TW202249260A - 在基板上形成具有記憶體單元,高電壓裝置及邏輯裝置的半導體裝置的方法 - Google Patents

在基板上形成具有記憶體單元,高電壓裝置及邏輯裝置的半導體裝置的方法 Download PDF

Info

Publication number
TW202249260A
TW202249260A TW111102858A TW111102858A TW202249260A TW 202249260 A TW202249260 A TW 202249260A TW 111102858 A TW111102858 A TW 111102858A TW 111102858 A TW111102858 A TW 111102858A TW 202249260 A TW202249260 A TW 202249260A
Authority
TW
Taiwan
Prior art keywords
region
conductive layer
layer
forming
substrate
Prior art date
Application number
TW111102858A
Other languages
English (en)
Other versions
TWI799100B (zh
Inventor
宋國祥
王春明
邢精成
祥 劉
恩漢 杜
Original Assignee
美商超捷公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110226090.6A external-priority patent/CN115000072A/zh
Application filed by 美商超捷公司 filed Critical 美商超捷公司
Publication of TW202249260A publication Critical patent/TW202249260A/zh
Application granted granted Critical
Publication of TWI799100B publication Critical patent/TWI799100B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • H01L29/42328Gate electrodes for transistors with a floating gate with at least one additional gate other than the floating gate and the control gate, e.g. program gate, erase gate or select gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • H10B41/42Simultaneous manufacture of periphery and memory cells
    • H10B41/49Simultaneous manufacture of periphery and memory cells comprising different types of peripheral transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

一種形成半導體裝置的方法,通過以下步驟進行:使第一區域及第二區域而不是第三區域中的半導體基板的上表面凹陷;在第三區域中形成第一導電層;在所有三個區域中形成第二導電層;從第二區域中去除第一導電層及第二導電層並且從第一區域中去除第一導電層及第二導電層的部分,從而形成堆疊結構對,每個堆疊結構對在浮閘上方具有控制閘;在所有三個區域中形成第三導電層;在該第一區域及該第二區域中形成保護層;以及然後從第三區域中去除第三導電層;然後在第三區域中形成虛擬導電材料塊;然後在第一區域及第二區域中進行蝕刻以形成選擇閘及HV閘;並且然後用金屬材料塊替換這些虛擬導電材料塊。

