TW202249247A - Dynamic random access memory and method for manufacturing the same - Google Patents

Dynamic random access memory and method for manufacturing the same Download PDF

Info

Publication number
TW202249247A
TW202249247A TW110119925A TW110119925A TW202249247A TW 202249247 A TW202249247 A TW 202249247A TW 110119925 A TW110119925 A TW 110119925A TW 110119925 A TW110119925 A TW 110119925A TW 202249247 A TW202249247 A TW 202249247A
Authority
TW
Taiwan
Prior art keywords
insulating
connection pad
top surface
layer
bit line
Prior art date
Application number
TW110119925A
Other languages
Chinese (zh)
Other versions
TWI761223B (en
Inventor
陳皇男
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW110119925A priority Critical patent/TWI761223B/en
Application granted granted Critical
Publication of TWI761223B publication Critical patent/TWI761223B/en
Publication of TW202249247A publication Critical patent/TW202249247A/en

Links

Images

Abstract

A dynamic random access memory (DRAM) and its manufacturing method are provided. The DRAM includes bit line contact structures, bit line structures, first insulating structures, a capacitor contact structure, a first connecting pad, a second insulating structure, and a capacitor structure. The bit line structure extends along a first direction. The first insulating structure extends along a second direction that intersects the first direction. The capacitor contact structure is located between two of the bit lines and two of the first insulating structures. The first connecting pad is formed on the capacitor contact structure. The second insulating structure surrounds the first connecting pad, in which the top width of the second insulating structure is greater than the bottom width thereof.

Description

動態隨機存取記憶體及其製造方法Dynamic random access memory and manufacturing method thereof

本發明係有關於一種記憶體裝置,且特別係有關於一種動態隨機存取記憶體及其製造方法。The present invention relates to a memory device, and in particular to a dynamic random access memory and a manufacturing method thereof.

隨著電子產品日漸小型化之趨勢,對於記憶體裝置亦有逐漸小型化的需求。然而,隨著記憶體裝置的小型化,提高記憶體裝置的效能及良率變得更為困難。With the trend of miniaturization of electronic products, there is also a demand for miniaturization of memory devices. However, with the miniaturization of memory devices, it becomes more difficult to improve the performance and yield of memory devices.

舉例而言,在動態隨機存取記憶體(dynamic random access memory, DRAM)中,位元線結構具有由氮化物/氧化物/氮化物所形成的側壁間隔物。在濕式蝕刻中,由於氧化物抗濕式蝕刻的能力比氮化物弱,因此側壁間隔物中的氧化物的頂部經常會受到損傷,而導致側壁間隔物的頂部變薄甚至被完全移除(即側壁間隔物的頂表面低於導電結構上方的蓋層的頂表面)。若位元線結構的側壁間隔物的頂部被完全移除,則位元線結構中的蓋層的頂部會被暴露出,導致蓋層也可能會變形(例如,使蓋層具有圓化的頂表面),進而導致位於位元線結構兩側的連接墊的頂部變得比預期的寬。換言之,相鄰的連接墊的頂部之間的距離會變得較近。如此一來,將增加記憶體裝置短路的風險,進而降低產品的效能及良率。隨著記憶體裝置的小型化,相鄰的連接墊之間的距離會縮小,因此,上述短路的問題將變得更加嚴重。For example, in dynamic random access memory (DRAM), the bit line structure has sidewall spacers formed of nitride/oxide/nitride. In wet etching, since the oxide is less resistant to wet etching than nitride, the top of the oxide in the sidewall spacer is often damaged, resulting in thinning or even complete removal of the top of the sidewall spacer ( That is, the top surface of the sidewall spacer is lower than the top surface of the cap layer above the conductive structure). If the top of the sidewall spacer of the bitline structure is completely removed, the top of the cap layer in the bitline structure will be exposed, causing the cap layer to also possibly be deformed (e.g., making the cap layer have a rounded top surface), causing the tops of the connection pads on either side of the bitline structure to become wider than expected. In other words, the distance between the tops of adjacent connection pads becomes closer. In this way, the risk of short circuit of the memory device will be increased, thereby reducing the performance and yield of the product. With the miniaturization of memory devices, the distance between adjacent connection pads will shrink, so the above-mentioned short circuit problem will become more serious.

本發明實施例提供一種動態隨機存取記憶體及其製造方法,能夠降低短路的風險,且有利於微型化。Embodiments of the present invention provide a DRAM and a manufacturing method thereof, which can reduce the risk of short circuit and are beneficial to miniaturization.

本發明之一實施例係揭示一種動態隨機存取記憶體,包括:多個位元線接觸結構,形成於基板上;多個位元線結構,形成於該些位元線接觸結構上,且沿著第一方向延伸;多個第一絕緣結構,形成於基板上,且沿著與第一方向相交的第二方向延伸;電容接觸結構,位於相鄰的該些位元線結構與相鄰的該些第一絕緣結構之間;第一連接墊,形成於電容接觸結構上;第二絕緣結構,環繞第一連接墊,且第二絕緣結構的頂部寬度大於底部寬度;及電容結構,形成於第一連接墊上並且與第一連接墊電性連接。One embodiment of the present invention discloses a dynamic random access memory, comprising: a plurality of bit line contact structures formed on a substrate; a plurality of bit line contact structures formed on the bit line contact structures, and extending along a first direction; a plurality of first insulating structures formed on the substrate and extending along a second direction intersecting with the first direction; capacitive contact structures located between adjacent bit line structures and adjacent Between the first insulating structures; the first connection pad is formed on the capacitive contact structure; the second insulating structure surrounds the first connection pad, and the width of the top of the second insulating structure is greater than the width of the bottom; and the capacitive structure is formed on the first connection pad and electrically connected with the first connection pad.

本發明之一實施例係揭示一種動態隨機存取記憶體的製造方法,包括:形成多個位元線接觸結構於基板上;形成多個位元線結構於該些位元線接觸結構上,其中各位元線結構沿著第一方向延伸;形成多個第一絕緣結構於該基板上,其中各第一絕緣結構沿著與第一方向相交的第二方向延伸;形成電容接觸結構位於相鄰的該些位元線結構與相鄰的該些第一絕緣結構之間;形成第一連接墊於電容接觸結構上; 形成第二絕緣結構環繞第一連接墊,其中第二絕緣結構的頂部寬度大於底部寬度;以及形成電容結構於第一連接墊上並且與第一連接墊電性連接。One embodiment of the present invention discloses a manufacturing method of a dynamic random access memory, comprising: forming a plurality of bit line contact structures on a substrate; forming a plurality of bit line structures on the bit line contact structures, wherein each element line structure extends along a first direction; forms a plurality of first insulating structures on the substrate, wherein each first insulating structure extends along a second direction intersecting with the first direction; forms a capacitive contact structure located adjacent to Between the bit line structures and the adjacent first insulating structures; forming a first connection pad on the capacitive contact structure; forming a second insulating structure surrounding the first connecting pad, wherein the top width of the second insulating structure greater than the width of the bottom; and forming a capacitive structure on the first connection pad and electrically connecting with the first connection pad.

在本發明實施例所提供之動態隨機存取記憶體及其製造方法中,藉由形成環繞第一連接墊的第二絕緣結構,可降低短路的風險。再者,藉由第二絕緣結構的頂部寬度大於底部寬度,第一連接墊與電容結構之間可具有合適的接觸阻抗,並降低位元線結構與第一連接墊之間的寄生電容。如此,能夠改善效能及良率。In the DRAM and its manufacturing method provided by the embodiments of the present invention, the risk of short circuit can be reduced by forming the second insulating structure surrounding the first connection pad. Furthermore, since the width of the top of the second insulating structure is greater than that of the bottom, proper contact resistance can be provided between the first connection pad and the capacitor structure, and the parasitic capacitance between the bit line structure and the first connection pad can be reduced. In this way, performance and yield can be improved.

為使本發明之上述和其他目的、特徵、優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下。再者,本發明的不同範例中可能使用重複的參考符號及/或用字。這些重複符號或用字係為了簡化與清晰的目的,並非用以限定各個實施例及/或所述外觀結構之間的關係。在此,「約」、「大約」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內。在此給定的數量為大約的數量,意即在沒有特定說明的情況下,仍可隱含「約」、「大約」之含義。In order to make the above and other objects, features, and advantages of the present invention more comprehensible, preferred embodiments are listed below and described in detail in conjunction with the accompanying drawings. Furthermore, repeated reference signs and/or words may be used in different examples of the invention. These repeated symbols or words are used for the purpose of simplification and clarity, and are not used to limit the relationship between various embodiments and/or the appearance structures. Here, the terms "about" and "approximately" usually mean within 20%, preferably within 10%, and more preferably within 5% of a given value or range. The quantities given here are approximate quantities, which means that the meanings of "about" and "approximately" can still be implied without specific instructions.

