TW202304528A - 用於治療遺傳疾病的體內核酸酶媒介的基因靶向之組成物及方法 - Google Patents

用於治療遺傳疾病的體內核酸酶媒介的基因靶向之組成物及方法 Download PDF

Info

Publication number
TW202304528A
TW202304528A TW111116003A TW111116003A TW202304528A TW 202304528 A TW202304528 A TW 202304528A TW 111116003 A TW111116003 A TW 111116003A TW 111116003 A TW111116003 A TW 111116003A TW 202304528 A TW202304528 A TW 202304528A
Authority
TW
Taiwan
Prior art keywords
vector
gene
pcsk9
aav
sequence
Prior art date
Application number
TW111116003A
Other languages
English (en)
Inventor
詹姆士M 威爾森
利利 王
安娜P 崔堤寇瓦
Original Assignee
賓州大學委員會
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 賓州大學委員會 filed Critical 賓州大學委員會
Publication of TW202304528A publication Critical patent/TW202304528A/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/09Fusion polypeptide containing a localisation/targetting motif containing a nuclear localisation signal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/40Systems of functionally co-operating vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/008Vector systems having a special element relevant for transcription cell type or tissue specific enhancer/promoter combination

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

提供一種用於治療遺傳疾病的雙重載體系統。該系統包括:(a)包含表現匣之基因編輯載體,該表現匣包含編碼核酸酶之核酸序列及指導該核酸酶在包含PCSK9基因之標靶細胞中之表現的調控序列;及(b)供體載體,其包含編碼用於從PCSK9基因座表現之外源產物的核酸序列,其中插入的核酸序列並不編碼PCSK9,其中該系統進一步包含指導該核酸酶特異性地靶向天然PCSK9基因座的序列;且其中在以該雙重載體系統投藥後,該標靶細胞中的該天然PCSK9可選擇地消融或減少。