Description

在基板上形成具有記憶體單元,高電壓裝置及邏輯裝置的半導體裝置的方法
[優先權主張]本申請案主張 2021 年 3 月 1 日提申的中國專利申請第 202110226090.6 號,標題為「在基板上形成具有記憶體單元、高電壓裝置及邏輯裝置的半導體裝置的方法」以及2021 年 6 月 4 日提申的美國專利申請第 17/339,880 號,標題為「在基板上形成具有記憶體單元、高電壓裝置及邏輯裝置的半導體裝置的方法」之優先權。
本發明有關於具有嵌入式非揮發性記憶體單元的半導體裝置。
形成在矽半導體基板上的非揮發性記憶體半導體裝置已為人們所熟知。例如,美國專利6747310、7868375及7927994揭露了形成在半導體基板上的具有四個閘極(浮閘、控制閘、選擇閘及抹除閘)的記憶體單元,這些專利出於所有目的通過引用併入本文。源極區及汲極區形成為進入到基板中的擴散注入區,從而在基板中的源極區及汲極區之間定義出通道區。浮閘設置在通道區的第一部分上方並且控制該第一部分的導電性,選擇閘設置在通道區的第二部分上方並且控制該第二部分的導電性,控制閘設置在浮閘上方,並且抹除閘設置在源極區上方並且與浮閘橫向相鄰。
也已知道,在與非揮發性記憶體單元相同的基板上形成低電壓邏輯裝置及高電壓邏輯裝置。參見例如美國專利9276005,其出於所有目的通過引用併入本文。新閘極材料(諸如高K介電閘及金屬閘)也用於提高性能。然而,形成記憶體單元的處理步驟可能會對目前製造的邏輯裝置造成不利影響,反之亦然。
需要一種在同一基板上製造包括記憶體單元、低電壓邏輯裝置及高電壓裝置之裝置的改進方法。
前述問題及需求通過一種形成半導體裝置的方法來解決,該方法包括: 提供半導體材料的基板,該半導體材料的基板包括第一區域、第二區域及第三區域; 使該第一區域中的該基板的上表面及該第二區域中的該基板的上表面相對於該第三區域中的該基板的上表面凹陷; 形成第一導電層,該第一導電層設置在該第一區域、該第二區域及該第三區域中的該上表面上方並且與該上表面絕緣; 在該第一區域、該第二區域及該第三區域中的該第一導電層上形成絕緣層; 在該第三區域中減薄該絕緣層,而不在該第一區域及該第二區域中減薄該絕緣層; 在該第一區域、該第二區域及該第三區域中形成穿過該絕緣層及該第一導電層並進入該基板的溝槽; 用絕緣材料填充該溝槽; 在填充該溝槽之後,從該第一區域、該第二區域及該第三區域去除該絕緣層; 形成第二導電層,該第二導電層設置在該第一區域、該第二區域及該第三區域中的該第一導電層上方並且與該第一導電層絕緣; 執行一種或多種蝕刻以選擇性地去除該第一區域中的該第一導電層及該第二導電層的部分,以從該第二區域及該第三區域中完全去除該第一導電層及該第二導電層,其中該一種或多種蝕刻導致在該第一區域中形成堆疊結構對,其中該堆疊結構中的每個堆疊結構包括該第二導電層的控制閘,該第二導電層的控制閘設置在該第一導電層的浮閘上方並且與該第一導電層的浮閘絕緣; 在該基板中形成第一源極區,每個第一源極區設置在該堆疊結構對中的一個堆疊結構對之間; 形成第三導電層,該第三導電層設置在該第一區域、該第二區域及該第三區域中的該基板的該上表面上方並且與該基板的該上表面絕緣; 在該第一區域及該第二區域中的該第三導電層上方形成保護絕緣層; 在該形成該保護絕緣層之後,從該第三區域中去除該第三導電層; 在從該第三區域中去除該第三導電層之後,形成虛擬導電材料塊,該虛擬導電材料塊設置在該第三區域中的該上表面上方並且與該上表面絕緣; 在於該第三區域中形成該虛擬導電材料塊之後,蝕刻該第一區域及該第二區域中的該保護絕緣層的部分及該第三導電層的部分以形成該第三導電層的多個選擇閘,每個選擇閘與該堆疊結構中的一個堆疊結構相鄰設置,並且形成該第三導電層的多個HV閘,每個HV閘設置在該第二區域中的該基板的該上表面上方並且與該基板的該上表面絕緣; 在該基板中形成第一汲極區,每個第一汲極區與該選擇閘中的一個選擇閘相鄰; 在該基板中形成第二源極區,每個第二源極區與該HV閘中的一個HV閘相鄰; 在該基板中形成第二汲極區,每個第二汲極區與該HV閘中的一個HV閘相鄰; 在該基板中形成第三源極區,每個第三源極區與該虛擬導電材料塊中的一個虛擬導電材料塊相鄰; 在該基板中形成第三汲極區,每個第三汲極區與該虛擬導電材料塊中的一個虛擬導電材料塊相鄰;以及 用金屬材料塊替換該虛擬導電材料塊中的每個虛擬導電材料塊。
一種形成半導體裝置的方法可包括: 提供半導體材料的基板,該半導體材料的基板包括第一區域、第二區域及第三區域; 使該第一區域中的該基板的上表面及該第二區域中的該基板的上表面相對於該第三區域中的該基板的上表面凹陷; 在該基板上方形成絕緣層; 在該第三區域中減薄該絕緣層,而不在該第一區域及該第二區域中減薄該絕緣層; 在該第一區域、該第二區域及該第三區域中形成穿過該絕緣層並進入該基板的溝槽; 用絕緣材料填充該溝槽; 在填充該溝槽之後,從該第一區域及該第二區域去除該絕緣層; 形成第一導電層,該第一導電層設置在該第一區域及該第二區域中的該上表面上方並且與該上表面絕緣; 形成第二導電層,該第二導電層設置在該第一區域及該第二區域中的該第一導電層上方並且與該第一導電層絕緣; 執行一種或多種蝕刻以選擇性地去除該第一區域中的該第一導電層及該第二導電層的部分,以從該第二區域中完全去除該第一導電層及該第二導電層,其中該一種或多種蝕刻導致在該第一區域中形成堆疊結構對,其中該堆疊結構中的每個堆疊結構包括該第二導電層的控制閘,該第二導電層的控制閘設置在該第一導電層的浮閘上方並且與該第一導電層的浮閘絕緣; 在該基板中形成第一源極區,每個第一源極區設置在該堆疊結構對中的一個堆疊結構對之間; 形成第三導電層,該第三導電層設置在該第一區域及該第二區域中的該基板的該上表面上方並且與該基板的該上表面絕緣; 在該第一區域及該第二區域中的該第三導電層上方形成保護絕緣層; 在該形成該保護絕緣層之後,從該第三區域中去除該保護絕緣層; 在從該第三區域中去除該保護絕緣層之後,形成虛擬導電材料塊,該虛擬導電材料塊設置在該第三區域中的該上表面上方並且與該上表面絕緣; 在於該第三區域中形成該虛擬導電材料塊之後,蝕刻該第一區域及該第二區域中的該保護絕緣層的部分及該第三導電層的部分以形成該第三導電層的多個選擇閘,每個選擇閘與該堆疊結構中的一個堆疊結構相鄰設置,並且形成該第三導電層的多個HV閘,每個HV閘設置在該第二區域中的該上表面上方並且與該上表面絕緣; 在該基板中形成第一汲極區,每個第一汲極區與該選擇閘中的一個選擇閘相鄰; 在該基板中形成第二源極區,每個第二源極區與該HV閘中的一個HV閘相鄰; 在該基板中形成第二汲極區,每個第二汲極區與該HV閘中的一個HV閘相鄰; 在該基板中形成第三源極區,每個第三源極區與該虛擬導電材料塊中的一個虛擬導電材料塊相鄰; 在該基板中形成第三汲極區,每個第三汲極區與該虛擬導電材料塊中的一個虛擬導電材料塊相鄰;以及 用金屬材料塊替換該虛擬導電材料塊中的每個虛擬導電材料塊。
