯、1,4-二㗁烷、二氯甲烷 (「DCM」)、甲基三級丁基醚 (「MTBE」)、氯仿、四氯化碳及乙醚。
如本文所用,「非質子性溶劑」指代不提供氫的溶劑。如本文所用,「極性非質子性溶劑」指代具有高介電常數及高偶極距( high dipole movements)並且缺乏酸性氫的溶劑。極性非質子性溶劑的非限制性示例包括四氫呋喃 (「THF」)、甲基四氫呋喃 (「Me-THF」)、乙酸乙酯 (「EA」)、丙酮、二甲基甲醯胺 (「DMF」)、乙腈 (「ACN」)、環丙基甲基醚 (「CPME」)、石油醚、N-甲基-2-吡咯烷酮 (「NMP」)、三氟甲苯、氯苯、苯甲醚及二甲基亞碸。在一些態樣中,非質子性溶劑為低分子量酯。非質子性低分子量酯溶劑的非限制性示例包括乙酸甲酯、乙酸乙酯、乙酸正丙酯、乙酸異丙酯、乙酸異丁酯、丙二醇甲醚乙酸酯、單乙醚乙酸酯及其組合。
如本文所用,「極性質子性溶劑」指代具有與氧原子或氮原子鍵合之不穩定氫的溶劑。極性質子性溶劑的非限制性示例包括甲酸、正丁醇、異丙醇、正丙醇、乙醇、甲醇、乙酸及水。
如本文所用,「溶劑」指代非極性溶劑、非質子性溶劑、極性質子性溶劑及其組合。
如本文所用,「鈀催化劑」指代以商業上可接受的產率及轉化率影響化學受質化合物轉化為產物化合物的速率及轉化率的任何鈀催化劑。在一些態樣中,本文所述之鈀催化反應需要零價鈀物種 (Pd(0))。示例性催化活性 (Pd(0)) 物種可直接應用 (例如,作為商用 Pd(0) 錯合物諸如 Pd(PPh 3) 4, Pd(PCy 3) 2、Pd(PtBu 3) 2或類似 Pd(0) 錯合物),或可從鈀源與配位基及/或鹼 (例如,KOtBu、KOH、NaOAc、K 3PO 4、K 2CO 3、Hünig 氏鹼、NEt 3、NPr 3) 組合形成。在一些態樣中,鈀催化劑包含鈀(II) 物種。在一些實施例中,催化劑進一步包含配位基。在一些實施例中,配位基為膦配位基。在一些態樣中,鈀源選自以下非排他性列表:[PdCl(X)] 2(X= 例如,烯丙基、桂皮基或巴豆基)、[PdCl(X)PR 3] (R= 烷基或芳基)、[Pd(X)(Y)] (Y= 例如,環戊二烯基或對草散基)、Pd(dba) 2、Pd 2(dba) 3、Pd(OAc) 2、PdZ 2(Z= Cl、Br、I)、Pd 2Z 2(PR 3) 2或 Pd(TFA) 2。在一些態樣中,催化鈀物種為選自以下非排他性列表的鈀源:[Pd(烯丙基)Cl] 2、Pd(MeCN) 2Cl 2、Pd(苯甲腈) 2Cl 2、Pd(dba) 2、Pd(OAc) 2、PdCl 2、PdBr 2、Pd(TFA) 2、Pd(MeCN) 4(BF 4) 2、Pd 2(dba) 3、Pd(PCy 3) 2Cl 2、Pd(acac) 2及 Pd(PPh 3) 4。在一些此類態樣中,鈀源為 Pd 2(dba) 3或 Pd(OAc) 2。在一些實施例中,鈀源為 Pd(PCy 3) 2。在一些其他態樣中,催化鈀物種可以由鈀源 (諸如上文所述) 及一種或多種配位基原位形成。配位基的非限制性示例包括 DPPF、DTPBF、BINAP、DPPE、DPPP、DCPE、RuPhos、SPhos、APhos (amphos)、CPhos、XPhos、 t-BuXPhos、Me 4 t-BuXPhos、新戊基( t-Bu) 2P、( t-Bu) 2PMe、( t-Bu) 2PPh、PCy 3、PPh 3、XantPhos 及 N-XantPhos、DPEPhos。在一些態樣中,配位基為芳基磷酸酯。在一些態樣中,配位基為 XPhos、XantPhos 或 DPEPhos。在特定態樣中,配位基為 XPhos (2-二環己基膦基-2',4',6'-三異丙基聯苯)、Xantphos (4,5-雙(二苯基膦基)-9,9-二甲基𠮿口星) 或具有以下結構的 DPEPhos (氧二-2,1-伸苯基)雙(二苯基膦):
Figure 02_image028
在一些態樣中,催化劑包含鈀(II) 物種、膦配位基及至少一個鈀-碳鍵。例如,催化劑可以選自:陽離子鈀物種,其包含無機或有機相對離子 X;及中性鈀物種,其包含經配位之無機或有機配位基 X。X 可以為鹵素;羧酸根,諸如但不限於,CH 3C(O)O -、tBuC(O)O -、 或 CF 3C(O)O -;磺酸根,諸如但不限於,三氟甲磺酸根 (CF 3SO 3 -)、甲苯磺酸根、苯磺酸根或硝基苯磺酸根 (nosylate);或無機陰離子,諸如但不限於,PF 6 -、BF 4 -、B(C 6F 5) 4 -、NO 3 -或 SO 4 2-。在一些態樣中,Pd 催化劑為中性的或陽離子性的;並且可以進一步包含相對離子。在一些態樣中,催化劑為 [(SPhos)Pd(烯丙基)]CF 3SO 3、[(SPhos)Pd(烯丙基)]CH 3CO 2、[(SPhos)Pd(烯丙基)]NO 3、[(SPhos)Pd(烯丙基)Cl]、[(SPhos)Pd(巴豆基)Cl]、[(SPhos)Pd(烯丙基)]PF 6或 [(SPhos)Pd(烯丙基)]CF 3CO 2。在一些其他態樣中,催化源為預製催化劑。預製催化劑的非限制性示例包括 Pd(dppf)Cl 2、Pd(dppe)Cl 2、Pd(PCy 3) 2Cl 2、雙(三乙基膦)氯化鈀(II)、Pd( t-Bu 3P) 2Cl 2、Pd[P(o-tol) 3] 2Cl 2、Pd(PPh 3) 2Cl 2、Pd(OAc) 2(PPh 3) 2及 Pd(CH 3CN) 2Cl 2。在一些此類態樣中,預製催化劑為 Pd(dppf)Cl 2。在又一些態樣中,催化劑源或預製催化劑可以與溶劑諸如二氯甲烷、氯仿或乙腈錯合。此類錯合物的非限制性示例包括 Pd(dppf)Cl 2•DCM、Pd 2(dba) 3•CHCl 3及 Pd(PPh 3) 2Cl 2•ACN。
如本文所用,「硼化 (borylation) 試劑」指代能夠與芳基鹵化物交叉偶合以形成硼酸芳基酯的任何硼化試劑。硼化試劑的示例包括但不限於四羥基硼、兒茶酚硼烷、4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷(dioxaborolane)、4,6,6-三甲基-1,3,2-二氧雜環己硼烷(dioxaborinane,)、二異丙胺硼烷、雙(新戊基乙二醇)二硼、雙(兒茶酚(catecholato)二硼、雙(己烯基甘醇酸( glycolato ))二硼、雙((品納醇((pinacolato))二硼、4-(4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷-2-基)-5-(三氟甲基)-1-(三異丙基矽烷基)-1H-吡咯并[2,3-b]吡啶、雙(2,4-二甲基戊烷-2,4-乙醇酸合)二硼、苯基硼酸、二異丙氧基甲基硼烷及甲基硼酸。
如本文所用,「還原劑」指代提供電子的化合物。還原劑的非限制性示例包括硼氫化鈉、硼氫化鉀、雙(2-甲氧基乙氧基)氫化鋁鈉、亞硫酸氫鈉(sodium bisulfite)( sodium hydrogensulfite)、連二亞硫酸鈉(sodium hydrosulfite)、四氫硼酸鈉、四氫硼酸鉀、三乙醯氧基硼氫化鈉、三氯矽烷、亞磷酸三苯酯、三乙基矽烷、三甲基膦、三苯基膦、乙硼烷、二乙氧基甲基矽烷、二異丁基氫化鋁、二異丙基胺基硼烷、氫化鋁鋰及三乙基硼氫化鋰。
如本文所用,「保護基」指代用於保護中間體之遠端官能性(remote functionality) (例如,一級胺或二級胺) 的基團。對該等保護之需求將根據遠端官能團之性質和製備方法的條件而有所不同。合適的胺基保護基包括乙醯基、三氟乙醯基、三級丁氧羰基 (BOC)、苄氧羰基 (Cbz) 及 9-茀基亞甲基氧羰基 (Fmoc)。有關保護基及其使用的一般說明,參見 T. W. Greene, Protective Groups in Organic Synthesis, John Wiley & Sons, New York, 1991。
本文中的一些實施例使用藉由 HPLC 測量的面積% 指代 (例如,期望之化合物或不期望之化合物的) 純度或含量。評估面積% 的合適 HPLC 方法為本領域技術人員已知者,並且包括例如在本揭露之實例 6 至實例 9 中使用並且在分析方法部分中詳細描述者。
如本文所用,「主要的」及「主要地」指代基於重量、體積、莫耳、當量、v/w%、w/w%、w/v% 或 v/v% 中之任何者計,大於 50%、至少 75%、至少 90%、至少 95%、至少 99% 或至少 99.9%。
如本文所用,術語「非晶形」或「非晶形形式」指示物種、組分或產物基本上不是結晶,如例如藉由 XRPD 所確定。在某些態樣中,包含非晶形形式之物質的樣品可以基本上不含其他非晶形形式及/或結晶形式。
如本文所用,術語「結晶」及「晶體」指代化學化合物的結晶固體形式,包括但不限於,單組分或多組分結晶形式,例如化合物之同質多形體;或化合物之溶劑合物、水合物、籠合物(clathrate)、共晶、鹽或其同質多形體。本文中的術語「晶體形式」及相關術語指代給定物質的各種結晶改變,包括但不限於同質多形體、溶劑合物、水合物、共晶及其他分子錯合物,以及鹽、鹽的溶劑合物、鹽的水合物、鹽的其他分子錯合物及其同質多形體。如本領域已知,可以藉由多種方法獲得物質的晶體形式。此類方法包括但不限於,溶體再結晶、溶體冷卻、溶劑再結晶、在受限空間中諸如在奈米孔或毛細管中再結晶、在表面或模板上諸如在聚合物上再結晶、在再結晶添加劑諸如共晶相對分子存在下再結晶、去溶劑化、脫水、快速蒸發、快速冷卻、緩慢冷卻、蒸汽擴散、昇華、研磨及溶劑滴加研磨。
用於表徵晶體形式及非晶形形式的技術為本領域已知者並且包括但不限於,熱重分析 (「TGA」)、差示掃描量熱法 (「DSC」)、X 射線粉末繞射 (「XRPD」)、單晶 X 射線繞射測定、振動光譜 (例如 IR 及拉曼光譜)、固態核磁共振 (「NMR)、光學顯微鏡、熱台光學顯微鏡、掃描式電子顯微鏡 (「SEM」)、電子晶體學及定量分析、粒度分析 (「PSA」)、表面積分析、溶解度研究及溶出度研究。 化合物 190 之製備
在本發明的一些態樣中,化合物 190、其立體異構物、其幾何異構物、其互變異構物及其鹽可以根據以下反應方案由化合物 170 及 181 製備:
Figure 02_image030
在一些態樣中,化合物 190 (或其立體異構物、幾何異構物、互變異構物或鹽) 可根據圖 5A 及圖 5B 中所示的方法製備。
化合物 190 (或其立體異構物、幾何異構物、互變異構物或鹽) 由包含化合物 170、化合物 181、鈀催化劑、包含水之溶劑系統及鹼的反應混合物製備,並使該反應混合物反應以形成包含化合物 190 或其立體異構物、幾何異構物、互變異構物或鹽的反應產物混合物。在某些實施例中,溶劑系統進一步包含極性非質子性溶劑。在一些實施例中,極性非質子性溶劑為酯,諸如低分子量酯。在某些實施例中,溶劑系統包含低分子量酯,諸如乙酸的低級烷基酯。在一些實施例中,低分子量酯為乙酸乙酯或乙酸異丙酯。在某些實施例中,溶劑系統包含水及乙酸乙酯。在本文所提供之方法的一些實施例中,相較於使用不同溶劑系統的方法,使用包含水及酯 (諸如低分子量酯) 的溶劑系統以較高產率、以較低之雜質含量或兩者產生化合物 190 或其立體異構物、幾何異構物、互變異構物或鹽。
在一些實施例中,在反應混合物中,化合物 181 與化合物 170 之當量比大於 1:1、大於 1:1 至約 1.5:1、約 1.01:1、約 1.05:1、約 1.1:1、約 1.15:1、約 1.2:1、約 1.25:1、約 1.3:1、約 1.35:1、約 1.4:1、約 1.45:1 或約 1.5:1,以及自其構建之任何範圍。
鈀催化劑可以為如本文別處所述的鈀催化劑。在一些特定態樣中,鈀催化劑包含含有膦配位基及至少一個鈀-碳鍵的鈀(II) 物種。在一些態樣中,產生鈀-碳鍵的片段為下式之烯丙基衍生物:
Figure 02_image007
, 其中 R 6至 R 10中之各者係獨立地選自由 H、視情況經取代之 C 1-6烷基、視情況經取代之 C 6芳基及視情況經取代之雜芳基所組成之群組;且 R 6與 R 10可視情況一起來形成包含芳香環之稠合雙環。在烯丙基衍生物之一些特定態樣中,R 6中 R 10中之各者為 H;R 6為 -CH 3,且 R 7至 R 10中之各者為 H;R 7為 -CH 3,且 R 6及 R 8至 R 10中之各者為 H;R 8為 -CH 3,且 R 6、R 7、R 9及 R 10中之各者為 H;R 6為 -苯基,且 R 7至 R 10中之各者為 H;或 R 7為 -苯基,且 R 6及 R 8至 R 10中之各者為 H。
在一些態樣中,R 6及 R 10與它們所接附之原子一起形成包含芳香環之稠合雙環。在一些實施例中,R 6及 R 10與它們所接附之原子一起形成與苯環稠合的五員碳環。在一些此類實施例中,R 7、R 8及 R 9為 H。在其他實施例中,R 7、R 8及 R 9中之兩者為 H,且餘者為 C 1-10烷基。
例如,在一些態樣中,產生鈀-碳鍵之片段為下式之茚基
Figure 02_image033
其中 R 11為 C 1-10-烷基。在一些特定態樣中,烯丙基衍生物為以下結構:
Figure 02_image035
在一些態樣中,膦配位基具有下式:
Figure 02_image037
, 其中 R 1及 R 2係各自獨立地選自由以下所組成之群組:視情況經取代之 C 1-12烷基、視情況經取代之 C 3-C 20環烷基及視情況經取代之 C 5或 C 6芳基;或 C 1-4烷基及 C 3-6環烷基。在一些態樣中,R 3至 R 5係各自獨立地選自由以下所組成之群組:H、視情況經取代之 C 1-6烷基;式 -O-C 1-6烷基之烷氧化物;及式 -N(R 12)(R 13) 之胺,其中 R 12及 R 13係獨立地選自 H 及 C 1-6烷基。在一些態樣中,R 3至 R 5各自獨立地為 –O-C 1-4烷基,且 R 12及 R 13係各自獨立地選自 H 及 C 1-4烷基。在一些態樣中,膦配位基為 SPhos,其具有以下結構:
Figure 02_image039
在一些態樣中,Pd 催化劑係選自:包含無機或有機相對離子 X 之陽離子鈀物種;及包含經配位之無機或有機配位基 X 之中性鈀物種。在此類態樣中,X 可以選自鹵素、羧酸根、磺酸根及無機陰離子。在此類態樣中,羧酸根可以如本文別處所定義,諸如 CH 3C(O)O -、tBuC(O)O -或 CF 3C(O)O -。在此類態樣中,磺酸根可以如本文別處所定義,諸如三氟甲磺酸根 (CF 3SO 3 -)、甲苯磺酸根、苯磺酸根或硝基苯磺酸根。在此類態樣中,無機陰離子可以如本文別處所定義,諸如PF 6 -、BF 4 -、B(C 6F 5) 4 -、NO 3 -及 SO 4 2-。在一個態樣中,X 為 CF 3SO 3 -
在一些態樣中,Pd 催化劑為中性的或陽離子性的。在某些實施例中,催化劑進一步包含相對離子,諸如進一步包含陰離子相對離子的陽離子催化劑。在一些態樣中,催化劑係選自由以下所組成之群組:[(SPhos)Pd(烯丙基)]CF 3SO 3、[(SPhos)Pd(烯丙基)]CH 3CO 2、[(SPhos)Pd(烯丙基)]NO 3、[(SPhos)Pd(烯丙基)Cl]、[(SPhos)Pd(巴豆基)Cl]、[(SPhos)Pd(烯丙基)]PF 6及 [(SPhos)Pd(烯丙基)]CF 3CO 2。在一個態樣中,催化劑為 [(SPhos)Pd(烯丙基)]CF 3SO 3
鈀催化劑與化合物 170 之當量比為約 0.001:1、約 0.0015:1、約 0.002:1、約 0.0025:1、約 0.003:1、約 0.004:1、約 0.0045:1、約 0.005:1 、約 0.006:1、約 0.007:1、約 0.008:1、約 0.009:1 或約 0.01:1,以及自其構建之任何範圍,諸如約 0.001:1 至約 0.01:1、約 0.001: 1 至小於 0.05:1、約 0.001:1 至約 0.0045:1、或約 0.001:1 至約 0.003:1。
在一些態樣中,反應混合物鹼為無機鹼。在一些特定態樣中,鹼為 K 3PO 4或 K 2HPO 4
在一些態樣中,反應混合物溶劑系統包含、主要包含水及至少一種如本文別處定義的非質子性溶劑,基本上由其組成或由其組成。非質子性溶劑與水的體積比為約 1:0.05、約 1:0.1、約 1:0.5、約 1:1、約 1:1.5 或約 1:2,以及自其構建之任何範圍,諸如約 1:0.05 至約 1:2,或約 1:0.1 至約 1:1。在一些特定實施例中,非質子性溶劑為酯。在某些實施例中,非質子性溶劑為低分子量酯,諸如乙酸與 C 1-6烷基諸如 C 1-3烷基的酯。在一些實施例中,酯為乙酸異丙酯或乙酸乙酯。在一些特定態樣中,溶劑系統包含水及乙酸乙酯,主要包含水及乙酸乙酯,基本上由水及乙酸乙酯組成,或由水及乙酸乙酯組成。在一些態樣中,反應混合物中的溶劑系統體積與化合物 170 重量的比率可以小於 20:1 L/kg、約 5:1 L/kg、約 7.5:1 L/kg、約 10:1 L/kg、約 12.5:1 L/kg、約 15:1 L/kg、約 20:1 L/kg、約 25:1 L/kg、或約 30:1 L/kg,及其範圍,諸如約 5:1 至約 30:1 L/kg、約 5:1 至約 20:1 L/kg、約 5:1 至約 15:1 L/kg、或約 7.5:1 至約 12.5:1 L/kg。在某些實施例中,相較於使用其他溶劑系統相比,使用包含水及酯 (諸如乙酸乙酯) 的溶劑系統導致更高的產物產率或更低量的雜質或兩者。在一些實施例中,乙酸乙酯與水的比率為約 1:0.1 至約 1:1,或約 1:0.1 至約 1:0.8,或約 1:0.1 至約 1:0.5,或約 1:0.1 至約 1:0.3。
在一些態樣中,催化劑為 [(SPhos)Pd(烯丙基)]CF 3SO 3,溶劑系統主要包含乙酸乙酯及水,其中乙酸乙酯與水的體積比為約 1:0.1 至約 1:1 (諸如約1:0.3),且硼酸酯 (boronate) 為具有以下結構之 4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷:
Figure 02_image041
在一些實施例中,用於形成化合物 190 的反應溫度為高於約 40℃、高於約 50℃、高於約 60℃、高於約 70℃,或介於約 40℃ 至約 80℃ 之間、介於約 50℃ 至約 80℃ 之間、介於約 60℃ 至約 80℃ 之間、介於約 65℃ 至約 75℃ 之間,為約 60℃,為約 70℃ 或為約 80℃。在一些實施例中,反應溫度為約 70℃。在一些實施例中,溶劑系統包含乙酸乙酯及水,並且使用約 70℃ 之溫度。
當化合物 170 之面積% 濃度 (藉由 HPLC) 小於 2、小於 1、小於 0.5 或小於 0.1 時,可以認為反應完成。在一些實施例中,當 170 之面積% 濃度 (藉由 HPLC) 小於 0.5 或不可偵測時,認為反應完成。反應完成時間可以為約 1 小時、約 2 小時、約 3 小時、約 4 小時、約 5 小時、約 6 小時、約 7 小時、約 8 小時、約 9 小時、約 10 小時、約 11 小時或約 12 小時。在一些態樣中,反應完成時間為小於 5 小時,諸如小於 2 小時或小於 3 小時。在一些實施例中,反應時間為約 1 小時或約 2 小時。
不希望受理論束縛,本文所述之溶劑系統、催化劑及溫度的組合可導致比其他組合更短的反應時間。例如,在一些實施例中,相較於其他組合,包含膦配位基及至少一個鈀-碳鍵之鈀(II) 物種的催化劑、包含水及酯 (諸如低分子量酯,諸如乙酸乙酯) 的溶劑系統及約 60℃ 至約 80℃ (諸如介於約 65℃ 至約 75℃ 之間,諸如約 70℃) 的反應溫度的組合可導致在更短的時間內 (諸如小於 5 小時、小於 3 小時或小於 2 小時) 以更高的產率、以更低的雜質或兩者產生化合物 190 或其鹽。
在本發明的一些態樣中,產生化合物 190 (或其立體異構物、幾何異構物、互變異構物或鹽) 的方法進一步包含一個或多個純化步驟。在一些實施例中,該一個或多個純化步驟包含一次或多次水性洗滌,例如兩次水性洗滌,或三次水性洗滌。在某些實施例中,該一個或多個純化步驟包含水性 N-乙醯基-半胱胺酸洗滌,然後水性鹼洗滌,然後水洗滌。在某些實施例中,包括另外的純化步驟,諸如過濾。
在一些此類態樣中,可以將反應產物混合物的溫度調節至約 10℃ 至約 35℃、或約 15℃ 至約 30℃、或約 15℃ 至約 25℃ (諸如約 20℃),並且在攪動下與 N-乙醯基-L-半胱胺酸濃度為約 3 wt.%、約 5.5 wt.%、約 6 wt.% 或約 9 wt.% 及其範圍,諸如約 3 wt.% 至約 9 wt.% 的水性 N-乙醯基-L-半胱胺酸合併。N-乙醯基-L-半胱胺酸與化合物 190 的重量比可以為約 1:5 至約 1:25,或約 1:10 至約 1:20,或約 1:15。水性 N-乙醯基-L-半胱胺酸體積 (諸如約 3 wt.% 至約 9 wt.% 的水性 N-乙醯基-L-半胱胺酸) 與化合物 190 重量的比率可以為約 1 L/kg、約 2 L /kg 或約 3 L/kg 及其範圍,諸如約1 L/kg 至約 3 L/kg。在與水性 N-乙醯基-L-半胱胺酸攪拌之後,在一些實施例中,在攪拌下添加另外的有機溶劑。另外的有機溶劑可以為與反應中存在者相同之有機溶劑,例如低分子量酯諸如乙酸乙酯。在一些實施例中,另外的有機溶劑與化合物 190 的重量比為約 1:3 至約 1:1,或約 1:2 至約 1:1,或約 1:2.5。分離水性層並收集包含化合物 190 之有機層。有機層可進一步視情況與鹼溶液合併,其中鹼之濃度可以為約 3 wt.% 至約 7 wt.%,或約 5wt.%。在一些實施例中,鹼為碳酸氫鈉 (NaHCO 3)。在某些實施例中,鹼溶液體積與化合物 190 重量的比率可以為約 0.5 L/kg、約 1 l/kg、約 1.5 L/kg、約 2 L/kg 或約 2.5 L/kg 及其範圍,諸如約 0.5 L/kg 至約 2.5 L/kg。在此類態樣中,分離水性層並收集包含化合物 190 之有機層。在一些實施例中,包含化合物 190 之有機層可以經歷另外的洗滌步驟,諸如水洗滌。在一些實施例中,包含化合物 190 之有機層在攪拌下與水合併。在某些實施例中,水體積與化合物 190 重量的比率可以為約 0.5 L/kg、約 1 L/kg、約 2 L/g、約 3 L/kg、或約 4 L/kg 或其範圍,諸如約 0.5 L/kg 至約 4 L/kg、或約 1 L/kg 至約 3 L/kg、或約 2 L/kg。在此類態樣中,分離水性層並收集包含化合物 190 之有機層。在一些態樣中,可以使包含各種化合物 190 之有機層中的任一者與活性炭接觸,諸如透過炭床過濾或藉由將活性炭懸浮在有機相中,然後例如藉由過濾或離心分離並去除炭。在某些實施例中,產生化合物 190 之立體異構物、幾何異構物、互變異構物或鹽,並且關於化合物 190 之量進行的全部比較及/或比率皆代之以相對於化合物 190 之立體異構物、幾何異構物、互變異構物或鹽進行。
化合物 190 可視情況從反應產物混合物或從來自後處理步驟的包含化合物 190 之有機層中分離。該分離可以包括例如一個或多個溶劑交換、蒸餾及/或結晶步驟。在一些此類態樣中,所收集的包含化合物 190 之有機層可以藉由溶劑交換步驟進行處理,其中可以將非質子性溶劑交換為如本文別處所述的極性質子性溶劑。在一些態樣中,極性質子性溶劑為醇。在一些此類態樣中,極性質子性溶劑為乙醇。在一些此類態樣中,溶劑交換可以藉由真空蒸餾減少包含化合物 190 之組成物的體積來完成,並且可以用極性質子性溶劑稀釋減少的包含化合物 190 之體積。例如,可以用極性質子性溶劑以 1:6、1:5、1:4、1:3 或 1:2 或其中之任何範圍,諸如1:6 至 1:1、或 1:5 至 1:4、或約 1:4.5 稀釋減少的包含化合物 190 之體積。在一些實施例中,極性質子性溶劑的體積與化合物 190 重量的比率為約 20 L/kg、15 L/kg、10 L/kg、5 L/kg 或其中之範圍,諸如約 20 L/kg 至約 5 L/kg、或約 15 L/kg 至約 5 L/kg,或為約 10 L/kg。在一些實施例中,將極性質子性溶劑添加到減少的包含化合物 190 之體積中,使總溶劑體積為每 kg 化合物 190約 20 至約 5 L 溶劑、或每 kg 化合物 190約 8 至約 12 L溶劑,以製備化合物 190 之稀釋溶液。如本文所述,經稀釋之混合物可以視情況用活性炭處理。經純化之化合物 190 的溶液體積可以藉由蒸餾減少至減少的體積,諸如每 kg 化合物 190約 3 至約 13 L、約 3 至約 7 L、約 6 至約 10 L 或約 7 至約 9 L 溶劑。極性質子性溶劑 (乙醇) 稀釋及蒸餾步驟可以重複一次或多次。在一些實施例中,極性質子性溶劑稀釋及蒸餾步驟係進行一次或多次,直到殘留之非質子性溶劑的含量小於 10% w/w、或小於 8% w/w、或小於 6% w/w、或小於 4% w/w。在一些實施例中,本文之方法進一步包含使化合物 190 或其立體異構物、幾何異構物、互變異構物或鹽結晶。例如,該結晶可以遵循本文所述之溶劑交換及/或蒸餾步驟。可以將化合物 190 之溶液冷卻,諸如冷卻至低於 25℃,以使經純化之化合物 190 結晶。在一些實施例中,將溶液冷卻到約 70℃ 至約 80℃,諸如約 75℃,然後冷卻到約 0℃ 至約 10℃,諸如約 5℃。可收集經純化之化合物 190 晶體,諸如藉由過濾或離心,並乾燥以得到經純化之乾燥化合物 190 晶體或其立體異構物、幾何異構物、互變異構物或鹽。在一些實施例中,化合物 190 之溶液係用化合物 190 之晶體接種以促進結晶。在一些實施例中,晶種係作為固體組成物添加 (例如,作為乾燥之晶體,或基本上乾燥之晶體,或包含小於 5% 或小於 1% 溶劑的晶體)。在其他實施例中,化合物 190 之溶液係化合物 190 在質子性溶劑中之懸浮液接種以促進結晶。在一些此類實施例中,懸浮液包含按重量計約 2.5% 至約 10%,或按重量計約 5% 至約 8% 的化合物 190 在質子性溶劑 (諸如醇,例如乙醇) 中之溶液。在某些實施例中,溶液係在約 70℃ 至約 80℃,諸如約 75℃ 之溫度晶種,然後將晶種溶液冷卻至約 0℃ 至約 10℃,諸如約 5℃,以產生晶體。在一些實施例中,將經冷卻之溶液攪拌至少 5 小時、至少 7 小時、至少 9 小時、至少 11 小時或介於例如 5 至 15 小時之間,然後分離晶體。可以藉由過濾或離心收集化合物 190 晶體並用冷 C 1-4醇及/或水洗滌。在一些此類態樣中,晶體可以用醇、水/醇 (例如,以 1:1 v/v 比率) 洗滌,然後用醇洗滌。在一些此類態樣中,醇為甲醇。經洗滌之化合物 190 晶體可以在真空下乾燥,例如在約 30℃ 至約 70℃ (諸如約 35℃ 至約 65℃,或約 45℃ 至約 55℃) 之溫度及約 2 至 10 毫巴 (mbar) 之真空下乾燥。
基於化合物 170,化合物 190 或其立體異構物、幾何異構物、互變異構物或鹽的產率為至少 80%、至少 85%、至少 90% 或至少 95%。在一些實施例中,產率為至少 91%。在一些實施例中,產率為至少 93%。在某些實施例中,產率為至少 96%。在一些實施例中,藉由 HPLC,化合物 190 之純度為至少 99 面積%、至少 99.5 面積%、至少 99.6 面積%、至少 99.7 面積%、至少 99.8 面積% 或至少 99.9 面積%。在一些實施例中,化合物 190 或其立體異構物、幾何異構物、互變異構物或鹽的含量為至少 98.5% w/w、至少 99% w/w、或至少 99.5% w/w。如下所述,如藉由根據本揭露之 HPLC 方法所測量,二聚體雜質的含量為小於 0.15 面積%、小於 0.1 面積%、小於 0.05 面積%,或者不可偵測。在一些實施例中,如下所述,二聚體雜質的含量為小於 0.29% w/w,或小於 0.25% w/w,或小於 0.2% w/w,或小於 0.15% w/w,或小於 0.1% w/w。在一些實施例中,如下所述,如藉由 HPLC 所測量,酮及醇雜質的結合含量為小於 0.3 面積%、小於 0.25 面積%、小於 0.2 面積%、小於 0.15 面積%、小於 0.1 面積%、小於 0.05 面積%,不超過 0.05 面積%,或不可偵測。在某些實施例中,使用根據本揭露之 HPLC 方法評估面積%。
相較於先前所揭露之使用 Pd(dppf)Cl 2催化劑的催化系統,本揭露之催化系統對於化合物 170 與 181 偶合以產生化合物 190展現出較高的活性。相較於先前所揭露之約 1 mol% 的負載量,較高的活性導致,基於化合物 170,催化劑負載量為低至約 0.1 mol% 或約 0.2 mol% (0.001 當量或約 0.002 當量)。改進的催化劑系統具有更高產率及更低副產物雜質的優點,如本文所述並在實例中說明。例如,在一些實施例中,本催化系統提供,基於化合物 170,化合物 190 的產率為至少 90% 或至少93%;且二聚體雜質含量小於 0.15 面積%,或小於 0.1 面積%,或不可偵測。使用本文所述之改進的催化系統獲得的增加之產率及降低之雜質特徵尤其可以在更大批量下得以反映,諸如當使用大於 100 g 之起始材料 170 時,諸如至少 100 g、至少 250 g,至少 500 g、至少 750 g、至少 1 kg 或至少 2 kg 之化合物 170。在先前所述之用於產生化合物 190 之方法中,增加批量 (諸如 50 g 至 0.75 kg 起始材料 170) 導致獲得之化合物 190 的產率降低。因此,在某些態樣中,當製備較大批量的化合物 190 (例如,至少 1 kg,或至少 5 kg,或至少 50 kg,或至少 100 kg,或至少 150 kg,或約 175 kg,諸如 160 至 185 kg) 時,本文所述催化系統有利地導致較高產率之化合物 190 及較低含量之雜質諸如二聚體、醇及酮雜質。此外,在一些實施例中,相較於先前所用之溶劑系統,本文所述之催化系統在包含水及非質子性酯溶劑的溶劑系統中表現出更高的活性。相較於使用其他溶劑的先前系統,使用包含水及非質子性溶劑的溶劑系統,其中溶劑為酯,與本文所述之催化系統組合導致更高的產率或更低含量的雜質,或兩者。此外,相較於先前方法,本文所述之方法可以在更高溫度及/或更短反應時間內進行,並且此等參數之改變可能具有另外的優勢。
相較於先前方法所述之至高 99.5 面積%的純度,本發明之催化劑、溶劑及鹼的組合,稱為催化系統,進一步提供約 99.8 面積% (HPLC) 量級或更高的化合物 190 之純度。伴隨著改進的雜質特徵,本催化系統顯著減少某些難以去除之雜質的產生,從而消除對於某些純化步驟的需要。例如,化合物 170 與 181 偶合反應的三種雜質副產物包括二聚雜質、二級醇雜質及酮雜質,如下所示:
Figure 02_image043
下表顯示先前揭露之及本發明之催化系統的代表性化合物 190 雜質特徵,使用相同的 HPLC 方法進行定量。
雜質 先前之催化系統 本發明之催化系統
二聚體 約 0.3 至約 0.5 w/w% 未偵測到
二級醇 未偵測到 未偵測到
高達約 0.3 面積% 高達約 0.06 面積%
相較於先前之方法,本文所述之催化系統、包含酯之溶劑系統及提高之反應溫度的組合有利地提供以下一者或多者 (包括一些或全部之組合):化合物 190 的產率更高 (尤其在較大批量時)、更低含量之雜質 (包括將一些雜質降低到可偵測含量以下)、更有效的反應後處理,以及比先前所需的反應時間更短。
本文進一步提供包含化合物 190 或其立體異構物、幾何異構物、互變異構物或鹽的組成物,其雜質含量低。此類組成物可包含,例如,至少 98.5 w/w%、至少 99.0 w/w%、至少 99.3 w/w%、至少 99.5 w/w% 或至少 99.7 w/w% 的化合物 190 或其立體異構物、幾何異構物、互變異構物或鹽。在一些實施例中,藉由 HPLC,組成物具有至少 99 面積%、至少 99.5 面積%、至少 99.6 面積%、至少 99.7 面積%、至少 99.8 面積% 或至少 99.9 面積% 的化合物 190 純度。在一些實施例中,基於化合物190,組成物具有小於 0.15 面積%、小於 0.10 面積%、小於 0.05 面積% 或不可偵測的二聚體雜質含量;或具有小於 0.29% w/w、小於 0.25% w/w、小於 0.2% w/w、小於 0.15% w/w 或小於 0.1% w/w 的二聚體雜質含量;其中二聚體雜質具有以下結構
Figure 02_image045