本發明提供一種動態隨機存取記憶體(DRAM)及其製造方法,為簡化圖式,第1圖僅繪示位元線接觸結構104、絕緣圖案106、絕緣蓋層110、絕緣間隔物112、第一連接墊122、第一絕緣結構132及第二絕緣結構140。請同時參照第1圖及第2A圖,於基板102上交錯地形成絕緣圖案106與位元線接觸結構104。位元線接觸結構104被配置以將基板102電性連接至後續形成的位元線結構。The present invention provides a dynamic random access memory (DRAM) and a manufacturing method thereof. In order to simplify the drawings, FIG. 1 only shows a bit line contact structure 104, an insulating pattern 106, an insulating cover layer 110, an insulating spacer 112, The first connection pad 122 , the first insulating structure 132 and the second insulating structure 140 . Referring to FIG. 1 and FIG. 2A at the same time, insulating patterns 106 and bit line contact structures 104 are alternately formed on the substrate 102 . The bitline contact structure 104 is configured to electrically connect the substrate 102 to a subsequently formed bitline structure.

基板102的材料可包括矽、含矽半導體、絕緣層上覆矽(silicon on insulator, SOI)、其他合適之材料或上述材料之組合。在本實施例中,基板102為矽基板。在一些實施例中,可在基板102中形成淺溝隔離結構及埋入式字元線。在一些實施例中,亦可在基板102中形成其他的結構。舉例而言,可藉由佈植製程在基板102中形成p型井區、n型井區或導電區。為了簡化說明,圖式中並未繪示上述的淺溝隔離結構、埋入式字元線及其他結構,且關於基板102中的結構及其形成方法,在此不再詳述。The material of the substrate 102 may include silicon, silicon-containing semiconductors, silicon on insulator (SOI), other suitable materials, or a combination of the above materials. In this embodiment, the substrate 102 is a silicon substrate. In some embodiments, shallow trench isolation structures and buried word lines may be formed in the substrate 102 . In some embodiments, other structures may also be formed in the substrate 102 . For example, a p-type well region, an n-type well region or a conductive region may be formed in the substrate 102 by an implantation process. In order to simplify the description, the above-mentioned shallow trench isolation structure, buried word line and other structures are not shown in the drawing, and the structure and formation method of the substrate 102 will not be described in detail here.

絕緣圖案106的材料可包括氧化物、氮化物、氮氧化物、碳化物、其他合適的絕緣材料或上述之組合。在本實施例中,絕緣圖案106為氮化矽。在其他實施例中,絕緣圖案106為由氧化矽及形成於氧化矽上的氮化矽所形成的雙層結構。位元線接觸結構104的材料可包括經摻雜的多晶矽、其他合適的導電材料或上述之組合。為了將功函數及電阻值調整在合適的範圍內,位元線接觸結構104的材料可不同於後續形成的位元線結構的導電結構108的材料。例如,位元線接觸結構104的材料可為經過摻雜的多晶矽。The material of the insulating pattern 106 may include oxide, nitride, oxynitride, carbide, other suitable insulating materials or combinations thereof. In this embodiment, the insulating pattern 106 is silicon nitride. In other embodiments, the insulating pattern 106 is a double-layer structure formed of silicon oxide and silicon nitride formed on the silicon oxide. The material of the bit line contact structure 104 may include doped polysilicon, other suitable conductive materials, or a combination thereof. In order to adjust the work function and the resistance value in a proper range, the material of the bit line contact structure 104 may be different from the material of the conductive structure 108 of the subsequently formed bit line structure. For example, the material of the bit line contact structure 104 can be doped polysilicon.

接著,在絕緣圖案106與位元線接觸結構104上形成導電結構108,且在導電結構108上形成絕緣蓋層110。其中,多個絕緣蓋層110是彼此平行地形成於基板102上,且各絕緣蓋層110沿著第一方向D1延伸。Next, a conductive structure 108 is formed on the insulating pattern 106 and the bit line contact structure 104 , and an insulating capping layer 110 is formed on the conductive structure 108 . Wherein, a plurality of insulating capping layers 110 are formed on the substrate 102 parallel to each other, and each insulating capping layer 110 extends along the first direction D1.

在一些實施例中,導電結構108可由單一材料所形成。在這樣的實施例中,導電結構108的材料可包括鎢、鋁、銅、金、銀、上述之合金或其他合適的金屬材料。在其他實施例中,導電結構108包括第一導電層及形成於第一導電層上的第二導電層。在這樣的實施例中,第一導電層的材料可包括鈦、氮化鈦、氮化鎢、鉭或氮化鉭、其他合適的導電材料或上述之組合。第二導電層的材料可包括鎢、鋁、銅、金、銀、上述之合金、其他合適的金屬材料或上述之組合。在本實施例中,導電結構108由鎢所形成。絕緣蓋層110的材料可包括氧化物、氮化物、氮氧化物、其他合適的絕緣材料或上述之組合。在本實施例中,絕緣蓋層110為氮化矽。導電結構108及絕緣蓋層110可各自獨立地藉由化學氣相沉積製程、物理氣相沉積製程、原子層沉積製程、其他合適的沉積製程或上述之組合而形成。In some embodiments, the conductive structure 108 may be formed of a single material. In such an embodiment, the material of the conductive structure 108 may include tungsten, aluminum, copper, gold, silver, alloys thereof, or other suitable metal materials. In other embodiments, the conductive structure 108 includes a first conductive layer and a second conductive layer formed on the first conductive layer. In such an embodiment, the material of the first conductive layer may include titanium, titanium nitride, tungsten nitride, tantalum or tantalum nitride, other suitable conductive materials, or combinations thereof. The material of the second conductive layer may include tungsten, aluminum, copper, gold, silver, alloys of the above, other suitable metal materials, or combinations thereof. In this embodiment, the conductive structure 108 is formed of tungsten. The material of the insulating capping layer 110 may include oxide, nitride, oxynitride, other suitable insulating materials, or combinations thereof. In this embodiment, the insulating capping layer 110 is silicon nitride. The conductive structure 108 and the insulating capping layer 110 can be independently formed by chemical vapor deposition process, physical vapor deposition process, atomic layer deposition process, other suitable deposition processes, or a combination thereof.

接著,於位元線接觸結構104、絕緣圖案106、導電結構108及絕緣蓋層110各自的側壁上順應性地形成絕緣間隔物112。在本說明書中,將導電結構108、絕緣蓋層110與絕緣間隔物112合稱為位元線結構。在一些實施例中,可依序形成第一間隔物層112a、第二間隔物層112b及第三間隔物層112c,以形成絕緣間隔物112。第一間隔物層112a、第二間隔物層112b及第三間隔物層112c可各自獨立地藉由化學氣相沉積製程、物理氣相沉積製程、原子層沉積製程、或上述之組合而形成,並在沉積製程之後使用任何已知的蝕刻製程來形成絕緣間隔物112,以暴露出基板102及絕緣蓋層110各自的頂表面。第一間隔物層112a、第二間隔物層112b及第三間隔物層112c可各自獨立地包括氧化物、氮化物、氮氧化物、碳化物、其他合適的絕緣材料或上述之組合。Next, insulating spacers 112 are conformally formed on respective sidewalls of the bit line contact structure 104 , the insulating pattern 106 , the conductive structure 108 and the insulating capping layer 110 . In this specification, the conductive structure 108 , the insulating cap layer 110 and the insulating spacer 112 are collectively referred to as a bit line structure. In some embodiments, the first spacer layer 112 a , the second spacer layer 112 b and the third spacer layer 112 c may be sequentially formed to form the insulating spacer 112 . The first spacer layer 112a, the second spacer layer 112b, and the third spacer layer 112c can be independently formed by a chemical vapor deposition process, a physical vapor deposition process, an atomic layer deposition process, or a combination thereof, After the deposition process, any known etching process is used to form the insulating spacer 112 to expose the respective top surfaces of the substrate 102 and the insulating cap layer 110 . The first spacer layer 112a, the second spacer layer 112b, and the third spacer layer 112c may each independently include oxide, nitride, oxynitride, carbide, other suitable insulating materials, or combinations thereof.