通過檢視說明書、申請專利範圍及附圖,本發明的其他目的及特徵將變得顯而易見。
本發明是一種通過在同一半導體基板上同時形成記憶體單元、低電壓邏輯裝置及高電壓邏輯裝置來形成半導體裝置的過程。下述過程涉及在基板10的一個或多個記憶體單元區域2(也稱為第一區域或MC區域2)中形成記憶體單元、在基板10的一個或多個高電壓邏輯裝置區域4(也稱為第二區域或HV區域4)中形成高電壓邏輯裝置以及在基板10的一個或多個低電壓邏輯裝置區域6(也稱為第三區域或邏輯區域6)中形成低電壓邏輯裝置。描述了關於同時在MC區域2中形成一對記憶體單元、在HV區域4中形成高電壓邏輯裝置以及在邏輯區域6中形成較低電壓邏輯裝置的過程。然而,多個此類裝置在每個區域中可同時形成。基板10是半導體材料(例如,矽)的基板。
MC區域2參見圖1A至圖16A,HV區域4參見圖1B至圖16B,並且邏輯區域6參見圖1C至圖16C,顯示出製造半導體裝置的過程步驟的剖視圖。該過程一開始使MC區域2及HV區域4中的矽基板10的上表面10a相對於邏輯區域6凹陷一個凹入量R。基板上表面10a的凹陷通過在基板上表面10a上形成二氧化矽(在本文中也稱為「氧化物」)層以及在氧化物層上形成氮化矽(在本文中也稱為「氮化物」)層來執行。執行微影光罩步驟以用光阻劑覆蓋邏輯區域6而不覆蓋MC區域2及HV區域4(即在所有三個區域上形成光阻劑、選擇性地曝光光阻劑的部分並且選擇性地去除光阻劑的部分,從而使底層結構的部分暴露(在這種情況下,MC區域2及HV區域4中的氮化物層),同時使底層結構的其他部分被光阻劑覆蓋(在這種情況下,邏輯區域6中的氮化物層)。執行氮化物蝕刻及氧化物蝕刻以從MC區域2及HV區域4去除這些層,從而使這些區域中的上表面10a暴露。在去除光阻劑之後,然後執行熱氧化以在MC區域2及HV區域4中的上表面10a的暴露部分上形成氧化物層,同時不影響邏輯區域6中的上表面10a(由氮化物及氧化物層保護)。該熱氧化過程消耗MC區域2及HV區域4中的基板10的一些矽,從而有效地使這些區域中的上表面10a降低一個凹入量R。然後使用氮化物及氧化物蝕刻去除所有氧化物層及氮化物層,從而得到圖1A、圖1B及圖1C所示的結構。MC區域2及HV區域4中的上表面10a相對於邏輯區域6中的上表面10a凹陷一個凹入量R(例如,約300A)。
接下來,在上表面10a上形成氧化物層12(例如,通過沉積或通過熱生長等)。此後,在氧化物層12上形成導電層14(即,第一導電層),諸如多晶矽層。導電層14可以替代地是原位(in-situ)摻雜或未摻雜的非晶矽。如果導電層14使用了多晶矽或非晶矽,則執行注入及退火。在導電層14上形成氧化物層18,然後在氧化物層18上形成氮化物層20。然後,執行微影光罩步驟以用光阻劑21覆蓋MC區域2及HV區域4,但使邏輯區域6暴露(即,作為光罩步驟的一部分,從邏輯區域6去除光阻劑21)。然後使用氮化物蝕刻來減薄邏輯區域6中的氮化物層20(即,減小該氮化物層的厚度)(例如,較佳地設定蝕刻的時間,使得該蝕刻使邏輯區域6中的氮化物層20減薄大約等於凹入量R的量,使得所有三個區域2/4/6中的氮化物層20的頂表面基本上均勻),如圖2A、圖2B及圖2C所示。
在去除光阻劑21之後,使用微影光罩步驟以用光阻劑選擇性地覆蓋每個區域的部分。使用氮化物蝕刻、氧化物蝕刻、多晶矽蝕刻及/或矽蝕刻以形成穿過氮化物層20、氧化物層18、導電層14、氧化物層12並進入矽基板10的溝槽。然後,通過氮化物層20上的氧化物沉積及化學機械拋光(CMP)終止,用氧化物22填充這些溝槽,如圖3A及圖3B所示。填充有氧化物22的溝槽平行於MC區域2中的主動區延伸,並且因為圖3C是這些主動區中的一個主動區的剖視圖,所以填充有氧化物22的溝槽未在圖3C中示出。氧化物22是也可稱為STI(淺溝槽隔離)氧化物22的絕緣材料。STI氧化物22可包括在氧化物沉積之前通過熱氧化形成的內墊氧化物(liner oxide)。
可執行一系列注入以在區域2/4/6中的每一個區域中的基板10中形成期望的阱(其中光阻劑在每次注入期間保護其他區域中的一個或多個區域),接著執行氧化物回蝕以使STI氧化物22凹陷在氮化物層20的頂部下方。然後,使用氮化物蝕刻以去除氮化物層20。然後,在該結構上方形成絕緣層24。較佳地,絕緣層24是具有氧化物/氮化物/氧化物子層(由氧化物、氮化物、氧化物沉積及退火形成)的ONO複合層。然而,絕緣層24可替代地由其他介電層的複合物或無子層的單一介電材料形成。然後,在一個示例中,通過沉積在該結構上形成導電層26(即,第二導電層),諸如多晶矽層。導電層26可以替代地是原位摻雜或未摻雜的非晶矽。如果導電層26使用了多晶矽或未摻雜的非晶矽,則執行注入及退火。然後,在導電層26上形成硬光罩層28。硬光罩層28可以是氮化物、SiCN,或者是氧化物、氮化物及/或SiCN層的複合物。所得的結構在圖4A、圖4B及圖4C中示出。
使用微影光罩步驟以在該結構上形成光阻劑30,其中從HV區域4及邏輯區域6中去除光阻劑並且從MC區域2中選擇性地去除光阻劑,以使HV區域4及邏輯區域6中的硬光罩層28暴露並且使MC區域2中的硬光罩層28的僅部分暴露。使用一系列蝕刻以去除硬光罩層28、導電層26及絕緣層24的暴露部分,從而在MC區域2中留下硬光罩層28、導電層26及絕緣層24的間隔開的堆疊結構S1及S2對,並且從HV區域4及邏輯區域6中完全去除這些層。所得的結構在圖5A、圖5B及圖5C中示出。
在去除光阻劑30之後,使用氧化物沉積或熱氧化及蝕刻以在MC區域2中沿著堆疊S1及S2的側面形成氧化物間隔物32。使用氮化物沉積及蝕刻以沿著氧化物間隔物32的側面形成氮化物間隔物34。氧化物蝕刻及氮化物蝕刻可組合起來。執行蝕刻(諸如多晶矽蝕刻或矽蝕刻,具體取決於導電層14的材料)以去除導電層14的暴露部分,因此,每個間隔開的堆疊結構S1/S2包括來自MC區域2中的導電層14的剩餘部分的導電材料塊14a,並且導電層14從HV區域4/邏輯區域6完全去除。通過氧化物沉積及氧化物非等向性蝕刻,在堆疊結構S1/S2的側面上(包括沿著導電層14a塊的暴露端部)形成氧化物間隔物36,如圖6A、圖6B及圖6C所示。