在一些實施例中,基於化合物 190,組成物具有小於 0.35 面積%、小於 0.30 面積%、小於 0.25 面積%、小於 0.20 面積%、小於 0.15 面積%、小於 0.1 面積%、小於 0.05 面積%、不大於 0.05 面積% 或不可偵測的醇及酮雜質之結合含量,其中醇及酮雜質具有以下結構:
Figure 02_image047
Figure 02_image049
在一些實施例中,組成物包含至少 1 kg、至少 2 kg、至少 5 kg、至少 25 kg、至少 50 kg、至少 75 kg、至少 100 kg、至少 125 kg、至少 150 kg,或至少 175 kg 的化合物 190,例如,介於 1 至 200 kg 之間、或介於 5 至 100 kg 之間、或介於 50 至 200 kg 之間或介於 100 至 200 kg 之間的化合物 190。
在某些實施例中,產生化合物 190 之立體異構物、幾何異構物、互變異構物或鹽,並且關於化合物 190 之量進行的全部比較及/或比率皆代之以相對於化合物 190 之立體異構物、幾何異構物、互變異構物或鹽進行。 化合物 200 之製備
化合物 200 (或其立體異構物、幾何異構物、互變異構物或鹽) 從包含化合物 190 (或其立體異構物、幾何異構物、互變異構物或鹽)、還原劑、鹼及溶劑的第二反應混合物製備。使第二反應混合物反應以將化合物 190 之醛部分還原並形成包含化合物 200 的反應產物混合物,如下文一般性描述
Figure 02_image051
在一些態樣中,化合物 200 可以根據圖 6 所示之方法製備。
在一些態樣中,溶劑係選自 C 1-4醇、醚及環狀醚。在一些特定態樣中,溶劑為非質子性溶劑,諸如 THF、甲基三級丁基醚或 2-Me-THF。溶劑體積與化合物 190 重量的比率可以為約 2:1 L/kg、約 3:1 L/kg、約 4:1 L/kg、約 5:1 L/kg、約 6:1 L/kg 、約 7:1 L/kg、約 8:1 L/kg、約 9:1 L/kg、約 10:1 L/kg 及其範圍,諸如約 2:1 至約 10:1 L/ kg、或約 4:1 至約 8:1 L/kg。在一些態樣中,溶劑主要包含 THF 或由其組成。在一些態樣中,反應混合物中之鹼為無機鹼,諸如鹼金屬氫氧化物。在一個此類態樣中,鹼為氫氧化鈉。鹼與化合物 190 的當量比為約 0.1:1、約 0.2:1、約 0.3:1、約 0.4:1、約 0.5:1、約 0.6:1、約 0.7:1、約 0.8:1 或約 0.9:1 及其範圍,諸如約 0.1:1 至約 0.9:1 或約 0.3:1 至約 0.7:1。在各種態樣中之任一者中,還原劑如本文別處所述。在一些特定態樣中,還原劑為硼氫化鈉。還原劑與化合物 190 的當量比為約 0.1:1、約 0.2:1、約 0.3:1、約 0.4:1、約 0.5:1、約 0.6:1、約 0.7:1、約 0.8:1 或約 0.9:1 及其範圍,諸如約 0.1:1 至約 0.9:1 或約 0.2:1 至約 0.8:1。在一些實施例中,鹼及還原劑係以固體、或水溶液、或組合的形式添加到反應混合物中。在一些實施例中,鹼及還原劑係單獨添加,而在其他實施例中,其等係一起添加。在一些實施例中,鹼及還原劑係一起添加到反應混合物中,例如作為水性混合物。在某些實施例中,鹼:還原劑的莫耳比為約 0.5:1 至 0.5:2,諸如約 0.5:1.25 至 0.5:1.75,例如約 0.5:1.57。
用於形成化合物 200 的反應溫度合適地為約 20℃、約 25℃、約 30℃、約 35℃、約 40℃、約 45℃、約 50℃、約 55℃ 或約 60℃。當化合物 200 之面積% 濃度 (藉由 HPLC) 小於 2、小於 1、小於 0.5 或小於 0.1 時,可以認為反應完成。在一些態樣中,反應完成時間可以為 0.5 小時、1 小時、2 小時、4 小時、6 小時或更長。化合物 200 或其鹽的產率為至少 60%、至少 70%、至少 80%、至少 85%、至少 90%、至少 91%、至少 92%、至少 93%、至少 94% 或至少 95%,並且化合物 200 之純度 (藉由 HPLC) 為至少 99 面積%、至少 99.5 面積%、至少 99.9 面積% 或 100 面積%。在一些實施例中,化合物 200 或其鹽的產率為至少 90%,並且純度 (藉由 HPLC) 為至少 99.9 面積%。
在一些態樣中,化合物 200 可以從反應產物混合物分離。在一些此類態樣中,化合物 200 可以藉由將第二反應產物混合物與鹼諸如無機鹼 (例如,磷酸二氫鉀) 之水溶液混合;或與無機酸諸如磷酸 (亦即 H 3PO 4) 之水溶液混合來分離。在一些實施例中,水性鹼或無機酸的體積與化合物 200 重量的比率為約 0.5 L 至約 2 L 的每 kg 化合物 200約 10 重量% 至約 25 重量% 水性鹼或酸 (例如磷酸二氫鉀或磷酸二氫鉀) 溶液。在一些實施例中,該混合係在約 15℃ 至約 50℃ 之溫度,諸如約 20℃,或約 30℃,或約 40℃ 進行。分離水性層並收集在溶液中包含化合物 200 之有機層。包含化合物 200 之有機層可以視情況用活性炭處理。可以過濾包含化合物 200 之有機層。
在其中溶劑為非質子性溶劑 (例如,THF) 的一些態樣中,濾液可蒸餾至約 2 至約 4 L/kg 化合物 200 的體積。可以將合適的溶劑,諸如 C 1-4醇 (例如,甲醇) 添加到經蒸餾之濾液中,使總體積為約 6 至約 8 L/kg 化合物 200。在一些態樣中,可以添加約 0.2 至約 0.8 重量% 的化合物 200 晶種以形成混合物。可以蒸餾混合物以將體積減少至少 1 L/kg 化合物 200,例如約 2 L/kg、約 3 L/kg、約 4 L/kg、約 5 L/kg、約 6 L/ kg、約 7 L/kg 或約 8 L/kg。在一些態樣中,餾出物可以在至少 40℃,例如約 45℃、約 50℃、約 55℃、約 40℃ 或約 65℃ 之溫度老化至少一小時,諸如約 1 小時、約 2 小時、約 3 小時或約 4 小時。可將經蒸餾之化合物 200 的混合物冷卻,諸如冷卻至低於 20℃,以從經冷卻之混合物形成結晶化合物 200 的漿液。在一些實施例中,晶體可以在蒸餾之前開始形成。漿液可以老化一段時間,諸如約 30 分鐘、約 1 小時、約 2 小時、約 3 小時或約 4 小時。可以視情況收集化合物 200 晶體並乾燥。乾燥可以合適地在真空及惰性氣體吹掃 (例如,氬氣或氮氣) 下在例如約 30℃、約 35℃、約 40℃、約 45℃、約 50℃、約 55℃ 或約 60℃ 之溫度進行足以去除期望量之溶劑的時間,諸如約 6 小時、約 12 小時、約 18 小時、約 24 小時或約 30 小時。
在一些態樣中,經純化之化合物 200 晶體可以在純化步驟中再結晶。在一些此類態樣中,化合物200 可以與 C 1-4醇 (例如,乙醇) 以約 1 L/kg 至約 10 L/kg 或約 1 L/kg 至約 5 L/kg 或約 4 L/kg 至約 10 L/kg 或約 6 L/kg 至約 8 L/kg 的醇體積與化合物 200 重量的比率並且以約 1 L/kg 至約 5 L/kg 或約 1.5 L/kg 至約 3.5 L/kg 的甲苯體積與化合物 200 重量的比率在攪拌下合併。可以在攪拌下將混合物加熱,諸如加熱至約 65 至約 85℃,並保持直到獲得溶液。然後可將溶液冷卻,諸如冷卻至約 60℃ 至約 70℃,或約 65℃ 至約 75℃,並與另外的醇及晶種合併。在一些實施例中,經冷卻之溶液首先與另外的醇合併,例如與足夠的另外的醇合併,使得醇:甲苯的比率為約 90:10、或約 80:20、或約 70:30 或其內之任何範圍,然後添加晶種,諸如約 0.5 重量% 至約 4 重量%,或約 0.5 重量% 至約 3 重量%,或約 0.5 重量% 至約 1.5 重量% 的化合物 200 晶種,以形成漿液。在一些實施例中,在添加醇與添加晶種之間進一步冷卻溶液。替代性地,首先將溶液與晶種合併,然後再與另外的醇,諸如約 0.5 wt% 至約 4 wt%、或約 0.5 wt.% 至約 3 wt.%、或約 0.5 wt.% 至約 1.5wt.%的化合物 200 晶種合併,以形成漿液;然後以約 5 L/kg 至約 25 L/kg 或約 10 L/kg 至約 20 L/kg 的醇體積與化合物 200 重量的比率與醇合併。在任一態樣中,漿液可進一步冷卻,諸如冷卻至約 -5 至約 15℃,並保持至少 15 分鐘、至少 30 分鐘、至少 1 小時、至少 2 小時、至少 4 小時或至少 8 小時,以使化合物 200 結晶。在一些實施例中,在初始冷卻步驟之後涉及一次或多次熱循環,諸如將溫度升高至約 30℃ 至約 50℃,或約 35℃ 至約 50℃,保持至少 15 分鐘,或至少 30 分鐘,或至少 1 小時,然後再次冷卻至約 -5 至約 15℃,並保持以使化合物 200 結晶。可以諸如藉由過濾或離心收集晶體,並用醇洗滌。經洗滌之晶體可在真空下用 N 2吹掃在約 40 至約 60℃ 乾燥至少 4 小時、至少 8 小時、至少 12 小時或至少 20 小時,以產生經純化之化合物 200。 化合物 141 之製備
在本揭露之一些態樣中,化合物 141 可以根據以下反應方案從化合物 140 製備:
Figure 02_image053
用於製備化合物 141 之方法包含形成包含化合物 140、過渡金屬催化劑、氫及合適溶劑的反應混合物。在一些實施例中,該方法包含:形成包含化合物 140 以及包含有機溶劑及水之溶劑的反應混合物;並且在氫的存在下使該反應混合物與過渡金屬催化劑接觸,以形成包含化合物 141 之產物混合物。
化合物 141 可以經由批處理或連續流動處理方法產生。
在一些實施例中,過渡金屬催化劑為包含一種或多種過渡金屬的催化劑,並且可以視情況包含一種或多種另外組分,諸如一種或多種非過渡金屬、非金屬、金屬氧化物、固體載體或其任何組合。在一些實施例中,一種或多種過渡金屬選自由 Pd、Pt、Co、Ra 及 Ni 所組成之群組。過渡金屬催化劑合適地選自 Pd/C、Sponge-Ni (其可包括 Ra-Ni)、Ra-Co、Pt/V@C 及 Beller 型催化劑,諸如 Co@Chitin、Ni-phen@SiO 2或 Ni-phen@TiO 2。在一些態樣中,催化劑合適地選自 Ra-Ni、Ra-Co、Pt/V@C 及 Beller 型催化劑,諸如 Co@Chitin、Ni-phen@SiO 2或 Ni-phen@TiO 2。在一些態樣中,催化劑合適地選自 Pd/C、Sponge-Ni (其可以包括 Ra-Ni)、Pt/V@C、Co@Chitin 及 Ni-phen@TiO 2。在一個態樣中,催化劑為 Pt/V@C。Pt/V@C (換言之,負載在碳上的鉑及釩) 亦可稱為 Pt-V/C 或 Pt/V/C。在一些實施例中,該催化劑用於批處理方法中。在一些實施例中,催化劑包含 Pd、Pt、Al 或 C,或其任何組合,諸如包含 Pd 或 Pt 以及 Al 或 C。在一些實施例中,催化劑為 Pd/Al 2O 3、Pt/Al 2O 3、Pd/C 或 Pt/C。在一些實施例中,催化劑包含 Pd 及 Al,例如為 Pd/Al 2O 3。如本領域技術人員所知,存在描述催化劑的替代格式,例如,有時可以在某些格式中使用「@」符號或替代地使用「/」來引用載體。例如,Pt/V@C 亦可指代為 Pt/V/C 或 Pt-V/C;Pd/C 可指代為 Pd@C;Co@Chitin、Ni-phen@SiO 2及 Ni-phen@TiO 2亦可分別替代性地指代為 Co/Chitin、Ni-phen/SiO 2及 Ni-phen/TiO 2;依此類推。
在一些實施例中,該催化劑用於連續流動處理方法中。用於連續流動處理的催化劑可以為例如填充床催化劑或固定化催化劑的形式。固定化的催化劑可以包括彼等藉由電鍍、噴塗或漿塗催化劑在固體載體上形成者。合適的固體載體可以包括例如基於聚合物的、基於碳的或基於金屬的載體,或其任何組合 (例如,基於聚合物的碳載體)。在一些實施例中,固定化的催化劑包含催化靜態混合器 (CSM) 載體。可以使用一種或多種此類載體。例如,可以經由包含選擇性雷射熔化或 3D 列印技術的方法來製備此類 CSM。
Beller 型催化劑係本領域中已知者。參見,例如:Formenti, D. 等人,「A State-of-the-Art Heterogeneous Catalyst for Efficient and General Nitrile Hydrogenation」,Chem. Eur. J. 2020, 26, 15589;Sahoo, B., 等人,「Biomass-Derived Catalysts for Selective Hydrogenation of Nitroarenes」,ChemSusChem 2017, 10, 3035;及 Bachmann, S., 等人,「Nitrogen containing biopolymer-based Catalysts, a Process for their Preparation and Uses thereof」,WO2018/114777。此等參考文獻全文併入本文。催化劑可以合適地包含約 1 wt.%、約 2 wt.%、約 3 wt.%、約 4 wt.%、約 5 wt.%、約 6 wt.%、約 7 wt.%、約 8 wt.%、約 9 wt.%、約 10 wt.%、約 11 wt.%、約 12 wt.%、約 13 wt.%、約 14 wt.%、約 15 wt.%、約 20 wt.% 或 25 wt.%,及自其構建之任何範圍,諸如約 1 wt.% 至約 25 wt.%、約 1 wt.% 至約 15 wt.%、或約 2 wt.% 至約 10 wt.% 含量的過渡金屬。在一些態樣中,Ni 及 Co催化劑可以合適地包含約 0.5 mol%、1 mol%、1.5 mol%、2 mol%、2.5 mol%、3 mol%、3.5 mol%、4 mol%、4.5 mol%、5 mol%、6 mol%、7 mol%、8 mol%、9 mol% 或 10 mol%,及自其構建之任何範圍,諸如約 0.5 mol% 至約 10 mol%、約 1 mol% 至約 7 mol%、或約 2 mol% 至約 5 mol% 含量的過渡金屬。過渡金屬的催化量合適地為約 0.1 wt.%、約 0.5 wt.%、約 1 wt.%、約 2 wt.%、約 3 wt.%、約 4 wt.%、約 5 wt.%、約 6 wt.%、約 7 wt.%、約 8 wt.%、約 9 wt.% 或約 10 wt.%,及自其構建之任何範圍,諸如約 0.1 wt.% 至約 10 wt.%、約 0.1 wt.% 至約 5 wt.%、約 1 wt.% 至約 5 wt.%、或約 2 wt.% 至約 4 wt.%。在 Ni 及 Co 催化劑的情況下,催化量為約 0.5 mol%、約 1 mol%、約 1.5 mol%、約 2 mol%、約 2.5 mol%、約 3 mol%、約 3.5 mol%、約 4 mol%、約 5 mol%、約 6 mol% 或約 7 mol%,及自其構建之任何範圍,諸如約 0.5 mol% 至約 7 mol%、約 1 mol% 至約 5 mol%、或約 2 mol% 至約 4 mol%。關於催化劑量,wt% 可以指代濕催化劑之重量,諸如含有一些水並且尚未完全乾燥的催化劑。例如,催化劑諸如 Pt-V@C 及 Pd/C,如果沒有完全乾燥,可能含有按重量計約 50% 的水,或按重量計介於約 50% 至約 70% 之間的水,諸如按重量計約 60% 至約 65% 的水。因此,在一些實施例中,作為示例,濕催化劑的約 2% w/w 催化劑負載可以對應於乾催化劑的約 0.76% w/w。在一些實施例中,催化劑負載量為約 0.5% w/w 至約 1% w/w 的乾催化劑。在其他實施例中,wt% 可以指代乾催化劑的重量;例如 Beller 型催化劑通常是乾燥的。提及 mol% 指代催化物種之莫耳量,與水含量無關。
在一些態樣中,溶劑係選自非極性溶劑、極性非質子性溶劑及極性質子性溶劑。在一些態樣中,溶劑係選自醇、醚、酯、甲苯、二氯甲烷、水及其組合。在一些態樣中,溶劑係選自醚 (包括環狀醚)、醇及其組合。在一些態樣中,溶劑係選自甲醇、乙醇、異丙醇、二㗁烷、甲苯、THF 及 Me-THF、水及其組合。在一些態樣中,溶劑主要包含水及共溶劑。在一些態樣中,溶劑主要包含 THF,主要包含甲苯及甲醇,或主要包含 THF 及水。在其中溶劑主要包含水及共溶劑的態樣中,共溶劑與水的體積比為約 50:1、約 40:1、約 30:1、約 20:1、約 10:1、約 1:1,及自其構建之任何範圍,諸如約 1:1 至約 50:1、約 10:1 至約 40:1、或約 10:1 至約 30:1。當溶劑系統主要包含兩種有機溶劑 (例如,甲苯及甲醇) 的組合時,溶劑之間的體積比合適地為約 10:1、約 5:1、約 3:1、約 2:1、約 1:1、約 1:2、約 1:3、約 1:5 或約 1:10。在一些態樣中,溶劑主要包含 THF,例如,不使用或基本上不使用共溶劑 (例如,沒有故意地包括或添加)。在一些實施例中,可能存在水。例如,當使用某些在使用前未經乾燥的催化劑時,即使沒有單獨添加更多的水,也可以包括少量的水。在某些實施例中,除了伴隨催化劑的水之外,沒有故意地包括或添加另外的水。與催化劑相關之殘留水的存在可能例如在批處理方法中發生。在一些實施例中,儘管水沒有添加到初始反應混合物中,但仍可以在反應期間產生水,例如在批處理方法中。在其他實施例中,另外的水可以包括在反應混合物中,例如在某些連續流動處理方法中。溶劑體積與化合物 140 重量的比率為約 3:1 L/kg、約 5:1 L/kg、約 10:1 L/kg、約 15:1 L/kg 或約 20:1 L/ kg 及其範圍,諸如約 3:1 至約 20:1 L/kg、約 3:1 至約 10:1 L/kg、或約 4:1 至約 6:1 L/kg .   基於 wt.% 計,化合物 140 在反應混合物中的濃度合適地為約 5 wt.%、約 10 wt.%、約 15 wt.%、約 20 wt.%、約 25 wt.%、約 30 wt.% 或 35 wt.%,及自其構建之任何範圍,諸如約 5 wt.% 至約 35 wt.%、或約 10 wt.% 至約 25 wt.%。
用於形成化合物 141 的反應可以在引入 H 2之前用 N 2吹掃來進行。反應通常在以下溫度進行:約 20℃、約 30℃、約 40℃、約 50℃、約 60℃、約 70℃、約 80℃、約 90℃、約 100℃、約 125℃、約 150℃、約 175℃ 或約 200℃,及自其構建之任何範圍,諸如約 20℃ 至約 200℃、或約 40℃ 至約 80℃。反應中的氫氣壓力合適的為約 0.1 巴 (bar)、約 0.5 巴、約 1 巴、約 2 巴、約 3 巴、約 4 巴、約 5 巴、約 6 巴、約 7 巴、約 8 巴、約 9 巴、約 10 巴、約 20 巴、約 30 巴、約 40 巴、約 45 巴、約 50 巴、約 60 巴、約 70 巴、約 80 巴、約 90 巴、約 100 巴、約 125 巴、約 150 巴、約 175 巴 或約 200 巴,及自其構建之任何範圍,諸如約 0.1 巴 至約 200 巴、約 0.5 巴 至約 100 巴、或約 1 巴 至約 45 巴。對於 Pt/V@C 催化劑,較佳之氫氣壓力範圍為約 1 巴至約 10 巴、約 2 巴至約 8 巴、或約 4 巴。對於 Ni-phen 及 Co@chitin 催化劑,較佳之氫氣壓力範圍為約 10 巴至約 100 巴、約 20 巴至約 70 巴、或約 40 巴。在一些態樣中,反應完成時間可以為約 4 小時、約 6 小時、約 12 小時、約 18 小時、約 24 小時或更長。當化合物 140 之面積% 濃度 (藉由 HPLC) 小於 2、小於 1、小於 0.5、或小於 0.1 時,可以認為反應完成。反應產物混合物包含溶液中的化合物 141。可以視情況過濾反應產物混合物。
在一些實施例中,產生化合物 141 的方法包含:形成包含化合物 140、包含鉑的催化劑、溶劑及氫的反應混合物;以及使反應混合物反應以形成包含化合物 141 的產物混合物。在一些實施例中,包含鉑的催化劑為碳上 Pt/V 催化劑。在某些實施例中,催化劑負載量為 1-4%,或約 1-3%,或約 2%,以重量% 計。在一些實施例中,催化劑負載指代濕催化劑,換言之,尚未完全乾燥並且可能含有一些水的催化劑。在一些此類實施例中,存在的水量為約 50% 至約 70%,或約 60% 至約 65%。因此,例如,在一些實施例中,,以濕催化劑的重量% 計催化劑負載量為約 1-4%、或約 1-3%、或約 2%;或約 0.35-1.6% w/w、或約 0.5-1.0% w/w、或約 0.7-0.8% w/w 的乾催化劑。在一些實施例中,溶劑為極性非質子性溶劑。在一些實施例中,極性非質子性溶劑為 THF。在更進一步的實施例中,反應混合物在介於 20 至 200℃ 之間,諸如 40 至 80℃,例如約 60℃ 之溫度反應。在另外的實施例中,氫氣壓力為 0.1 至 200 巴,諸如 1 至 45 巴,例如 1 至 8 巴、或約 4 巴。在某些實施例中,相較於先前使用之方法,鉑催化劑 (諸如碳上Pt/V)、1 至 4 wt% (諸如 1 至 3 wt% 或約 2 wt%) 的催化劑負載、極性非質子性溶劑 (諸如 THF)、介於 40 至 80℃ 之間 (諸如 50 至 70℃,或約 60℃) 的溫度及 1 至 45 巴 (諸如 1 至 8 巴,或約 4 巴) 的氫氣壓力的組合導致化合物 140 轉化為 141 的產率更高、或選擇性更高或兩者。該產率可以為例如大於 99%、或大於 99.5%、或大於 99.8%、或大於 99.9%。在一些實施例中,選擇性為大於 99%,諸如至少 99.1%、至少 99.2%、至少 99.3% 或至少 99.4%。在某些實施例中,此類方法使用批處理進行。
在一些態樣中,反應混合物包含在 THF 中的約 10 wt.% 化合物 141 及約 2 wt.% Pt/V@C 催化劑,並且反應在約 60℃ 在約 4 巴氫氣下進行,反應時間為約 16 小時。在一些此類實施例中,催化劑為「濕」催化劑,包含按重量計約 50% 至約 70%、或約 60% 至約 65% 的水。
在其他實施例中,產生化合物 141 的方法包括連續流動製程。在一些此類實施例中,該方法包含:形成包含化合物 140 及溶劑的反應混合物;並且在氫的存在下使該反應混合物與過渡金屬催化劑接觸,以形成包含化合物 141 之產物混合物,其中該方法為連續流動反應。在一些實施例中,溶劑為有機溶劑,諸如極性非質子性溶劑。在一些實施例中,溶劑視情況包含水。在一些實施例中,溶劑確實包含水。在其他實施例中,溶劑不包含水,或基本上不含水,或包含按 v/v 計小於 1% 的水,或小於 0.5% 的水,或小於 0.1% 的水。在一些實施例中,化合物 140 以 0.1 至 0.8 M、0.2 至 0.6 M、0.3 至 0.5 M、0.35 M 至 0.45 M、或約 0.4 M 的濃度存在於反應混合物中。在一些實施例中,連續流動反應在介於 80℃ 到 140℃ 之間、或介於 100℃ 到 140℃ 之間、或介於 110℃ 到 130℃ 之間、或約 100℃ 或約 120℃ 之溫度進行。在某些實施例中,過渡金屬催化劑包含鈀或鉑,例如 Pd/Al 2O 3或 Pt/Al 2O 3。在一個實施例中,催化劑為 Pd/Al 2O 3。在一些實施例中,過渡金屬催化劑為填充床催化劑的形式。在一些實施例中,過渡金屬催化劑為固定化的催化劑,例如藉由用催化劑電鍍、噴塗或漿塗固體載體而形成。該固體載體可以為任何合適的載體,其可以包括一種或多種催化靜態混合器 (CSM)。在一些實施例中,催化劑包含固體載體。例如,固體載體為球或顆粒的形式。在一些實施例中,該載體為金屬或碳。在某些實施例中,載體包含氧化鋁或碳。在某些實施例中,催化劑在包含氧化鋁或碳的固體載體上包含約 3-5% 負載的 Pt 或 Pd。在一些實施例中,催化劑為 Al 2O 3球上 3% Pd,或 Al 2O 3球上 3% Pt,或活性 C 顆粒上 3% Pt,或活性 C 顆粒上 3% Pd,或 Al 2O 3球上 5% Pd,或 Al 2O 3球上 5% Pt,或活性 C 顆粒上 5% Pt,或活性 C 顆粒上 5% Pd,其中金屬負載量以 wt% 計。在一些實施例中,該負載量為乾燥 wt%。在更進一步的實施例中,相較於化合物 140 的量,包含有機溶劑及水的溶劑包含極性非質子性溶劑及約 1 至 10 當量的水,或約 2 至 8 當量的水,或約 4、約 6 或約 8 當量的水。在一些實施例中,溶劑基本上由有機溶劑及水組成,諸如基本上由極性非質子性溶劑及水組成。在一些實施例中,極性非質子性溶劑為 THF。在一些實施例中,相較於化合物 140 的量,氫係過量存在。例如,在一些實施例中,相較於化合物 140 的量,氫以大於 3 當量、介於 3 到 5 當量之間、介於 3 到 4 當量之間、或約 3.3 當量、或約 3.75 當量存在。在一些實施例中,調整進入至連續流動反應器的氫流量以提供過量的氫。在一些實施例中,連續流動反應在介於 1 到 50 巴之間、介於 1 到 40 巴之間、介於 10 到 30 巴之間、介於 15 到 25 巴之間、或約 20 巴的壓力下進行。在一些實施例中,反應器的流速為 2 至 40 mL/min、2 至 35 mL/min、10 至 40 mL/min、20 至 40 mL/min、15 至 30 mL/min、2 至 20 mL/min、2 至 12 mL/min、4 至 10 mL/min、2 至 8 mL/min、6 至 8 mL/min、約 2 mL/min、約 4 mL/min、約 6 mL/min、約 8 mL/min、約 16 mL/min、約 20 mL/min、約 24 mL/min、約 27 mL/min 或約 30 mL/min。在一些實施例中,產生化合物 141 的方法包含:形成包含化合物 140 以及包含 THF 及約 2 至 8 當量水之溶劑的反應混合物;以及使該反應混合物與包含 Pd 之過渡金屬催化劑 (諸如 Pd/Al 2O 3) 在過量氫的存在下接觸,以形成包含化合物 141 之產物混合物;其中水及氫係與化合物 140 相比,其中反應為連續流動反應,並且反應在介於 10 到 30 巴之間的壓力下進行,流速為約 2 至 8 mL/min,並且溫度為介於 110℃ 到 130℃ 之間。在一些實施例中,產生化合物 141 的方法包含:形成包含化合物 140 以及包含 THF 之溶劑的反應混合物;以及使該反應混合物與包含 Pd 或 Pt 的過渡金屬催化劑 (諸如 Pd/Al 2O 3或 Pt/Al 2O 3) 在過量氫的存在下接觸,以形成包含化合物 141 之產物混合物;其中氫係與化合物 140 相比,其中反應為連續流動反應,反應在介於 10 到 30 巴之間的壓力下進行,流速為約 2 至 8 mL/min,溫度為介於 110℃ 到 130℃ 之間。在一些實施例中,水亦包括在溶劑系統中。在一些實施例中,其中催化劑係作為一種或多種催化靜態混合器被包括在內,水係包括在溶劑系統中。在其他實施例中,其中催化劑以不同於一種或多種催化靜態混合器的形式包括在內,諸如當催化劑包含在固體載體例如球或顆粒上時,溶劑系統不包含水,或基本上不含水,或包含小於 1% 或小於 0.5% v/v 的水。在一些實施例中,當催化劑被包括在固體載體上時包括水,或者當系統包含固體載體上之催化劑 (諸如 Al 2O 3球或活性 C 顆粒上 3-5% Pd,或 Al 2O 3球或活性 C 顆粒上 3-5% Pt) 時水對產率及雜質幾乎沒有影響。在一些實施例中,該催化劑負載量為乾燥 wt%。
在某些實施例中,固體載體之過渡金屬催化劑 (諸如包含 Pd 之催化劑,例如 Pd/Al 2O 3)、在溶劑系統中包含水 (例如約 2 至 8 當量的水,或約 4、約 6 或約 8 當量的水)、介於 100 到 140℃ 之間 (諸如 110 至 130℃,或約 120℃) 的溫度、及 2 至 40 mL/min (例如 20 至 40 mL/min、約 30 mL/min、2 至 10 mL/min、4 至 8 mL/min、或約 4 mL/min、6 mL/min 或 8 mL/min) 之流速的組合導致化合物 140 轉化為 141 的轉化率高,同時維持不期望雜質的低含量。在一些實施例中,流速為 4 mL/min 並且包括約 2 至 8 當量的水。在一些實施例中,流速為 6 mL/min 並且包括約 8 當量的水。在一些實施例中,流速為 8 mL/min 並且包括約 8 當量的水。在一些實施例中,流速為 4 至 8 mL/min 並且包括約 8 當量的水。
在某些實施例中,固體載體之過渡金屬催化劑 (諸如包含 Pt 之催化劑,例如 Pt/C,諸如 5% Pt/活性 C 顆粒);約 0.1 至 1M 化合物 140 在基本上不含水或含有小於 1% v/v 或小於 0.5% v/v 水之溶劑系統中的溶液;介於 80 到 140℃ 之間 (諸如 90 至 110℃,或約 10℃) 的溫度;在約 50 至 5 mL/min、或約 40 至 10 mL/min、或約 35 至 25 mL/min 範圍內,或為約 30 mL/min 的氫與溶液之流速比;約 10 至 30 巴、或約 15 至 25 巴、或約 20 巴之系統壓力;在約 5 至 1、約 4 至 2、約 3.5 至 2.5 範圍內,或為約 3 的氫與化合物 140 之比率的組合,導致化合物 140 轉化為 141 的轉化率高,同時維持不期望雜質的低含量。在一些實施例中,溶劑系統為極性非質子性的,諸如 THF。在一些實施例中,化合物 140 之還原以約 40 g/h 至 80 g/h、或約 50 g/h 至約 70 g/h、或約 60 g/h 的速率發生。在一些此類實施例中,化合物 141 達到大於 98%、或大於 98.5%、或大於 99%、或大於 99.1% 的純度,如藉由 HPLC 所測量。在一些實施例中,相對於化合物 140,化合物 141 實現大於 70% 的產率,或大於 75% 的產率,或大於 80% 的產率,或大於 85% 的產率。在一些實施例中,結合之偶氮及氧偶氮雜質小於 0.05%;二聚體雜質小於 0.2%,諸如小於 0.015%;且其他雜質小於 1%、小於 0.75%、小於 0.6% 或小於 0.5%。
本文所提供之連續處理方法中使用的一些條件在某些類型的批處理中可能無法實現,例如不能達到類似的高溫或使用連續流動實現可能的低停留時間的批處理方法。此類情況對於本領域技術人員來說是顯而易見的。在本文所述的連續加工方法中使用在溶劑系統中包括水、高溫及增加之流速的組合可以實現出乎意料的協同效應,該等協同效應無法藉由僅調整此等參數之一而觀察到;並且相較於包括某些類型之批處理方法在內的其他方法,亦可以隨著時間推移實現期望產物有更高的總產出,同時保持不期望雜質的可接受之低含量。在一些實施例中,本文所述之連續加工方法實現化合物 140 轉化為 141,其產量為大於 98.5 面積%、大於 99 面積%、或大於 99.5 面積%、或大於 99.8 面積%、或大於99.9 面積%。在某些實施例中,產率轉化率可能類似於或低於其他方法,但在本文所述條件下使用連續處理的更高生通量可以實現每個期間內更高的產物總產出,同時保持低雜質含量,並因此相較於其他方法具有優勢。在某些實施例中,偶氮及氧偶氮雜質 (如下所示) 之結合含量保持在 0.1 面積% 以下、0.09 面積% 以下、0.08 面積% 以下、0.07 面積% 以下、0.06 面積% 以下、0.05 面積% 以下、0.04 面積% 以下、或 0.03 面積% 以下。在某些實施例中,二聚體雜質 (如下所示) 之含量保持在 0.1 面積% 以下、0.09 面積% 以下、0.08 面積% 以下、0.07 面積% 以下、0.06 面積% 以下、0.05 面積% 以下、0.04 面積% 以下、或 0.03 面積% 以下。在一些實施例中,二聚體雜質之含量以及偶氮及氧偶氮雜質之結合含量分別為 0.04 面積% 以下及 0.09 面積% 以下; 0.05 面積% 以下及 0.09 面積% 以下;或 0.04 面積% 以下及 0.08 面積% 以下。在一些實施例中,偶氮、氧偶氮及二聚體雜質 (如下所示) 之總結合含量保持在 0.20 面積% 以下、或 0.15 面積% 以下、或 0.13 面積% 以下、或 0.1 面積% 以下。
Figure 02_image055