Description

用於治療遺傳疾病的體內核酸酶媒介的基因靶向之組成物及方法
本案係關於用於治療遺傳疾病的體內核酸酶媒介的基因靶向之組成物及方法。
位點特異性核酸酶(諸如CRISPR-Cas9或巨型核酸酶(meganuclease))在染色體中產生雙股斷裂(DSB),從而導致DNA修復。在存在供體DNA的情況下,會發生同源定向修復(homology directed repair,HDR),並以來自供體基因的新資訊替換染色體中的遺傳資訊。
同源定向修復(HDR)是使用DNA模板藉由同源重組修復DNA雙鏈斷裂(DSB)的過程。此模板可在細胞週期的晚期S期或G2期來自細胞內,此時姐妹染色分體在有絲分裂完成之前可用。此外,外源的修復模板可被遞送至細胞中,最通常是以合成的單鏈DNA供體寡核苷酸或供體質體的形式,以在基因體中產生精確的變化。
安全港位點(Safe harbor sites,SHS)是基因或其它遺傳元件可安全插入和表現的基因體基因座。此等SHS對於有效的人類疾病基因治療;用於研究基因結構、功能和調控;及用於細胞標記和追蹤至關重要。
需要的是用於基因編輯的改進組成物及方法。
本文提供用於基因編輯之組成物、方法、系統及套組,該基因編輯允許天然PCSK9基因的減弱或消融以及外源轉基因在PCSK9基因座中的插入及/或表現。
在第一態樣中,本文提供用於治療遺傳疾病之系統。該系統包括含有表現匣的基因編輯組分,該表現匣包含編碼靶向PCSK9基因之核酸酶的核酸序列及指導該核酸酶在包含PCSK9基因之標靶細胞中的表現的調控序列。系統進一步包括含有轉基因匣之供體載體,該轉基因匣包含編碼轉基因之核酸序列及指導該轉基因在標靶細胞中的表現的調控序列,供體載體進一步包含對於轉基因匣之同源定向重組(HDR)臂5’及3’,其中該轉基因並不是PCSK9。核酸酶靶向PCSK9基因。在一些具體實施例中,核酸酶靶向PCSK9外顯子7。在一些具體實施例中,巨型核酸酶為ARCUS巨型核酸酶。
在一些具體實施例中,基因編輯組分包含編碼Cas9之序列。在某些具體實施例中,基因編輯載體進一步包含編碼含至少20個核苷酸種子區之sgRNA的序列,其中該sgRNA特異性結合PCSK9基因中的標靶位點,該標靶位點位於被Cas9特異性識別的前間隔序列相鄰基序(protospacer-adjacent motif,PAM)的5’處。
在其它具體實施例中,供體載體進一步包含編碼包含至少20個核苷酸種子區之sgRNA的序列,其中該sgRNA特異性結合PCSK9基因中的標靶位點,該標靶位點位於被Cas9特異性識別的前間隔序列相鄰基序(PAM)的5’處。
在另一態樣中,本文提供一種治療遺傳疾病之系統。該系統包括基因編輯組分,該基因編輯組分包含編碼靶向PCSK9基因之核酸酶的核酸序列。該系統進一步包括包含轉基因匣之供體載體,該轉基因匣包含編碼轉基因之核酸序列及指導該轉基因在標靶細胞中之表現的調控序列,該供體載體進一步包含對於轉基因匣的同源定向重組(HDR)臂5’及3’,其中該轉基因並非PCSK9。該核酸酶靶向PCSK9基因。在某些具體實施例中,基因編輯組分係以脂質奈米顆粒形式提供。
在一些具體實施例中,基因編輯組分包含編碼Cas9之序列。在某些具體實施例中,基因編輯載體進一步包含編碼包含至少20個核苷酸種子區之sgRNA的序列,其中該sgRNA特異性結合在PCSK9基因中的標靶位點,該標靶位點位於被Cas9特異性識別的前間隔序列相鄰基序(PAM)的5’處。
在其它具體實施例中,供體載體進一步的組分包含編碼包含至少20個核苷酸種子區之sgRNA的序列,其中該sgRNA特異性結合PCSK9基因中的標靶位點,該標靶位點位於被Cas9特異性識別的前間隔序列相鄰基序(PAM)的5’處。
在某些具體實施例中,轉基因與肝臟代謝性病症有關。在某些具體實施例中,轉基因為OTC、PKU、CTLN1或LDLR。
在某些具體實施例中,載體為腺相關病毒(AAV)載體,且該載體包含AAV 5’ITR及AAV 3’ITR。
在另一具體實施例中,治療遺傳疾病的雙重載體系統包括:基因編輯AAV,該基因編輯AAV含有AAV衣殼及第一載體基因體,該第一載體基因體包含5’ITR、編碼巨型核酸酶之序列及3’ITR,該巨型核酸酶在調控序列的控制下靶向PCSK9,該調控序列指導該巨型核酸酶在包含PCSK9基因的標靶細胞中的表現;及包含AAV衣殼及第二載體基因體的供體AAV載體,該第二載體基因體包含:5’ITR、5’同源定向重組(HDR)臂、轉基因及指導該轉基因在標靶細胞中之表現的調控序列、3’HDR臂、及3’ITR,其中該轉基因並不編碼PCSK9。
在另一具體實施例中,治療遺傳疾病之雙重載體系統包括:基因編輯AAV,該基因編輯AAV包含AAV衣殼及第一載體基因體,該第一載體基因體包含5’ITR、5’核定位訊號(nuclear localization signal,NLS)、編碼Cas9的序列及在包含PCSK9基因之標靶細胞中指導該saCas9表現的調控序列、3’NLS、及3’ITR;及包含AAV衣殼及第二載體基因體之供體AAV載體,該第二載體基因體包含:5’ITR、5’同源定向重組(HDR)臂、轉基因及指導該轉基因在標靶細胞中之表現的調控序列、3’HDR臂、U6啟動子、包含至少20個核苷酸之sgRNA(其特異性結合PCSK9基因中的標靶位點,該標靶位點位於被Cas9特異性識別的前間隔序列相鄰基序(PAM)的5’處)、及3’ITR,其中該轉基因並不編碼PCSK9。
又一具體實施例中,治療遺傳疾病之雙重載體系統包括:基因編輯AAV載體,該基因編輯AAV載體包含AAV衣殼及第一載體基因體,該第一載體基因體包含5’ITR、U6啟動子、包含至少20個核苷酸之sgRNA(其特異性結合在PCSK9基因中的標靶位點,該標靶位點位於被Cas9特異性識別的前間隔序列相鄰基序(PAM)的5’處)、5’核定位訊號(NLS)、編碼Cas9的序列及指導該Cas9在包含PCSK9基因之標靶細胞中的表現的調控序列、3’NLS、及3’ITR;及包含AAV衣殼及第二載體基因體的供體AAV載體,該第二載體基因體包含:5’ITR、5’同源定向重組(HDR)臂、轉基因及指導該轉基因在標靶細胞中之表現的調控序列、3’HDR臂、及3’ITR。
在一些具體實施例中,基因編輯AAV載體與供體AAV載體具有相同AAV衣殼。在其它具體實施例中,基因編輯AAV載體與供體AAV載體具有不同AAV衣殼。在一些具體實施例中,AAV衣殼選自AAV8、AAV9、rh10、AAV6.2、AAV3B、hu37、rh79及rh64。
在另一態樣中,提供藉由共同投予如本文所述之雙重載體系統來治療人類病症的方法。
在另一態樣中,提供一種在受試者中治療肝臟代謝性病症之方法,該方法包括對該患有肝臟代謝性病症之受試者共同投予:基因編輯AAV載體,該基因編輯AAV載體包含編碼核酸酶之序列及指導該核酸酶在標靶細胞中之表現的調控序列,該標靶細胞包含PCSK9基因;及供體AAV載體,該供體AAV載體包含轉基因及指導該轉基因在標靶細胞中之表現的調控序列,供體載體進一步包含對於轉基因匣之同源定向重組(HDR)臂5’及3’,其中該轉基因不為PCSK9。在某些具體實施例中,肝臟代謝性病症為鳥胺酸胺甲醯基轉移酶(ornithine transcarbamylase)。在其它具體實施例中,為家族性高膽固醇血症或苯丙酮尿症。在一具體實施例中,受試者為新生兒。
在另一態樣中,提供一種治療遺傳疾病之系統。該系統包括:脂質奈米顆粒(LNP),該脂質奈米顆粒包含編碼靶向PCSK9基因之核酸酶的mRNA序列;及供體AAV載體,該供體AAV載體包含轉基因及指導其在標靶細胞中之表現的調控序列,該供體載體進一步包含對於轉基因之同源定向重組(HDR)臂5’及3’,其中該轉基因不為PCSK9。在一些具體實施例中,核酸酶靶向PCSK9外顯子7。在一些具體實施例中,巨型核酸酶為ARCUS巨型核酸酶。
在其它具體實施例中,基因編輯載體編碼Cas9。在某些具體實施例中,基因編輯載體進一步編碼包含至少20個核苷酸的sgRNA,其特異性結合PCSK9基因中的標靶位點,該標靶位點位於被Cas9特異性識別的前間隔序列相鄰基序(PAM)的5’處。在一些具體實施例中,其中該系統包括LNP,該LNP包含Cas9編碼序列及gRNA。
在其它具體實施例中,供體載體進一步編碼包含至少20個核苷酸種子區之sgRNA,其中該sgRNA特異性結合PCSK9基因中的標靶位點,該標靶位點位於被Cas9特異性識別的前間隔序列相鄰基序(PAM)的5’處。
又另一態樣中,提供一種治療遺傳疾病的雙重載體系統。該系統包括:基因編輯載體,其包含表現匣,該表現匣包含編碼核酸酶的核酸序列及指導該核酸酶在標靶細胞中表現的調控序列,該標靶細包含PCSK9基因;及供體載體,其包含編碼用於從PCSK9基因座表現外源產物的核酸序列,其中插入的核酸序列並不編碼PCSK9,其中該系統進一步包含指導核酸酶特異性靶向天然PCSK9基因座的序列;且其中該標靶細胞中的天然PCSK9在以雙重載體系統給藥後可選擇地消融或減少。
又另一態樣中,提供一種使用本文所述的系統治療病患的方法,其中該病患的天然PCSK9表現水平被降低,且其中該病患表現外源的產物。
又另一態樣中,提供用於鳥胺酸胺甲醯基轉移酶之工程化編碼序列。亦包括載體、表現匣及包含其等之重組病毒。
本發明的其它態樣和優點將從以下本發明的詳細說明中顯而易見。
本文提供的是組成物、套組及方法,其對患有某些遺傳疾病(包括肝臟代謝性病症)的病患提供穩定、長期的治療效果。該組成物、套組及方法利用靶向標靶細胞之PCSK9基因座的核酸酶,且供體載體提供包括用於整合到PCSK9基因座中並從其表現外源產物的模板,其中該插入的核酸序列並不編碼PCSK9,且內源性PCSK9的表現被破壞,表現水平降低。
[PCSK9]前蛋白轉化酶枯草溶菌素kexin 9型(proprotein convertase subtilisin kexin 9,PCSK9)是一種絲胺酸蛋白酶,可降低肝臟和肝外低密度脂蛋白(LDL)受體(LDLR;606945)水平並增加血漿LDL膽固醇。PCSK9在調節血漿膽固醇穩態中至關重要。PCSK9與低密度脂質受體家族成員低密度脂蛋白受體(LDLR)、極低密度脂蛋白受體(VLDLR)、脂蛋白元E受體(LRP1/APOER)和脂蛋白元受體2(LRP8/APOER2)結合,並促進它們在細胞內酸性腔室中的降解。人類PCSK9具有蛋白質序列NP_777596.2,如SEQ ID NO: 23所示,具有SEQ ID NO: 22中所示之編碼序列。
雖然PCSK9基因已被靶向用於治療膽固醇相關疾病,但本文證實PSCK9基因座是用於插入其它非PCSK9轉基因的基因靶向的安全港(safe harbor)。因此,本文所提供之組成物、套組及方法利用靶向PCSK9基因座之核酸酶,並使用供體模板將治療性轉基因插入至標靶PCSK9基因座中。
本文所提供之組成物、套組及方法包括:基因編輯組分(在一些具體實施例中,載體),及供體載體,其提供在宿主細胞中表現的治療性轉基因。
[ 基因編輯組分 ] 本文提供的組成物、套組及方法包括基因編輯組分,其包含核酸酶(或其之編碼序列)及指導該核酸酶特異性靶向染色體1上天然PCSK9基因座的序列。如本文所使用,「標靶PCSK9基因座」或「PCSK9基因座」為PCSK9編碼區域中需要插入異源轉基因的任何位點。在某些具體實施例中,標靶PCSK9基因座位於PCSK9編碼序列之外顯子7中。圖12提供人類(h)、恆河猴(rh)及小鼠(m) PCSK9外顯子7剪接位點的比對,本文使用SaCas9和靶向PCSK9的巨型核酸酶(稱為ARCUS)舉例說明。
本文描述了組成物,特別是核酸酶,其可用於靶向用於插入轉基因的基因,例如,對PCSK9特異的核酸酶。在某些具體實施例中,核酸酶為天然存在的。在其它具體實施例中,核酸酶為非天然存在的,即,在DNA-結合域及/或切割域工程化。例如,可改變天然存在的核酸酶的DNA-結合域以結合選定的標靶位點(例如,已被工程化為與同源結合位點不同之位點結合的巨型核酸酶)。在其它具體實施例中,核酸酶包含異源DNA-結合域及切割域(例如,鋅指核酸酶(zinc finger nuclease);TAL-效應核酸酶;具有異源切割域的巨型核酸酶DNA-結合域)。
在某些具體實施例中,核酸酶為靶向PCSK9之巨型核酸酶。巨型核酸酶為內切去氧核糖核酸酶,特徵在於大的識別位點(12至40個鹼基對雙股的DNA序列),例如,I-SceI。當與核酸酶結合時,可在特定位置切割DNA。可將限制酶導入細胞中,用於基因編輯或基因體原位編輯。在某些具體實施例中,核酸酶是歸巢核酸內切酶(homing endonuclease)之LAGLIDADG (SEQ ID NO: 31)家族的成員。在某些具體實施例中,核酸酶是歸巢核酸內切酶之I-CreI家族的成員,其識別並切割22個鹼基對識別序列SEQ ID NO: 32-CAAAACGTCGTGAGACAGTTTG。參見,例如,WO 2009/059195。描述了用於合理設計單LAGLIDADG (SEQ ID NO: 32)歸巢核酸內切酶的方法,該方法能夠全面重新設計I-CreI及其它歸巢核酸內切酶以靶向廣泛不同的DNA位點,包括位於哺乳動物、酵母、植物、細菌及病毒基因體中的位點(WO 2007/047859)。在一具體實施例中,核酸酶經由SEQ ID NO: 19所示序列(nt 330至1424)或與其共享至少95%、98%或99%同一性的序列所編碼。在一具體實施例中,核酸酶蛋白質序列為SEQ ID NO: 20所示序列、或與其共享至少95%、98%或99%同一性的序列。此類核酸酶在本文中有時稱為ARCUS核酸酶。術語「歸巢核酸內切酶」與術語「巨型核酸酶」同義,參見,WO 2018/195449,描述了某些PCSK9巨型核酸酶,其全文併入本文。
鋅指核酸酶(ZFN)是藉由將鋅指DNA結合域與DNA切割域融合而產生的人工限制酶。鋅指域可設計成靶向特定的所需的DNA序列,這使得鋅指核酸酶能夠靶向複雜基因體中的獨特序列。藉由利用內源性DNA修復機制,這些試劑可用於精確改變高等生物的基因體,並作為基因體編輯領域的重要工具。轉錄活化因子樣效應子核酸酶(Transcription activator-like effector nuclease,TALEN)是限制性內切酶,可被工程化以切割特定的 DNA序列。它們是藉由將TAL效應子DNA結合域與DNA切割域(一種切割DNA股的核酸酶)融合而成的。在另一具體實施例中,編碼序列編碼鋅指核酸酶或轉錄活化因子樣(TAL)效應子核酸酶(TALEN)。
在某些具體實施例中,核酸酶為CRISPR-相關核酸酶(Cas),可選擇地為Cas9。「Cas9」(CRISPR相關蛋白質9)係指RNA引導的DNA核酸內切酶家族,其特徵在於兩個標簽核酸酶域,即RuvC(切割非編碼股)和HNH(編碼股)。Cas9之合適的細菌來源包括金黃色葡萄球菌( Staphylococcus aureus)(SaCas9)、釀膿鏈球菌( Streptococcus pyogenes)(SpCas9)和腦膜炎雙球菌( Neisseria meningitides) [KM Estelt et al, Nat Meth, 10: 1116-1121 (2013)]。野生型編碼序列可用於本文所述的構建體中。或者,細菌密碼子被優化用於在人類中表現,例如,使用多種已知的人類密碼子優化算法中的任何一種。或者,這些序列可全部或部分合成產生。可選擇地替換具有相似性質的其它核酸內切酶。參見,例如,可在http://crispr.u-psud.fr/crispr可得的公共CRISPR資料庫(db)。
在某些具體實施例中,關於組成物、套組及方法,核酸酶編碼序列包含於基因編輯載體中。基因編輯載體包括包含編碼核酸酶之核酸序列及指導該核酸酶在標靶細胞中表現之調控序列的表現匣,該標靶細胞包含PCSK9基因。
如本文所使用的「載體」是包含核酸序列的生物或化學部分,該核酸序列可被導入合適的宿主細胞中以複製或表現該核酸序列。常見的載體包括非病毒載體及病毒載體。如本文所使用,非病毒系統可選自奈米顆粒、電穿孔系統和新穎生物材料、裸DNA、噬菌體、轉位子、質體、黏接質體(Phillip McClean, www.ndsu.edu/pubweb/~mcclean/-plsc731/cloning/cloning4.htm)及人工染色體(Gong, Shiaoching, et al. “A gene expression atlas of the central nervous system based on bacterial artificial chromosomes.” Nature 425.6961 (2003): 917-925)。
如本文所使用,「表現匣」係指包含生物學上有用的核酸序列(例如,編碼蛋白質、酶或其它有用之基因產物的基因cDNA;mRNA等)和與其可操作地連接之調控序列的核酸分子,該調控序列指導或調控該核酸序列及其基因產物的轉錄、轉譯及/或表現。如本文所使用,「可操作地連接的」序列包括與核酸序列鄰接的調控序列和以反式或遠距離作用以控制序列的調控序列二者。此類調控序列一般包括,例如,一種或多種啟動子、增強子、內含子、Kozak序列、多腺苷酸化序列、及TATA訊號。表現匣可包含基因序列之調控序列上游(5’至),例如,一種或多種啟動子、增強子、內含子等,及一種或多種增強子、或基因序列之調控序列下游(3’至),例如,包含多腺苷酸化位點的3’未轉譯的區域,以及其它元件。在其它具體實施例中,術語「轉基因」係指插入標靶細胞的一種或多種來自外源的DNA序列。通常,用於產生病毒載體的此類表現匣含有本文所述基因產物的編碼序列,其兩側是病毒基因體的包裝訊號和其它表現控制序列,例如本文所述的那些。在某些具體實施例中,載體基因體可含有二個或多個表現匣。
除了用於核酸酶之編碼序列,在某些具體實施例中基因編輯載體尚包括指導該核酸酶在宿主細胞表現的調控序列。在某些具體實施例中,調控元件包括啟動子。在某些具體實施例中,其中該系統設計用於治療以肝細胞中的突變或表型為特徵的代謝性病症,基因編輯載體可設計成使得核酸酶在肝特異性啟動子的控制下表現。本文所述的例示性質體和載體使用肝特異性啟動子甲狀腺素結合球蛋白(TBG),其特徵在於SEQ ID NO: 41的序列。在其它具體實施例中,TBG的縮短版本,本文稱為TBG-S1的變異體,其特徵在於SEQ ID NO:11的序列,是有用的。在另一具體實施例中,使用具有SEQ ID NO:12序列的雜交肝啟動子(HLP)。
在一些具體實施例中,希望使用具有低轉錄活性的啟動子或弱化啟動子。在一具體實施例中,該啟動子是肝特異性甲狀腺素結合球蛋白(TBG)啟動子的弱化版本。在一具體實施例中,弱化啟動子在天然啟動子或TBG-S1序列的5'或3'末端處被截斷。在另一具體實施例中,該啟動子僅保留TBG-S1啟動子的3'末端113 nt,稱為F113 (亦稱為TBG-S1-F113)(SEQ ID NO: 19,nt 206至318)。美國臨時專利申請號63/016,145 (2020年4月27日申請)、63/033,738 (2020年6月2日申請)及63/089,796 (2020年10月9日申請)、PCT/US21/29386及PCT/US21/29403 (皆於2021年4月27日申請),發明名稱為「使用具有低轉錄活性的啟動子來降低核酸酶表現和脫靶活性的組成物及方法(COMPOSITIONS AND METHODS FOR REDUCING NUCLEASE EXPRESSION AND OFF-TARGET ACTIVITY USING A PROMOTER WITH LOW TRANSCRIPTIONAL ACTIVITY)的各申請案皆藉由引用整體併入本文。
或者,可使用其它肝特異性啟動子,諸如α1抗胰蛋白酶(A1AT)、人類白蛋白(Miyatake et al., J. Virol., 71:5124 32 (1997))、及B型肝炎病毒核心啟動子(Sandig et al.,Gene Ther., 3:1002 9 (1996), TTR minimal enhancer/ promoter, alpha-antitrypsin promoter, LSP (845 nt)。參見,例如,The Liver Specific Gene Promoter Database, Cold Spring Harbor, http://rulai.schl.edu/LSPD。或者,可使用其它組織特異性啟動子,諸如肌肉特異性啟動子,諸如肌肉肌酸激酶(MCK)啟動子、或肌肉雜交(MH)啟動子。或者,其它啟動子,諸如組成型啟動子(CMV、CBG、CB7等等)、可調節的(可誘導的)啟動子[參見,例如,WO 2011/126808及WO 2013/049493,藉由引用併入本文]、或反應生理訊號之啟動子可用於本文所述的載體中。可選擇地,若選擇可調節系統,則可能需要第三個載體來提供調節功能。
除了啟動子,基因編輯匣、表現匣及/或載體可含有一種或多種適當的「調控元件」或「調控序列」,其包含但不限於,增強子;轉錄因子;轉錄終止子;高效RNA處理訊號,諸如剪接及多腺苷酸化訊號(polyA);穩定細胞質mRNA之序列,例如土撥鼠肝炎病毒(WHP)轉錄後調控元件(WPRE);提高轉譯效率之序列(即,科扎克(Kozak)共通序列);增強蛋白質穩定性之序列;及當需要時,增強編碼產物分泌之序列。合適的polyA序列的實例包括,例如,SV40、牛生長激素(bGH)、及TK polyA。合適的增強子的實例包括,例如,α胎兒蛋白增強子、TTR最小啟動子/增強子、LSP (TH-結合球蛋白啟動子/α1-微球蛋白/比庫(bikunin)增強子)等。此等控制序列或調控序列可操作地連接至核酸酶編碼序列或轉基因編碼序列。
在某些具體實施例中,基因編輯載體包括TBG啟動子、一種或多種α mic/bik增強子、用於ARCUS巨型核酸酶的編碼序列、可選擇地WPRE、及polyA。在某些具體實施例中,表現匣包括SEQ ID NO: 42之nt 211至nt 2964。
在一些具體實施例中,基因編輯組分進一步包括使核酸酶導向PCSK9標靶基因座中標靶位點的序列。在某些具體實施例中,諸如對PCSK9特異性之如巨型核酸酶,並不需要另外的序列來使核酸酶導向標靶位點。然而,在這種情況下,例如Cas9,提供稱為「單嚮導RNA」或「sgRNA」的額外序列,其對於標的序列具有特異性。sgRNA可以在與Cas9相同的載體(順式)或不同的載體(反式)上提供。如本文所使用,sgRNA具有用於特異性DNA結合(即,與標靶DNA同源)的至少20個鹼基的序列(或約24-28個鹼基,有時稱為種子區),其與gRNA支架結合。sgRNA的轉錄應該精確地從其5'端開始。當靶向模板DNA股時,sgRNA的鹼基配對區域與轉錄序列具有相同的序列同一性。當靶向非模板DNA股時,sgRNA的鹼基配對區域是轉錄序列的反向互補。可選擇地,基因編輯載體可包含一個以上的sgRNA。sgRNA位於被Cas9(或Cpf1)酶特異性識別的前間隔序列相鄰基序(PAM)的5'端。通常,sgRNA位於PAM序列的「立即」5'端,亦即沒有間隔或插入序列。在一具體實施例中,sgRNA「種子」編碼序列為AAGTTGGTCCCCAAAGTCCC (SEQ ID NO: 8),其用於藉由SaCas9靶向人類外顯子7及獼猴PCSK9。然而,本領域技術之技術人員可設計其它sgRNA。
在某些具體實施例中,sgRNA包括至少20個核苷酸並特異性結合PCSK9基因中的標靶位點,該標靶位點位於被Cas9特異性識別的前間隔序列相鄰基序(PAM)的5’處。在一些具體實施例中,種子區與PCSK9基因中的標靶位點具有100%互補性。在其它具體實施例中,相較於標靶位點,種子區含有1、2、3、4或5個錯配。
sgRNA受RNA聚合酶啟動子及/或終止子的控制。在某些具體實施例中,RNA聚合酶啟動子為Pol III啟動子,諸如U6啟動子。在另一具體實施例中,啟動子為H1啟動子。用於例示的U6啟動子的序列可見於SEQ ID NO: 10。在其它具體實施例中,sgRNA及RNA聚合酶啟動子位於供體載體。
在其它具體實施例中,例如,其中核酸酶為Cas9,基因編輯組分進一步包括一種或多種核定位訊號(NLSs)。在一具體實施例中,NLS位於Cas9編碼序列的兩側。在某些具體實施例中,NLS具有SEQ ID NO: 5之nt 4241至4288的序列。參見,例如,Lu et al. Types of nuclear localization signals and mechanisms of protein import into the nucleus, Cell Commun Signal (May 2021) 19:60,其藉由引用併入本文。
在某些具體實施例中,提供核酸酶編碼序列作為傳訊RNA (mRNA)。mRNA可包括5′未轉譯區域、3′未轉譯區域、及/或編碼或轉譯序列。在某些具體實施例中,用於Cas9之編碼序列以mRNA形式提供。
mRNA可為天然發生或非天然發生的mRNA。mRNA可包括一種或多種修飾的核鹼基、核苷或核苷酸。在一些具體實施例中,本發明組成物中mRNA包含至少一種修飾,該修飾賦予核酸增加或增強的穩定性,包括,例如,提高對體內核酸酶消化的抗性。mRNA可包括任意數量的鹼基對,包括數十、數百或數千個鹼基對。任何數量(例如,全部、一些或沒有)的核鹼基、核苷或核苷酸可為典型種類的類似物,經取代、修飾的或以其它方式非天然地存在。在某些具體實施例中,可修飾所有特定的核鹼基類型。例如,mRNA中的所有胞嘧啶可為5-甲基胞嘧啶。如本文所使用,與本文提供之核酸相關的術語「修飾」及「修飾的」包括至少一種改變,其較佳地增強穩定性並使mRNA比野生型或天然存在的mRNA更穩定(例如,抗核酸酶消化)。如本文所使用,與本文提供之核酸,且特別是與mRNA相關的術語「穩定的」及「穩定性」係指對於例如通常能夠降解此類mRNA的核酸酶(即,核酸內切酶或核酸外切酶)降解的抗性增加或增強。增加的穩定性可包括,例如,對內源性酶(例如,核酸內切酶或核酸外切酶)或標靶細胞或組織內條件的水解或其它破壞的敏感性降低,從而增加或增強此類mRNA在標靶細胞、組織、受試者及/或細胞質中的駐留。本文提供的穩定化的mRNA分子相對於它們天然存在的、未修飾的對應物(例如野生型版本的mRNA)已證實更長的半衰期。與本發明之mRNA相關的術語「修飾」和「修飾的」亦涵蓋改善或增強mRNA核酸轉譯的改變,包括例如包含在蛋白質轉譯起始中起作用的序列(例如,Kozak共通序列)。
在一些具體實施例中,本文所述之mRNA已經接受化學或生物修飾以使其更穩定。對於mRNA的例示性修飾包括鹼基的缺失(例如,藉由刪除或藉由以一個核苷酸替換另一核苷酸)或鹼基的修飾,例如鹼基的化學修飾。如本文所使用的短語「化學修飾」係包括導入不同於天然存在的mRNA中所見化學性質的修飾,例如共價修飾,例如導入修飾的核苷酸(例如,核苷酸類似物,或包含在此類mRNA分子中非天然存在的側基)。
在一些具體實施例中,mRNA序列中C及/或U殘基的數量減少。在另一具體實施例中,藉由用編碼特定胺基酸的一個密碼子替換編碼相同或相關胺基酸的另一密碼子來減少C及/或U殘基的數量。對本發明mRNA核酸的預期修飾還包括併入假尿苷假尿苷(ψ)或5-甲基胞嘧啶(m5C)。可藉由本領域技術人員或普通技術人員容易得知的方法對本發明的mRNA進行取代及修飾。
在某些具體實施例中,mRNA包括5’端帽結構、鏈終止核苷酸、莖環(stem loop)及/或多腺苷酸化訊號。端帽結構或端帽種類是包括藉由連接子連接的兩個核苷部分的化合物,並可選自天然存在的端帽、非天然存在的端帽或端帽類似物,或抗反向端帽類似物。mRNA可替代地或額外地包括鏈終止核苷。
在某些具體實施例中,mRNA包括莖環,諸如組蛋白莖環。莖環可包括1、2、3、4、5、6、7、8、或更多個核苷酸鹼基對。莖環可位於mRNA的任何區域。例如,莖環可位於未轉譯區域(5’未轉譯區域或3’未轉譯區域)、編碼區域、或polyA序列或尾端之中、之前或之後。
在某些具體實施例中,mRNA包括polyA序列。polyA序列可完全或大部分由腺嘌呤核苷酸或其類似物或衍生物組成。在某些具體實施例中,polyA序列是位於mRNA 3'未轉譯區域附近的尾部。
mRNA可編碼任何感興趣的多肽,例如,核酸酶,包括任何天然或非天然存在的或以其它方式修飾的多肽。藉由mRNA編碼的多肽可為任何大小並可具有任何二級結構或活性。在一些具體實施例中,藉由mRNA編碼的多肽當在細胞中表現時可具有治療效果。
[ 供體載體 ]組成物、套組及方法包括供體載體,其提供用於治療性轉基因的編碼序列。在某些具體實施例中,供體載體含有表現匣,該表現匣包含編碼轉基因之核酸序列,及指導該轉基因在標靶細胞中之表現的調控序列。在某些具體實施例中,轉基因編碼在肝臟代謝性病症或其它遺傳疾病中異常表現的蛋白質。轉基因編碼PCSK9以外的蛋白質。此類蛋白質包括,但不限於OTC、低密度脂蛋白受體(LDLr)、因子IX (諸如SEQ ID NO: 55或56中所示序列,或與其共享至少70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同一性之序列)、及因子VIII (諸如SEQ ID NO: 53或54中所示序列,或與其共享至少70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同一性之序列)。
可經由供體載體遞送的其它例示性基因包括,但不限於,與肝醣儲積症或1A型缺乏症(GSD1)相關的葡萄糖-6-磷酸酶、與磷酸烯醇式丙酮酸羧激酶(PEPCK)缺乏症相關的PEPCK;周期蛋白依賴性激酶樣5 (CDKL5),亦已知為與癲癇發作和嚴重神經發育障礙相關的絲胺酸/蘇胺酸激酶9 (STK9);與半乳糖血症相關的半乳糖-1磷酸尿苷轉移酶,諸如SEQ ID NO: 63或64中所示序列,或與其共享至少70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同一性之序列;與苯丙酮尿症(PKU)相關之苯丙胺酸羥化酶(PAH);與1型原發性高草酸鹽尿症相關之基因產物,包括羥基酸氧化酶1 (GO/HAO1),諸如SEQ ID NO: 49或50中所示序列,或與其共享至少70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同一性之序列,及AGXT,諸如SEQ ID NO: 47或48中所示序列,或與其共享至少70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同一性之序列,與楓糖尿症相關之支鏈α-酮酸脫氫酶,包括BCKDH、BCKDH-E2、BAKDH-E1a及BAKDH-E1b;與1型酪胺酸血症相關之富馬醯基乙醯乙酸水解酶;與甲基丙二酸酸血症相關之甲基丙二醯基-CoA變位酶;與中鏈乙醯基CoA缺乏症相關之中鏈醯基CoA脫氫酶;與鳥胺酸胺甲醯基轉移酶缺乏症相關之鳥胺酸胺甲醯基轉移酶(OTC);與瓜胺酸血症相關之精胺琥珀酸合成酶(ASS1),諸如SEQ ID NO: 69或70中所示序列,或與其共享至少70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同一性之序列;卵燐脂-膽固醇醯基轉移酶(LCAT)缺乏症;甲基丙二酸酸血症(MMA);與尼曼匹克症(Niemann-Pick disease,C1型)相關之NPC1;丙酸血症(PA);與家族性高膽固醇血症(FH)相關之低密度脂蛋白受體(LDLR)蛋白質,諸如SEQ ID NO: 73或74中所示序列,或與其共享至少70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同一性之序列,LDLR變異體,諸如WO 2015/164778中所述者,或具有SEQ ID NO: 中所示序列,或與其共享至少70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同一性之序列;與失智相關之ApoE及ApoC蛋白質;脂蛋白脂肪酶(LPL)(脂蛋白脂肪酶缺乏症),諸如SEQ ID NO: 67或68中所示序列,或與其共享至少70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同一性之序列,與克果納傑氏症(Crigler-Najjar disease)相關之UDP-葡萄醣醛酸轉移酶;與嚴重複合型免疫缺乏症相關之腺苷去胺酶;與痛風及萊施-尼漢二氏症候群(Lesch-Nyan syndrome)相關之鳥嘌呤磷醣基核苷轉移酶;與生物素酶缺乏症相關之生物素酶;與法布瑞氏症(Fabry disease)相關之α-半乳糖苷酶A (a-Gal A),諸如SEQ ID NO: 75或76中所示序列,或與其共享至少70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同一性之序列;與GM1神經節醣苷病相關之β-半乳糖苷酶(GLB1);與威爾森氏症(Wilson’s Disease)相關之ATP7B;與2型及3型高歇氏病(Gaucher disease)相關之β-葡萄糖腦苷酶,諸如SEQ ID NO: 51或52中所示序列,或與其共享至少70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同一性之序列;與齊威格氏症(Zellweger syndrome)相關之過氧化體膜蛋白70 kDa;與異染性白質失養症(metachromatic leukodystrophy)相關之芳基硫酸酯酶A (ARSA),與克拉培氏病(Krabbe disease)相關之半乳糖腦苷酶(galactocerebrosidase,GALC)酵素,與龐貝氏症(Pompe disease)相關之α-葡萄糖苷酶(GAA),諸如SEQ ID NO: 79或80中所示序列,或與其共享至少70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同一性之序列;與A型尼曼匹克症(Nieman Pick disease type A)相關之神經磷脂酶(sphingomyelinase,SMPD1)基因;肌肽酶(carnosinase,CN1);黃嘌呤-鳥嘌呤磷醣基核甘轉移酶(hypoxanthine-guanine phosphoribosyltransferase,HGPRT);紅血球生成素(EPO);胺甲醯基磷酸合成酶 (CPS1)、N-乙醯穀胺酸合酶 (NAGS);精胺基琥珀酸裂解酶(ASL)(精胺酸琥珀酸尿症(Argininosuccinic Aciduria)),諸如SEQ ID NO: 57或58中所示序列,或與其共享至少70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同一性之序列;及精胺酸酶(AG);與成人發病II型瓜胺酸血症(CTLN2)相關之精胺基琥珀酸合成酶(WO 2018/144709,其藉由引用併入本文);與尿素循環障礙相關之胺甲醯基磷酸合成酶1 (CPS1);與脊髓肌萎縮症相關之運動神經元存活 (survival motor neuron,SMN)蛋白;與法伯脂肪肉芽腫病(Farber lipogranulomatosis)相關之神經醯胺酶;與GM2神經節醣苷病與戴薩克斯症(Tay-Sachs disease)及山德霍夫症(Sandhoff disease)相關的b-己醣胺酶;與天冬醯胺基胺基葡萄糖尿症(aspartyl-glucosaminuria)相關之天冬醯胺基胺基葡萄糖苷酶;與岩藻糖沉積症(fucosidosis)相關之α-岩藻糖苷酶(α-fucosidase);與α-甘露糖沉積症相關之α-甘露糖酶;與急性間歇性紫質沈著病(acute intermittent porphyria,AIP)相關之膽色素原去胺酶(porphobilinogen deaminase);用於治療α-1抗胰蛋白酶缺乏症(肺氣腫)之α-1抗胰蛋白酶,諸如SEQ ID NO: 77或78中所示序列,或與其共享至少70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同一性之序列;用於治療由於地中海貧血或腎功能衰竭引起的貧血之紅血球生成素;用於治療缺血性疾病之血管內皮生長因子、血管生成素-1和纖維母細胞生長因子;用於治療例如動脈粥樣硬化、血栓形成或栓塞中所見的血管閉塞之凝血酶調節素(thrombomodulin)及組織因子路徑抑制劑;用於治療帕金森氏病(Parkinson's disease)之芳香族胺基酸去羧基酶(AADC)及酪胺酸羥化酶(TH);用於治療充血性心衰竭之β腎上腺素性受體、受磷蛋白(phospholamban)、肌(內)質網三磷酸腺苷酶-2(sarco(endo)plasmic reticulum adenosine triphosphatase-2,SERCA2)和心臟腺苷酸環化酶的反義或突變形式;用於治療各種癌症的腫瘤抑制基因,例如p53;細胞因子(cytokine),諸如用於治療炎症和免疫疾病和癌症的各種介白素之一;用於治療肌營養不良之肌肉萎縮蛋白(dystrophin)或小肌肉萎縮蛋白(minidystrophin)及肌營養相關蛋白(utrophin)或小肌營養相關蛋白(miniutrophin);及用於治療糖尿病之胰島素或GLP-1。