在本實施例中,第一間隔物層112a及第三間隔物層112c為氮化物,且第二間隔物層112b為氧化物。在本實施例的絕緣間隔物112的製作過程中,由於第二間隔物層112b的移除速率較高,且第三間隔物層112c的厚度較薄,因此,第二間隔物層112b及第三間隔物層112c的頂表面低於第一間隔物層112a的頂表面。在其他實施例中,絕緣間隔物112的頂表面低於絕緣蓋層110的頂表面,即絕緣間隔物112暴露出絕緣蓋層110的頂部的側壁,且絕緣蓋層110具有圓化的頂表面。In this embodiment, the first spacer layer 112a and the third spacer layer 112c are nitrides, and the second spacer layer 112b is oxide. In the manufacturing process of the insulating spacer 112 of this embodiment, because the removal rate of the second spacer layer 112b is relatively high, and the thickness of the third spacer layer 112c is relatively thin, therefore, the second spacer layer 112b and the second spacer layer 112b The top surface of the third spacer layer 112c is lower than the top surface of the first spacer layer 112a. In other embodiments, the top surface of the insulating spacer 112 is lower than the top surface of the insulating capping layer 110, that is, the insulating spacer 112 exposes the sidewall of the top of the insulating capping layer 110, and the insulating capping layer 110 has a rounded top surface. .

請同時參照第1圖、第2A圖及第3圖,在絕緣間隔物112形成後,形成多個第一絕緣結構132於基板102上。這些第一絕緣結構132是彼此平行地形成於基板102上,且各第一絕緣結構132沿著與第一方向D1交叉的第二方向D2延伸。藉此,在相鄰兩個絕緣蓋層110與相鄰兩個第一絕緣結構132之間定義出接觸區105。詳細來說,在設置於不同的絕緣蓋層110上的兩個絕緣間隔物112與相鄰兩個第一絕緣結構132之間定義出接觸區105。並且,相較於絕緣蓋層110與第一絕緣結構132,此時的接觸區105是凹陷的區域。Please refer to FIG. 1 , FIG. 2A and FIG. 3 at the same time. After the insulating spacers 112 are formed, a plurality of first insulating structures 132 are formed on the substrate 102 . The first insulating structures 132 are formed parallel to each other on the substrate 102 , and each first insulating structure 132 extends along a second direction D2 crossing the first direction D1 . Thereby, a contact region 105 is defined between two adjacent insulating cap layers 110 and two adjacent first insulating structures 132 . In detail, a contact region 105 is defined between two insulating spacers 112 disposed on different insulating capping layers 110 and two adjacent first insulating structures 132 . Moreover, compared with the insulating cap layer 110 and the first insulating structure 132 , the contact region 105 at this time is a recessed region.

接著,在接觸區105中形成與基板102電性連接的電容接觸結構119,且電容接觸結構119的頂表面低於絕緣蓋層110的頂表面。於本實施例中,電容接觸結構119包括依序形成於基板102上的第一接觸部件114、緩衝層116及第二接觸部件118。形成第一接觸部件114的步驟例如包括,形成導電材料於基板102上,並回蝕刻部分的導電材料,以形成第一接觸部件114於接觸區105中。第一接觸部件114的材料可與位元線接觸結構104的材料相同或相似。在本實施例中,為了將功函數及電阻值調整在合適的範圍內,第一接觸部件114的材料為經摻雜的多晶矽。Next, a capacitive contact structure 119 electrically connected to the substrate 102 is formed in the contact region 105 , and the top surface of the capacitive contact structure 119 is lower than the top surface of the insulating cap layer 110 . In this embodiment, the capacitive contact structure 119 includes a first contact part 114 , a buffer layer 116 and a second contact part 118 sequentially formed on the substrate 102 . The step of forming the first contact part 114 includes, for example, forming a conductive material on the substrate 102 and etching back a portion of the conductive material to form the first contact part 114 in the contact region 105 . The material of the first contact member 114 may be the same or similar to that of the bit line contact structure 104 . In this embodiment, in order to adjust the work function and the resistance value within a proper range, the material of the first contact member 114 is doped polysilicon.

第二接觸部件118的頂表面低於絕緣蓋層110的頂表面。於本實施例中,第二接觸部件118包括導電襯層118a及導電層118b。形成第二接觸部件118的步驟可包括順應性地形成覆蓋緩衝層116的導電襯層材料於接觸區105中。接著,形成導電材料於導電襯層材料。之後,藉由回蝕刻製程部分地移除導電襯層材料及導電層材料。緩衝層116的材料例如為金屬矽化物。導電襯層材料可包括鈦、氮化鈦、氮化鎢、鉭或氮化鉭或上述之組合。導電層材料可包括鎢、鋁、銅、金、銀、上述之合金、其他合適的金屬材料或上述之組合。藉由電容接觸結構119,基板102可電性連接至後續形成的電容結構130(繪示於第2G圖中)。The top surface of the second contact part 118 is lower than the top surface of the insulating capping layer 110 . In this embodiment, the second contact part 118 includes a conductive lining layer 118a and a conductive layer 118b. The step of forming the second contact member 118 may include conformally forming a conductive liner material covering the buffer layer 116 in the contact region 105 . Next, a conductive material is formed on the conductive liner material. Afterwards, the conductive liner material and the conductive layer material are partially removed by an etch-back process. The material of the buffer layer 116 is, for example, metal silicide. The conductive liner material may include titanium, titanium nitride, tungsten nitride, tantalum or tantalum nitride or combinations thereof. The conductive layer material may include tungsten, aluminum, copper, gold, silver, alloys of the above, other suitable metal materials, or combinations thereof. Through the capacitive contact structure 119, the substrate 102 can be electrically connected to the subsequently formed capacitive structure 130 (shown in FIG. 2G).

請參照第2B圖,形成厚度不均一的第一材料層120於絕緣蓋層110、絕緣間隔物112及電容接觸結構119上。第一材料層120的懸突部分120a形成於絕緣蓋層110的頂部上。第一材料層120的漸窄部分120b形成於絕緣間隔物112的側壁上。第一材料層120的水平部分120c形成於電容接觸結構119的頂表面上。懸突部分120a的厚度的最大值大於漸窄部分120b的厚度的最大值。本實施例藉由具有懸突部分120a的第一材料層120,可有助於改善良率,此部分將於下文中詳細討論。Referring to FIG. 2B , a first material layer 120 with a non-uniform thickness is formed on the insulating cover layer 110 , the insulating spacer 112 and the capacitive contact structure 119 . The overhang portion 120 a of the first material layer 120 is formed on top of the insulating capping layer 110 . The tapered portion 120b of the first material layer 120 is formed on the sidewall of the insulating spacer 112 . A horizontal portion 120c of the first material layer 120 is formed on the top surface of the capacitive contact structure 119 . The maximum value of the thickness of the overhang portion 120a is greater than the maximum value of the thickness of the tapered portion 120b. In this embodiment, the first material layer 120 having the overhang portion 120 a can help to improve the yield, and this part will be discussed in detail below.

在一實施例中,為了有效率地形成具有懸突部分120a的第一材料層120,可藉由階梯覆蓋率不佳的方法,例如,電漿增強化學氣相沉積法形成第一材料層120。在一實施例中,第一材料層120在後續的製程中不會被完全移除,且殘留的第一材料層120成為後續形成的第二絕緣結構的一部分。第一材料層120可包括第一絕緣材料,例如氧化物、氮化物、氮氧化物、其他合適的絕緣材料或上述之組合。在本實施例中,第一材料層120包括氧化物。In one embodiment, in order to efficiently form the first material layer 120 with the overhang portion 120a, the first material layer 120 may be formed by a method with poor step coverage, for example, plasma-enhanced chemical vapor deposition. . In one embodiment, the first material layer 120 will not be completely removed in subsequent processes, and the remaining first material layer 120 becomes a part of the second insulating structure formed subsequently. The first material layer 120 may include a first insulating material, such as oxide, nitride, oxynitride, other suitable insulating materials, or a combination thereof. In this embodiment, the first material layer 120 includes oxide.

請參照第2C圖,進行第一蝕刻製程,以部分地移除第一材料層120,且暴露出電容接觸結構119的頂表面。更詳言之,在第一蝕刻製程之後,第一材料層120的水平部分120c被完全移除,且暴露出第二接觸部件118的頂表面。第一蝕刻製程可為等向性的蝕刻製程,例如濕式蝕刻製程。Referring to FIG. 2C , a first etching process is performed to partially remove the first material layer 120 and expose the top surface of the capacitive contact structure 119 . In more detail, after the first etching process, the horizontal portion 120c of the first material layer 120 is completely removed, and the top surface of the second contact part 118 is exposed. The first etching process may be an isotropic etching process, such as a wet etching process.

