TW202303198A - Method for manufacturing an optical display device - Google Patents

Method for manufacturing an optical display device Download PDF

Info

Publication number
TW202303198A
TW202303198A TW110125876A TW110125876A TW202303198A TW 202303198 A TW202303198 A TW 202303198A TW 110125876 A TW110125876 A TW 110125876A TW 110125876 A TW110125876 A TW 110125876A TW 202303198 A TW202303198 A TW 202303198A
Authority
TW
Taiwan
Prior art keywords
oxide film
inorganic oxide
layer
display device
manufacturing
Prior art date
Application number
TW110125876A
Other languages
Chinese (zh)
Other versions
TWI782625B (en
Inventor
施宏欣
Original Assignee
大陸商業成科技(成都)有限公司
大陸商業成光電(深圳)有限公司
大陸商業成光電(無錫)有限公司
英特盛科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商業成科技(成都)有限公司, 大陸商業成光電(深圳)有限公司, 大陸商業成光電(無錫)有限公司, 英特盛科技股份有限公司 filed Critical 大陸商業成科技(成都)有限公司
Application granted granted Critical
Publication of TWI782625B publication Critical patent/TWI782625B/en
Publication of TW202303198A publication Critical patent/TW202303198A/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

The present invention discloses a method for manufacturing an optical display device. First, a first inorganic oxide film is vertically formed on a display layer using a physical vapor deposition method, and then at least one second inorganic oxide film is obliquely formed on the first inorganic oxide film using a physical vapor deposition method. Then, a third inorganic oxide film is vertically formed on the second inorganic oxide film using a physical vapor deposition method. Finally, at least one fourth inorganic oxide film and at least one fifth inorganic oxide film are sequentially and obliquely formed on the third inorganic oxide film using a physical vapor deposition method. Thus, a circular-polarizing layer is formed on the display layer. Since the circular-polarizing layer is formed using a physical vapor deposition method, it is not affected by stress accumulation. When the circular-polarizing layer is formed on a flexible substrate, the influence of multiple bending symmetrical axes needs not to be considered.

Description

光學顯示裝置之製作方法Manufacturing method of optical display device

本發明係關於一種顯示裝置之製作方法,且特別關於一種光學顯示裝置之製作方法。The present invention relates to a manufacturing method of a display device, and in particular to a manufacturing method of an optical display device.

於一有機發光二極體顯示器中,常以金屬材料,例如鎂、銀或鋁 作為電極材料,以增加發光效率,但也因此容易反射外界的環境光,造成用戶觀察到的對比大大降低,故會於元件外部需貼附圓偏光片,此圓偏光片由線偏光片和四分之一波片組成,以藉此阻絕外界環境光,避免顯示器發光受影響。In an organic light-emitting diode display, metal materials such as magnesium, silver or aluminum are often used as electrode materials to increase luminous efficiency, but it is also easy to reflect external ambient light, resulting in greatly reduced contrast observed by users. A circular polarizer needs to be attached to the outside of the component. The circular polarizer is composed of a linear polarizer and a quarter-wave plate, so as to block the external ambient light and prevent the display from being affected by light emission.

然而,圓偏光片會先以貼合製程貼附在聚乙烯醇與三醋酸纖維素之基板上,故應用範圍小,只能單一使用。當顯示器之基板使用軟性基板時,通常會以薄膜封裝層進行封裝,此時需額外考慮貼附圓偏光片彎曲對稱軸的位置與材質,以避免介面發生剝離現象。此外,貼附圓偏光片需使用光學膠,但這將增加厚度,一般總厚度會達到毫米~微米等級,例如50~200微米。由於圓偏光片由線偏光片和四分之一波片組成,所以會有高應力累積,必須考量彎曲對稱軸的位置,且光路徑會受貼合平整度的影響。However, the circular polarizer is first attached to the substrate of polyvinyl alcohol and triacetate cellulose by lamination process, so the application range is limited and it can only be used alone. When the substrate of the display uses a flexible substrate, it is usually packaged with a thin film encapsulation layer. At this time, the position and material of the curved symmetry axis of the attached circular polarizer need to be additionally considered to avoid peeling of the interface. In addition, optical glue is required to attach the circular polarizer, but this will increase the thickness. Generally, the total thickness will reach the millimeter-micron level, for example, 50-200 microns. Since the circular polarizer is composed of a linear polarizer and a quarter wave plate, there will be high stress accumulation, the position of the bending symmetry axis must be considered, and the light path will be affected by the flatness of the bonding.

因此,本發明係在針對上述的困擾,提出一種光學顯示裝置之製作方法,以解決習知所產生的問題。Therefore, the present invention aims at addressing the above-mentioned problems, and proposes a manufacturing method of an optical display device to solve the problems caused by the prior art.

本發明提供一種光學顯示裝置之製作方法,其能依規格直接製作圓偏光層,厚度達奈米~微米等級,且不需要採用光學膠,減少考量多重彎曲對稱軸的位置與應力累積效應,光路徑不受貼合平整度的影響。The present invention provides a manufacturing method of an optical display device, which can directly manufacture a circular polarizing layer according to the specifications, with a thickness of nanometer to micrometer level, and does not need to use optical glue, which reduces the consideration of the position of multiple bending symmetry axes and the stress accumulation effect. Paths are not affected by mate flatness.

在本發明之一實施例中,一種光學顯示裝置之製作方法包含下列步驟:利用第一靶材以物理氣相沈積法與第一沈積方向於一顯示層上形成一第一無機氧化物膜,其中顯示層之法線方向平行第一沈積方向;利用至少一個第二靶材以物理氣相沈積法與第二沈積方向於第一無機氧化物膜上形成至少一層第二無機氧化物膜,其中法線方向與第二沈積方向夾有銳角;利用第三靶材以物理氣相沈積法與第三沈積方向於第二無機氧化物膜上形成一第三無機氧化物膜,其中法線方向平行第三沈積方向;利用至少一個第四靶材以物理氣相沈積法與第四沈積方向於第三無機氧化物膜上形成至少一層第四無機氧化物膜,其中法線方向與第四沈積方向夾有銳角;以及利用至少一個第五靶材以物理氣相沈積法與第五沈積方向於第四無機氧化物膜上形成至少一層第五無機氧化物膜,以於顯示層上形成圓偏光層,其中法線方向與第五沈積方向夾有銳角。In one embodiment of the present invention, a method of manufacturing an optical display device includes the following steps: using a first target material to form a first inorganic oxide film on a display layer by physical vapor deposition and a first deposition direction, Wherein the normal direction of the display layer is parallel to the first deposition direction; using at least one second target to form at least one second inorganic oxide film on the first inorganic oxide film by physical vapor deposition and the second deposition direction, wherein There is an acute angle between the normal direction and the second deposition direction; a third inorganic oxide film is formed on the second inorganic oxide film by physical vapor deposition and the third deposition direction using the third target, wherein the normal direction is parallel The third deposition direction: using at least one fourth target material to form at least one layer of fourth inorganic oxide film on the third inorganic oxide film by physical vapor deposition and the fourth deposition direction, wherein the normal direction and the fourth deposition direction There is an acute angle; and using at least one fifth target material to form at least one fifth inorganic oxide film on the fourth inorganic oxide film by physical vapor deposition method and fifth deposition direction, so as to form a circular polarizing layer on the display layer , where the normal direction forms an acute angle with the fifth deposition direction.

在本發明之一實施例中,第二無機氧化物膜之數量為多層。In one embodiment of the present invention, the number of the second inorganic oxide film is multiple layers.

在本發明之一實施例中,第二靶材之數量為兩個。In one embodiment of the present invention, the number of second targets is two.

在本發明之一實施例中,第四無機氧化物膜之數量為多層,第五無機氧化物膜之數量為多層,第四無機氧化物膜與第五無機氧化物膜交替式設置。In one embodiment of the present invention, the number of the fourth inorganic oxide film is multiple layers, the number of the fifth inorganic oxide film is multiple layers, and the fourth inorganic oxide film and the fifth inorganic oxide film are arranged alternately.

在本發明之一實施例中,第四靶材和第五靶材之材質相同或不同,第四無機氧化物膜與第五無機氧化物膜之材質相同或不同In one embodiment of the present invention, the materials of the fourth target and the fifth target are the same or different, and the materials of the fourth inorganic oxide film and the fifth inorganic oxide film are the same or different

在本發明之一實施例中,第四無機氧化物膜與第五無機氧化物膜之材質相同,第四無機氧化物膜與第五無機氧化物膜皆包含柱狀體,第四無機氧化物膜的柱狀體之生長方向不同於第五無機氧化物膜的柱狀體之生長方向。In one embodiment of the present invention, the material of the fourth inorganic oxide film and the fifth inorganic oxide film are the same, both the fourth inorganic oxide film and the fifth inorganic oxide film contain columns, and the fourth inorganic oxide film The growth direction of the columns of the film is different from the growth direction of the columns of the fifth inorganic oxide film.

在本發明之一實施例中,法線方向與第四沈積方向實質上夾有5~89度,法線方向與第五沈積方向實質上夾有5~89度。In one embodiment of the present invention, the normal direction and the fourth deposition direction are substantially separated by 5-89 degrees, and the normal direction and the fifth deposition direction are substantially separated by 5-89 degrees.

在本發明之一實施例中,法線方向與第二沈積方向實質上夾有5~89度。In one embodiment of the present invention, the normal direction and the second deposition direction substantially have an angle of 5-89 degrees.

在本發明之一實施例中,第一無機氧化物膜、第二無機氧化物膜、第三無機氧化物膜、第四無機氧化物膜與第五無機氧化物膜之形成方法為熱蒸鍍法、電子槍蒸鍍法、雷射沈積法或濺鍍法。In one embodiment of the present invention, the formation method of the first inorganic oxide film, the second inorganic oxide film, the third inorganic oxide film, the fourth inorganic oxide film and the fifth inorganic oxide film is thermal evaporation method, electron gun evaporation method, laser deposition method or sputtering method.