用於遞送的合適之轉基因的實例包括,例如,與家族性高膽固醇血症相關者(例如,VLDLr、LDLr、ApoE,參見,例如,WO 2020/132155、WO 2018/152485、WO 2017/100682,其藉由引用而併入本文)、肌營養不良、囊性纖維化及罕見疾病或孤兒疾病(orphan disease)。此類罕見疾病的實例可包括脊髓肌萎縮症(SMA)、亨廷頓氏病(Huntingdon’s Disease)、雷特症候群(Rett Syndrome)(例如,甲基-CpG-結合蛋白2 (MeCP2);UniProtKB – P51608)、肌肉萎縮性脊髓側索硬化症(Amyotrophic Lateral Sclerosis,ALS)、杜氏型肌營養不良症(Duchenne Type Muscular dystrophy)、弗里德希氏共濟失調(Friedrichs Ataxia)(例如,共濟蛋白(frataxin))、顆粒蛋白前體(progranulin)(PRGN)(與非阿茨海默氏症腦退化相關,包括額顳葉失智症(FTD)、進行性非流利性失語症(progressive non-fluent aphasia,PNFA)及語義性失智)等。其它有用的基因產物包括,胺甲醯基合成酶I、鳥胺酸胺甲醯基轉移酶(OTC)、精胺基琥珀酸合成酶、用於治療精胺基琥珀酸裂解酶缺乏症之精胺基琥珀酸裂解酶(ASL)、精胺酸酶、富馬醯基乙醯乙酸水解酶、苯丙胺酸羥化酶、α-1抗胰蛋白酶、恆河猴α-胎蛋白(AFP)、恆河猴絨毛膜性腺激素(chorionic gonadotrophin,CG)、葡萄糖-6-磷酸酶,諸如SEQ ID NO: 59或60中所示序列,或與其共享至少70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同一性之序列,與遺傳性血管性水腫相關之血漿蛋白酶C1抑制劑(SERPING1),諸如SEQ ID NO: 61或62中所示序列,或與其共享至少70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同一性之序列,膽色素原去胺酶、與高胱胺酸尿症相關之胱硫醚β-合酶;諸如SEQ ID NO: 65或66中所示序列,或與其共享至少70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同一性之序列,支鏈酮酸去羧酶,白蛋白,異戊醯基-coA去氫酶,丙醯基CoA羧化酶,甲基丙二醯基CoA變位酶,戊二醯基CoA去氫酶,胰島素,β-葡萄糖苷酶,丙酮酸羧化酶,肝磷酸化酶,磷酸化酶激酶,甘胺酸去羧酶,H-蛋白質,T-蛋白質,囊性纖維化跨膜調節劑(cystic fibrosis transmembrane regulator,CFTR)序列,及肌肉萎縮蛋白基因產物[例如,小-或微小-肌肉萎縮蛋白]。其它有用的基因產物包括酶,諸如可用於酶替代療法的酶,其可用於由酶活性不足引起的多種病況。例如,含有甘露糖-6-磷酸酯的酶可用於治療溶酶體貯積病(例如,合適的基因包括編碼β-葡萄醣醛酸(GUSB)的基因)。用於遞送之合適的轉基因的實例可包括在AAV載體中遞送的人類共濟蛋白,如敘述於,例如,PCT/US20/66167 (2020年12月18日)、美國臨時專利申請號62/950,834 (2019年12月19日申請)及美國臨時申請號63/136,059 (2021年1月11日申請),其藉由引用而併入本文。用於遞送之合適的轉基因的另一實例可包括在AAV載體中遞送的人類酸-α-葡萄糖苷酶(GAA),如敘述於,例如,PCT/US20/30493 (2020年4月30日,現以WO2020/223362A1公開)、PCT/US20/30484 (2020年4月20日)(現以WO2020/223356 A1公開)、美國臨時專利申請號62/840,911 (2019年4月30日)、美國臨時申請號62.913,401 (2019年10月10日)、美國臨時專利申請號63/024,941 (2020年5月14日)、及美國臨時專利申請號63/109,677 (2020年11月4日),其藉由引用而併入本文。再者,用於遞送之合適的轉基因的另一實例包括在AAV載體中遞送的人類α-L-艾杜糖醛酸酶(IDUA),如敘述於,例如,PCT/US2014/025509 (2014年3月13日,現以WO 2014/151341公開),及美國臨時專利申請號61/788,724 (2013年3月15日申請),其藉由引用而併入本文。
其它有用的治療產物包括那些在肌肉中表現的產物,包括心肌。由轉基因編碼的其它有用的治療產物包括激素和生長及分化因子,包括,但不限於胰島素、升糖素、升糖素樣肽1 (GLP-1)、生長激素(GH)、副甲狀腺激素(PTH)、生長激素釋放因子(GRF)、濾泡刺激素(FSH)、黃體激素(LH)、人類絨毛膜促性腺素(hCG)、血管內皮生長因子(VEGF)、血管生成素、血管抑制素、顆粒性白血球聚落刺激因子(GCSF)、紅血球生成素(EPO)、結締組織生長因子(CTGF)、鹼性纖維母細胞生長因子(bFGF)、酸性纖維母細胞生長因子(aFGF)、表皮生長因子(EGF)、轉化生長因子α(TGFα)、血小板衍生生長因子(PDGF)、胰島素生長因子I及II(IGF-I及IGF-II),任何一種轉化生長因子β超家族(包括TGFβ)、活化素、抑制素或任何骨形態發生蛋白(BMP) BMP 1-15、生長因子之調節蛋白(heregluin)/神經調節蛋白(neuregulin)/ARIA/neu分化因子(NDF)家族中的任何一種、神經生長因子(NGF)、腦源性神經營養因子(BDNF)、神經促素NT-3及NT-4/5、睫狀神經營養因子(CNTF)、膠質細胞株源性神經營養因子(GDNF)、神經秩蛋白(neurturin)、聚集蛋白(agrin)、信号素蛋白(semaphoring)/摺疊蛋白(collapsing)家族中的任何一種、軸突導向因子-1 (netrin-1)和軸突導向因子-2、肝細胞生長因子(HGF)、ephrin、noggin、音蝟因子(sonic hedgehog)及酪胺酸羥化酶。可用於本文的其它轉基因包括用於治療I-VII型黏多糖病的那些(IDUA、IDS、GNA、HGSNAT、NAGLU、SGSH、GALNS、GLB1、ARSB、GUSB)。可用於治療MPSI 的例示性序列可見於WO 2019/010335,其藉由引用併入本文。可用於治療MPSII的例示性序列可見於WO 2019/060662,其藉由引用併入本文。可用於治療MPSIIIa的例示性序列可見於WO 2019/108857,其藉由引用併入本文。可用於治療MPSIIIb的例示性序列可見於WO 2019/108856,其藉由引用併入本文。
在一些具體實施例中,轉基因匣包括啟動子、轉基因編碼序列及poly A序列。在一些具體實施例中,啟動子為肝特異性啟動子,諸如TBG啟動子、TBG-S1啟動子、HLP啟動子、或本文其它所述的啟動子。在其它具體實施例中,提供不含啟動子之轉基因,且被插入至天然PSCK9啟動子之基因體下游中。
轉基因匣、表現匣及/或載體(編輯或供體)可含有一種或多種適當的「調控元件」或「調控序列」,其包含但不限於增強子;轉錄因子;轉錄終止子;高效RNA處理訊號,諸如剪接及多腺苷酸化訊號(polyA);穩定細胞質mRNA之序列,例如土撥鼠肝炎病毒(WHP)轉錄後調控元件(WPRE);提高轉譯效率之序列(即,Kozak共通序列);增強蛋白質穩定性之序列;及當需要時,增強編碼產物分泌之序列。合適的polyA序列的實例包括,例如,SV40、牛生長激素(bGH)、及TK polyA。合適的增強子的實例包括,例如,α胎兒蛋白增強子、TTR最小啟動子/增強子、LSP (TH-結合球蛋白啟動子/α1-微球蛋白/比庫增強子)等。此等控制序列或調控序列可操作地連接至核酸酶編碼序列或轉基因編碼序列。
除了轉基因匣,在某些具體實施例中,供體載體亦包括轉基因匣的同源定向重組(HDR)臂5’及3’,以促進轉基因之同源定向重組至內源基因體中。同源臂指向標靶PCSK9基因座並可具有不同的長度。在一些具體實施例中,HDR臂長度各為約100bp至約1000bp。在其它具體實施例中,HDR臂各為約130bp至約500bp。在其它具體實施例中,HDR臂各為約100bp至約300bp。在其它具體實施例中,HDR臂各為約100bp至約400bp。在其它具體實施例中,HDR臂各為約250bp至約500bp。在其它具體實施例中,HDR臂各為約300bp至約500bp。在某些具體實施例中,HDR臂各為約100bp、125bp、150bp、175bp、200bp、225bp、250bp、275bp、300bp、325bp、350bp、375bp、400bp、425bp、450bp、450bp、475bp、或500bp。在一具體實施例中,HDR臂為130bp。在另一具體實施例中,HDR臂為137bp。在其它具體實施例中,HDR臂為約130bp至140bp。在另一具體實施例中,HDR臂為約500bp。在另一具體實施例中,不存在HDR臂。HDR臂理想地與標靶PCSK9基因座具有高程度的互補性,儘管它不需要是100%的互補性。在一些具體實施例中,各HDR臂中允許有1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20或更多個錯配。用於靶向PCSK9外顯子7的合適HDR臂序列顯示於SEQ ID Nos:24-29中。在一具體實施例中,HDR臂序列選自SEQ ID Nos:24-29。
本文亦提供組成物、套組及方法,用於核酸酶媒介、位點特異性整合OTC轉基因匣至基因體中的PCSK9安全港中,提供患有OTC缺乏症之病患長期治療性益處。提供用於OTC的工程化編碼序列,本文稱為hOTCco2,並顯示在SEQ ID NO:17中。提供具有SEQ ID NO: 17之序列或與其共享至少90%、至少95%、至少96%、至少97%、至少98%、至少99%或至少99.9%同一性之序列的核酸。在一具體實施例中,該核酸與SEQ ID NO: 30中所示之天然OTC編碼序列共享少於80%、少於79%、少於78%、少於77%、少於76%、少於75%、少於74%、少於73%、少於72%、少於71%、或少於70%同一性。
可用於治療OTC的其它序列描述於WO 2015/138348及WO 2015/138357,其藉由引用併入本文。可用於治療PKU的說明性序列描述於WO 2018/126112,其藉由引用併入本文。其它序列顯示於SEQ ID NO: 71或72,或與其共享至少70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同一性之序列。
病毒及非病毒載體 本文所述之(基因編輯及供體)表現匣或編碼序列可工程化至用於遞送至標靶細胞(例如肝細胞)的任何合適的遺傳元件中,例如載體。如本文所使用之「載體」為一種包含核酸序列的生物或化學部分,其可被導入適當的宿主細胞中以複製或表現該核酸序列。一般的載體包括非病毒載體及病毒載體。如本文所使用,非病毒系統可選自奈米顆粒、電穿孔系統及新型生物材料、裸DNA、噬菌體、轉位子、質體、黏接質體(Phillip McClean, www.ndsu.edu/pubweb/~mcclean/-plsc731/cloning/cloning4.htm)及人工染色體(Gong, Shiaoching, et al. “A gene expression atlas of the central nervous system based on bacterial artificial chromosomes.” Nature 425.6961 (2003): 917-925)。在一具體實施例中,如本文所述或本技術領域已知的,經由非病毒載體或脂質奈米顆粒遞送核酸。
在某些具體實施例中,基因編輯組分被封裝在脂質奈米顆粒(LNP)中。參見,例如,Conway et al, Non-viral Delivery of Zinc Finger Nuclease mRNA Enables Highly Efficient In Vivo Genome Editing of Multiple Therapeutic Gene Targets, Molecular Therapy, 27(4):866-877 (April 2019),其藉由引用併入本文。如本文所使用,短語「脂質奈米顆粒」係指包含一種或多種脂質(例如,陽離子脂質、非陽離子脂質及PEG修飾的脂質)的轉移媒介物。較佳地,脂質奈米顆粒被配製為將一種或多種mRNA遞送至一種或多種標靶細胞(例如,肝臟和/或肌肉)。合適之脂質的實例包括,例如,磷脂醯基化合物(例如,磷脂醯甘油、磷脂醯膽鹼、磷脂醯絲胺酸、磷脂醯乙醇胺、神經鞘質、腦苷脂及神經節苷脂)。亦考慮使用聚合物作為轉移媒介物,無論是單獨使用還是與其它轉移媒介物結合使用。合適的聚合物可包括,例如,聚丙烯酸酯、聚烷基氰基丙烯酸酯、聚丙交酯、聚丙交酯-聚乙交酯共聚物、聚己內酯、葡聚醣、白蛋白、明膠、藻酸鹽、膠原蛋白、幾丁聚醣、環糊精、樹枝狀聚合物及聚乙烯亞胺。在一具體實施例中,轉移媒介物的選擇係基於其促進將mRNA轉染至標靶細胞的能力。用於mRNA之有用的脂質奈米顆粒包含陽離子脂質以包裹及/或增強將mRNA遞送至標靶細胞中,該標靶細胞將充當蛋白質生產的貯庫。如本文所使用,短語「陽離子脂質」係指在選定的pH (諸如生理pH)下攜帶淨正電荷的多種脂質種類中的任何一種。可藉由包括採用一種或多種陽離子脂質、非陽離子脂質及PEG修飾的脂質的不同比例的多組分脂質混合物來製備所考量的脂質奈米顆粒。文獻中已描述數種陽離子脂質,其中許多是可商購的。參見,例如,WO2014/089486、US 2018/0353616A1及US 8,853,377B2,其藉由引用而併入。在某些具體實施例中,使用常規程序進行 LNP配製,包含膽固醇、可離子化脂質、輔助性脂質、PEG-脂質和在包封的核酸周圍形成脂質雙層的聚合物(Kowalski et al., 2019, Mol. Ther. 27(4):710-728)。在一些具體實施例中,LNP包含具有輔助性脂質DOPE之陽離子脂質(即,N-[1-(2,3-二油醯基氧基)丙基]-N,N,N-氯化三甲銨(DOTMA)、或1,2-二油醯基-3-三甲基銨-丙烷 (DOTAP))。在一些具體實施例中,LNP包含離子化脂質Dlin-MC3-DMA離子化脂質、或基於二酮哌𠯤的離子化脂質(cKK-E12)。在一些具體實施例中,聚合物包含聚乙烯亞胺(PEI)、或聚(β-胺基)酯(PBAE)。參見,例如,WO2014/089486、US 2018/0353616A1、US2013/0037977A1、WO2015/074085A1、US9670152B2及US 8,853,377B2,其藉由引用而併入。在某些具體實施例中,其中基因編輯組分包括Cas9 mRNA,LNP亦包括gRNA。
本文有用的某些LNP包括在WO 2021/077066及WO 2021/055892中描述的那些,其各藉由引用以其整體併入本文。有用的LNP包括那些顯示增強遞送至肝臟的LNP。可改變LNP調配物以增強肝臟遞送。例如,可改變類型和離子化脂質:mRNA比例、mRNA:sgRNA比例、離子化脂質、磷脂、膽固醇及PEG-脂質的莫耳比等。在一具體實施例中,LNP為Kauffman, K. J.; Dorkin, J. R.; Yang, J. H.; Heartlein, M. W.; DeRosa, F.; Mir, F. F.; Fenton, O. S.; Anderson, D. G., Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano letters 2015, 15 (11), 7300-7306所敘述的LNP,其藉由引用併入本文。在某些具體實施例中,以離子化脂質:mRNA之重量比在5:1至25:1之間變化來設計LNP。在某些具體實施例中,離子化脂質:mRNA之重量比為1:1、2:1、3:1、4:1、5:1、6:1、7:1、8:1、9:1、10:1、12.5:1、15:1、20:1、或25:1。在某些具體實施例中,mRNA:sgRNA之重量比為1:1、1:2、2:1、1:4、1:5、5:1、4:1、3:1、或2:1。
其它LNP已被描述並且在本文中是有用的。參見,例如,WO 2016/118724、US 10,413,618B2、US 10,723,692B2、及US8754062B2,其各藉由引用併入本文。
本文中某些實施例說明了在AAV載體基因體中使用含有基因編輯組分(核酸酶)編碼序列和轉基因編碼序列的AAV載體。然而,本文所述之構建體的使用不限於AAV構建體並可用於其它載體。在某些具體實施例中,可將載體基因體包裝至不同的載體中(例如,重組波卡病毒(bocavirus))。在某些具體實施例中,表現匣可被包裝至不同的病毒載體、非病毒載體中、及/或不同的遞送系統中。在某些具體實施例中,基因編輯組分在LNP中提供。
「質體」或「質體載體」在本文中通常是由在載體名稱之前及/或之後的小寫p指定。可根據本發明使用的質體、其它選殖和表現載體、其特性以及其構建/操作方法對於本領域技術人員而言是顯而易見的。在一具體實施例中,將如本文所述的核酸序列或如本文所述的表現匣工程化至合適的遺傳元件(載體)中,該遺傳元件可用於產生病毒載體及/或用於遞送至宿主細胞,例如裸DNA、噬菌體、轉位子、黏接質體、游離基因體(episome)等,其轉移其上所攜帶的核酸酶序列。選擇的載體可藉由任何合適的方法遞送,包括轉染、電穿孔、微脂體遞送、膜融合技術、高速DNA包覆的小球、病毒感染和原生質體融合。用於製造此類構建體的方法是核酸操作技術人員已知的,包括遺傳工程、重組工程和合成技術。參見,例如,Sambrook et al, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, NY。
在某些具體實施例中,表現匣位於用於包裝到病毒衣殼中的載體基因體中。例如,對於AAV載體基因體,表現匣的組分在最末端5'端和最末端3'端側接AAV反向末端重複序列。例如,5’ AAV ITR、表現匣、3’ AAV ITR。在其它具體實施例中,可選擇自我互補AAV。在其它具體實施例中,可使用反轉錄病毒系統、慢病毒載體系統或腺病毒系統。
AAV載體 在某些具體實施例中,基因編輯載體及/或供體載體被提供作為重組AAV。「重組AAV」或「rAAV」是一種DNA酶抗性病毒顆粒,含有兩個元件,一個AAV衣殼和一個至少含有包裝在AAV衣殼內的非AAV編碼序列的載體基因體。除非另有指出,此術語可與短語「rAAV載體」或「AAV載體」互換使用。rAAV是一種「複製缺陷病毒」或「病毒載體」,因為它缺乏任何功能性AAV rep基因或功能性AAV cap基因,且不能產生子代。在某些具體實施例中,唯一的AAV序列是AAV反向末端重複序列(ITR),通常位於載體基因體的5'和3'末端,以便允許將位於ITR之間的基因和調控序列包裝在AAV衣殼內。
AAV衣殼的來源可為數十種天然存在和可用的腺相關病毒以及工程化的AAV中的任何一種。在一具體實施例中,用於基因編輯載體及/或供體載體之AAV衣殼的來源是相同的。在另一具體實施例中,用於基因編輯載體及/或供體載體之AAV衣殼的來源是不同的。腺相關病毒(AAV)病毒載體為一種具有AAV蛋白衣殼的AAV DNase抗性顆粒,其中包裝了用於遞送至標靶細胞的核酸序列。AAV衣殼由60個衣殼(cap)蛋白次單元VP1、VP2和VP3組成,它們以大約1:1:10至1:1:20的比例以二十面體對稱排列,具體取決於所選擇的AAV。可選擇各種AAV作為上述AAV病毒載體衣殼的來源。參見,例如,美國公開專利申請號2007-0036760-A1;美國公開專利申請號2009-0197338-A1;EP 1310571。亦參見,WO 2003/042397 (AAV7及其它猴AAV)、美國專利7790449及美國專利7282199 (AAV8)、WO 2005/033321及US 7,906,111 (AAV9)、及WO 2006/110689、WO 2003/042397 (rh.10)及WO 2018/160582 (AAVhu68)。這些文件亦描述了可選擇用於生成AAV的其它AAV,且這些文件藉由引用併入。
除非另有指出,本文所述AAV衣殼、ITR及其它選定的AAV組分可以容易地選自任何AAV,包括,不限於,通常被識別為AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV8bp、AAV7M8、AAVAnc80、AAVrh10、AAVrh79及AAVPHP.B的AAV,及任何已知或所述之AAV的變異體或尚待發現的AAV或其變異體或混合物。參見,例如,WO 2005/033321,其藉由引用併入本文。在一具體實施例中,AAV衣殼為AAV1衣殼或其變異體、AAV8衣殼或其變異體、AAV9衣殼或其變異體、AAVhu.68衣殼或其變異體、AAVrh.10衣殼或其變異體、AAVrh64R1衣殼或其變異體、AAVhu.37衣殼或其變異體、或AAV3B或其變異體。於一態樣,衣殼為AAVhu.37衣殼。亦參見,WO 2019/168961及WO 2019/169004,其藉由引用而整體併入本文中。在其它具體實施例中,AAV衣殼為AAVrh79衣殼或其變異體。在其它具體實施例中,AAV衣殼為AAVrh.90或其變異體。
在某些具體實施例中,rAAV包含AAVhu37衣殼。AAVhu37衣殼包含:vp1蛋白的異質群體,其為編碼SEQ ID NO: 38之胺基酸序列的核酸序列的產物、vp2蛋白的異質群體,其為編碼SEQ ID NO:38的至少約胺基酸138至738之胺基酸序列的核酸序列的產物、及vp3蛋白的異質群體,其為編碼SEQ ID NO: 38的至少胺基酸204至738的核酸序列的產物,其中:vp1、vp2及vp3蛋白含有具有胺基酸修飾的亞群,該胺基酸修飾包含SEQ ID NO:38中天冬醯胺-甘胺酸對中的至少兩個高度脫醯胺化的天冬醯胺(N),且可選擇地進一步包含含有其它脫醯胺化胺基酸的亞群,其中脫醯胺導致胺基酸變化。AAVhu37的特徵在於具有高度脫醯胺化殘基,例如,在基於AAVhu37 VP1 (SEQ ID NO: 38)編號之位置N57、N263、N385、及/或N514處。
如下表所示,以及在例如2019年9月6日公開的WO 2019/168961中,已在其它殘基中觀察到脫醯胺作用,該文獻藉由引用併入本文。在某些具體實施例中,AAVhu37衣殼在下述提供之範圍內的一個或多個以下位置被修飾,如使用具有胰蛋白酶的質譜法測定的。在某些具體實施例中,一個或多個以下位置,或N之後的甘胺酸如本文所述被修飾。例如,在某些具體實施例中,G可被修飾為S或A,例如,在位置58、264、386、或515處。在一具體實施例中,AAVhu37衣殼在位置N57/G58至N57Q或G58A處被修飾,以提供這此位置處具有減少的脫醯胺的衣殼。在另一具體實施例中,N57/G58被修改成NS57/58或NA57/58。然而,在某些具體實施例中,當NG變為NS或NA時,觀察到脫醯胺作用增加。在某些具體實施例中,NG對中的N被修飾成Q,同時保留G。在某些具體實施例中,NG對的二個胺基酸皆被修飾。在某些具體實施例中,N385Q導致在該位置的脫醯胺作用顯著減少。在某些具體實施例中,N499Q導致在該位置的脫醯胺作用顯著增加。
在某些具體實施例中,AAVhu37可使這些或其它殘基脫醯胺化,例如,通常低於10%及/或可以具有其它修飾,包括甲基化(例如,~R487)(通常小於5%,在給定的殘基處更通常小於1%)、異構化(例如,在D97處)(通常小於5%,在給定的殘基處更通常小於1%)、磷酸化(例如,當存在時,在約10至約60%、或約10至約30%、或約20至約60%的範圍內)(例如,在S149、~S153、~S474、~T570、~S665之一處或多處)、或氧化(例如,在W248、W307、W307、M405、M437、M473、W480、W480、W505、M526、M544、M561、W621、M637、及/或W697之一處或多處)。可選擇地,W可氧化成犬尿胺酸(kynurenine)。
表A
基於vp1編號的AAVhu37脫醯胺作用 脫醯胺作用%
N57+脫醯胺作用 65-90、70-95、80-95、75-100、80-100、或90-100
N94+脫醯胺作用 5-15、約10
~N254+脫醯胺作用 10-20
~N263+脫醯胺作用 75-100
~N305+脫醯胺作用 1-5
~N385+脫醯胺作用 65-90、70-95、80-95、75-100、80-100、或90-100
~N410+脫醯胺作用 1-25、
N479+脫醯胺作用 1-5、1-3
~N514+脫醯胺作用 65-90、70-95、80-95、75-100、80-100、或90-100
~Q601+脫醯胺作用 0-1
N653+脫醯胺作用 0-2
還有其它位置可具有這些或其它修飾(例如,乙醯化或進一步脫醯胺)。在某些具體實施例中,編碼AAVhu37 vp1衣殼蛋白的核酸序列提供於SEQ ID NO: 37中。在其它具體實施例中,可選擇與SEQ ID NO:37具有70%至99.9%同一性的核酸序列來表現AAVhu37衣殼蛋白。在某些其它具體實施例中,核酸序列是與SEQ ID NO: 37至少約75%相同、至少80%相同、至少85%、至少90%、至少95%、至少97%相同、或至少99%相同。然而,可選擇編碼SEQ ID NO: 38胺基酸序列的其它核酸序列用於製造rAAVhu37衣殼。在某些具體實施例中,核酸序列具有SEQ ID NO: 37核酸序列,或與編碼SEQ ID NO: 38之SEQ ID NO: 37有至少70%至至少99%相同、至少75%、至少80%、至少85%、至少90%、至少95%、至少97%、至少99%相同之序列。在某些具體實施例中,核酸序列具有SEQ ID NO: 37核酸序列、或與編碼SEQ ID NO: 38之vp2衣殼蛋白(約aa 138至738)的SEQ ID NO: 37之約nt 412至約nt 2214有至少70%至99%、至少75%、至少80%、至少85%、至少90%、至少95%、至少97%、至少99%相同之序列。在某些具體實施例中,核酸序列具有SEQ ID NO: 37之約nt 610至約nt 2214的核酸序列、或與編碼SEQ ID NO: 38之vp3衣殼蛋白(約aa 204至738)的SEQ ID NO: 37nt至少70%至99%、至少75%、至少80%、至少85%、至少90%、至少95%、至少97%、至少99%相同之序列。參見,EP 2 345 731 B1及其中之SEQ ID NO: 88,其藉由引用而併入。
在某些具體實施例中,rAAV包含AAV8衣殼。AAV8衣殼包含:如下表中定義之脫醯胺的VP同功型的異質群體,基於使用質譜法測定的衣殼中VP蛋白的總量。合適的修飾包括在上文標記為脫醯胺調節的段落中描述的那些,其併入本文。在某些具體實施例中,如使用質譜法所測定,AAV衣殼在下述提供之範圍內的一個或多個以下位置處被修飾。在某些具體實施例中,一個或多個以下位置,或N之後的甘胺酸被如本文所述地修飾。在某些具體實施例中,人工NG被導入至與下述確定之位置之一不同的位置中。在某些具體實施例中,一個或多個以下位置,或N之後的甘胺酸被如本文所述地修飾。例如,在某些具體實施例中,G可修飾成S或A,例如,在位置58、67、95、216、264、386、411、460、500、515、或541處。當NG57/58變為NS 57/58或NA57/58時,觀察到脫醯胺顯著減少。然而,在某些具體實施例中,當NG變為NS或NA時,觀察到脫醯胺作用增加。在某些具體實施例中,在保留G的同時,將NG對中的N修飾為Q。在某些具體實施例中,NG對的二個胺基酸皆被修飾。在某些具體實施例中,N385Q導致在該位置的脫醯胺作用顯著減少。在某些具體實施例中,N499Q導致在該位置的脫醯胺作用顯著增加。在某些具體實施例中,NG突變發生在位於N263的對上(例如,至N263A)。在某些具體實施例中,NG突變發生在位於N514的對上(例如,至N514A)。在某些具體實施例中,NG突變發生在位於N540的對上(例如,N540A)。在某些具體實施例中,將包含多個突變和這些位置處的至少一個突變的AAV突變體工程化。在某些具體實施例中,在位置N57處沒有突變。在某些具體實施例中,在位置N94處沒有突變。在某些具體實施例中,在位置N305處沒有突變。在某些具體實施例中,在位置G386處沒有突變。在某些具體實施例中,在位置Q467處沒有突變。在某些具體實施例中,在位置N479處沒有突變。在某些具體實施例中,在位置N653處沒有突變。在某些具體實施例中,修飾衣殼使其在「NG」對之外的位置處減少「N」或「Q」。殘基編號是基於公佈的AAV8序列,在SEQ ID NO: 36中再現。
表B
基於VP1編號的AAV8修飾 %
N35+脫醯胺作用 1
N57+脫醯胺作用 65-90、70-95、80-95、75-100、80-100、或90-100
N66+脫醯胺作用 0-10
N94+脫醯胺作用 1-15
N113+脫醯胺作用 0-10
~Q166+脫醯胺作用 0-10
~N173+脫醯胺作用 0-10
N254/N255+脫醯胺作用 5-45
N263+脫醯胺作用 65-90、70-95、80-95、75-100、80-100、或90-100
~N304+脫醯胺作用 0-10
~N305+脫醯胺作用 10-40
N320+脫醯胺作用 0-10
~Q322+脫醯胺作用 0-10
N385+脫醯胺作用 65-90、70-95、80-95、75-100、80-100、或90-100
N410+脫醯胺作用 15-70
~Q431+脫醯胺作用 0-10
N438+脫醯胺作用 0-10
~N459+脫醯胺作用 0-10
~Q467+脫醯胺作用 0-10
~N479+脫醯胺作用 0-10
N498/N499+脫醯胺作用 0-10
N502+脫醯胺作用 0-10
N514+脫醯胺作用 65-90、70-95、80-95、75-100、80-100、或90-100
N517+脫醯胺作用 15-40
N540+脫醯胺作用 65-90、70-95、80-95、75-100、80-100、或90-100
~N554+脫醯胺作用 0-10
~Q589+脫醯胺作用 0-10
~N590+脫醯胺作用 0-10
~N599+脫醯胺作用 35-75
~Q601+脫醯胺作用 45-75
~Q610+脫醯胺作用 0-10
Q617+脫醯胺作用 0-10
N630+脫醯胺作用 5-30
Q648+脫醯胺作用 0-10
N653+脫醯胺作用 0-10
N665+脫醯胺作用 5-30
N670+脫醯胺作用 0-10
N693+脫醯胺作用 0-10
~N706+脫醯胺作用 0-10
N718+脫醯胺作用 0-10
N737+脫醯胺作用 0-10
在某些具體實施例中,rAAV包含AAVrh79衣殼,如敘述於WO 2019/169004 (2019年9月6日公開),其藉由引用併入本文。在一具體實施例中,AAVrh79衣殼包含AAVrh79 VP1蛋白、AAVrh79 VP2蛋白、及AAVrh79 vp3蛋白之異質群體。在一具體實施例中,藉由從編碼SEQ ID NO: 34之1至738的預測胺基酸序列的核酸序列表現產生AAVrh79衣殼。可選擇地,序列共表現來自不包括vp1-獨特區域(約aa 1至137)或vp2-獨特區域(約aa 1至203)之核酸序列的vp3蛋白、由SEQ ID NO: 33產生的vp1蛋白、或由與編碼SEQ ID NO: 34的1至738的預測胺基酸序列之SEQ ID NO: 33至少70%相同的核酸序列產生的vp1蛋白。在其它具體實施例中,藉由從編碼SEQ ID NO: 34的至少約胺基酸138至738的預測胺基酸序列的核酸序列表現產生的AAVrh79 vp2蛋白、由包含SEQ ID NO: 33之至少核苷酸412至2214的序列產生的vp2蛋白、或從與編碼SEQ ID NO: 34之至少約胺基酸138至738的預測胺基酸序列之SEQ ID NO: 33之至少核苷酸412至2214有至少70%相同的核酸序列產生的vp2蛋白、藉由從編碼SEQ ID NO: 34的至少約胺基酸204至738的預測胺基酸序列的核酸序列表現產生的AAVrh79 vp3蛋白、自包含SEQ ID NO: 33之至少核苷酸610至2214的序列產生的vp3蛋白、或從與編碼SEQ ID NO: 34之至少約胺基酸204至738的預測胺基酸序列之SEQ ID NO: 33之至少核苷酸610至2214有至少70%相同的核酸序列產生的vp3蛋白。
在某些具體實施例中,AAVrh79衣殼包含:vp1蛋白之異質群體,該vp1蛋白為編碼SEQ ID NO: 34之胺基酸序列的核酸序列的產物;vp2蛋白之異質群體,該vp2蛋白為編碼SEQ ID NO: 34之至少約胺基酸138至738的胺基酸序列的核酸序列的產物;及vp3蛋白之異質群體,該vp3蛋白為編碼SEQ ID NO: 34之至少胺基酸204至738的核酸序列的產物。
AAVrh79 vp1、vp2及vp3蛋白含有具有胺基酸修飾的亞群,該胺基酸修飾包含在SEQ ID NO: 34中天冬醯胺酸-甘胺酸對中的至少二個高度脫醯胺化天冬醯胺酸(N),且可選擇地進一步包含含有其它脫醯胺化胺基酸的亞群,其中該脫醯胺導致胺基酸變化。相對於SEQ ID NO: 34的編號,在N-G對N57、N263、N385及/或N514處觀察到高程度的脫醯胺作用。在其它殘基中已觀察到脫醯胺作用,如下表和實施例所示。在某些具體實施例中,AAVrh79可具有其它脫醯胺化的殘基,例如,通常低於10%及/或可具有其它修飾,包括甲基化(例如,~R487)(通常小於5%,在給定的殘基處更通常小於1%)、異構化(例如,在D97處)(通常小於5%,在給定的殘基處更通常小於1%)、磷酸化(例如,當存在時,在約10至約60%、或約10至約30%、或約20至約60%的範圍內)(例如,在S149、~S153、~S474、~T570、~S665之一處或多處)、或氧化(例如,在W248、W307、W307、M405、M437、M473、W480、W480、W505、M526、M544、M561、W621、M637及/或W697之一處或多處)。可選擇地,W可氧化成犬尿胺酸。
表C
基於VP1編號的AAVrh79脫醯胺作用 脫醯胺作用%
N57+脫醯胺作用 65-90、70-95、80-95、75-100、80-100、或90-100
N94+脫醯胺作用 5-15、約10
~N254+脫醯胺作用 10-20
~N263+脫醯胺作用 75-100
~N305+脫醯胺作用 1-5
~N385+脫醯胺作用 65-90、70-95、80-95、75-100、80-100、或90-100
~N410+脫醯胺作用 1-25、
N479+脫醯胺作用 1-5、1-3
~N514+脫醯胺作用 65-90、70-95、80-95、75-100、80-100、或90-100
~Q601+脫醯胺作用 0-1
N653+脫醯胺作用 0-2
在某些具體實施例中,AAVrh79衣殼在上表中確定的一個或多個位置被修飾,在下述提供的範圍內,如使用胰蛋白酶的質譜法測定。在某些具體實施例中,一個或多個以下位置、或N之後的甘胺酸如本文所述被修飾。殘基編號是基於本文提供的AAVrh79序列。參見,SEQ ID NO:34。
在某些具體實施例中,編碼AAVrh79 vp1衣殼蛋白的核酸序列提供於SEQ ID NO: 33中。在其它具體實施例中,可選擇與SEQ ID NO: 33具有70%至99.9%同一性的核酸序列來表現AAVrh79衣殼蛋白。在某些其它具體實施例中,核酸序列與SEQ ID NO: 33至少約75%相同、至少80%相同、至少85%、至少90%、至少95%、至少97%相同、至少99%或至少99.9%相同。然而,可選擇編碼SEQ ID NO:34之胺基酸序列的其它核酸序列來用於生產rAAV衣殼。在某些具體實施例中,核酸序列具有SEQ ID NO: 33之核酸序列、或與編碼SEQ ID NO: 34之SEQ ID NO: 33至少70%至99%相同、至少75%、至少80%、至少85%、至少90%、至少95%、至少97%、至少99%相同之序列。在某些具體實施例中,核酸序列具有SEQ ID NO: 33之核酸序列、或與編碼SEQ ID NO: 34之vp2衣殼蛋白(約aa 138至738)的SEQ ID NO: 33之約nt 412至約nt 2214至少70%至99%、至少75%、至少80%、至少85%、至少90%、至少95%、至少97%、至少99%相同之序列。在某些具體實施例中,核酸序列具有SEQ ID NO: 33之約nt 610至約nt 2214的核酸序列、或與編碼SEQ ID NO: 34之vp3衣殼蛋白(約aa 204至738)的SEQ ID NO: 33nt至少70%至99%、至少75%、至少80%、至少85%、至少90%、至少95%、至少97%、至少99%相同之序列。
本發明亦涵蓋編碼突變體AAVrh79的核酸序列,其中一個或多個殘基已被改變以減少脫醯胺作用或本文確認的其它修飾。此類核酸序列可用於製造突變體rAAVrh79衣殼。
在某些具體實施例中,rAAV包含AAVrh.90衣殼,如敘述於WO 2020/223232 (2020年11月5日公開),其藉由引用併入本文。於另一態樣,提供重組腺相關病毒(rAAV),其包含:(A) AAVrh.90衣殼,包含一種或多種:(1) AAVrh.90衣殼蛋白,包含:選自下述之AAVrh.90 vp1蛋白的異質群體:藉由從編碼SEQ ID NO: 40之1至738的預測胺基酸序列的核酸序列表現所產生的vp1蛋白、由SEQ ID NO: 39所產生的vp1蛋白、或由與編碼SEQ ID NO: 40之1至738的預測胺基酸序列的SEQ ID NO: 39至少70%相同的核酸序列所產生的vpl蛋白;選自下述之AAVrh.90 vp2蛋白的異質群體:藉由從編碼SEQ ID NO: 40之至少約胺基酸138至738的預測胺基酸序列的核酸序列表現所產生的vp2蛋白、由包含SEQ ID NO: 39之至少核苷酸412至2214的序列所產生的vp2蛋白、或由與編碼SEQ ID NO: 40之至少約胺基酸138至738的預測胺基酸序列之SEQ ID NO: 39之至少核苷酸412至2214至少70%相同的核酸序列所產生的vp2蛋白;選自下述之AAVrh.90 vp3蛋白的異質群體:藉由從編碼SEQ ID NO: 40之至少約胺基酸204至738的預測胺基酸序列的核酸序列表現所產生的vp3蛋白、由包含SEQ ID NO: 39之至少核苷酸610至2214的序列所產生的vp3蛋白、或由與編碼SEQ ID NO: 40之至少約胺基酸204至738的預測胺基酸序列之SEQ ID NO: 39之至少核苷酸610至2214至少70%相同的核酸序列所產生的vp3蛋白;及/或(2) 為編碼SEQ ID NO: 40之胺基酸序列的核酸序列的產物之vp1蛋白之異質群體、為編碼SEQ ID NO: 40之至少約胺基酸138至738的胺基酸序列的核酸序列之產物之vp2蛋白之異質群體、及為編碼SEQ ID NO: 40之至少胺基酸204至738的核酸序列的產物之vp3蛋白異質群體,其中:該vp1、vp2及vp3蛋白含有具有胺基酸修飾的亞群,該胺基酸修飾包括SEQ ID NO: 40中天冬醯胺酸-甘胺酸對中的至少兩個高度脫醯胺化的天冬醯胺酸(N),且可選擇地進一步包含含有其它脫醯胺化胺基酸的亞群,其中該脫醯胺導致胺基酸變化;及(B) AAVrh.90衣殼中的載體基因體,該載體基因體包含含有AAV反向末端重複序列之核酸分子、及編碼產物的非AAV核酸序列,該非AAV核酸序列可操作地連接至指導該產物在宿主細胞中表現的序列。
在某些具體實施例中,AAVrh.90 vp1、vp2及vp3蛋白含有具有胺基酸修飾的亞群,該胺基酸修飾包含在SEQ ID NO: 40中的天冬醯胺-甘胺酸對中的至少兩個高度脫醯胺化的天冬醯胺(N),且可選擇地進一步包含含有其它脫醯胺化胺基酸的亞群,其中脫醯胺導致胺基酸變化。相對於SEQ ID NO: 40的編號,在N-G對N57、~N263、~N385及/或~N514處觀察到高程度的脫醯胺作用。在其它殘基中觀察到脫醯胺作用,如下表所示。在某些具體實施例中,AAVrh.90可具有其它脫醯胺化殘基(例如,~N305、~N499、及/或~N599,通常低於20%)及/或可具有其它修飾,包括磷酸化(例如,當存在時,在約2至約30%、或約2至約20%、或約2至約10%的範圍內)(例如,在S149處)、或氧化(例如,在~W23、~M204、~M212、W248、W282、M405、M473、W480、W505、M526、~N544、M561及/或~M607的一處或多處)。可選擇地,W可氧化成犬尿胺酸。
表D
基於VP1編號的AAVrh.90脫醯胺作用 脫醯胺作用%
N57+脫醯胺作用 65-90、70-95、80-95、75-100、80-100、或90-100
N94+脫醯胺作用 2-15或2-5
~N263+脫醯胺作用 65-90、70-95、80-95、75-100、80-100、或90-100
~N305+脫醯胺作用 5-30、5-20、或10-20