使用微影光罩步驟以用光阻劑覆蓋MC區域2及邏輯區域6,但使HV區域4暴露。使用氧化物蝕刻以從HV區域4中去除氧化物層12。在去除光阻劑之後,然後通過熱生長及/或沉積在HV區域4中的基板上表面10a上以及在MC區域2中的結構上及邏輯區域6中的絕緣層38頂部上形成絕緣層38。絕緣層38可以是氧化物及/或氧氮化物,並且將用作HV裝置的閘極氧化物。然而,應當指出的是,用絕緣層38去除及替換氧化物層12是任選的,並且氧化物層12可替代地用作HV裝置的閘極氧化物的一部分或全部。在去除光阻劑之後,在該結構上形成光阻劑40,並且僅從MC區域2中的堆疊S1及S2之間的區域(在本文稱為內部堆疊區域)中去除該光阻劑。執行注入過程以在基板中堆疊S1及S2之間形成(第一)源極區42。然後,使用氧化物蝕刻以去除內部堆疊區域中的絕緣層38、氧化物間隔物36及氧化物層12。所得的結構在圖7A、圖7B及圖7C中示出。
去除光阻劑40之後,在該結構上形成隧道氧化物44。隧道氧化物44可以是通過沉積及/或熱生長形成的氧化物及/或氮氧化物。由於源極區42中的較高摻雜劑準位的催化作用,隧道氧化物44可在源極區42上具有較厚部分44a。使用微影光罩步驟以用光阻劑覆蓋HV區域4及邏輯區域6,以及MC區域2中的內部堆疊區域。來自內部堆疊區域的堆疊結構S1及S2的另一側上的區域(在本文稱為外部堆疊區域)保持暴露。此時,可對在外部堆疊區域中的基板10的部分(即,將在稍後形成的選擇閘下方的那些基板部分)執行注入。使用氧化物蝕刻以去除外部堆疊區域中的氧化物層12的暴露部分。在去除光阻劑之後,然後在該結構上形成絕緣層46。絕緣層46可以是通過沉積及/或熱生長形成的氧化物及/或氮氧化物或任何其他適當的介電材料。絕緣層46的形成使隧道氧化物44及絕緣層38變厚或成為其一部分。所得的結構在圖8A、圖8B及圖8C中示出。
在該結構上形成導電層48(即,第三導電層),諸如多晶矽層。導電層48可以是原位摻雜或未摻雜的,並且可以替代地是非晶矽。如果導電層48使用了未摻雜的多晶矽或非晶矽,則將執行摻雜及退火。執行化學機械拋光(CMP)以使該結構的頂表面平坦化。進一步的回蝕過程用於使導電層48的上表面凹陷在堆疊S1及S2的頂部下方,如圖9A、圖9B及圖9C所示。
在這一階段,完成了大多數記憶體單元的形成。在該結構上方形成保護絕緣層54。保護絕緣層54可以是氧化物、氮化物、SiCN或它們的組合。使用微影光罩步驟以用光阻劑覆蓋MC區域2及HV區域4,同時使邏輯區域6暴露。使用一種或多種蝕刻去除邏輯區域6中的保護層54、導電層48、絕緣層38及氧化物層12,如圖10A、圖10B及圖10C所示(在去除光阻劑之後)。保護層54保護MC區域2及HV區域4免受該系列蝕刻。
此時,可執行注入以在邏輯區域6中的基板10中形成摻雜的P井及N井。在邏輯區域6中暴露的基板上表面10a上形成介電層56(該介電層可用作邏輯裝置的閘極介電質)。介電層56可以是氧化矽、氮氧化矽、高K介電層或它們的複合物。高K絕緣材料是介電常數K大於二氧化矽的介電常數的絕緣材料。高K絕緣材料的示例包括HfO 2、ZrO 2、TiO 2、Ta 2O 5以及它們的組合。然後,在該結構上方形成虛擬導電層58諸如多晶矽層。然後在虛擬導電層58上形成絕緣層59(在本文中也稱為邏輯絕緣層59)諸如氮化物及硬光罩層60。使用微影光罩步驟以用光阻劑覆蓋邏輯區域6的選定部分,從而使絕緣層59及硬光罩層60在整個MC區域2及HV區域4中以及在邏輯區域6的一部分中暴露。然後,使用蝕刻以在MC區域2、HV區域4及邏輯區域6中去除絕緣層59及硬光罩層60的暴露區域。在去除光阻劑之後,使用蝕刻以去除虛擬導電層58及介電層56的暴露部分(即,邏輯區域6中不受硬光罩層60的剩餘部分保護的所有部分),從而在邏輯區域6中留下邏輯堆疊結構LS1及LS2,這些邏輯堆疊結構包括設置在介電層56上的虛擬導電材料塊58。通過沉積及蝕刻,在邏輯堆疊結構LS1/LS2的側面上形成介電間隔物62(例如,氮化物)。此時,可在邏輯區域6中進行向基板10的注入。所得的結構在圖11A、圖11B及圖11C中示出。
使用微影光罩步驟來用光阻劑64覆蓋邏輯區域6、HV區域4的一部分及MC區域2的一部分(即,覆蓋內部堆疊區域、堆疊結構S1及S2以及緊鄰堆疊結構S1及S2的外部堆疊區域的那些部分)。使用蝕刻以去除保護層54及導電層48的暴露部分,如圖12A、圖12B及圖12C所示。在去除光阻劑64之後,可在基板10的不同的暴露部分中執行附加的選擇性注入及蝕刻(即,通過附加的微影光罩步驟及注入)。例如,可通過光阻劑覆蓋邏輯區域6而使MC區域2及HV區域4暴露,並且對基板10的僅被絕緣層38及46覆蓋的部分進行注入。使用微影光罩步驟覆蓋邏輯區域6,從而使MC區域2及HV區域4暴露。然後使用蝕刻來減薄絕緣層38及46的暴露部分(其也減薄保護絕緣層54),這可稍後在過程中在HV區域4中提供更好的注入穿透。所得的結構在圖13A、圖13B及圖13C中示出(在去除光阻劑之後)。
在該結構上形成半非保形(semi-nonconformal)層70。該層具有底層形貌的某些保形性,但與垂直表面及水平表面相交的位置相比,底層形貌的頂部更薄。為了實現這種變化的厚度,較佳使用能夠流動的材料來形成層70。用於半非保形層70的一種非限制性示例性材料是BARC材料(底部抗反射塗層),其通常用於在微影期間減小抗蝕劑介面處的反射率。BARC材料是能夠流動及能夠潤濕的,並且由於其相對于氧化物的高選擇性而在最小過程損傷下易於蝕刻及去除。其他能夠用於半非保形層70的材料包括光阻劑或旋塗玻璃(SOG)。使用蝕刻(例如,非等向性)以從堆疊結構S1/S2及導電層48的剩餘部分上的保護絕緣層54以及邏輯堆疊結構LS1/LS2上的硬光罩層60中去除半非保形層70並且使該導電層48及該硬光罩層60暴露,同時使半非保形層70保持覆蓋絕緣層38及46(即,半非保形層70的該部分用作下一蝕刻步驟的硬光罩)。使用蝕刻來去除邏輯堆疊結構LS1/LS2上的硬光罩層60。所得的結構在圖14A、圖14B及圖14C中示出。