在一些態樣中,在溶液中包含化合物 141 之反應產物混合物可以進行溶劑交換步驟,以將反應產物混合物中的溶劑交換為用於使化合物 141 與 90 偶合以形成化合物 180 之反應的溶劑系統。溶劑交換可以藉由本領域已知的方法進行,例如但不限於蒸餾或蒸發至乾以去除溶劑,然後溶解在置換溶劑中或藉由溶劑交換蒸餾。例如但不限於,存在於包含化合物 141 之反應產物混合物中的醇、醚、酯、甲苯、二氯甲烷、水及其組合可以藉由如本文別處針對包含化合物 141 及 90 之反應混合物所述的方法用非質子性溶劑交換。在一些態樣中,非質子性溶劑係選自 THF、甲苯、Me-THF、1,4-二㗁烷、苯甲醚及其組合。在一些特定態樣中,溶劑為 1,4-二㗁烷、苯甲醚或其組合。在一個特定態樣中,包含化合物 141 之反應產物混合物主要包含 THF,並且 THF 經交換為苯甲醚。溶劑交換後化合物 141 之濃度可以合適地為約 5:1 L/kg、約 10:1 L/kg 或約 15:1 L/kg 或約 20:1 L/kg 及其範圍,諸如約 5:1 至約 20:1 L/kg 或約 5:1 至約 15:1 L/kg。在一些此類態樣中,化合物 141 之最終濃度為約 5 至約 15 重量%。
在一些態樣中,化合物 141 可視情況藉由將濾液濃縮至幾乎乾燥而作為殘留物從反應產物混合物分離。在一些態樣中,化合物 141 可視情況藉由濃縮以去除溶劑然後添加反溶劑 (諸如正庚烷) 並對其冷卻而從反應產物混合物中結晶。在一些態樣中,濃縮可以在低於 60℃ 之溫度在真空中進行。在一些實施例中,化合物 141 的產率為至少 90% 或至少 95%。 化合物 180 之製備
在本揭露之一些態樣中,化合物 180 可以根據以下反應方案從化合物 90 及 141 製備,其中「LG」為離去基團:
Figure 02_image057
在一些態樣中,離去基團為鹵素或三氟甲磺酸根。在一個態樣中,離去基團為 Br。
在一些態樣中,化合物 180 可以藉由圖 1 至圖 3 中描繪之任何方法製備。
用於製備化合物 180 之方法包含形成包含化合物 141、化合物 90、鈀催化劑及芳基磷酸酯催化劑配位基、鹼及非質子性溶劑的反應混合物。使該反應混合物反應以形成包含化合物 180 的反應產物混合物。視情況從反應產物混合物分離化合物 180。
在用於製備化合物 180 的一些態樣中,化合物 141 直接使用而不經分離。在此類態樣中,可以將包含化合物 141 之反應產物混合物中的溶劑交換為用於形成包含化合物 141、化合物 90、Pd 催化劑及配位基以及鹼之反應混合物的溶劑。溶劑交換可藉由本領域技術人員已知的方法進行,如本文別處所述。在一個此類態樣中,化合物 141 反應產物混合物中包含的一部分溶劑 (例如,THF) 可以藉由減壓蒸餾去除。例如,可以汽提約 40%、約 50%、約 60%、約 70% 或約 80% 的溶劑。在一個態樣中,溶劑含量可從約 10 體積 (V) 減少至約 2 至 3V。然後可以添加用於化合物 141/90 反應混合物的溶劑 (例如,苯甲醚),隨後蒸餾以從化合物 141 反應產物混合物中主要去除溶劑的剩餘部分並達到例如約 3V、4V、5V、6V 或 7V 的總體積。
反應混合物包含大約等莫耳量的化合物 90 及 141 到略微化學計量過量的化合物 90,諸如當量比為 1.05:1 或 1.1:1。反應混合物溶劑可以合適地為如本文別處所述之非質子性溶劑,或如本文所述之極性非質子性溶劑。合適溶劑的非限制性示例包括 THF、2-Me-THF、三級丁基甲基醚、環丙基甲基醚、甲苯、苯甲醚、三氟甲苯、氯苯及其混合物。在一些態樣中,溶劑為苯甲醚。
化合物 141 在溶液中的濃度合適地為約 10 wt.%、約 10 wt.%、約 15 wt.%、約 20 wt.%、約 25 wt.% 或約 30 wt.%,及自其構建之任何範圍,例如約 5 wt.% 至約 30 wt.%、約 10 wt.% 至約 25 wt.%、約 10 wt.% 至約 20 wt.%、或約 15 wt.% 至約 25 wt.%。
鈀催化劑合適地為 Pd 錯合物及配位基。在一些態樣中,可預製 Pd 錯合物。在一些態樣中,Pd 錯合物係原位形成。在任一態樣中,Pd 錯合物係自 Pd 前驅物 Pd(II) 錯合物例如且不限於,Pd(OAc) 2、[PdCl(烯丙基)] 2或 [PdCl(桂皮基)] 2形成,或自 Pd(0) 錯合物諸如 [Pd(PPh 3) 4]、[Pd(P(oTol) 3) 2]、Pd 2(dba) 3或 Pd(dba) 2形成。在一些態樣中,配位基為膦配位基。膦配位基的非限制性示例包括 Xantphos、DPEPhos、dppf 及 dppp。在一些態樣中,催化劑為 Pd(OAc) 2並且配位基為 XantPhos。在一些態樣中,催化劑為 Pd(OAc) 2並且配位基為 DPEPhos。在一些態樣中,鈀催化劑為 Pd 2(dba) 3並且催化劑配位基為 Xantphos。鈀催化劑與化合物 141 的當量比為約 0.005:1 至約 0.05:1、約 0.01:1 至約 0.03:1、或約 0.01:1 至約 0.02:1。催化劑配位基與催化劑的莫耳比為約 1.2:1、約 1.5:1、約 1.6:1、約 1.7:1、約 1.8:1、約 1.9:1、約 2:1、約 2.1:1 、約 2.2:1、約 2.3:1、約 2.4:1、約 2.5:1 或約 3:1,以及自其構建之任何範圍,諸如約 1.2:1 至約 3:1、約 1.5: 1 至約 2.5:1,或約 1.8:1 至約 2.2:1。
在一些態樣中,鹼為如本文別處所述之無機鹼。在一些此類態樣中,鹼為式 M 2CO 3之鹼金屬碳酸鹽,其中 M 為 Na 或 K。在一些此類態樣中,鹼為如本文別處所述之有機鹼,諸如式 MOR',其中 M 為 Na 或 K,並且其中 R’ 為 C 1-6烷基,諸如甲基、乙基、正丙基、異丙基或叔戊基。在一些此類態樣中,有機鹼為 NaOMe。鹼與化合物 141 的當量比合適地為約 1.2:1 至約 3:1,諸如約 1.5:1 或約 2:1。
反應混合物可以視情況包含添加劑。添加劑的一個示例為三苯基膦 (「PPh 3」)。合適的添加劑濃度為約 1 mol%、約 2 mol%、約 3 mol%、約 4 mol%、約 4.5 mol%、約 5 mol% 或約 6 mol%,及自其構建之任何範圍,諸如約 1 mol% 至約 6 mol%、約 3 mol% 至約 5 mol%、或約 4 mol% 至約 5 mol%。
用於形成化合物 180 之反應可以在惰性環境下進行,例如用 Ar 或 N 2吹掃及/或 Ar 或 N 2覆蓋。反應可以在以下溫度進行:約 20℃、約 30℃、約 40℃、約 50℃、約 60℃、約 70℃、約 80℃、約 90℃、約 100℃、約 110℃、約 115℃、約 120℃、約 130℃、約 140℃ 或約 150℃,以及自其構建之任何範圍,諸如約 20℃ 至約 150℃、約 70℃ 至約 120℃、或約 20℃ 至約 115℃。當化合物 180 之面積% 濃度 (藉由 HPLC) 小於 2、小於 1、小於 0.5 或小於 0.1 時,可以認為反應完成。在一些態樣中,反應完成時間可以為約 4 小時、約 6 小時、約 12 小時、約 16 小時、約 18 小時、約 24 小時、約 30 小時或更長。
在一些特定態樣中,催化劑為 Pd(OAc) 2,配位基為 DPEPhos,且鹼為有機鹼。在一些此類態樣中,有機鹼為甲醇鈉或甲醇鉀。在一些此類態樣中,反應混合物溶劑主要包含苯甲醚並且反應溫度為約 80℃ 至約 100℃,諸如約 90℃。完全轉化的反應時間為約 2 小時、4 小時、約 8 小時、約 12 小時或約 16 小時。在一些視情況之態樣中,反應混合物可以進一步包含添加劑,諸如 PPh 3
在一些特定態樣中,催化劑為 Pd(OAc) 2,配位基為 XantPhos,且鹼為無機鹼。在一些此類態樣中,無機鹼為碳酸鈉或碳酸鉀。在一些此類態樣中,反應混合物溶劑主要包含苯甲醚及水,並且反應溫度為約 100℃ 至約 125℃,諸如約 110℃ 至約 115℃。完全轉化的反應時間為約 8 小時、約 12 小時、約 15 小時、約 18 小時、約 21 小時或約 24 小時。
在一些特定態樣中,催化劑為 Pd(OAc) 2,配位基為 DPEPhos,且鹼為 NaOMe。在一些實施例中,包括添加劑 PPh 3。在一些特定態樣中,使用約 0.5 至 2.5mol% 的 Pd(OAc) 2、約 2 至 4 mol% 的 DPEPhos 及約 1 至 1.5 當量的 NaOMe,視情況使用約 3 至 6 mol% 的 PPh 3。在某些實施例中,反應溫度為約 90℃。在一些特定態樣中,催化劑為 Pd(OAc) 2(約 1.5 mol%),配位基為 DPEPhos (約 3 mol%),添加劑為 PPh 3(約 4.5 mol%),鹼為 NaOMe (約 1.2 當量),且反應溫度約為 90℃。
在一些實施例中,使用 Pd(OAc) 2、DPEPhos、PPh 3及 NaOMe 產生化合物 180 可以使用比先前使用的製備化合物 180 之方法更短的反應時間、更低的反應溫度及更簡單的後處理來完成。例如,在一些實施例中,使用 Pd(OAc) 2、XantPhos 及 K 2CO 3產生化合物 180 的方法可能需要更長的反應時間、更高的反應溫度及更複雜的後處理製程來分離化合物 180。
在一些態樣中,化合物 180 可以從反應產物混合物分離。
在其中催化劑為 Pd(OAc) 2並且配位基為 XantPhos 的態樣中,反應產物混合物可以用水洗滌。在此類態樣中,可視情況在攪拌下向反應產物混合物中添加另外的溶劑,然後以約 5:1、約 3:1、約 2:1、約 1:1 或約 1:2 的反應產物混合物或經稀釋之反應產物混合物與水的體積比添加水。溫度可以合適地為約 40℃ 至約 100℃,例如約 50℃、約 60℃、約 70℃、約 80℃、約 85℃、約 90℃ 或約 95℃。可以藉由相分離去除水,並且可以蒸餾所收集的經洗滌之反應產物混合物有機相以減少體積。體積減少後的化合物 180 之濃度可以合適地為約 0.2 g/mL、約 0.25 g/mL、約 0.3 g/mL、約 0.35 g/mL、約 0.4 g/mL、約 0.45 g/mL、約 0.5 g/mL、約 0.55 g/mL 或約 0.6 g/mL,以及自其構建之任何範圍,諸如約 0.2 g/mL 至約 0.6 g/mL、約 0.3 g/mL 至約 0.5 g/mL、或約 0.35 g/mL 至約 0.45 g/mL。
化合物 180 濃縮物可以用水洗滌。在一些此類態樣中,化合物 180 濃縮物可以與有機質子性反溶劑 (例如,C 1-6醇) 及水混合而合併。在此類態樣中,有機質子性反溶劑與水的體積比可以為約 3:1、約 2.5:1、約 2:1、約 1.5:1、約 1:1、約 1:1.5、約 1: 2、約 1:2.5 或約 1:3,以及自其構建之任何範圍,諸如約 3:1 至約 1:3、約 2:1 至約 1:1.5、或約 1.5:1 至約 1:1。在此類態樣中,有機質子性溶劑與化合物 180 濃縮物的體積比可以為約 3:1、約 2.5:1、約 2:1、約 1.5:1、約 1:1、約 1: 1.5 或約 1:2,以及自其構建之任何範圍,諸如約 3:1 至約 1:2、約 2.5:1 至約 1:1、或約 2:1 至約 1.5:1。可以藉由相分離去除水,並且可以蒸餾所收集的經洗滌之包含非質子性溶劑及質子性溶劑的化合物 180 濃縮物有機相以減少體積。體積減少後的化合物 180 之濃度可以合適地為約 0.15 g/mL、約 0.2 g/mL、約 0.25 g/mL、約 0.3 g/mL、約 0.35 g/mL、約 0.4 g/mL、約 0.45 g/mL、約 0.5 g/mL、約 0.55 g/mL 或約 0.6 g/mL,以及自其構建之任何範圍,諸如約 0.15 g/mL 至約 0.6 g/mL、約 0.2 g/mL 至約 0.4 g/mL、或約 0.25 g/mL 至約 0.35 g/mL。可以以約 3:1、約 2.5:1、約 2:1、約 1.5:1、約 1:1 或約 1:1.5,以及自其構建之任何範圍,諸如約 3:1 至約 1:1.5、約 2:1 至約 1:1、或約 1.5:1 至約 1:1 的化合物 180 濃縮物與經添加之反溶劑的體積比添加另外的質子反溶劑。在一些態樣中,質子性反溶劑為甲醇、乙醇或 1-丁醇。在一個態樣中,質子性反溶劑為 1-丁醇。
可以將化合物 180 與反溶劑之混合物在混合下以合適的速率諸如約 5 ℃/小時、10 ℃/小時、15 ℃/小時冷卻至低於 0℃,諸如冷卻至約 -5℃ 或 -10℃,以使化合物 180 結晶。晶體漿液可以在最終溫度老化至少 2 小時、至少 4 小時或至少 6 小時,以完成結晶。可以藉由過濾或離心收集化合物 180 晶體並用冷質子性反溶劑及水洗滌。在一些態樣中,當反溶劑為 1-丁醇時,所收集之晶體可以用經冷卻之 (例如,-5℃ ± 5℃) 甲醇或乙醇及水 (例如,醇與水的體積比為約 3:1 至約 1:3,例如約 1:1),然後用經冷卻之 1-丁醇洗滌。經洗滌之化合物 180 晶體可以在真空下乾燥,例如在約 30℃ 至約 80°C (諸如約 60°C 至約 75°C) 之溫度及約 2 至 10 毫巴之真空下乾燥。
在其中催化劑為 Pd(OAc) 2且配位基為 DPEPhos 的態樣中,反應產物混合物可以用水淬滅並且反應產物混合物包含化合物 180 之懸浮液。水與反應產物混合物的體積比可以合適地為約 3:1、約 2:1、約 1.5:1、約 1:1、約 1:1.5、約 1:2 或約 1:3,以及自其構建之任何範圍,諸如約 3:1 至約 1:3,或約 1.5:1 至約 1:1.5。然後可將淬滅的反應產物混合物冷卻至約 0℃、約 5℃、約 10℃、約 15℃ 或約 20℃,以及自其構建之任何範圍,諸如約 0℃ 至約 20℃,或約 5℃ 至約 15℃。冷卻速率可以合適地為約 0.5 ℃/min、約 1 ℃/min、約 1.5 ℃/min、約 2 ℃/min、約 2.5 ℃/min 或約 3 ℃/min,以及自其構建之任何範圍,諸如約 0.5 ℃/min 至約 3℃/min,或約 0.5 ℃/min 至約 1.5 ℃/min。可以藉由過濾或離心收集化合物 180 晶體並用冷 C 1-4醇及/或水洗滌。在一些此類態樣中,晶體可以用醇、水/醇 (例如,以 1:1 v/v 比率) 洗滌,然後用醇洗滌。在一些此類態樣中,醇為甲醇。經洗滌之化合物 180 晶體可以在真空下乾燥,例如在約 30℃ 至約 70°C (諸如約 35°C 至約 55°C) 之溫度及約 2 至 10 毫巴之真空下乾燥。
在一些實施例中,化合物 180 的產率為約 70%、約 75% 或約 80%。化合物 180 的純度為至少 98.5 面積%、至少 99 面積%、至少 99.5 面積%、99 面積%、99.1 面積%、99.2 面積%、99.3 面積%、99.4 面積%、99.5 面積%、99.6 面積%、99.7 面積% 或 99.8 面積%。 化合物 181 之製備
在本揭露之一些態樣中,化合物 181 可以根據以下反應方案從化合物 180 製備:
Figure 02_image059
用於製備化合物 181 的方法包含形成包含化合物 180、鈀催化劑、催化劑配位基、硼化試劑及極性非質子性溶劑的反應混合物。反應混合物亦可包含鹼金屬乙酸鹽。使該反應混合物反應以形成包含化合物 181 的反應產物混合物。視情況從反應產物混合物分離化合物 181。
鈀催化劑及催化劑配位基如本文別處一般所述。在一些態樣中,鈀催化劑為 Pd 2(dba) 3並且催化劑配位基為芳基磷酸酯配位基。在一些此類態樣中,芳基磷酸酯配位基為 XPhos。鈀催化劑與化合物 180 的當量比為約 0.001:1、約 0.002:1、約 0.003:1、約 0.004:1 或約 0.005:1 及其範圍,諸如 0.001:1 至約 0.005: 1。催化劑配位基與催化劑的當量比為約 1.3:1、約 1.5:1、約 1.7:1、約 1.9:1、約 2.5:1 或約 3:1 及其範圍,諸如約 1.3:1 至約 3 或約 1.5:1 至約 2.5:1。硼化試劑如本文別處所述。溶劑為如本文別處所述之極性非質子性溶劑。在一些態樣中,極性非質子性溶劑為 THF。溶劑體積與化合物 180 重量的比率為約 3:1 L/kg、約 5:1 L/kg、約 10:1 L/kg、約 20:1 L/kg 或約 25:1 L/ kg 及其範圍,諸如約 3:1 至約 25:1 L/kg、約 5:1 至約 20:1 L/kg、或約 5:1 至約 15:1 L/kg。在一些態樣中,反應混合物包含的化合物 180 濃度為約 0.1 mol/L、約 0.2 mol/L、約 0.3 mol/L、約 0.4 mol/L 或約 0.5 mol/L 及其範圍,諸如約 0.1 至約 0.5 mol/L。鹼金屬乙酸鹽與化合物 180 的當量比為大於 1:1。在一些態樣中,鹼金屬乙酸鹽為乙酸鉀。在一些態樣中,硼化試劑為雙(品納醇)二硼並且硼酸酯為 4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷。硼化試劑與化合物 180 的當量比為大於 1:1、約 1.2:1、約 1.5:1 或約 2:1 及其範圍,諸如介於 1:1 與 2:1 之間。在一些態樣中,硼化試劑為雙(品納醇)二硼並且硼酸酯為 4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷。在此類態樣中,硼酸酯化合物 181 為化合物 182 之物種:
Figure 02_image061
在一些態樣中,化合物 182 可以根據圖 4 所示之方法製備。
用於形成化合物 181 或 182 的反應可以在惰性環境下進行,例如用 N 2吹掃及/或 N 2覆蓋。該反應可以在回流溫度進行,通常在介於約 60℃ 與約 80℃ 之間。當化合物 160 的面積% 濃度 (藉由 HPLC) 小於 1、小於 0.5 或小於 0.1 時,可以認為反應完成。在一些態樣中,反應完成時間可以為約 6 小時、約 12 小時、約 18 小時、約 24 小時或更長。
在一些態樣中,化合物 181 或 182 可以從反應產物混合物分離。在一些此類態樣中,反應產物混合物可以以約 2 L/kg、約 3 L/kg、約 4 L/kg 或約 5 L/kg 及其比率,諸如約 1 至約 5 L/kg 或約 2 至約 4 L/kg 的水體積與化合物 181 或 182 重量的比率與水混合。可分離水性層並收集在溶液中包含化合物 181 或 182 之有機層。有機層可以蒸餾至減少的體積,其體積與化合物 181 或 182 重量的比率為約 2 L/kg、約 3 L/kg、約 4 L/kg 或約 5 L/kg 及其範圍,諸如約 2 至約 5 L/kg。蒸餾合適地為真空蒸餾,例如在至少 40℃ 之溫度。替代性地,蒸餾可以在大氣壓下進行。包含化合物 181 或 182 之減少的體積可以用極性非質子性溶劑諸如 THF 稀釋,溶劑體積與化合物 181 或 182 重量的比率為約 5 L/kg 至約 8 L/kg,經稀釋之混合物視情況經過濾,並且可以將經稀釋之混合物蒸餾至 每 kg 化合物 181 或 182 約 2 至約 4 L的減少的體積。極性非質子性溶劑稀釋及蒸餾步驟可以重複一次或多次。減少的體積可以與非極性溶劑諸如 MTBE 以約 5 L/kg、約 10 L/kg、約 15 L/kg 或約 20 L/kg 及其範圍,諸如約 5 至約 20 L/kg 或約 5 至約 15 L/kg 的非極性溶劑體積與化合物 181 或 182 重量的比率合併。可將混合物冷卻至約 0 至約 15℃ 以形成作為固體分散體的化合物 181 或 182。可以收集固體化合物 181 或 182,諸如藉由過濾或離心,並乾燥以形成固體化合物 181 或 182。
替代性地,在反應完成以形成化合物 181 或 182 後,可在 60 至 65℃ 過濾掉無機鹽。將濾液冷卻,諸如冷卻至 40 至 45℃,並用木炭過濾。然後可以在大氣壓下減少濾液之體積。減少的體積可以與非極性溶劑諸如 MTBE 以約 5 L/kg、約 10 L/kg、約 15 L/kg 或約 20 L/kg 及其範圍,諸如約 5 至約 20 L/kg 或約 5 至約 15 L/kg 的非極性溶劑體積與化合物 181 或 182 重量的比率合併。
基於化合物 180,化合物 181 或 182 的產率為至少 80%、至少 85% 或至少 90%。藉由 HPLC,化合物 181 或 182 的純度為至少 95 面積%、至少 98 面積% 或至少 99 面積%。 化合物 160 之製備
在一些態樣中,化合物 160 可以根據國際公開號 WO 2018/109050 中揭露之方法,如以下三個方案中一般描述並且如圖 8 至圖 10 進一步描述之反應方案製備:
Figure 02_image063
Figure 02_image065
;和
Figure 02_image067
在一些此類態樣中,化合物 120、130 及 160可以根據 WO 2018/109050 中描述之方法製備,如圖 8 所示。
在一些態樣中,化合物 120 可以根據以下反應方案從化合物 110 製備:
Figure 02_image069
用於製備化合物 120 的方法包含形成包含極性非質子性溶劑、甲基氯化鎂、氯化銅(I) 及化合物 110 的反應混合物。使該反應混合物反應以形成包含化合物 120 的反應產物混合物。
極性非質子性溶劑如本文別處所述。在一些態樣中,極性非質子性溶劑為 THF。
反應混合物可以在 N 2覆蓋及/或 N 2吹掃下形成。在一些態樣中,可將極性非質子性溶劑充填入反應器並與 CuCl 及 MeMgCl 混合。極性非質子性溶劑體積與化合物 110 起始材料重量的比率為約 3 至約 20 L/kg、或約 5 至約 15L/kg。CuCl 與化合物 110 起始材料的當量比為約 0.1:1 至約 0.5:1 或約 0.1:1 至約 0.3:1。MeMgCl 與化合物 110 起始材料的當量比為約 0.05:1 至約 0.3:1 或約 0.05:1 至約 0.15:1。將混合物在約 -30 至約 -10℃ 之溫度攪拌,隨後將化合物 110 添加到反應器中,同時保持該溫度。在約 -30 至約 -10℃ 之溫度將另外的 MeMgCl 添加到反應器中,其中另外的 MeMgCl 與化合物 110 的當量比為約 0.9:1 至約 1.5:1 或約 1:1 至約 1.2:1。形成在溶液中包含化合物 120 之反應產物混合物。在一些態樣中,反應完成時間可以為至少 1 小時或更長。當化合物 110 之面積% 濃度 (藉由 HPLC) 小於 5、小於 2、小於 1、小於 0.5、或小於 0.1 時,可以認為反應完成。
化合物 120 可以從反應產物混合物分離。在一些此類態樣中,反應產物混合物之 pH 可以用無機酸水溶液,例如 3 至 10 w/w% 的 HCl 調整為約 3 至約 4。可以將所得的水相與在溶液中包含化合物 10 之有機相 (諸如 THF) 分離。水相可以用非極性溶劑 (例如,MTBE) 萃取,溶劑體積與化合物 110 起始材料重量的比率為約 2 L/kg 至約 10 L/kg 或約 3 L/kg 至約 7 L/kg。可以合併有機相並用水性無機鹼 (例如 NaHCO 3) 洗滌,然後用鹽水洗滌。然後可以用乾燥劑乾燥洗滌的有機相,例如經 Na 2SO 4乾燥。可以諸如藉由過濾或離心去除乾燥劑。有機相可以濃縮至體積與化合物 110 起始材料重量的比率為約 3 至約 15 L/kg,諸如約 5 L/kg 或約 10 L/kg。濃縮可合適地在約 50 至約 70℃ 在大氣壓下進行。
在一些態樣中,化合物 120 可以如下藉由分餾純化。經合併之有機相或經濃縮之有機相可以首先在低於約 60℃ 之溫度蒸餾以去除主要包含溶劑的第一 (前) 餾分。在介於 60℃ 與 90℃ 之間的溫度 (P ≤ -0.09MPa) 蒸餾可以繼續產生化合物 120 產物餾分。在此類態樣中,化合物 120 的產率為至少 40% 或至少 50%,化合物 120 的純度 (藉由 HPLC) 為至少 95 面積%、至少 98 面積% 或至少 99 面積%。可以視情況繼續蒸餾以去除一種或多種另外的餾分。
在一些特定態樣中,溶劑為 THF,反應混合物中甲基氯化鎂與化合物 110 的莫耳比為 1:1 至 2:1 或約 1.1:1 至約 1.4:1,並且反應混合物中氯化銅(I) 與化合物 110 的莫耳比為約 0.1:1 至約 0.5:1 或約 0.15:1 至約 0.25:1。
在一些此類態樣中,化合物 130 可以根據以下反應方案從化合物 120 製備:
Figure 02_image071
用於製備化合物 130 的方法包含形成包含極性非質子性溶劑、非極性溶劑、三氯氧磷及化合物 120 的反應混合物。可以使該反應混合物反應以形成包含化合物 130 的反應產物混合物。
極性非質子性溶劑如本文別處所述。在一些態樣中,極性非質子性溶劑為 DMF。非極性溶劑如本文別處所述。在一些態樣中,非極性溶劑為 DCM。
反應混合物可以如下形成,並且反應可以在 N 2覆蓋及/或在 N 2吹掃下進行。向反應器中充填非極性溶劑 (例如 DCM) 體積與化合物 120 起始材料重量的比率為約 3 至約 15 L/kg 或約 5 至約 11 L/kg 的非極性溶劑,以及與化合物 120 起始材料的當量比為約 1.5:1 至約 5:1 或約 2:1 至約 3:1 的極性非質子性溶劑 (例如 DMF)。將溶劑組合的溫度調節為約 5 至約 25℃,並將 POCl 3添加到反應器中,其中 POCl 3與化合物 120 的當量比為約 1.5:1 至約 3:1 或約 2: 1 至約 2.25:1。混合物可以視情況一定溫度攪拌至少 0.5 小時。然後在諸如約 5 至約 25℃ 之溫度將化合物 120 添加到反應器中,以形成反應混合物。然後可將反應混合物加熱,諸如加熱至約 35 至約 55℃,以形成包含化合物 130 的反應產物混合物。在一些態樣中,反應完成時間可以為至少 6 小時或更長。當化合物 120 之面積% 濃度 (藉由 HPLC) 小於 5、小於 2、小於 1、小於 0.5、或小於 0.1 時,可以認為反應完成。
化合物 130 可以視情況經純化。在一些此類態樣中,反應產物混合物可以與水混合,其中水體積與化合物 120 起始材料重量的比率為約 3 至約 20 L/kg、或約 5 至約 15 L/kg。溫度可以合適地為約 30 至約 50℃ 並且可以將混合物攪拌至少 0.25 小時、至少 0.5 小時或至少 1 小時。可將混合物冷卻,諸如冷卻至約 15 至約 35℃,並透過過濾介質諸如矽藻土過濾。可以使濾液分離為水相及有機相,並且有機相可以經收集並視情況用水及鹽水洗滌。然後可以濃縮有機相,例如濃縮至體積與化合物 120 起始材料重量的比率為約 2 至約 5 L/kg 或約 2 至約 4 L/kg。有機溶劑 (例如,甲苯或 NMP) 可以以約 1 至約 2 L/kg 的有機溶劑與化合物 120 起始材料重量的比率與經濃縮之有機相合併。例如,可以在真空下及在低於 40℃ 之溫度減少體積,以產生化合物 130 的溶液。在一些態樣中,有機溶劑為 DCM 並且化合物 130 處於在 DCM 中的溶液中。
可以製備化合物 160,形成包含有機溶劑、有機鹼以及化合物 130 和 10 的反應混合物,並使反應混合物反應以形成包含化合物 160 之三環內醯胺的反應產物混合物。
有機鹼如本文別處所述。在一些態樣中,有機鹼為三-C1-6 烷基胺。在一些特定態樣中,有機鹼係選自 4-甲基𠰌啉及 N-乙基二異丙胺。
在一些態樣中,有機溶劑為如本文別處所述之極性非質子性溶劑。在一些特定態樣中,溶劑係選自 NMP 及 DMF。
在一些態樣中,反應混合物中化合物 130 的濃度為約 0.25 至約 2 mol/L、約 0.5 至約 1.5 mol/L 或約 0.5 至約 1 mol/L。在一些態樣中,溶劑體積與化合物 130 重量的比率為約 1.5:1 至約 10:1 L/kg、約 2:1 至約 6:1 L/kg、或約 2:1 至約 4:1 L/kg。有機鹼與化合物 130 的當量比為約 1:1 至約 2:1、約 1.05:1 至約 1.9:1 或約 1.1:1 至約 1.5:1。在一些態樣中,化合物 130 相對於化合物 10 以化學計量過量存在。在一些態樣中,化合物 10 與化合物 130 的當量比為介於 0.7:1 與 1:1 之間,諸如約 0.75:1 至約 0.95:1。
用於形成包含化合物 160 之反應產物混合物的反應可以用 N 2吹掃及/或用 N 2覆蓋進行。在一些態樣中,有機溶劑、有機鹼及化合物 10 在約 95 至約 125℃ 或約 100 至約 120℃ 之溫度在攪拌下在反應器中合併。然後在攪拌下將化合物 130 添加到反應器中,同時保持溫度。在一些態樣中,化合物 130 處於在如本文別處所述之有機溶劑 (例如,甲苯或 NMP) 中的溶液中。在一些態樣中,反應完成時間可以為約 0.25 小時、約 0.5 小時、約 1 小時、約 2 小時、約 3 小時或更長。當化合物 130 之面積% 濃度 (藉由 HPLC) 小於 5、小於 2、小於 1、小於 0.5、或小於 0.1 時,可以認為反應完成。
化合物 160 可以從反應產物混合物分離。在一些分離態樣中,可以將反應產物混合物冷卻,例如冷卻至約 80 至約 95℃。然後可以將水與反應產物混合物合併以形成混合物,其中水體積與化合物 130 起始材料重量的比率為約 3:1 至約 15:1 L/kg 或約 5:1 至約 10:1 L/kg。將混合物冷卻至約 5 至約 30℃,並在該溫度攪拌至少 0.5 小時以形成包含固體化合物 160 之漿液。可以諸如藉由過濾或離心收集固體化合物 160。固體可以視情況經受第二水漿液及收集步驟。然後可以將丙酮與固體化合物 160 合併以形成漿液,例如在約 10 至約 30℃ 之溫度,其中丙酮體積與化合物 130 起始材料重量的比率為約 1.5:1 至約 6:1 L/kg 或約 2:1 至約 4:1 L/kg。可以攪拌漿液至少 1 小時。可以諸如藉由過濾或離心分離固體化合物 160。所收集及固體可以視情況用丙酮洗滌。固體化合物 160 可以經乾燥。在一些乾燥態樣中,乾燥可以在真空下在約 25 至約 50℃ 之溫度進行。化合物 160 的產率為至少 50%、至少 60% 或至少 70%。藉由 HPLC,化合物 160 的純度為至少 98 面積%、至少 99 面積% 或至少 99.5 面積%。
在一些特定態樣中,化合物 120、130 及 160可以根據 WO 2018/109050 之方法製備,如圖 9 所示。
在一些此類態樣中,化合物 120 可以根據圖 8 製備。化合物 120 可以藉由圖 9 所示之固體酮亞硫酸氫鹽加成物途徑純化。該純化方法包含形成包含粗製化合物 120、不與水互混之有機溶劑 (例如,庚烷) 及亞硫酸氫鈉水溶液的第一反應混合物,並且使第一反應混合物反應以形成包含化合物 121 之固體酮亞硫酸氫鹽加成物的第一反應產物混合物:
Figure 02_image073
從第一反應產物混合物分離化合物 121。形成包含經分離之化合物 121、水、不與水互混之低沸點溶劑及碳酸氫鈉的第二反應混合物。在一些態樣中,溶劑為 DCM。使第二反應混合物反應以形成包含第一相及第二相之第二反應產物混合物,該第一相包含溶劑且主要量的經純化之化合物 120 在第一相中之溶液中,且該第二相包含水。將包含經純化之化合物 120 的第一相與水相分離。
在此類態樣中,包含粗製化合物 120 之反應產物混合物的 pH 可以用無機酸水溶液 (例如,提供每當量化合物 120 約 1.2 至約 1.4 當量 HCl 的水性 HCl) 調節至小於 5。
在第一反應混合物中,經 pH 調節之反應產物混合物可以與不與水互混之溶劑 (例如,己烷) 合併,其中粗製化合物 120 可溶於該溶劑中。在一些態樣中,溶劑體積與化合物 120 重量的比率為約 5 L/kg 至約 25 L/kg、約 10 L/kg 至約 20 L/kg、或約 10 L/kg 至約 15 L/kg。第一反應混合物中之水體積與粗製化合物 120 重量的比率為約 1:1 L/kg 至約 10:1 L/kg、約 1.5:1 L/kg 至約 4:1 L/kg、或約 2:1 L/kg 至約 3:1 L/kg。第一反應混合物中亞硫酸氫鈉與化合物 120 的當量比為約 2:1 至約 5:1 或 3:1 至約 5:1。