~N385+脫醯胺作用 65-90、70-95、80-95、75-100、80-100、或90-100
~N499+脫醯胺作用 2-15、2-10、或5-10
~N514+脫醯胺作用 65-90、70-95、80-95、75-100、80-100、或90-100
~N599+脫醯胺作用 2-15、2-10、或5-10
在某些具體實施例中,AAVrh.90衣殼在上表中確定的一個或多個位置被修飾,在所提供的範圍內,如使用具有胰蛋白酶的質譜法測定。在某些具體實施例中,一個或多個位置、或N之後的甘胺酸如本文所述被修飾。殘基編號是基於本文提供的AAVrh.90序列。參見,SEQ ID NO: 40。
在某些具體實施例中,AAVrh.90衣殼包含:vp1蛋白之異質群體,該vp1蛋白為編碼SEQ ID NO: 40之胺基酸序列的核酸序列的產物;vp2蛋白之異質群體,該vp2蛋白為編碼SEQ ID NO: 40之至少約胺基酸138 to 738的胺基酸序列之核酸序列的產物;及vp3蛋白之異質群體,該vp3蛋白為編碼SEQ ID NO: 40之至少胺基酸204至738的核酸序列的產物。
在某些具體實施例中,選擇微小病毒載體衣殼用於肝向性(liver-tropism),且接受治療的病患患有肝臟代謝性病症。在某些具體實施例中,選擇微小病毒載體衣殼用於心向性,且接受治療的病患患有心臟病症。在某些具體實施例中,選擇微小病毒載體衣殼用於趨向於骨骼肌中的細胞,且接受治療的病患患有肌肉病症。
如本文所使用,「載體基因體」係指包裝在形成病毒顆粒的rAAV衣殼內部的核酸序列。此核酸序列含有AAV反向末端重複序列(ITR)。在本文實施例中,載體基因體最低限度地由5’至3’含有AAV 5’ ITR、含有可操作地連接至指導其表現之調控序列的轉基因或編碼序列的表現匣、及AAV 3’ ITR。ITR是在載體生產過程中負責基因體複製和包裝的遺傳元件,並且是產生rAAV所需的唯一病毒順式(cis)元件。在一具體實施例中,ITR來自不同於提供衣殼的AAV。在較佳的具體實施例中,可方便使用來自AAV2的ITR序列,或其刪除版本(ΔITR)。然而,可選擇來自其它AAV來源的ITR。在ITR的來源來自AAV2且AAV衣殼來自另一AAV來源的情況下,產生的載體可稱為假型的(pseudotyped)。通常,AAV載體基因體包含AAV 5’ ITR、編碼基因產物及任何調控序列的核酸序列、及AAV 3’ ITR。然而,這些元件的其它配置可為合適的。在一具體實施例中,提供自我互補AAV。已描述了5' ITR的縮短版本,稱為ΔITR,其中刪除了D-序列和末端解析位點(trs)。在某些具體實施例中,載體基因體包括130個鹼基對之縮短的AAV2 ITR,其中刪除了外部「a」元件。在使用內部A元件作為模板進行載體DNA擴增期間,縮短的ITR恢復為145個鹼基對的野生型長度。在其它具體實施例中,使用全長AAV 5'和3' ITR。在其它具體實施例中,可選擇全長或工程化ITR。可選擇來自AAV2的ITR、與衣殼不同的來源AAV或非全長ITR。ITR來自與生產期間提供rep功能的AAV或反向互補AAV相同的AAV來源。再者,可使用其它ITR。合適的ITR序列之實例顯示於序列表中,例如,SEQ ID NO: 42,nt 1至130及3052至3181。再者,載體基因體含有直接調節基因產物表現的調控序列(例如,直接或間接藉由調節轉錄及/或轉譯)。載體基因體的合適組分在本文中更詳細地討論。
在某些具體實施例中,基因編輯載體基因體包括TBG啟動子、一種或多種α mic/bik增強子、用於ARCUS巨型核酸酶之編碼序列、可選擇地WPRE、及polyA。在某些具體實施例中,表現匣包括SEQ ID NO: 42之nt 211至nt 2964,兩側是5'和3' ITR。
為了用於生產AAV病毒載體(例如重組(r)AAV),表現匣可被攜帶於任何合適的載體上,例如質體,其被遞送至包裝宿主細胞。本發明的質體可被工程化,使其適用於在原核細胞、昆蟲細胞、哺乳動物細胞等之中體外地複製及包裝。合適的轉染技術及包裝宿主細胞是已知的及/或可由本領域技術人員容易地設計。
用於產生及分離適於用作載體的AAV的方法是本領域已知的。通常參見,例如,Grieger & Samulski, 2005, “Adeno-associated virus as a gene therapy vector: Vector development, production and clinical applications,” Adv. Biochem. Engin/Biotechnol.99: 119-145;Buning et al.,2008, “Recent developments in adeno-associated virus vector technology,” J. Gene Med.10:717-733;及以下引用的參考文獻,每一篇都藉由引用整體併入本文。為了將轉基因包裝至病毒體中,ITR是與包含表現匣的核酸分子在同一構建體中順式所需的唯一AAV成分。cap及rep基因可以反式提供。
術語「AAV中間體」或「AAV載體中間體」係指組裝的rAAV衣殼,其缺少包裝在其中的所需基因體序列。此類亦可稱為「空」衣殼。此類衣殼可不包含表現匣的可檢測基因體序列,或僅包含不足以達到基因產物之表現的部分包裝之基因體序列。這些空衣殼無法將感興趣的基因轉移至宿主細胞中。
本文所述之重組AAV可使用已知技術產生。參見,例如,WO2003/042397;WO2005/033321;WO2006/110689;US7588772 B2。此類方法涉及培養含有編碼AAV衣殼之核酸序列的宿主細胞;功能性rep基因;至少由AAV反向末端重複序列(ITR)和轉基因組成的表現匣;和足夠的輔助功能以允許將表現匣包裝至AAV衣殼蛋白中。產生衣殼的方法、編碼序列以及產生rAAV病毒載體的方法已被描述。參見,例如 Gao, et al, Proc. Natl. Acad. Sci. U.S.A. 100 (10), 6081-6086 (2003)及US2013/0045186A1。
在一具體實施例中,提供可用於生產重組AAV的生產細胞培養物。此類細胞培養物含有在宿主細胞中表現AAV衣殼蛋白的核酸;適於包裝至AAV衣殼中的核酸分子,例如,包含AAV ITR和編碼基因產物的非AAV核酸序列的載體基因體,該非AAV核酸序列可操作地連接至指導產物在宿主細胞中表現的序列;及足以允許將核酸分子包裝至重組AAV衣殼中的AAV rep功能和腺病毒輔助功能。在一具體實施例中,細胞培養物由哺乳動物細胞(例如人類胚腎293細胞等)或昆蟲細胞(例如桿狀病毒)組成。
可選擇地,rep功能由除了提供衣殼的AAV之外的AAV提供。例如,rep可為,但不限於AAV1 rep蛋白、AAV2 rep蛋白、AAV3 rep蛋白、AAV4 rep蛋白、AAV5 rep蛋白、AAV6 rep蛋白、AAV7 rep蛋白、AAV8 rep蛋白;或rep 78、rep 68、rep 52、rep 40、rep 68/78及rep 40/52;或其片段;或另一種來源。可選擇地,rep及cap序列在細胞培養物中位於相同的遺傳元件上。rep序列和cap基因之間可有間隔子。這些AAV或突變AAV衣殼序列中的任何一個都可在指導其在宿主細胞中表現的外源調節控制序列的控制下。
在一具體實施例中,在合適的細胞培養物(例如,HEK 293細胞)細胞中製造細胞。用於製造本文所述之基因治療載體的方法包括本技術領域熟知的方法,諸如用於生產基因治療載體的質體DNA的產生、載體的產生和載體的純化。在一些具體實施例中,基因治療載體為AAV載體,且產生的質體為編碼AAV基因體及感興趣的基因的AAV順式質體、含AAV rep及cap基因的AAV反式質體、及腺病毒輔助質體。載體產生過程可包括方法步驟,例如細胞培養的開始、細胞繼代、細胞接種、以質體DNA轉染細胞、轉染後培養基更換為無血清培養基、及收穫含載體之細胞和培養基。收穫的含有載體的細胞和培養基在本文中稱為粗細胞收穫物。在另一系統中,基因治療載體藉由以基於桿狀病毒的載體感染而被引入昆蟲細胞中。有關這些生產系統的評論,一般參見,例如,Zhang et al., 2009, "Adenovirus-adeno-associated virus hybrid for large-scale recombinant adeno-associated virus production, " Human Gene Therapy 20: 922-929,其藉由引用以其整體併入本文。以下美國專利亦描述製造和使用這些和其它AAV生產系統的方法,其各自內容藉由引用以其整體併入本文:5,139,941;5,741,683;6,057,152;6,204,059;6,268,213;6,491,907;6,660,514;6,951,753;7,094,604;7,172,893;7,201,898;7,229,823;及7,439,065。
此後,粗細胞收穫物可為主題方法步驟,諸如載體收穫物的濃縮、載體收穫物的滲濾、載體收穫物的微流體化、載體收穫物的核酸酶消化、經過微流化的中間體的過濾、藉由層析的粗純化、藉由超速離心法的粗純化、藉由切向流過濾進行緩衝液交換及/或調配和過濾以製備大量載體。
在高鹽濃度下進行兩步驟親和性層析純化,然後使用陰離子交換樹脂層析來純化載體藥物產物並去除空衣殼。此等方法更詳盡的敘述於國際專利公開號WO 2017/160360,其藉由引用併入本文。關於AAV8的純化方法,國際專利公開號WO 2017/100676,及關於rh10,國際專利公開號WO 2017/100704,及關於AAV1,國際專利公開號WO 2017/100674,其等藉由引用全部併入本文。
為了計算空顆粒和完整顆粒的含量,將所選樣品(例如,在本文的實例中經過碘克沙醇(iodixanol)梯度純化的製劑,其中GC#=顆粒#)的vp3帶體積相對於加載的GC顆粒進行作圖。所得線性等式(y=mx+c)用於計算測試品峰值的帶狀體積中的顆粒的數量。然後將加載的每20 μL顆粒數量(pt)乘以50,以得到顆粒(pt)/mL。將Pt/mL除以GC/mL得到顆粒與基因體拷貝的比率(pt/GC)。Pt/mL–GC/mL得到空pt/mL。空pt/mL除以pt/mL並且×100得到空顆粒的百分比。
一般而言,用於測定具有包裝的基因體的空衣殼和AAV載體顆粒的方法是本技術領域已知的。參見,例如Grimm et al., Gene Therapy (1999) 6: 1322-1330;Sommer et al., Molec.Ther. (2003) 7: 122-128。為了測試變性的衣殼,該方法包含使經過處理的AAV儲料經受SDS-聚丙烯醯胺凝膠電泳(由能夠分離三種衣殼蛋白的任何凝膠組成,例如在緩衝液中含有3-8%三乙酸鹽的梯度凝膠),然後運行凝膠直到分離出樣品材料,並且將凝膠印漬到尼龍或硝酸纖維素膜(較佳為尼龍)上。然後,將抗AAV衣殼抗體用作與變性的衣殼蛋白結合的初級抗體,較佳為抗AAV衣殼單株抗體,最佳為B1抗AAV2單株抗體(Wobus et al., J. Virol.(2000) 74: 9281-9293)。然後使用次級抗體,該次級抗體與初級抗體結合並含有一種用於檢測與初級抗體的結合的裝置,更佳為含有與其共價結合的檢測分子的抗IgG抗體,最佳為與辣根過氧化物酶共價連接的綿羊抗小鼠IgG抗體。用於檢測結合之方法用於半定量地確定初級抗體與次級抗體之間的結合,較佳為能夠檢測放射性同位素發射、電磁輻射或比色變化的檢測方法,最佳為化學發光檢測套組。例如,對於SDS-PAGE,可從管柱濾分中提取樣品並在含有還原劑(例如,DTT)的SDS-PAGE上樣緩衝液中加熱,並且在預製的梯度聚丙烯醯胺凝膠(例如,Novex)上解析衣殼蛋白。可根據製造商的說明使用SilverXpress (Invitrogen,CA)或其它合適的染色方法(即SYPRO紅寶石色或考馬斯染色)進行銀染色。在一具體實施例中,可藉由定量即時PCR (Q-PCR)測量管柱濾分中的AAV載體基因體(vg)的濃度。將樣品稀釋並用DNase I (或另一種合適的核酸酶)消化以去除外源性DNA。在核酸酶去活化後,使用引子和對引子之間的DNA序列具有特異性的TaqMan™螢光探針進一步稀釋和擴增樣品。在Applied Biosystems Prism 7700序列檢測系統上測量每種樣品達到定義的螢光水平所需的週期的數量(閾值週期,Ct)。含有與AAV載體中所含序列相同的序列的質體DNA用於在Q-PCR反應中產生標準曲線。從樣品獲得的週期閾值(Ct)的值用於藉由相對於質體標準曲線的Ct值對其進行標準化來確定載體基因體力價。亦可使用基於數位PCR的端點測定。
於一態樣,使用優化的q-PCR方法,其利用廣譜絲胺酸蛋白酶,例如蛋白酶K (諸如可從Qiagen商購獲得)。更具體而言,優化的qPCR基因體力價分析與標準分析相似,除了在DNase I消化之後,將樣品以蛋白酶K緩衝液稀釋並以蛋白酶K處理,然後加熱去活化。適當地,將樣品以等量於樣品大小的蛋白酶K緩衝液稀釋。蛋白酶K緩衝液可濃縮至2倍或更高。通常,蛋白酶K處理約為0.2 mg/mL,但可在0.1 mg/mL至約1 mg/mL之間變化。處理步驟通常在約55℃下進行約15分鐘,但可在較低溫度(例如,約37℃至約50℃)下進行較長一段時間(例如,約20分鐘至約30分鐘),或在較高溫度(例如,高至約60℃)下進行較短一段時間(例如,約5至10分鐘)。類似地,加熱去活化通常在約95℃下保持約15分鐘,但溫度可降低(例如,約70℃至約90℃)並延長時間(例如,約20分鐘至約30分鐘)。然後將樣品稀釋(例如,1000倍)並如標準分析中所述進行TaqMan分析。
另外或可替代地,可使用微滴數位化PCR(ddPCR)。例如,藉由ddPCR確定單股及自我互補AAV載體基因體力價的方法已被敘述。參見,例如,M. Lock et al, Hu Gene Therapy Methods, Hum. Gene Ther. Methods. 2014 Apr;25(2):115-25. Doi: 10.1089/hgtb.2013.131. Epub 2014 Feb 14。ddPCR方法直接測量包裹載體基因體的濃度。以DNase I處理樣品以消化樣品中存在的任何未包殼的DNA,然後以蛋白酶K處理來破壞衣殼。然後稀釋樣品至適合測定範圍。將樣品與ddPCR Supermix混合,並使用靶向對 PCSK9基因(M2PCSK9)特異性的巨型核酸酶的序列特異性引子組合對此同一區域雜交的螢光標記探針來完成檢測。在Bio-Rad液滴產生器中處理20微升ddPCR反應混合物,並將ddPCR反應混合物分成≥10,000個液滴。液滴生成後,ddPCR反應混合物進行PCR擴增,並使用Bio-Rad Droplet Reader讀取擴增的ddPCR反應混合物。
感染單位(IU)測定可用於確定rAAV載體在RC32細胞(表現rep2的HeLa細胞)中的生產性攝取和複製。採用與先前公開的類似的96孔端點格式。簡而言之,RC32細胞將被rAAV BDS的系列稀釋和Ad5的均勻稀釋共同感染,每個rAAV稀釋12次重複。感染後72小時,細胞將被裂解,並進行qPCR以檢測rAAV載體在輸入上的擴增。將進行終點稀釋50%組織培養感染劑量(TCID 50)計算(Spearman-Karber)以確定感染力價,以IU/mL表示。由於「感染性」值取決於每個顆粒與細胞的接觸、受體結合、內化、轉運到細胞核和基因體複製,因此它們受測定幾何形狀以及所用細胞株中存在的適當受體和結合後途徑的影響。受體和結合後途徑通常不保留在永生化細胞株中,因此感染性測定力價不是存在的「感染性」顆粒數量的絕對量度。然而,包裹的GC與「感染單位」的比率(描述為GC/IU比率)可用作衡量批次間產品一致性的指標。
簡而言之,將具有包裝基因體序列的rAAV顆粒與基因體缺陷型AAV中間體分離的方法包括對包含重組AAV病毒顆粒和AAV衣殼中間體的懸浮液進行快速高效液相層析,其中AAV病毒顆粒和AAV中間體與在高pH平衡的強陰離子交換樹脂結合,AAV病毒顆粒和AAV中間體與在高pH平衡的強陰離子交換樹脂結合,並經受鹽梯度,同時監測洗提液在約260和約280處的紫外線吸光度。可取決於選定的AAV調整pH值。參見,例如,WO2017/160360 (AAV9)、WO2017/100704 (AAVrh10)、WO 2017/100676 (例如,AAV8)、及WO 2017/100674 (AAV1)],其藉由引用而併入本文。在此方法中,當A260/A280的比值達到轉折點時,從洗提的濾分中收集AAV全衣殼。在一個實例中,對於親和層析步驟,滲濾後的產物可應用於有效捕獲AAV2血清型的Capture Select TMPoros-AVV2/9親和樹脂(Life Technologies)。在這些離子條件下,顯著比例的殘留細胞DNA和蛋白質流過管柱,而AAV顆粒被有效捕獲。
[ 雙重載體系統 ]在另一態樣中,提供用於治療遺傳疾病的雙重載體系統。該系統包括:(a)基因編輯組分,其包括編碼靶向PCSK9之核酸酶的核酸序列及可選擇地指導該核酸酶在包含PCSK9基因之標靶細胞中表現的調控序列;及(b)供體載體,其包含編碼用於從PCSK9基因座表現的外源產物的核酸序列,其中該插入的核酸序列並不編碼PCSK9,且其中該系統進一步包含指導該核酸酶特異性靶向天然PCSK9基因座的序列。該系統可選擇地包含允許標靶細胞中的天然PCSK9在用雙載體系統給藥後被消融或減少的組分,例如,經由使用具有誘導型啟動子的誘導劑。在一個具體實施例,基因編輯組分包含於含有表現匣之基因編輯載體中,該表現匣包含編碼核酸酶之核酸序列及指導該核酸酶在包含PCSK9基因之標靶細胞中表現的調控序列。雙重載體之組分如本文所述。
雖然如果基因編輯組分與供體載體的比率為約1比約1,則該系統可能是有效的,但希望供體模板載體的存在量超過基因編輯組分。在一具體實施例中,編輯載體(a)與供體載體(b)的比例為約1:3至約1:100,或約1:10。基因編輯酶(例如,Cas9或巨型核酸酶)與供體模板的這種比例可被保持,即使該酶是由AAV載體以外的來源額外或替代地提供的。
在一具體實施例中,雙重載體系統包括:包含AAV衣殼及第一載體基因體的基因編輯AAV載體,該第一載體基因體包含5’ ITR、編碼在調節序列控制下靶向PCSK9的巨型核酸酶的序列(該調控序列指導該巨型核酸酶在包含PCSK9基因之標靶細胞中的表現)、及3’ ITR;及(b)包含AAV衣殼及第二載體基因體之供體AAV載體,其該第二載體基因體包含:5’ITR、5’同源定向重組(HDR)臂、轉基因及指導轉基因在標靶細胞中之表現的調控序列、3’ HDR臂、及3’ ITR。
在另一具體實施例中,雙重載體系統包括:包含AAV衣殼及第一載體基因體的基因編輯AAV,該第一載體基因體包含5’ ITR、5’核定位訊號(NLS)、編碼Cas9之序列及指導SaCas9在包含PCSK9基因之標靶細胞中表現的調控序列、3’ NLS、及3’ ITR;及包含AAV衣殼及第二載體基因體供體AAV載體,該第二載體基因體包含:5’ITR、5’同源定向重組(HDR)臂、轉基因及指導轉基因在標靶細胞中之表現的調控序列、3’ HDR臂、U6啟動子、包含至少20個核苷酸的sgRNA (其特異性結合PCSK9基因中之標靶位點,該標靶位點位於被Cas9特異性識別的前間隔序列相鄰基序(PAM)的5’處)、及3’ ITR。
在另一具體實施例中,雙重載體系統包括:包含AAV衣殼及第一載體基因體的基因編輯AAV載體,該第一載體基因體包含5’ ITR、U6啟動子、包含至少20個核苷酸之sgRNA (其特異性結合PCSK9基因中的標靶位點,該標靶位點位於被Cas9特異性識別的前間隔序列相鄰基序(PAM)的5’處)、5’核定位訊號(NLS)、編碼Cas9之序列及指導Cas9在包含PCSK9基因之標靶細胞中表現的調控序列、3’ NLS、及3’ ITR;及包含AAV衣殼及第二載體基因體之供體AAV載體,該第二載體基因體包含:5’ITR、5’同源定向重組(HDR)臂、轉基因及指導轉基因在標靶細胞中之表現的調控序列、3’ HDR臂、及3’ ITR。
在本文所述之系統的某些具體實施例中,基因編輯AAV載體及供體AAV載體的基因具有相同的AAV衣殼。在其它具體實施例中,編輯AAV載體及供體AAV載體的基因具有不同AAV衣殼。在一些具體實施例中,AAV衣殼選自AAV8、AAV9、rh10、AAV6.2、AAV3B、hu37、rh79及rh64。
在某些具體實施例中,核酸酶為Cas9核酸酶,且該Cas9選自金黃色葡萄球菌Cas9或釀膿鏈球菌Cas9。
在某些具體實施例中,核酸酶及/或轉基因受組織特異性啟動子的控制。在某些具體實施例中,核酸酶及/或轉基因受組成型啟動子的控制。在某些具體實施例中,核酸酶及/或轉基因受誘導型啟動子的控制。在某些具體實施例中,核酸酶及/或轉基因受肝特異性啟動子、可選擇地人類甲狀腺素結合球蛋(TBG)啟動子、或雜交肝啟動子(HLP)的控制。在某些具體實施例中,系統進一步包含誘導劑。
在另一具體實施例中,該系統包括:(a)基因編輯組分,其包括編碼靶向PCSK9之核酸酶的核酸序列及指導該核酸酶在標靶細胞中表現的調控序列,該標靶細胞包含包封於LNP中的PCSK9基因;及(b)供體載體,其包含編碼用於從包封於LNP中之PCSK9基因座表現外源產物的核酸序列,其中該插入的核酸序列並不編碼PCSK9,且其中該系統進一步包含指導該核酸酶特異性靶向天然PCSK9基因座的序列。該系統可選擇地包含允許標靶細胞中的天然PCSK9在以雙載體系統給藥後被消融或減少的組分,例如,經由使用具有誘導型啟動子的誘導劑。
在另一具體實施例中,系統包括:(a)基因編輯組分,其包括編碼靶向PCSK9之核酸酶的核酸序列及指導該核酸酶在包含PCSK9基因之標靶細胞中表現的調控序列,其中該基因編輯組分經由AAV載體提供;及(b)供體載體,其包含編碼用於從包封於LNP中之PCSK9基因座表現外源產物的核酸序列,其中該插入的核酸序列並不編碼PCSK9,且其中該系統進一步包含指導核酸酶特異性地靶向天然PCSK9基因座的序列。該系統可選擇地包含允許標靶細胞中的天然PCSK9在用雙載體系統給藥後被消融或減少的組分,例如,經由使用具有誘導型啟動子的誘導劑。
在另一具體實施例中,系統包括:(a)基因編輯組分,其包括編碼靶向PCSK9之核酸酶的核酸序列及指導該核酸酶在標靶細胞中表現的調控序列,該標靶細胞包含包封於LNP中的PCSK9基因;及(b)供體載體,其包含編碼用於從PCSK9基因座表現外源產物的核酸序列,其中該供體載體為AAV載體,其中該插入的核酸序列並不編碼PCSK9,且其中該系統進一步包含指導該核酸酶特異性靶向天然PCSK9基因座的序列。該系統可選擇地包含允許標靶細胞中的天然PCSK9在以雙載體系統給藥後被消融或減少的組分,例如,經由使用具有誘導型啟動子的誘導劑。
在一具體實施例中,雙重載體系統包括:(a) LNP,其包含編碼靶向PCSK9之巨型核酸酶的mRNA,該巨型核酸酶在調控序列控制下指導巨型核酸酶在包含PCSK9基因之標靶細胞中的表現;及(b)供體AAV載體,其包含AAV衣殼及第二載體基因體,該第二載體基因體包含:5’ ITR、5’同源定向重組(HDR)臂、轉基因及指導轉基因在標靶細胞中之表現的調控序列、3’ HDR臂、及3’ ITR。
在另一具體實施例中,雙重載體系統包括:(a) LNP,其包含包含編碼Cas9之序列的核酸及包含至少20個核苷酸的sgRNA (其特異性結合在PCSK9基因中的標靶位點,該標靶位點位於被Cas9特異性識別的前間隔序列相鄰基序(PAM)的5’處);及(b)供體AAV載體,其包含AAV衣殼及載體基因體,該載體基因體包含:5’ITR、5’同源定向重組(HDR)臂、轉基因及指導轉基因在標靶細胞中之表現的調控序列、3’ HDR臂、及3’ ITR。提供編碼Cas9之序列作為mRNA。
在另一具體實施例中,雙重載體系統包括:包含AAV衣殼及第一載體基因體的基因編輯AAV載體,該第一載體基因體包含5’ ITR、U6啟動子、包含至少20個核苷酸之sgRNA (其特異性結合至PCSK9基因中的標靶位點,該標靶位點位於被Cas9特異性識別的前間隔序列相鄰基序(PAM)的5’處)、5’核定位訊號(NLS)、編碼Cas9之序列及指導Cas9在包含PCSK9基因之標靶細胞中表現的調控序列、3’ NLS、及3’ ITR;及包含AAV衣殼及第二載體基因體之供體AAV載體,該第二載體基因體包含:5’ITR、5’同源定向重組(HDR)臂、轉基因及指導該轉基因在標靶細胞中表現的調控序列、3’ HDR臂、及3’ ITR。
醫藥組成物 在另一態樣中,提供一種醫藥組成物,其包含:第一rAAV儲料(stock),其包含rAAV基因編輯載體,該rAAV基因編輯載體包含表現匣,該表現匣包含編碼靶向PCSK9之核酸酶的核酸序列及指導該核酸酶在包含PCSK9基因之標靶細胞中表現的調控序列;及第二rAAV儲料,其包含rAAV供體載體,該rAAV供體載體包含轉基因匣,該轉基因匣包含編碼轉基因之核酸序列及指導轉基因在標靶細胞中表現的調控序列。醫藥組成物含有可選擇的載劑、賦形劑、及/或防腐劑。在一些具體實施例中,供體載體進一步包括轉基因匣之同源定向重組(HDR)臂5’及3’。在一具體實施例中,用於供體載體、基因編輯載體、或二者的AAV衣殼為AAVrh79衣殼。在另一具體實施例中,用於供體載體、基因編輯載體、或二者的AAV衣殼為AAVrh.90衣殼。在另一具體實施例中,用於供體載體、基因編輯載體、或二者的AAV衣殼為AAVhu.37衣殼。在一具體實施例中,用於供體載體、基因編輯載體、或二者的AAV衣殼為AAV8衣殼。在一具體實施例中,用於供體載體、基因編輯載體、或二者的AAV衣殼為AAVrh.91衣殼。在一具體實施例中,用於供體載體、基因編輯載體、或二者的AAV衣殼為AAVhu.68衣殼。
如本文所使用,「載劑」包括任何及所有的溶劑、分散介質、媒劑、塗料、稀釋劑、抗細菌及抗真菌劑、等滲及吸收延遲劑、緩衝劑、載劑溶液、懸浮液、膠體等。此類用於醫藥活性物質的介質及試劑的用途為技術領域中所熟知的。補充活性成分亦可摻入組成物中。短語「醫藥上可接受的」係指當投予宿主時不會產生過敏或類似不良反應的分子實體及組成物。遞送媒劑,諸如脂質體、奈米膠囊、微粒、微球、脂質顆粒、囊泡等可用於將本發明之組成物導入適當的宿主細胞中。特別是,可將rAAV載體遞送載體基因體調配用於遞送包封在脂質顆粒、脂質體、囊泡、奈米球或奈米顆粒等之中。
在一具體實施例中,組成物包括適於遞送至受試者的最終調配物,例如,為緩衝至生理學上可相容的pH及鹽濃度的水性液體懸浮劑。可選擇地,一或多種界面活性劑可存在於調配物中。在另一具體實施例中,組成物可作為濃縮物輸送,將其稀釋後投予受試者。在另一具體實施例中,組成物可被凍乾並在投予時重構(reconstituted)。
本領域熟知的用於製備調配物的方法和試劑已被描述,例如,描述在“Remington's Pharmaceutical Sciences,” Mack Publishing Company, Easton, Pa。調配物可例如含有賦形劑、載劑、穩定劑、或稀釋劑,諸如無菌水、鹽水、聚伸烷基二醇(諸如聚乙二醇)、植物油、或氫化萘、防腐劑(諸如十八烷基二甲基芐基、氯化銨、六甲氯銨(hexamethonium chloride)、氯化烷基二甲基苄基銨(benzalkonium chloride)、氯化苯索寧(benzethonium chloride)、苯酚、丁醇或芐醇、對羥基苯甲酸烷酯(諸如對羥基苯甲酸甲酯或羥基苯甲酸丙酯)、兒茶酚、間苯二酚、環己醇、3-戊醇和間甲酚)、低分子量多肽、蛋白質(諸如血清白蛋白、明膠或免疫球蛋白)、親水聚合物(諸如聚乙烯吡咯啶酮、胺基酸(諸如甘胺酸、麩醯胺酸、天冬醯胺酸、組胺酸、精胺酸及離胺酸)、單醣、二糖、及其它碳水化合物,包括葡萄糖、甘露糖、及糊精、螯合劑(諸如EDTA)、糖類(諸如蔗糖、甘露醇、海藻糖或山梨糖醇;成鹽反離子,諸如鈉;金屬複合物(例如鋅-蛋白質複合物);及/或非離子界面活性劑,諸如TWEEN™、PLURONICS™或聚乙二醇(PEG)。
活性成分亦可包埋於微膠囊中,例如藉由凝聚技術或藉由界面聚合製備,例如,分別在膠體藥物遞送系統(例如,脂質體、白蛋白微球、微乳液、奈米顆粒和奈米膠囊)或粗滴乳液中的羥甲基纖維素或明膠-微膠囊和聚-(甲基丙烯酸甲酯)微膠囊。此類技術揭示於Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)。
合適的界面活性劑或界面活性劑的組合可選自無毒的非離子界面活性劑。在一具體實施例中,選擇終止於一級羥基的雙官能嵌段共聚物界面活性劑,諸如Pluronic® F68 [BASF],亦稱為泊洛沙姆(Poloxamer) 188,其具有中性pH,平均分子量為8400。可選擇其它界面活性劑和其它泊洛沙姆,即由兩側是兩個聚氧乙烯(聚(環氧乙烷))親水鏈的聚氧丙烯(聚(環氧丙烷))中央疏水鏈所構成的非離子三嵌段共聚物、SOLUTOL HS 15 (聚乙烯二醇-15 (Macrogol-15)羥基硬脂酸酯)、LABRASOL (聚氧基辛基甘油酯(Polyoxy capryllic glyceride))、聚氧基10油基醚、TWEEN(聚氧乙烯山梨聚糖脂肪酸酯)、乙醇和聚乙二醇。在一具體實施例中,調配物包含泊洛沙姆。這些共聚物通常用字母「P」(對泊洛沙姆)跟三個數字命名:前兩個數字x100給出聚氧丙烯核心的近似分子量,最後一個數字x10給出聚氧乙烯含量百分比。在一個具體實施例中,選擇泊洛沙姆188。界面活性劑可以以懸浮液的高達約0.0005%至約0.001%的量存在。
以足夠的量將載體投予以轉染細胞並提供足夠程度的基因轉移和表現,以提供治療益處而沒有不適當的副作用,或具有醫學上可接受的生理作用,這可由醫學領域的技術人員確定。習知和醫藥上可接受的給藥途徑包括,但不限於直接遞送至所需的器官(例如,肝臟(可選擇地經由肝動脈)、肺臟、心臟、眼、腎臟)、經口、吸入、鼻內、鞘內、氣管內、動脈內、眼內、靜脈內、肌肉內、皮下、皮內和其它親代給藥途徑。如果需要,可以組合給藥途徑。
病毒載體的劑量可取決於例如所欲治療的症狀、患者的年齡、體重和健康等因素,因此可能因患者而異。例如,病毒載體的治療有效人類劑量範圍通常為約25至約1000微升至約100 mL含約1 x 10 9至1 x 10 16基因體病毒載體濃度的溶液。調整劑量以平衡治療益處與任何副作用,並且此類劑量可以根據使用重組載體的治療應用而變化。可監測轉基因產物的表現程度以確定產生病毒載體(較佳為含有袖珍基因之AAV載體)的給藥頻率。可選擇地,類似於為治療目的而描述的那些劑量方案可用於使用本發明的組成物進行免疫。
可將載體組成物配製成劑量單位以包含在約1.0 x 10 9GC至約1.0 x 10 16GC範圍內的複製缺陷型病毒的量(以治療平均體重為70 kg的受試者),包括在該範圍內的所有整數或部分量,並且對於人類患者較佳為1.0 x 10 12GC至1.0 x 10 14GC。在一具體實施例中,組成物被調配成每劑量含有至少1x10 9、2x10 9、3x10 9、4x10 9、5x10 9、6x10 9、7x10 9、8x10 9、或9x10 9GC,包括在該範圍內的所有整數或分數量。在另一具體實施例中,組成物被調配成每劑量含有至少1x10 10、2x10 10、3x10 10、4x10 10、5x10 10、6x10 10、7x10 10、8x10 10、或9x10 10GC,包括在該範圍內的所有整數或分數量。在另一具體實施例中,組成物被調配成每劑量含有至少1x10 11、2x10 11、3x10 11、4x10 11、5x10 11、6x10 11、7x10 11、8x10 11、或9x10 11GC,包括在該範圍內的所有整數或分數量。在另一具體實施例中,組成物被調配成每劑量含有至少1x10 12、2x10 12、3x10 12、4x10 12、5x10 12、6x10 12、7x10 12、8x10 12、或9x10 12GC,包括在該範圍內的所有整數或分數量。在另一具體實施例中,組成物被調配成每劑量含有至少1x10 13、2x10 13、3x10 13、4x10 13、5x10 13、6x10 13、7x10 13、8x10 13、或9x10 13GC,包括在該範圍內的所有整數或分數量。在另一具體實施例中,組成物被調配成每劑量含有至少1x10 14、2x10 14、3x10 14、4x10 14、5x10 14、6x10 14、7x10 14、8x10 14、或9x10 14GC,包括在該範圍內的所有整數或分數量。在另一具體實施例中,組成物被調配成每劑量含有至少1x10 15、2x10 15、3x10 15、4x10 15、5x10 15、6x10 15、7x10 15、8x10 15、或9x10 15GC,包括在該範圍內的所有整數或分數量。在一具體實施例中,對於人類施用,劑量可在範圍為每劑量1x10 10至約1x10 12GC,包括在該範圍內的所有整數或分數量。
依據待治療區域的大小、使用的病毒力價、給藥途徑和方法的預期效果,這些上述劑量可以各種體積的載劑、賦形劑或緩衝劑調配物給藥,範圍從約25至約1000微升,或更高的體積,包括在該範圍內的所有數量。
可選擇任何合適的給藥路徑。因此,醫藥組成物可調配用於任何合適的給藥路徑,例如,液體溶液或懸浮液形式(作為例如用於靜脈投予、經口投予等)。或者,醫藥組成物可為固體形式(例如,錠劑或膠囊形式,例如用於經口投予)。在一些具體實施例中,醫藥組成物可為粉末、滴劑、氣溶膠等形式。
於一態樣,本文提供一種在調配物緩衝劑中包含微小病毒載體的藥物組成物,該微小病毒載體包含如本文所述的至少一種基因編輯載體及至少一種供體載體。在某些具體實施例中,醫藥組成物包含不同載體群的組合。在一具體實施例中,提供了在調配物緩衝劑中包含本文所述的單一rAAV群的醫藥組成物。本文提供的方法提供兩種單獨的含載體之懸浮液的共同給藥。
方法 本文所提供之組成物用於治療各種遺傳疾病,包括肝臟代謝性病症。在某些具體實施例中,組成物用於治療鳥胺酸胺甲醯基轉移酶。在其它具體實施例中,組成物用於治療家族性高膽固醇血症。在其它具體實施例中,組成物用於治療苯丙酮尿症。
可被治療的例示性肝臟疾病或病症包括,但不限於A型肝炎、B型肝炎、C型肝炎、自體免疫性肝炎、原發性膽汁性膽管炎、原發性硬化性膽管炎、血色素沉積症、威爾遜氏病(Wilson’s disease)、α-1抗胰蛋白酶缺乏症、肝癌、膽管癌、肝腺瘤、轉甲狀腺素蛋白(TTR)、前蛋白轉化酶枯草桿菌蛋白酶/kexin 9型(PCSK9)系疾病或病症,或其任何組合。其它病症包括糖原貯積病或1A型缺乏症 (GSD1)、PEPCK缺乏症、CDKL5缺乏症、半乳糖血症、苯丙酮尿症(PKU)、1型原發性高草酸鹽尿症、楓糖尿症,1型酪胺酸血症、甲基丙二酸血症、中鏈乙醯輔酶A缺乏症,鳥胺酸胺甲醯基轉移酶缺乏症、瓜胺酸血症;卵燐脂-膽固醇醯基轉移酶(LCAT)缺乏症、甲基丙二酸酸血症(MMA)、尼曼匹克症、丙酸血症(PA);家族性高膽固醇血症(FH)、失智、脂蛋白脂肪酶缺乏症、克果納傑氏症、嚴重複合型免疫缺乏症、痛風及萊施-尼漢二氏症候群、生物素酶缺乏症、法布瑞氏症、GM1神經節醣苷病、威爾森氏症、2型及3型高歇氏病、齊威格氏症、異染性白質失養症、克拉培氏病、龐貝氏症、A型尼曼匹克症、精胺酸琥珀酸尿症、成人發病II型瓜胺酸血症、尿素循環病症;法伯脂肪肉芽腫病、天冬醯胺基胺基葡萄糖尿症、岩藻糖沉積症、α-甘露糖沉積症、急性間歇性紫質沈著病(AIP)、α-1抗胰蛋白酶缺乏症(肺氣腫)、由地中海貧血或腎功能衰竭引起的貧血、缺血性疾病、如動脈粥樣硬化、血栓形成或栓塞中所見的血管閉塞、帕金森氏病、充血性心衰竭、肌肉萎縮症、及糖尿病。
在本文所述的某些方法中,天然PCSK9表現被降低或消融,且轉基因從天然PCSK9基因座中的插入表現。在另一具體實施例中,天然PCSK9表現被降低或消融,且轉基因是外源表現的,即沒有整合至受試者的基因體中。
本文提供一種藉由共同投予本文所述之雙重載體系統來治療人類疾病的方法。
在一具體實施例中,提供在受試者中治療肝臟代謝性病症的方法。該方法包括對患有肝臟代謝性病症之受試者共同投予:基因編輯AAV載體,該基因編輯AAV載體包含編碼靶向PCSK9之核酸酶的序列及指導該核酸酶在包含PCSK9基因之標靶細胞中表現的調控序列;及供體AAV載體,其包含轉基因及指導轉基因在標靶細胞中之表現的調控序列。在另一具體實施例中,該方法包括對患有肝臟代謝性病症之受試者共同投予LNP,該LNP包含編碼Cas9核酸酶及sgRNA之序列,其靶向包含PCSK9基因之標靶細胞中的PCSK9;及供體AAV載體,其包含轉基因及指導該轉基因在標靶細胞中表現的調控序列。在一具體實施例中,受試者為新生兒。
在某些具體實施例中,基因編輯AAV載體及供體載體經由相同路徑基本上同時遞送。在其它具體實施例中,先遞送基因編輯載體。在其它具體實施例中,先遞送供體載體。
在一具體實施例中,rAAV之劑量為每劑量約1 x 10 9GC至約1 x 10 15基因體拷貝(GC)(治療平均體重70 kg的受試者),且較佳為對於人類病患為1.0 x 10 12GC至2.0 x 10 15GC。在另一具體實施例中,劑量少於約1 x 10 14GC/kg受試者體重。在某些具體實施例中,投予病患的劑量為至少約1.0 x 10 9GC/kg、約1.5 x 10 9GC/kg、約2.0 x 10 9GC/g、約2.5 x 10 9GC/kg、約3.0 x 10 9GC/kg、約3.5 x 10 9GC/kg、約4.0 x 10 9GC/kg、約4.5 x 10 9GC/kg、約5.0 x 10 9GC/kg、約5.5 x 10 9GC/kg、約6.0 x 10 9GC/kg、約6.5 x 10 9GC/kg、約7.0 x 10 9GC/kg、約7.5 x 10 9GC/kg、約8.0 x 10 9GC/kg、約8.5 x 10 9GC/kg、約9.0 x 10 9GC/kg、約9.5 x 10 9GC/kg、約1.0 x 10 10GC/kg、約1.5 x 10 10GC/kg、約2.0 x 10 10GC/kg、約2.5 x 10 10GC/kg、約3.0 x 10 10GC/kg、約3.5 x 10 10GC/kg、約4.0 x 10 10GC/kg、約4.5 x 10 10GC/kg、約5.0 x 10 10GC/kg、約5.5 x 10 10GC/kg、約6.0 x 10 10GC/kg、約6.5 x 10 10GC/kg、約7.0 x 10 10GC/kg、約7.5 x 10 10GC/kg、約8.0 x 10 10GC/kg、約8.5 x 10 10GC/kg、約9.0 x 10 10GC/kg、約9.5 x 10 10GC/kg、約1.0 x 10 11GC/kg、約1.5 x 10 11GC/kg、約2.0 x 10 11GC/kg、約2.5 x 10 11GC/kg、約3.0 x 10 11GC/kg、約3.5 x 10 11GC/kg、約4.0 x 10 11GC/kg、約4.5 x 10 11GC/kg、約5.0 x 10 11GC/kg、約5.5 x 10 11GC/kg、約6.0 x 10 11GC/kg、約6.5 x 10 11GC/kg、約7.0 x 10 11GC/kg、約7.5 x 10 11GC/kg、約8.0 x 10 11GC/kg、約8.5 x 10 11GC/kg、約9.0 x 10 11GC/kg、約9.5 x 10 11GC/kg、約1.0 x 10 12GC/kg、約1.5 x 10 12GC/kg、約2.0 x 10 12GC/kg、約2.5 x 10 12GC/kg、約3.0 x 10 12GC/kg、約3.5 x 10 12GC/kg、約4.0 x 10 12GC/kg、約4.5 x 10 12GC/kg、約5.0 x 10 12GC/kg、約5.5 x 10 12GC/kg、約6.0 x 10 12GC/kg、約6.5 x 10 12GC/kg、約7.0 x 10 12GC/kg、約7.5 x 10 12GC/kg、約8.0 x 10 12GC/kg、約8.5 x 10 12GC/kg、約9.0 x 10 12GC/kg、約9.5 x 10 12GC/kg、約1.0 x 10 13GC/kg、約1.5 x 10 13GC/kg、約2.0 x 10 13GC/kg、約2.5 x 10 13GC/kg、約3.0 x 10 13GC/kg、約3.5 x 10 13GC/kg、約4.0 x 10 13GC/kg、約4.5 x 10 13GC/kg、約5.0 x 10 13GC/kg、約5.5 x 10 13GC/kg、約6.0 x 10 13GC/kg、約6.5 x 10 13GC/kg、約7.0 x 10 13GC/kg、約7.5 x 10 13GC/kg、約8.0 x 10 13GC/kg、約8.5 x 10 13GC/kg、約9.0 x 10 13GC/kg、約9.5 x 10 13GC/kg、或約1.0 x 10 14GC/kg受試者體重。