在本發明之一實施例中,顯示層包含一支撐基板、一有機發光二極體層與一薄膜封裝層。支撐基板之表面垂直法線方向,有機發光二極體層設於支撐基板上,薄膜封裝層設於有機發光二極體層與第一無機氧化物膜之間。In one embodiment of the present invention, the display layer includes a support substrate, an organic light emitting diode layer and a thin film encapsulation layer. The surface of the supporting substrate is perpendicular to the normal direction, the organic light emitting diode layer is arranged on the supporting substrate, and the thin film encapsulation layer is arranged between the organic light emitting diode layer and the first inorganic oxide film.

在本發明之一實施例中,支撐基板為可撓性基板。In one embodiment of the invention, the supporting substrate is a flexible substrate.

在本發明之一實施例中,第四無機氧化物膜與第五無機氧化物膜對於沿第一方向之偏振光的折射率相同時,第四無機氧化物膜與第五無機氧化物膜對於沿第二方向之偏振光有高低折射率之變化,第一方向垂直第二方向。In one embodiment of the present invention, when the fourth inorganic oxide film and the fifth inorganic oxide film have the same refractive index for polarized light along the first direction, the fourth inorganic oxide film and the fifth inorganic oxide film have the same The polarized light along the second direction has high and low refractive index changes, and the first direction is perpendicular to the second direction.

在本發明之一實施例中,第一無機氧化物膜、第二無機氧化物膜、第三無機氧化物膜、第四無機氧化物膜與第五無機氧化物膜包含三氧化鎢、氟化鎂、氮化矽、氮氧化矽、二氧化矽、二氧化鈦、二氧化鋯、三氧化二鋁、二氧化鋅、三氧化二鉻、氧化亞錫、氧化銦、五氧化二鉭、三氧化二鐵或氧化鈮。In one embodiment of the present invention, the first inorganic oxide film, the second inorganic oxide film, the third inorganic oxide film, the fourth inorganic oxide film and the fifth inorganic oxide film comprise tungsten trioxide, fluoride Magnesium, silicon nitride, silicon oxynitride, silicon dioxide, titanium dioxide, zirconium dioxide, aluminum oxide, zinc dioxide, chromium oxide, stannous oxide, indium oxide, tantalum pentoxide, iron oxide or niobium oxide.

基於上述,光學顯示裝置之製作方法以物理氣相沈積層依規格直接製作互相堆疊之相位延遲層與線偏光層,總厚度達奈米~微米等級,且不需要採用光學膠,減少考量多重彎曲對稱軸的位置與應力累積效應,光路徑不受貼合平整度的影響。Based on the above, the manufacturing method of the optical display device uses the physical vapor deposition layer to directly manufacture the phase retardation layer and the linear polarizing layer stacked on each other according to the specifications, with a total thickness of nanometer to micrometer level, and does not need to use optical glue, reducing the consideration of multiple bending The position of the axis of symmetry and the effect of stress accumulation, the light path is not affected by the flatness of the fit.

茲為使 貴審查委員對本發明的結構特徵及所達成的功效更有進一步的瞭解與認識,謹佐以較佳的實施例圖及配合詳細的說明,說明如後:In order to make your review committee members have a further understanding and understanding of the structural features and the achieved effects of the present invention, I would like to provide a better embodiment diagram and a detailed description, as follows:

本發明之實施例將藉由下文配合相關圖式進一步加以解說。盡可能的,於圖式與說明書中,相同標號係代表相同或相似構件。於圖式中,基於簡化與方便標示,形狀與厚度可能經過誇大表示。可以理解的是,未特別顯示於圖式中或描述於說明書中之元件,為所屬技術領域中具有通常技術者所知之形態。本領域之通常技術者可依據本發明之內容而進行多種之改變與修改。Embodiments of the present invention will be further explained in conjunction with related figures below. Wherever possible, the same reference numerals have been used throughout the drawings and description to refer to the same or similar components. In the drawings, the shape and thickness may be exaggerated for the sake of simplification and convenient labeling. It should be understood that elements not particularly shown in the drawings or described in the specification are forms known to those skilled in the art. Those skilled in the art can make various changes and modifications according to the content of the present invention.

當一個元件被稱為『在…上』時,它可泛指該元件直接在其他元件上,也可以是有其他元件存在於兩者之中。相反地,當一個元件被稱為『直接在』另一元件,它是不能有其他元件存在於兩者之中間。如本文所用,詞彙『及/或』包含了列出的關聯項目中的一個或多個的任何組合。When an element is referred to as being "on", it can generally mean that the element is directly on other elements, or there may be other elements present in between. Conversely, when an element is referred to as being "directly on" another element, it cannot have the other element in between. As used herein, the word "and/or" includes any combination of one or more of the associated listed items.

於下文中關於“一個實施例”或“一實施例”之描述係指關於至少一實施例內所相關連之一特定元件、結構或特徵。因此,於下文中多處所出現之“一個實施例”或 “一實施例”之多個描述並非針對同一實施例。再者,於一或多個實施例中之特定構件、結構與特徵可依照一適當方式而結合。The following descriptions of "one embodiment" or "an embodiment" refer to at least one specific element, structure or feature associated with one embodiment. Therefore, multiple descriptions of "one embodiment" or "an embodiment" appearing in various places below do not refer to the same embodiment. Furthermore, specific components, structures and features in one or more embodiments may be combined in an appropriate manner.

揭露特別以下述例子加以描述,這些例子僅係用以舉例說明而已,因為對於熟習此技藝者而言,在不脫離本揭示內容之精神和範圍內,當可作各種之更動與潤飾,因此本揭示內容之保護範圍當視後附之申請專利範圍所界定者為準。在通篇說明書與申請專利範圍中,除非內容清楚指定,否則「一」以及「該」的意義包含這一類敘述包括「一或至少一」該元件或成分。此外,如本揭露所用,除非從特定上下文明顯可見將複數個排除在外,否則單數冠詞亦包括複數個元件或成分的敘述。而且,應用在此描述中與下述之全部申請專利範圍中時,除非內容清楚指定,否則「在其中」的意思可包含「在其中」與「在其上」。在通篇說明書與申請專利範圍所使用之用詞(terms),除有特別註明,通常具有每個用詞使用在此領域中、在此揭露之內容中與特殊內容中的平常意義。某些用以描述本揭露之用詞將於下或在此說明書的別處討論,以提供從業人員(practitioner)在有關本揭露之描述上額外的引導。在通篇說明書之任何地方之例子,包含在此所討論之任何用詞之例子的使用,僅係用以舉例說明,當然不限制本揭露或任何例示用詞之範圍與意義。同樣地,本揭露並不限於此說明書中所提出之各種實施例。The disclosure is particularly described with the following examples, which are for illustration only, since various changes and modifications may be made by those skilled in the art without departing from the spirit and scope of the disclosure, and therefore this The scope of protection of the disclosed content shall be subject to the definition of the appended patent application scope. Throughout the specification and claims, the meanings of "a" and "the" include that such description includes "one or at least one" of the element or component, unless the content clearly specifies otherwise. Furthermore, as used in the present disclosure, singular articles also include descriptions of plural elements or components, unless it is obvious from the specific context that the plural is excluded. Also, as applied in this description and all claims below, the meaning of "in" may include "in" and "on" unless the content clearly dictates otherwise. The terms (terms) used throughout the specification and patent claims generally have the ordinary meaning of each term used in this field, in the content of this disclosure and in the specific content, unless otherwise specified. Certain terms used to describe the disclosure are discussed below or elsewhere in this specification to provide practitioners with additional guidance in describing the disclosure. The use of examples anywhere throughout the specification, including examples of any terms discussed herein, is for illustration only and certainly does not limit the scope and meaning of the disclosure or any exemplified term. Likewise, the present disclosure is not limited to the various embodiments presented in this specification.

可了解如在此所使用的用詞「包含(comprising)」、「包含(including)」、「具有(having)」、「含有(containing)」、「包含(involving)」等等,為開放性的(open-ended),即意指包含但不限於。另外,本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制發明作之申請專利範圍。It will be understood that the terms "comprising", "including", "having", "containing", "involving", etc. as used herein are open-ended The (open-ended) means including but not limited to. In addition, any embodiment or scope of claims of the present invention does not necessarily achieve all the objectives or advantages or features disclosed in the present invention. In addition, the abstract and title are only used to assist in the search of patent documents, and are not used to limit the scope of patent applications for inventions.

在此所使用的用詞「實質上(substantially)」、「大約(around)」、「約(about)」或「近乎(approximately)」應大體上意味在給定值或範圍的20%以內,較佳係在10%以內。此外,在此所提供之數量可為近似的,因此意味著若無特別陳述,可用詞「大約」、「約」或「近乎」加以表示。當一數量、濃度或其他數值或參數有指定的範圍、較佳範圍或表列出上下理想值之時,應視為特別揭露由任何上下限之數對或理想值所構成的所有範圍,不論該等範圍是否分別揭露。舉例而言,如揭露範圍某長度為X公分到Y公分,應視為揭露長度為H公分且H可為X到Y之間之任意實數。The terms "substantially", "around", "about" or "approximately" as used herein shall generally mean within 20% of a given value or range, Preferably within 10%. Furthermore, quantities provided herein may be approximate, thus meaning that the words "about", "about" or "approximately" may be used unless otherwise stated. When a quantity, concentration, or other value or parameter has a specified range, preferred range, or tabulated upper and lower ideal values, it shall be deemed to specifically disclose all ranges formed by any pair of upper and lower limits or ideal values, regardless of Whether the areas are disclosed separately. For example, if a certain length of the disclosed range is X centimeters to Y centimeters, it should be deemed that the disclosed length is H centimeters and H can be any real number between X and Y.