請參照第2D圖,於電容接觸結構119上形成第一連接墊122,且第一連接墊122的頂表面與絕緣蓋層110的頂表面共平面。形成第一連接墊122的步驟可包括沉積導電材料於第一材料層120及電容接觸結構119上,以填滿接觸區105。之後,進行平坦化製程,以使第一材料層120的頂表面、絕緣蓋層110的頂表面與第一連接墊122的頂表面共平面。導電材料可包括鎢、鋁、銅、金、銀、上述之合金、其他合適的金屬材料或上述之組合。在本實施例中,導電材料為鎢。Referring to FIG. 2D , the first connection pad 122 is formed on the capacitive contact structure 119 , and the top surface of the first connection pad 122 is coplanar with the top surface of the insulating cover layer 110 . The step of forming the first connection pad 122 may include depositing a conductive material on the first material layer 120 and the capacitive contact structure 119 to fill up the contact region 105 . Afterwards, a planarization process is performed to make the top surfaces of the first material layer 120 , the top surface of the insulating capping layer 110 and the top surfaces of the first connection pads 122 coplanar. The conductive material may include tungsten, aluminum, copper, gold, silver, alloys of the above, other suitable metal materials, or combinations thereof. In this embodiment, the conductive material is tungsten.

請參照第2E圖,進行第二蝕刻製程,以移除第一材料層120,且形成露出絕緣間隔物112的凹口115。在本實施例中,第二蝕刻製程是移除第一材料層120的懸突部分120a,且凹口115更露出第一材料層120的漸窄部分120b。Referring to FIG. 2E , a second etching process is performed to remove the first material layer 120 and form a recess 115 exposing the insulating spacer 112 . In this embodiment, the second etching process is to remove the overhang portion 120 a of the first material layer 120 , and the notch 115 further exposes the tapered portion 120 b of the first material layer 120 .

請參照第2F圖,以第二絕緣材料124填滿凹口115,且第二絕緣材料124的頂表面、絕緣蓋層110的頂表面與第一連接墊122的頂表面共平面。為了保護第一材料層120不受到後續蝕刻製程的影響,第二絕緣材料124可不同於第一材料層120的材料。第二絕緣材料124可包括氧化物、氮化物或氮氧化物。在本實施例中,第二絕緣材料124為氮化物。可藉由合適的沉積製程而形成第二絕緣材料124,例如,化學氣相沉積、物理氣相沉積、原子層沉積及上述之組合。Referring to FIG. 2F , the recess 115 is filled with the second insulating material 124 , and the top surface of the second insulating material 124 , the top surface of the insulating cap layer 110 and the top surface of the first connection pad 122 are coplanar. In order to protect the first material layer 120 from being affected by the subsequent etching process, the second insulating material 124 may be different from the material of the first material layer 120 . The second insulating material 124 may include oxide, nitride or oxynitride. In this embodiment, the second insulating material 124 is nitride. The second insulating material 124 can be formed by a suitable deposition process, such as chemical vapor deposition, physical vapor deposition, atomic layer deposition, and combinations thereof.

請同時參照第1圖及第2F圖,在本實施例中,第一材料層120的漸窄部分120b與第二絕緣材料124形成環繞第一連接墊122的第二絕緣結構140。此第二絕緣結構140形成於第一連接墊122與絕緣蓋層110之間。第二絕緣結構的頂部寬度大於底部寬度。藉由本實施例的第二絕緣結構140,可有助於改善良率,此部分將於下文中詳細討論。Please refer to FIG. 1 and FIG. 2F at the same time. In this embodiment, the tapered portion 120 b of the first material layer 120 and the second insulating material 124 form a second insulating structure 140 surrounding the first connection pad 122 . The second insulating structure 140 is formed between the first connection pad 122 and the insulating capping layer 110 . The top width of the second insulating structure is larger than the bottom width. The second insulating structure 140 of this embodiment can help to improve the yield, which will be discussed in detail below.

請參照第2G圖,在第二絕緣結構140形成後,形成層間介電層128於基板102上。接著,對層間介電層128進行第三蝕刻製程,以形成暴露出第一連接墊122的多個開口。之後,在層間介電層128的這些開口中形成電容結構130。電容結構130可藉由第一連接墊122而與電容接觸結構119電性連接。Referring to FIG. 2G , after the second insulating structure 140 is formed, an interlayer dielectric layer 128 is formed on the substrate 102 . Next, a third etching process is performed on the interlayer dielectric layer 128 to form a plurality of openings exposing the first connection pads 122 . Capacitive structures 130 are then formed in these openings of the interlayer dielectric layer 128 . The capacitor structure 130 can be electrically connected to the capacitor contact structure 119 through the first connection pad 122 .

於本實施例中,層間介電層128的材料不同於第二絕緣材料124的材料,使得當進行第三蝕刻製程時,層間介電層128的移除速率遠大於第二絕緣材料124的移除速率。藉此,可避免電容結構130中的導電材料形成於原預定填入第二絕緣結構140的位置,進而可避免短路。再者,在第三蝕刻製程期間,第二絕緣材料124可避免蝕刻液經由漸窄部分120b及第二間隔物層112b而進入基板102中。如此一來,可進一步提升DRAM100的良率。在一些實施例中,在第三蝕刻製程中,層間介電層128的移除速率R1相對於第二絕緣材料124的移除速率R2之比率R1/R2為1.5-20。層間介電層128的材料可包括氧化物、氮化物、氮氧化物或上述之組合。在本實施例中,層間介電層128為氧化物。In this embodiment, the material of the interlayer dielectric layer 128 is different from that of the second insulating material 124, so that when the third etching process is performed, the removal rate of the interlayer dielectric layer 128 is much greater than that of the second insulating material 124. removal rate. In this way, the conductive material in the capacitor structure 130 can be prevented from being formed at the position originally intended to be filled in the second insulating structure 140 , thereby avoiding a short circuit. Furthermore, during the third etching process, the second insulating material 124 can prevent the etching solution from entering the substrate 102 through the tapered portion 120b and the second spacer layer 112b. In this way, the yield rate of the DRAM 100 can be further improved. In some embodiments, in the third etching process, the ratio R1/R2 of the removal rate R1 of the interlayer dielectric layer 128 to the removal rate R2 of the second insulating material 124 is 1.5-20. The material of the interlayer dielectric layer 128 may include oxide, nitride, oxynitride or a combination thereof. In this embodiment, the interlayer dielectric layer 128 is oxide.

電容結構130的配置範圍可與第一連接墊122的配置範圍不完全重疊。於本實施例中,一個電容結構130配置於第一連接墊122、第二絕緣結構140與絕緣蓋層110上。可利用習知的方法形成電容結構130,在此不再詳述。在形成電容結構130之後,後續可進行其他習知的製程,以完成DRAM100。為了簡化說明,關於其他習知的製程,在此不再詳述。The configuration range of the capacitor structure 130 may not completely overlap with the configuration range of the first connection pad 122 . In this embodiment, a capacitor structure 130 is disposed on the first connection pad 122 , the second insulating structure 140 and the insulating capping layer 110 . The capacitor structure 130 can be formed by known methods, which will not be described in detail here. After the capacitor structure 130 is formed, other conventional processes may be performed subsequently to complete the DRAM 100 . In order to simplify the description, other known manufacturing processes are not described in detail here.

請同時參照第1圖、第2G圖及第3圖,本發明之一些實施例的DRAM100包括基板102、位元線接觸結構104、位元線結構、第一絕緣結構132、電容接觸結構119、第一連接墊122、第二絕緣結構140及電容結構130。位元線結構包括導電結構108、絕緣蓋層110及絕緣間隔物112。Please refer to FIG. 1, FIG. 2G and FIG. 3 at the same time. The DRAM 100 of some embodiments of the present invention includes a substrate 102, a bit line contact structure 104, a bit line structure, a first insulating structure 132, a capacitor contact structure 119, The first connection pad 122 , the second insulating structure 140 and the capacitor structure 130 . The bit line structure includes a conductive structure 108 , an insulating cap layer 110 and an insulating spacer 112 .