可使用本文所述之組成物治療的合適疾病的其它實例是家族性高膽固醇血症、肌營養不良、囊性纖維化及罕見疾病或孤兒疾病罕見或孤兒疾病。此類罕見疾病的實例可包括脊髓肌萎縮症、亨廷頓氏病、雷特症候群、肌肉萎縮性脊髓側索硬化症(ALS)、杜氏型肌營養不良症、弗里德希氏共濟失調、2型脊髓小腦性失調症(SCA2)/ALS、顆粒蛋白前體(PRGN)(與非阿茨海默氏症腦退化相關,包括額顳葉失智症(FTD)、進行性非流利性失語症(PNFA)及語義性失智)等。參見,例如,www.orpha.net/consor/cgi-bin/Disease_Search_List.php;rarediseases.info.nih.gov/diseases。由本文所述的轉基因指導的其它疾病亦可使用本文所述的方法治療。
以足夠的投予載體來轉染細胞並提供足夠程度的基因轉移和表現以提供治療益處而沒有過度的副作用,或具有醫學上可接受的生理效應,這可以由醫學領域的技術人員確定。理想的給藥途徑包括直接遞送至所需的器官(例如,肝臟(可選擇地經由肝動脈)、肺臟、心臟、眼、腎臟)、經口、吸入、鼻內、氣管內鞘内、動脈內、眼內、靜脈內、肌肉內、皮下、皮內和其它親代給藥途徑。如果需要,可以組合給藥途徑。
如果產生足夠量的功能性酶或蛋白質以改善患者的狀況,則本文所述的系統可對治療有用。在某些具體實施例中,低至5%的健康患者的基因表現水平將為患者提供足夠的治療效果,從而可以用非基因治療方法進行治療。在其它具體實施例中,基因表現水平為在人類(或其它獸類受試者)中觀察到的正常範圍(水平)的至少約5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、至高達100%。例如,「功能性酶」意指編碼野生型酶(例如OTCase)的基因,其提供野生型酶或其與疾病無關之天然變體或多晶型物的至少約5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、或約相同、或大於100%的生物活性水平。更具體地,由於雜合子病患可能具有低至約50%或更低的酶功能水平,因此有效治療可能不需要將酶活性替換至「正常」或非缺陷病患範圍內的水平。類似地,無可檢測量的酶的病患可藉由將酶功能遞送至低於100%的活性水平來挽救,並可選擇地隨後接受進一步的治療。在某些具體實施例中,在藉由供體模板遞送基因功能的情況下,病患的表達水平可高於「正常」、健康受試者中的水平。在另外其它實施方式中,在需要降低基因表現的情況下,降低多達20%至50%,或多達約100%,可提供所需的益處。如本文所述,本文所述的治療可與其它治療結合使用,即用於受試者(病患)診斷的護理標準。
在一具體實施例中,該方法進一步包含向受試者投予免疫抑制聯合療法。此類免疫抑制聯合療法可在遞送rAAV或所揭示之組成物之前開始,例如,如果檢測到AAV衣殼的中和抗體水平過高。在某些具體實施例中,作為預防措施,也可以在遞送rAAV之前開始聯合治療。在某些具體實施例中,免疫抑制聯合療法在rAAV遞送後開始,例如,如果在治療後觀察到不希望的免疫反應。
用於此類聯合療法的免疫抑制劑包括,但不限於糖皮質素、類固醇、抗代謝物、T細胞抑制劑、巨環內酯(例如,雷帕黴素(rapamycin)或雷帕黴素類似物)、及細胞抑制劑,包括烷化劑、抗代謝物、細胞毒性抗生素、抗體或對免疫親和素有活性之藥劑。免疫抑制劑可包括腎上腺皮質酮(prednisolone)、氮芥(nitrogen mustard)、亞硝脲(nitrosourea)、鉑化合物、胺甲喋呤(methotrexate)、硫唑嘌呤(azathioprine)、巰嘌呤(mercaptopurine)、氟尿嘧啶(fluorouracil)、放線菌素(dactinomycin)、蒽環類(anthracycline)、絲裂黴素C(mitomycin C)、博來黴素(bleomycin)、光輝黴素(mithramycin)、IL-受體-(CD25-)或CD3-導向的抗體、抗IL-2抗體、環孢素(ciclosporin)、他克莫司(tacrolimus)、西羅莫司(sirolimus)、IFN-β、IFN-γ、類鴉片(opioid)、或TNF-α(腫瘤壞死因子-α)結合劑。在某些具體實施例中,可在rAAV投予之前的0、1、2、7天或更多天或在rAAV投予之後的0、1、2、3、7或更多天開始免疫抑制治療。此類治療可涉單一藥劑(例如,腎上腺皮質酮)及在同一天共同投予二種或多種藥物(例如,強體松(prednelisone)、嗎替麥考酚酯(micophenolate mofetil,MMF)及/或西羅莫司(即,雷帕黴素))。於基因治療給藥後能以相同劑量或調整劑量繼續使用一種或多種這些藥物。此類療法可根據需要持續約1週(7天)、兩週、三週、約60天或更長。在某些具體實施例中,選擇不含他克莫司的方案。
在另一具體實施例中,該方法包括與標準OTC療法共同治療。OTC缺乏症的治療主要集中在血氨水平的飲食管理上,以避免高氨血症或在高氨血症發作期間從血液中去除過量的氨(NORD, 2021)。患有OTC缺乏症的個體遵循飲食限制,限制他們的蛋白質攝取量以控制血氨水平。嬰兒的飲食限制必須仔細平衡,他們需要攝入足夠的蛋白質以確保正常生長,同時避免可能引發高氨血症發作的過量蛋白質攝取(Berry and Steiner, 2001)。因此,嬰兒著重高熱量、低蛋白質的飲食,並輔以必需胺基酸。在高氨血症發作中,可在24小時內從患者的飲食中去除所有蛋白質(NORD, 2021)。
有幾種藥物被設計來刺激從血流中去除氮。苯基丁酸鈉(Buphenyl)被美國食品藥物管理局(FDA)批准用於治療OTC缺乏症病患的慢性高氨血症。一旦代謝,Buphenyl轉化為苯乙酸鹽,它與麩醯胺酸結合形成苯基乙醯基麩醯胺酸,由腎臟排泄,為氮排泄提供了替代途徑。苯丁酸甘油(glycerol phenylbutyrate)(Ravicti)亦被FDA批准用於治療患有尿素循環病症之病患的慢性高氨血症。如同Buphenyl,Ravicti被轉化為苯乙酸鹽,並遵循相同的排泄氮的機制(Lichter-Konecki et al., 1993;Gordon, 2003;Magellan, 2021)。最後,Ammonul(苯乙酸鈉和苯甲酸鈉)被FDA批准作為治療患有尿素循環病症之病患的急性高氨血症的輔助療法。Ammonul的苯乙酸鈉成分遵循與Buphenyl和Ravicti產生的苯乙酸鹽代謝物相同的氮排泄機制。Ammonul的苯甲酸鈉成分與甘胺酸結合形成馬尿酸,馬尿酸由腎臟排出並通過此過程去除氮。苯甲酸鈉亦可以口服製劑提供用於長期維持OTC缺乏症,並且因為被認為具有較少的副作用而通常優於Buphenyl和Ravicti (Lichter-Konecki et al., 1993)。
於一態樣,提供治療患有鳥胺酸胺甲醯基轉移酶(OTC)缺乏症之病患的方法,其使用包含巨型核酸酶編碼序列之核酸酶表現匣,其在如本文所述之啟動子的控制下識別人類PCSK9基因內的位點。該方法進一步包括投予攜帶SEQ ID NO: 17之OTC轉基因、或與其共享至少90%同一性之序列的表現匣,如本文所述。此類表現匣可經由病毒或非病毒載體遞送。在某些具體實施例中,該表現匣可使用LNP遞送。天然人類OTC編碼序列顯示於SEQ ID NO: 30。SEQ ID NO: 17與SEQ ID NO: 30共享約75.89%同一性。
在另一態樣中,提供治療患有鳥胺酸胺甲醯基轉移酶(OTC)缺乏症之病患的方法,其使用包含sgRNA及Cas9編碼序列的核酸酶表現匣,其識別人類PCSK9基因內的位點。該方法進一步包括投予攜帶SEQ ID NO: 17之OTC轉基因、或與其共享至少90%同一性之序列的表現匣,如本文所述。此類表現匣可經由病毒或非病毒載體遞送。在某些具體實施例中,該表現匣可使用LNP遞送。
存在多種用於測量體外OTC表現和活性水平的測定法。參見,例如,X Ye, et al, 1996 Prolonged metabolic correction in adult ornithine transcarbamylase-deficient mice with adenoviral vectors. J Biol Chem 271:3639–3646)或體內。例如,OTC酶活性可使用液相層析質譜穩定同位素稀釋法檢測標準化為[1,2,3,4,5-13C5]瓜胺酸(98% 13C)的瓜胺酸的形成。該方法從先前開發的用於檢測N-乙醯麩胺酸鹽合成酶活性的測定法調整[Morizono H, et al, Mammalian N-acetylglutamate synthase. Mol Genet Metab. 2004;81(Suppl 1):S4–11.]。將新鮮冷凍肝臟切片稱重並在含有10 mM HEPES、0.5% Triton X-100、2.0 mM EDTA和0.5 mM DTT的緩衝劑中簡單地勻漿。調整勻漿緩衝劑的體積以獲得50 mg/ml組織。使用含250 μg肝組織之50 mM Tris-乙酸鹽、4 mM鳥胺酸、5 mM胺甲醯磷酸鹽,在pH 8.3中測量酶活性。加入新鮮製備的溶於50 mM Tris-乙酸鹽pH 8.3中的50 mM胺甲醯磷酸鹽開始酶活性,使其在25°C下進行5分鐘,並藉由加入等體積的含5 mM 13C5-瓜胺酸之30%TCA來淬滅。藉由5分鐘的微量離心分離碎片,並將上清液轉移到小瓶中用於質譜分析。在等度條件下將10 μL樣品注入Agilent 1100 系列LC-MS,流動相為93%溶劑A (含1 ml三氟乙酸之1 L水):7%溶劑B (含1 ml三氟乙酸之1L的1:9 水/乙腈)。將對應於瓜胺酸之峰[176.1質荷比(m/z)]及13C5-瓜胺酸(181.1 m/z)量化,並將它們的比率與每次測定運行的瓜胺酸標準曲線獲得的比率進行比較。將樣品標準化為總肝臟組織或使用Bio-Rad蛋白質測定套組(Bio-Rad, Hercules, CA)測定的蛋白質濃度。亦可使用不需要肝臟生檢的其它測定。一種此類測定是血漿胺基酸測定,其中評估麩醯胺酸與瓜胺酸的比例,如果麩醯胺酸高(>800 微升/升)而瓜胺酸低(例如,個位數),懷疑是尿素循環缺陷。可測量血漿氨水平,每升約100微莫耳的濃度表示OTCD。如果病患過度換氣,則可以評估血中氣體;呼吸性鹼中毒在OTCD中很常見。尿液中的乳清酸(Orotic acid),例如每毫莫耳肌酸大於約20微莫耳,是OTCD的指徵,在異嘌呤醇激發試驗後尿乳清酸鹽升高也是如此。OTCD的診斷標準已被提出於Tuchman et al, 2008, Urea Cycle Disorders Consortium (UCDC) of the Rare Disease Clinical Research Network (RDCRN)、Tuchman M, et al., Consortium of the Rare Diseases Clinical Research Network. Cross-sectional multicenter study of patients with urea cycle disorders in the United States. Mol Genet Metab. 2008;94:397–402,其藉由引用併入本文。亦可參見http://www.ncbi.nlm.nih.gov/books/NBK154378/,其討論了目前OTCD的護理標準。
在某些具體實施例中,如本文所述,可投予醫藥組成物中的核酸酶表現匣、非病毒載體、病毒載體(例如,rAAV)或任何相同的載體用於病患的基因編輯。在某些具體實施例中,該方法有用於非胚胎的基因編輯。在某些具體實施例中,病患為嬰兒(例如,從出生至約9個月)。在某些具體實施例中,病患年齡大於嬰兒,例如,12月或更大。
如本文所使用,「一」、「一種」或「該」可意指一種或大於一種。例如,「一種」細胞可意指單一細胞或多個細胞。
如本文所使用,術語「特異性」意指核酸酶僅在稱為識別序列之鹼基對的特定序列處或僅在特定的一組識別序列處識別和切割雙股DNA分子的能力。該組識別序列將共享某些保留位置或序列基序,但可在一個或多個位置簡併。高度特異性的核酸酶只能切割一個或很少的識別序列。特異性可藉由本領域已知的任何方法確定。
縮寫「sc」係指自我互補。「自我互補的AAV」係指其中已經設計由重組AAV核酸序列攜帶的編碼區以形成分子內雙股DNA模板的構建體。感染後,並非等待細胞媒介的第二股的合成,而是scAAV的兩個互補半部將結合形成一個準備立即複製及轉錄的雙股DNA(dsDNA)單元。參見,例如,D M McCarty et al, “Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis”, Gene Therapy, (August 2001), Vol 8, Number 16, Pages 1248-1254。自我互補AAV描述於例如,美國專利號6,596,535;7,125,717;及7,456,683,其每一者藉由引用整體併入本文。
如本文中所使用,術語「可操作地連接」係指相鄰於目的基因的表現控制序列及反向或在遠距離起作用以控制目的基因的表現控制序列二者。
用於描述核酸序列或蛋白質的術語「外源性」意指核酸或蛋白質並非天然存在於其在染色體或宿主細胞中所存在的位置。外源核酸序列亦指源自並插入相同表現匣或宿主細胞中的序列,但其以非天然狀態存在,例如不同拷貝數,或在不同調控元件的控制下。
當涉及蛋白質或核酸使用時,術語「異源的」表示蛋白質或核酸包含在自然界中彼此之間沒有相同關係的兩個或更多個序列或子序列。舉例而言,核酸通常是重組產生的,具有二或多個來自無關基因的序列,其排列以產生新的功能性核酸。例如,在一個具體實施例中,該核酸具有來自一個基因的啟動子,其被安排為指導來自不同基因的編碼序列的表現。
如本文所使用,術語「宿主細胞」可指其中由質體產生的載體(例如,重組AAV)的包裝細胞株。或者,術語「宿主細胞」可指希望其轉基因的表現之標的細胞。因此,「宿主細胞」係指含有外源或異源核酸序列的原核或真核細胞,該核酸序列已藉由任何方法導入細胞中,例如,電穿孔、磷酸鈣沉澱、顯微注射、轉化、病毒感染、轉染、微脂體遞送、膜融合技術、高速DNA包覆的小丸、病毒感染和原生質體融合。在本文某些具體實施例中,術語「宿主細胞」係指用於體外評估本文所述組成物的各種哺乳動物物種的細胞培養物。在本文其它具體實施例中,術語「宿主細胞」係指用於產生和包裝病毒載體或重組病毒的細胞。在另一個具體實施例中,術語「宿主細胞」欲指在體內針對本文所述的疾病或症狀進行治療的受試者的標靶細胞。在某些具體實施例中,術語「宿主細胞」為肝臟細胞或肝細胞。
「受試者」為哺乳動物,例如,人類、小鼠、大鼠、豚鼠、狗、貓、馬、牛、豬、或非人類靈長類動物,諸如猴子、黑猩猩、狒狒或大猩猩。病患係指人類。獸類受試者係指非人類哺乳動物。在某些具體實施例中,受試者的PCSK9基因並沒有缺陷。
「複製缺陷病毒」或「病毒載體」係指合成或人工的病毒顆粒,其中含有感興趣基因的表現匣被包裝於病毒衣殼或套膜中,其中任何病毒基因體序列亦被包裝於病毒衣殼或套膜內為複製缺陷的,即它們不能產生子代病毒體但保留感染標靶細胞的能力。在一個具體實施例中,病毒載體的基因體不包括編碼複製所需的酶的基因(基因體可被工程化為「怯懦的(gutless)」-僅含感興趣的基因,側接人工基因體擴增和包裝所需的訊號),但這些基因可在生產過程中提供。因此,其被認為用於基因治療是安全的,因為除非存在複製所需的病毒酶,否則不會發生子代病毒顆粒的複製和感染。
在核酸序列的情況下,術語「序列同一性」、「序列同一性百分比」或「百分比相同」係指當用於最大對應對齊時,兩個序列中相同的殘基。序列同一性比較的長度可超過基因體的全長、基因編碼序列的全長或至少約500至5000個核苷酸的片段是受期望的。然而,亦受期望的是較小片段之間的同一性,例如至少約9個核苷酸、通常至少約20至24個核苷酸、至少約28至32個核苷酸、至少約36個或更多個核苷酸。類似地,對於胺基酸序列,可在蛋白質的全長或其片段上容易地確定「序列同一性百分比」。適當地,片段長度為至少約8個胺基酸,並可多至約700個胺基酸。本文描述了適當片段的實例。
當提及胺基酸或其片段時,術語「實質上同源」或「實質上相似」表示當利用適當的胺基酸插入或刪除與另一胺基酸(或其互補股)最佳對齊時,經對齊的序列中存在至少約95%至99%的胺基酸序列同一性。較佳地,同源是在全長序列、或其蛋白質,例如,cap蛋白、rep蛋白,或長度為至少8個胺基酸,或更理想地為其長度至少15個胺基酸的片段。本文描述了適當片段的實例。
術語「高度保守的」是指至少80%同一性,較佳為至少90%同一性,更佳為大於97%同一性。藉由本領域技術人員已知的運算法和電腦程式,本領域技術人員可易於確定同一性。
一般而言,當於兩不同腺相關病毒之間指「同一性」、「同源性」或「相似性」時,「同一性」、「同源性」或「相似性」係由「排列比對的(aligned)」序列來測定。「排列比對的」序列或「排列比對」係指多個核酸序列或蛋白質(胺基酸)序列,與參考序列相比,通常包含缺失或額外的鹼基或胺基酸的校正。在實例中,使用已公開的AAV9序列作為參考點進行AAV比對。使用許多公開或市售Multiple Sequence Alignment Programs進行排列比對。這類程式之實例包括「Clustal Omega」、「Clustal W」、「CAP Sequence Assembly」、「MAP」及「MEME」,其等可透過網際網路上的Web伺服器進行訪問。此類程式的其它來源是本領域技術人員已知的。或者,亦可使用Vector NTI公用程式。還有許多技術領域中已知可用於測量核苷酸序列同一性的演算法,包括上述程序中包含的演算法。作為另一實例,可使用Fasta™ (GCG版本6.1中的程序)比較多核苷酸序列,Fasta™提供在查詢和搜尋序列之間最佳重疊區域的排列比對和百分比序列同一性。例如,核酸序列之間的百分比序列同一性可使用Fasta™及其默認參數決定(字組大小為6及用於得分矩陣的NOPAM因數),如GCG版本6.1中所提供,藉由引用併入本文。胺基酸序列也可使用多序列排序比對程式,例如,「Clustal Omega」、「Clustal X」、「MAP」、「PIMA」、「MSA」、「BLOCKMAKER」、「MEME」及「Match-Box」程式。一般而言,此等程式之任一者皆於內定值下使用,儘管本項技術領域中具通常知識者可根據需要改變這些設定。或者,熟悉技術者可以利用提供至少由參考的算法及程式提供的同一性的程度或排列比對之另一算法或電腦程式。參見,例如,J. D. Thomson et al, Nucl. Acids. Res., “A comprehensive comparison of multiple sequence alignments”, 27(13):2682-2690 (1999)。
如本文所使用,術語「約」係指與參考整數及其之間的值相差±10%的變體。例如,「約」40個鹼基對,包括±4 (即,36-44個,包括整數36、37、38、39、40、41、42、43、44個)。對於其它值,尤其是參考百分比時(例如,90%同一性,約10%變異,或約36%錯配),術語「約」包括範圍內的所有值,包括整數和分數。
在整個本文中,本發明的各個方面可以範圍的形式呈現。應理解,範圍形式的描述僅為了方便及簡潔,不應該被解釋為對本發明範圍的不可變限制。因此,範圍的描述應被解釋為已特定揭露所有可能的子範圍以及該範圍內的單一數值。諸如,從1至6的範圍的描述應該被解釋已特定揭露子範圍,諸如1至3、1至4、1至5、2至4、2至6、3至6等,以及在該範圍內的個別數字,例如1、2、2.7、3、4、5、5.3及6。無論範圍的廣度如何皆適用。
如本說明書上下文和申請專利範圍所使用的,術語「包含」、「含有」、「包括」、及其變體包括其它組分、元件、整數、步驟等。相反地,術語「由…組成」及其變體為排除其它組分、元素、整數、步驟等。
除非在本說明書中另有定義,本文使用的技術和科學術語具有與本領域中具有普通技術人員通常理解的含義相同的含義,並參考已公開內容,這些內容為本領域技術人員提供對本案說明書中使用的許多術語的一般指導。
實施例
鳥胺酸胺甲醯基轉移酶(OTC)缺乏症是一種與高死亡率相關的X染色體-連鎖尿素循環病症。儘管對於遲發性OTC缺乏症的治療很有希望,但腺相關病毒(AAV)新生兒基因治療僅能提供短期治療效果,因為非整合基因體在肝細胞增殖過程中會丟失。核酸酶媒介、位點特異性整合OTC袖珍基因匣至基因體的安全港中將為OTC缺乏症患者提供長期治療益處。用於基因靶向的安全港之一是PCSK9基因,諸如外顯子7區域。核酸酶可以是一種靶向PCSK9 (ARCUS2)或CRISPR/Cas9之工程化巨型核酸酶,具有靶向PCSK9的特異性sgRNA。供體載體含有一袖珍基因,該袖珍基因包括肝特異性啟動子(諸如TBG啟動子)、密碼子優化的hOTC編碼序列、及poly A序列。核酸酶及供體模板皆可藉由AAV載體(雙AAV載體系統)遞送。在新生非人類靈長類動物(NHP)中單次靜脈注射雙AAV載體後12週,12%的肝細胞中證實持續的轉基因表現和有效的基因靶向。供體載體中的袖珍基因兩側是同源定向重組(HDR)臂。
在新生兒或嬰兒單次注射雙AAV載體後,首次在NHP中證明體內核酸酶媒介的基因靶向PCSK9基因座以表現治療性蛋白。用於對人類/NHP PCSK9基因座的基因靶向之含有OTC袖珍基因之供體載體的組成物尚未在臨床上測試用於治療 OTC 缺乏症。我們將在新生NHP中測試hOTC供體載體的基因靶向效率,並在新生兒轉基因OTC缺陷小鼠中測試其功效。
許多代謝疾病需要早期干預和治療;然而,由於新生兒階段肝臟快速增殖和AAV載體的非整合性,AAV媒介的新生兒基因治療不穩定。在安全港中靶向整合治療性袖珍基因匣將在基因體水平上持續表現治療性基因,並通過細胞分裂維持治療效果。對於許多代謝疾病,諸如OTC缺乏症,需要在肝臟中達到足夠的轉導效率才能獲得臨床益處。
我們描述了一種用於治療鳥胺酸胺甲醯基轉移酶缺乏症(OTCD)的基因體編輯方法,該方法可導致嬰儿期致命的高氨血症發作。基因體編輯的目標是使治療效果在所有OTCD病患中持久並達成,而與他們的突變無關。我們建議藉由使用兩種AAV載體治療倖存的新生兒來實現此一目標:一個是遞送核酸酶以在安全港位點產生雙股斷裂,而第二個是遞送OTC袖珍基因以敲入此位點。我們的假設是,新生兒肝臟的肝細胞分裂將有助於有效敲入OTC基因,並將通過稀釋消除未整合的輸入載體基因體。我們決定使用PCSK9基因作為安全港位點和一種稱為ARCUS的巨型核酸酶來靶向它,這是基於我們之前在成年獼猴中的研究,該研究顯示在AAV遞送ARCUS後PCSK9安全、有效且穩定地減少。我們對OTCD基因體編輯的初步研究是在通過對內源性PCSK9基因的外顯子7進行生殖細胞系修飾而對PCSK9 ARCUS核酸酶敏感的OTC缺陷小鼠中進行的。將這兩種載體注射至新生兒小鼠體內導致有效敲入人類OTC袖珍基因,並在受到高蛋白飲食挑戰時防護致死性高氨血症。在準備臨床研究時,我們評估了新生兒和嬰兒獼猴的關鍵安全性和有效性參數。共有24隻動物接受AAV載體的治療,分析包括在3個月和12個月時檢測肝臟生檢。在這些研究中,我們評估了以下參數對編輯效率和毒性的影響:轉基因(人類IX因子及人類OTC)、驅動ARCUS的啟動子、分支群E衣殼、轉基因側翼的供體長度及給藥時獼猴的年齡。我們在此報告16/24隻動物的初步數據,其中包括至少3個月的生檢結果。我們發現AAV載體的注射是非常安全的,在任何受ARCUS治療的動物中都沒有轉胺酶升高或肝臟組織病理學的證據。靈長類動物模型中療效的關鍵量度是藉由原位雜交和免疫染色測量的轉導效率,以分別檢測表現人類OTC mRNA和蛋白質的細胞。在第一個載體中使用帶有TBG啟動子的新型進化枝E衣殼驅動ARCUS,並在供體載體上使用500 bp側翼同源臂,使用載體獲得最高且最一致的結果。以此組合,我們達到10.0 ± 6.4% (N=6)轉導,其高於我們認為可以為病患提供實質益處的閾值,即約5% OTC 表現細胞。初步數據表明,編輯水平穩定超過一年,且當注射至3個月大的獼猴中時,可達到有效的靶向插入。PCSK9標靶基因座之分子分析表明,絕大多數的載體基因體敲入是通過非同源末端連接(NHEJ)而不是同源定向修復(HDR)。總之,OTCD的新生兒形式的大量未滿足需求值得考慮實驗性療法,例如本報告中描述的基因體編輯。
實施例1-材料與方法
材料與方法方法
AAV載體是根據先前建立的程序和製造商的說明構建的。AAVhu37衣殼用於如本文所述的實驗,其中指明。
所有動物程序均按照賓夕法尼亞大學機構動物護理和使用委員會(the Institutional Animal Care and Use Committee of the University of Pennsylvania)批准的方案進行。
實施例2-先期研究:在新生NHP中藉由ARCUS2或SACAS9在PCSK9基因座中敲入HFIX袖珍基因
在此研究中,我們評估在新生非人類靈長類動物(NHP)中的靶向(PSK9) SaCas9或ARCUS媒介的基因編輯和hFIX或OTC袖珍基因敲入效率。圖1顯示rhPCSK9基因座的示意圖,其顯示外顯子7內的供體剪接位點,以及包含感興趣的供體模板的HDR供體載體,例如hFIX、hOTC。此外,圖3A至3C顯示用於SaCas9或ARCUS媒介的基因校正的雙AAV載體系統之示意圖。圖3A顯示用於ARCUS2媒介的基因校正的雙AAVhu37載體系統的示意圖,其中該AAVhu37-供體載體包含hOTC供體模板序列。圖3B顯示用於Sa-Cas9媒介的基因校正(反式;AAVhu37-SaCas9)的雙AAVhu37載體系統的示意圖,其中AAV.hu37.shRNA-供體載體包含hOTC供體模板序列。圖3C顯示用於Sa-Cas9媒介的基因校正的雙AAVhu37載體系統(順式;AAVhu37.PCSK9-sgRN.SaCas9)的示意圖,其中AAV.hu37-供體載體包含hOTC供體模板序列。
上述包含基因編輯核酸酶和供體模板的雙AAVhu37載體用於新生NHP,以檢測由SaCas9 或ARCUS2媒介的PCSK9基因座中的hFIX袖珍基因敲入。基因編輯AAVhu37載體以1x10 13GC/kg的劑量遞送,且供體模板AAVhu37載體以3x10 13GC/kg 的劑量遞送。整體而言,有三個治療NHP組:1) AAVhu37.EGFP及AAVhu37.供體-HDR-hFIX.U6.sgR;2) AAVhu37.ARCUS2及AAVhu37.供體-HDR-hFIX;3) AAVhu37.SaCas9及AAVhu37.供體-HDR-hFIX.U6.sgR。圖2顯示一項先期研究的時間線,該研究包含ARCUS2或SaCas9在新生NHP中的PCSK9基因座中的hFIX袖珍基因敲入。在此研究中,在第0天注射NHP,每2-4週收集一次血液樣品(檢查血清化學、血漿中hFIX表現、血清中PCSK9水平、LDL水平和中和抗體(NAb)水平),在第84天進行第一次肝臟生檢(檢測載體基因體水平、基因表現水平、標把及脫靶編輯和組織學)。
在新生兒和嬰兒NHP中進行核酸酶媒介的基因靶向的體內測試。向動物投予1x10 13GC/kg之AAVhu37.ARCUS2.WPRE及3x10 13GC/kg之AAVhu37.hFIXco-HDR,或1x10 13GC/kg之AAVhu37.SaCas9.WPRE及3x10 13GC/kg之AAVhu37.hFIXco-HDR.U6.sgR,或1x10 13GC/kg之AAVhu37.GFP.WPRE及3x10 13GC/kg之AAVhu37.hFIXco-HDR.U6.sgR,如圖4A、4B及5G中所示。圖4C顯示在治療後第0天至第13個月的指定時間點的hFIX水平(繪製為ng/mL)。圖4D顯示在治療後第0天至第12個月的指定時間點的PCSK9水平(繪製為第0天的基線百分比)。圖4E顯示治療後從第0天至第196天的指定時間點(繪製為U/L)的ALT (丙胺酸轉胺酶)水平。圖4F顯示治療後從第0天到第196天的指定時間點的抗FIX IgG水平(繪製為稀釋因子,1/稀釋度)。圖4G顯示治療後從第0天到第196天的指定時間點的PCSK9水平(繪製為ng/mL)。圖4H顯示治療後從第0天到第196天的指定時間點所量測的重量(繪製為g)。圖5A顯示在嬰兒NHP中於指定時間點的hFIX水平(繪製為ng/mL)。圖5B顯示在嬰兒NHP中於指定時間點的PCSK9水平(繪製為第0天的基線百分比)。圖5C顯示在嬰兒NHP中於指定時間點的ALT (丙胺酸轉胺酶)水平(繪製為U/L)。圖5D顯示在嬰兒NHP中於指定時間點的抗FIX IgG水平(繪製為稀釋因子,1/稀釋度)。圖5E顯示在嬰兒NHP中於指定時間點的PCSK9水平(繪製為ng/mL)。圖5F顯示在嬰兒NHP中於指定時間點所量測的重量(繪製為g)。圖5G為總表,顯示圖4A-5F中描述的實驗數據。圖5H顯示測試的新生兒和嬰兒NHP之間的各種數據比較。
圖6A至6E顯示在NHP中治療後幾天收集的肝臟生檢樣品中的載體轉導(GC)和轉基因表現。圖6A顯示肝臟生檢樣品中的載體轉導水平,繪製為每個二倍體細胞的AAV基因體拷貝(GC)。圖6B顯示肝臟生檢樣品中轉基因RNA的相對表現。圖6C顯示使用特異性探針檢測肝臟生檢中的FIX和ARCUS的雙重原位雜交(ISH)。圖6D顯示用於轉導量化的數位ISH圖像。圖6E顯示藉由ISH量化的FIX轉基因的轉導效率,並繪製為轉導百分比。
圖7A至7L顯示使用特異性探針檢測NHP治療後84天收集的肝臟生檢中的FIX和ARCUS的雙重原位雜交(ISH);顯示在各種放大視圖(以AAVhu37.ARCUS2及AAVhu37.供體-HDR-hFIX治療的NHP)。圖7A顯示放大4倍觀察到的肝臟生檢中ISH檢測的ARCUS。圖7B顯示放大4倍觀察到的肝肝臟生檢中ISH檢測的hFIX。圖7C顯示放大4倍觀察到的ISH檢測的ARCUS和hFIX的疊加圖像。圖7D顯示放大4倍觀察到的ISH檢測的ARCUS和hFIX作為具有DAPI(細胞核染色)的疊加圖像。圖7E顯示放大10倍觀察到的肝臟生檢中ISH檢測的ARCUS。圖7F顯示放大10倍觀察到的肝臟生檢中ISH檢測的hFIX。圖7G顯示放大10倍觀察到的ISH檢測的ARCUS和hFIX的疊加圖像。圖7H顯示放大10倍觀察到的ISH檢測的ARCUS和hFIX作為具有DAPI (細胞核染色)的疊加圖像。圖7I顯示放大20倍觀察到的肝臟生檢中ISH檢測的ARCUS表現。圖7J顯示放大20倍觀察到的肝臟生檢中ISH檢測的hFIX。圖7K顯示放大20倍觀察到的ISH檢測的ARCUS和hFIX的疊加圖像。圖7L顯示放大20倍觀察到的ISH檢測的ARCUS和hFIX作為具有DAPI (細胞核染色)的疊加圖像。載體轉導(GC/二倍體基因體)的總結如下表1所示。 表1.
   GC/二倍體基因體
hFIX 0.63
ARCUS 0.13
比率(FIX/ARCUS) 4.8
載體劑量比率(FIX/ARCUS) 3.0
圖8A至8M顯示使用特異性探針檢測NHP治療後84天收集的肝臟生檢中的FIX和ARCUS之雙重原位雜交(ISH);顯示在各種放大視圖(以AAVhu37.EGFP及AAVhu37.Donor-HDR-hFIX.U6.sgR治療的NHP)。圖8A顯示放大4倍觀察到的肝臟生檢中ISH檢測的GFP-WRPE。圖8B顯示放大4倍觀察到的肝臟生檢中ISH檢測的hFIX。圖8C顯示放大4倍觀察到的ISH檢測的GFP-WRPE和hFIX的疊加圖像。圖8D顯示放大4倍觀察到的ISH檢測的GFP-WPRE和hFIX作為具有DAPI (細胞核染色)的疊加圖像。圖8E顯示放大10倍觀察到的肝臟生檢中ISH 檢測的GFP-WRPE。圖8F顯示放大10倍觀察到的肝臟生檢中ISH檢測的hFIX。圖8G顯示放大10倍觀察到的ISH檢測的GFP-WRPE和hFIX的疊加圖像。圖8H顯示放大10倍觀察到的ISH檢測的GFP-WPRE和hFIX作為具有DAPI(細胞核染色)的疊加圖像。圖8I顯示放大20倍觀察到的肝臟生檢中ISH檢測的GFP-WRPE表現。圖8J顯示放大20倍觀察到的肝臟生檢中ISH檢測的hFIX。圖8K顯示放大20倍觀察到的ISH檢測的GFP-WRPE和hFIX的疊加圖像。圖8L顯示放大20倍觀察到的ISH檢測的GFP-WPRE和hFIX作為具有DAPI (細胞核染色)的疊加圖像。圖8M顯示在未治療的對照中放大20倍觀察到的ISH檢測的GFP-WPRE和hFIX作為具有DAPI (細胞核染色)的疊加圖像。載體轉導(GC/二倍體基因體)的總結如下表2所示。 表2.
   GC/二倍體基因體
hFIX 0.017
ARCUS 0.006
比率(FIX/ARCUS) 2.7
載體劑量比率(FIX/ARCUS) 3.0
圖9顯示以AAVhu37.ARCUS2和AAVhu37. 供體-HDR-hFIX治療的NHP中ARCUS媒介的靶向編輯。在治療後84天,收集肝臟生檢樣品,並計算存在的標靶區域中總插入缺失的百分比。此外,以AAVhu37.ARCUS2和AAVhu37.供體-HDR-hFIX處理的NHP中ARCUS媒介的靶向編輯。在治療後84天,收集肝臟生檢樣品,並計算存在的標靶區域中總插入缺失的頻率,繪製成相對於標靶的唯一UMI OT讀數的頻率。藉由擴增子測序量化的插入缺失總結如下表3所示。 表3.
ID 20-196 (NB, d84) 20-196 (NB, d366) AH0120 (3m, d98) RA3567 (ctl)
插入% (Ins %) 1.1 1.3 1.2 0.00
缺失% (Del %) 9.2 10.9 13.2 0.04
總插入或缺失% (Total Indel %) 10.2 12.1 14.4 0.04
HDR% (LMU-seq) 2.8 2.0 1.2   
實施例3-新生NHP中ARCUS2媒介的HOTC基因靶向
新生兒(1-16日齡)或嬰兒(3-4月齡)恆河猴用於非GLP順應性的POC藥理學研究。M2PCSK9巨型核酸酶靶向存在於人類及恆河猴獼猴 PCSK9基因的22-bp序列。因此,恆河猴獼猴用於評估靶向編輯(on-target editing)(藥理學)及安全性/毒理學。此外,新生和嬰兒恆河猴具有與人類嬰兒相似的解剖學和生理學特徵,將允許用於預期的臨床ROA (IV)用途。預計解剖結構和ROA的相似性將產生具有代表性的矢量分佈和轉導輪廓,從而能夠更準確地評估測試物的藥理學和毒性,包括靶向和脫靶編輯以及臨床病理學,這在新生小鼠中是不可能的。
在此項研究中,新生NHP被投予了ARCUS2核酸酶載體及具有不同長度HDR臂(500bp臂或短HDR臂)的供體載體。載體圖示於圖11I。圖11A是顯示來自實驗的數據匯總表。所有14隻新生獼猴都良好地耐受載體輸注(即,沒有明顯的臨床後遺症)並且隨著時間的推移體重增加(圖11E)。肝酶水平在正常範圍內,除了在第14天一些動物的ALT水平短暫和適度升高(圖11C)。
對給藥前從新生兒採集的第0天血漿樣品的分析顯示3隻動物(21-111、21-113、21-122)對於AAVrh79具有高水平(≥ 400)的結合抗體(圖11A)。此等預先存在的抗AAVrh79抗體將阻斷AAV基因轉移。
隨著時間的推移,在所有新生動物中追蹤PCSK9水平,包括僅供體的對照動物。第0天的PCSK9水平在新生兒之間有所不同(圖11B)。九隻動物在載體投予後表現出PCSK9水平降低的趨勢,包括一隻僅供體的對照動物,而其餘五隻動物在給藥後表現出PCSK9水平持續或短暫升高(圖11B)。
在第84天,經由剖腹手術進行肝臟生檢。肝臟中hOTC的轉導效率藉由使用hOTC-及M2PCSK9-特異性探針的雙重ISH檢測轉基因mRNA,並藉由OTC免疫螢光檢測人類OTC蛋白,然後在掃描的載玻片上定量(圖11D)。在給藥時具有預先存在的抗AAVrh79結合抗體的三隻動物(21-111、21-113和21-122)藉由兩種方法確實顯示出任何OTC陽性肝細胞。兩隻僅供體的對照動物表現出低水平(≤1%)的hOTC轉導。在接受AAVrh79.TBG.PI.M2PCSK9.WPRE.bGH和AAVrh79.rhHDR.TBG.hOTCco.bGH供體載體(G6)的兩隻動物中檢測到最高的轉導效率(OTC免疫螢光法分別為11.9%及18.6%)。亦發現陽性的表現hOTC的肝細胞以群集存在。此等水平高於使病患受益的閾值,即約5%的OTC表現細胞。
在第84天對來自每隻動物的肝臟生檢樣品進行分子分析以測量每個二倍體基因體的轉基因拷貝數、mRNA表現水平、靶向編輯及脫靶編輯(圖11F-11H)。與轉導效率分析一致,第6組中的兩隻動物(21-157及21-175)具有最高的hOTC載體GC(圖11F)、hOTC mRNA (圖11G)及靶向插入或缺失%(圖11H)。動物中的M2PCSK9載體GC比hOTC載體GC低2倍至7倍,而M2PCSK9 mRNA水平比hOTC mRNA水平低23倍和765倍(圖11F及11G)。
在本研究的第84天肝臟生檢樣本中,藉由ITR-seq評估的脫靶活性確定了2到40個潛在的脫靶。在多隻動物中檢測到一些脫靶位點,包括分別在研究2和研究3中的hFIX嬰兒和hFIX新生動物。脫靶編輯將進一步以潛在脫靶位點上的擴增子序列為特徵。
總之,我們確定一種M2PCSK9載體及hOTCco供體載體組合,當共同投予新生獼猴時,在給藥後3個月可在肝臟中達到12-18.6%的轉導效率,二者均高於使病患受益的閾值,即約5% OTC-表現肝細胞。正在對本研究中的動物進行長期效率和安全性評估。我們將在給藥後1年進行第二次肝臟生檢,以評估hOTC轉導的穩定性、肝臟組織病理學及肝臟中的靶向和脫靶。
實施例4-PCSK9-HE7-KI小鼠模型