此外,若使用「電(性)耦接」或「電(性)連接」一詞在此係包含任何直接及間接的電氣連接手段。舉例而言,若文中描述一第一裝置電性耦接於一第二裝置,則代表該第一裝置可直接連接於該第二裝置,或透過其他裝置或連接手段間接地連接至該第二裝置。另外,若描述關於電訊號之傳輸、提供,熟習此技藝者應該可了解電訊號之傳遞過程中可能伴隨衰減或其他非理想性之變化,但電訊號傳輸或提供之來源與接收端若無特別敘明,實質上應視為同一訊號。舉例而言,若由電子電路之端點A傳輸(或提供)電訊號S給電子電路之端點B,其中可能經過一電晶體開關之源汲極兩端及/或可能之雜散電容而產生電壓降,但此設計之目的若非刻意使用傳輸(或提供)時產生之衰減或其他非理想性之變化而達到某些特定的技術效果,電訊號S在電子電路之端點A與端點B應可視為實質上為同一訊號。In addition, if the term "electrical (sexual) coupling" or "electrical (sexual) connection" is used herein, it includes any direct and indirect electrical connection means. For example, if it is described that a first device is electrically coupled to a second device, it means that the first device can be directly connected to the second device, or indirectly connected to the second device through other devices or connection means. device. In addition, if you describe the transmission and provision of electrical signals, those familiar with the art should be able to understand that the transmission of electrical signals may be accompanied by attenuation or other non-ideal changes, but if the source and receiver of electrical signal transmission or provision are not special In essence, it should be regarded as the same signal. For example, if an electrical signal S is transmitted (or provided) from terminal A of the electronic circuit to terminal B of the electronic circuit, it may pass through the source and drain terminals of a transistor switch and/or possible stray capacitance. A voltage drop is generated, but if the purpose of this design is not to deliberately use the attenuation or other non-ideal changes generated during transmission (or provision) to achieve certain specific technical effects, the electrical signal S is between the terminal A and the terminal of the electronic circuit. B should be considered as substantially the same signal.

除非特別說明,一些條件句或字詞,例如「可以(can)」、「可能(could)」、「也許(might)」,或「可(may)」,通常是試圖表達本案實施例具有,但是也可以解釋成可能不需要的特徵、元件,或步驟。在其他實施例中,這些特徵、元件,或步驟可能是不需要的。Unless otherwise specified, some conditional sentences or words, such as "can (can)", "maybe (could)", "maybe (might)", or "may" are usually intended to express that the embodiments of the present case have, However, it may also be interpreted as a feature, element, or step that may not be required. In other embodiments, these features, elements, or steps may not be required.

以下將提出一種光學顯示裝置之製作方法,其係以物理氣相沈積層依規格直接製作互相堆疊之相位延遲層與線偏光層,總厚度達奈米~微米等級,且不需要採用光學膠,用在可撓性基板上時減少考量多重彎曲對稱軸的位置與應力累積效應,光路徑亦不受貼合平整度的影響。The following will propose a manufacturing method for an optical display device, which uses physical vapor deposition layers to directly fabricate phase retardation layers and linear polarizing layers stacked on each other according to specifications, with a total thickness of nanometers to micrometers, and does not require the use of optical glue. When used on flexible substrates, the position of multiple bending symmetry axes and the effect of stress accumulation are reduced, and the light path is not affected by the flatness of bonding.

第1圖為本發明之第一實施例之光學顯示裝置之結構剖視圖。請參閱第1圖,在光學顯示裝置1之製作方法中,先利用第一靶材以物理氣相沈積法與第一沈積方向於一顯示層10上形成一第一無機氧化物膜11,其中顯示層10之法線方向平行第一沈積方向。接著,利用至少一個第二靶材以物理氣相沈積法與第二沈積方向於第一無機氧化物膜11上形成至少一層第二無機氧化物膜12,其中顯示層10之法線方向與第二沈積方向夾有銳角,此銳角例如實質上為5~89度。此外,第二靶材之數量取決於所選擇的材質,可為一個或兩個,本發明並不限於此。再來,利用第三靶材以物理氣相沈積法與第三沈積方向於第二無機氧化物膜12上形成一第三無機氧化物膜13,以於顯示層10上形成相位延遲層,其中顯示層10之法線方向平行第三沈積方向。第一無機氧化物膜11與第三無機氧化物膜13用以包覆第二無機氧化物膜12,以避免受其他層影響。此相位延遲層具有雙折射率,可藉由折射率差與相位延遲層之厚度來調整相位延遲之度數,例如45度、90度、120度或180度等等。Fig. 1 is a cross-sectional view of the structure of an optical display device according to a first embodiment of the present invention. Please refer to FIG. 1, in the manufacturing method of the optical display device 1, a first inorganic oxide film 11 is formed on a display layer 10 by physical vapor deposition and a first deposition direction using a first target, wherein The normal direction of the display layer 10 is parallel to the first deposition direction. Next, at least one second inorganic oxide film 12 is formed on the first inorganic oxide film 11 by physical vapor deposition and a second deposition direction by using at least one second target, wherein the normal direction of the display layer 10 is the same as the first inorganic oxide film. There is an acute angle between the two deposition directions, and the acute angle is, for example, substantially 5-89 degrees. In addition, the number of the second target depends on the selected material, and may be one or two, and the present invention is not limited thereto. Next, a third inorganic oxide film 13 is formed on the second inorganic oxide film 12 by physical vapor deposition and a third deposition direction using a third target, so as to form a phase retardation layer on the display layer 10, wherein The normal direction of the display layer 10 is parallel to the third deposition direction. The first inorganic oxide film 11 and the third inorganic oxide film 13 are used to cover the second inorganic oxide film 12 to avoid being affected by other layers. The phase retardation layer has birefringence, and the degree of phase retardation can be adjusted by the refractive index difference and the thickness of the phase retardation layer, such as 45 degrees, 90 degrees, 120 degrees or 180 degrees, etc.

最後,先利用至少一個第四靶材以物理氣相沈積法與第四沈積方向於第三無機氧化物膜13上形成至少一層第四無機氧化物膜14,其中顯示層10之法線方向與第四沈積方向夾有銳角,此銳角例如實質上為5~89度。接著,再利用至少一個第五靶材以物理氣相沈積法與第五沈積方向於第四無機氧化物膜14形成至少一層第五無機氧化物膜15,以於相位延遲層上形成線偏光層,使顯示層10上形成圓偏光層,其中顯示層10之法線方向與第五沈積方向夾有銳角,此銳角例如實質上為5~89度。圓偏光層能為顯示層10阻隔環境光,使顯示影像具有高對比功能。第四靶材和第五靶材之材質相同或不同,第四無機氧化物膜14與第五無機氧化物膜15之材質相同或不同。上述第一無機氧化物膜11、第二無機氧化物膜12、第三無機氧化物膜13、第四無機氧化物膜14與第五無機氧化物膜15之形成方法皆為物理氣相沈積法,包括熱蒸鍍法、電子槍蒸鍍法、雷射沈積法或濺鍍法,但本發明不限於此。因為使用物理氣相沈積法,所以圓偏光層之總厚度達奈米~微米等級,且不需要採用光學膠,用在可撓性基板上時減少考量多重彎曲對稱軸的位置與應力累積效應,光路徑亦不受貼合平整度的影響,尤其是應用在擴增實境技術、虛擬實境技術或穿戴式裝置時。實務上,第一無機氧化物膜11、第二無機氧化物膜12、第三無機氧化物膜13、第四無機氧化物膜14與第五無機氧化物膜15包含的元素可有鈦、鋯、鋁、鉭、鋅、鉻、錫、銦、鐵、鎂、矽或鈮,故第一無機氧化物膜11、第二無機氧化物膜12、第三無機氧化物膜13、第四無機氧化物膜14與第五無機氧化物膜15可包含三氧化鎢、氟化鎂、氮化矽、氮氧化矽、二氧化矽、二氧化鈦、二氧化鋯、三氧化二鋁、二氧化鋅、三氧化二鉻、氧化亞錫、氧化銦、五氧化二鉭、三氧化二鐵或氧化鈮(NbO 5) ,但本發明不限於此。 Finally, at least one fourth inorganic oxide film 14 is formed on the third inorganic oxide film 13 by physical vapor deposition and the fourth deposition direction by using at least one fourth target material, wherein the normal direction of the display layer 10 is the same as The fourth deposition direction includes an acute angle, for example, the acute angle is substantially 5-89 degrees. Next, using at least one fifth target material to form at least one fifth inorganic oxide film 15 on the fourth inorganic oxide film 14 by physical vapor deposition and the fifth deposition direction, so as to form a linear polarizing layer on the phase retardation layer , forming a circular polarizing layer on the display layer 10, wherein the normal direction of the display layer 10 forms an acute angle with the fifth deposition direction, and the acute angle is, for example, substantially 5-89 degrees. The circular polarizing layer can block ambient light for the display layer 10, so that the displayed image has a high contrast function. The materials of the fourth target and the fifth target are the same or different, and the materials of the fourth inorganic oxide film 14 and the fifth inorganic oxide film 15 are the same or different. The formation methods of the first inorganic oxide film 11, the second inorganic oxide film 12, the third inorganic oxide film 13, the fourth inorganic oxide film 14 and the fifth inorganic oxide film 15 are all physical vapor deposition methods. , including thermal evaporation, electron gun evaporation, laser deposition or sputtering, but the present invention is not limited thereto. Because the physical vapor deposition method is used, the total thickness of the circular polarizing layer is on the order of nanometers to micrometers, and no optical glue is required. When it is used on a flexible substrate, the position of multiple bending symmetry axes and the stress accumulation effect are reduced. The light path is also not affected by the flatness of the fit, especially when applied to augmented reality technology, virtual reality technology or wearable devices. In practice, the elements contained in the first inorganic oxide film 11, the second inorganic oxide film 12, the third inorganic oxide film 13, the fourth inorganic oxide film 14 and the fifth inorganic oxide film 15 may include titanium, zirconium , aluminum, tantalum, zinc, chromium, tin, indium, iron, magnesium, silicon or niobium, so the first inorganic oxide film 11, the second inorganic oxide film 12, the third inorganic oxide film 13, the fourth inorganic oxide film The material film 14 and the fifth inorganic oxide film 15 may include tungsten trioxide, magnesium fluoride, silicon nitride, silicon oxynitride, silicon dioxide, titanium dioxide, zirconium dioxide, aluminum oxide, zinc dioxide, trioxide Chromium, stannous oxide, indium oxide, tantalum pentoxide, ferric oxide or niobium oxide (NbO 5 ), but the present invention is not limited thereto.