位元線接觸結構104、導電結構108及絕緣蓋層110依序形成於基板102上。位元線結構沿著第一方向D1延伸。第一絕緣結構132沿著與第一方向D1相交的第二方向D2延伸。電容接觸結構119、第一連接墊122及第二絕緣結構140位於兩條相鄰的位元線結構與兩條相鄰的第一絕緣結構132之間。絕緣間隔物112形成於位元線接觸結構104、導電結構108與絕緣蓋層110各自的側壁上。第一連接墊122形成於電容接觸結構119上。各第二絕緣結構140環繞一個第一連接墊122。第二絕緣結構140的頂表面與第一連接墊122的頂表面齊平,且第二絕緣結構140具有向下逐漸縮窄的寬度。電容結構130形成於第一連接墊122上並且電性連接到第一連接墊122。有關DRAM100的其他詳細內容可參考前述對於製造方法的說明,因而不再重複贅述。The bit line contact structure 104 , the conductive structure 108 and the insulating capping layer 110 are sequentially formed on the substrate 102 . The bit line structure extends along the first direction D1. The first insulating structure 132 extends along a second direction D2 intersecting the first direction D1. The capacitive contact structure 119 , the first connection pad 122 and the second insulating structure 140 are located between two adjacent bit line structures and two adjacent first insulating structures 132 . Insulating spacers 112 are formed on respective sidewalls of the bit line contact structure 104 , the conductive structure 108 and the insulating capping layer 110 . The first connection pad 122 is formed on the capacitive contact structure 119 . Each second insulating structure 140 surrounds a first connection pad 122 . The top surface of the second insulating structure 140 is flush with the top surface of the first connection pad 122 , and the second insulating structure 140 has a width gradually narrowed downward. The capacitor structure 130 is formed on the first connection pad 122 and electrically connected to the first connection pad 122 . For other details about the DRAM 100 , reference can be made to the aforementioned description of the manufacturing method, and thus will not be repeated here.

在本實施例所提供之DRAM100中,藉由使第一連接墊122的頂部較窄,以及配置環繞第一連接墊122的第二絕緣結構140,可降低短路的風險,亦可降低導電結構108與第一連接墊122之間的寄生電容。因此,能夠提升寫入速度且改善效能及良率。In the DRAM 100 provided in this embodiment, by making the top of the first connection pad 122 narrower and disposing the second insulating structure 140 around the first connection pad 122, the risk of short circuit can be reduced, and the conductive structure 108 can also be reduced. and the parasitic capacitance between the first connection pad 122 . Therefore, the writing speed can be increased and the performance and yield can be improved.

在一些實施例中,第二絕緣結構140包括第一部分及第二部分。第一部分自電容接觸結構119的頂表面向上延伸而寬度漸寬。第二部分自第一連接墊122的頂表面向下延伸而寬度漸窄。在如第2F圖所示的實施例中,第二絕緣結構140的第一部分包括第一材料層120,且第二絕緣結構140的第二部分包括第二絕緣材料124。In some embodiments, the second insulating structure 140 includes a first portion and a second portion. The first portion extends upward from the top surface of the capacitive contact structure 119 with a gradually wider width. The second portion extends downward from the top surface of the first connection pad 122 and has a narrower width. In the embodiment shown in FIG. 2F , the first portion of the second insulating structure 140 includes the first material layer 120 , and the second portion of the second insulating structure 140 includes the second insulating material 124 .

如第2F圖所示,第二絕緣結構140的頂表面具有第一寬度W1。第二絕緣結構140的第一部分的表面與第三間隔物層112c的表面間具有最大距離W2。絕緣蓋層110的頂表面具有第六寬度W6。在本實施例中,相鄰的兩個第一連接墊122的頂部分之間的距離為第六寬度W6加兩倍的第一寬度W1加兩倍的第一間隔物層112a的厚度W7(亦即,W6+2*W1+2*W7)。在一些實施例中,第一寬度W1相對於最大距離W2的比率W1/W2為1.5-10.0。藉此,可使相鄰的兩個第一連接墊122的頂部分之間具有適當的距離,使第一連接墊122與電容結構130之間具有合適的接觸阻抗,並降低導電結構108與第一連接墊122之間的寄生電容,可改善良率及效能。As shown in FIG. 2F, the top surface of the second insulating structure 140 has a first width W1. There is a maximum distance W2 between the surface of the first portion of the second insulating structure 140 and the surface of the third spacer layer 112c. The top surface of the insulating capping layer 110 has a sixth width W6. In this embodiment, the distance between the top portions of two adjacent first connection pads 122 is the sixth width W6 plus twice the first width W1 plus twice the thickness W7 of the first spacer layer 112a ( That is, W6+2*W1+2*W7). In some embodiments, the ratio W1/W2 of the first width W1 to the maximum distance W2 is 1.5-10.0. Thereby, an appropriate distance can be provided between the tops of two adjacent first connection pads 122, a suitable contact impedance can be provided between the first connection pads 122 and the capacitive structure 130, and the contact resistance between the conductive structure 108 and the second connection pad can be reduced. A parasitic capacitance between the connection pads 122 can improve yield and performance.

此外,在一些其他實施例中,在形成電容結構130之前,可形成電性連接到第一連接墊122的第二連接墊(未繪示)於第一連接墊122上。在如此的實施例中,第二連接墊與第一連接墊122可以錯位設置。藉由形成本實施例所述之第二絕緣結構140的第二部分,可有效地避免一個第二連接墊同時電性連接到兩個相鄰的第一連接墊122,因此可降低短路的風險,進而改善效能及良率。Furthermore, in some other embodiments, before forming the capacitor structure 130 , a second connection pad (not shown) electrically connected to the first connection pad 122 may be formed on the first connection pad 122 . In such an embodiment, the second connection pads and the first connection pads 122 may be dislocated. By forming the second portion of the second insulating structure 140 described in this embodiment, it is possible to effectively prevent one second connection pad from being electrically connected to two adjacent first connection pads 122 at the same time, thereby reducing the risk of short circuit. , thereby improving performance and yield.

在本實施例中,第一連接墊122包括上部分122a及下部分122b。由於第一連接墊122與第二絕緣結構140接觸且被第二絕緣結構140包圍,第一連接墊122的上部分122a具有朝向上方逐漸縮窄的寬度,且第一連接墊122的下部分122b也具有朝向上方逐漸縮窄的寬度。再者,第一連接墊122的底表面的寬度可小於或等於電容接觸結構119的頂表面的寬度。第一連接墊122的底表面的寬度W5可大於第一連接墊122的頂表面的寬度W4。藉由本實施例的第一連接墊122,可避免第一連接墊122與電容接觸結構119之間的接觸電阻太大,並可降低相鄰的兩個第一連接墊122之間發生短路的風險。如此一來,可進一步改善提升DRAM100的效能與良率。In this embodiment, the first connection pad 122 includes an upper portion 122a and a lower portion 122b. Since the first connection pad 122 is in contact with the second insulating structure 140 and surrounded by the second insulating structure 140, the upper portion 122a of the first connection pad 122 has a width gradually narrowed upward, and the lower portion 122b of the first connection pad 122 It also has a width that tapers upwards. Furthermore, the width of the bottom surface of the first connection pad 122 may be smaller than or equal to the width of the top surface of the capacitive contact structure 119 . The width W5 of the bottom surface of the first connection pad 122 may be greater than the width W4 of the top surface of the first connection pad 122 . With the first connection pads 122 of this embodiment, the contact resistance between the first connection pads 122 and the capacitive contact structure 119 can be avoided from being too large, and the risk of a short circuit between two adjacent first connection pads 122 can be reduced. . In this way, the performance and yield of the DRAM 100 can be further improved.

如第2F圖所示,第一連接墊122在上部分122a與下部分122b的交界處具有第三寬度W3。第一連接墊122的頂表面具有寬度W4。在一些實施例中,第三寬度W3相對於寬度W4的比率W3/W4為1.1-2.5。藉此,第一連接墊122可具有合適的電阻值,使相鄰的兩個第一連接墊122的頂部分之間具有適當的距離,並且避免於第一連接墊122中形成縫隙,可更有效地改善良率及效能。As shown in FIG. 2F, the first connection pad 122 has a third width W3 at the junction of the upper portion 122a and the lower portion 122b. The top surface of the first connection pad 122 has a width W4. In some embodiments, the ratio W3/W4 of the third width W3 to the width W4 is 1.1-2.5. In this way, the first connection pads 122 can have an appropriate resistance value, so that there is an appropriate distance between the tops of two adjacent first connection pads 122, and the formation of gaps in the first connection pads 122 can be avoided. Effectively improve yield and performance.

請參照第2A圖及第2B圖,在本實施例中,導電襯層118a可改善導電層118b與第三間隔物層112c之間的黏著力,再者,藉由將第二絕緣結構140形成於第二接觸部件118之上,也可避免導電層118b的剝離或脫層。Please refer to FIG. 2A and FIG. 2B. In this embodiment, the conductive lining layer 118a can improve the adhesion between the conductive layer 118b and the third spacer layer 112c. Moreover, by forming the second insulating structure 140 On the second contact part 118, peeling or delamination of the conductive layer 118b can also be avoided.