由於人類和獼猴 PCSK9基因中的M2PCSK9靶向序列與鼠類 Pcsk9基因並不保守,我們不能使用M2PCSK9在小鼠基因體基因座中進行基因體編輯。因此,我們委託Jackson Laboratory生成敲入(knock-in)小鼠模型,該模型將包括鼠類 Pcsk9基因外顯子7的區域置換成包含外顯子7的人類 PCSK9基因的區域,命名為 PCSK9-hE7-KI小鼠(圖10A-10B)。此模型可用於評估體內基因體編輯和基因靶向效率。然後,我們將 PCSK9-hE7-KI小鼠與sparse fur ash ( spf ash )小鼠雜交。 spf ash 小鼠在 Otc基因外顯子4末端處的剪接供體位點具有G到A的點突變,其導致 OtcmRNA的異常剪接和 OTCmRNA和蛋白質表現皆減少20倍(Hodges and Rosenberg, 1989)。受影響的動物有5-10%的殘留OTC活性,並可通過食物生存,但牠們會出現高氨血症,在高蛋白飲食時可能是致命的(Yang et al., 2016)。
PCSK9-hE7-KI.spf ash 小鼠模型可用於評估人類OTC體內基因靶向的功效,並證實靶向效率和功效的相關性。然而,由於新生小鼠體型較小,血液臨床病理學和基因靶向臨床療效的評價只能在小鼠斷奶後,一旦牠們達到足夠的體重,並作為終末程序進行。
圖12顯示265 bp序列的序列比對代表人類PCSK9序列的PCSK9-hE7敲入等位基因、小鼠PCSK9 (mPCSK9)及恆河猴PCSK9 (rhPCSK9)。在此265 bp區域中,人類和恆河猴序列之間有6個錯配。由於插入了各種LINE和LTR,囓齒動物和靈長類動物的序列分歧超出了這個窗口。人類和小鼠之間的外顯子7存在2個胺基酸差異。藉由測定的ELISA,hE7-KI小鼠表現正常水平的mPCSK9。
實施例5-在PCSK9-HE7-KI.SPF ASHPUPS中靶向 PCSK9基因座的體內OTC基因
這項正在進行的非GLP順應性的藥理學研究旨在評估在新生PCSK9-hE7-KI. spf ash 小鼠中,人類 OTC基因的M2PCSK9巨型核酸酶媒介的敲入是否可在經由預期的臨床ROA (IV)的單次共同投予M2PCSK9核酸酶表現載體與人類 OTC供體載體後在標靶組織中達到治療性人類OTC表現來用於治療OTC缺乏症(肝臟)。實驗設計的示意圖顯示於圖14A中,劑量組顯示於圖14B中。
在第0天,將劑量為1.0 x 10 13GC/kg的表現M2PCSK9巨型核酸酶之AAVrh79載體(AAVrh79.TBG.PI.M2PCSK9.WPRE.bGH)與劑量為3.0 x 10 13GC/kg的三種不同AAVrh79 hOTCco供體載體中的一種的組合以IV共同投予新生(PND 1–2)雄性 PCSK9-hE7-KI.spf ash 小鼠。在此研究中評估的M2PCSK9巨型核酸酶表現載體(AAVrh79.TBG.PI.M2PCSK9.WPRE.bGH)與主要臨床候選者相同,而各hOTCco供體載體與主要臨床候選者相同,除了HDR臂之外。具體而言,雖然臨床候選者包括人類HDR序列的長版本(AAVrh79.hHDR.TBG.hOTCco.bGH),但此研究中評估的hOTCco供體載體包括小鼠-人類雜交HDR序列(AAVrh79.mhHDR.TBG.hOTCco.bGH)、人類HDR序列的較短版本(AAVrh79.shHDR.TBG.hOTCco.bGH)或沒有HDR序列(AAVrh79.TBG.hOTCco.bGH)。圖13顯示HDR臂與人類、敲入小鼠和NHP序列的同源性比較。作為陰性對照,向另外的年齡匹配的 PCSK9-hE7-KI.spf ash 小鼠投予不表現巨型核酸酶的AAVrh79載體(AAVrh79.TBG.PI.EGFP.WPRE.bGH)與AAVrh79.mhHDR. TBG.hOTCco.bGH的組合。
生存期間的評估包括每天進行的活力監測、體重測量、高蛋白飲食挑戰後的血漿PCSK9及血漿NH 3和尿乳清酸水平之評估,以及在第120天進行部分肝切除術,以評估在三分之二肝臟部分切除術後的人類 OTC轉導的穩定性。在第49天及第170天,各群組的一個子群接受為期10天的高蛋白飲食挑戰,然後在挑戰結束時進行屍檢。在屍檢時,收集肝臟以評估人類 OTC基因的敲入,包括評估人類OTC mRNA表現(原位雜交)、OTC蛋白表現(免疫染色)和藉由染色及/或酶活性測定所評估的OTC酶活性。分離肝臟DNA以評估靶向編輯(擴增子序列、牛津奈米孔長讀取定序(Oxford nanopore long-read sequencing))和評估載體基因體拷貝。
初步結果顯示,以具有mhHDR臂的載體給藥的小鼠顯示出與野生型小鼠相當的存活率,在10天的高蛋白飲食挑戰後,以shHDR治療的小鼠達到80%的存活率(圖14C)。所有經治療的小鼠都比未經治療的KI-spf-ash小鼠維持更好的體重(圖14D)。與未經治療的小鼠相比,經mHDR治療的小鼠的血漿氨水平顯著地降低(圖14E)。
在第48天測量mPCSK9水平,所有治療的小鼠都顯示出降低(圖14F)。插入或缺失百分比在HDR類型中相當一致(圖14G)。在以shHDR及mhHDR治療的小鼠中hOTC水平增加(圖14H)。
實施例6-靶向新生恆河猴 PCSK9基因座的體內OTC基因
這項正在進行的非GLP順應性的藥理學研究旨在評估在新生恆河猴中,人類 OTC基因的M2PCSK9巨型核酸酶媒介的敲入是否可在經由預期的臨床ROA (IV)的單次共同投予M2PCSK9巨型核酸酶表現載體與人類 OTC供體載體後在標靶組織中達到治療性人類OTC表現來用於治療OTC缺乏症(肝臟)。
在第0天,將劑量為1.0 x 10 13GC/kg的二種不同的表現M2PCSK9巨型核酸酶的載體中的一種與劑量為3.0 x 10 13GC/kg的二種不同AAV hOTCco供體載體中的一種的組合以IV共同投予新生(1至16日齡)恆河猴。僅接受劑量為3.0 x 10 13GC/kg的AAV hOTCco供體載體的非核酸酶組被包括作為僅供體的對照組。
對於靶向 PCSK9基因的AAV載體,我們比較了兩種在肝臟中表現M2PCSK9的AAV載體構建體。AAV.TBG.PI.M2PCSK9.WPRE.bGH含有全長TBG啟動子及增強子元件的二個拷貝,且WPRE表現的核酸酶水平高於AAV.TBG-S1-F113.PI.M2PCSK9.bGH (其含有一個短而弱的啟動子)。對於hOTC供體載體,我們比較了兩個AAV.hOTCco供體載體,它們在hOTCco轉基因匣兩側的同源臂長度不同。
NHP在第0天靜脈投予兩種載體,且每天監測其活力。生存期間評估包括體重測量、血液臨床病理學和血漿基因編輯分析。計劃進行兩次剖腹手術以分離肝組織,用於分析基因體編輯效率、載體基因體拷貝、轉基因表現、組織病理學、免疫染色和RNA ISH染色。NHP將被長期追蹤並進行屍檢(日期待定),屆時將收集來自肝臟和其它主要器官的組織,用於評估基因體編輯效率、載體基因體拷貝、轉基因表現、組織病理學、免疫染色及RNA ISH染色。
實施例7-評估在PCSK9-HE7-KI.SPF ASHPUPS中的功效及確定載體之比例
這項計劃的非GLP順應性的藥理學研究旨在評估經由預期的臨床ROA (IV)的單次共同投予M2PCSK9核酸酶表現載體與人類 OTC供體載體後,在新生PCSK9-hE7-KI. spf ash 小鼠中達到用於治療OTC缺乏症(肝臟)之人類 OTC基因的M2PCSK9巨型核酸酶媒介的敲入在最高功效時所需的載體組分比例。
在第0天,將三種劑量中的一種的表現M2PCSK9巨型核酸酶的AAVrh79載體(AAVrh79.TBG.PI.M2PCSK9.WPRE.bGH)與三種劑量中的一種的包括小鼠-人類雜交HDR序列的hOTCco供體載體(AAVrh79.mhHDR.TBG.hOTCco.bGH)的組合以IV共同投予新生(PND 1–2)雄性PCSK9-hE7-KI. spf ash 小鼠。在此研究中所評估的M2PCSK9巨型核酸酶表現載體(AAVrh79.TBG.PI.M2PCSK9.WPRE.bH)與臨床候選者相同,而hOTCco供體載體與臨床候選者相同,除了HDR臂之外。具體而言,雖然臨床候選者包括人類HDR序列的長版本(AAVrh79.hHDR.TBG.hOTCco.bGH),但此研究中評估的hOTCco供體載體包括小鼠-人類雜交HDR序列(AAVrh79.mhHDR.TBG.hOTCco.bGH)。
選擇在供體載體中的小鼠-人類雜交HDR序列(AAVrh79.mhHDR.TBG.hOTCco.bGH)用於此研究,以評估這種方法的藥理學,其中供體序列與PCSK9-hE7-KI. spf ash 小鼠中的序列直接同源。
生存期間的評估包括每天進行的活力監測、體重測量、高蛋白飲食挑戰後血漿NH 3和尿乳清酸水平的評估。在第81天,小鼠將接受為期10天的高蛋白飲食挑戰,然後在挑戰結束時進行屍檢。在屍檢時,收集肝臟以評估人類 OTC基因的敲入,包括評估人類 OTCmRNA表現(原位雜交)、OTC蛋白表現(免疫染色)、及藉由染色及/或酶活性測定所評估的OTC酶活性。亦分離肝臟DNA以評估靶向編輯(擴增子序列)及評估載體基因體拷貝。
實施例8-評估在PCSK9-HE7-KI.SPF ASHPUPS中的功效及確定最小有效劑量
這項計劃的GLP順應性的藥理學研究旨在評估新生PCSK9-hE7-KI. spf ash 小鼠模型中IV投予AAV的療效並確定MED。表現M2PCSK9巨型核酸酶的AAVrh79載體(AAVrh79.TBG.PI.M2PCSK9.WPRE.bGH)將是為計劃的GLP順應性的毒理學研究所製造的毒理學載體批次。本研究不使用包括人類HDR序列長版本(AAVrh79.hHDR.TBG.hOTCco.bGH)測試物,而是利用包括小鼠-人類雜交HDR序列的hOTCco供體載體(AAVrh79.mhHDR.TBG.hOTCco.bGH)。此載體將以與臨床候選者之毒理學載體批次相當的方法製造。
我們已選擇於本研究中使用供體載體中具有小鼠-人類雜交HDR序列(AAVrh79.mhHDR.TBG. hOTCco.bGH),以使我們能夠有效地研究這種方法的藥理學,其中供體序列與PCSK9-hE7-KI. spf ash 小鼠中的序列直接同源。
此研究將評估N=60隻新生兒(PND 1-2)新生PCSK9-hE7-KI. spf ash 小鼠且N=15隻年齡匹配的雄性PCSK9-hE7-KI.WT (野生型)作為對照。研究將包括一個屍檢時間點(90天)。對於功效評估,小鼠將從第81天到第90天接受為期10天的高蛋白飲食。將評估生存、身體狀況及生物標誌物變化。將使用IV投予來評估AAV的三種劑量水平。將根據先前非臨床研究中評估的劑量範圍選擇劑量水平。評估的劑量水平將以括號包含預期的臨床劑量。
生存期間的評估將包括每天的活力檢查、存活監測、體重測量、高蛋白飲食挑戰後血清PCSK9水平、血漿NH 3及尿乳清酸水平的評估。屍檢將在第90天進行。在屍檢時,將收集血液用於CBC/差異和血清臨床化學分析。將收集表列的組織用於組織病理學評估。收集肝臟以評估人類 OTC基因的敲入,包括評估人類 OTCmRNA表現(原位雜交)、OTC蛋白表現(免疫染色)、及藉由染色及/或酶活性測定所評估的OTC酶活性。亦分離肝臟DNA以評估靶向編輯(擴增子序列)及評估載體基因體拷貝。
MED將基於下述而確定:相較於媒劑治療的新生PCSK9-hE7-KI. spf ash 對照小鼠,以AAV治療的新生PCSK9-hE7-KI. spf ash 小鼠高蛋白飲食後的存活、高蛋白飲食挑戰結束時的血漿NH 3水平、人類 OTCmRNA及蛋白質表現、OTC酶活性、及靶向編輯。
實施例9-PCSK9-HE7-KI.SPF ASHPUPS中的毒理學研究
將在新生(PND 1-2) PCSK9-hE7-KI. spf ash 小鼠中進行為期6個月的GLP順應性安全性研究,以研究IV共同給藥後測試物的安全性、耐受性、藥理學和藥物動力學。期間分析,包括靶向編輯、脫靶編輯、轉基因表現和組織病理學分析,將在第60天和第180天進行,因為這些時間點將使核酸酶依賴性基因插入有足夠的時間在給藥後達到穩定的平台水平(plateau level)。新生PCSK9-hE7-KI. spf ash 小鼠將接受三種劑量水平中的一種的測試物(1.0 x 10 12GC/kg 核酸酶載體與3.0 x 10 12GC/kg供體載體、3.3 x 10 12GC/kg核酸酶載體與1.0 x 10 13GC/kg供體載體、或1.0 x 10 13GC/kg核酸酶載體與3.0 x 10 13GC/kg;每劑量N=20)或媒劑(磷酸鹽緩衝食鹽水[PBS];N=20)。在測試物或媒劑投予後,生存期間的評估將包括臨床觀察每天監測痛苦和異常行為的跡象、體重測量及血液臨床血清化學(特別是ALT、AST和總膽紅素)。
在測試物投予後第60天,將群組1、3、5和7安樂死,並將對包括但不限於腦、脊髓、心臟、肝臟、脾臟、腎臟、肺臟、生殖器官、腎上腺和淋巴結的綜合組織列表進行組織病理學分析。器官將酌情稱重。
將收集並分析肝臟樣品用於藉由擴增子序列和AMP序列的靶向編輯、藉由ITR序列和擴增子序列的脫靶編輯、載體生物分佈和轉基因表現。在肝臟樣品中,生物分佈將藉由PCR評估,巨型核酸酶RNA表現將藉由RT-PCR進行分析。將對高度灌注的器官進行巨型核酸酶RNA分析,並對具有可檢測到巨型核酸酶RNA表現的組織進行評估,以便通過擴增子序列進行靶向編輯。將進一步評估具有可檢測之靶向編輯的組織以進行脫靶編輯。
對於載體生物分布,將開發特定於雙重載體M2PCSK9及hOTCco的轉基因的qPCR檢測。將使用AAV順式質體作為標的序列的替代物來評估測定的效率、線性、精密度、再現性和檢測限度。測定的定量下限(LLOQ)將在對測試組織或排泄物進行測定之前確定。將實施驗證計劃,以將轉基因特異性測定與先前進行的驗證研究聯繫起來。測試的基質將包括預期目標,用於生物分佈的肝臟。基質效應將基於在生物分佈研究過程中從測試的所有樣品中加料標靶對照的回收率以及從先前進行的驗證研究中減去的數據進行進一步評估。
實施例10-在PCSK9-HE7-KI.LDLR -/LDLR -.APOBEC -/APOBEC -PUPS (HOFH模型)中藉由SACAS9的HLDLR袖珍基因敲入PCSK9 基因座
本研究旨在評估在藉由預期的臨床ROA (IV)的單次共同投予SaCas9核酸酶表現載體與人類 LDLR供體載體後,人類 LDLR基因之Cas9媒介的敲入在新生 PCSK9-hE7-KI.ldlr -/ldlr -.apobec -/apobec 小鼠是否可在治療家族性高膽固醇血症的標靶組織(肝臟)中實現治療性人類LDLR表現。使用圖15中的實驗設計生成小鼠模型。在小鼠模型中,小鼠PCSK9外顯子7以人類PCSK9外顯子7置換,其包含SaCas9靶向序列。
在第0天,將劑量為1.0 x 10 13GC/kg的表現Cas9的AAVrh79載體(AAVrh79.U6.sgR3.PSCK9. APB2.HLP.SaCas9.bGH)與劑量為3.0 x 10 13GC/kg的二種不同AAVrh79 hLDLR供體載體中之一種的組合IV共同投予新生 PCSK9-hE7-KI.ldlr -/ldlr -.apobec -/apobec 小鼠。圖16顯示了使用的載體的示意圖。具體而言,此研究中評估的供體載體之一包括小鼠-人類雜交HDR序列(AAVrh79.mhHDR.hLDLR011),另一個包括較短版本的人類HDR序列(AAVrh79.shHDR.hLDLR011)。作為陰性對照,其它年齡匹配的 PCSK9-hE7-KI.spf ash 小鼠投予不表現saCas9之AAVrh79載體與AAVrh79.shHDR. hLDLR011的組合。
生存期間的評價包括每天進行活力監測,並在第42、63、90、120和150天評估血清LDL-c水平。在第63天進行部分肝切除術以評估人類 LDLR轉導的穩定性,並在第150天進行屍檢。在屍檢時,收集肝臟以評估人類 LDLR基因的敲入,包括評估人類人類 LDLRmRNA表現(原位雜交)、LDLR蛋白表現(免疫染色)。分離肝臟DNA以評估靶向編輯(擴增子序列,牛津奈米孔長讀取定序)和評估載體基因體拷貝。實驗設計顯示於圖17。
初步結果顯示,以saCas9與供體載體給藥的小鼠具有顯著降低的血清LDL水平。在2/3肝部分切除術後LDL並沒有變化,表明穩定的整合(圖18A)。使用mhHDR和shHDR供體載體時,插入或缺失是一致的(圖18B)。在第63天,shHDR治療的小鼠顯示出稍高的hLDLR水平(圖18C),而mhHDR和shHDR(具有saCas9)載體的血清LDL水平相似(圖18D)。
圖19顯示部分肝切除術後第63天肝臟中hLDLR表現的免疫組織化學評價。
本說明書中引用的所有文件藉由引用併入本文,與本文一起提出的序列表的序列和正文藉由引用併入本文。美國臨時專利申請號63/180,603 (2021年4月27日申請)、63/242,474 (2021年9月9日申請)、63/244,205 (2021年9月14日申請)、63/301,933 (2022年1月21日申請)、63/331,385 (2022年4月15日申請)各藉由引用以其整體併入本文。儘管已參照特定具體實施例描述本發明,但應理解,可在不背離本發明之精神的情況下進行修改。此類修改旨在落入所附申請專利範圍的範圍內。
圖1顯示rhPCSK9基因座之示意圖,其顯示外顯子7內的供體剪接位點,以及包含感興趣的供體模板的HDR供體載體,例如hFIX、hOTC。 圖2顯示一項先期研究的時間線,該研究包含ARCUS2或SaCas9在新生NHP中的PCSK9基因座中的hFIX袖珍基因敲入。 圖3A至3C顯示用於SaCas9或ARCUS媒介的基因校正的雙AAV載體系統之示意圖。圖3A顯示用於ARCUS2媒介的基因校正的雙AAVhu37載體系統的示意圖,其中該AAVhu37-供體載體包含hOTC供體模板序列。圖3B顯示用於Sa-Cas9媒介的基因校正(反式;AAVhu37-SaCas9)的雙AAVhu37載體系統的示意圖,其中該用於SaCas9及sgRNA之表現匣位於二個分別的載體,且AAVhu37.sgRNA-供體載體包含hOTC供體模板序列及U6.sgRNA匣。圖3C顯示用於Sa-Cas9媒介的基因校正的雙AAVhu37載體系統(順式;AAVhu37.PCSK9-sgRN.SaCas9)的示意圖,其中該用於SaCas9及sgRNA之表現匣位於相同載體,且hOTC供體載體位於分別的載體。 圖4A至4H顯示在新生NHP中核酸酶媒介的基因靶向的體內測試。向動物投予1x10 13GC/kg之AAVhu37.ARCUS2.WPRE及3x10 13GC/kg之AAVhu37.hFIXco-HDR,或1x10 13GC/kg之AAVhu37.SaCas9.WPRE及3x10 13GC/kg之AAVhu37.hFIXco-HDR.U6.sgR,或1x10 13GC/kg之AAVhu37.GFP.WPRE及3x10 13GC/kg之AAVhu37.hFIXco-HDR.U6.sgR,如圖4A、4B及5G中所示。圖4C顯示在新生NHP中於指定時間點的hFIX水平(繪製為ng/mL)。圖4D顯示在新生NHP中於指定時間點的PCSK9水平(繪製為第0天的基線百分比)。圖4E顯示在新生NHP中於指定時間點的ALT(丙胺酸轉胺酶)水平(繪製為U/L)。圖4F顯示在新生NHP中於指定時間點的抗FIX IgG水平(繪製為稀釋因子,1/稀釋度)。圖4G顯示在新生NHP中於指定時間點的PCSK9水平(繪製為ng/mL)。圖4H顯示在新生NHP中量測的重量(繪製為g)。 圖5A至5H顯示投予至3月齡嬰兒NHP的針對圖4所述之體內試驗的結果。圖5A顯示在嬰兒NHP中於指定時間點的hFIX水平(繪製為ng/mL)。圖5B顯示在嬰兒NHP中於指定時間點的PCSK9水平(繪製為第0天的基線百分比)。圖5C顯示在嬰兒NHP中於指定時間點的ALT(丙胺酸轉胺酶)水平(繪製為U/L)。圖5D顯示在嬰兒NHP中於指定時間點的抗FIX IgG水平(繪製為稀釋因子,1/稀釋度)。圖5E顯示在嬰兒NHP中於指定時間點的PCSK9水平(繪製為ng/mL)。圖5F顯示在嬰兒NHP中於指定時間點所量測的重量(繪製為g)。圖5G為總表,顯示自圖4A-5G中描述的實驗的數據。圖5H顯示測試的新生兒和嬰兒NHP之間的各種數據比較。 圖6A至6E顯示在如圖4A-4H所述治療之NHP中在治療後於不同天收集的肝臟生檢樣品中的載體轉導(GC)和轉基因表現。圖6A顯示肝臟生檢樣品中的載體轉導水平,繪製為每二倍體細胞(diploid cell)中之AAV基因體拷貝數(GC)。圖6B顯示肝臟生檢樣品中轉基因RNA的相對表現。圖6C顯示使用特異性探針檢測肝臟生檢中的FIX和ARCUS的雙重原位雜交(ISH)。圖6D顯示用於轉導百分比量化的數位ISH圖像。圖6E顯示藉由ISH量化的FIX轉基因的轉導效率,並繪製為轉導百分比。 圖7A至7L顯示使用特異性探針檢NHP治療後84天收集的肝臟生檢中的FIX和ARCUS的雙重原位雜交(ISH);顯示在各種放大視圖(以AAVhu37.ARCUS2及AAVhu37.供體-HDR-hFIX治療的NHP)。圖7A顯示放大4倍觀察到的肝臟生檢中ISH檢測的ARCUS。圖7B顯示放大4倍觀察到的肝肝臟生檢中ISH檢測的hFIX。圖7C顯示放大4倍觀察到的ISH檢測的ARCUS和hFIX的疊加圖像。圖7D顯示放大4倍觀察到的ISH檢測的ARCUS和hFIX作為具有DAPI(細胞核染色)的疊加圖像。圖7E顯示放大10倍觀察到的肝臟生檢中ISH檢測的ARCUS。圖7F顯示放大10倍觀察到的肝臟生檢中ISH檢測的hFIX。圖7G顯示放大10倍觀察到的ISH檢測的ARCUS和hFIX的疊加圖像。圖7H顯示放大10倍觀察到的ISH檢測的ARCUS和hFIX作為具有DAPI (細胞核染色)的疊加圖像。圖7I顯示放大20倍觀察到的肝臟生檢中ISH檢測的ARCUS表現。圖7J顯示放大20倍觀察到的肝臟生檢中ISH檢測的hFIX。圖7K顯示放大20倍觀察到的ISH檢測的ARCUS和hFIX的疊加圖像。圖7L顯示放大20倍觀察到的ISH檢測的ARCUS和hFIX作為具有DAPI (細胞核染色)的疊加圖像。 圖8A至8M顯示使用特異性探針檢測NHP治療後84天收集的肝臟生檢中的FIX和ARCUS之雙重原位雜交(ISH);顯示在各種放大視圖(以AAVhu37.EGFP及AAVhu37.Donor-HDR-hFIX.U6.sgR治療的NHP)。圖8A顯示放大4倍觀察到的肝臟生檢中ISH檢測的GFP-WRPE。圖8B顯示放大4倍觀察到的肝臟生檢中ISH檢測的hFIX。圖8C顯示放大4倍觀察到的ISH檢測的GFP-WRPE和hFIX的疊加圖像。圖8D顯示放大4倍觀察到的ISH檢測的GFP-WPRE和hFIX作為具有DAPI(細胞核染色)的疊加圖像。圖8E顯示放大10倍觀察到的肝臟生檢中ISH檢測的GFP-WRPE。圖8F顯示放大10倍觀察到的肝臟生檢中ISH檢測的hFIX。圖8G顯示放大10倍觀察到的ISH檢測的GFP-WRPE和hFIX的疊加圖像。圖8H顯示放大10倍觀察到的ISH檢測的GFP-WPRE和hFIX作為具有DAPI (細胞核染色)的疊加圖像。圖8I顯示放大20倍觀察到的肝臟生檢中ISH檢測的GFP-WRPE表現。圖8J顯示放大20倍觀察到的肝臟生檢中ISH檢測的hFIX。圖8K顯示放大20倍觀察到的ISH檢測的GFP-WRPE和hFIX的疊加圖像。圖8L顯示放大20倍觀察到的ISH檢測的GFP-WPRE和hFIX作為具有DAPI (細胞核染色)的疊加圖像。圖8M顯示在未治療的對照中放大20倍觀察到的ISH檢測的GFP-WPRE和hFIX作為具有DAPI (細胞核染色)的疊加圖像。 圖9顯示以AAVhu37.ARCUS2和AAVhu37.供體-HDR-hFIX治療的NHP中ARCUS媒介的靶向編輯。在治療後84天,收集肝臟生檢樣品,並根據擴增子序列(amplicon-seq)計算存在的標靶區域中總插入缺失的百分比。 圖10A及10B顯示PCSK9-hE7-KI小鼠模型的示意圖。圖10A顯示以人類pcsk9外顯子7 (hE7包含ARCUS靶向序列)置換的小鼠pcsk9外顯子7的示意圖。人類PCSK9外顯子7序列顯示於SEQ ID NO: 44。圖10B顯示將PCSK9-hE7-KI小鼠模型與其它疾病小鼠模型(諸如OTC spf ash 、KI- spf ash 模型)雜交的示意圖。 PCSK9-hE7-KI敲入小鼠模型首先是藉由以包含外顯子7的人類 PCSK9基因區域置換包含鼠類Pcsk9基因之外顯子7的區域來生成的。然後將 PCSK9-hE7-KI小鼠與sparse fur ash ( spf ash )小鼠雜交,由於在 Otc基因外顯子4末端處的剪接供體位點具有G到A的點突變,其在OTC表現上呈現20倍的減少。來自此雜交的小鼠被稱為 PCSK9-hE7-KI.spf ash 小鼠並如本文所述使用。縮寫:bp,鹼基對;E6,外顯子6;E7:外顯子7;E8,外顯子8;HDR,同源定向重組; PCSK9,前蛋白轉化酶枯草溶菌素/kexin 9型(基因,人類); Pcsk9,前蛋白轉化酶枯草溶菌素/kexin 9型(基因,小鼠)。 圖11A-11I顯示針對如圖11I中所示之載體的新生NHP中核酸酶媒介的基因靶向的體內測試。圖11A是顯示如實施例3中所述載體在新生NHP中核酸酶媒介之基因靶向的體內測試的實驗設計之圖表。動物21-111、21-122和21-113在給藥前是AAV結合抗體(BAb)陽性。在載體給藥後收集第0天的21-178樣品,這會干擾Bab測定(Bab assay)。 c:列出在獨立ITRseq分析中鑑定的OT位點的數量。圖11B顯示如圖11A中所示組別的PCSK9水平,顯示為ng/mL (頂行)或第0天的百分比(底行)。圖11C顯示組別的顯示為U/L的ALT水平(頂行)或顯示為U/L的AST (底行),如圖11A所示。圖11D顯示藉由ISH或IF量化之OTC轉基因的轉導效率,並繪製為轉導的肝細胞百分比。圖11E顯示小鼠的體重。圖11F顯示在第84天藉由定量PCR分析在肝臟中的載體GC。圖11G顯示在第84天獼猴肝臟中hOTC及核酸酶的表現,其藉由定量PCR對從肝臟生檢樣品中分離的總RNA隨後進行逆轉錄測量,並表示為藉由GAPDH水平標準化的相對表現水平。圖11H顯示藉由擴增子序列對 rhPCSK9靶向的基因座進行的插入或缺失分析。圖11I為新生NHP中核酸酶媒介的基因靶向的體內測試時間線示意圖,該新生NHP包括用於實施例3所述實驗測試的載體。 圖12顯示代表人類PCSK9序列的PCSK9-hE7敲入等位基因、小鼠PCSK9 (mPCSK9)及恆河猴PCSK9 (rhPCSK9)的265 bp序列的序列比對。縮寫:GAPDH,甘油醛-3-磷酸去氫酶(glyceraldehyde-3-phosphate dehydrogenase);GC,基因體拷貝;hOTC,人類鳥胺酸胺甲醯基轉移酶;OT,脫靶;PCR,聚合酶連鎖反應; rhPCSK9,前蛋白轉化酶枯草溶菌素/kexin 9型(恆河猴基因);RNA,核糖核酸。 圖13顯示用於ARCUS2媒介的基因校正的雙AAV載體系統的供體構建體的示意圖,其中該AAV-供體載體包含hOTC供體模板序列。顯示了構建體中的HDR臂與敲入小鼠模型(圖10A-10B)、NHP及人類標靶區域的同源性。 圖14A顯示在PCSK9-hE7-KI.spf-ash PUPS(部分OTC缺乏症模型)中進行的一項包含藉由ARCUS2的hOTC袖珍基因敲入PCSK9基因座的研究的時間線,如實施例5中所述。圖14B顯示每組將接受用於圖14A的研究的載體和劑量。 圖14C-14I顯示以如圖7所示載體治療、或未治療(KI WT)的小鼠並餵飼高蛋白質(HP)飲食10天的研究結果。圖14C顯示存活機率。圖14D顯示體重佔導入HP飲食之前體重的百分比。圖14E顯示在HP飲食的第10天的血漿NH 3水平。圖14F顯示在第48天的mPCSK9蛋白水平。圖14G顯示在第59天藉由擴增子序列量測的插入或缺失%。圖14H顯示在第59天量測的肝臟生檢樣品中的載體轉導水平,繪製為每二倍體細胞的AAV基因體拷貝(GC)。圖14I顯示8週的OTC IF。 圖15為在PCSK9-hE7-KI.ldlr-/ldlr-.apobec-/ apobec-Pups (hoFH模型)中,於實施例10所述藉由SaCas9在PCSK9基因座中產生hLDLR袖珍基因敲入的實驗設計之示意圖。 圖16為顯示實施例10使用的載體的示意圖。 圖17顯示實施例10的實驗設計。 圖18A-18D顯示實施例10之實驗結果。圖18A顯示對於shHDR + saCas9、mhHDR + saCas9、僅shHDR及未治療的小鼠的血清LDL水平。圖18B顯示對於shHDR + saCas9、mhHDR + saCas9、僅shHDR治療的小鼠的插入或缺失百分比。圖18C顯示在第63天於肝臟量測的每二倍體基因體的hLDLR基因體拷貝。圖18D顯示在第63天,對於shHDR + saCas9、mhHDR + saCas9、僅shHDR及未治療的小鼠的血清LDL水平。 圖19顯示對於實施例10之小鼠在第63天取得之肝臟樣品的免疫組織化學數據。
Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0005
Figure 12_A0101_SEQ_0006
Figure 12_A0101_SEQ_0007
Figure 12_A0101_SEQ_0008
Figure 12_A0101_SEQ_0009
Figure 12_A0101_SEQ_0010
Figure 12_A0101_SEQ_0011
Figure 12_A0101_SEQ_0012
Figure 12_A0101_SEQ_0013
Figure 12_A0101_SEQ_0014
Figure 12_A0101_SEQ_0015
Figure 12_A0101_SEQ_0016
Figure 12_A0101_SEQ_0017
Figure 12_A0101_SEQ_0018
Figure 12_A0101_SEQ_0019
Figure 12_A0101_SEQ_0020
Figure 12_A0101_SEQ_0021
Figure 12_A0101_SEQ_0022
Figure 12_A0101_SEQ_0023
Figure 12_A0101_SEQ_0024
Figure 12_A0101_SEQ_0025
Figure 12_A0101_SEQ_0026
Figure 12_A0101_SEQ_0027
Figure 12_A0101_SEQ_0028
Figure 12_A0101_SEQ_0029
Figure 12_A0101_SEQ_0030
Figure 12_A0101_SEQ_0031
Figure 12_A0101_SEQ_0032
Figure 12_A0101_SEQ_0033
Figure 12_A0101_SEQ_0034
Figure 12_A0101_SEQ_0035
Figure 12_A0101_SEQ_0036
Figure 12_A0101_SEQ_0037
Figure 12_A0101_SEQ_0038
Figure 12_A0101_SEQ_0039
Figure 12_A0101_SEQ_0040
Figure 12_A0101_SEQ_0041
Figure 12_A0101_SEQ_0042
Figure 12_A0101_SEQ_0043
Figure 12_A0101_SEQ_0044
Figure 12_A0101_SEQ_0045
Figure 12_A0101_SEQ_0046
Figure 12_A0101_SEQ_0047
Figure 12_A0101_SEQ_0048
Figure 12_A0101_SEQ_0049
Figure 12_A0101_SEQ_0050
Figure 12_A0101_SEQ_0051
Figure 12_A0101_SEQ_0052
Figure 12_A0101_SEQ_0053
Figure 12_A0101_SEQ_0054
Figure 12_A0101_SEQ_0055
Figure 12_A0101_SEQ_0056
Figure 12_A0101_SEQ_0057
Figure 12_A0101_SEQ_0058
Figure 12_A0101_SEQ_0059
Figure 12_A0101_SEQ_0060
Figure 12_A0101_SEQ_0061
Figure 12_A0101_SEQ_0062
Figure 12_A0101_SEQ_0063
Figure 12_A0101_SEQ_0064
Figure 12_A0101_SEQ_0065
Figure 12_A0101_SEQ_0066
Figure 12_A0101_SEQ_0067
Figure 12_A0101_SEQ_0068
Figure 12_A0101_SEQ_0069
Figure 12_A0101_SEQ_0070
Figure 12_A0101_SEQ_0071
Figure 12_A0101_SEQ_0072
Figure 12_A0101_SEQ_0073
Figure 12_A0101_SEQ_0074
Figure 12_A0101_SEQ_0075
Figure 12_A0101_SEQ_0076
Figure 12_A0101_SEQ_0077
Figure 12_A0101_SEQ_0078
Figure 12_A0101_SEQ_0079
Figure 12_A0101_SEQ_0080
Figure 12_A0101_SEQ_0081
Figure 12_A0101_SEQ_0082
Figure 12_A0101_SEQ_0083
Figure 12_A0101_SEQ_0084
Figure 12_A0101_SEQ_0085
Figure 12_A0101_SEQ_0086
Figure 12_A0101_SEQ_0087
Figure 12_A0101_SEQ_0088
Figure 12_A0101_SEQ_0089
Figure 12_A0101_SEQ_0090
Figure 12_A0101_SEQ_0091
Figure 12_A0101_SEQ_0092
Figure 12_A0101_SEQ_0093
Figure 12_A0101_SEQ_0094
Figure 12_A0101_SEQ_0095
Figure 12_A0101_SEQ_0096
Figure 12_A0101_SEQ_0097
Figure 12_A0101_SEQ_0098
Figure 12_A0101_SEQ_0099
Figure 12_A0101_SEQ_0100
Figure 12_A0101_SEQ_0101
Figure 12_A0101_SEQ_0102
Figure 12_A0101_SEQ_0103
Figure 12_A0101_SEQ_0104
Figure 12_A0101_SEQ_0105
Figure 12_A0101_SEQ_0106
Figure 12_A0101_SEQ_0107
Figure 12_A0101_SEQ_0108
Figure 12_A0101_SEQ_0109
Figure 12_A0101_SEQ_0110
Figure 12_A0101_SEQ_0111
Figure 12_A0101_SEQ_0112
Figure 12_A0101_SEQ_0113
Figure 12_A0101_SEQ_0114
Figure 12_A0101_SEQ_0115
Figure 12_A0101_SEQ_0116
Figure 12_A0101_SEQ_0117
Figure 12_A0101_SEQ_0118
Figure 12_A0101_SEQ_0119
Figure 12_A0101_SEQ_0120
Figure 12_A0101_SEQ_0121
Figure 12_A0101_SEQ_0122
Figure 12_A0101_SEQ_0123
Figure 12_A0101_SEQ_0124
Figure 12_A0101_SEQ_0125
Figure 12_A0101_SEQ_0126
Figure 12_A0101_SEQ_0127
Figure 12_A0101_SEQ_0128
Figure 12_A0101_SEQ_0129
Figure 12_A0101_SEQ_0130
Figure 12_A0101_SEQ_0131
Figure 12_A0101_SEQ_0132
Figure 12_A0101_SEQ_0133
Figure 12_A0101_SEQ_0134
Figure 12_A0101_SEQ_0135
Figure 12_A0101_SEQ_0136
Figure 12_A0101_SEQ_0137
Figure 12_A0101_SEQ_0138
Figure 12_A0101_SEQ_0139
Figure 12_A0101_SEQ_0140
Figure 12_A0101_SEQ_0141
Figure 12_A0101_SEQ_0142
Figure 12_A0101_SEQ_0143
Figure 12_A0101_SEQ_0144
Figure 12_A0101_SEQ_0145
Figure 12_A0101_SEQ_0146
Figure 12_A0101_SEQ_0147
Figure 12_A0101_SEQ_0148
Figure 12_A0101_SEQ_0149
Figure 12_A0101_SEQ_0150
Figure 12_A0101_SEQ_0151
Figure 12_A0101_SEQ_0152
Figure 12_A0101_SEQ_0153
Figure 12_A0101_SEQ_0154
Figure 12_A0101_SEQ_0155
Figure 12_A0101_SEQ_0156
Figure 12_A0101_SEQ_0157
Figure 12_A0101_SEQ_0158
Figure 12_A0101_SEQ_0159
Figure 12_A0101_SEQ_0160
Figure 12_A0101_SEQ_0161
Figure 12_A0101_SEQ_0162
Figure 12_A0101_SEQ_0163
Figure 12_A0101_SEQ_0164
Figure 12_A0101_SEQ_0165
Figure 12_A0101_SEQ_0166
Figure 12_A0101_SEQ_0167
Figure 12_A0101_SEQ_0168
Figure 12_A0101_SEQ_0169
Figure 12_A0101_SEQ_0170
Figure 12_A0101_SEQ_0171
Figure 12_A0101_SEQ_0172
Figure 12_A0101_SEQ_0173
Figure 12_A0101_SEQ_0174
Figure 12_A0101_SEQ_0175
Figure 12_A0101_SEQ_0176
Figure 12_A0101_SEQ_0177
Figure 12_A0101_SEQ_0178
無。