在本發明之某些實施例中,顯示層10可包含一支撐基板100、一有機發光二極體層101與一薄膜封裝(TFE)層102,其中支撐基板100可為可撓性基板。支撐基板100之表面垂直顯示層10之法線方向,即支撐基板100之法線方向平行顯示層10之法線方向。有機發光二極體層101設於支撐基板100上,薄膜封裝層102設於有機發光二極體層101與第一無機氧化物膜11之間,使第一無機氧化物膜11與薄膜封裝層102之間呈無結構設置。In some embodiments of the present invention, the display layer 10 may include a support substrate 100 , an OLED layer 101 and a thin film encapsulation (TFE) layer 102 , wherein the support substrate 100 may be a flexible substrate. The surface of the supporting substrate 100 is perpendicular to the normal direction of the display layer 10 , that is, the normal direction of the supporting substrate 100 is parallel to the normal direction of the display layer 10 . The organic light emitting diode layer 101 is disposed on the supporting substrate 100, and the thin film encapsulation layer 102 is disposed between the organic light emitting diode layer 101 and the first inorganic oxide film 11, so that the first inorganic oxide film 11 and the thin film encapsulation layer 102 The space is unstructured.

第2圖為本發明之一實施例之被生長層及其上之柱狀體之結構剖視圖。請參閱第1圖與第2圖,第二無機氧化物膜12、第四無機氧化物膜14與第五無機氧化物膜15皆包含規律形成的柱狀體,故有雙折射特性。因光之入射方向造成不同諧振,進而造成不同折射率。第二無機氧化物膜12、第四無機氧化物膜14與第五無機氧化物膜15分別設於第一無機氧化物膜11、第三無機氧化物膜13與第四無機氧化物膜14上,故以被生長層2代表第一無機氧化物膜11、第三無機氧化物膜13或第四無機氧化物膜14,使被生長層2與顯示層10之法線方向皆為相同。被生長層2上沈積有柱狀體3,且柱狀體3是以靶材4以物理氣相沈積法向被生長層2沈積而成。如第2圖所示,被生長層2之法線方向與靶材4向被生長層2沈積的方向夾有銳角,即α角,α角為5~89度。柱狀體3之生長方向與被生長層2之法線方向亦夾有銳角,即β角,β角為5~89度。當第四無機氧化物膜14與第五無機氧化物膜15之材質相同時,第四無機氧化物膜14的柱狀體之生長方向可不同於第五無機氧化物膜15的柱狀體之生長方向。當第四無機氧化物膜14與第五無機氧化物膜15之材質不同時,第四無機氧化物膜14的柱狀體之生長方向不同或相同於第五無機氧化物膜15的柱狀體之生長方向。Figure 2 is a cross-sectional view of the structure of the grown layer and the columnar body on it according to an embodiment of the present invention. Please refer to FIG. 1 and FIG. 2 , the second inorganic oxide film 12 , the fourth inorganic oxide film 14 and the fifth inorganic oxide film 15 all include regularly formed columns, so they have birefringence characteristics. Different resonances are caused by the incident direction of light, which in turn causes different refractive indices. The second inorganic oxide film 12, the fourth inorganic oxide film 14, and the fifth inorganic oxide film 15 are respectively provided on the first inorganic oxide film 11, the third inorganic oxide film 13, and the fourth inorganic oxide film 14. , so the grown layer 2 is used to represent the first inorganic oxide film 11, the third inorganic oxide film 13 or the fourth inorganic oxide film 14, so that the normal directions of the grown layer 2 and the display layer 10 are all the same. The columnar body 3 is deposited on the grown layer 2, and the columnar body 3 is formed by depositing the target material 4 onto the grown layer 2 by physical vapor deposition. As shown in FIG. 2, the normal direction of the grown layer 2 and the direction in which the target material 4 is deposited toward the grown layer 2 form an acute angle, that is, angle α, and the angle α is 5 to 89 degrees. The growth direction of the columnar body 3 and the normal direction of the grown layer 2 also have an acute angle, that is, a β angle, and the β angle is 5-89 degrees. When the materials of the fourth inorganic oxide film 14 and the fifth inorganic oxide film 15 are the same, the growth direction of the columns of the fourth inorganic oxide film 14 can be different from that of the columns of the fifth inorganic oxide film 15. growth direction. When the materials of the fourth inorganic oxide film 14 and the fifth inorganic oxide film 15 are different, the growth direction of the columns of the fourth inorganic oxide film 14 is different from or the same as that of the columns of the fifth inorganic oxide film 15 the direction of growth.

晶體光學對雙折射描述,有三主軸折射率,其中n1之方向垂直柱狀體3之成長方向,n2之方向垂直柱狀體3之成長方向與被生長層2之法線方向,n3則沿著柱狀體3之成長方向。第四無機氧化物膜14與第五無機氧化物膜15對於P偏振光的折射率Np=N1cosβ+N3cosβ,其中N1代表第四無機氧化物膜14或第五無機氧化物膜15在n1方向上的折射率,N3代表第四無機氧化物膜14或第五無機氧化物膜15在n3方向上的折射率。當控制第四無機氧化物膜14與第五無機氧化物膜15對於沿第一方向之偏振光的折射率相同時,第四無機氧化物膜14與第五無機氧化物膜15對於沿第二方向之偏振光有高低折射率之變化,其中第一方向垂直第二方向。舉例來說,當控制第四無機氧化物膜14與第五無機氧化物膜15對應之折射率Np相同時,P偏振光經過線偏振層時沒有折射率變化,則P偏振光屬於高穿透效果,故N1、N3與β用以控制P偏振光之折射率Np。S偏振光的折射率Ns=N2,其中N2代表第四無機氧化物膜14或第五無機氧化物膜15在n2方向上的折射率。控制第四無機氧化物膜14或第五無機氧化物膜15之N2產生差異,使第四無機氧化物膜14與第五無機氧化物膜15對於S偏振光有高低折射率之變化,且其厚度達光之四分之一波長,則S偏振光會有高反射效果,故第四無機氧化物膜14或第五無機氧化物膜15之N2控制S偏振光之折射率Ns。表一表示無機氧化膜以二氧化鋯與二氧化鈦形成時,對應之α角、β角、N1、N2與N3。 材料 Α β N1 N2 N3 二氧化鋯 30° 16.1° 1.948 1.969 2.003 二氧化鋯 65° 47.0° 1.502 1.575 1.788 二氧化鈦 30° 16.1° 2.437 2.452 2.552 表一 Crystal optics describes birefringence with three major axes of refraction, where the direction of n1 is perpendicular to the growth direction of the columnar body 3, the direction of n2 is perpendicular to the growth direction of the columnar body 3 and the normal direction of the grown layer 2, and n3 is along the The growth direction of the columnar body 3 . The refractive index of the fourth inorganic oxide film 14 and the fifth inorganic oxide film 15 for P polarized light Np=N1cosβ+N3cosβ, where N1 represents the fourth inorganic oxide film 14 or the fifth inorganic oxide film 15 in the n1 direction N3 represents the refractive index of the fourth inorganic oxide film 14 or the fifth inorganic oxide film 15 in the n3 direction. When the fourth inorganic oxide film 14 and the fifth inorganic oxide film 15 are controlled to have the same refractive index for polarized light along the first direction, the fourth inorganic oxide film 14 and the fifth inorganic oxide film 15 have the same refractive index for the polarized light along the second direction. The direction of polarized light has high and low refractive index changes, wherein the first direction is perpendicular to the second direction. For example, when the refractive index Np corresponding to the fourth inorganic oxide film 14 and the fifth inorganic oxide film 15 are controlled to be the same, there is no change in the refractive index when the P-polarized light passes through the linear polarization layer, and the P-polarized light belongs to high transmission. Therefore, N1, N3 and β are used to control the refractive index Np of P-polarized light. The refractive index of S polarized light Ns=N2, where N2 represents the refractive index of the fourth inorganic oxide film 14 or the fifth inorganic oxide film 15 in the n2 direction. Control the N2 difference of the fourth inorganic oxide film 14 or the fifth inorganic oxide film 15, so that the fourth inorganic oxide film 14 and the fifth inorganic oxide film 15 have high and low refractive index changes for S polarized light, and the If the thickness reaches a quarter wavelength of the light, the S-polarized light will have a high reflection effect, so N2 of the fourth inorganic oxide film 14 or the fifth inorganic oxide film 15 controls the refractive index Ns of the S-polarized light. Table 1 shows the corresponding α angle, β angle, N1, N2 and N3 when the inorganic oxide film is formed of zirconium dioxide and titanium dioxide. Material Α beta N1 N2 N3 zirconium dioxide 30° 16.1° 1.948 1.969 2.003 zirconium dioxide 65° 47.0° 1.502 1.575 1.788 Titanium dioxide 30° 16.1° 2.437 2.452 2.552 Table I