此外,在本實施例中,第一連接墊122與第二接觸部件118之間的黏著力大於第一連接墊122與第二絕緣結構140之間的黏著力,且第一連接墊122的底表面的寬度小於或等於第二接觸部件118的頂表面的寬度。藉此,可有效地避免第一連接墊122的剝離或脫層,而能夠進一步改善DRAM100的良率。In addition, in this embodiment, the adhesive force between the first connection pad 122 and the second contact member 118 is greater than the adhesion force between the first connection pad 122 and the second insulating structure 140 , and the bottom of the first connection pad 122 The width of the surface is less than or equal to the width of the top surface of the second contact member 118 . Thereby, peeling or delamination of the first connection pads 122 can be effectively avoided, and the yield of the DRAM 100 can be further improved.

如第2F圖所示,第二絕緣結構140具有第一高度H1。第一連接墊122及第二接觸部件118的高度總合為第三高度H3。為了有利於形成第一材料層120的懸突部分120a並且避免導電層118b的剝離或脫層,在一些實施例中,在回蝕刻製程之後,第二接觸部件118的頂表面可齊平於或低於第二間隔物層112b或第三間隔物層112c的頂表面。此外,在一些實施例中,第三高度H3相對於第一高度H1的比率H3/H1為1.5-5,藉此可改善良率。As shown in FIG. 2F, the second insulating structure 140 has a first height H1. The total height of the first connection pad 122 and the second contact member 118 is a third height H3. In order to facilitate the formation of the overhang portion 120a of the first material layer 120 and avoid peeling or delamination of the conductive layer 118b, in some embodiments, after the etch-back process, the top surface of the second contact member 118 may be flush with or lower than the top surface of the second spacer layer 112b or the third spacer layer 112c. In addition, in some embodiments, the ratio H3/H1 of the third height H3 relative to the first height H1 is 1.5-5, thereby improving the yield.

在本實施例中,第二絕緣結構140的第一部分(即第一材料層120的漸窄部分120b)包括氧化物,藉以降低導電結構108與第一連接墊122之間的寄生電容。並且,第二絕緣結構140的第一部分的寬度可小於第二部分的寬度,以降低第一連接墊122的電阻值。如此一來,可進一步改善效能。In this embodiment, the first portion of the second insulating structure 140 (ie, the tapered portion 120 b of the first material layer 120 ) includes oxide, so as to reduce the parasitic capacitance between the conductive structure 108 and the first connection pad 122 . Moreover, the width of the first portion of the second insulating structure 140 may be smaller than the width of the second portion, so as to reduce the resistance value of the first connection pad 122 . In this way, performance can be further improved.

如第2F圖所示,第二絕緣結構140的第二部分具有最小厚度H2。為了有效阻擋第三蝕刻製程的蝕刻液破壞第二絕緣結構140的第二部分底下的元件(例如第二間隔物層112b及基板102)、降低導電結構108與第一連接墊122之間的寄生電容,及有利於微型化,在一些實施例中,第一高度H1相對於最小厚度H2的比率H1/H2為1.5-10.0。As shown in FIG. 2F, the second portion of the second insulating structure 140 has a minimum thickness H2. In order to effectively prevent the etchant of the third etching process from destroying the elements under the second part of the second insulating structure 140 (such as the second spacer layer 112b and the substrate 102 ), reduce the parasitic between the conductive structure 108 and the first connection pad 122 To facilitate miniaturization, in some embodiments, the ratio H1/H2 of the first height H1 to the minimum thickness H2 is 1.5-10.0.

第4圖所示的DRAM200與第2F圖所示的DRAM100相似,因而使用相同的標號表示相同的元件,差異在於第4圖的第二絕緣結構240的第一部分是由氣隙126所形成。為了簡化說明,關於相同於第2F圖所繪示的元件及其製程步驟,在此不再詳述。The DRAM 200 shown in FIG. 4 is similar to the DRAM 100 shown in FIG. 2F , so the same reference numerals are used to denote the same components. The difference is that the first part of the second insulating structure 240 in FIG. 4 is formed by the air gap 126 . To simplify the description, the same components as those shown in FIG. 2F and their manufacturing steps are not described in detail here.

可藉由以下的製程步驟形成第二絕緣結構240。於第二蝕刻製程中,是完全地移除第一材料層120,且形成暴露出第一連接墊122的側壁的開口,其中此開口的上部分為露出絕緣間隔物112的頂部的凹口115,下部分用以形成氣隙126。之後,形成第二絕緣材料124於凹口115中。在本實施例中,第一材料層120做為犧牲層而被完全地移除。The second insulating structure 240 can be formed through the following process steps. In the second etching process, the first material layer 120 is completely removed, and an opening exposing the sidewall of the first connection pad 122 is formed, wherein the upper part of the opening is a recess 115 exposing the top of the insulating spacer 112 , the lower part is used to form the air gap 126 . After that, a second insulating material 124 is formed in the notch 115 . In this embodiment, the first material layer 120 is completely removed as a sacrificial layer.

於本實施例中,可選擇階梯覆蓋率不佳的方法(例如電漿增強化學氣相沉積)沉積第二絕緣材料124,而形成第二絕緣材料124於凹口115,且形成氣隙126於第二絕緣材料124之下。In this embodiment, a method with poor step coverage (such as plasma enhanced chemical vapor deposition) can be selected to deposit the second insulating material 124, so that the second insulating material 124 is formed in the recess 115, and the air gap 126 is formed in the recess 115. under the second insulating material 124 .

在本實施例中,第二絕緣結構240的第一部分包括氣隙126,且第二絕緣結構240的第二部分包括第二絕緣材料124。相較於以氧化物形成絕緣結構的第一部分的情況,使用氣隙126作為第一部分可更進一步降低導電結構108與第一連接墊122之間的寄生電容。如此一來,將可進一步改善效能。In this embodiment, the first portion of the second insulating structure 240 includes the air gap 126 , and the second portion of the second insulating structure 240 includes the second insulating material 124 . Using the air gap 126 as the first portion further reduces the parasitic capacitance between the conductive structure 108 and the first connection pad 122 compared to the case where the first portion of the insulating structure is formed of oxide. In this way, performance can be further improved.

如第4圖所示,第二絕緣結構240具有第一高度H1。第二接觸部件118具有第四高度H4。在一些實施例中,第一高度H1相對於第四高度H4的比率H1/H4為0.5-10.0,藉以避免第二接觸部件118的剝離或脫層,並且有利於形成第一材料層120的懸突部分120a,從而改善良率。As shown in FIG. 4, the second insulating structure 240 has a first height H1. The second contact member 118 has a fourth height H4. In some embodiments, the ratio H1/H4 of the first height H1 to the fourth height H4 is 0.5-10.0, so as to avoid peeling or delamination of the second contact member 118 and facilitate the formation of the overhang of the first material layer 120. protruding portion 120a, thereby improving yield.

於本實施例中,第一材料層120可包括氧化物、氮化物、氮氧化物、碳系材料(例如,石墨或其他碳化物)、多晶矽或上述之組合。因此,製程靈活度較高。此外,於本實施例中,可選擇更容易形成懸突部分120a的材料,或可選擇在第二蝕刻製程期間具有更高移除速率的材料來製作第一材料層120,因而有助於縮短製造時間與改善良率。In this embodiment, the first material layer 120 may include oxides, nitrides, oxynitrides, carbon-based materials (eg, graphite or other carbides), polysilicon, or combinations thereof. Therefore, the process flexibility is high. In addition, in this embodiment, a material that is easier to form the overhang portion 120a can be selected, or a material that has a higher removal rate during the second etching process can be selected to make the first material layer 120, thus helping to shorten the length of the first material layer 120. manufacturing time and improved yield.

第5圖所繪示的DRAM300與第2F圖所繪示的DRAM100相似,因而使用相同的標號表示相同的元件,差異在於第5圖的第二絕緣結構340僅由第一材料層120所形成。為了簡化說明,關於相同於第2F圖所繪示的元件及其製程步驟,在此不再詳述。The DRAM 300 shown in FIG. 5 is similar to the DRAM 100 shown in FIG. 2F , so the same reference numerals are used to denote the same components. The difference is that the second insulating structure 340 in FIG. 5 is only formed by the first material layer 120 . To simplify the description, the same components as those shown in FIG. 2F and their manufacturing steps are not described in detail here.