Claims (52)

  1. 一種用於治療遺傳疾病之系統,該系統包含: (a)基因編輯載體,其包含編碼靶向PCSK9基因之核酸酶的核酸序列;及 (b)供體載體,其包含轉基因匣,該轉基因匣包含編碼轉基因之核酸序列及指導該轉基因在標靶細胞中之表現的調控序列,該供體載體進一步包含該轉基因匣之同源定向重組(HDR)臂5’及3’,其中該轉基因不是PCSK9。
  2. 如請求項1之系統,其進一步包含調控序列,該調控序列指導該核酸酶在包含PCSK9基因之標靶細胞中的表現。
  3. 如請求項1或2之系統,其中該核酸酶靶向PCSK9外顯子7。
  4. 如請求項1至3中任一項之系統,其中該核酸酶為對於PCSK9特異性的巨型核酸酶。
  5. 如請求項4之系統,其中該巨型核酸酶為ARCUS巨型核酸酶。
  6. 如請求項1或2之系統,其中該基因編輯載體包含編碼兩側有核定位訊號之Cas9的序列。
  7. 如請求項6之系統,其中該基因編輯載體進一步包含含有至少20個核苷酸的sgRNA,其與該PCSK9基因中的標靶位點特異性結合,該標靶位點位於被該Cas9特異性識別的前間隔序列相鄰基序(PAM)的5’處。
  8. 如請求項6之系統,其中該供體載體進一步包含含有至少20個核苷酸種子區的sgRNA,其中該sgRNA特異性結合該PCSK9基因中的標靶位點,該標靶位點位於被該Cas9特異性識別的前間隔序列相鄰基序(PAM)的5’處。
  9. 如請求項6至8中任一項之系統,其進一步包含RNA聚合酶啟動子。
  10. 如請求項9之系統,其中該RNA聚合酶啟動子為U6啟動子。
  11. 如請求項10之系統,其中該U6啟動子位於該sgRNA的5’。
  12. 如請求項7至11中任一項之系統,其中該種子區與該標靶位點序列100%互補。
  13. 如請求項7至11中任一項之系統,其中該種子區與該標靶位點序列小於100%互補。
  14. 如請求項1至13中任一項之系統,其中該轉基因為OTC、PKU、CTLN1或LDLR。
  15. 如請求項1至14中任一項之系統,其中該供體載體及基因編輯載體中的至少一者為腺相關病毒(AAV)載體,且該AAV載體包含AAV 5’ ITR及AAV 3’ ITR。
  16. 如請求項15之系統,其中(a)的基因編輯AAV載體與(b)的供體AAV載體的比率使得(b)的供體AAV載體超過(a)的基因編輯載體。
  17. 一種用於治療遺傳疾病之系統,該系統包含: (a)基因編輯AAV,其包含AAV衣殼及第一載體基因體,該第一載體基因體包含5’ ITR、編碼巨型核酸酶之序列及3’ ITR,該巨型核酸酶在調控序列的控制下靶向PCSK9,該調控序列指導該巨型核酸酶在包含PCSK9基因的標靶細胞中的表現;及 (b)供體AAV載體,其包含AAV衣殼及第二載體基因體,該第二載體基因體包含:5’ITR、5’同源定向重組(HDR)臂、轉基因及指導該轉基因在標靶細胞中之表現的調控序列、3’ HDR臂、及3’ ITR。
  18. 一種用於治療遺傳疾病之系統,該系統包含: (a)基因編輯AAV,其包含AAV衣殼及第一載體基因體,該第一載體基因體包含5’ ITR、5’核定位訊號(NLS)、編碼Cas9之序列及指導saCas9在包含PCSK9基因之標靶細胞中之表現的調控序列、3’ NLS及3’ ITR;及 (b)供體AAV載體,其包含AAV衣殼及第二載體基因體,該第二載體基因體包含:5’ITR、5’同源定向重組(HDR)臂、轉基因及指導該轉基因在標靶細胞中之表現的調控序列、3’ HDR臂、U6啟動子、sgRNA及3’ ITR,該sgRNA包含至少20個核苷酸,其特異性結合PCSK9基因中的標靶位點,該標靶位點位於被Cas9特異性識別的前間隔序列相鄰基序(PAM)的5’處。
  19. 一種用於治療遺傳疾病之系統,該系統包含: (a)基因編輯AAV載體,其包含AAV衣殼及第一載體基因體,該第一載體基因體包含5’ ITR、U6啟動子、sgRNA、5’核定位訊號(NLS)、編碼Cas9的序列及指導該Cas9在包含PCSK9基因之標靶細胞中之表現的調控序列、3’ NLS及3’ ITR,該sgRNA包含至少20個核苷酸,其特異性結合該PCSK9基因中的標靶位點,該標靶位點位於被Cas9特異性識別的前間隔序列相鄰基序(PAM)的5’處;及 (b)供體AAV載體,其包含AAV衣殼及第二載體基因體,該第二載體基因體包含:5’ITR、5’同源定向重組(HDR)臂、轉基因及指導該轉基因在標靶細胞中之表現的調控序列、3’ HDR臂及3’ ITR。
  20. 一種用於治療遺傳疾病之系統,該系統包含: (a)基因編輯載體,其包含: (i)脂質奈米顆粒; (ii)包含至少20個核苷酸之sgRNA,其特異性結合PCSK9基因中的標靶位點,該標靶位點位於被Cas9特異性識別的前間隔序列相鄰基序(PAM)的5’處; (iii)mRNA,其包含5’核定位訊號(NLS)、編碼Cas9之序列、3’ NLS;及 (b)供體AAV載體,其包含AAV衣殼及第二載體基因體,該第二載體基因體包含:5’ITR、5’同源定向重組(HDR)臂、轉基因及指導該轉基因在標靶細胞中之表現的調控序列、3’ HDR臂及3’ ITR。
  21. 如請求項17至19中任一項之系統,其中(a)之該基因編輯AAV載體及(b)之該供體AAV載體具有相同AAV衣殼。
  22. 如請求項21之系統,其中該AAV衣殼選自AAV8、AAV9、rh10、AAV6.2、AAV3B、hu37、rh79及rh64。
  23. 如請求項6至18或18至22中任一項之系統,其中Cas9選自金黃色葡萄球菌Cas9或釀膿鏈球菌Cas9。
  24. 如請求項2至19中任一項之系統,其中該核酸酶處於組織特異性啟動子的控制之下。
  25. 如請求項2至19中任一項之系統,其中該核酸酶處於組成型啟動子的控制之下。
  26. 如請求項24之系統,其中該核酸酶處於肝特異性啟動子、可選擇地人類甲狀腺素結合球蛋白(TBG)啟動子、或雜交肝啟動子(HLP)的控制之下。
  27. 一種如請求項1至26中任一項之系統之用途,其用於治療人類之病症。
  28. 一種下列(a)及(b)用於治療新生兒受試者之肝臟代謝性病症之用途, (a)基因編輯AAV載體,其包含編碼核酸酶之序列及指導該核酸酶在包含PCSK9基因之標靶細胞中之表現的調控序列;及 (b)供體AAV載體,其包含轉基因及指導該轉基因在標靶細胞中之表現的調控序列,該供體載體進一步包含該轉基因匣之同源定向重組(HDR)臂5’及3’。
  29. 如請求項28之用途,其中(a)之該基因編輯AAV載體及(b)之該供體載體經由相同的途徑實質上被同時遞送。
  30. 如請求項28或29之用途,其中(a)之該基因編輯AAV載體以約2 x 10 11GC/mL至約2 x 10 12GC/mL之濃度懸浮於注射用媒劑中。
  31. 如請求項28或29之用途,其中(a)之該AAV靶向載體以約2 x 10 12GC/mL至約1 x 10 13GC/mL之濃度懸浮於注射用媒劑中。
  32. 如請求項28至31中任一項之用途,其中該肝臟代謝性病症為鳥胺酸胺甲醯基轉移酶。
  33. 如請求項28至31中任一項之用途,其中該肝臟代謝性病症為OTC、FH、1型瓜胺酸血症(CTLN1)或苯丙酮尿症。
  34. 一種用於治療遺傳疾病之系統,該系統包含: (a)脂質奈米顆粒(LNP),其包含編碼核酸酶之mRNA序列;及 (b)供體AAV載體,其包含轉基因及指導其在標靶細胞中之表現的調控序列,該供體載體進一步包含該轉基因之同源定向重組(HDR)臂5’及3’。
  35. 如請求項34之系統,其中該核酸酶靶向該PCSK9基因。
  36. 如請求項34之系統,其中該核酸酶靶向PCSK9外顯子7。
  37. 如請求項34之系統,其中該核酸酶為對於PCSK9特異性的巨型核酸酶。
  38. 如請求項37之系統,其中該巨型核酸酶為ARCUS巨型核酸酶。
  39. 如請求項34之系統,其中該核酸酶為Cas9核酸酶,且其中該LNP包含sgRNA。
  40. 如請求項39之系統,其中該Cas9核酸酶的兩側是核定位訊號。
  41. 如請求項39或40之系統,其中該sgRNA包含至少20個核苷酸,其特異性結合該PCSK9基因中的標靶位點,該標靶位點位於被該Cas9特異性識別的前間隔序列相鄰基序(PAM)的5’處。
  42. 如請求項34至41中任一項之系統,其進一步包含RNA聚合酶啟動子。
  43. 如請求項42之系統,其中該RNA聚合酶啟動子為U6啟動子。
  44. 如請求項43之系統,其中該U6啟動子位於該sgRNA之5’處。
  45. 如請求項34至44中任一項之系統,其中該sgRNA與該標靶位點序列100%互補。
  46. 如請求項34至44中任一項之系統,其中該sgRNA與該標靶位點序列小於100%互補。
  47. 如請求項34至46中任一項之系統,其中該轉基因為肝表現的基因。
  48. 如請求項34至47中任一項之系統,其中該轉基因選自OTC、PKU、CTLN1及FH。
  49. 一種用於治療遺傳疾病之系統,該系統包含: (a)基因編輯載體,其包含編碼核酸酶的核酸序列;及 (b)供體載體,其包含編碼用於從PCSK9基因座表現之外源產物的核酸序列,其中插入的核酸序列並不編碼PCSK9, 其中該系統進一步包含指導該核酸酶特異性地靶向天然PCSK9基因座的序列;且 其中在以雙重載體系統投藥後,標靶細胞中的天然PCSK9可選擇地消融或減少。
  50. 一種表現匣,其包含SEQ ID NO: 17之工程化編碼序列或與其共享至少90%同一性的序列。
  51. 如請求項50之表現匣,其進一步包含AAV 5’ ITR及3’ ITR。
  52. 一種AAV載體,其包含如請求項50或51之表現匣。
TW111116003A 2021-04-27 2022-04-27 用於治療遺傳疾病的體內核酸酶媒介的基因靶向之組成物及方法 TW202304528A (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US202163180603P 2021-04-27 2021-04-27
US63/180,603 2021-04-27
US202163242474P 2021-09-09 2021-09-09
US63/242,474 2021-09-09
US202163244205P 2021-09-14 2021-09-14
US63/244,205 2021-09-14
US202263301933P 2022-01-21 2022-01-21
US63/301,933 2022-01-21
US202263331385P 2022-04-15 2022-04-15
US63/331,385 2022-04-15