第二無機氧化物膜12具有傾斜柱狀體或鋸齒柱狀體,第二無機氧化物膜12對應之相位延遲之度數Δϕ與第二無機氧化物膜12之厚度d及折射率差Δn相關。如公式(1)所示,λ為入射光之波長,n x與n y分別代表第二無機氧化物膜12在x與y方向上的折射率。

Figure 02_image001
(1) The second inorganic oxide film 12 has inclined columns or zigzag columns, and the degree of phase retardation Δϕ corresponding to the second inorganic oxide film 12 is related to the thickness d and the refractive index difference Δn of the second inorganic oxide film 12 . As shown in formula (1), λ is the wavelength of the incident light, and n x and ny represent the refractive index of the second inorganic oxide film 12 in the x and y directions, respectively.
Figure 02_image001
(1)

第3圖為本發明之第二實施例之光學顯示裝置之結構剖視圖。請參閱第3圖,相較第一實施例,第二實施例中的第二無機氧化物膜12、第四無機氧化物膜14與第五無機氧化物膜之數量皆為多層,其中第四無機氧化物膜14與第五無機氧化物膜15交替式設置。Fig. 3 is a cross-sectional view of the structure of an optical display device according to a second embodiment of the present invention. Please refer to Fig. 3, compared with the first embodiment, the number of the second inorganic oxide film 12, the fourth inorganic oxide film 14 and the fifth inorganic oxide film in the second embodiment are all multi-layers, and the fourth The inorganic oxide films 14 and the fifth inorganic oxide films 15 are arranged alternately.

以下介紹相位延遲層之各種實施態樣。Various implementation aspects of the phase retardation layer are introduced below.

第4(a)圖為本發明之一實施例之具有傾斜柱狀體與鋸齒柱狀體之二氧化鈦膜與氟化鎂膜之掃描電子顯微鏡影像。第4(b)圖為本發明之一實施例之二氧化鈦膜之相位延遲與光波長之曲線圖。第4(c)圖為本發明之一實施例之氟化鎂膜之相位延遲與光波長之曲線圖。在第4(a)圖中,左上圖代表具有傾斜柱狀體之二氧化鈦膜,其中α為60度;左下圖代表具有鋸齒柱狀體之二氧化鈦膜,其中α為60度;右上代表具有傾斜柱狀體之氟化鎂膜,其中α為60度;右下代表具有鋸齒柱狀體之氟化鎂膜,其中α為60度。在第4(b)圖中,TF-0代表α為0度且具有傾斜柱狀體之二氧化鈦膜,其中厚度為0.73微米;以實線表示之TF-60代表α為60度且具有傾斜柱狀體之二氧化鈦膜,其中厚度為0.73微米;TZ-60代表α為60度且具有鋸齒柱狀體之二氧化鈦膜,其中厚度為0.73微米;以虛線表示之TF-60代表α為60度且具有傾斜柱狀體之二氧化鈦膜,其中厚度為1.85微米。在第4(c)圖中,MF-0代表α為0度且具有傾斜柱狀體之氟化鎂膜,其中厚度為0.73微米;以實線表示之MF-60代表α為60度且具有傾斜柱狀體之氟化鎂膜,其中厚度為0.73微米;MZ-60代表α為60度且具有鋸齒柱狀體之氟化鎂膜,其中厚度為0.73微米;以虛線表示之MF-60代表α為60度且具有傾斜柱狀體之氟化鎂膜,其中厚度為1.85微米。表二表示具有傾斜柱狀體與鋸齒柱狀體之二氧化鈦膜與氟化鎂膜對應不同α角所具備的折射率差Δn,其中光波長為633奈米。如表二所示,二氧化鈦膜相較氟化鎂膜在折射率差Δn之變化較大,且不管是對二氧化鈦膜或氟化鎂膜,α角為60度時,會具有最大折射率差Δn。 材料 α 傾斜柱狀體 鋸齒柱狀體 二氧化鈦 0.005 0.007 45° 0.045 0.045 60° 0.063 0.059 70° 0.050 0.050 氟化鎂 0.001 0.001 45° 0.003 0.003 60° 0.004 0.004 70° 0.003 0.003 表二 Figure 4(a) is a scanning electron microscope image of a titanium dioxide film and a magnesium fluoride film with inclined columns and sawtooth columns according to an embodiment of the present invention. Figure 4(b) is a graph of the phase retardation of the titanium dioxide film and the light wavelength according to an embodiment of the present invention. Figure 4(c) is a graph showing the phase retardation and light wavelength of the magnesium fluoride film according to an embodiment of the present invention. In Figure 4(a), the upper left figure represents the titanium dioxide film with inclined columns, where α is 60 degrees; the lower left figure represents the titanium dioxide film with zigzag columns, where α is 60 degrees; the upper right represents the titanium dioxide film with inclined columns Magnesium fluoride film with a shape, where α is 60 degrees; the bottom right represents a magnesium fluoride film with zigzag columns, where α is 60 degrees. In Figure 4(b), TF-0 represents a titanium dioxide film with an α of 0 degrees and inclined columns, with a thickness of 0.73 μm; TF-60 represented by a solid line represents an α of 60 degrees and has inclined columns Titanium dioxide film with a thickness of 0.73 microns; TZ-60 represents a titanium dioxide film with a α of 60 degrees and zigzag columns, with a thickness of 0.73 microns; TF-60 represented by a dotted line represents α is 60 degrees and has Titanium dioxide film of inclined columnar body, wherein the thickness is 1.85 microns. In Figure 4(c), MF-0 represents a magnesium fluoride film with an α of 0 degrees and inclined columns, with a thickness of 0.73 microns; MF-60 represented by a solid line represents an α of 60 degrees and has Magnesium fluoride film with inclined columnar body, the thickness of which is 0.73 microns; MZ-60 represents the magnesium fluoride film with α being 60 degrees and zigzag columnar body, with a thickness of 0.73 microns; MF-60 represented by the dotted line α is 60 degrees and has a magnesium fluoride film with inclined columns, the thickness of which is 1.85 μm. Table 2 shows the refractive index difference Δn of the titanium dioxide film and magnesium fluoride film with inclined columns and sawtooth columns corresponding to different α angles, where the wavelength of light is 633 nm. As shown in Table 2, the refractive index difference Δn of the titanium dioxide film is larger than that of the magnesium fluoride film, and whether it is a titanium dioxide film or a magnesium fluoride film, when the α angle is 60 degrees, there will be a maximum refractive index difference Δn . Material alpha inclined column jagged columnar body Titanium dioxide 0.005 0.007 45° 0.045 0.045 60° 0.063 0.059 70° 0.050 0.050 magnesium fluoride 0.001 0.001 45° 0.003 0.003 60° 0.004 0.004 70° 0.003 0.003 Table II

第5(a)圖為本發明之一實施例之具有傾斜柱狀體與鋸齒柱狀體之二氧化鈦膜之折射率差與α角之曲線圖。第5(b)圖為本發明之一實施例之具有傾斜柱狀體與鋸齒柱狀體之二氧化鈦膜之相位延遲與光波長之曲線圖。在第5(a)圖與第5(b)圖中,A代表α為60度且具有傾斜柱狀體之二氧化鈦膜,其中厚度為2.05微米,B代表α為60度且具有鋸齒柱狀體之二氧化鈦膜,其中厚度為2.05微米。此外,第5(a)圖是對應光波長為532奈米的折射率差與α角之曲線圖。Figure 5(a) is a graph of the refractive index difference and α angle of a titanium dioxide film with inclined columns and sawtooth columns according to an embodiment of the present invention. Fig. 5(b) is a graph of phase retardation and light wavelength of a titanium dioxide film with inclined columns and sawtooth columns according to an embodiment of the present invention. In Fig. 5(a) and Fig. 5(b), A represents a titanium dioxide film with an α of 60 degrees and oblique columns with a thickness of 2.05 μm, and B represents a α of 60 degrees with serrated columns Titanium dioxide film, wherein the thickness is 2.05 microns. In addition, Figure 5(a) is a graph of the refractive index difference and α angle corresponding to the light wavelength of 532 nm.

第6(a)圖為本發明之一實施例之摻雜有二氧化鈦之五氧化二鉭膜之結構剖視與俯視之掃描電子顯微鏡影像。第6(b)圖為本發明之一實施例之摻雜有二氧化鈦之五氧化二鉭膜之厚度相對折射率差與穿透損失之數據圖。第6(c)圖為本發明之一實施例之二氧化鈦之摻雜度相對摻雜有二氧化鈦之五氧化二鉭膜之穿透度之數據圖。第6(d)圖為本發明之一實施例之摻雜有二氧化鈦之五氧化二鉭膜之光波長與相位延遲之曲線圖。如第6(a)圖所示,摻雜有二氧化鈦之五氧化二鉭膜對應之α角為70度,其中二氧化鈦之摻雜度為5重量百分比(%),左圖為剖視圖,右圖為俯視圖。如第6(b)圖所示,當摻雜有二氧化鈦之五氧化二鉭膜之厚度小於10奈米時,折射率差為最大。如第6(c)圖所示,當二氧化鈦之摻雜度為5%時,穿透度為最佳。如第6(d)圖所示,當光波長從400~700奈米時,相位延遲約為115奈米。Fig. 6(a) is a scanning electron microscope image of a cross-sectional structure and a top view of a tantalum pentoxide film doped with titanium dioxide according to an embodiment of the present invention. Figure 6(b) is a graph showing the data of the thickness of the tantalum pentoxide film doped with titanium dioxide versus the refractive index difference and the penetration loss according to an embodiment of the present invention. Figure 6(c) is a data graph of the doping degree of titanium dioxide relative to the penetration of the tantalum pentoxide film doped with titanium dioxide according to an embodiment of the present invention. Fig. 6(d) is a graph of optical wavelength and phase retardation of a tantalum pentoxide film doped with titanium dioxide according to an embodiment of the present invention. As shown in Figure 6(a), the α angle corresponding to the tantalum pentoxide film doped with titanium dioxide is 70 degrees, and the doping degree of titanium dioxide is 5% by weight. The left figure is a cross-sectional view, and the right figure is top view. As shown in FIG. 6(b), when the thickness of the titanium dioxide-doped tantalum pentoxide film is less than 10 nm, the refractive index difference is the largest. As shown in Figure 6(c), when the doping degree of titanium dioxide is 5%, the penetration is the best. As shown in Figure 6(d), when the light wavelength is from 400 to 700 nm, the phase delay is about 115 nm.