在去除半非保形層70之後,使用氧化物沉積及氮化物沉積,接著進行間隔物蝕刻以在MC區域2中在堆疊結構S1/S2的側面上、在邏輯區域6中在堆疊結構LS1/LS2的側面上以及在HV區域4中在這些結構的側面上形成氧化物間隔物66及氮化物間隔物(未示出)。執行注入以在MC區域2中在基板中與氧化物間隔物66相鄰處形成(第一)汲極區74、在HV區域4中與氧化物間隔物66相鄰處形成(第二)源極區76及(第二)汲極區78以及在邏輯區域6中與氧化物間隔物66相鄰處形成(第三)源極區80及(第三)汲極區82。針對不要被注入的其他區域通過形成光阻劑以阻擋注入,來執行對任何給定區域的注入。例如,通過在相反的源極/汲極摻雜類型的區域上形成光阻劑來同時形成相同摻雜類型之MC區域2中的汲極區74、HV區域4中的源極區76/汲極區78以及邏輯區域6中的源極區80/汲極區82,然後在MC區域2、HV區域4及邏輯區域6中執行單注入。此時,通過沉積、光罩步驟及蝕刻來形成阻擋層84,用以阻擋下一步驟中的任何矽化。在上述蝕刻期間,也去除了未受阻擋層84保護之MC區域2及HV區域4中的保護絕緣層54的任何剩餘部分,從而使導電層48暴露於隨後的矽化中。然後,執行金屬沉積及退火以在導電層48、源極區76/80及汲極區74/78/82的暴露部分的頂表面上形成矽化物86。對於不需要矽化物形成的任何部分,阻擋層84防止了矽化物形成。任選地,可在源極/汲極區域74/76/78/80/82的選定部分及/或導電層48的部分中保持阻擋層84,以在這些選定區域中阻擋矽化物的形成。然後使用蝕刻諸如氮化物蝕刻來去除邏輯區域6中的氧化物間隔物66及絕緣層59上的氮化物間隔物(從而暴露虛擬導電層塊58)及MC區域2中的硬光罩層28。所得的結構在圖15A、圖15B及圖15C中示出。
在該結構上方形成層88(例如,氮化物)。然後,在層88上形成厚層間介電(ILD)絕緣材料層90。執行CMP以使ILD絕緣材料90平坦化並且凹陷,從而使邏輯區域6中的虛擬導電層58暴露。使用微影光罩步驟以用光阻劑覆蓋MC區域2及HV區域4,同時使邏輯區域6暴露。然後使用蝕刻諸如多晶矽蝕刻以去除邏輯區域6中的虛擬導電層塊58。在該結構上方形成金屬材料層諸如Al、Ti、TiAlN、TaSiN、TaN、TiN或其他合適的金屬材料(不限於此)或它們的複合物。然後執行CMP以去除金屬閘材料層,從而在邏輯區域6中的電介質層56上留下金屬材料塊94。最終的結構在圖16A、圖16B及圖16C中示出。
圖17顯示出MC區域2中的最終記憶體單元結構,該最終記憶體單元結構包括記憶體單元對,每對記憶體單元共用與兩個汲極區74間隔開的源極區42,其中矽10中的通道區96在它們之間延伸。每個記憶體單元包括:浮閘14a(即,從導電層14剩餘的導電材料塊),該浮閘設置在通道區96的第一部分上方並且與該通道區的第一部分絕緣以用於控制該第一部分的導電性;選擇閘48a(即,其也可稱為字線閘,並且為從導電層48剩餘的導電材料塊),該選擇閘設置在通道區96的第二部分上方並且與該通道區的第二部分絕緣以用於控制該第二部分的導電性;控制閘26a(即,從導電層26剩餘的導電材料塊),該控制閘設置在浮閘14a上方並且與該浮閘絕緣;以及抹除閘48b(即,從導電層48剩餘的導電材料塊),該抹除閘設置在源極區42上方並且與該源極區絕緣(由記憶體單元對共用)。記憶體單元對沿行方向(BL方向)延伸,並且形成記憶體單元的行,其中在相鄰行之間具有STI氧化物22。一列控制閘形成為連續控制閘線,該連續控制閘線將整列記憶體單元的控制閘26a連接在一起。一列選擇閘48a形成為連續選擇閘線(也稱為字閘線),該連續選擇閘線將整列記憶體單元的選擇閘48a連接在一起。一列抹除閘48b形成為連續抹除閘線,該連續抹除閘線將整列記憶體單元對的抹除閘連接在一起。
最終的HV裝置在圖18中示出。每個HV裝置包括間隔開的源極區76及汲極區78,其中矽基板10的通道區98在它們之間延伸。HV閘48c(即,從導電層48剩餘的導電材料塊)設置在通道區98上方並且與該通道區絕緣以用於控制該通道區的導電性。
最終的邏輯裝置在圖19中示出。每個邏輯裝置包括間隔開的源極區80及汲極區82,其中矽基板10的通道區100在它們之間延伸。金屬材料塊94為設置在通道區100上方並且與該通道區絕緣(通過介電層56)以用於控制該通道區的導電性的金屬閘94。
上面描述的在同一基板上形成記憶體單元、HV裝置及邏輯裝置的方法具有許多優點。在於邏輯區域6中形成金屬閘94之前完成了記憶體單元及HV裝置的形成,使得邏輯區域6中的金屬閘94不會因記憶體單元及HV裝置的形成的受到不利影響。用於在MC區域2及HV區域4中形成閘極的過程步驟與用於在邏輯區域6中形成閘極的過程步驟是分開且獨立的(並且可相對於用於在邏輯區域中形成閘極的過程步驟進行客制化)。在大部分記憶體單元及HV裝置的形成完成之後以及在邏輯區域6中的處理之前(即,在去除記憶體單元及HV裝置的形成在邏輯區域6中所留下的層之前以及在沉積及去除用於形成邏輯裝置的層(包括虛擬多晶矽層去除)之前,不限於此),由保護絕緣層54覆蓋MC區域2及HV區域4。基板10的上表面10a在MC區域2及HV區域4中相對於在邏輯區域6中的基板的上表面凹陷,以在MC區域2/HV區域4中容納較高結構(即,使得邏輯區域6中的較短邏輯裝置的頂部與MC區域2/HV區域4中的較高記憶體單元及HV裝置的頂部基本上均勻,並且使得跨所有三個區域的CMP可用於進行處理,例如,在ILD 90的CMP期間,選擇閘48a及HV閘48c的頂部與虛擬導電層58基本上均勻)。層88保護矽化物導電層48免受用於形成金屬閘94的CMP的影響,並且導電層26輔助作為此CMP的終止層。矽化物86提高了汲極區74以及源極區76/汲極區78、源極區80/汲極區82、選擇閘48a、抹除閘48b及HV閘48c的導電性。在硬光罩層60從邏輯區域6去除時,半非保形層70保護MC區域2及HV區域的源極區/汲極區中的氧化物及矽。記憶體單元選擇閘48a、記憶體單元抹除閘48b及HV閘48c使用單個導電材料沉積來形成(即,由單個多晶矽沉積形成的單個多晶矽層可用於形成所有三種類型的閘極)。此外,可使用相同的多晶矽蝕刻來限定每個選擇閘48a的邊緣中的一個邊緣及每個HV閘48c的兩個邊緣。各種層46、12、38及56(用作閘極氧化物)的厚度彼此獨立,每個層針對其相應的閘極操作進行了最佳化。例如,選擇閘48a下方的絕緣層46較佳地比浮閘14a下方的氧化物層12更薄。
對薄氮化物層20(參見圖2A至圖2C及相關描述)進行氮化物蝕刻使得氮化物層20的頂表面在MC區域2、HV區域4及邏輯區域6中基本上均勻,以便在所有三個區域上進行更好且更均勻的後續處理,即使MC區域2及HV區域4具有相對於邏輯區域6存在凹陷的基板上表面10a(並且氮化物層20下方的氧化物層12/18及導電層14形成於所有三個區域中)。用於使導電層48與堆疊結構S1及S2的頂部平坦化的CMP,之後進行蝕刻以使導電層48凹陷在堆疊結構S1及S2的頂部下方(參見圖9A至圖9C及相關描述),提供了對MC區域2及HV區域4中的導電層48的高度的可靠控制(例如,在蝕刻過程之前使用APC(自動過程控制)來測量導電層48的厚度,然後基於蝕刻的蝕刻速率推導出蝕刻時間),從而避免了附加的光罩步驟。最後,在形成半非保形層70之後蝕刻MC區域2及HV區域4中的保護絕緣層54以及邏輯區域6中的硬光罩層60,從而避免在形成矽化物86之前需要附加的光罩步驟。