第一反應混合物係藉由在約 10 至約 30℃ 之溫度在攪拌下將經 pH 調節之反應產物混合物與不與水互混之溶劑混合而形成。將所得混合物與助濾劑 (例如,矽藻土) 合併,並諸如藉由離心或過濾去除固體。分離濾液以形成包含化合物 120 之有機相及水相。在低於 75℃ 之溫度,藉由將體積減少至總體積與化合物 120 重量的比率為約 1.5 L/kg 至約 4 L/kg、或約 1.5 L/kg 至約 2.5 L/kg 而濃縮有機相。將體積減少的有機相冷卻至例如約 10 至約 30℃,視情況過濾,並與提供每當量化合物 120 約 2 至約 5 當量之 NaHSO 3或每當量化合物 120 約 3 至約 4.5 當量之 NaHSO 3的 NaHSO 3水溶液合併,以形成包含固體化合物 121 之漿液。諸如藉由過濾或離心分離固體化合物 121,並將所收集之固體在不與水互混之溶劑 (例如,己烷) 中製成漿液。溶劑體積與化合物 121 重量的比率合適地為約 3 L/kg 至約 13 L/kg、或約 5 L/kg 至約 9 L/kg。諸如藉由過濾或離心分離固體化合物 121。經分離之化合物 121 固體視情況用不與水互混之低沸點溶劑體積 (例如,DCM) 洗滌。
第二反應混合物包含約 5:1 L/kg 至約 15:1 L/kg、或約 7.5:1 L/kg 至約 10.5:1 L/kg 的水體積與經分離之固體 121 重量的比率。第二反應混合物中之水體積與不與水互混之低沸點溶劑 (例如,DCM) 體積的比率為約 1:1 至約 3:1 或約 1.5:1 至約 2.5:1。不與水互混之溶劑之體積與化合物 121 重量的比率為約 2 L/kg 至約 9 L/kg、約 3 L/kg 至約 7 L/kg、或約 4 L/kg 至約 6 L/kg。第二反應混合物中之碳酸氫鈉與化合物 121 的當量比為 1:1 至 2:1、或約 1.25:1 至約 1.75:1。在一些態樣中,碳酸氫鈉為碳酸氫鈉的水溶液。
藉由將化合物 121 固體與水混合併在攪拌下形成第二反應混合物。添加不與水互混之低沸點溶劑,然後添加碳酸氫鈉溶液以形成包含化合物 120 之第二反應產物混合物。所得混合物可與助濾劑 (例如,矽藻土) 合併,並諸如藉由過濾或離心從混合物中去除固體。使濾液或離心液分離為有機相及水相,且分離並收集該等相。水相可以視情況用不與水互混之低沸點溶劑萃取,並合併有機相。經合併之有機相可以用鹽水洗滌。經洗滌的合併有機相可在低於約 70℃ 之溫度濃縮至總體積與化合物 120 重量的比率為約 1.5 L/kg 至約 4 L/kg 或約 1.5 L/kg 至約 2.5L /kg,並且在溶液中包含化合物 120。溶液之測定合適地為約 30% 至約 50%、約 35% 至約 45%、或約 40%。化合物 120 的產率為至少 50%、至少 60% 或至少 70%。
在一些態樣中,化合物 130 可以根據圖 8 所示之方法從化合物 120 製備。
化合物 160 可以從反應產物混合物分離。在一些分離態樣中,可以將反應產物混合物冷卻,例如冷卻至約 80℃ 至約 95℃。然後可以將水與反應產物混合物合併以形成混合物,其中水體積與化合物 130 起始材料重量的比率為約 3:1 至約 15:1 L/kg 或約 5:1 至約 10:1 L/kg。將混合物冷卻至約 5℃ 至約 30℃,並在該溫度攪拌至少 0.5 小時以形成包含固體化合物 160 之漿液。可以諸如藉由過濾或離心收集固體化合物 160。固體可以視情況經受第二水漿液及收集步驟。然後可以將丙酮與固體化合物 160 合併以形成漿液,例如在約 10℃ 至約 30℃ 之溫度,其中丙酮體積與化合物 130 起始材料重量的比率為約 1.5:1 至約 6:1 L/kg 或約 2:1 至約 4:1 L/kg。可以攪拌漿液至少 1 小時。可以諸如藉由過濾或離心分離固體化合物 160。所收集及固體可以視情況用丙酮洗滌。固體化合物 160 可以經乾燥。在一些乾燥態樣中,乾燥可以在真空下在約 25 至約 50℃ 之溫度進行。化合物 160 的產率為至少 50%、至少 60% 或至少 70%。藉由 HPLC,化合物 160 的純度為至少 98 面積%、至少 99 面積% 或至少 99.5 面積%。
在一些特定態樣中,化合物 130 及 160可以根據 WO 2018/109050 中描述之方法製備,如圖 10 所示。
在本揭露之一些此類態樣中,以下反應方案中之化合物 130 可以從化合物 120 之三甲基矽烷基中間體 (在以下反應方案中指定為化合物 122) 製備。反應方案如下:
Figure 02_image075
用於製備化合物 130 之方法包含形成包含第一極性非質子性溶劑、甲基氯化鎂、氯化銅(I)、氯化鋰、氯三甲基矽烷 (TMSCl) 及化合物 110 的第一反應混合物。使第一反應混合物反應以形成包含化合物 122 之第一反應產物混合物。將第一反應產物混合物在水溶液中用第一淬滅劑淬滅,並且將與水不互混之非極性溶劑添加到經淬滅的反應產物混合物中。分離各相並收集包含主要量之化合物 122 的有機相,並濃縮以獲得在溶液中的化合物 122。形成包含第二極性非質子性溶劑、三氯氧磷及化合物 122 之溶液的第二反應混合物。使第二反應混合物反應以形成包含化合物 130 之第二反應產物混合物。將第二反應產物混合物在水溶液中用第二淬滅劑淬滅。分離各相並收集在溶液中包含主要量之化合物 130 的有機相。
第一及第二極性非質子性溶劑如本文別處所述。在一些態樣中,第一極性非質子性溶劑為 THF。在一些態樣中,第二極性非質子性溶劑為 DMF。在一些態樣中,第一淬滅劑為氯化銨。在一些態樣中,第二淬滅劑為磷酸鉀。
在一些態樣中,第一反應混合物包含每公升之化合物 110約 0.25 至約 2 莫耳,或每公升之化合物 110約 0.5 至約 1.1 莫耳。在一些其他態樣中,第一極性非質子性溶劑體積之體積與化合物 110 重量的比率為約 3 至約 11 L/kg、或約 5 L/kg 至約 9 L/kg。相較於化合物 110,MeMgCl 以化學計量過量存在。在一些態樣中,MeMgCl 處於在 THF 中之溶液中,諸如 3M 溶液。在一些態樣中,MeMgCl 與化合物 110 的莫耳比為介於 1:1 與 1.5:1 之間,或為約 1.1:1 至約 1.3:1。相較於化合物 110,TMSCl 以化學計量過量存在。在一些態樣中,TMSCl 與化合物 110 的莫耳比為介於 1:1 與 1.2:1 之間,或約 1.01:1 至約 1.1:1。CuCl 與化合物 110 的莫耳比為約 0.05:1 至約 0.2:1、或約 0.05:1 至約 0.15:1。LiCl 與化合物 110 的莫耳比為約 0.05:1 至約 0.2:1、或約 0.07:1 至約 0.15:1。
在一些態樣中,第二反應產物混合物包含每公升約 0.5 至約 2 莫耳或每公升之化合物 122約 0.7 至約 1.3 莫耳。三氯氧磷與化合物 122 的莫耳比為約 1.5:1 至約 3.1:1、或約 2.1:1 至約 2.6:1。
在第一反應中,在一些態樣中,CuCl、LiCl 及第一極性非質子性溶劑可以 N 2環境中在反應器中在約 10 至約 35℃ 之溫度合併,且冷卻至約 -10 至約 10℃。在約 -10 至約 10℃ 將化合物 110 及 TMSCl 添加到反應器中。形成包含化合物 122 之第一反應產物混合物。在一些態樣中,反應完成時間可以為至少 0.5 小時、至少 1 小時或更長。當化合物 110 之面積% 濃度 (藉由 HPLC) 小於 5、小於 2、小於 1、小於 0.5、或小於 0.1 時,可以認為反應完成。將反應諸如用氯化銨水溶液淬滅,其中氯化銨與化合物 110 的當量比為大於 1:1、約 1.1:1、約 1.2:1 或約 1.3:1。氯化銨溶液體積與化合物 110 的比率為約 2:1 至約 10:1 L/kg、或約 3:1 至約 7:1 L/kg。分離並收集有機相及水相。有機層在溶液中包含化合物 122 並且可以視情況用鹽水洗滌。可以濃縮視情況經洗滌之有機層,直到所收集之餾出物體積與化合物 110 重量的比率為約 8 L/kg 至約 10 L/kg。可以用非極性溶劑 (例如,甲苯) 稀釋經濃縮之第一反應產物混合物,其中所添加之非極性溶劑體積與化合物 110 重量的比率為約 1 L/kg 至約 3 L/kg。在此類態樣中,可以濃縮經稀釋之混合物以去除大約體積的經添加之非極性溶劑,從而產生化合物 122 之溶液。溶液中的化合物 122 測定為約 40 w/w% 至約 60 w/w%、或約 45 w/w% 至約 55 w/w%。基於化合物 110,化合物 122 的產率為至少 60%、至少 70% 或至少 80%,化合物 122 的純度 (藉由 HPLC) 為至少 85 面積% 或至少 90 面積%。
在第二反應中,用非極性溶劑稀釋來自第一反應的溶液,以實現化合物 122 測定為約 25 至約 45 w/w% 或約 30 至約 40 w/w% 或約 35 w/w%。在一些態樣中,非極性溶劑為甲苯。可以進行第一次 POCl 3添加,其中 POCl 3與化合物 110 重量的當量比為約 0.2:1 至約 0.4:1 或約 0.3:1,並且其中溫度為約 5 至約 35℃。在 POCl 3之後添加與化合物 110 的當量比為約 1.5:1 至約 3:1 或約 1.5:1 至約 2.5:1 的 DMF。進行第二次 POCl 3添加,其中 POCl 3與化合物 110 重量的當量比為約 1.5:1 至約 2.5:1 或約 2:1,並將混合物加熱至約 50 至約 70℃ 以形成包含化合物 130 之第二反應產物混合物。在一些態樣中,反應完成時間可以為至少 2 小時或更長。當化合物 110 之面積% 濃度 (藉由 HPLC) 小於 5、小於 2、小於 1、小於 0.5、或小於 0.1 時,可以認為反應完成。將反應產物混合物與提供約 1.2:1 至約 2:1 或約 1.4:1 至約 1.8:1 磷酸鉀與化合物 110 的當量比的磷酸鉀水溶液合併。磷酸鉀溶液體積與化合物 110 重量的比率為約 3 至約 12 L/kg 或約 6 至約 9 L/kg。形成經分離及收集的有機相及水相。有機層用磷酸鉀溶液及水洗滌以獲得經洗滌之有機相 (例如,甲苯),該有機相在溶液中包含化合物 130 並且具有超過 7 的 pH。過濾有機相以生成在溶液 (例如,甲苯) 中的化合物 130。基於化合物 110,化合物 130 的產率為至少 70% 或至少 75%,且化合物 130 的純度 (藉由 HPLC) 為至少 85% 或至少 88%。
在一些態樣中,化合物 130 可以根據圖 8 所示之方法從化合物 120 製備。 化合物 170 之製備
在一些態樣中,化合物 170 可以根據國際公開號 WO 2018/10905 中揭露之方法製備。
在一些此類態樣中,化合物 170 可以根據 WO 2018/10905 之方法製備,如圖 7 及圖 13 所示並在下文再現,藉由形成包含化合物 160、化學計量過量的化合物 100、鈀催化劑及催化劑配位基、鹼以及極性非質子性溶劑的反應混合物:
Figure 02_image077
。 使該反應混合物反應以形成包含化合物 170 的反應產物混合物。化合物 170 可以視情況從反應混合物分離。
反應混合物中之化合物 100 與化合物 160 的當量比為大於 1:1,諸如介於 1:1 與 1.7:1 之間,約 1.05:1 至約 1.5:1 或約 1.05:1 至約 1.2:1。「鈀催化劑」可以為以商業上可接受的產率及轉化率影響化學受質化合物轉化為產物化合物的速率及轉化率的任何鈀催化劑。在一些態樣中,催化鈀物種為選自以下非排他性列表的鈀源:[Pd(烯丙基)Cl] 2、Pd(MeCN) 2Cl 2、Pd(苯甲腈) 2Cl 2、Pd(dba) 2、Pd(OAc) 2、PdCl 2、PdBr 2、Pd(TFA) 2、Pd(MeCN) 4(BF 4) 2、Pd 2(dba) 3、PdCy 3Cl 2、Pd(acac) 2及 Pd(PPh 3) 4。在一些此類態樣中,鈀催化劑為 Pd 2(dba) 3或 Pd(OAc) 2,或為 Pd(OAc) 2。配位基的非限制性示例包括 DPPF、DTPBF、BINAP、DPPE、DPPP、DCPE、RuPhos、SPhos、APhos (amphos)、CPhos、XPhos、 t-BuXPhos、Me 4 t-BuXPhos、新戊基( t-Bu) 2P、( t-Bu) 2PMe、( t-Bu) 2PPh、PCy 3、PPh 3、XantPhos 及 N-XantPhos。在一些態樣中,配位基為 DPPF。極性非質子性溶劑如本文別處所述。在一些態樣中,溶劑為 THF。反應混合物中之溶劑體積與化合物 160 重量的比率可以為約 2:1 至約 30:1 L/kg、約 5:1 至約 20:1 L/kg 或約 5:1 至約 15:1 L/kg。反應混合物中化合物 160 的濃度可以為約 0.1 mol/L 至約 1 mol/L、或約 0.2 至約 0.5 mol/L。催化劑與化合物 160 的當量比可以為約 0.01:1 至約 0.05:1 或約 0.01:1 至約 0.03:1。配位基與催化劑的當量比可以為約 1.2:1 至約 3:1 或約 1.5:1 至約 2.5:1。在一些態樣中,鹼為無機鹼,諸如但不限於鹼金屬氫氧化物、鹼金屬碳酸鹽或鹼金屬碳酸氫鹽。一種此類無機鹼為碳酸鉀。鹼與化合物 160 的當量比合適地為介於 1:1 與 2:1 之間,或約 1.2:1 至約 1.8:1。該反應可以在回流溫度進行,通常在介於約 60℃ 與約 80℃ 之間。當化合物 160 的面積% 濃度 (藉由 HPLC) 小於 3、小於 2、小於 1 或小於 0.5 時,可以認為反應完成。在一些態樣中,反應完成時間可以為 2 小時、6 小時、10 小時、14 小時、18 小時、22 小時或更長。
化合物 170 可以從反應產物混合物分離。在一些態樣中,水可以以約 2:1 至約 20:1 或約 2:1 至約 10:1 的水體積與化合物 160 重量的比率與反應產物混合物合併。可以降低溫度以誘導化合物 170 結晶並形成固體化合物 170 之懸浮液,諸如約 5℃ 至約 30℃ 或約 15℃ 至約 25℃,並在該溫度保持至少 1 小時。可以諸如藉由過濾或離心從反應混合物分離固體化合物 170。經分離之化合物 170 可以視情況經乾燥。在一些乾燥態樣中,乾燥在部分真空下用 N 2吹掃在約 15℃ 至約 60℃、或約 30℃ 至約 60℃、或約 15℃ 至約 50℃、或約 15℃ 至約 40℃、或約 15℃ 至約 30℃ 之溫度進行至少 2 小時。基於化合物 160,化合物 170 的產率為至少 80%、至少 85% 或至少 90%。藉由 HPLC,化合物 170 的純度為至少 95 面積%、至少 98 面積% 或至少 99 面積%。
在一些特定態樣中,化合物 170 可以根據國際公開號 WO 2018/10905 中揭露之方法製備,如圖 11 所示。 化合物 140 之製備
一般而言,化合物 140 可以根據以下方案從化合物 153 及 20 製備:
Figure 02_image079
其中化合物 153 之二級胺在還原劑的存在下在還原性烷基化反應中用化合物 20 烷基化以形成化合物 140。在一些態樣中,化合物 140 可以如圖 12A 所示製備,並在本文中進一步描述。
在一些態樣中,本文提供一種製備化合物 140 之方法,該方法包含: (a) 形成包含化合物 153、化合物 20、NaBH(OAc) 3及溶劑的反應混合物;及 (b) 根據以下方案使反應混合物反應以形成包含化合物 140 之反應產物混合物:
Figure 02_image081
在一些態樣中,乙酸並非經單獨添加,儘管一些可能由殘留水的存在形成。在一些態樣中,在步驟 (a) 中形成的反應產物混合物包含小於 10 重量%、小於 5 重量%、小於 1 重量% 的乙酸,或基本上不含乙酸。在一些實施例中,NaBH -與 OAc -及 HOAc 之總和的比率為小於 1:3.1、或小於 1:3.05、或小於 1:3.01。溶劑可以為例如有機溶劑,諸如非質子性有機溶劑。在一些態樣中,溶劑為 THF 或 Me-THF。在一些態樣中,溶劑為 THF。在一些態樣中,化合物 153 及化合物 20 之來源為在溶劑中的化合物 153 及化合物 20 溶液,例如約 20 wt% 至約 50 wt% 的化合物 153,或約 30 wt% 至約 40 wt% 的化合物 153;以及約 5 wt% 至約 20 wt% 的化合物 20,或約 10 wt% 至約 20 wt% 的化合物 20。在一些態樣中,該溶液藉由在約 5℃ 至約 15℃、或約 10℃ 之溫度將化合物 153 添加到在溶劑中的化合物 20 之溶液中來製備。在一些態樣中,將化合物 153 及在溶劑中的化合物 20之 溶液與 在溶劑中的 NaBH(OAc) 3懸浮液合併以形成反應混合物。在各個態樣中之任一者中,反應混合物中的化合物 153 濃度可以為約 10 wt% 至約 30 wt%、或約 15 wt% 至約 25 wt%、或約 20 wt%。在各個態樣中之任一者中,反應混合物中的化合物 20 濃度可以為約 5 wt% 至約 15 wt%、或約 6 wt% 至約 10 wt%、或約 8 wt%。反應混合物中之化合物 20 與化合物 153 的當量比可以為約 1.1:1 至約 1.9:1、或約 1.2:1 至約 1.4:1、或約 1.3:1。NaBH(OAc) 3與化合物 153 的當量比可以為約 2:1 至約 1:1、或約 1.7:1 至約 1.3:1、或約 1.5:1。用於形成化合物 140 之反應可以用 N 2吹掃及/或用 N 2覆蓋進行。該反應通常在約 25℃ 至約 45℃、或約 30℃ 至約 40℃、或約 35℃ 之溫度進行。在一些態樣中,反應完成時間可以為約 0.5 小時、約 1 小時、約 2 小時、約 4 小時或更長。當化合物 153 之面積% 濃度 (藉由 HPLC) 小於 2、小於 1、小於 0.5、或小於 0.1 時,可以認為反應完成。
在一些態樣中,反應產物混合物隨後與水及鹼合併,其中水及鹼可以單獨添加。反應產物混合物可以以約 1:1 至約 5:1 L/kg 或約 2:1 至約 3:1 L/kg 的水體積與化合物 140 重量的比率與水混合。在某些態樣中,混合物中所添加之水與溶劑的重量比為約 0.4:1 至約 0.8:1,或為約 0.6:1。然後可以分離各相以形成水相及有機相,並添加鹼。在一些態樣中,鹼為無機鹼。在某些態樣中,鹼為 NaOH。鹼可以例如作為水溶液,例如作為濃度為約 20 wt% 至約 40 wt% 或約 30 wt% 的 NaOH 水溶液添加。可以添加一定量的鹼以使水相之 pH 達到約 12。例如,可以以約 3:1 至約 1:1、或約 2:1 的鹼與化合物 140 的比率添加鹼。
然後可以分離化合物 140,這可以包括例如一個或多個溶劑交換、蒸餾及/或結晶步驟。例如,在一些態樣中,在添加鹼之後,將包含化合物 140 之有機層分離,視情況過濾,並且將包含化合物 140 之有機相中的溶劑交換為另一種溶劑。溶劑交換可藉由本領域技術人員已知的方法進行,如本文別處所述。在一個此類態樣中,可以藉由在減壓下蒸餾去除包含化合物 140 (例如,THF) 之有機相中的部分溶劑。例如,可以諸如在還原環境下,例如在約 250 毫巴至 350 毫巴、或約 300 毫巴汽提約 40%、約 50%、約 60%、約 70% 或約 80% 的溶劑。可以用另一種溶劑諸如有機質子性溶劑代替汽提物(stripped)。有機質子性溶劑可以為醇。在一些態樣中,有機質子性溶劑為異丙醇。在一些態樣中,本文之方法進一步包含使化合物 140 結晶。例如,該結晶可以在本文所述之溶劑交換步驟之後。可將化合物 140 之溶液冷卻,諸如冷卻至低於 40℃、低於 20℃、或約 5℃,並在攪拌的同時形成化合物 140 晶體。然後可以諸如藉由過濾分離晶體,視情況用另外的溶劑洗滌,並在減壓下乾燥以得到經純化之乾燥化合物 140 晶體。在一些實施例中,化合物 140 之溶液係用化合物 140 之晶體接種以促進結晶。化合物 140 的產率可以為至少 85% 或至少 90%。藉由 HPLC,化合物 140 的純度可以為至少 95%、至少 98% 或至少 98.5%。
在其他態樣中,化合物 140 可以根據 WO 2018/10905 之方法製備,如圖 12B 的最後一個步驟所示。 化合物 153 之製備
一般而言,化合物 153 可根據以下方案製備:
Figure 02_image083
在此類態樣中,化合物 154A 可從包含化合物 50、化合物 40、二㗁烷、K 3PO 4、Pd(OAc) 2催化劑及 BINAP 配位基的反應混合物製備。在反應混合物中,在二㗁烷中的化合物 50 濃度約為 10 w/w%,K 3PO 4與化合物 50 的當量比為約 2,Pd(OAc) 2催化劑與化合物 50 的當量比為約 0.012:1,Pd(OAc) 2催化劑與 BINAP 配位基的當量比為約 1:1。使反應混合物在約 95℃ 至約 105℃ 反應約 15 小時以形成包含經 BOC-保護之化合物 154 的反應產物混合物,產率為約 79%。形成包含化合物 154A、甲醇、10% 碳上鈀催化劑及氫的反應混合物。在反應混合物中,甲醇體積與化合物 154A 重量的比率為約 5:1,碳上鈀催化劑與化合物 154A 的重量比為約 0.05:1。在一些態樣中,當 PG 為 BOC 時,將化合物 154A 指定為化合物 154。
在此類態樣中,化合物 153 可以根據以下反應方案從化合物 154A 製備:
Figure 02_image085
用於製備化合物 153 之方法包含形成包含具有保護基 PG 部分之化合物 154A、鹽酸及包含水之溶劑的反應混合物。使反應混合物反應以形成包含經去保護之化合物 154A 的反應產物混合物。化合物 153 可以視情況從反應產物混合物分離。
用於形成化合物 153 之反應可以用 N 2吹掃及/或用 N 2覆蓋進行。該反應通常在約 40 至約 70℃ 或約 50 至約 60℃ 之溫度進行。在一些態樣中,反應完成時間可以為至少 1 小時或更長。當化合物 154A 的面積% 濃度 (藉由 HPLC) 小於 2、小於 1、小於 0.5 或小於 0.1 時,可以認為反應完成。
在一些態樣中,化合物 153 可以從反應產物混合物分離。在此類態樣中,可以將反應產物混合物冷卻,例如冷卻至約 10 至約 30℃,並且可以用如本文別處所述之非極性溶劑 (例如,DCM) 萃取反應混合物,溶劑體積與化合物 153 重量的比率為約 3:1 L/kg 至約 11:1 L/kg 或約 5:1 L/kg 至約 9 L/kg。可以收集水相並用水性強無機鹼水例如約 30% NaOH 將其 pH 調節至大於 11。經 pH 調節之水相可以用非極性溶劑 (例如,DCM) 萃取,溶劑體積與化合物 153 重量的比為約 5:1 L/kg 至約 20:1 L/kg 或約 8:1 L/kg 至約 15:1 L/kg。可以用非極性溶劑進行第二次水相萃取。將有機相合併並且可以用水洗滌至少一次,水的體積通常與每次非極性溶劑萃取的體積相一致。然後可以用乾燥劑 (例如,MgSO4) 乾燥合併的經洗滌之有機相並過濾。濾液在溶液中包含濃度為約 2 至約 8 w/w% 或約 2 至約 6 w/w% 的化合物 153。在一些態樣中,固體化合物 153 可以藉由在真空下蒸發溶劑獲得。在一些實施例中,所使用之溶劑為酯。在某些實施例中,固體化合物 153 係藉由從乙酸異丙酯中蒸發溶劑獲得。在一些其他態樣中,化合物 153 的溶液可以直接用於製備化合物 140。化合物 153 的產率為至少 80% 或至少 90%。 整體製程
化合物 200 可以在圖 13 所示之整體製程中製備,其中步驟 1 至 3 及 7 至 10 涉及本文別處所述之國際公開號 WO 2018/109050 之一般方法,並且其中步驟 4 至 6 及 10 至 12 涉及本揭露之反應。 化合物 200 之溶劑合物
本文進一步提供化合物 200 之溶劑合物,諸如彼等可以在製造化合物 200 期間產生者。在一些實施例中,該等溶劑合物為結晶溶劑合物。在某些實施例中,結晶溶劑合物為乙醇半溶劑合物。在一些實施例中,結晶溶劑合物為甲苯溶劑合物。在一些實施例中,結晶溶劑合物為乙醇溶劑合物。
在一些實施例中,結晶乙醇半溶劑合物的特徵在於,XRPD 圖譜包含一個或多個 (例如,一、二、三、四、五、六、七、八、九、十個或大於十個;或至少兩個、至少三個、至少四個、至少五個、至少六個、至少七個、至少八個、至少九個或至少十個) 選自表 X 的特徵峰。在一些實施例中,結晶乙醇半溶劑合物的特徵在於,XRPD 圖譜包含至少四個、至少五個或所有六個以下峰:7.04、14.05、15.03、17.48、19.23 及 21.11 (±0.2° 2θ)。在一些實施例中,結晶乙醇半溶劑合物具有基本上如圖 17 中提供的 XRPD 圖譜。
在一些實施例中,結晶甲苯溶劑合物的特徵在於,XRPD 圖譜包含一個或多個 (例如,一、二、三、四、五、六、七、八、九、十個或大於十個;或至少兩個、至少三個、至少四個、至少五個、至少六個、至少七個、至少八個、至少九個或至少十個) 選自表 X 的特徵峰。在一些實施例中,結晶甲苯溶劑合物具有基本上如圖 18 中提供的 XRPD 圖譜。在一些實施例中,結晶甲苯溶劑合物的特徵在於,XRPD 圖譜包含以下峰中的至少四個或全部五個:4.18、6.91、14.20、15.59 及 16.83 (±0.2° 2θ)。
在一些實施例中,結晶乙醇溶劑合物的特徵在於,XRPD 圖譜包含一個或多個 (例如,一、二、三、四、五、六、七、八、九、十個或大於十個;或至少兩個、至少三個、至少四個、至少五個、至少六個、至少七個、至少八個、至少九個或至少十個) 選自表 X 的特徵峰。在一些實施例中,結晶乙醇溶劑合物具有基本上如圖 19 中提供的 XRPD 圖譜。在一些實施例中,結晶乙醇溶劑合物的特徵在於,XRPD 圖譜包含以下峰中的至少四個、至少五個、至少六個或全部七個:5.41、5.64、8.46、13.83、14.02、14.56 及 16.96 (±0.2° 2θ)。 X 選定化合物 200 溶劑合物同質多形體的 XRPD 峰列表。每個單獨峰的位置誤差為 ±0.2° 2θ。
乙醇半溶劑合物 甲苯溶劑合物 乙醇溶劑合物
獨特峰 [°2θ] 相對強度 [%] 獨特峰 [°2θ] 相對強度 [%] 獨特峰 [°2θ] 相對強度 [%]
7.04 62 4.18 100 5.41 79
7.78 15 6.91 10 5.64 64
9.41 7 7.43 6 7.14 17
9.65 9 7.78 5 8.46 57
9.76 16 8.40 2 11.71 14
10.51 13 10.76 3 11.94 17
11.68 24 11.36 2 12.41 12
13.63 11 11.68 3 12.70 9
14.05 44 12.54 2 13.26 37
14.67 16 14.20 15 13.83 40
15.03 65 14.66 6 14.02 100
15.61 35 15.21 7 14.38 57
15.95 16 15.28 7 14.56 77
16.19 25 15.59 10 15.58 16
16.61 7 16.04 6 15.93 20
17.24 23 16.83 11 16.20 28
17.48 45 18.09 3 16.96 64
17.71 9 19.53 4 17.45 41
17.85 6 25.16 4 17.90 26
18.44 15 26.63 5 18.19 11
18.84 6       18.82 8
19.23 42       19.80 18
19.55 8       20.36 14
19.81 6       21.26 28
21.11 100       21.35 26
21.67 32       21.84 14
21.91 15       22.42 65
22.63 9       22.83 59
22.93 12       23.11 64
23.17 12       23.56 16
24.05 12       24.00 23
24.35 18       24.32 18
24.91 30       24.94 12
25.35 13       25.20 36
26.70 9       25.36 20
26.90 13       26.05 16
27.39 10       26.21 13
            26.71 28
            26.98 13
            27.74 10
            27.86 14
            28.26 13
示例性實施例 E1. 一種製備化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽之方法, 該方法包含: (a) 形成反應混合物,該反應混合物包含化合物 170、化合物 181、鈀催化劑及包含鹼之溶劑系統,且其中鈀催化劑與化合物 170 之當量比為約 0.001:1 至小於 0.005:1;以及 (b) 根據以下方案,使該反應混合物反應以形成包含化合物 190 之反應產物混合物:
Figure 02_image087
, 其中 Pd 催化劑包含含有膦配位基及至少一個鈀-碳鍵之鈀(II) 物種, 其中: (i)  產生鈀-碳鍵之片段為下式之烯丙基衍生物
Figure 02_image007
其中 R 6至 R 10中之各者獨立地選自由以下所組成之群組:H、視情況經取代之 C 1-6烷基、視情況經取代之 C 6芳基及視情況經取代之雜芳基;且 R 6與 R 10可視情況一起形成包含芳香環之稠合雙環; 其中基於化合物 170,化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽之產率為至少 50%。 E2. 如 E1 之方法,其中產生鈀-碳鍵之片段為下式之茚基
Figure 02_image033
其中 R 11為 C 1-10-烷基。 E3. 如 E1 或 E2 之方法,其中烯丙基衍生物係選自: (a) 其中 R 6至 R 10中之各者為 H 之衍生物; (b) 其中 R 6為 -CH 3且 R 7至 R 10中之各者為 H 之衍生物; (c) 其中 R 7為 -CH 3且 R 6及 R 8至 R 10中之各者為 H 之衍生物; (d) 其中 R 8為 -CH 3且 R 6、R 7、R 9及 R 10中之各者為 H 之衍生物; (e) 其中 R 6為 -苯基且 R 7至 R 10中之各者為 H 之衍生物; (f)  其中 R 7為 -苯基且 R 6及 R 8至 R 10中之各者為 H 之衍生物;以及 (g) 結構
Figure 02_image035
。 E4. 如 E1 至 E3 中任一項之方法,其中膦配位基為式
Figure 02_image037
其中: R 1及 R 2各自獨立地選自視情況經取代之 C 1-12烷基、視情況經取代之 C 3-C 20環烷基及視情況經取代之 C 5或 C 6芳基;且 R 3至 R 5各自獨立地選自 H、視情況經取代之 C 1-6烷基、式 -O-C 1-6烷基之烷氧化物及式 -N(R 12)(R 13) 之胺,其中 R 12及 R 13獨立地選自 H 及 C 1-6烷基。 E5. 如 E1 至 E4 中任一項之方法,其中膦配位基為具有以下結構之 SPhos
Figure 02_image039
。 E6. 如 E1 至 E5 中任一項之方法,其中 Pd 催化劑係選自: (a) 陽離子鈀物種,其包含無機或有機相對離子 X;以及 (b) 中性鈀物種,其包含經配位之無機或有機配位基 X。 E7. 如 E6 之方法,其中 X 係選自鹵素、羧酸根、磺酸根及無機陰離子。 E8. 如 E7 之方法,其中: (a) 羧酸根係選自 CH 3C(O)O -及 tBuC(O)O -; (b) 該磺酸根係選自 CF 3SO 3 -、甲苯磺酸根 (tosylate)、苯磺酸根 (besylate) 及硝基苯磺酸根 (nosylate);以及 (c) 無機陰離子係選自 PF 6 -、BF 4 -、B(C 6F 5) 4 -、NO 3 -及 SO 4 2-。 E9. 如 E7 或 E8 之方法,其中 X 為 CF 3SO 3 -。 E10. 如 E1 至 E9 中任一項之方法,其中鈀催化劑包含 CF 3SO 3 -有機相對離子,其中膦配位基為 SPhos,且其中 R 6至 R 10中之各者為 H。 E11. 如 E1 至 E10 中任一項之方法,其中溶劑系統主要包含非質子性低分子量酯溶劑及水,其中非質子性低分子量酯溶劑與水的體積比為約 1:0.1 至約 1:1,且其中將反應混合物加熱至約 60℃ 至約 80℃。 E12. 如 E1 至 E11 中任一項之方法,其中化合物 181 與化合物 170 的當量比為大於 1:1,且鈀催化劑與化合物 170 的當量比為約 0.001:1 至約 0.003:1、或約 0.002:1。 E13. 如 E1 至 E12 中任一項之方法,其中: (a) 催化劑為 [(SPhos)Pd(烯丙基)] CF 3SO 3; (b) 溶劑系統主要包含乙酸乙酯及水,其中乙酸乙酯與水之體積比為約 1:0.1 至約 1:1;且 (c) 硼酸酯 (boronate) 為以下結構之 4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷 (dioxaborolane):