第7(a)圖為本發明之一實施例之週期式多層結構之結構剖視圖。第7(b)圖為本發明之一實施例之週期式多層結構之一單元結構之相位延遲與光波長之曲線圖及週期式多層結構之掃描電子顯微鏡影像與相位延遲與光波長之曲線圖。第7(c)圖為本發明之另一實施例之週期式多層結構之相位延遲與光波長之曲線圖。第7(d)圖為本發明之一實施例之週期式多層結構之穿透度與光波長之曲線圖。如第7(a)圖所示,週期式多層結構5包含多個單元結構50,每一單元結構50包含以之五氧化二鉭為材質之二層無機氧化物膜500及其之間的無機氧化物膜501。無機氧化物膜500與無機氧化物膜501對應之α角為75度,無機氧化物膜500包含未傾斜柱狀體,無機氧化物膜501包含傾斜柱狀體。每一單元結構50之厚度為246±5奈米,無機氧化物膜500之厚度為48±2奈米,無機氧化物膜501之厚度為150±2奈米。在光波長為632.8奈米時,無機氧化物膜500在x與y方向上的折射率分別為1.453與1.547。在光波長為632.8奈米時,無機氧化物膜501在x與y方向上的折射率分別為1.662與1.636。在第7(b)圖中,左圖表示在光波長為400~700奈米時,單元結構之相位延遲為3.35±0.52°;中間圖表示具有三個單元結構之週期式多層結構之掃描電子顯微鏡影像;右圖表示在光波長為400~700奈米時,具有三個單元結構之週期式多層結構之相位延遲為10.41±1.16°。對於第7(c)圖與第7(d)圖,使用的是具有二十三個單元結構之週期式多層結構,同樣如第7(a)圖所示,無機氧化物膜500之厚度為53奈米,對應之α角為78度,無機氧化物膜501之厚度為149奈米,對應之α角為73度。如第7(c)圖所示,在光波長為400~700奈米時,週期式多層結構之相位延遲約為89.33度。如第7(d)圖所示,在光波長為400~700奈米時,週期式多層結構之穿透度約為95%。Figure 7(a) is a structural cross-sectional view of a periodic multilayer structure according to an embodiment of the present invention. Figure 7(b) is a graph of the phase delay and light wavelength of a unit structure of a periodic multilayer structure of an embodiment of the present invention and a scanning electron microscope image of the periodic multilayer structure and a graph of phase delay and light wavelength . Fig. 7(c) is a graph of phase retardation and light wavelength of a periodic multilayer structure according to another embodiment of the present invention. Fig. 7(d) is a graph of the transmittance and light wavelength of the periodic multilayer structure of an embodiment of the present invention. As shown in Figure 7(a), the periodic multilayer structure 5 includes a plurality of unit structures 50, and each unit structure 50 includes a two-layer inorganic oxide film 500 made of tantalum pentoxide and an inorganic layer between them. oxide film 501 . The angle α corresponding to the inorganic oxide film 500 and the inorganic oxide film 501 is 75 degrees, the inorganic oxide film 500 includes non-inclined columns, and the inorganic oxide film 501 includes inclined columns. The thickness of each unit structure 50 is 246±5 nm, the thickness of the inorganic oxide film 500 is 48±2 nm, and the thickness of the inorganic oxide film 501 is 150±2 nm. When the light wavelength is 632.8 nm, the refractive indices of the inorganic oxide film 500 in the x and y directions are 1.453 and 1.547, respectively. When the light wavelength is 632.8 nm, the refractive indices of the inorganic oxide film 501 in the x and y directions are 1.662 and 1.636, respectively. In Figure 7(b), the left figure shows that when the light wavelength is 400~700 nm, the phase delay of the unit structure is 3.35±0.52°; the middle figure shows the scanning electron of a periodic multilayer structure with three unit structures Microscope image; the right figure shows that the phase retardation of the periodic multilayer structure with three unit structures is 10.41±1.16° when the light wavelength is 400~700 nm. For Figure 7(c) and Figure 7(d), a periodic multilayer structure with twenty-three unit structures is used. Also as shown in Figure 7(a), the thickness of the inorganic oxide film 500 is The thickness of the inorganic oxide film 501 is 149 nm, and the corresponding angle α is 73 degrees. As shown in Figure 7(c), when the light wavelength is 400~700 nm, the phase delay of the periodic multilayer structure is about 89.33 degrees. As shown in Figure 7(d), when the wavelength of light is 400-700 nm, the transmittance of the periodic multilayer structure is about 95%.

根據上述實施例,光學顯示裝置之製作方法以物理氣相沈積層依規格直接製作互相堆疊之相位延遲層與線偏光層,使圓偏光層與薄膜封裝層之間呈無結構設置,圓偏光層之總厚度達奈米~微米等級,且不需要採用光學膠,用在可撓性基板上時減少考量多重彎曲對稱軸的位置與應力累積效應,光路徑亦不受貼合平整度的影響。According to the above-mentioned embodiments, the manufacturing method of the optical display device uses the physical vapor deposition layer to directly manufacture the phase retardation layer and the linear polarizing layer stacked on each other according to the specifications, so that the circular polarizing layer and the thin film packaging layer are arranged without structure, and the circular polarizing layer The total thickness is on the order of nanometers to micrometers, and there is no need to use optical glue. When used on flexible substrates, the position of multiple bending symmetry axes and the effect of stress accumulation are less considered, and the optical path is not affected by the flatness of lamination.

以上所述者,僅為本發明一較佳實施例而已,並非用來限定本發明實施之範圍,故舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。The above is only a preferred embodiment of the present invention, and is not used to limit the scope of the present invention. Therefore, all equal changes and modifications are made according to the shape, structure, characteristics and spirit described in the patent scope of the present invention. , should be included in the patent application scope of the present invention.

1:光學顯示裝置 10:顯示層 100:支撐基板 101:有機發光二極體層 102:薄膜封裝層 11:第一無機氧化物膜 12:第二無機氧化物膜 13:第三無機氧化物膜 14:第四無機氧化物膜 15:第五無機氧化物膜 2:被生長層 3:柱狀體 4:靶材 5:週期式多層結構 50:單元結構 500:無機氧化物膜 501:無機氧化物膜 n1、n2、n3、x、y、z:方向 1: Optical display device 10: Display layer 100: supporting substrate 101: Organic Light Emitting Diode Layer 102: Thin film encapsulation layer 11: The first inorganic oxide film 12: Second inorganic oxide film 13: The third inorganic oxide film 14: Fourth inorganic oxide film 15: Fifth inorganic oxide film 2: Growth layer 3: columnar body 4: Target 5: Periodic multi-layer structure 50: unit structure 500: Inorganic oxide film 501: Inorganic oxide film n1, n2, n3, x, y, z: direction