圖20A至圖25A、圖20B至圖25B及圖20C至圖25C揭露了另選實施方案,從圖1A至圖1C所示的結構開始。通過氧化物沉積或熱氧化在上表面10a上形成氧化物層101。然後在氧化物層101上形成氮化物層102。然後執行微影光罩步驟以用光阻劑104覆蓋MC區域2及HV區域4,但使邏輯區域6暴露。然後使用氮化物蝕刻來減薄邏輯區域6中的氮化物層102(即,減小其厚度),使得氮化物層102的頂表面在所有三個區域(即MC區域2、HV區域4及邏輯區域6)中基本上均勻,如圖20A、圖20B及圖20C所示。
在去除光阻劑104之後,使用微影光罩步驟以用光阻劑選擇性地覆蓋每個區域的部分。使用氮化物蝕刻、氧化物蝕刻及矽蝕刻以形成穿過氮化物102、氧化物101並進入矽基板10的溝槽。在去除光阻劑之後,然後通過在氮化物層102上氧化物沉積及化學機械拋光(CMP)終止,用STI氧化物106填充這些溝槽,如圖21A、圖21B及圖21C所示。STI氧化物106可包括在氧化物沉積之前通過熱氧化形成的內墊氧化物。
然後執行微影光罩步驟以用光阻劑覆蓋邏輯區域,但使MC區域2及HV區域4暴露。然後使用一種或多種蝕刻從MC區域2及HV區域4去除氮化物層102及氧化物層101。在去除光阻劑之後,例如通過熱氧化在MC區域2及HV區域4中的基板表面10a上形成氧化物層108。然後,通過例如沉積在該結構上形成導電層110諸如多晶矽層。導電層110可以替代地是原位摻雜或未摻雜的非晶矽。如果層110使用了未摻雜的多晶矽或非晶矽,則執行注入及退火。化學-機械拋光及回蝕用於使MC區域2及HV區域4中的導電層110平坦化及凹陷,並且從邏輯區域6去除導電層110。然後可使用氧化物蝕刻來使STI氧化物106凹陷。所得的結構在圖22A、圖22B及圖22C中示出。
然後使用上文相對於圖4A至圖8A、圖4B至圖8B及圖4C至圖8C該的步驟來執行絕緣層24、導電層26、硬光罩層28、堆疊結構S1及S2、氧化物間隔物32、氧化物間隔物36、絕緣層38、源極區42、隧道氧化物44及絕緣層46的形成。所得的結構在圖23A、圖23B及圖23C中示出。然後執行如上該的導電層48的形成(即,沉積、CMP及回蝕),這將由於在邏輯區域6中存在氮化物層102而導致導電層48通過CMP從邏輯區域6完全去除,如圖24A至圖24C所示。然後如上該在MC區域2及HV區域4中的導電層48上形成保護絕緣層54,之後進行蝕刻以從邏輯區域6去除絕緣層38、氧化物層101及氮化物層102,並且使邏輯區域6中的STI氧化物106凹陷,如圖25A至圖25C所示。然後執行以上相對於圖11A至圖11C及圖16A至圖16C該的處理步驟以完成該結構。該另選實施方案的優點在於,可使用更簡單、更有效的蝕刻來形成待用STI氧化物106填充的溝槽(因為這些溝槽在到達基板10之前僅通過兩個層形成(參見圖21A至圖21C),而不是到達基板10之前的四個層(參見圖3A至圖3C))。
應當理解,本發明不限於上述的及在本文中示出的實施方案,而是涵蓋落在所附申請專利範圍的範圍內的任何及所有變型形式。舉例來說,本文中對本發明的提及並不意在限制任何申請專利範圍或請求項術語的範圍,而是僅參考可由這些請求項中的一項或多項權利要求涵蓋的一個或多個特徵。上文該的材料、過程及數值的示例僅為示例性的,而不應視為限制申請專利範圍。另外,根據請求項及說明書顯而易見的是,並非所有方法步驟都需要以所示出或所主張的精確循序執行,而是需要以允許適當形成本發明的記憶體單元區域及邏輯區域的任意順序來執行,除非申請專利範圍另有規定。最後,單個材料層可被形成為多個此類或類似材料層,反之亦然。
應當指出,如本文所用,術語「在…上方」及「在…上」兩者包容地包含「直接在…上」(之間未設置中間材料、元件或空間)及「間接在…上」(之間設置有中間材料、元件或空間)。同樣,術語「相鄰」包含「直接相鄰」(兩者間未設置中間材料、元件或空間)及「間接相鄰」(兩者間設置有中間材料、元件或空間)。例如,「在基板上方」形成元件可包括在之間沒有中間材料/元件的情況下在基板上直接形成元件,以及在之間有一個或多個中間材料/元件的情況下在基板上間接形成組件。
10:基板 10a:上表面 12:氧化物層 14:導電層 14a:導電層塊/浮閘 18:氧化物層 20:氮化物層 22:STI氧化物 24:絕緣層 26:導電層 26a:控制閘 28:硬光罩層 30:光阻劑 32:氧化物間隔物 34:氮化物間隔物 36:氧化物間隔物 38:絕緣層 40:光阻劑 42:第一源極區 44:隧道氧化物 44a:較厚部分 46:絕緣層 48:第三導電層 48a:選擇閘 48b:抹除閘 54:絕緣層 56:介電層 58:虛擬導電層 59:邏輯絕緣層 60:硬光罩層 62:介電間隔物 64:光阻劑 66:氧化物間隔物 70:半非保形層 74:第一汲極區 76:第二源極區 78:汲極區 80:第三源極區 82:第三汲極區 84:阻擋層 86:矽化物 88:層 90:層間介電ILD絕緣材料層 94:金屬閘 96:通道區 98:通道區 100:通道區 101:氧化物 102:氮化物層 104:光阻劑 106:STI氧化物 108:氧化物層 110:導電層 LS1:邏輯堆疊結構 LS2:邏輯堆疊結構 S1:堆疊結構 S2:堆疊結構
圖1A至圖16A是記憶體單元區域的剖視圖,顯示出形成記憶體單元的步驟。
圖1B至圖16B是HV區域的剖視圖,顯示出形成HV裝置的步驟。
圖1C至圖16C是邏輯區域的剖視圖,顯示出形成邏輯裝置的步驟。
圖17是記憶體單元區域的剖視圖,顯示出完成的記憶體單元。
圖18是HV區域的剖視圖,顯示出完成的HV裝置。
圖19是邏輯區域的剖視圖,顯示出完成的邏輯裝置。
圖20A至圖25A是記憶體單元區域的剖視圖,顯示出在另選實施方案中形成記憶體單元的步驟。
圖20B至圖25B是HV區域的剖視圖,顯示出在另選實施方案中形成HV裝置的步驟。
圖20C至圖25C是邏輯區域的剖視圖,顯示出在另選實施方案中形成邏輯裝置的步驟。
10:基板
12:氧化物層
14a:導電層塊/浮閘
26a:控制閘
42:第一源極區
46:絕緣層
48a:選擇閘
48b:抹除閘
74:第一汲極區
86:矽化物
88:層
90:層間介電ILD絕緣材料層
96:通道區
S1:堆疊結構
S2:堆疊結構