Figure 02_image094
。 E14. 如 E1 至 E13 中任一項之方法,其中: 化合物 190 或其立體異構物、幾何異構物、互變異構物或鹽的產率為至少 60%、至少 70%、至少 80% 或至少 90%,並且化合物 190 或其立體異構物、幾何異構物、互變異構物或鹽的純度為至少 99 面積% 或至少 99.5 面積%。 E15. 如 E1 至 E14 中任一項之方法,其中: (a) 基於化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽,二聚體雜質之含量為小於 0.1 面積%,其中二聚體雜質具有以下結構
Figure 02_image012
;和 (b) 基於化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽,醇及酮雜質之結合含量為小於 0.25 面積%,其中醇及酮雜質具有以下結構
Figure 02_image097
。 E16. 如 E1 至 E15 中任一項之方法,其進一步包含使化合物 190 或其立體異構物、幾何異構物、互變異構物或鹽反應以形成化合物 200 或其立體異構物、幾何異構物、互變異構物或鹽,該反應包含: (a) 根據以下方案,使化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽與還原劑及鹼在溶劑的存在下接觸以形成化合物 200、或其立體異構物、幾何異構物、互變異構物或鹽
Figure 02_image099
;和 (b) 分離化合物 200、或其立體異構物、幾何異構物、互變異構物或鹽, 其中基於化合物 170,化合物 200 或其立體異構物、幾何異構物、互變異構物或鹽的產率為至少 60%、至少 70%、至少 80% 或至少 85%,並且化合物 200 或其立體異構物、幾何異構物、互變異構物或鹽的純度為至少 99 面積% 或至少 99.5 面積%。 E17. 如 E1 至 E16 中任一項之方法,其進一步包含從反應產物混合物分離化合物 190 或其立體異構物、幾何異構物、互變異構物或鹽 E18. 如 E1 至 E17 中任一項之方法,其中化合物 181 藉由以下方式製備: (a) 形成包含化合物 140、碳上鉑/釩催化劑、溶劑及氫之第一反應混合物; (b) 根據以下方案使第一反應混合物反應以形成包含化合物 140 之第一反應產物混合物
Figure 02_image101
; (c) 形成包含化合物 141、化合物 90、鈀催化劑、催化劑配位基、鹼及溶劑之第二反應混合物;以及 (d) 根據以下方案,使第二反應混合物反應以形成包含化合物 180 之第二反應產物混合物,其中 LG 為離去基團
Figure 02_image103
;和 (e) 根據以下方案,使化合物 180 與硼化劑在溶劑的存在下反應以形成化合物 181
Figure 02_image105
, 其中基於化合物 140,化合物 141 之產率為至少 90% 或至少 95%,且 其中基於化合物 141,化合物 180 之產率為至少 60%、至少 70%、至少 80%,且化合物 180 之純度為至少 95%、至少 98% 或至少 99%。 E19. 如 E1 至 E17 中任一項之方法,其中化合物 181 藉由以下方式製備: (a) 形成包含化合物 140 以及包含有機溶劑和水之溶劑的第一反應混合物的製程;並且使該反應混合物與過渡金屬催化劑在氫的存在下接觸以形成包含化合物 141 之第一產物混合物,其中該製程為連續流動製程
Figure 02_image107
; (b) 形成包含化合物 141、化合物 90、鈀催化劑、催化劑配位基、鹼及溶劑之第二反應混合物;以及 (c) 根據以下方案,使該第二反應混合物反應以形成包含化合物 180 之第二反應產物混合物,其中 LG 為離去基團
Figure 02_image109
;和 (d) 根據以下方案,使化合物 180 與硼化劑 (borylation agent) 在溶劑的存在下反應以形成化合物 181
Figure 02_image111
, 其中基於化合物 140,化合物 141 之產率為至少 90% 或至少 95%,且 其中基於化合物 141,化合物 180 之產率為至少 60%、至少 70%、至少 80%,且化合物 180 之純度為至少 95%、至少 98% 或至少 99%。 E20. 如 E18 或 E19 之方法,其中鈀催化劑為 Pd(OAc) 2;配位基為 Xantphos,鹼為 K 2CO 3;且溶劑主要包括苯甲醚。 E21. 如 E20 之方法,其中:鈀催化劑為 Pd(OAc) 2;配位基為 DPEPhos,鹼為 NaOMe;且溶劑主要包括苯甲醚。 E22. 如 E18 至 E21 中任一項之方法,其中離去基團為鹵素或三氟甲磺酸根,或者為 Br。 E23. 如 E18 至 E22 中任一項之方法,其中在形成第二反應混合物之前從第一反應產物混合物分離化合物 141。 E24. 如 E18 至 E23 中任一項之方法,其中化合物 140 藉由以下方式製備: (a) 形成包含化合物 153、化合物 20、NaBH(OAc) 3及溶劑的反應混合物;及 (b) 根據以下方案使反應混合物反應以形成包含化合物 140 之反應產物混合物:
Figure 02_image113
。 E25. 如 E24 之方法,其中步驟 (a) 中的溶劑為有機溶劑,視情況為非質子有機溶劑,視情況為 THF 或 Me-THF。 E26. 如 E24 或 E25 之方法,其中 NaBH -與 OAc- -及 HOAc 之總和的比率為小於 1:3.1;且步驟 (a) 中的溶劑為 THF。 E27. 一種減少 Suzuki 偶合反應中的副產物形成之方法,該方法包含: (a) 形成包含化合物 170、化合物 181、鈀催化劑、溶劑系統及鹼之反應混合物,其中鈀催化劑與化合物 170 之當量比為約 0.001:1 至小於 0.005:1;以及 (b) 根據以下方案,使反應混合物反應以形成包含化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽之反應產物混合物:
Figure 02_image115
, 其中 Pd 催化劑包含含有膦配位基及至少一個鈀-碳鍵之鈀(II) 物種, 其中: (i)  產生該鈀-碳鍵之片段為下式之烯丙基衍生物
Figure 02_image007
其中 R 6至 R 10中之各者獨立地選自由以下所組成之群組:H、視情況經取代之 C 1-6烷基、視情況經取代之 C 6芳基及視情況經取代之雜芳基;且 R 6與 R 10可視情況一起形成包含芳香環之稠合雙環; 其中: (a) 基於化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽,二聚體雜質之含量為小於 0.1 面積%,其中該二聚體雜質具有以下結構
Figure 02_image012
;和 (b) 基於化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽,醇及酮雜質之結合含量為小於 0.25 面積%,其中醇及酮雜質具有以下結構
Figure 02_image119
。 E28. 如 E27 之方法,其中產生鈀-碳鍵之片段為下式之茚基
Figure 02_image033
其中 R 11為 C 1-10-烷基。 E29. 如 E27 或 E28 之方法,其中烯丙基衍生物係選自: (a) 其中 R 6至 R 10中之各者為 H 之衍生物; (b) 其中 R 6為 -CH 3且 R 7至 R 10中之各者為 H 之衍生物; (c) 其中 R 7為 -CH 3且 R 6及 R 8至 R 10中之各者為 H 之衍生物; (d) 其中 R 8為 -CH 3且 R 6、R 7、R 9及 R 10中之各者為 H 之衍生物; (e) 其中 R 6為 -苯基且 R 7至 R 10中之各者為 H 之衍生物; (f)  其中 R 7為 -苯基且 R 6及 R 8至 R 10中之各者為 H 之衍生物;以及 (g) 以下結構之衍生物
Figure 02_image122
。 E30. 如 E27 至 E29 中任一項之方法,其中膦配位基為式
Figure 02_image037
其中: R 1及 R 2各自獨立地選自視情況經取代之 C 1-12烷基、視情況經取代之 C 3-C 20環烷基及視情況經取代之 C 5或 C 6芳基;且 R 3至 R 5各自獨立地選自 H、視情況經取代之 C 1-6烷基、式 -O-C 1-6烷基之烷氧化物及式 -N(R 12)(R 13) 之胺,其中 R 12及 R 13獨立地選自 H 及 C 1-6烷基。 E31. 如 E27 至 E30 中任一項之方法,其中膦配位基為具有以下結構之 SPhos
Figure 02_image039
。 E32. 如 E27 至 E31 中任一項之方法,其中 Pd 催化劑係選自: (a) 陽離子鈀物種,其包含無機或有機相對離子 X;以及 (b) 中性鈀物種,其包含經配位之無機或有機配位基 X。 E33. 如 E32 之方法,其中 X 係選自鹵素、羧酸根、磺酸根及無機陰離子。 E34. 如 E33 之方法,其中: (a) 羧酸根係選自 CH 3C(O)O -及 tBuC(O)O -; (b) 該磺酸根係選自 CF 3SO 3 -、甲苯磺酸根 (tosylate)、苯磺酸根 (besylate) 及硝基苯磺酸根 (nosylate);以及 (c) 該無機陰離子係選自 PF 6 -、BF 4 -、B(C 6F 5) 4 -、NO 3 -及 SO 4 2-。 E35. 如 E33 或 E34 之方法,其中 X 為 CF 3SO 3 -。 E36. 如 E27 至 E35 中任一項之方法,其中鈀催化劑包含 CF 3SO 3 -有機相對離子,其中膦配位基為 SPhos,且其中 R 6至 R 10中之各者為 H。 E37. 如 E27 至 E36 中任一項之方法,其中溶劑系統主要包含非質子性低分子量酯溶劑及水,其中非質子性低分子量酯溶劑與水的體積比為約 1:0.1 至約 1:1,且其中將反應混合物加熱至約 60℃ 至約 80℃。 E38. 如 E27 至 E37 中任一項之方法,其中化合物 181 與化合物 170 的當量比為大於 1:1,且鈀催化劑與化合物 170 的當量比為約 0.001:1 至約 0.003:1、或約 0.002:1。 E39. 如 E27 至 E38 中任一項之方法,其中: (a) 該催化劑為 [(SPhos)Pd(烯丙基)] CF 3SO 3; (b) 該溶劑系統主要包含乙酸乙酯及水,其中乙酸乙酯與水之體積比為約 1:0.1 至約 1:1;且 (c) 硼酸酯 (boronate) 為以下結構之 4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷 (dioxaborolane):
Figure 02_image094
。 E40. 如 E27 至 E39 中任一項之方法,其中: 基於化合物 170,化合物 190 的產率為至少 60%、至少 70%、至少 80% 或至少 90%,且化合物 190 的純度為至少 99 面積% 或至少 99.5 面積%。 E41. 一種提高 Suzuki 偶合反應中的產率之方法,該方法包含: (a) 形成包含化合物 170、化合物 181、鈀催化劑、溶劑系統及鹼之反應混合物,其中該鈀催化劑與化合物 170 之當量比為約 0.001:1 至小於 0.005:1;以及 (b) 根據以下方案,使該反應混合物反應以形成包含化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽之反應產物混合物:
Figure 02_image127
, 其中 Pd 催化劑包含含有膦配位基及至少一個鈀-碳鍵之鈀(II) 物種, 其中: (i)  產生該鈀-碳鍵之片段為下式之烯丙基衍生物
Figure 02_image007
其中 R 6至 R 10中之各者獨立地選自由以下所組成之群組:H、視情況經取代之 C 1-6烷基、視情況經取代之 C 6芳基及視情況經取代之雜芳基;且 R 6與 R 10可視情況一起形成包含芳香環之稠合雙環; 其中基於化合物 170,化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽之產率為至少 80% 或至少 85%。 E42. 如 E41 之方法,其中產生鈀-碳鍵之片段為下式之茚基
Figure 02_image033
其中 R 11為 C 1-10-烷基。 E43. 如 E41 或 E42 之方法,其中烯丙基衍生物係選自: (a) 其中 R 6至 R 10中之各者為 H 之衍生物; (b) 其中 R 6為 -CH 3且 R 7至 R 10中之各者為 H 之衍生物; (c) 其中 R 7為 -CH 3且 R 6及 R 8至 R 10中之各者為 H 之衍生物; (d) 其中 R 8為 -CH 3且 R 6、R 7、R 9及 R 10中之各者為 H 之衍生物; (e) 其中 R 6為 -苯基且 R 7至 R 10中之各者為 H 之衍生物; (f)  其中 R 7為 -苯基且 R 6及 R 8至 R 10中之各者為 H 之衍生物;以及 (g) 以下結構之衍生物
Figure 02_image131
E44. 如 E41 至 E43 中任一項之方法,其中膦配位基為式
Figure 02_image037
其中: R 1及 R 2係各自獨立地選自 C 1-6烷基及 C 5或 C 6芳基;且 R 3至 R 5係各自獨立地選自 H、C 1-6烷基、醚及胺。 E45. 如 E41 至 E44 中任一項之方法,其中膦配位基為具有以下結構之 SPhos
Figure 02_image039
。 E46. 如 E41 至 E45 中任一項之方法,其中 Pd 催化劑係選自: (a) 陽離子鈀物種,其包含無機或有機相對離子 X;以及 (b) 中性鈀物種,其包含經配位之無機或有機配位基 X。 E47. 如 E46 之方法,其中 X 係選自鹵素、羧酸根、磺酸根及無機陰離子。 E48. 如 E47 之方法,其中: (a) 羧酸根係選自 CH 3C(O)O -及 tBuC(O)O -; (b) 該磺酸根係選自 CF 3SO 3 -、甲苯磺酸根 (tosylate)、苯磺酸根 (besylate) 及硝基苯磺酸根 (nosylate);以及 (c) 該無機陰離子係選自 PF 6 -、BF 4 -、B(C 6F 5) 4 -、NO 3 -及 SO 4 2-。 E49. 如 E47 或 E48 之方法,其中 X 為 CF 3SO 3 -。 E50. 如 E41 至 E49 中任一項之方法,其中鈀催化劑包含 CF 3SO 3 -有機相對離子,其中膦配位基為 SPhos,且其中 R 6至 R 10中之各者為 H。 E51. 如 E41 至 E50 中任一項之方法,其中溶劑系統主要包含非質子性低分子量酯溶劑及水,其中非質子性低分子量酯溶劑與水的體積比為約 1:0.1 至約 1:1,且其中將反應混合物加熱至約 60℃ 至約 80℃。 E52. 如 E41 至 E51 中任一項之方法,其中化合物 181 與化合物 170 的當量比為大於 1:1,且鈀催化劑與化合物 170 的當量比為約 0.001:1 至約 0.003:1、或約 0.002:1。 E53. 如 E41 至 E52 中任一項之方法,其中: (a) 催化劑為 [(Sphos)Pd(烯丙基)] CF 3SO 3; (b) 該溶劑系統主要包含乙酸乙酯及水,其中乙酸乙酯與水之體積比為約 1:0.1 至約 1:1;且 (c) 硼酸酯 (boronate) 為以下結構之 4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷 (dioxaborolane):
Figure 02_image094
。 E54. 如 E41 至 E53 中任一項之方法,其中: (a) 基於化合物 190,二聚體雜質的含量小於 0.1 面積%,其中二聚體雜質具有以下結構
Figure 02_image012
; (b) 基於化合物 190,醇及酮雜質之結合含量為小於 0.25 面積%,其中醇及酮雜質具有以下結構
Figure 02_image137
。 及; (c) 化合物 190 的純度為至少 99 面積% 或至少 99.5 面積%。 E55. 一種製備化合物 180、其立體異構物、其幾何異構物、其互變異構物及其鹽之方法,該方法包含: (a) 形成包含化合物 140、碳上鉑/釩催化劑 (platinum/vanadium on carbon catalyst)、溶劑及氫之第一反應混合物; (b) 根據以下方案,使該第一反應混合物反應以形成包含化合物 141 之第一反應產物混合物
Figure 02_image139
; (c) 形成包含化合物 141、化合物 90、鈀催化劑、催化劑配位基、鹼及溶劑之第二反應混合物;以及 (d) 根據以下方案,使第二反應混合物反應以形成包含化合物 180 之第二反應產物混合物
Figure 02_image141
, 其中第一反應混合物催化劑係選自由以下所組成之群組:Ra-Ni、Ra-Co、Pt/V@C、Co@幾丁質 (Chitin)、Ni-phen@SiO 2及 Ni-phen@TiO 2, 其中基於化合物 140,化合物 141 之產率為至少 90% 或至少 95%,且 其中基於化合物 141,化合物 180 之產率為至少 60%、至少 70%、至少 80%,且化合物 180 之純度為至少 95%、至少 98% 或至少 99%。 E56.  一種製備化合物 180、其立體異構物、其幾何異構物、其互變異構物及其鹽之方法,該方法包含: (a) 形成包含化合物 140 以及包含有機溶劑和水之溶劑的第一反應混合物的製程;並且使該反應混合物與過渡金屬催化劑在氫的存在下接觸以形成包含化合物 141 之第一產物混合物,其中該製程為連續流動製程
Figure 02_image107
; (b) 形成包含化合物 141、化合物 90、鈀催化劑、催化劑配位基、鹼及溶劑之第二反應混合物;以及 (c) 根據以下方案,使該第二反應混合物反應以形成包含化合物 180 之第二反應產物混合物,其中 LG 為離去基團
Figure 02_image144
;和 (d) 根據以下方案,使化合物 180 與硼化劑 (borylation agent) 在溶劑的存在下反應以形成化合物 181
Figure 02_image146
, 其中基於化合物 140,化合物 141 之產率為至少 90% 或至少 95%,且 其中基於化合物 141,化合物 180 之產率為至少 60%、至少 70%、至少 80%,且化合物 180 之純度為至少 95%、至少 98% 或至少 99%。 E57. 如 E55 或 E56 之方法,其中在形成第二反應產物混合物之前並未從第一反應產物混合物分離化合物 141。 E58. 如 E55 至 E57 中任一項之方法,其中第一反應混合物溶劑及第二反應混合物溶劑各自主要包含極性非質子性溶劑。 E59. 如 E58 之方法,其中第一反應混合物溶劑主要包含四氫呋喃。 E60. 如 E51 至 E59 中任一項之方法,其進一步包括溶劑交換步驟,其中在形成第二反應混合物之前,主要用極性非質子性溶劑替換第一反應產物混合物溶劑。 E61. 如 E60 之方法,其中主要用苯甲醚替換第一反應產物混合物溶劑,並且其中第二反應混合物溶劑主要包括苯甲醚。 E62. 如 E55 至 E61 中任一項之方法,其中鈀催化劑為 Pd(OAc) 2且催化劑配位基為 XantPhos 或 DPEPhos。 E63. 如 E55 至 E62 中任一項之方法,其中鈀催化劑為 Pd(OAc) 2,催化劑配位基為 XantPhos,且鹼為 K 2CO 3;或者其中鈀催化劑為 Pd(OAc) 2;催化劑配位基為 DPEPhos,且鹼為 NaOMe。 E64. 如 E55 至 E62 中任一項之方法,其中第一反應混合物催化劑為 Pt/V@C。 E65. 如 E56 至 E62 中任一項之方法,其中第一反應混合物催化劑為 Pd/Al 2O 3、Pt/Al 2O 3、Pd/C 或 Pt/C。 E66. 如 E56 至 E65 中任一項之方法,其進一步包含藉由以下順序之步驟分離化合物 180,該等步驟包含: (e) 使第二反應與水性洗液接觸; (f)  分離並濃縮有機相,該有機相主要包含第二反應產物混合物中所含的全部化合物 180; (g) 將經濃縮之有機相與醇和水合併; (h) 分離包含第二反應產物混合物溶劑、醇、主要為全部化合物 180 的有機相; (i)  濃縮經分離之有機相; (j)  將經濃縮之有機相與醇合併並冷卻以形成結晶化合物 180;及 (k) 分離結晶化合物 180。 E67. 如 E65 之方法,其中醇為 1-丁醇。 E68. 一種組成物,其包含至少 98.5 w/w% 化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽,
Figure 02_image023
, 且其中 (a) 基於化合物 190,二聚體雜質之含量為小於 0.15 面積%,其中該二聚體雜質具有以下結構
Figure 02_image012
;和 (b) 基於化合物 190,醇及酮雜質之結合含量為小於 0.35 面積%,其中醇及酮雜質具有以下結構
Figure 02_image150
。 E68-1. 一種製備化合物 180、其立體異構物、其幾何異構物、其互變異構物及其鹽之方法,該方法包含: (a) 以下之製程:形成第一反應混合物,該第一反應混合物包含化合物 140 及溶劑,該溶劑包含有機溶劑;以及使該反應混合物與過渡金屬催化劑在氫的存在下接觸以形成包含化合物 141 之第一產物混合物,其中該製程為連續流動製程
Figure 02_image107
; (b) 形成包含化合物 141、化合物 90、鈀催化劑、催化劑配位基、鹼及溶劑之第二反應混合物;以及 (c) 根據以下方案,使該第二反應混合物反應以形成包含化合物 180 之第二反應產物混合物,其中 LG 為離去基團
Figure 02_image153
;和 (d) 根據以下方案,使化合物 180 與硼化劑 (borylation agent) 在溶劑的存在下反應以形成化合物 181
Figure 02_image155
, 其中基於化合物 140,化合物 141 之產率為至少 90% 或至少 95%,且 其中基於化合物 141,化合物 180 之產率為至少 60%、至少 70%、至少 80%,且化合物 180 之純度為至少 95%、至少 98% 或至少 99%。 E69. 如 E68 或 E68-1 之組成物,其中基於化合物 190,二聚體雜質的含量為小於 0.10 面積%。 E70. 如 E69 之組成物,其中基於化合物 190,二聚體雜質的含量為小於 0.05 面積%。 E71. 如 E68 至 E70 中任一項之組成物,其中基於化合物 190,醇及酮雜質之結合含量為小於 0.30 面積%。 E72. 如 E71 之組成物,其中基於化合物 190,醇及酮雜質之結合含量為小於 0.25 面積%。 E73. 如 E72 之組成物,其中基於化合物 190,醇及酮雜質之結合含量為小於 0.20 面積%。 E74. 如 E68 至 E73 中任一項之組成物,其包含至少 99.0 w/w% 的化合物 190,或其立體異構物、幾何異構物、互變異構物或鹽。 E75. 如 E74 之組成物,其包含至少 99.5 w/w% 的化合物 190,或其立體異構物、幾何異構物、互變異構物或鹽。 實例
圖式及實例提供製備所揭露之化合物的示例性方法;本領域技術人員將理解可以使用其他合成路線來合成該等化合物。儘管在圖式及實例中描述並討論了具體之起始材料和試劑,但是可替換其他起始材料及試劑以提供各種衍生物及/或反應條件。此外,根據本揭露,可使用本領域技術人員所熟知的習用化學方法進一步修飾許多所述示例性化合物。
在實例中,當量及當量比係基於每個反應的參考起始材料。體積/重量值,諸如 L/kg 和 mL/g,指代基於每個反應之參考起始材料的重量計之液體組分的體積。 分析方法
可以如下進行高壓液相層析 (HPLC)。
HPLC 方法 1 - 實例 2 10 ;及比較實例 4 6 儀器及管柱。HPLC 系統:Agilent 1260 系列、四元泵及自動進樣器。整合系統:Waters Empower。組態:未使用 Jetweaver V380 混合器,脈衝補償、0.12 mm 毛細管 (紅色) 及 10 mm 流通池。延遲體積:0.51 mL。劑量:自動滴定管 (例如,Metrohm 725 Dosimat) 或容量移液器,用於 µL 範圍的活塞衝程移液器。固定相:Poroshell 120 Bonus-RP,L = 150 mm,ID = 4.6 mm,2.7 µm。
溶液。緩衝溶液:20 mM 乙酸銨水溶液,1.52 至 1.56 g 乙酸銨,1000 mL 水,pH 5.8 ± 0.1,必要時用乙酸調整 pH。流動相 A:950 mL 緩衝溶液,50 mL 乙腈。流動相 B:950 mL 乙腈,50 mL 緩衝溶液。稀釋劑:水/乙腈 1:9 v/v (例如 100 mL 水及 900 mL 乙腈)。
泵程式。
流速 (mL/min) 時間 (min) A (%) B (%) 備註
1.0 0.0 80 20   
1.0 1.0 80 20 等度
1.0 15.0 50 50 線性梯度
1.0 18.5 50 50 等度
1.0 25.0 20 80 線性梯度
1.0 26.0 20 80 等度
1.0 26.1 80 20 平衡
1.0 30.0 80 20   
管柱烘箱溫度:25℃。管柱背壓:約 300 巴 (初始條件)。進樣體積:3.0 µL。進樣針洗滌:洗滌小瓶。進樣器恆溫器溫度:5℃。管柱沖洗:水/乙腈 2:8。管柱儲存:乙腈。偵測:DAD:245 nm,帶寬 4 nm。參考波長:關。狹縫:4 nm。資料速率:5 Hz,峰寬 > 0.05 min,反應時間 1 s。
樣品製備。空白溶液為稀釋劑。對於儲備溶液 1,將以下參考標準溶解在 10.0 mL 稀釋劑中:7.0 至 8.0 脫溴 (Des-Brom) 雜質;7.0 至 8.0 mg 半胱胺酸加成物雜質;7.0 至 8.0 mg 區域異構物(Regioisomer )雜質 (化合物 190 區域異構物);及 7.0 至 8.0 mg 氯化物 (化合物 170)。對於儲備溶液 2,將 7.0 至 8.0 硼酸酯 (化合物 182) 溶解在 10.0 mL 乙腈中。對於儲備溶液 3,將以下參考標準溶解在 100.0 mL 二氯甲烷中:7.0 至 8.0 mg 二聚體雜質;7.0 至 8.0 mg 二級醇雜質;7.0 至 8.0 mg 酮雜質。對於系統適用性測試 (「SST」) 溶液 1 (0.05%),將 7.0 至 8.0 參考標準化合物 200 溶解在 9.93 mL 稀釋劑中,然後添加 5.0 µL 儲備溶液 1、5.0 µL 儲備溶液 2 及 50.0 µL 儲備溶液 3。對於 SST 溶液 2 (用於 THF 雜質的峰分配),將 7.0 至 8.0 mg THF 雜質溶解在 10.0 mL 稀釋劑中。藉由將 50 μL 有機相樣品溶解在 10.0 mL 稀釋劑中來製備樣品反應混合物。
系統適用性測試。空白層析圖:將空白層析圖與分析方法中描述之層析圖進行比較;系統峰或來自所用化學品的峰不得干擾分析。選擇性:就選擇性及滯留時間而言,SST 溶液的層析圖與隨附之層析圖相當。敏感度、峰對稱性:藉由目視檢查來查核 SST 溶液的層析圖。行動:在失敗的情況下,樣品分析無效。校正錯誤源後,重複空白、SST 及樣品分析。
如果樣品層析圖中主峰的滯留時間與 SST 溶液層析圖中主峰的滯留時間相對應,則化合物的識別(identity)對應。面積百分比為
Figure 02_image157
其中:x i= 分析物 i 的百分比 (% 面積);Ai = 針對分析物 i (mAU*s) 或 (pA*s) 或 (counts*s) 獲得的峰面積;且 A j= 分析物 j = 1 到 n (mAU*s) 或 (pA*s) 或 (counts*s) 的峰面積。減少的面積百分比僅考慮了選定的分析物。
積分範圍。面積百分比:空白層析圖中存在的峰在面積百分比分析中不予考慮。減少的面積百分比分析:僅對氯化物雜質及醛雜質進行積分;如果化合物 170 (「氯化物」) 的減少的面積百分比低於規格界限,則確定反應完成。
積分參數。調整積分參數以便對全部 ≥ 半報告位準 (「RL」) 的峰進行積分。未與主峰完全分離的任何雜質峰較佳係藉由谷至谷外推法 (切線切削(angential skim)) 積分。
峰之表如下:
分析物 RRT (大約) RL (面積%)
脫溴雜質 0.34 0.05
二聚體雜質 0.62 0.05
半胱胺酸加成物雜質 0.63 0.05
硼酸酯 (化合物 182) 0.83 0.05
區域異構物雜質 0.91 0.05
二級醇雜質 0.93 0.05
醛 (化合物 190) 1.00 ----
EtOH 半縮醛雜質 a 1.04 0.05
氯化物 (化合物 170) 1.18 0.05
酮雜質 1.20 0.05
其他雜質 ---- ----
a僅在 SST 溶液中 峰表,僅用於峰分配/資訊
分析物 RRT (大約) RL (面積%)
硼酸雜質 0.24 0.05
THF 雜質 0.34 0.05
內醯胺雜質 0.56 0.05
二聚體雜質 1.44 0.05
甲苯 0.98 ----
藉由上述 HPLC 方法 1 得出的以 % w/w 計的二聚體之量與以面積% HPLC 方法計的二聚體之量相關,如下述相關表中所報告。 藉由 HPLC 方法 1 評估的二聚體 % w/w 與藉由其他 HPLC 方法確定的來自同一樣品之面積% 的相關性。
樣品 % w/w,藉由 HPLC 方法 1 面積% 方法
1 0.35 0.31
2 0.29 0.27
3 0.51 0.52
4 0.38 0.39
比較實例 1 至比較實例 3 的分析方法
比較實例 1:管柱:Waters Atlantis T3 (4.6*150 mm 3 µm)。流動相 A:10 mM 甲酸銨,pH 3.7。流動相 B:CH 3CN.  流速:1.0 mL/min。進樣體積:2.0 uL。管柱溫度:45℃。UV 偵測波長:315 nm。稀釋劑:ACN。
比較實例 3:管柱:(1) Agilent PLRP-S 100A,150 mm x 4.6 mm,3μm 或 (2) Agilent PLRP-S 100A,250 mm x 4.6 mm,5μm。流動相 A:10mM 水性 NaOH。流動相 B:乙腈。流速:1.0 mL/min。進樣體積:1.0 uL。管柱溫度:(1) 20℃;(2) 15℃。
液相層析質譜 (LCMS) 可以如下進行。管柱:XDB-C18 4.6mm x 50mm,1.8 µm。流動相 A:水/0.05% TFA。流動相 B:CH3CN/0.05% TFA。流速:1.2 mL/min。進樣體積:10.0 uL。管柱溫度:40℃。稀釋劑:30:70 (v/v) CH 3CN/H 2O。接口類型(Interface Type):ES-API +。乾燥氣體溫度:250℃。霧化器壓力:35 psig。乾燥氣體流速:13 L/min。毛細管電壓:3000 V。掃描範圍:150 至 600 m/z。
氣相層析 (GC) 可以如下進行。配備 Agilent HP-5 (30m*0.32 mm*0.25μm) 管柱的 Agilent 7890A 系列 GC 系統。流速:2.0 mL/min。進樣體積:10.0 uL。載氣:N 2。稀釋劑:甲醇。