第1圖為本發明之第一實施例之光學顯示裝置之結構剖視圖。 第2圖為本發明之一實施例之被生長層及其上之柱狀體之結構剖視圖。 第3圖為本發明之第二實施例之光學顯示裝置之結構剖視圖。 第4(a)圖為本發明之一實施例之具有傾斜柱狀體與鋸齒柱狀體之二氧化鈦膜與氟化鎂膜之掃描電子顯微鏡影像。 第4(b)圖為本發明之一實施例之二氧化鈦膜之相位延遲與光波長之曲線圖。 第4(c)圖為本發明之一實施例之氟化鎂膜之相位延遲與光波長之曲線圖。 第5(a)圖為本發明之一實施例之具有傾斜柱狀體與鋸齒柱狀體之二氧化鈦膜之折射率差與α角之曲線圖。 第5(b)圖為本發明之一實施例之具有傾斜柱狀體與鋸齒柱狀體之二氧化鈦膜之相位延遲與光波長之曲線圖。 第6(a)圖為本發明之一實施例之摻雜有二氧化鈦之五氧化二鉭膜之結構剖視與俯視之掃描電子顯微鏡影像。 第6(b)圖為本發明之一實施例之摻雜有二氧化鈦之五氧化二鉭膜之厚度相對折射率差與穿透損失之數據圖。 第6(c)圖為本發明之一實施例之二氧化鈦之摻雜度相對摻雜有二氧化鈦之五氧化二鉭膜之穿透度之數據圖。 第6(d)圖為本發明之一實施例之摻雜有二氧化鈦之五氧化二鉭膜之光波長與相位延遲之曲線圖。 第7(a)圖為本發明之一實施例之週期式多層結構之結構剖視圖。 第7(b)圖為本發明之一實施例之週期式多層結構之一單元結構之相位延遲與光波長之曲線圖及週期式多層結構之掃描電子顯微鏡影像與相位延遲與光波長之曲線圖。 第7(c)圖為本發明之另一實施例之週期式多層結構之相位延遲與光波長之曲線圖。 第7(d)圖為本發明之一實施例之週期式多層結構之穿透度與光波長之曲線圖。 Fig. 1 is a cross-sectional view of the structure of an optical display device according to a first embodiment of the present invention. Figure 2 is a cross-sectional view of the structure of the grown layer and the columnar body on it according to an embodiment of the present invention. Fig. 3 is a cross-sectional view of the structure of an optical display device according to a second embodiment of the present invention. Figure 4(a) is a scanning electron microscope image of a titanium dioxide film and a magnesium fluoride film with inclined columns and sawtooth columns according to an embodiment of the present invention. Figure 4(b) is a graph of the phase retardation of the titanium dioxide film and the light wavelength according to an embodiment of the present invention. Figure 4(c) is a graph showing the phase retardation and light wavelength of the magnesium fluoride film according to an embodiment of the present invention. Figure 5(a) is a graph of the refractive index difference and α angle of a titanium dioxide film with inclined columns and sawtooth columns according to an embodiment of the present invention. Fig. 5(b) is a graph of phase retardation and light wavelength of a titanium dioxide film with inclined columns and sawtooth columns according to an embodiment of the present invention. Fig. 6(a) is a scanning electron microscope image of a cross-sectional structure and a top view of a tantalum pentoxide film doped with titanium dioxide according to an embodiment of the present invention. Figure 6(b) is a graph showing the data of the thickness of the tantalum pentoxide film doped with titanium dioxide versus the refractive index difference and the penetration loss according to an embodiment of the present invention. Figure 6(c) is a data graph of the doping degree of titanium dioxide relative to the penetration of the tantalum pentoxide film doped with titanium dioxide according to an embodiment of the present invention. Fig. 6(d) is a graph of optical wavelength and phase retardation of a tantalum pentoxide film doped with titanium dioxide according to an embodiment of the present invention. Figure 7(a) is a structural cross-sectional view of a periodic multilayer structure according to an embodiment of the present invention. Figure 7(b) is a graph of the phase delay and light wavelength of a unit structure of a periodic multilayer structure of an embodiment of the present invention and a scanning electron microscope image of the periodic multilayer structure and a graph of phase delay and light wavelength . Fig. 7(c) is a graph of phase retardation and light wavelength of a periodic multilayer structure according to another embodiment of the present invention. Fig. 7(d) is a graph of the transmittance and light wavelength of the periodic multilayer structure of an embodiment of the present invention.

1:光學顯示裝置 1: Optical display device

10:顯示層 10: Display layer

100:支撐基板 100: supporting substrate

101:有機發光二極體層 101: Organic Light Emitting Diode Layer

102:薄膜封裝層 102: Thin film encapsulation layer

11:第一無機氧化物膜 11: The first inorganic oxide film

12:第二無機氧化物膜 12: Second inorganic oxide film

13:第三無機氧化物膜 13: The third inorganic oxide film

14:第四無機氧化物膜 14: Fourth inorganic oxide film

15:第五無機氧化物膜 15: Fifth inorganic oxide film

Claims (13)

一種光學顯示裝置之製作方法,包含下列步驟: 利用第一靶材以物理氣相沈積法與第一沈積方向於一顯示層上形成一第一無機氧化物膜,其中該顯示層之法線方向平行該第一沈積方向; 利用至少一個第二靶材以物理氣相沈積法與第二沈積方向於該第一無機氧化物膜上形成至少一層第二無機氧化物膜,其中該法線方向與該第二沈積方向夾有銳角; 利用第三靶材以物理氣相沈積法與第三沈積方向於該至少一層第二無機氧化物膜上形成一第三無機氧化物膜,其中該法線方向平行該第三沈積方向; 利用至少一個第四靶材以物理氣相沈積法與第四沈積方向於該第三無機氧化物膜上形成至少一層第四無機氧化物膜,其中該法線方向與該第四沈積方向夾有銳角;以及 利用至少一個第五靶材以物理氣相沈積法與第五沈積方向於該至少一層第四無機氧化物膜上形成至少一層第五無機氧化物膜,以於該顯示層上形成圓偏光層,其中該法線方向與該第五沈積方向夾有銳角。 A method of manufacturing an optical display device, comprising the following steps: Using a first target material to form a first inorganic oxide film on a display layer by physical vapor deposition and a first deposition direction, wherein the normal direction of the display layer is parallel to the first deposition direction; Using at least one second target material to form at least one second inorganic oxide film on the first inorganic oxide film by physical vapor deposition and a second deposition direction, wherein the normal direction and the second deposition direction are interposed acute angle; using a third target to form a third inorganic oxide film on the at least one second inorganic oxide film by physical vapor deposition and a third deposition direction, wherein the normal direction is parallel to the third deposition direction; Using at least one fourth target material to form at least one layer of fourth inorganic oxide film on the third inorganic oxide film by physical vapor deposition method and a fourth deposition direction, wherein the normal direction and the fourth deposition direction are sandwiched acute angle; and using at least one fifth target material to form at least one fifth inorganic oxide film on the at least one fourth inorganic oxide film by physical vapor deposition method and fifth deposition direction, so as to form a circular polarizing layer on the display layer, Wherein the normal direction and the fifth deposition direction form an acute angle. 如請求項1所述之光學顯示裝置之製作方法,其中該至少一層第二無機氧化物膜之數量為多層。The manufacturing method of an optical display device as claimed in Claim 1, wherein the number of the at least one second inorganic oxide film is multiple layers. 如請求項1所述之光學顯示裝置之製作方法,其中該至少一個第二靶材之數量為兩個。The manufacturing method of the optical display device according to claim 1, wherein the number of the at least one second target is two. 如請求項1所述之光學顯示裝置之製作方法,其中該至少一層第四無機氧化物膜之數量為多層,該至少一層第五無機氧化物膜之數量為多層,該至少一層第四無機氧化物膜與該至少一層第五無機氧化物膜交替式設置。The manufacturing method of an optical display device as described in Claim 1, wherein the number of the at least one fourth inorganic oxide film is multi-layer, the number of the at least one fifth inorganic oxide film is multi-layer, and the at least one fourth inorganic oxide film is multi-layer. The physical film and the at least one fifth inorganic oxide film are arranged alternately. 如請求項1所述之光學顯示裝置之製作方法,其中該至少一個第四靶材和該至少一個第五靶材之材質相同或不同,該至少一層第四無機氧化物膜與該至少一層第五無機氧化物膜之材質相同或不同。The method for manufacturing an optical display device as described in claim 1, wherein the materials of the at least one fourth target and the at least one fifth target are the same or different, and the at least one fourth inorganic oxide film is the same as the at least one first 5. The materials of the inorganic oxide films are the same or different. 如請求項1所述之光學顯示裝置之製作方法,其中該至少一層第四無機氧化物膜與該至少一層第五無機氧化物膜之材質相同,該至少一層第四無機氧化物膜與該至少一層第五無機氧化物膜皆包含柱狀體,該至少一層第四無機氧化物膜的該柱狀體之生長方向不同於該至少一層第五無機氧化物膜的該柱狀體之生長方向。The manufacturing method of an optical display device as described in Claim 1, wherein the material of the at least one fourth inorganic oxide film is the same as that of the at least one fifth inorganic oxide film, and the at least one fourth inorganic oxide film is the same as the at least one fifth inorganic oxide film. One layer of the fifth inorganic oxide film all includes pillars, and the growth direction of the pillars of the at least one fourth inorganic oxide film is different from the growth direction of the pillars of the at least one fifth inorganic oxide film. 如請求項1所述之光學顯示裝置之製作方法,其中該法線方向與該第四沈積方向實質上夾有5~89度,該法線方向與該第五沈積方向實質上夾有5~89度。The manufacturing method of the optical display device as described in Claim 1, wherein the normal direction and the fourth deposition direction are substantially separated by 5~89 degrees, and the normal direction and the fifth deposition direction are substantially separated by 5~ 89 degrees. 如請求項1所述之光學顯示裝置之製作方法,其中該法線方向與該第二沈積方向實質上夾有5~89度。The method for manufacturing an optical display device as claimed in claim 1, wherein the normal direction and the second deposition direction substantially sandwich 5-89 degrees. 如請求項1所述之光學顯示裝置之製作方法,其中該第一無機氧化物膜、該至少一層第二無機氧化物膜、該第三無機氧化物膜、該至少一層第四無機氧化物膜與該至少一層第五無機氧化物膜之形成方法為熱蒸鍍法、電子槍蒸鍍法、雷射沈積法或濺鍍法。The method for manufacturing an optical display device according to claim 1, wherein the first inorganic oxide film, the at least one second inorganic oxide film, the third inorganic oxide film, and the at least one fourth inorganic oxide film The method for forming the at least one fifth inorganic oxide film is thermal evaporation, electron gun evaporation, laser deposition or sputtering. 如請求項1所述之光學顯示裝置之製作方法,其中該顯示層包含: 一支撐基板,其表面垂直該法線方向; 一有機發光二極體層,設於該支撐基板上;以及 一薄膜封裝層,設於該有機發光二極體層與該第一無機氧化物膜之間。 The manufacturing method of the optical display device as described in Claim 1, wherein the display layer comprises: a support substrate, the surface of which is perpendicular to the normal direction; an organic light emitting diode layer disposed on the supporting substrate; and A thin film encapsulation layer is arranged between the organic light emitting diode layer and the first inorganic oxide film. 如請求項10所述之光學顯示裝置之製作方法,其中該支撐基板為可撓性基板。The manufacturing method of the optical display device according to claim 10, wherein the supporting substrate is a flexible substrate. 如請求項1所述之光學顯示裝置之製作方法,其中該至少一層第四無機氧化物膜與該至少一層第五無機氧化物膜對於沿第一方向之偏振光的折射率相同時,該至少一層第四無機氧化物膜與該至少一層第五無機氧化物膜對於沿第二方向之偏振光有高低折射率之變化,該第一方向垂直該第二方向。The manufacturing method of an optical display device according to claim 1, wherein when the at least one fourth inorganic oxide film and the at least one fifth inorganic oxide film have the same refractive index for polarized light along the first direction, the at least one A fourth inorganic oxide film and the at least one fifth inorganic oxide film have high and low refractive index changes for polarized light along a second direction, and the first direction is perpendicular to the second direction. 如請求項1所述之光學顯示裝置之製作方法,其中該第一無機氧化物膜、該至少一層第二無機氧化物膜、該第三無機氧化物膜、該至少一層第四無機氧化物膜與該至少一層第五無機氧化物膜包含三氧化鎢、氟化鎂、氮化矽、氮氧化矽、二氧化矽、二氧化鈦、二氧化鋯、三氧化二鋁、二氧化鋅、三氧化二鉻、氧化亞錫、氧化銦、五氧化二鉭、三氧化二鐵或氧化鈮。The method for manufacturing an optical display device according to claim 1, wherein the first inorganic oxide film, the at least one second inorganic oxide film, the third inorganic oxide film, and the at least one fourth inorganic oxide film The at least one fifth inorganic oxide film comprises tungsten trioxide, magnesium fluoride, silicon nitride, silicon oxynitride, silicon dioxide, titanium dioxide, zirconium dioxide, aluminum oxide, zinc dioxide, chromium oxide , tin oxide, indium oxide, tantalum pentoxide, ferric oxide or niobium oxide.
TW110125876A 2021-07-07 2021-07-14 Method for manufacturing an optical display device TWI782625B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110768895.3A CN113488603B (en) 2021-07-07 2021-07-07 Method for manufacturing optical display device
CN202110768895.3 2021-07-07