Claims (16)

  1. 一種形成一半導體裝置的方法,包括: 提供一半導體材料的基板,該半導體材料的基板包括一第一區域、一第二區域及一第三區域; 使該第一區域中的該基板的一上表面及該第二區域中的該基板的一上表面相對於該第三區域中的該基板的一上表面凹陷; 形成一第一導電層,該第一導電層設置在該第一區域、該第二區域及該第三區域中的該上表面上方並且與該上表面絕緣; 在該第一區域、該第二區域及該第三區域中的該第一導電層上形成一絕緣層; 在該第三區域中減薄該絕緣層,而不在該第一區域及該第二區域中減薄該絕緣層; 在該第一區域、該第二區域及該第三區域中形成穿過該絕緣層及該第一導電層並進入該基板的多個溝槽; 用絕緣材料填充該溝槽; 在填充該溝槽之後,從該第一區域、該第二區域及該第三區域去除該絕緣層; 形成一第二導電層,該第二導電層設置在該第一區域、該第二區域及該第三區域中的該第一導電層上方並且與該第一導電層絕緣; 執行一種或多種蝕刻以選擇性地去除該第一區域中的該第一導電層及該第二導電層的部分,以從該第二區域及該第三區域中完全去除該第一導電層及該第二導電層,其中該一種或多種蝕刻導致在該第一區域中形成多個堆疊結構對,其中該堆疊結構中的每個堆疊結構包括該第二導電層的一控制閘,該第二導電層的控制閘設置在該第一導電層的一浮閘上方並且與該第一導電層的該浮閘絕緣; 在該基板中形成多個第一源極區,每個第一源極區設置在該堆疊結構對中的一個堆疊結構對之間; 形成一第三導電層,該第三導電層設置在該第一區域、該第二區域及該第三區域中的該基板的該上表面上方並且與該基板的該上表面絕緣; 在該第一區域及該第二區域中的該第三導電層上方形成一保護絕緣層; 在該形成該保護絕緣層之後,從該第三區域中去除該第三導電層; 在從該第三區域中去除該第三導電層之後,形成多個虛擬導電材料塊,該虛擬導電材料塊設置在該第三區域中的該上表面上方並且與該第三區域中的該上表面絕緣; 在於該第三區域中形成該虛擬導電材料塊之後,蝕刻該第一區域及該第二區域中的該保護絕緣層的部分及該第三導電層的部分以形成該第三導電層的多個選擇閘,每個選擇閘與該堆疊結構中的一個堆疊結構相鄰設置,並且形成該第三導電層的多個HV閘,每個HV閘設置在該第二區域中的該基板的該上表面上方並且與該基板的該上表面絕緣; 在該基板中形成多個第一汲極區,每個第一汲極區與該選擇閘中的一個選擇閘相鄰; 在該基板中形成多個第二源極區,每個第二源極區與該HV閘中的一個HV閘相鄰; 在該基板中形成多個第二汲極區,每個第二汲極區與該HV閘中的一個HV閘相鄰; 在該基板中形成多個第三源極區,每個第三源極區與該虛擬導電材料塊中的一個虛擬導電材料塊相鄰; 在該基板中形成多個第三汲極區,每個第三汲極區與該虛擬導電材料塊中的一個虛擬導電材料塊相鄰;以及 用一金屬材料塊替換該虛擬導電材料塊中的每個虛擬導電材料塊。
  2. 如請求項1之方法,其中,該金屬材料塊中的每個金屬材料塊通過一高K絕緣材料層與該第三區域中的該基板的該上表面絕緣。
  3. 如請求項1之方法,其中,在該替換之前,該虛擬導電材料塊中的每個虛擬導電材料塊通過一高K絕緣材料層與該第三區域中的該基板的該上表面絕緣,並且其中該替換還包括在該高K絕緣材料層上形成該金屬材料塊中的每個金屬材料塊。
  4. 如請求項1之方法,其中,對於該堆疊結構對中的每個堆疊結構對,該第三導電層的一抹除閘設置在該堆疊結構對之間,並且設置在該源極區的一個源極區上方並且與該源極區的該一個源極區絕緣。
  5. 如請求項1之方法,其中,該第一導電層、該第二導電層及該第三導電層中的每一者由多晶矽或非晶矽形成。
  6. 如請求項1之方法,還包括: 在該第一汲極區、該第二汲極區及該第三汲極區上以及在該第二源極區及該第三源極區上形成矽化物。
  7. 如請求項4之方法,還包括: 在該替換之前,在該選擇閘、該抹除閘及該HV閘上形成矽化物。
  8. 如請求項1之方法,其中,對於該堆疊結構中的每個堆疊結構,該控制閘通過一ONO絕緣層與該浮閘絕緣。
  9. 如請求項1之方法,其中,該形成該虛擬導電材料塊包括在該導電材料塊上形成一邏輯絕緣層並且在該邏輯絕緣層上形成一硬光罩層。
  10. 如請求項9之方法,其中,在該替換之前,還包括: 在該第一區域、該第二區域及該第三區域中形成一能夠流動的材料層; 去除該能夠流動的材料層的一部分以暴露該硬光罩層; 去除該硬光罩層;以及 去除該能夠流動的材料層。
  11. 如請求項10之方法,還包括: 在該選擇閘、該抹除閘及該HV閘上形成矽化物,其中該邏輯絕緣層防止在該導電材料塊上形成矽化物。
  12. 一種形成半導體裝置的方法,包括: 提供一半導體材料的基板,該半導體材料的基板包括一第一區域、一第二區域及一第三區域; 使該第一區域中的該基板的一上表面及該第二區域中的該基板的一上表面相對於該第三區域中的該基板的一上表面凹陷; 在該基板上方形成一絕緣層; 在該第三區域中減薄該絕緣層,而不在該第一區域及該第二區域中減薄該絕緣層; 在該第一區域、該第二區域及該第三區域中形成穿過該絕緣層並進入該基板的多個溝槽; 用絕緣材料填充該溝槽; 在填充該溝槽之後,從該第一區域及該第二區域去除該絕緣層; 形成一第一導電層,該第一導電層設置在該第一區域及該第二區域中的該上表面上方並且與該上表面絕緣; 形成一第二導電層,該第二導電層設置在該第一區域及該第二區域中的該第一導電層上方並且與該第一導電層絕緣; 執行一種或多種蝕刻以選擇性地去除該第一區域中的該第一導電層及該第二導電層的部分,以從該第二區域中完全去除該第一導電層及該第二導電層,其中該一種或多種蝕刻導致在該第一區域中形成多個堆疊結構對,其中該堆疊結構中的每個堆疊結構包括該第二導電層的一控制閘,該第二導電層的該控制閘設置在該第一導電層的一浮閘上方並且與該第一導電層的該浮閘絕緣; 在該基板中形成多個第一源極區,每個第一源極區設置在該堆疊結構對中的一個堆疊結構對之間; 形成一第三導電層,該第三導電層設置在該第一區域及該第二區域中的該基板的該上表面上方並且與該基板的該上表面絕緣; 在該第一區域及該第二區域中的該第三導電層上方形成一保護絕緣層; 在該形成該保護絕緣層之後,從該第三區域中去除該保護絕緣層; 在從該第三區域中去除該保護絕緣層之後,形成多個虛擬導電材料塊,該虛擬導電材料塊設置在該第三區域中的該上表面上方並且與該第三區域中的該上表面絕緣; 在於該第三區域中形成該虛擬導電材料塊之後,蝕刻該第一區域及該第二區域中的該保護絕緣層的部分及該第三導電層的部分以形成該第三導電層的多個選擇閘,每個選擇閘與該堆疊結構中的一個堆疊結構相鄰設置,並且形成該第三導電層的多個HV閘,每個HV閘設置在該第二區域中的該上表面上方並且與該第二區域中的該上表面絕緣; 在該基板中形成多個第一汲極區,每個第一汲極區與該選擇閘中的一個選擇閘相鄰; 在該基板中形成多個第二源極區,每個第二源極區與該HV閘中的一個HV閘相鄰; 在該基板中形成多個第二汲極區,每個第二汲極區與該HV閘中的一個HV閘相鄰; 在該基板中形成多個第三源極區,每個第三源極區與該虛擬導電材料塊中的一個虛擬導電材料塊相鄰; 在該基板中形成多個第三汲極區,每個第三汲極區與該虛擬導電材料塊中的一個虛擬導電材料塊相鄰;以及 用一金屬材料塊替換該虛擬導電材料塊中的每個虛擬導電材料塊。
  13. 如請求項12之記憶體單元,其中,該金屬材料塊中的每個金屬材料塊通過一高K絕緣材料層與該第三區域中的該上表面絕緣。
  14. 如請求項12之記憶體單元,其中,對於該堆疊結構對中的每個堆疊結構對,該第三導電層的一抹除閘設置在該堆疊結構對之間,並且設置在該源極區的一個源極區上方並且與該源極區中的該一個源極區絕緣。
  15. 如請求項14之記憶體單元,還包括: 在該第一汲極區、該第二汲極區及該第三汲極區、該第二源極區及該第三源極區、該選擇閘、該抹除閘及該HV閘上形成矽化物。
  16. 如請求項12之記憶體單元,其中,對於該堆疊結構中的每個堆疊結構,該控制閘通過一ONO絕緣層與該浮閘絕緣。
TW111102858A 2021-03-01 2022-01-24 在基板上形成具有記憶體單元,高電壓裝置及邏輯裝置的半導體裝置的方法 TWI799100B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202110226090.6A CN115000072A (zh) 2021-03-01 2021-03-01 在衬底上形成具有存储器单元、高电压设备和逻辑设备的半导体设备的方法
CN202110226090.6 2021-03-01
US17/339,880 US11737266B2 (en) 2021-03-01 2021-06-04 Method of forming a semiconductor device with memory cells, high voltage devices and logic devices on a substrate
US17/339,880 2021-06-04
WOPCT/US21/36311 2021-06-08
PCT/US2021/036311 WO2022186852A1 (en) 2021-03-01 2021-06-08 Method of forming a semiconductor device with memory cells, high voltage devices and logic devices on a substrate