於本實施例中,藉由如第2D圖所示的步驟形成第二絕緣結構340。因此,在形成如第2D圖所示的結構之後,可省略如第2E圖與第2F圖所描述的步驟,而直接進行如第2G圖所描述的步驟,藉此可簡化製程,並且降低生產時間與成本。在本實施例中,第一材料層120為氮化物。第一材料層120的材料與層間介電層的材料不同,使得當進行第三蝕刻製程時,層間介電層的移除速率遠大於第二絕緣結構340的移除速率。藉此,可避免電容結構中的導電材料形成於原預定填入第二絕緣結構340的位置,進而可避免短路。再者,在第三蝕刻製程期間,第二絕緣結構340可阻擋蝕刻液穿透而進入基板102中。In this embodiment, the second insulating structure 340 is formed through the steps shown in FIG. 2D. Therefore, after forming the structure shown in FIG. 2D, the steps described in FIG. 2E and FIG. 2F can be omitted, and the steps described in FIG. 2G can be directly performed, thereby simplifying the manufacturing process and reducing production time and cost. In this embodiment, the first material layer 120 is nitride. The material of the first material layer 120 is different from that of the interlayer dielectric layer, so that when the third etching process is performed, the removal rate of the interlayer dielectric layer is much greater than the removal rate of the second insulating structure 340 . In this way, the conductive material in the capacitor structure can be prevented from being formed at the position originally intended to be filled in the second insulating structure 340 , thereby avoiding a short circuit. Furthermore, during the third etching process, the second insulating structure 340 can prevent the etching solution from penetrating into the substrate 102 .

第6圖所繪示的DRAM400與第2F圖所繪示的DRAM100相似,因而使用相同的標號表示相同的元件,差異在於第6圖所繪示的第二絕緣結構440包括第一部分、第二部分及第三部分。第一部分自電容接觸結構119的頂表面向上延伸。第二部分自第一連接墊122的頂表面向下延伸。第三部分位於第一部分與第二部分之間。為了簡化說明,關於相同於第2F圖所繪示的元件及其製程步驟,在此不再詳述。The DRAM 400 shown in FIG. 6 is similar to the DRAM 100 shown in FIG. 2F , so the same reference numerals are used to represent the same components. The difference is that the second insulating structure 440 shown in FIG. 6 includes a first part, a second part and the third part. The first portion extends upward from the top surface of the capacitive contact structure 119 . The second portion extends downward from the top surface of the first connection pad 122 . The third section is located between the first section and the second section. To simplify the description, the same components as those shown in FIG. 2F and their manufacturing steps are not described in detail here.

可藉由以下的製程步驟形成第二絕緣結構440。可在形成如第2D圖所繪示的結構之後,進行第二蝕刻製程,以部分地移除第一材料層120,且形成暴露出第一連接墊122的側壁的一部分的凹口115。之後,沉積第二絕緣材料124於凹口115中,且第二絕緣材料124不填滿凹口115。若選擇階梯覆蓋率不佳的方法(例如,電漿增強化學氣相沉積)沉積第二絕緣材料124,則可形成第二絕緣材料124於凹口115的上部分,且形成氣隙126於凹口115的下部分。藉此,可形成氣隙126於剩餘的第一材料層120b’與第二絕緣材料124之間。The second insulating structure 440 can be formed through the following process steps. After the structure shown in FIG. 2D is formed, a second etching process may be performed to partially remove the first material layer 120 and form the recess 115 exposing a part of the sidewall of the first connection pad 122 . After that, the second insulating material 124 is deposited in the notch 115 , and the second insulating material 124 does not fill the notch 115 . If a method with poor step coverage (for example, plasma enhanced chemical vapor deposition) is selected to deposit the second insulating material 124, the second insulating material 124 can be formed on the upper part of the recess 115, and an air gap 126 can be formed in the recess. Lower part of port 115. Thereby, an air gap 126 can be formed between the remaining first material layer 120b' and the second insulating material 124.

在本實施例中,第二絕緣結構440的第一部分包括剩餘的第一材料層120b’。第二絕緣結構440的第二部分包括第二絕緣材料124。第二絕緣結構440的第三部分包括氣隙126。第二絕緣材料124不同於第一材料層120。第一材料層120可包括氧化物、氮化物、氮氧化物、其他合適的絕緣材料或其組合。第二絕緣材料124可包括氧化物、氮化物、氮氧化物、碳化物或其他合適的絕緣材料。在本實施例中,第一材料層120為氧化物,且第二絕緣材料124為氮化物。在本實施例中,第二絕緣結構440的第一部分為氧化物,且第三部分為氣隙。因此,可降低導電結構108與第一連接墊122之間的寄生電容,進而可改善記憶體裝置的效能。In this embodiment, the first portion of the second insulating structure 440 includes the remaining first material layer 120b'. The second portion of the second insulating structure 440 includes the second insulating material 124 . The third portion of the second insulating structure 440 includes the air gap 126 . The second insulating material 124 is different from the first material layer 120 . The first material layer 120 may include oxide, nitride, oxynitride, other suitable insulating materials or combinations thereof. The second insulating material 124 may include oxide, nitride, oxynitride, carbide or other suitable insulating materials. In this embodiment, the first material layer 120 is oxide, and the second insulating material 124 is nitride. In this embodiment, the first portion of the second insulating structure 440 is an oxide, and the third portion is an air gap. Therefore, the parasitic capacitance between the conductive structure 108 and the first connection pad 122 can be reduced, thereby improving the performance of the memory device.

綜上所述,在本發明實施例所提供之DRAM的製造方法中,形成具有懸突部分的第一材料層覆蓋且包覆於絕緣蓋層的頂部分,以降低記憶體裝置短路的風險,並改善良率。再者,環繞第一連接墊的第二絕緣結構包括低介電常數材料,以降低位元線與第一連接墊之間的寄生電容,並改善記憶體裝置的效能。To sum up, in the manufacturing method of the DRAM provided by the embodiment of the present invention, the first material layer with the overhang portion is formed to cover and cover the top portion of the insulating cap layer, so as to reduce the risk of short circuit of the memory device, and improve yield. Moreover, the second insulating structure surrounding the first connection pad includes low dielectric constant material to reduce the parasitic capacitance between the bit line and the first connection pad, and improve the performance of the memory device.

雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed above with several preferred embodiments, it is not intended to limit the present invention, and anyone with ordinary knowledge in the technical field may make any changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the scope of the appended patent application.

100:DRAM 102:基板 104:位元線接觸結構 105:接觸區 106:絕緣圖案 108:導電結構 110:絕緣蓋層 112:間隔物層 112a:第一間隔物層 112b:第二間隔物層 112c:第三間隔物層 114:第一接觸部件 115:凹口 116:緩衝層 118:第二接觸部件 118a:導電襯層 118b:導電層 119:電容接觸結構 120:第一材料層 120a:懸突部分 120b:漸窄部分 120b’:剩餘的第一材料層 120c:水平部分 122:第一連接墊 122a:上部分 122b:下部分 124:第二絕緣材料 126:氣隙 128:層間介電層 130:電容結構 132:第一絕緣結構 140:第二絕緣結構 200:DRAM 240:第二絕緣結構 300:DRAM 340:第二絕緣結構 400:DRAM 440:第二絕緣結構 H1:第一高度 H2:最小厚度 H3:第三高度 H4:第四高度 W1:第一寬度 W2:最大距離 W3:第三寬度 W4:寬度 W5:寬度 W6:第六寬度 W7:厚度 100:DRAM 102: Substrate 104: Bit line contact structure 105: Contact area 106: Insulation pattern 108: Conductive structure 110: insulation cover 112: spacer layer 112a: first spacer layer 112b: second spacer layer 112c: the third spacer layer 114: first contact part 115: notch 116: buffer layer 118: the second contact part 118a: Conductive lining 118b: conductive layer 119: Capacitive contact structure 120: the first material layer 120a: overhanging part 120b: tapering part 120b': remaining first layer of material 120c: horizontal part 122: First connection pad 122a: upper part 122b: Lower part 124: second insulating material 126: air gap 128: interlayer dielectric layer 130:Capacitance structure 132: The first insulation structure 140: Second insulation structure 200:DRAM 240: second insulation structure 300:DRAM 340: second insulation structure 400:DRAM 440: second insulation structure H1: first height H2: minimum thickness H3: third height H4: fourth height W1: first width W2: maximum distance W3: third width W4: width W5: width W6: sixth width W7: Thickness

第1圖為本發明一些實施例之DRAM的上視示意圖。 第2A圖到第2G圖為本發明一實施例之DRAM在製程各個階段沿著如第1圖所示的剖線AA’所繪製的剖面示意圖。 第3圖為本發明一些實施例之DRAM沿著如第1圖所示的剖線BB’所繪製的剖面示意圖。 第4圖為本發明另一些實施例之DRAM的剖面示意圖。 第5圖為本發明另一些實施例之DRAM的剖面示意圖。 第6圖為本發明另一些實施例之DRAM的剖面示意圖。 FIG. 1 is a schematic top view of a DRAM according to some embodiments of the present invention. FIG. 2A to FIG. 2G are cross-sectional schematic diagrams drawn along the section line AA' as shown in FIG. 1 at various stages of the manufacturing process of the DRAM according to an embodiment of the present invention. Fig. 3 is a schematic cross-sectional view of a DRAM according to some embodiments of the present invention drawn along the section line BB' as shown in Fig. 1 . FIG. 4 is a schematic cross-sectional view of a DRAM according to another embodiment of the present invention. FIG. 5 is a schematic cross-sectional view of a DRAM according to another embodiment of the present invention. FIG. 6 is a schematic cross-sectional view of a DRAM according to another embodiment of the present invention.