Publications (2)

Publication Number Publication Date
TWI782625B TWI782625B (en) 2022-11-01
TW202303198A true TW202303198A (en) 2023-01-16

Family

ID=77941891

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110125876A TWI782625B (en) 2021-07-07 2021-07-14 Method for manufacturing an optical display device

Country Status (2)

Country Link
CN (1) CN113488603B (en)
TW (1) TWI782625B (en)

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2366354C (en) * 1993-05-07 2003-07-29 Nippon Telegraph And Telephone Corporation Method of manufacture of an optical waveplate
JPH1081955A (en) * 1996-07-11 1998-03-31 Toyota Central Res & Dev Lab Inc Diagonally vapor deposited film element and optical device formed by using the same
JPH11337733A (en) * 1998-05-28 1999-12-10 Sumitomo Bakelite Co Ltd Double refractive plate and its manufacture
JP2001166145A (en) * 1999-09-30 2001-06-22 Fuji Photo Film Co Ltd Elliptically polarizing plate and liquid crystal display device
JP4009044B2 (en) * 1999-10-08 2007-11-14 リコー光学株式会社 Thin-film birefringent element and method and apparatus for manufacturing the same
JP4237544B2 (en) * 2003-05-19 2009-03-11 日東電工株式会社 Optical element, condensing backlight system, and liquid crystal display device
JP2005007295A (en) * 2003-06-19 2005-01-13 Nippon Sheet Glass Co Ltd Adsorption/immobilization chip and method for adsorbing/immobilizing compound to adsorption/immobilization chip
US20050200801A1 (en) * 2004-02-27 2005-09-15 Fuji Photo Film Co., Ltd. Optical compensatory sheet, polarizing plate and production methods thereof
WO2006123803A1 (en) * 2005-05-19 2006-11-23 Canon Kabushiki Kaisha Liquid crystal display device
TW200737544A (en) * 2006-03-28 2007-10-01 Chi Lin Technology Co Ltd LED package structure and method for manufacturing the same
JP5131510B2 (en) * 2006-07-18 2013-01-30 Nltテクノロジー株式会社 Liquid crystal display device and terminal device
CN101215468A (en) * 2007-01-04 2008-07-09 奇美电子股份有限公司 Light-emitting component iridium complex compound
WO2010005059A1 (en) * 2008-07-10 2010-01-14 旭硝子株式会社 Wire grid type polarizer, and method for manufacturing the polarizer
CN101852943B (en) * 2010-06-18 2012-05-23 欧浦登(福建)光学有限公司 Polarizer of liquid crystal screen
TWI418064B (en) * 2010-11-16 2013-12-01 Au Optronics Corp Light emitting device
WO2014073616A1 (en) * 2012-11-07 2014-05-15 富士フイルム株式会社 Retardation plate, circularly polarizing plate, and organic el display device
JP6565129B2 (en) * 2013-02-15 2019-08-28 東洋紡株式会社 Image display device
CN111929760B (en) * 2013-07-11 2023-03-24 迪睿合株式会社 Polarizing plate, method for manufacturing polarizing plate, and method for manufacturing bundle structure
WO2015050374A1 (en) * 2013-10-01 2015-04-09 주식회사 엘지화학 Optical film
CN103682154B (en) * 2013-12-10 2016-01-27 京东方科技集团股份有限公司 A kind of organic elctroluminescent device and display unit
KR102140210B1 (en) * 2014-06-23 2020-07-31 어플라이드 머티어리얼스, 인코포레이티드 Method of depositing a layer, method of manufacturing a transistor, layer stack for an electronic device, and an electronic device
CN203930105U (en) * 2014-06-26 2014-11-05 京东方科技集团股份有限公司 Flexible membrane, organic LED display panel and display device
US9835780B2 (en) * 2014-06-27 2017-12-05 Samsung Electronics Co., Ltd. Optical film, manufacturing method thereof, and display device
CN104850295B (en) * 2015-05-08 2018-02-06 业成光电(深圳)有限公司 Touch control display apparatus and colored filter substrate
CN105807359B (en) * 2016-05-30 2017-04-05 京东方科技集团股份有限公司 Line polarisation layer, rotatory polarization layer, flexible display apparatus and preparation method thereof
CN106569640B (en) * 2016-11-10 2019-12-10 业成科技(成都)有限公司 Touch panel
JP6757424B2 (en) * 2017-02-08 2020-09-16 富士フイルム株式会社 Decorative film
CN107367785B (en) * 2017-08-25 2019-11-26 业成科技(成都)有限公司 Bendable polaroid and the bendable touch device for using it
TW201935727A (en) * 2018-02-12 2019-09-01 友達光電股份有限公司 Polarizing film, manufacturing method thereof, and displaying device
CN108873447B (en) * 2018-06-14 2021-08-03 业成科技(成都)有限公司 Touch control display device
CN109065579B (en) * 2018-07-27 2021-03-19 广州国显科技有限公司 Display panel, preparation method thereof and electronic equipment
WO2020050305A1 (en) * 2018-09-04 2020-03-12 富士フイルム株式会社 Multilayer body, organic electroluminescent device and liquid crystal display device
CN109031500A (en) * 2018-09-28 2018-12-18 武汉天马微电子有限公司 A kind of polaroid, display panel and display device
CN109585674A (en) * 2018-11-13 2019-04-05 武汉华星光电半导体显示技术有限公司 Display module and preparation method thereof, electronic device
WO2020258034A1 (en) * 2019-06-25 2020-12-30 深圳市柔宇科技有限公司 Substrate and display panel
CN110426771A (en) * 2019-07-12 2019-11-08 昆山工研院新型平板显示技术中心有限公司 The manufacturing method of polaroid, display panel and polaroid
US11454820B2 (en) * 2019-10-17 2022-09-27 Taiwan Semiconductor Manufacturing Co., Ltd. Multifunctional collimator for contact image sensors
CN111192907A (en) * 2020-01-08 2020-05-22 武汉华星光电半导体显示技术有限公司 OLED display panel and display device
CN112526697B (en) * 2020-12-10 2022-07-22 业成科技(成都)有限公司 Lens alignment method

Also Published As

Publication number Publication date
TWI782625B (en) 2022-11-01
CN113488603B (en) 2023-08-25
CN113488603A (en) 2021-10-08

Similar Documents

Publication Publication Date Title
US9257677B2 (en) Organic light emitting diode display having low refraction protrusions
JP4949966B2 (en) Organic light emitting display
TWI411110B (en) Thin film transistor array panel and liquid crystal display
US20170207279A1 (en) Oled display panel and display device
JP2007511049A (en) OLED structure comprising a strain relief layer, an antireflection layer and a barrier layer
WO2009153876A1 (en) Reflection type optical modulation device
US10935708B2 (en) Retardation film and a display apparatus including the same
TW201100919A (en) Wide viewing angle transflective liqud crystal displays
KR20160110672A (en) Polarizer and display device compring the same
CN107621666B (en) Ultra-thin wide-wave-range phase retardation film
JP4432056B2 (en) Liquid crystal display element and liquid crystal display device using the liquid crystal display element
WO2019192039A1 (en) Liquid crystal panel and manufacturing method therefor
TWI782625B (en) Method for manufacturing an optical display device
JP2008250220A (en) Reflective light modulating device
US9897734B2 (en) Polarizing film and display device having the polarizing film
WO2020258034A1 (en) Substrate and display panel
JP2007310052A (en) Wavelength plate
CN105549255A (en) Display device
TW200404187A (en) Liquid crystal display device with multiple dielectric layers
JP5541813B2 (en) Reflective light modulator
US9274259B2 (en) Display device
CN115047552A (en) Phase retardation film and compensation film
US20210328195A1 (en) Display device
JP2006178261A (en) Dielectric multilayer film filter and optical member
JP4595586B2 (en) REFLECTIVE POLARIZER AND METHOD FOR MANUFACTURING THE SAME, APPARATUS FOR PRODUCING REFLECTIVE POLARIZER, AND LIQUID CRYSTAL DISPLAY