Publications (2)

Publication Number Publication Date
TW202249260A true TW202249260A (zh) 2022-12-16
TWI799100B TWI799100B (zh) 2023-04-11

Family

ID=76744940

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111102858A TWI799100B (zh) 2021-03-01 2022-01-24 在基板上形成具有記憶體單元,高電壓裝置及邏輯裝置的半導體裝置的方法

Country Status (5)

Country Link
EP (1) EP4302332A1 (zh)
JP (1) JP2024508862A (zh)
KR (1) KR20230110363A (zh)
TW (1) TWI799100B (zh)
WO (1) WO2022186852A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI842232B (zh) * 2022-11-28 2024-05-11 力晶積成電子製造股份有限公司 半導體結構的製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6747310B2 (en) 2002-10-07 2004-06-08 Actrans System Inc. Flash memory cells with separated self-aligned select and erase gates, and process of fabrication
US20090039410A1 (en) 2007-08-06 2009-02-12 Xian Liu Split Gate Non-Volatile Flash Memory Cell Having A Floating Gate, Control Gate, Select Gate And An Erase Gate With An Overhang Over The Floating Gate, Array And Method Of Manufacturing
US9276005B1 (en) 2014-12-04 2016-03-01 Silicon Storage Technology, Inc. Non-volatile memory array with concurrently formed low and high voltage logic devices
US9793281B2 (en) * 2015-07-21 2017-10-17 Silicon Storage Technology, Inc. Non-volatile split gate memory cells with integrated high K metal gate logic device and metal-free erase gate, and method of making same
US10269822B2 (en) * 2015-12-29 2019-04-23 Taiwan Semiconductor Manufacturing Co., Ltd. Method to fabricate uniform tunneling dielectric of embedded flash memory cell
US10714634B2 (en) * 2017-12-05 2020-07-14 Silicon Storage Technology, Inc. Non-volatile split gate memory cells with integrated high K metal control gates and method of making same
US11968828B2 (en) * 2019-07-09 2024-04-23 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming a semiconductor device with a dual gate dielectric layer having middle portion thinner than the edge portions

Also Published As

Publication number Publication date
TWI799100B (zh) 2023-04-11
KR20230110363A (ko) 2023-07-21
JP2024508862A (ja) 2024-02-28
WO2022186852A1 (en) 2022-09-09
EP4302332A1 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
EP3465762B1 (en) Method of integrating finfet cmos devices with nonvolatile memory cells
US10381359B2 (en) Non-volatile split game memory cells with integrated high K metal gate logic device and metal-free erase gate, and method of making same
KR20200079291A (ko) 통합된 하이 k 금속 제어 게이트들을 갖는 비휘발성 분리형 게이트 메모리 셀들 및 제조 방법
KR20150055469A (ko) 반도체 소자 제조 방법 및 이에 의해 제조된 반도체 소자
KR20150041266A (ko) 반도체 소자 제조방법
US11322507B2 (en) Method of making memory cells, high voltage devices and logic devices on a substrate with silicide on conductive blocks
TWI794807B (zh) 在基板上製造記憶體單元、高電壓裝置和邏輯裝置的方法
US11444091B2 (en) Method of making memory cells, high voltage devices and logic devices on a substrate
TWI799100B (zh) 在基板上形成具有記憶體單元,高電壓裝置及邏輯裝置的半導體裝置的方法
US11968829B2 (en) Method of forming memory cells, high voltage devices and logic devices on a semiconductor substrate
US11737266B2 (en) Method of forming a semiconductor device with memory cells, high voltage devices and logic devices on a substrate
TWI784635B (zh) 通過導電塊上的矽化物在基板上製造記憶體單元、高電壓裝置和邏輯裝置的方法
US20230262975A1 (en) Method of forming a semiconductor device with memory cells, high voltage devices and logic devices on a substrate using a dummy area
WO2023154078A1 (en) Method of forming a semiconductor device with memory cells, high voltage devices and logic devices on a substrate using a dummy area
WO2023172280A1 (en) Method of forming memory cells, high voltage devices and logic devices on a semiconductor substrate