質譜 (MS) 可使用 (1) Sciex 15 質譜儀在 ES+ 模式下,或 (2) Shimadzu LCMS 2020 質譜儀在 ESI+ 模式下進行。除非另有說明,否則質譜資料一般僅表示母離子。在有說明的情況下,提供特定中間體或化合物的 MS 或 HRMS 資料。
核磁共振譜法 (NMR) 可使用任何合適之儀器進行,包括但不限於 (1) Bruker AV III 300 NMR 譜儀、(2) Bruker AV III 400 NMR 譜儀或 (3) Bruker AV III 500 NMR 譜儀並參考四甲基矽烷。在有說明的情況下,提供特定中間體或化合物的 NMR 資料。 實例 1
根據圖 12A 中的反應方案製備化合物 140,且如下所示:
Figure 02_image159
向在 THF (110 g) 中之 NaBH(OAc) 3(71.5 g,337 mmol)之溫暖懸浮液 (35℃) 中添加 ( S)-2-甲基-1-(6-硝基吡啶-3-基)哌嗪 (50 g,225 mmol;化合物 153) 與在 THF (136.4 g) 中之氧雜環丁烷-3-酮 (21.2 g,292 mmol;化合物 20) 的冷 (10℃) 混合物,該添加歷經 1 至 2 小時之期間進行。將混合物在 35℃ 攪拌,直至達到完全轉化 (通常為 1 小時)。然後將反應混合物冷卻至 25℃ 並在 40℃ 添加水 (135 g) 時淬滅。相分離後,在 40℃ 添加 NaOH (99.6 g,28%) 以達到 pH 12。相分離後,將有機相在 40℃ 精濾,濃縮,然後在真空 (300 毫巴) 下用 2-PrOH 連續交換 THF,由此開始結晶。將晶體漿液冷卻至 5℃ 並攪拌至少 2 小時。濾出晶體,用冷 2-PrOH 洗滌並在減壓下乾燥直至達到恆重。化合物 (S)-2-甲基-1-(6-硝基吡啶-3-基)-4-(氧雜環丁烷-3-基)哌嗪 (化合物 140) 係以 89% 的產率 (55.8 g) 分離,為黃色晶體。 1H-NMR (600 MHz, DMSO- d6) δ ppm 8.22 (d, 1 H), 8.11 - 8.18 (m, 1 H), 7.44 (dd, 1 H), 4.40 - 4.62 (m, 3 H), 4.30 - 4.40 (m, 1 H), 3.83 (br d, 1 H), 3.42 (q, 1 H), 3.08 - 3.18 (m, 1 H), 2.79 - 2.90 (m, 1 H), 2.66 (br d, 1 H), 2.08 - 2.20 (m, 1 H), 1.92 - 2.03 (m, 1 H), 1.21 (d, 3 H)。HR-MS (ESI):針對 C 13H 18N 4O 3之計算值:278.1379;實測值:278.1406. 實例 2
根據圖 1 中的反應方案製備化合物 141 及 180,且如下更詳細的描述:
Figure 02_image161
將 ( S)-2-甲基-1-(6-硝基吡啶-3-基)-4-(氧雜環丁烷-3-基)哌嗪 (56 g,201.3 mmol) (化合物 140) 在 THF (495.8 g) 中之溶液轉移至不銹鋼高壓釜中並在 Pt/V@C 催化劑 (1.12 g,2 w%) 的存在下在 60℃ 及 4 巴氫氣下氫化 16 小時,以產生 (S)-5-(2-甲基-4-(氧雜環丁烷-3-基)哌嗪-1-基)吡啶-2-胺 (化合物 141) 之溶液。釋放壓力後,濾除催化劑,用 THF 潤洗高壓釜,並且用 THF 洗滌濾餅。從溶液中蒸餾出 THF 以達到約 120 mL 的反應器體積。添加苯甲醚並藉由在減壓下蒸餾 (120 至 150 毫巴,T i90±5℃) 去除剩餘之 THF,以達到 250 mL (5V) 的反應器體積。
然後在 90℃ 之溫度在氬氣 /氮氣流下向化合物 141 之溶液中添加 3,4-二溴-1-1甲基吡啶-2-酮 (化合物 90) (1.05 當量) 及 K 2CO 3(1.5 當量),然後逐滴添加水 (1.0 當量)。最後,添加 Xantphos (3 mol%) 及 Pd(OAc) 2(1.5 mol%) 以形成混合物。將混合物加熱至 112 至 114℃ 之溫度並攪拌,直至完全轉化為化合物 180 (15 至 20 小時)。將反應混合物用苯甲醚 (2V) 稀釋,然後添加水 (4V),得到 90℃ 之溫度。分離有機相及水相。在真空 (120 至 150 毫巴) 下從有機相中部分地去除苯甲醚以達到 150 mL (3V) 的反應器體積。然後添加 1-丁醇 (5 V) 及水 (4 V),然後分離有機相及水相。將包含苯甲醚、1-丁醇及化合物 180 的有機相轉移到預熱 (90℃) 的反應器中,並在真空 (120 至 150 毫巴) 下減少反應混合物的體積以達到 200 mL 的反應器體積,由此開始結晶。添加 1-丁醇 (3 V) 以達到 350 mL 的結晶體積。以 10 ℃/h 的速率將懸浮液冷卻至 -10℃ 之溫度,並在 -10℃ 之溫度攪拌至少 6 小時。藉由過濾收集晶體,用冷 (-5±2℃) MeOH/H 2O (1:1 v/v,1.5V) 及冷 (-5±2℃) 1-丁醇 (2.5 V) 洗滌,並且在真空 (2 至 10 毫巴) 下在 70℃ 乾燥直至重量恆定,以得到化合物 180,為米黃色固體,產率為 75-78% 且測定為 >99.0 w%。 1H NMR (600 MHz, DMSO- d6) δ ppm 8.47 - 8.62 (m, 2 H), 7.92 (d, 1 H), 7.33 - 7.51 (m, 2 H), 7.26 (d, 1 H), 4.39 - 4.69 (m, 4 H), 3.73 (br d, 1 H), 3.51 (s, 3 H), 3.38 - 3.45 (m, 1 H), 3.08 - 3.17 (m, 1 H), 2.90 - 3.04 (m, 1 H), 2.58 (br d, 1 H), 2.27 - 2.40 (m, 2 H), 2.18 (br t, 1 H), 0.96 (d, 3 H)。HR-MS (ESI):針對 C 19H 24BrN 5O 2之計算值:433.1113;實測值:433.1130. 實例 3
如根據圖 2 中的反應方案製備化合物 141 及 180,且如下更詳細的描述:
Figure 02_image163
Figure 02_image165
藉由實例 2 之方法製備化合物 141。將化合物 141 在 THF 中之溶液 (152.04 g,含有 15 g 化合物 141) 加熱至 85℃,藉由連續蒸餾將 THF 替換為苯甲醚,以得到約 75 mL 的反應器體積。將混合物冷卻至 50℃,然後依次添加化合物 90 (16.93 g,63.42 mmol,當量:1.05)、無水甲醇鈉 (3.92 g,72.48 mmol,當量:1.2),且最後是乙酸鈀(II) (203.4 mg,906.1 μmol,當量:0.015) 及 DPEphos (975.9 mg,1.812 mmol,當量:0.030) 在苯甲醚 (6.93 g,7 ml) 中的預混紅色懸浮液。然後將反應混合物加熱至 92℃,由此形成懸浮液。然後攪拌混合物直至實現完全轉化,然後在添加水 (120 g) 時淬滅。然後將反應混合物以 1 ℃/min 的速率冷卻至 10℃。然後藉由過濾分離結晶化合物 180 並用 MeOH (45 mL)、H 2O/MeOH (1:1 v/v,20 mL) 及 MeOH (30 mL) 順序洗滌。將晶體在真空下在 45℃ 乾燥直至重量恆定,得到化合物 180,為米色固體,產率 82.5% (12.6 g) 且純度 > 99 面積%。 實例 4
重複實例 3,但向包含化合物 141 之溶液的反應混合物中添加三苯基膦 (4.5 mol%)。該反應以 98.3% 的純度提供 82.4% 的產率。 實例 5
根據以下方案製備化合物 141 並從溶液中分離:
Figure 02_image167
將在 THF (1.06 kg) 中之化合物 140 (300 g,1.078 mol) 的溶液置於高壓釜中,並在 Pt/V/@C 催化劑 (6.0 g,2 w%) 的存在下在 60℃ 及 4 巴氫氣下氫化 16 小時,以在溶液中產生化合物 141。冷卻至環境溫度並釋放壓力後,藉由過濾收集催化劑,用 THF 潤洗高壓釜,並且用 THF 洗滌濾餅 (177.8 g 總 THF 清洗)。從合併的溶液中蒸餾出 THF (70℃,350 毫巴) 以達到約 1.5 L 的反應器體積,然後冷卻至 37℃。添加正庚烷 (1 L),由此使化合物 141 開始結晶並將懸浮液在 27℃ 攪拌 1.5 小時。然後添加另外的正庚烷 (1.25 L),將懸浮液在 25℃ 攪拌 15 分鐘,然後冷卻至 3 至 5℃ 並攪拌 30 分鐘。然後藉由過濾收集晶體,用正庚烷 (1 L) 洗滌,並在真空下乾燥以得到化合物 141,產率為 90.7% (242.8 g),且純度為 >99 面積%。 1H-NMR (600 MHz, CDCl 3): δppm 7.86 (dd, 1 H), 7.26 (dd, 1 H), 6.49 (dd, 1 H), 4.53-477 (m, 4 H), 4.27 (br s, 2 H), 3.45-3.62 (m, 1 H), 3.19-3.35 (M, 1 H), 2.98-3.06 (m, 2 H), 2.51-2.70 (m, 2 H), 2.27-2.46 (m, 1 H), 2.06 (dd, 1 H), 0.92 (d, 3 H)。HR-MS (ESI):針對 C 13H 20N 4O 之計算值:248.1637;實測值:248.1647.XRF:< 1 ppm Pt;< 2 ppm V。 實例 6
根據實例 5 之方法評估用於從化合物 140 製備化合物 141 的催化劑。結果報告在下表 1 中。 表 1:化合物 141 合成總結
Exp 催化劑 (負載量) 溶劑 添加劑 (當量) 溫度 (℃) 壓力 (巴) 轉化率 (%) 選擇性 (%)
1 1% Pt/ 2%V@ C (2 wt.%) THF ---- 60 4 >99.9 99.4
2 1% Pt/ 2%V@ C (2 wt.%) 甲苯/MeOH (1:1) AcOH (0.5) 60 4 >99.9 85.9
3 10% Pd@C (2 wt.%) THF ---- 60 4 >99.9 98.8
4 10% Pd@C (2 wt.%) 甲苯/MeOH (1:1) AcOH (0.5) 60 4 >99.9 95.2
5 Ra-Ni (14 wt.%) THF ---- 60 4 99.8 96.5
6 Co@Chitin-700 (3 mol% Co) THF/H 2O (20:1) NEt 3(0.5) 110 40 >99.9 99.3
7 Co@Chitin-MgO-700 (3 mol% Co) THF/H 2O (20:1) NEt 3(0.5) 110 40 99.9 97.9
8 Co 3O 4/NGr@Al 2O (3 mol% Co) THF/H 2O (20:1) NEt 3(0.5) 110 40 >99.9 96.4
9 Ni-Phen@SiO 2-1000 (3 mol% Ni) THF/H 2O (20:1) NEt 3(0.5) 110 40 99.9 98.6
10 Ni-Phen@TiO 2-1000 (3 mol% Ni) THF/H 2O (20:1) NEt 3(0.5) 110 40 >99.9 98.7
在上表中,實驗 1 及 3 使用 50 至 56 g 化合物 140、10V 溶劑、1.5 L 帶玻璃插件的高壓釜,反應時間為 16 小時。實驗 1 的催化劑為 Noblyst P8078,且實驗 3 的催化劑為 E101 NE/W。實驗 2、4 及 5 使用 5 g 化合物 140、10V 溶劑、185 mL 高壓釜及 16 小時反應時間。實驗 6 至 10 使用 200 mg 化合物 140、10V 溶劑、35 mL 帶有玻璃插件及振盪器的高壓釜,以及 16 小時的反應時間。 實例 7
Figure 02_image169
化合物 190 從化合物 170 及 182 製備,利用兩種催化劑濃度的各種催化劑,該濃度為 (0.1 mol%) 0.001 當量每當量化合物 170 或 (1 mol%) 0.01 當量每當量化合物 170。在每個實驗中,溶劑為 THF 及水,且 THF 與水的體積比為 4:1,溶劑體積與化合物 170 的比率為10:1 L/kg,化合物 182 與化合物 170 的當量比為 1.1:1,鹼為 K 3PO 4(基於化合物 170,1.5 當量),反應溫度為 50℃,且反應時間為 18 小時。18 小時後,將 0.25 當量之乙醯半胱胺酸作為在 H 2O 中之 60mg/mL 溶液添加到反應混合物中;將混合物攪拌 10 分鐘;並取出樣品用於 HPLC 分析。結果報告在下表 2 及表 3 中,其中:「Comp. 190」指代化合物190;「Comp. 170」指代化合物170;「酮」指代酮雜質;「二級醇」指代二級種醇雜質;「二聚體」指代二聚體雜質;「Comp. 182」指代化合物182;「脫溴」指代下面描述的脫溴 (DesBr) 雜質;結果以 HPLC 面積% 報告。
Figure 02_image171
表 2 及表 3 中的結果為在 50℃ 在反應時間 18 小時後測量的以 HPLC 面積% 表示的製程中之值。
表 2 報告了陽離子性及中性 Pd(SPhos)(烯丙基) 化合物在 1 mol% 催化劑負載量下的活性。該表表明,相較於先前揭露之 [Pd(dppf)Cl 2] 催化劑相比,產生的化合物 190 之量更大,而形成的二聚體之量要少得多 (對於 Pd(dppf)Cl 2為 0.87,而對於 Pd(SPhos)(烯丙基) 催化劑為 0.02 至 0.08)。表 3 表明,在 1 mol% 時性能更好的催化劑中,[(SPhos)Pd(烯丙基)]OTf 在 0.1 mol% 時性能最好 (化合物 190 之量更高,且二聚體之量更低)。 表 2:使用 1 mol% 負載量的各種陽離子性及中性 Pd(SPhos)(烯丙基) 催化劑以及先前使用之催化劑 Pd(dppf)Cl 2的結果總結
催化劑 [Pd(dppf)Cl 2] [(SPhos)Pd (烯丙基)]OTf [(SPhos)Pd (烯丙基)Cl] [(SPhos)Pd (巴豆基)Cl] [(SPhos)Pd (烯丙基)]PF 6 [(SPhos)Pd (烯丙基)]CF 3CO 2
Comp. 190 91.95 96.81 96.62 90.73 95.36 95.71
Comp. 170 0.04 0 0.08 2.65 1 0.82
0.03 0.04 0.1 0.29 0.31 0.09
二級醇 0.04 0.06 0.09 0.45 0.43 0.26
二聚體 0.87 0.07 0.05 0.02 0.05 0.08
Comp. 182 0.03 0.33 0.03 0 0.02 0.02
脫溴 2.46 0.82 0.85 3.83 1.04 1.26
表 3:使用 0.1 mol% 負載的各種陽離子及中性 Pd(SPhos)(烯丙基) 催化劑的結果之總結
催化劑 [(SPhos)Pd(烯丙基)]-OTf [(SPhos)Pd(烯丙基)]-CH 3CO 2 [(SPhos)Pd(烯丙基)]-NO 3 [(SPhos)Pd(烯丙基)Cl]
Comp. 190 96.42 93.53 88.36 92.99
氯化物 0.17 0.06 0.68 2.25
0 0 0 0
二級醇 0.04 0.01 0.03 0.02
二聚體 0.06 0.18 0.1 0.22
硼酸酯 0.15 1.07 0.09 0.58
脫溴 1.59 2.59 1.57 2.34
資料表明,相較於先前使用的催化劑,使用如本揭露中所述之 (SPhos)Pd(烯丙基)-相對陰離子催化劑實現了改善的雜質特徵。 實例 8
根據圖 5B 中的反應方案從化合物 170 及 182 製備化合物 190。將化合物 170 (27.5g,80.0 mmol,1.0 當量) 及化合物 182 (46.3g,88.0 mmol,1.1 當量) 在 70℃ 在攪拌下懸浮於乙酸乙酯 (222 mL,200g) 中,然後徹底脫氣 10 分鐘。一次性添加 [(SPhos)Pd(烯丙基)]OTf 催化劑 (113 mg) 並在 25 至 35 分鐘內將懸浮液加熱至 70℃ ± 3℃。然後歷經 55 至 65 分鐘之期間在 70℃ ± 5℃ 添加磷酸鉀 (25g)( 在水 (60.0g) 中)的溶液。將反應產物混合物在 70℃ 攪拌,直至製程控制指示小於 1.0 面積% 的化合物 170。反應時間為 1 至 2 小時。
將反應產物混合物冷卻至 20℃ Ti,然後與 N-乙醯半胱胺酸 (3.27g) (在水 (60.0g) 中)的溶液合併,該溶液已藉由鼓泡用 Ar 脫氣。用乙酸乙酯 (22.4g,25.0 mL) 將水性 N-乙醯半胱胺酸容器及轉移管線向前洗滌到反應產物混合物中。將混合物在 20℃ ± 3℃ 攪拌 15 分鐘。相分離後,去除下層水相。剩餘的有機相在 20℃ ± 3℃ 與 5% NaHCO 3水溶液 (100g,98 mL) 在攪拌下合併。停止攪拌以進行相分離 (15 分鐘)。去除下層水相並將剩餘的有機相與水 (100g) 合併。將混合物在 20℃ ± 3℃ 攪拌 15 分鐘。停止攪拌以進行相分離 (15 分鐘)。去除下層水相,將剩餘的有機相加熱至 40℃ ± 3℃,然後經活性炭 R55SP 過濾。將濾液收集在 Schott 燒瓶中,並將先前含有有機相的容器及過濾器用乙酸乙酯 (22.4g,每次潤洗 25 mL) 潤洗兩次至含有濾液的燒瓶中。
將濾液在約 85℃ 及在約 200 至 300 毫巴真空下濃縮至約 100 mL 的殘留體積。然後在 50℃ 至 70℃ 添加乙醇 (350g,450 mL) 以形成懸浮液。將懸浮液在回流 (約 85℃) 及大氣壓下濃縮至約 400 mL 的殘留體積。在回流下,所得之溶液在整個濃縮步驟中保持不變。收集製程中之控制樣品並測試殘留的乙酸乙酯,並繼續濃縮直至 EtOAc/EtOH 混合物中的 EtOAc 餾分不超過 6.0%。如果沒有達到該位準,則可以向溶液中添加另外的乙醇,然後濃縮至約 400 mL。在 EtOAc 含量降至不超過 6.0% 後,將溶液冷卻至 75℃ ± 2℃ 並用化合物 190 的懸浮液 (273 mg 化合物 190 在 10.0 mL 乙醇中) 接種。將形成的懸浮液在 75℃ ± 2℃ 攪拌 30 分鐘,然後以每小時 10℃ 的速率冷卻至 5℃ ± 3℃ (約 7 小時)。將懸浮液在 5℃ ± 3℃ 老化至少 7 小時。藉由在約 500 毫巴真空下用濾紙在吸盤(nutsche )上過濾來分離化合物 190。收集的固體化合物 190 用 4℃ 至 6℃ 之乙醇洗滌兩次,乙醇總體積為 74.9g。將化合物 190 產物在 50℃ 及 5 毫巴真空下乾燥隔夜,得到 48.6 g 化合物 190 (99.7 面積% 測定及 91.4% 產率)。
將上述製備化合物 190 的方法一式三份重複 (實驗 1 至 3),不同之處在於實驗 3 中從乙酸乙酯到乙醇的溶劑交換如下進行:將有機相濃縮至 80 mL 並添加乙醇 (268 g,340 mL)。結果如下表 4 所示,其中「IPC」指代製程控制測試結果;「IPC 水」指代在 IPC EtOAc 餾分測試中測得的水含量。 表 4:製程中 (IPC) 及完成後的實驗表徵總結,針對使用 [(SPhos)Pd(烯丙基)]OTf 及乙酸乙酯製備化合物 190 的一式三份之三個實驗。
   實驗 1 實驗 2 實驗 3
批量 80.0 mmol 80.0 mmol 80.0 mmol
IPC 測試時間 2 小時 2 小時 2 小時
IPC 化合物 190 96.3 面積% 95.3 面積% 95.6 面積%
IPC 化合物 170 未偵測到 未偵測到 未偵測到
IPC 脫溴雜質 1.2 面積% 0.91 面積% 2.11 面積%
IPC 二聚體雜質 0.26 面積% 0.12 面積% 0.28 面積%
IPC 化合物 182 0.77 面積% 0.97 面積% 0.39 面積%
IPC 二級醇雜質 0.04 面積% 0.10 面積% 0.06 面積%
IPC EtOAc 餾分 3.6% 4.9% 7.2%
IPC 水 0.4% 0.16% 0.4%
結晶時間 15 h 13.5 h 11 h
化合物 190 結果
化合物 190 重量 48.9 g 48.6 g 48.9 g
化合物 190 測定 98.9 w/w% 99.7 w/w% 99.1 w/w%
化合物 190 純度 99.4 面積% 99.7 面積% 99.4 面積%
化合物 190 產率 91.3% 91.4% 91.4%
化合物 170 未偵測到 未偵測到 未偵測到
脫溴雜質 未偵測到 未偵測到 < 0.05 面積%
二聚體雜質 0.12 面積% 未偵測到 0.15 面積%
化合物 182 未偵測到 未偵測到 未偵測到
二級醇雜質 未偵測到 未偵測到 未偵測到
EtOH-半縮醛雜質 0.23 面積% 0.10 面積% 0.30 面積%
酮雜質 未偵測到 未偵測到 未偵測到
乙酸乙酯 未偵測到 未偵測到 123 ppm
乙醇 < 100 ppm 380 ppm 251 ppm
1.27 w/w% 0.43 w/w% 0.45 w/w%
實例 9
將本揭露的用於從化合物 182 及 170 製備化合物 190 之反應與先前使用的從化合物 182 及 170製備化合物 190 之反應進行比較。反應條件總結在表 5 中。使用舊的 Pd(dppf)Cl 2催化系統,觀察到在很寬範圍內的酮雜質,且最高 0.29 面積% (見表 5)。相比之下,使用新的催化系統,觀察到的酮雜質之量保持在一個狹窄範圍內,具有低得多的上限 (最高 0.06 面積%)。 表 5:先前使用及目前描述的方法的條件之總結。在後處理後,在經分離之化合物中評估產率、純度及副產物含量。「本揭露」值為 3 個批次,總計 800 kg 產物的平均值。
參數 先前製程 本揭露
催化劑 Pd(dppf)Cl 2 [(SPhos)Pd(烯丙基)]OTf
溶劑 THF/水 乙酸乙酯/水
催化劑含量,基於化合物 170 (mol%) 1.0 0.2
反應溫度 (℃) 50 70
反應模式 整批 半批 (aq K 3PO 4在 70℃ 歷經 1 至 3 小時完成添加)
反應時間 (h) 15 1 至 2
溶劑交換 1 (反應後) THF à 甲苯 用於萃取
溶劑交換 2 甲苯 à 乙醇 乙酸乙酯 à 乙醇
產率 (%) 75.0 84.7
純度 (面積%) 99.1-99.5 99.8
二聚體 (% w/w) 0.29-0.40 未偵測到
醇雜質 (面積%) 未偵測到 未偵測到
酮雜質 (面積%) <0.05-0.29 0.03-0.06
二聚體、醇及酮雜質如下所示。
Figure 02_image173
該反應期間可能形成的醇雜質在偵測前可被氧化成相應的酮雜質。 實例 10
從化合物 190 製備化合物 200,如以下方案中所提供:
Figure 02_image175
將化合物 190 (50 g,75.4 mmol,1 當量) 充填入反應器中。添加 THF (267 g),然後添加 K 2HPO 4(6.16 g,35.4 mmol,0.469 當量) 及水 (42.5 g)。將混合物加熱至 40 至 45℃ 並攪拌約 20 分鐘。然後,歷經 10 至 20 分鐘添加氫氧化鈉及硼氫化鈉的水性混合物 (12w/w NaBH 4,40 w/w NaOH,總計添加 11.9 g 水溶液),同時保持 40 至 45℃ 之溫度。監測反應器內容物,直至剩餘化合物 190 的濃度為小於或等於 0.20 面積% (約一小時)。然後將 85% 水性磷酸 (10.5 g) 添加到包含產物化合物 200 的反應產物混合物中,將反應器加熱至 60℃,並攪拌內容物直至硼烷加成物的含量降至或低於 0.05 面積% (約 2小時)。
Figure 02_image177
將內容物再攪拌三小時,然後冷卻至 40 至 45℃,並且分離有機相,去除,並經活性炭過濾。然後藉由在大氣壓下在 65℃ 濃縮至最小體積為 2.6 L/kg 起始材料化合物 190,將濾液進行溶劑交換,並添加甲醇至最終體積為 6.6 L/kg 起始材料化合物 190。將混合物接種以使化合物 200 開始結晶,並且溶劑交換以恆定體積繼續,直至 THF 濃度降至或低於 5.0% w/w。將所得懸浮液老化至少 30 分鐘,歷經 5 小時冷卻至 5℃,並在 5℃ 保持至少 3 小時,然後使用吸盤濾出化合物 200 的晶體並用甲醇洗滌兩次。在減壓下乾燥晶體直至達到恆重 (90% 產率,測定:99.1% w/w,純度:99.7 面積%)。 實例 11
將從實例 10 中概述之合成獲得的化合物 200 在冷卻結晶製程中從甲苯/乙醇中再結晶。
在環境溫度,將粗製化合物 200 在第一反應器中懸浮在 60:40 w/w 甲苯:乙醇混合物中,然後加熱至介於 70 至 75℃ 之間。將懸浮液藉由增澤過濾裝置( polish filter unit )轉移到第二反應器中,然後用 60/40 w/w 甲苯/乙醇潤洗第一反應器。第二反應器中化合物 200 的濃度為約 20% w/w。添加乙醇,保持溫度在 70 至 75℃,直到達到 20:80 w/w 的甲苯:乙醇比率。將該溶液冷卻至 50℃,用在乙醇中的化合物 200 的 10% w/w 懸浮液接種 (至約 2% w/w)。將經接種之懸浮液老化四小時,冷卻至 -10℃,老化 10 分鐘,在 15 分鐘內加熱至 45℃,並老化 30 分鐘。將該熱循環重複三次 (加熱至 45℃,老化,冷卻至 -10℃,老化),在第四次熱循環後,將懸浮液冷卻至介於 -15℃ 至 -10℃ 之間。在進一步老化至少六小時後,過濾懸浮液,濾餅用乙醇 (-10℃) 洗滌,並且將洗滌後的濾餅在 50℃ 減壓乾燥隔夜。 比較實例 1
該比較實例呈現一種先前使用的用於合成化合物 141 之方法。化合物 141 從化合物 140 製備,如下所述:
Figure 02_image179
將甲醇 (675 mL) 充填入反應燒瓶中。在攪拌下將化合物 140 (135 g,98.9 A%,537.7mmol,1 當量) 充填入反應燒瓶中,然後添加 10% 碳上鈀催化劑 (27 g,20 w/w%,59% 濕)。將反應燒瓶抽空並充入 N 2三次,然後抽空並充入 H 2三次。將混合物於 45 至 55℃ 加熱 15 小時。將混合物冷卻至 20 至 25℃,然後過濾。將濾液在低於 60℃ 之溫度真空濃縮至幾乎乾燥以形成殘留物。將殘留物與二㗁烷 (675 mL) 合併,並將所得混合物在低於 60℃ 之溫度真空濃縮至幾乎乾燥以形成殘留物。將殘留物用二㗁烷 (1200 mL) 稀釋以形成在二㗁烷 (1295.5 g) 中的化合物 141 溶液。化合物 141 的產率為 90.3%,測定為 8.3%,且藉由 GC 測量之甲醇殘留物為 0.13%。
根據上述方法評估用於從化合物 140 製備化合物 141 的各種溶劑。結果總結在下面的比較實例 1 表 6 中,其中「Exp.」指代實驗;「C 140」指代化合物140;「C 141」指代化合物141;「Pd/C」指代碳上鈀催化劑,且 10% Pd/C 催化劑為 59% 濕;「粗製品」指代反應產物混合物中的及在後處理 (過濾) 之前的參考化合物的以面積% HPLC 純度之測定。 比較實例 1 表 6
Exp. C 140 條件 粗製品
10% Pd/C 溶劑 Rx 時間 C 140 C 141
1 3.6 mmol 2 w/w% 乙醇 16 h 56.8 A% 31.9 A%
2 3.6 mmol 2 w/w% 二㗁烷 16 h 73.2 A% 21.1 A%
3 3.6 mmol 5 w/w% 二㗁烷 16 h 25.5 A% 72 A%
4 54 mmol 2 w/w% 甲醇 10 h 0.13 A% 90.1 A%
根據上述方法評估用於從化合物 140 製備化合物 141 的各種碳上鈀催化劑負載量。結果總結在下面的比較實例 1 表 7 中,其中「Exp.」指代實驗;「C 140」指代化合物 140,其中化合物 140 的純度為 98.4 A%;「C 141」指代化合物 141;「粗製品」指代反應產物混合物中的及在後處理 (過濾) 之前的參考化合物的藉由 HPLC 進行的以面積% 計之測定。 比較實例 1 表 7
Exp. C 140 Pc/C 負載量 粗製品
C 141 雜質 1 雜質 2
1 15 g 2 w/w% 90.1 A% 2 A% 4.1 A%
2 5 g 5 w/w% 95.8 A% 0.6 A% 2 A%
3 166 g 10 w/w% 97.5 A% 0.43 A% 0.77 A%
4 5 g 20 w/w% 98.2 A% 0.18 A% 0.27 A%
根據上述方法評估用於從化合物 140 製備化合物 141 的碳上鈀催化劑之回收及再利用,其中在下面的實驗 1 至 4 中之各者中化合物 140 的起始量為 35.9 mmol。結果總結在下面的比較實例 1 表 8 中,其中「Exp.」指代實驗;「C 140」指代化合物 140,其中化合物 140 的純度為 98.4 A%;「Pd/C」指代碳上鈀催化劑;「粗製品」指代反應產物混合物中的及在後處理 (過濾) 之前的參考化合物的藉由 HPLC 進行的以面積% 計之化合物 140 測定,且「RT」指代以分鐘計的反應時間。 比較實例 1 表 8
Exp. 10% Pd/C IPC
RT:4.93 RT:5.21 RT:5.32 RT:6.89 RT:7.39
1 2.0 g,20 w/w% 98.3 A% 0.69 A% 0.13 A% 0.48 A% 0.1 A%
2 從 Exp 1 再利用 + 0.2 g 新鮮催化劑 98.2 A% 0.35 A% 0.12 A% 0.71 A% 0.03 A%
3 從 Exp 2 再利用 + 0.2 g 新鮮催化劑 98 A% 0.47 A% 0.14 A% 0.78 A% 0.08 A%
4 從 Exp 2 再利用 + 0.2 g 新鮮催化劑 97.9 A% 0.52 A% 0.14 A% 0.91 A% 0.06 A%
比較實例 2
該比較實例呈現一種先前使用的製備化合物 180 之方法。根據以下方案,使比較實例 1 中製備的化合物 141 與化合物 90 反應以形成化合物 180:
Figure 02_image181
將化合物 141 在二㗁烷中之溶液 (1295.5 g,8.3% 測定,433 mmol,1 當量) 充填入反應燒瓶中。在攪拌下將化合物 90 (119.5 g,96.7% 測定,433 mmol,1 當量) 及 K 2CO 3(121 g,99% 測定,17.3 mmol,2 當量) 充填入反應燒瓶中。將反應燒瓶抽空並用 N 2重新填充三次。在攪拌下將 Pd 2(dba) 3催化劑 (9.05 g,99% 測定,8.66 mmol,0.02 當量) 及 Xantphos 配位基 (10.2 g,98% 測定,17.3 mmol,0.04 當量) 充填入反應燒瓶中。將反應燒瓶抽空並用 N 2重新填充三次並將混合物加熱至 105 至 115℃,並將混合物在 N 2下攪拌 24 小時。將混合物冷卻至 65 至 75℃ 並過濾。用熱二㗁烷潤洗收集的固體。合併濾液及二㗁烷洗滌液,並在 55 至 65℃ 真空濃縮至幾乎乾燥以形成殘留物。
將甲醇 (550 mL) 與殘留物合併,將混合物在 0℃ 攪拌 2 小時,過濾混合物以收集固體形式的粗製化合物 180,並將收集的粗製化合物 180 用冷甲醇洗滌。將粗製化合物 180 在 55 至 65℃ 真空乾燥 1 小時。將粗產物秤重並藉由 HPLC 分析,得到 151 g 化合物 180,純度為 97.6 面積%。將粗製品與二㗁烷 (211 g) 合併,並將混合物加熱至回流並在回流下攪拌 15 分鐘。向混合物中逐滴添加異丙醇 (500 mL),同時保持回流。將混合物冷卻至 15 至 25℃ 並在該溫度攪拌 1 小時。過濾混合物並用異丙醇潤洗收集的化合物 180 固體,並在 60 至 70℃ 真空乾燥 5 小時。收集化合物 180 (188 g),藉由 HPLC,純度為 99.1 面積%,測定為 97.6%,且測定產率為 74.1%。