Publications (1)

Publication Number Publication Date
TW202304528A true TW202304528A (zh) 2023-02-01

Family

ID=83847293

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111116003A TW202304528A (zh) 2021-04-27 2022-04-27 用於治療遺傳疾病的體內核酸酶媒介的基因靶向之組成物及方法

Country Status (12)

Country Link
US (1) US20240197916A1 (zh)
EP (1) EP4330412A1 (zh)
JP (1) JP2024519469A (zh)
KR (1) KR20240001708A (zh)
AU (1) AU2022266662A1 (zh)
BR (1) BR112023021129A2 (zh)
CA (1) CA3216285A1 (zh)
CO (1) CO2023016031A2 (zh)
IL (1) IL307958A (zh)
MX (1) MX2023012747A (zh)
TW (1) TW202304528A (zh)
WO (1) WO2022232232A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240134878A (ko) * 2022-01-21 2024-09-10 더 트러스티스 오브 더 유니버시티 오브 펜실베니아 오르니틴 트랜스카르바밀라제(otc) 결핍증을 치료하는 방법
CN116790604B (zh) * 2023-08-18 2023-10-27 成都中科奥格生物科技有限公司 一种sgRNA、CRISPR/Cas9载体及其构建方法和用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3288594B1 (en) * 2015-04-27 2022-06-29 The Trustees of The University of Pennsylvania Dual aav vector system for crispr/cas9 mediated correction of human disease
MA50803A (fr) * 2017-11-22 2020-09-30 Modernatx Inc Polynucléotides codant pour l'ornithine transcarbamylase pour le traitement de troubles du cycle de l'urée

Also Published As

Publication number Publication date
AU2022266662A9 (en) 2023-11-16
AU2022266662A1 (en) 2023-11-02
CO2023016031A2 (es) 2023-12-11
WO2022232232A1 (en) 2022-11-03
EP4330412A1 (en) 2024-03-06
MX2023012747A (es) 2024-01-05
KR20240001708A (ko) 2024-01-03
CA3216285A1 (en) 2022-11-03
BR112023021129A2 (pt) 2023-12-12
IL307958A (en) 2023-12-01
JP2024519469A (ja) 2024-05-14
US20240197916A1 (en) 2024-06-20

Similar Documents

Publication Publication Date Title
JP2022126765A (ja) 変異aav、及び、細胞、臓器並びに組織への遺伝子導入のための組成物、方法並びに使用法
US20180110877A1 (en) DUAL AAV VECTOR SYSTEM FOR CRISPR/Cas9 MEDIATED CORRECTION OF HUMAN DISEASE
CN113646005A (zh) 用于drg特异性降低转基因表达的组合物
JP2016517278A (ja) スタッファー/フィラーポリヌクレオチド配列を含むベクターおよびその使用方法
US20210363192A1 (en) Engineered aav capsids with increased tropism and aav vectors comprising the engineered capsids and methods of making and using same
US20240197916A1 (en) Compositions and methods for in vivo nuclease-mediated gene targeting for the treatment of genetic disorders
US20230201373A1 (en) Crispr-mediated genome editing with vectors
CN115803064A (zh) 用于drg特异性降低转基因表达的组合物
JP7534290B2 (ja) Gm1ガングリオシドーシスの治療に有用な組成物
US20240207452A1 (en) Novel compositions with brain-specific targeting motifs and compositions containing same
US20210246466A1 (en) Regulatable gene editing compositions and methods
US20220370638A1 (en) Compositions and methods for treatment of maple syrup urine disease
WO2019036484A1 (en) COMPOSITIONS AND METHODS FOR THE TREATMENT OF ARGININOSUCCINIC ACIDURIA
US20230167464A1 (en) Compositions and methods for reducing nuclease expression and off-target activity using a promoter with low transcriptional activity
WO2024015972A2 (en) Compositions and methods for in vivo nuclease-mediated gene targeting for the treatment of genetic disorders in adult patients
US20210261982A1 (en) Raav-mediated nuclease-associated vector integration (raav-navi)
TW202330914A (zh) 用於鳥胺酸胺甲醯基轉移酶(otc)缺乏症之活體內核酸酶介導的治療之組成物及方法
TW202338086A (zh) 有用於治療異染性白質失養症之組成物