根據上述方法評估用於從化合物 141 及 90 製備化合物 180 的 K 3PO 4。結果呈現在下面的比較實例 2 表 10 中,其中「Exp.」指代實驗;「C 141」指代化合物 141;「C 180」指代化合物 180;「C 90」指代化合物 90;「催化劑」指代 Pd 2(dba) 3催化劑;其「粗製品」指代在 14.3 分鐘的反應時間之後及在後處理之前的反應產物混合物中參考化合物的以面積% 計之測定。 比較實例 2 表 10
Exp. C 141 C 90 IPC
C 141 C 90 C 180
1 8 mmol 8 mmol K 2CO 3,2 當量 0.78 A% 3.3 A% 74.9 A%
2 8 mmol 8 mmol K 3PO 4,2 當量 0.74 A% 3 A% 74.6 A%
根據其中反應時間為 15 小時的上述方法,將溶劑二㗁烷及甲苯評估為用於鈀催化之偶合反應的溶劑,用於從化合物 141 及 90 製備化合物 180。結果呈現在下面的比較實例 2 表 11 中,其中化合物 90 及 141 的量對於每個實驗為 24.2 mmol,並且其中催化劑及配位基的當量係基於化合物 141 及 90 的當量。表中「Exp」為實驗編號。 比較實例 2 表 11
Exp. 溶劑 Pd 2(dba) 3 Xantphos 化合物 180
純度 產率
1 二㗁烷 0.02 當量 0.04 當量 7.4 g 98.9 A% 70.5%
2 甲苯 0.02 當量 0.04 當量 4.7 g 94.8 A% 44.8%
根據上述方法評估甲醇對用於從化合物 141 及 90 製備化合物 180 的鈀催化之偶合反應的效應。結果呈現在下面的比較實例 2 表 12 中,其中化合物 90 及 141 的量對於實驗 1 至 3 為 34.6 mmol,對於實驗 4 為 2 mmol。表中「Exp」為實驗編號;「RT」指代反應時間。 比較實例 2 表 12
Exp. MeOH 殘留物 IPC
化合物 141 化合物 180 化合物 90
RT = 4.95 min RT = 9.58 min RT = 9.37 min
1 0.1 w/w% 1.13 A% 76 A% 4.48 A%
2 0.5 w/w% 2.22 A% 72.6 A% 10.8 A%
3 1 w/w% 2.38 A% 75.7 A% 3.22 A%
4 5 w/w% 10 A% 74.2 A% 10.2 A%
在大量實驗中,化合物 180 (5 g,94.3 A%) 從各種溶劑系統中結晶。結果顯示在下面的比較實例 2 表 13 中。 比較實例 2 表 13
Exp. 溶劑 (mL) 溶劑 (mL) 結晶的化合物 180
體重 測定 產率
1 DCM (10 mL) MeOH (50 mL) 4.3 g 96.4 A% 87.9%
2 DCM (6.25 mL) MeOH (37.5 mL) 4.38 g 95.8 A% 89%
3 二㗁烷 (9 mL) EtOH (22 mL) 4.27 g 94.9 A% 85.9%
4 二㗁烷 (7 mL) i-PrOH (21 mL) 4.61 g 94.9 A% 92.8%
比較實例 3
該比較實例呈現一種先前使用的製備化合物 182 之方法。根據以下方案將如比較實例 2 中製備的化合物 180 硼化以形成化合物 182:
Figure 02_image183
將化合物 180 (1.2 kg,2.763 mol,1 當量)、雙(品納醇)二硼 (1.052 kg,4.145 mol,1.5 當量) 及 KOAc (0.542 kg,5.526 mol,2 當量) 充填入經惰性化之反應器中。將過量的 THF (15 L) 充填入儲存容器中,並用 N 2在表面下噴射至少 1 小時以形成脫氣的 THF。在攪拌下將脫氣的 THF (9.78 kg,11 L) 充填入反應器中。將 Pd 2(dba) 3(6.52 g,6.91 mmol,0.0025 當量)、XPhos (8.15 g,16.58 mmol,0.006 當量) 及脫氣的 THF (0.445 kg,0.5 L) 在攪拌下合併,以在催化劑準備容器中形成混合物。然後在攪拌下將催化劑混合物添加到反應器中。將反應器的內容物用 N 2在表面下噴射至少 1 小時。將反應器的內容物加熱至 60 至 70℃ 並老化至少 12 小時。對反應器中的內容物取樣並藉由 HPLC 評估化合物 170 的含量,並繼續反應直至化合物 170 的含量為 0.9 面積% (藉由 HPLC)。將反應器內容物冷卻至 20 至 30℃ 以形成包含化合物 182 之粗製反應混合物。將水 (3.6 kg,3 L/kg) 充填入反應器中並將反應器內容物攪拌最少 10 分鐘。從反應器中去除水層。保留在反應器中的有機層可以視情況用鹽水洗滌。將反應器內容物加熱至 55 至 65℃ 並真空蒸餾至 4 L (3.3 L/kg)。將 THF (7.11 kg,8 L,6.7 L/kg) 充填入反應器,將反應器內容物加熱至 55 至 65℃ 並真空蒸餾至 4 L (3.3 L/kg)。重複 THF/蒸餾步驟。必要時可以進一步重複 THF/蒸餾步驟,以將反應器內容物中的水含量減少至不超過 3%。透過矽藻土 (0.2 kg) 過濾反應器內容物,然後用 THF (1.1 kg,1.2 L,1 L/kg) 潤洗以產生包含化合物 182 之濾液。將濾液加熱至 55 至 65℃ 並在至少 40℃ 之溫度真空蒸餾至 2 至 3 L 的減少的體積。將 MTBE (8.9 kg,10 L/kg) 充填入減少的體積中,並將所得混合物在至少 40℃ 之溫度真空蒸餾至 2 至 3 L 的減少的體積。將 MTBE (8.9 kg,10 L/kg) 充填入減少的體積中,並將所得包含化合物 182 之混合物在 50 至 60℃ 老化 2 小時,然後冷卻至 0 至 10℃ 並老化最少 2 小時。過濾混合物並收集化合物 182 作為濾餅。將濾餅用 MTBE (1.86 kg,2 L/kg) 洗滌兩次。將分離的化合物 182 固體在減壓下在 50℃ 及 N 2吹掃下乾燥最少 15 小時以提供化合物 182 (1.334 kg,90.3 w/w%,6.2 wt% THF,2 wt% MTBE,1.2% 燃燒殘留物 (ROI),產率 90.6%)。
主要雜質為 DesBr 雜質及二聚體雜質,如下所示:
Figure 02_image185
粗製反應混合物含有 0.5% 至 1% 的 DesBr 及 0.1% 至 0.5% 的二聚體,且經分離之固體含有 0.1% 至 0.4% 的 DesBr 及 0 至 0.1% 的二聚體。
重複上述從化合物 170 製備化合物 180 之方法,但不進行 MTBE 充填及蒸餾步驟。產生了 92.7 w/w% 的化合物 180,其包含 2.4 wt% THF、6.7 wt% MTBE、0.6% 燃燒殘留物 (ROI),且產率為 90.1%。 比較實例 4
該比較實例呈現先前使用的用於製備化合物 190 之方法,該方法使用 Pd(dppf)Cl 2催化系統,以 THF 及 H 2O 作為溶劑。
根據以下方案,使化合物 182 與化合物 170 反應以形成化合物 190:
Figure 02_image187
將化合物 170 (30.0 g,1 當量)、化合物 182 (50.1 g,1.1 當量) 及磷酸鉀 (27.8 g,1.5 當量) 充填入具有 THF (196 g) 及水 (60 g) 的反應器中。將混合物用氬氣脫氣。單獨地,將 Pd(dppf)Cl 2(0.639 g) 懸浮在 THF (8.9 g) 中並用氬氣對混合物脫氣,然後將該混合物添加到第一反應器中。將反應器加熱至 50℃ 並攪拌,直至觀察到小於 0.2 面積% 的化合物 170 (至少 15 小時)。
將反應混合物冷卻至 20℃,添加 6 wt% 的水性 N-乙醯半胱胺酸 (約 60 mL),並將所得混合物攪拌 15 分鐘。分離各層,有機層用飽和水性 NaCl (約 60 mL) 洗滌,然後使用 THF 在大氣壓下共沸(azeotropically)乾燥,直至水減少至小於 2.0% w/w。將所得混合物在 40℃ 用活性炭過濾,然後將濾液藉由下述經歷溶劑交換為乙醇:充填入反應器,並在 50℃ 在減壓下蒸餾至大約 150 mL,然後加入乙醇 (118 g)。在此等條件下,化合物 190 結晶,並將懸浮液老化 2 小時,然後歷經 3 小時冷卻至 20℃,並保持在 20℃ 以促進晶體形成。使用吸盤濾出所得晶體並用 EtOH 洗滌三次,然後在 50℃ 在減壓下乾燥直至達到恆重。分離得到 49.7 g 化合物 190,為亮黃色粉末 (產率:86%;測定:99.8% w/w;純度:99.2 面積%),使用上述之分析方法 HPLC 方法 1 評估。
將該程序重複三次,得到以下結果:
   Exp. 1 Exp. 2 Exp. 3
化合物產率190 51.5 g (89.1%) 47.9 g (82.9%) 50.0 g (86.5%)
化合物190 測定 (w/w%) 99.5 99.6 99.7
化合物190 純度 (面積%) 99.0 99.2 99.1
二聚體雜質 (% w/w) 0.46 0.33 0.54
比較實例 5
以實驗室規模重複比較實例 4 (「先前製程」) 及實例 8 (「本製程」) 中描述的用於製備化合物 190 之方法,然後以中試規模及生產規模進一步進行多次評估。評估了經分離之化合物 190 (在後處理後,包括再結晶後) 中存在的二聚體、醇即酮雜質的量,並總結在下表 14 中。實驗室規模的批量約為 30 g 化合物 170;中試規模約為 1.2 至 2.4 kg 化合物 170;生產規模約為 175 kg 化合物 170。對於通常按照實例 8 之程序製備的不同批量,亦監測製程中 (IPC) 存在的二聚體的量,並藉由 HPLC 以面積% 總結在表 15 中。 表 14:相較於本揭露之方法,在以不同批量根據先前揭露之方法產生的經分離之化合物 190 中偵測之雜質的總結。
   實驗室規模 中試規模 生產規模
   先前製程 本製程 先前製程 本製程 先前製程 本製程
二聚體 0.33-0.54% w/w <0.05-0.15 面積% 0.38-0.51% w/w n.d. 0.29-0.40% w/w n.d.
n.d. n.d. n.d. n.d. n.d. n.d.
n.d. n.d. n.d. - 0.08 面積% 0.12 - 0.31 面積% <0.05 - 0.29 面積% 0.03 - 0.06 面積%
表 15:在根據本製程製備的不同批量之製程中 (IPC) 觀察到的二聚體之量 (當化合物 170 的殘留量 < 1% 時取樣)。
   批量 IPC 二聚體 (面積%)
實驗室規模 27.5 g 0.12-0.28%
中試規模 2.0 kg <0.05-0.15%
生產規模 172 kg ≤0.05%
比較實例 6
化合物 190 通常遵循比較實例 4 (「先前製程」) 及實例 8 (「本製程」) 的程序以生產規模製備。然後使用來自每個製程之化合物 190 製備化合物 200,並且如實例 10 及 11 中一般描述分離化合物 200。
相較於本方法,在最終分離步驟之前及在最終分離步驟之後 (如實例 11 中所述) 在使用來自先前之化合物 190 製備的化合物 200 生產規模批次中觀察到的雜質特徵總結在下表 16 中。相較於使用先前描述的用於製備化合物 190 之方法,根據本方法製備化合物 190 導致在最終分離之前及之後在下游化合物 200 中的雜質較低。 表 16:當使用不同的方法製備化合物 190 (先前方法與本方法) 時,在從甲苯及乙醇中最終再結晶之前及之後,化合物 200 中的雜質特徵總結。
   先前方法 本方法
   最終分離之前 最終分離之後 最終分離之前 最終分離之後
二聚體 0.13 至 0.18 面積% 0.13 至 0.22 面積% 未偵測到 未偵測到
< 0.05 面積% < 0.05 面積% 未偵測到 未偵測到
未偵測到至 0.06 面積% < 0.05 面積% 未偵測到 未偵測到
實例 12 :化合物 140 氫化的連續處理方法
Figure 02_image189
在作為 Ehrfeld 模塊化微反應系統 (MMRS) 之一部分的 Ehrfeld Miprowa 實驗室反應器 (0224-2-2004-F,Hastelloy C-276) 中進行化合物 140 的氫化以產生化合物 141。該反應器含有具有矩形橫截面 (1.5 mm × 12 mm × 300 mm) 的反應通道。使用指定法蘭(flange)來減少使用的通道數量,將四個 (4 個 CSM 或 8 個 CSM 設置) 或八個 (16 個 CSM 設置) 串聯。設置之示意圖提供在圖 16 中。催化靜態混合器 (CSM) 係藉由選擇性雷射熔融從 316L 不鏽鋼粉末製造,根據 CSIRO 的設計進行 (Avril, A. 等人,Continuous Flow Hydrogenations Using Novel Catalytic Static Mixers inside a Tubular Reactor. React.Chem. Eng. 2017, 2, 180–188;Hornung, C. H. 等人,Use of Catalytic Static Mixers for Continuous Flow Gas–Liquid and Transfer Hydrogenations in Organic Synthesis. Org.Process Res. Dev. 2017, 21, 1311–1319;Hornung, C. H. 等人,Additive Layer Manufacturing of Catalytic Static Mixers for Continuous Flow Reactors. Johnson Matthey Technol. Rev. 2018, 62, 350–360;Lebl, R. 等人,Scalable Continuous Flow Hydrogenations Using Pd/Al2O3-Coated Rectangular Cross-Section 3D-Printed Static Mixers. Catal.Today 2020)。
Pd CSM 經由電鍍生產。為了生產 Pd/Al 2O 3CSM,經由 CSIRO 及澳大利亞精密電鍍公司 (Precision Plating Australia) 之漿液塗覆技術,用 Pd/Al 2O 3塗覆經 3D 列印之靜態混合器。反應器填充有 CSM,如下詳述。當考慮整個通道體積時,反應器體積計算為每個 CSM 2.7 mL,或者當僅考慮空隙體積 (通道體積減去 CSM 本身佔用的體積) 時,估計為每個 CSM 1.7 mL。
4 CSM 設置:使用法蘭將通道數限制為四個。前兩個通道填充有由 Hastelloy C‑276 (6114-1-3244) 製成的標准人字形流動擋板 (三層,45° 角,支柱寬度 1.0 mm,間距 2.0 mm,長度 300 mm)。後兩個通道填充有四個長度各自為 150 mm 的催化靜態混合器 (CSM) (每個通道 2 個)。
8 CSM 設置:使用法蘭將通道數限制為四個。全部四個通道填充有八個長度各自為 150 mm 的催化靜態混合器 (CSM) (每個通道 2 個)。
16 CSM 設置:藉由打開法蘭,通道數增加到全部八個。全部四個通道填充有十六個長度各自為 150 mm 的催化靜態混合器 (CSM) (每個通道 2 個)。
在線及離線 UHPLC 分析兩者皆用於監測反應製程及產物。
離線 UHPLC:在適配 Waters XSelect CSH C18 XP 管柱 (150 × 3 mm,2.5 µm 粒徑) 的 Shimadzu Nexera X2 上進行,條件如下:
流動相 A:用氫氧化銨將甲酸銨水溶液 (10 mM) 調節至 pH 9.0。
流動相 B:乙腈
總流速:1 mL/min,使用以下梯度程式:
時間 (min) A (%) B (%)
0 95 5
5 95 5
23 70 30
25 70 30
35 5 95
在 238 nm 波長處進行分析。報告限值 (r.l.) 設定為 0.025 面積%。
線上 UHPLC 分析:使用適配 Kinetex 聯苯管柱 (100 × 2.1 mm 尺寸,1.7 µm 粒徑) 的 Shimadzu Nexera X2 系統上進行,條件如下:
等度法,溶劑 B 為 40% 固定濃度,總流速為 0.4 mL/min。在 238 nm 波長處分析樣品,使用 2.27 的化合物 141: 化合物 140 相對吸光度比。
溶劑 A:水性 H 3PO 4/KH 2PO 4緩衝液 (10 mM),含 0.33 mM 正辛基磺酸鈉添加劑。
溶劑 B:67% MeOH,33% 水,H 3PO 4/KH 2PO 4緩衝液 (10 mM),含 0.33 mM 正辛基磺酸鈉添加劑。
代表性連續流動程序:在容量瓶中配製化合物 140 之輸入溶液,加入所需量的水 (若指示),然後用 THF 填充至刻度。該溶液在攪拌或超音處理下用氮氣脫氣。遵循以下啟動程序: 1.以期望之反應流速用甲醇沖洗反應器。 2.將背壓調節器設置為期望之反應壓力。 3.開始以期望之反應流速用 THF 沖洗反應器。 4.將恆溫器設置為期望之反應溫度並使其到達。 5.使系統平衡至少 30 分鐘。 6.設置 H 2流速並使壓力達到所需位準。 7.在 H 2到達反應壓力時,暫停 H 2流動。 8.短暫關閉液體泵,以將輸入切換到受質溶液 (使用閥門)。 9.啟動泵及 H 2流動,以及 UHPLC 進樣及 FT-IR 測量。
關於化合物 140 氫化的偶氮、氧偶氮及二聚體雜質指代以下結構:
Figure 02_image191
連續處理參數的初步評估
初始參數為:0.2 M 化合物 140 在 THF 中之溶液,不添加水,壓力 20 bar,夾套溫度 80℃,使用 4 個催化靜態混合器 (CSM)。經 Pd 電鍍之 CSM 僅展示出最小程度的反應 (~6% 轉化率),而經 Pd/Al 2O 3漿液塗覆之 CSM 在相同條件下明顯更有效 (實現 98.632 面積% 之化合物 141)。不希望受理論束縛,這可歸因於 Pd/Al 2O 3變異體的顯著更高之有效表面積。
將流速從 1 增加到 2 mL/min 導致化合物 140 的不完全轉化,並且在應用此等條件下,歷時 30 分鐘之轉化率似乎有所降低。該效應在較高流速 (3、4 及 5 mL/min) 下愈明顯,這似乎顯示在恆定梯度下轉化率降低。流速恢復到 1 mL/min,此時不再觀察到完全的受質轉化 (~95% 轉化率)。結果總結在下表 17 中。 表 17:來自第一個流速篩選的離線 UHPLC 結果。
液體流速 [mL/min] Cmpd 141 [ 面積 %] Cmpd 140 [ 面積 %] 結合之偶氮 + 氧偶氮雜質 [ 面積 %] 二聚體雜質 [ 面積 %]
1.0 98.355 0.060 0.130 0.023
2.0 94.865 2.233 0.252 0.03
3.0 81.183 14.141 0.449 0.028
4.0 64.712 30.178 0.469 0.022
5.0 50.764 44.394 0.509 0.019
1.0* 88.085 8.505 0.235 0.033
在使用 CSM 之前已經觀察到這種類型的性能降低,並且可能歸因於反應物種隨時間推移對催化劑的抑制作用 (Lebl, R. 等人,Scalable Continuous Flow Hydrogenations Using Pd/Al 2O 3-Coated Rectangular Cross-Section 3D-Printed Static Mixers. Catal.Today 2020)。解決這個問題的一種方法為包含質子性溶劑及更高的反應溫度。
在第二組實驗中,夾套溫度以 20℃ 之步長從 60℃ 增加到 140℃;這似乎對反應產生了顯著的積極影響,在轉化率及隨時間推移降低其侵蝕兩個方面。相較於 60℃,轉換損耗梯度在 80 ℃ 時明顯更淺,並且在 120℃ 時根本沒有觀察到。為了確定在此期間是否發生了任何變化,最終的一組條件為初始條件的複製品。在這兩種情況之間觀察到顯著差異 (之前的轉化率為 78%,之後轉化率為 56%),意味著即使在更高溫度也會發生一些性能損失,並且會對長期處理產生效應。
亦檢查了添加質子性溶劑的方法,首先添加甲醇作為共溶劑。反應性及雜質特徵受到包含甲醇對的很大影響,如下表 17 所示。 表 17:使用甲醇作為共溶劑之反應的離線 UHPLC 結果
MeOH 流速 [mL/min] MeOH 比率 [v/v] Cmpd 141 [ 面積 %] Cmpd 140 [ 面積 %] 結合之偶氮 + 氧偶氮雜質 [ 面積 %] 二聚體雜質 [ 面積 %]
0.0 0.00 94.744 1.865 2.107 0.034
0.5 0.20 71.976 23.378 1.472 0.042
1.0 0.33 78.454 16.134 2.362 0.056
2.0 0.50 79.644 13.46 5.229 0.036
水 (2 當量) 作為氫化反應的副產物產生,因此認為它的存在可能不會損害反應性能。然而,CSM 使用 Al 2O 3作為催化劑載體材料,導致對 CSM 穩定性及催化劑在水性條件下降解的擔憂。
為了測試催化劑降解,在對照實驗中,將一個單一 CSM 曝露於從 4 到 512 當量遞增之水量 (512 當量對應於 ~2:1.9 的 THF:水體積比)。令人驚訝的是,沒有觀察到活性損失或可見之降解。反應器流出物的感應偶合電漿質譜 (ICP-MS) 分析顯示鈀之含量沒有升高,指示 CSM 穩定,即使在如此高含量的水的存在下亦如是。鑑於在水的存在下的令人驚訝的穩定性,繼續發展反應條件而不考慮水對 CSM 穩定性的影響。
使用第二個 HPLC 泵,將 1 至 4 當量的水與反應流一起引入。水的存在似乎顯著提高反應速率,並且亦防止催化劑隨時間的失活。相較於無水條件 (38% 對 73%),所檢查之最大值 (4 當量) 提供幾乎兩倍的轉化率位準。
亦使用第二個泵使用以 THF 稀釋的化合物 140 之 0.5 M 溶液檢查反應濃度。由於催化劑在較高濃度下失活,隨著時間推移在最高濃度 (0.5 M) 下觀察到下降趨勢。反應條件:壓力 = 20 巴,夾套溫度 = 80℃,H 2= 4.5 當量,總液體流速 = 2.0 mL/min。結果總結在下表 18 中。對於其餘實驗,使用 0.4 M 化合物 140。 表 18:化合物 140 濃度篩選的離線 UHPLC 結果
Cmpd 140 濃度 [M] 液體流速 [mL/min] THF 流速 [mL/min] H 2 流速 [mLN/min] Cmpd 141 [ 面積 %] Cmpd 140 [ 面積 %] 結合之偶氮 + 氧偶氮雜質 [ 面積 %] 二聚體雜質 [ 面積 %]
0.5 2.0 0.0 100 64.841 29.659 0.304 0.021
0.4 1.6 0.4 80 61.409 33.405 0.247 0.019
0.3 1.2 0.8 60 62.305 32.562 0.217 0.019
0.2 0.8 1.2 40 65.98 29.277 0.208 0.015
0.1 0.4 1.6 20 74.64 20.899 0.204 0.035
使用該反應器設置,在多次實驗運行中快速篩選了一系列反應參數。溫度、水含量及壓力全部改變。從此等實驗 (總計 25 次,包括 2 次重複) 確定,溫度為迄今為止最重要的參數,其次為 H 2O 負載量。相反,反應壓力具有相對最小的效應。從該資料繪製了表示在不同條件下轉化率之預測的等高線圖。觀察到明顯的趨勢,其中較高的溫度及較高的 H 2O 負載量會提高轉化率。
另外,實驗性地確定 H 2之流速對反應性能沒有影響,只要提供足夠的 H 2即可。停留時間不受過量氣體的影響,這可能是由於反應器內的分層流動狀態。
使用 8 CSM 進行進一步評估
用 8 個 CSM 進行進一步之實驗,以評估在該反應系統中可能達到的潛在通量。該評估之關鍵為在遞增流速下觀察到的雜質數量 (偶氮 + 氧偶氮總量,及二聚體)。使用 4 個 CSM 的先前實驗確定更高的流速導致此等雜質之含量增加 (由於更短的停留時間),而且向輸入溶液中添加水可以降低它們。檢查了一系列條件,其中流速及水含量改變 (表 19)。夾套溫度、壓力及 H 2當量分別設置為 120℃、20 巴及 3.3 當量 (10% 過量)。 表 19:8 個 CSM 製程、不同流速及水含量的離線 UHPLC 分析
項目 流速 [mL/min] H 2O [當量] 化合物 141 [面積%] 化合物 140 [面積%] 結合之 偶氮 + 氧偶氮 [面積%] 二聚體 [面積%]
1 4.0 2.0 98.682 < r.l. 0.083 0.053
2 4.0 4.0 99.022 < r.l. 0.089 0.046
3 4.0 8.0 98.836 < r.l. 0.074 0.031
4 6.0 2.0 98.558 0.046 0.127 0.066
5 6.0 4.0 98.558 0.028 0.110 0.047
6 6.0 8.0 98.871 < r.l. 0.084 0.032
7 8.0 2.0 97.817 0.212 0.123 0.063
8 8.0 4.0 98.648 0.078 0.118 0.047
9 8.0 8.0 99.104 < r.l. 0.091 0.033
r.l = 報告限值,0.025 面積%
全部結果 (除項目 7 外) 皆顯示期望產物之含量為 > 98.5 面積%,且起始材料化合物 141 之含量為 <0.1 面積%,並且在所測量之雜質量中觀察到明顯的趨勢。在低流速下 (項目 1 至 3),全部結果皆顯示雜質含量為 <0.1 面積%;而在 6 mL/min (項目 4 至 6) 及 8 mL/min (項目 7 至 9) 的增加之流速下,只有當進料溶液中包含 8 當量 H 2O 時,雜質含量方為 <0.1 面積%。此等實驗表明,8 mL/min 的流速 (對應於 192 mmol/h 的通量) 可能具有可接受的純度特徵。
然後藉由歷經兩個工作日進行連續流動反應來研究反應器系統的長期穩定性:10 小時,然後 6 小時,在兩個期間之間進行溶劑洗滌;在兩次運行之間將反應器在環境條件下儲存在 MeOH 中隔夜。這評估反應器之行為、隨時間推移之雜質特徵,並偵測任何潛在的催化劑浸出( leaching)或失活。為該演示選擇的實驗條件為:壓力 = 20 巴,夾套溫度 = 120℃,H 2=3.3 當量,液體流速 8 mL/min 流速,6 當量 H 2O,化合物 140 濃度為 0.4 M。在該實驗過程期間,收集了 16 個餾分 (每小時 1 個) 用於詳細的離線分析。分餾反應器產出物的離線分析表明,化合物 141 之量在所測量的第一餾分中為 99.2 面積%,並且沒有隨時間推移降低—實際上觀察到逐漸增加 (圖 14A)。起始材料化合物 140 以及偶氮 + 氧偶氮 (結合的) 及二聚體雜質在第一餾分中含量低並且隨時間推移降低 (圖 14B)。所收集的餾分中無一提供 >0.1 面積% 的結合之偶氮 + 氧偶氮雜質或二聚體雜質。歷經此期間,處理了 850 g (3.07 mol) 起始材料,且催化劑活性沒有隨時間損失。基於 96 mg (0.9 mmol,12 mg 每 CSM) 的總 Pd 負載量,這表示有效催化劑負載量恰為 0.011 重量%,預計隨著長期處理而降低。當考慮該製程之長期穩定性時,催化劑浸出令人擔憂。據此,對收集的六個餾分進行 ICP-MS 測量,並與輸入反應混合物及溶劑空白的測量值進行比較。在任何樣品中皆未觀察到可偵測含量之 Al,表明氧化鋁載體不隨時間降解,這與之前使用此類 CSM 的工作相一致 (Lebl, R. 等人,Scalable Continuous Flow Hydrogenations Using Pd/Al2O3-Coated Rectangular Cross-Section 3D-Printed Static Mixers. Catal.Today 2020)。
所評估之最大通量處理 (16 CSM)
從 4 個 CSM 到 8 個 CSM 的可能通量之增加高於預期的線性放大 (48 mmol/h 到 192 mmol/h;四倍增加)。不希望受理論的束縛,這可能由經改進之混合所引起,其在更高的流速下實現,但亦可能受到由反應放熱所引起之輕微溫度升高的影響。為了評估在所使用的反應器設置中可達到的最大生產率,使用 16 個 CSM 的完全容量進行另外的實驗。作成一些小的修改,包括在反應器之前的熱交換器及在反應器自身內部 (流體通道之間) 使用四個另外的內部溫度感測器。
初步篩選實驗檢查了在 16 mL/min (根據 8 CSM 設置的線性可放大性) 以及 20、24、27 及 30 mL/min 下的反應性能。令人驚訝的是,即使在 30 mL/min 下亦觀察到優異之雜質特徵,觀察到的偶氮 + 氧偶氮 (結合) 含量為 0.082 面積%,二聚體雜質含量異常低 (0.039 面積%)。將此等條件運行 1 小時,以確保穩定性並處理更大量的材料。相較於預期值 (圖 15),所實現的通量代表了顯著的改進。這對應於隨著規模擴大而增加的時空產率,可能是由於在更高流速下的改善混合。由於使用的反應器通道較小 (27.2 mL 空隙體積),此處實現的最大時空產率為 26.2 mol/L/h。 比較實例 7 相較於連續流動處理方法,經由兩種批式方法製備化合物 141
將實例 12 中所述之連續流動處理方法及批式製程,兩者皆使用 THF/水溶劑系統 (約 5% vol 水),與先前公佈的使用甲苯/甲醇溶劑系統的批式方法 (Zhang, H. 等人,Development of an Efficient Manufacturing Process for Reversible Bruton’s Tyrosine Kinase Inhibitor GDC-0853. Org.Process Res. Dev. 2018, 22, 978–990) 進行比較。
PhMe/MeOH 中的批式程序:在玻璃高壓釜容器中,將化合物 140 (4.8 g,17.2 mmol) 溶解在 PhMe 及 MeOH 的混合物 (1:1 v/v,27 mL) 中。然後,添加 Pd/C 5% (濕,56.8% H 2O,222 mg) 以及乙酸 (492 µL) 及水 (60 µL)。將反應器關閉並密封,用 H 2(1 巴) 吹掃 3 次,然後加壓至 20 巴。然後在緩慢攪拌下將反應器加熱至 50℃。然後藉由改變攪拌速度來控制溫度以保持溫度低於 55℃。將反應攪拌 3 小時,且在最後 1.5 小時保持溫度升高至 60℃。然後將反應冷卻至 35℃,然後減壓並取樣用於 UHPLC 分析,使用上述實例 7 中描述的 UHPLC 程序。
THF/H 2O 中的批式程序 將 Pd/C 5% (濕,56.8% H 2O,154 mg) 及 30 mL 的 0.4 M化合物 140 溶液 (總計 12 mmol)(在 THF 中) 填充入玻璃高壓釜容器中,並添加 2.4 M 水。將反應器關閉並密封,用 H 2(1 巴) 吹掃 3 次,然後加壓至 20 巴。然後在緩慢攪拌下將反應器加熱至 50℃。在反應開始時,觀察到放熱,且反應溫度達到 61℃。然後藉由降低攪拌速度來控制溫度以保持溫度低於 60 °C。將反應攪拌 3 小時,且在最後 1.5 小時保持溫度升高至 60℃。然後將反應冷卻至 35℃,然後減壓並取樣用於 UHPLC 分析,使用上述實例 7 中描述的 UHPLC 程序。
連續流動程序:使用如上述實例 12 中所述之 8 CSM、16 小時 (10 小時 + 6 小時) 運行的結果。夾套溫度、壓力及 H 2當量分別設置為 120℃、20 巴及 3.3 當量 (10% 過量);使用 0.4 M 化合物 140;流速為 8 mL/min,6 當量 H 2O。 表 20:相較於 CSM 流動程序,批量比較的離線 UHPLC 結果。
方法 Cmpd 141 [ 面積 %] 起始原料 Cmpd 140 [ 面積 %] 結合之偶氮及氧偶氮雜質 [ 面積 %] 二聚體雜質 [ 面積 %]
批次 (PhMe/MeOH) 96.572 < r.l. 0.182 1.196
批次 (THF/H 2O) 99.397 < r.l. < r.l. < r.l.
流動 16 小時延長運行 (THF/H 2O) 99.441 < r.l. 0.068 0.027
r.l.= 報告限值,0.025 面積% 實例 13 :其他連續處理方法
進行了另外的連續處理實驗,以研究在製備胺基吡啶 141 時在球形載體上使用金屬催化劑的影響。 23中提供了所用實驗裝置的示意圖。固定床催化劑裝在管式反應器中,向其連續饋入氫 (饋入由質量流量控制器控制) 及硝基吡啶 140溶液 (饋入由 HPLC 泵控制)。通過固定床催化劑後,氫化反應生成的溶液 (含產物胺基吡啶 141) 經由手動取樣單元取樣,通過壓力控制容器及背壓調節器,然後在氣液分離時收集。
研究的初始反應條件為使用 3% Pd/Al 2O 3催化劑 (Al 2O 3球,由 Johnson Matthey 提供,代碼 110002)。使用小型反應器 (內直徑 0.6 cm,長度 15 cm),首先藉由以 1 mL/min 的流速向反應器饋入硝基吡啶 140 (在 THF 中)的溶液 (濃度 0.36 M) 來研究反應器溫度。H 2的饋入速度保持在 30 mL/min,並且系統壓力保持在 20 巴。當將溫度從 60 ℃ 增加到更高值時,硝基吡啶 140 向胺基吡啶 141 的轉化率提高。同時,如藉由 HPLC 判斷,已知不希望的雜質 (偶氮、氧偶氮及二聚體) 的量皆減少至低於 0.20 面積%。如表 21 中總結,在較高之溫度下,未鑑定之雜質的總和亦降低,在 T mantel= 100℃ 時達到最佳值 (項目 3)。將溫度進一步增加至 T mantel= 120℃ 並沒有帶來任何好處,因為它產生了更多的未知雜質 (項目 4)。 21.使用 3% Pd/Al 2O 3催化劑在不同反應器溫度對化合物 140進行硝基還原的 HPLC 結果。
項目 T mantel[°C] 化合物 141 [面積%] 起始原料 cmpd 140 [面積%] 結合之偶氮及氧偶氮雜質 [面積%] 二聚體雜質 [面積%]
1 60 94.18 2.64 1.77 0.13
2 80 98.50 0.10 0.11 0.16
3 100 98.90 < r.l. 0.09 0.13
4 120 98.53 < r.l. 0.13 0.13
將反應器溫度設置為 100℃ 後,簡要研究了系統壓力,但在 10 至 30 巴的範圍內沒有觀察到重大差異,因此決定將該值保持在 20 巴以進行進一步研究。關於 H 2饋入,觀察到 H 2少量過量於反應化學計量所需的量 (亦即,對於硝基吡啶 140為 3 當量) 是必要的,但大量過量沒有帶來任何好處。與在催化靜態混合器的情況下觀察到的情況 (參見實例 12) 相反,使用水作為添加劑並沒有提供任何特別的優勢 (表 22),因此決定在沒有這種添加劑的情況下繼續實驗。 22.在表 21 項目 2 (T mantel= 80 ℃) 報告的條件下,在存在及不存在水作為添加劑下獲得的結果。
水作為添加劑 化合物 141 [面積%] 起始原料 cmpd 140 [面積%] 結合之偶氮及氧偶氮雜質 [面積%] 二聚體雜質 [面積%]
4 當量 98.43 0.05 0.17 0.12
98.50 0.10 0.11 0.16
在確立用於還原硝基吡啶 140的反應條件 (參見表 21,項目 3) 後,測試了不同的催化劑類型 (金屬載體 = 氧化鋁球及碳顆粒)。金屬含量為 3% 的氧化鋁承載之 Pd 及 Pt 顆粒在產物純度方面表現非常相似,分別達到 98.90 及 98.70面積% 的化合物 141。接下來,在相同條件下測試金屬負載量為 5% 的活性炭顆粒,得到純度 > 99.0 面積% 的產物。此等碳基催化劑進一步表明鉑的性能優於鈀。使用 Evonik 提供的 5% Pt/C 催化劑 NOBLYST® P8109 獲得了完全轉化時 99.61 面積% 產物純度的最佳結果 ( 20)。該實例 13 中提供的催化劑負載量為乾 wt%。
兩種 5% Pt/C 催化劑 (一種來自 Johnson Mattehy,型號 110001;另一種來自 Evonik,型號 Noblyst® P8109) 經鑑定為最具前景,接下來在化合物 141的產生中隨時間推移對此等催化劑進行評估。 21總結了觀察到的結果,該等結果顯示 NOBLYST® P8109 在很長一段時間內具有傑出的活性,而 JM 110001 在所選擇的反應條件下,在所研究的反應中,在大約 2 小時後表現出性能下降。
最後,結合上述評估,將硝基吡啶 140的還原按比例放大,增加了反應器體積及氫化製程的通量,如下所述。
液體饋料:製備 0.36 M 硝基吡啶 140溶液(在脫氣 THF 中)作為連續氫化系統的液體饋料。
催化劑床:用催化劑 5% Pt/C Evonik NOBLYST® P8109 (4.9 g) 填充管式反應器 (內直徑 1.2 cm,長度 15 cm)。
在開始反應之前,反應器以 5 mL/min 的速度用 THF 沖洗 20 分鐘。在此期間,將反應器加熱至期望溫度 (T mantel= 100℃),並使用質量流量控制器以 150 mL/min 的速率將氫饋入反應器,並將系統壓力設置為 20 巴。一旦系統經預處理,即將液體饋料從 THF 切換到上面製備的硝基吡啶 140溶液。液體饋料速率保持在 10 mL/min,H 2饋料速率以 300 mL/min 增加,反應條件保持為 T mantel= 100 ℃ 及 20 巴,同時定期 (每 20 min) 對產出反應混合物進行採樣並隨時間推移收集之。繼續氫化總計 6 小時。此後,將液體饋料再次切換為 THF 以洗滌系統,然後將其冷卻並藉由將氣體饋料切換為氬氣再次使其呈惰性。第二天,重複啟動反應的完整程序,硝基吡啶 140的氫化在上述相同條件下重新開始並保持 1 小時。目的是證明可以再次使用催化劑床並獲得相當的結果。總之,使用相同的催化劑床進行連續氫化總計 7 小時,以 60 g/h 的速率還原硝基吡啶 140
藉由對隨時間推移取樣的反應溶液進行 HPLC 分析來監測反應的結果及製程隨時間推移的穩定性,觀察期望產物的純度及不期望雜質的形成。 22總結了隨時間推移從來自固定床催化劑的溶液中取樣的胺基吡啶 141的 HPLC 純度。
單獨收集來自氫化製程的溶液的兩個部分,以評估在整體製程的兩個不同階段收集的材料的總體純度及產率。 A部分由在流動製程的前 195 分鐘期間收集的 50 g 溶液組成。 B部分由在介於 195 至 380 分鐘反應時間之間收集的 100 g 溶液組成。藉由在真空下蒸發溶劑直至達到恆重來分離存在於每一部分中的產物,從而分別以 85.6% 及 89.6% 的產率得到胺基吡啶 141。兩種經分離之材料的純度報告在表 23 中。 23.來自使用固定催化劑床之 140流動氫化的經分離之材料的純度
部分 化合物 141 [面積%] 起始原料 cmpd 140 [面積%] 結合之偶氮及氧偶氮雜質 [面積%] 二聚體雜質 [面積%]
A 99.38 < r.l. < r.l. 0.13
B 99.39 0.04 0.03 0.07
A部分及 B部分中分離之材料的 XRF 分析未偵測到 Pt 或其他金屬的任何痕跡 (r.l.= 1 ppm),顯示在該製程期間沒有發生金屬浸出到產物中。 實例 14 :化合物 200 之各種結晶溶劑合物的製備
乙醇半溶劑合物:將 100.9 mg 非晶形化合物 200 懸浮在 1.2 mL 乙醇中並在 0℃ 老化 5 天。白色懸浮液藉由離心過濾在 0℃ 分離。濕濾餅在環境溫度露天儲存時乾燥。將樣品在 50℃ 在真空下進一步乾燥 3 天,然後藉由 XRPD 進行表徵。XRPD 光譜提供在圖 17 中,且峰列表提供在表 X 中。
甲苯溶劑合物:將 203.2mg 非晶形化合物 200 在環境溫度曝露於甲苯蒸氣 7 天。將所得濕粉末在甲苯蒸汽下在 100 毫巴/環境溫度輕柔乾燥 2 天,然後藉由 XRPD 進行表徵。XRPD 光譜提供在圖 18 中,且峰列表提供在表 X 中。
乙醇溶劑合物:在 80℃,將 98.1 mg 非晶形化合物溶解在 10 mL 乙醇中。將溶液冷卻並增澤過濾以獲得無顆粒溶液。將澄清溶液重新加熱至 80℃,然後在攪拌下快速冷卻。將所得懸浮液在 -10℃ 攪拌 2 天。藉由過濾分離晶體並藉由 XRPD 表徵。XRPD 光譜提供在圖 19 中,且峰列表提供在表 X 中。
XRPD 表徵:使用 Stoe Stadi P 繞射儀 (Cu K α1輻射 [1.5406 Å],初級 Ge 單色儀,Mythen 1K 矽條偵測器,角度範圍 3° 至 42° 2 θ,步長 0.02° 2θ,每步驟的測量時間為 20 秒) 在環境條件下以透射幾何形狀記錄 X 射線繞射圖譜。該物質不經進一步處理 (例如研磨或篩分) 即製備並分析樣品。X 射線繞射資料之測量及評估係使用 WinXPOW 軟體 (STOE & Cie GmbH, Darmstadt, Germany) 進行。每個單獨峰的位置誤差為 ±0.2° 2θ。
儘管為了清楚理解起見,藉由圖示和實例的方式對上述發明進行了詳細描述,但是這些描述和實例不應被解釋為限製本發明的範圍。據此,全部合適的修改及等效物皆可以認為落入由所附申請專利範圍限定的本發明之範圍內。本文引用的所有專利和科學文獻的公開內容均以引用的方式明確納入其全部內容。
1顯示一種用於製備化合物 141 及 180 的方法。 2顯示一種用於製備化合物 141 的方法,以及另一種用於製備化合物 180 的方法。 3顯示一種用於製備化合物 141 的方法以及另一種用於製備化合物 180 的方法。 4顯示一種用於製備化合物 182 的方法。 5A顯示用於製備化合物 190 的第一方法。 5B顯示用於製備化合物 190 的第二方法。 6顯示一種用於製備化合物 200 的方法。 7顯示一種用於製備化合物 160 及 170 的方法。 8顯示一種用於製備化合物 120、130 及 160 的方法。 9顯示一種用於製備化合物 120、121、130 及 160 的方法。 10顯示一種用於製備化合物 122、130 及 160 的方法。 11顯示一種用於製備化合物 170 的方法。 12A顯示一種用於製備化合物 140 的方法。 12B顯示用於製備化合物 154A、153 及 140 的方法。 13顯示一種用於製備化合物 200 的整體製程,其中「Comp」指代化合物。 14A為化合物 141 之面積% 的圖,如藉由超高效液相層析 (UHPLC) 測量從經分餾之反應器產出物中評估,監測用於從化合物 140 生產化合物 141 的連續處理方法,如實例 12 中所述。 14B為化合物 140、結合之偶氮 + 氧偶氮雜質及二聚體雜質之面積% 的圖,如藉由超高效液相層析 (UHPLC) 測量從經分餾之反應器產出物中評估,監測用於從化合物 140 生產化合物 141 的連續處理方法,如實例 12 中所述。 15為理論預期通量相較於在實例 12 所述之連續處理方法中觀察到的實際實現之實驗產出物的圖。 16為實例 12 所述之連續處理設置的示意圖,包括藉由線內( inline ) FT-IR 及線上(online) UHPLC 進行的即時分析。P 及 T 分別表示壓力及溫度感測器。 17為實例 14 中獲得的結晶乙醇半溶劑合物形式之非奈布替尼 (fenebrutinib) 的 XRPD 光譜。 18為實例 14 中獲得的結晶乙醇半溶劑合物形式之非奈布替尼 (fenebrutinib) 的 XRPD 光譜。 19為實例 14 中獲得的結晶乙醇半溶劑合物形式之非奈布替尼 (fenebrutinib) 的 XRPD 光譜。 20為總結不同催化劑在表 21 項目 3 中報告之反應條件下的 141 之流動氫化中的性能的圖。 21為總結兩種不同的 5% Pt/C 催化劑在表 21 項目 3 中報告之反應條件下的化合物 140之還原中的隨時間推移之性能的圖。 22為藉由在實例 13 所述之放大連續流中定期取樣獲得之胺基吡啶 141溶液之純度的圖。 23為實例 13 所述之連續處理裝置的示意圖,其使用以金屬形式沉積在固體載體上並包含在管式反應器中的固定床催化劑。
Figure 111116834-A0101-11-0002-1

Claims (34)

  1. 一種製備化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽之方法, 該方法包含: (a)  形成反應混合物,該反應混合物包含化合物 170、化合物 181、鈀催化劑及包含鹼之溶劑系統,且其中該鈀催化劑與化合物 170 之當量比為約 0.001:1 至小於 0.005:1;以及 (b)  根據以下方案,使該反應混合物反應以形成包含化合物 190 之反應產物混合物:
    Figure 03_image193
    , 其中 Pd 催化劑包含含有膦配位基及至少一個鈀-碳鍵之鈀(II) 物種, 其中: (i)    產生該鈀-碳鍵之片段為下式之烯丙基衍生物
    Figure 03_image007
    其中 R 6至 R 10中之各者獨立地選自由以下所組成之群組:H、視情況經取代之 C 1-6烷基、視情況經取代之 C 6芳基及視情況經取代之雜芳基;且 R 6與 R 10可視情況一起形成包含芳香環之稠合雙環; 其中基於化合物 170,化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽之產率為至少 50%。
  2. 如請求項 1 之方法,其中: (a)  基於化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽,二聚體雜質之含量為小於 0.1 面積%,其中該二聚體雜質具有以下結構
    Figure 03_image012
    ;並且 (b)  基於化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽,醇及酮雜質之結合含量為小於 0.25 面積%,其中醇及酮雜質具有以下結構
    Figure 03_image197
  3. 如請求項 1 或 2 之方法,其進一步包含使化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽反應以形成化合物 200、或其立體異構物、幾何異構物、互變異構物或鹽,該反應包含: (a)    根據以下方案,使化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽與還原劑及鹼在溶劑的存在下接觸以形成化合物 200、或其立體異構物、幾何異構物、互變異構物或鹽
    Figure 03_image199
    ;以及 (b)    分離化合物 200、或其立體異構物、幾何異構物、互變異構物或鹽, 其中基於化合物 170,化合物 200、或其立體異構物、幾何異構物、互變異構物或鹽之產率為至少 60%、至少 70%、至少 80% 或至少 85%,且化合物 200、或其立體異構物、幾何異構物、互變異構物或鹽之純度為至少 99 面積% 或至少 99.5 面積%。
  4. 一種減少 Suzuki 偶合反應中的副產物形成之方法,該方法包含: (a)  形成包含化合物 170、化合物 181、鈀催化劑、溶劑系統及鹼之反應混合物,其中該鈀催化劑與化合物 170 之當量比為約 0.001:1 至小於 0.005:1;以及 (b)  根據以下方案,使該反應混合物反應以形成包含化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽之反應產物混合物:
    Figure 03_image201
    , 其中 Pd 催化劑包含含有膦配位基及至少一個鈀-碳鍵之鈀(II) 物種, 其中: (i)    產生該鈀-碳鍵之片段為下式之烯丙基衍生物
    Figure 03_image007
    其中 R 6至 R 10中之各者獨立地選自由以下所組成之群組:H、視情況經取代之 C 1-6烷基、視情況經取代之 C 6芳基及視情況經取代之雜芳基;且 R 6與 R 10可視情況一起形成包含芳香環之稠合雙環; 其中: (a)  基於化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽,二聚體雜質之含量為小於 0.1 面積%,其中該二聚體雜質具有以下結構
    Figure 03_image012
    ;以及 (b)  基於化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽,醇及酮雜質之結合含量為小於 0.25 面積%,其中醇及酮雜質具有以下結構
    Figure 03_image205
  5. 一種提高 Suzuki 偶合反應中的產率之方法,該方法包含: (a)  形成包含化合物 170、化合物 181、鈀催化劑、溶劑系統及鹼之反應混合物,其中該鈀催化劑與化合物 170 之當量比為約 0.001:1 至小於 0.005:1;以及 (b)  根據以下方案,使該反應混合物反應以形成包含化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽之反應產物混合物:
    Figure 03_image207
    , 其中 Pd 催化劑包含含有膦配位基及至少一個鈀-碳鍵之鈀(II) 物種, 其中: (i)    產生該鈀-碳鍵之片段為下式之烯丙基衍生物
    Figure 03_image007
    其中 R 6至 R 10中之各者獨立地選自由以下所組成之群組:H、視情況經取代之 C 1-6烷基、視情況經取代之 C 6芳基及視情況經取代之雜芳基;且 R 6與 R 10可視情況一起形成包含芳香環之稠合雙環; 其中基於化合物 170,化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽之產率為至少 80% 或至少 85%。
  6. 如請求項 1 至 5 中任一項之方法,其中產生該鈀-碳鍵之該片段為下式之茚基
    Figure 03_image033
    ,其中 R 11為 C 1-10烷基。
  7. 如請求項 1 至 6 中任一項之方法,其中該烯丙基衍生物係選自: (a)  其中 R 6至 R 10中之各者為 H 之衍生物; (b)  其中 R 6為 -CH 3且 R 7至 R 10中之各者為 H 之衍生物; (c)  其中 R 7為 -CH 3且 R 6及 R 8至 R 10中之各者為 H 之衍生物; (d)  其中 R 8為 -CH 3且 R 6、R 7、R 9及 R 10中之各者為 H 之衍生物; (e)  其中 R 6為 -苯基且 R 7至 R 10中之各者為 H 之衍生物; (f)  其中 R 7為 -苯基且 R 6及 R 8至 R 10中之各者為 H 之衍生物;以及 (g)  以下結構之衍生物
    Figure 03_image131
  8. 如請求項 1 至 7 中任一項之方法,其中膦配位基具有下式
    Figure 03_image037
    , 其中: R 1及 R 2各自獨立地選自視情況經取代之 C 1-12烷基、視情況經取代之 C 3-C 20環烷基及視情況經取代之 C 5或 C 6芳基;且 R 3至 R 5各自獨立地選自 H、視情況經取代之 C 1-6烷基、式 -O-C 1-6烷基之烷氧化物及式 -N(R 12)(R 13) 之胺,其中 R 12及 R 13獨立地選自 H 及 C 1-6烷基。
  9. 如請求項 1 至 8 中任一項之方法,其中該膦配位基為以下結構之 SPhos
    Figure 03_image039
  10. 如請求項 1 至 9 中任一項之方法,其中該 Pd 催化劑係選自: (a)  陽離子鈀物種,其包含無機或有機相對離子 X;以及 (b)  中性鈀物種,其包含經配位之無機或有機配位基 X。
  11. 如請求項 10 之方法,其中 X 係選自鹵素、羧酸根 (carboxylate)、磺酸根 (sulfonate) 及無機陰離子。
  12. 如請求項 11 之方法,其中: (a)  該羧酸根係選自 CH 3C(O)O -及 tBuC(O)O -; (b)  該磺酸根係選自 CF 3SO 3 -、甲苯磺酸根 (tosylate)、苯磺酸根 (besylate) 及硝基苯磺酸根 (nosylate);以及 (c)  該無機陰離子係選自 PF 6 -、BF 4 -、B(C 6F 5) 4 -、NO 3 -及 SO 4 2-
  13. 如請求項 11 或 12 之方法,其中 X 為 CF 3SO 3 -
  14. 如請求項 1 至 13 中任一項之方法,其中該鈀催化劑包含 CF 3SO 3 -有機相對離子,其該膦配位基為 SPhos,且其中 R 6至 R 10中之各者為 H。
  15. 如請求項 1 至 14 中任一項之方法,其中該溶劑系統主要包含非質子性低分子量酯溶劑及水,其中該非質子性低分子量酯溶劑與水之體積比為約 1:0.1 至約 1:1,且其中將該反應混合物經加熱至約 60℃ 至約 80℃。
  16. 如請求項 1 至 15 中任一項之方法,其中化合物 181 與化合物 170 之當量比為大於 1:1,且該鈀催化劑與化合物 170 之當量比為約 0.001:1 至約 0.003:1,或約 0.002:1。
  17. 如請求項 1 至 16 中任一項之方法,其中: (a)  該催化劑為 [(SPhos)Pd(烯丙基)] CF 3SO 3; (b)  該溶劑系統主要包含乙酸乙酯及水,其中乙酸乙酯與水之體積比為約 1:0.1 至約 1:1;且 (c)  硼酸酯 (boronate) 為以下結構之 4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷 (dioxaborolane):
    Figure 03_image094
  18. 一種製備化合物 180、其立體異構物、其幾何異構物、其互變異構物及其鹽之方法,該方法包含: (a)  形成包含化合物 140、碳上鉑/釩催化劑 (platinum/vanadium on carbon catalyst)、溶劑及氫之第一反應混合物; (b)  根據以下方案,使該第一反應混合物反應以形成包含化合物 141 之第一反應產物混合物
    Figure 03_image215
    ; (c)  形成包含化合物 141、化合物 90、鈀催化劑、催化劑配位基、鹼及溶劑之第二反應混合物;以及 (d)  根據以下方案,使該第二反應混合物反應以形成包含化合物 180 之第二反應產物混合物
    Figure 03_image217
    , 其中第一反應混合物催化劑係選自由以下所組成之群組:Ra-Ni、Ra-Co、Pt/V@C、Co@幾丁質 (Chitin)、Ni-phen@SiO 2及 Ni-phen@TiO 2, 其中基於化合物 140,化合物 141 之產率為至少 90% 或至少 95%,且 其中基於化合物 141,化合物 180 之產率為至少 60%、至少 70%、至少 80%,且化合物 180 之純度為至少 95%、至少 98% 或至少 99%。
  19. 一種製備化合物 180、其立體異構物、其幾何異構物、其互變異構物及其鹽之方法,該方法包含: (a)  以下之製程:形成第一反應混合物,該第一反應混合物包含化合物 140 及溶劑,該溶劑包含有機溶劑;以及使該反應混合物與過渡金屬催化劑在氫的存在下接觸以形成包含化合物 141 之第一產物混合物,其中該製程為連續流動製程
    Figure 03_image107
    ; (b)  形成包含化合物 141、化合物 90、鈀催化劑、催化劑配位基、鹼及溶劑之第二反應混合物;以及 (c)  根據以下方案,使該第二反應混合物反應以形成包含化合物 180 之第二反應產物混合物,其中 LG 為離去基團
    Figure 03_image220
    ;以及 (d)  根據以下方案,使化合物 180 與硼化劑 (borylation agent) 在溶劑的存在下反應以形成化合物 181
    Figure 03_image222
    , 其中基於化合物 140,化合物 141 之產率為至少 90% 或至少 95%,且 其中基於化合物 141,化合物 180 之產率為至少 60%、至少 70%、至少 80%,且化合物 180 之純度為至少 95%、至少 98% 或至少 99%。
  20. 如請求項 18 或 19 之方法,其中在形成該第二反應產物混合物之前,不從該第一反應產物混合物分離出化合物 141。
  21. 如請求項 18 至 20 中任一項之方法,其中第一反應混合物溶劑及第二反應混合物溶劑各自主要包含極性非質子性溶劑。
  22. 如請求項 21 之方法,其中該第一反應混合物溶劑主要包含四氫呋喃。
  23. 如請求項 18 至 23 中任一項之方法,其中該鈀催化劑為 Pd(OAc) 2且該催化劑配位基為 XantPhos 或 DPEPhos。
  24. 如請求項 18 至 23 中任一項之方法,其中該鈀催化劑為 Pd(OAc) 2,該催化劑配位基為 XantPhos 且該鹼為 K 2CO 3;或其中該鈀催化劑為 Pd(OAc) 2;該催化劑配位基為 DPEPhos 且該鹼為 NaOMe。
  25. 如請求項 18 至 23 中任一項之方法,其中該第一反應混合物催化劑為 Pt/V@C。
  26. 如請求項 19 至 23 中任一項之方法,其中該第一反應混合物催化劑為 Pd/Al 2O 3、Pt/Al 2O 3、Pd/C 或 Pt/C。
  27. 一種組成物,其包含至少 98.5 w/w% 化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽,
    Figure 03_image023
    , 且其中 (a)  基於化合物 190,二聚體雜質之含量為小於 0.15 面積%,其中該二聚體雜質具有以下結構
    Figure 03_image012
    ;以及 (b)  基於化合物 190,醇及酮雜質之結合含量為小於 0.35 面積%,其中醇及酮雜質具有以下結構
    Figure 03_image226
  28. 如請求項 27 之組成物,其中基於化合物 190,該二聚體雜質之含量為小於 0.10 面積%。
  29. 如請求項 28 之組成物,其中基於化合物 190,該二聚體雜質之含量為小於 0.05 面積%。
  30. 如請求項 27 至 29 中任一項之組成物,其中基於化合物 190,該等醇及酮雜質之結合含量為小於 0.30 面積%。
  31. 如請求項 30 之組成物,其中基於化合物 190,該等醇及酮雜質之結合含量為小於 0.25 面積%。
  32. 如請求項 31 之組成物,其中基於化合物 190,該等醇及酮雜質之結合含量為小於 0.20 面積%。
  33. 如請求項 27 至 32 中任一項之組成物,其包含至少 99.0 w/w% 化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽。
  34. 如請求項 33 之組成物,其包含至少 99.5 w/w% 化合物 190、或其立體異構物、幾何異構物、互變異構物或鹽。
TW111116834A 2021-05-05 2022-05-04 製備btk抑制劑之製程 TWI838741B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP21172180.8 2021-05-05
EP21172180 2021-05-05
EP21181156.7 2021-06-23
EP21181156 2021-06-23

Publications (2)

Publication Number Publication Date
TW202304923A true TW202304923A (zh) 2023-02-01
TWI838741B TWI838741B (zh) 2024-04-11

Family

ID=

Also Published As

Publication number Publication date
WO2022233801A1 (en) 2022-11-10
KR20240004918A (ko) 2024-01-11
CA3216857A1 (en) 2022-11-10
AU2022269229A1 (en) 2023-10-12
JP2024517004A (ja) 2024-04-18
AR125788A1 (es) 2023-08-16
EP4334311A1 (en) 2024-03-13
IL307819A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JP6954959B2 (ja) 抗ウイルス化合物を調製するためのプロセス
JP5348725B2 (ja) チエノピリミジン化合物の製造方法
US10882864B2 (en) Process for preparing BTK inhibitors
KR20190083377A (ko) TrkA 키나제 저해제로서의 1-((3S,4R)-4-(3-플루오로페닐)-1-(2-메톡시에틸)피롤리딘-3-일)-3-(4-메틸-3-(2-메틸피리미딘-5-일)-1-페닐-1H-피라졸-5-일)유레아
CN101094836A (zh) 制备吲唑化合物的方法
CA2915470A1 (en) Antagonists of prostaglandin ep3 receptor
TWI838741B (zh) 製備btk抑制劑之製程
TW202304923A (zh) 製備btk抑制劑之製程
US20240132508A1 (en) Process for preparing btk inhibitors
IL266183A (en) Compressed azathrocyclic compounds and their use as ampa receptor modulators
CN117295730A (zh) 制备btk抑制剂的工艺
CA3117113A1 (en) 1,2,3,4-tetrahydroquinoxaline derivative, preparation method therefor and application thereof
CN113698395B (zh) 转化生长因子受体拮抗剂、其制备方法和应用
CN110759923B (zh) 嘧啶并吡咯并哒嗪衍生物、其中间体、制备方法、药物组合物和用途
KR20230017823A (ko) Mcl-1의 억제제로서의 마크로사이클릭 7-피라졸-5-일-인돌 유도체
NZ751999B2 (en) Fused azaheterocyclic compounds and their use as ampa receptor modulators