100:動態隨機存取記憶體 100: Dynamic Random Access Memory

102:基板 102: Substrate

104:位元線接觸結構 104: Bit line contact structure

106:絕緣圖案 106: Insulation pattern

108:導電結構 108: Conductive structure

110:絕緣蓋層 110: insulation cover

112:間隔物層 112: spacer layer

112a:第一間隔物層 112a: first spacer layer

112b:第二間隔物層 112b: second spacer layer

112c:第三間隔物層 112c: the third spacer layer

114:第一接觸部件 114: first contact part

116:緩衝層 116: buffer layer

118:第二接觸部件 118: the second contact part

118a:導電襯層 118a: Conductive lining

118b:導電層 118b: conductive layer

119:電容接觸結構 119: Capacitive contact structure

120b:漸窄部分 120b: tapering part

122:第一連接墊 122: First connection pad

122a:上部分 122a: upper part

122b:下部分 122b: Lower part

124:第二絕緣材料 124: second insulating material

128:層間介電層 128: interlayer dielectric layer

130:電容結構 130:Capacitance structure

140:第二絕緣結構 140: Second insulation structure

Claims (16)

一種動態隨機存取記憶體,包括: 多個位元線接觸結構,形成於一基板上; 多個位元線結構,形成於該些位元線接觸結構上,且沿著一第一方向延伸; 多個第一絕緣結構,形成於該基板上,且沿著與該第一方向相交的一第二方向延伸; 一電容接觸結構,形成於該基板上,且位於相鄰的該些位元線結構與相鄰的該些第一絕緣結構之間; 一第一連接墊,形成於該電容接觸結構上; 一第二絕緣結構,環繞該第一連接墊,且該第二絕緣結構的頂部寬度大於底部寬度;及 一電容結構,形成於該第一連接墊上並且與該第一連接墊電性連接。 A dynamic random access memory comprising: A plurality of bit line contact structures formed on a substrate; a plurality of bit line structures formed on the bit line contact structures and extending along a first direction; a plurality of first insulating structures formed on the substrate and extending along a second direction intersecting with the first direction; a capacitive contact structure formed on the substrate and located between the adjacent bit line structures and the adjacent first insulating structures; a first connection pad formed on the capacitive contact structure; a second insulating structure surrounding the first connection pad, and the width of the top of the second insulating structure is greater than the width of the bottom; and A capacitor structure is formed on the first connection pad and electrically connected to the first connection pad. 如請求項1之動態隨機存取記憶體,其中該第二絕緣結構的一頂表面與該第一連接墊的一頂表面齊平,且該第二絕緣結構包括: 一第一部分,自該電容接觸結構的一頂表面向上延伸,其中該第一部分具有朝向下方逐漸縮窄的寬度;以及 一第二部分,自該第一連接墊的該頂表面向下延伸,其中該第二部分具有朝向下方逐漸縮窄的寬度,其中該第二絕緣結構的該頂表面具有一第一寬度W1,其中該第二絕緣結構的該第一部分的表面與該些位元線結構的側壁表面間具有最大距離W2,且其中該第一寬度W1相對於該最大距離W2的比率(W1/W2)為1.5-10.0。 The DRAM according to claim 1, wherein a top surface of the second insulating structure is flush with a top surface of the first connection pad, and the second insulating structure comprises: a first portion extending upward from a top surface of the capacitive contact structure, wherein the first portion has a width gradually narrowing downward; and a second portion extending downward from the top surface of the first connection pad, wherein the second portion has a width gradually narrowing downward, wherein the top surface of the second insulating structure has a first width W1, Wherein there is a maximum distance W2 between the surface of the first portion of the second insulating structure and the sidewall surfaces of the bit line structures, and wherein the ratio (W1/W2) of the first width W1 to the maximum distance W2 is 1.5 -10.0. 如請求項2之動態隨機存取記憶體,其中該第一部分包括一第一絕緣材料,該第二部分包括一第二絕緣材料,且該第二絕緣材料不同於該第一絕緣材料。The DRAM according to claim 2, wherein the first portion includes a first insulating material, the second portion includes a second insulating material, and the second insulating material is different from the first insulating material. 如請求項2之動態隨機存取記憶體,其中該第一部分包括一氣隙,且該第二部分包括一絕緣材料。The dynamic random access memory of claim 2, wherein the first portion includes an air gap, and the second portion includes an insulating material. 如請求項2之動態隨機存取記憶體,其中該第一部分與該第二部分包括相同的絕緣材料。The DRAM according to claim 2, wherein the first part and the second part comprise the same insulating material. 如請求項2之動態隨機存取記憶體,其中該第二絕緣結構具有一第一高度H1,該第二部分具有一最小厚度H2,且其中該第一高度H1相對於該最小厚度H2的比率(H1/H2)為1.5-10.0。The dynamic random access memory of claim 2, wherein the second insulating structure has a first height H1, the second portion has a minimum thickness H2, and wherein the ratio of the first height H1 to the minimum thickness H2 (H1/H2) is 1.5-10.0. 如請求項2之動態隨機存取記憶體,其中該第二絕緣結構更包括位於第一部分與該第二部分之間的一第三部分,該第一部分包括一第一絕緣材料,該第二部分包括一第二絕緣材料,該第三部分包括一氣隙,且該第二絕緣材料不同於該第一絕緣材料。The DRAM according to claim 2, wherein the second insulating structure further includes a third portion between the first portion and the second portion, the first portion includes a first insulating material, and the second portion A second insulating material is included, the third portion includes an air gap, and the second insulating material is different from the first insulating material. 如請求項1之動態隨機存取記憶體,其中該些位元線結構包括: 一導電結構,形成於該位元線接觸結構上; 一絕緣蓋層,形成於該導電結構上; 一絕緣間隔物,位於該導電結構與該電容接觸結構之間,且包括: 一第一間隔物層,形成於該絕緣蓋層的一側壁及該導電結構的一側壁上; 一第二間隔物層,形成於該第一間隔物層上,其中該第二間隔物層的一頂表面低於該第一間隔物層的一頂表面;以及 一第三間隔物層,形成於該第二間隔物層上,其中該第三間隔物層的一頂表面低於該第一間隔物層的該頂表面。 Such as the dynamic random access memory of claim 1, wherein the bit line structures include: a conductive structure formed on the bit line contact structure; an insulating capping layer formed on the conductive structure; An insulating spacer is located between the conductive structure and the capacitive contact structure, and includes: a first spacer layer formed on a sidewall of the insulating capping layer and a sidewall of the conductive structure; a second spacer layer formed on the first spacer layer, wherein a top surface of the second spacer layer is lower than a top surface of the first spacer layer; and A third spacer layer is formed on the second spacer layer, wherein a top surface of the third spacer layer is lower than the top surface of the first spacer layer. 如請求項1之動態隨機存取記憶體,其中該第一連接墊的一底表面的寬度大於該第一連接墊的一頂表面的寬度,且該第一連接墊的一下部分與一上部分的交界處的寬度相對於該第一連接墊的該頂表面的寬度的比率為1.1-2.5。The dynamic random access memory of claim 1, wherein a width of a bottom surface of the first connection pad is greater than a width of a top surface of the first connection pad, and a lower portion of the first connection pad is connected to an upper portion The ratio of the width of the junction to the width of the top surface of the first connection pad is 1.1-2.5. 一種動態隨機存取記憶體的製造方法,包括: 形成多個位元線接觸結構於一基板上; 形成多個位元線結構於該些位元線接觸結構上,其中各該位元線結構沿著一第一方向延伸; 形成多個第一絕緣結構於該基板上,其中各該第一絕緣結構沿著與該第一方向相交的一第二方向延伸; 形成一電容接觸結構於該基板上,其中該電容接觸結構位於相鄰的該些位元線結構與相鄰的該些第一絕緣結構之間; 形成一第一連接墊於該電容接觸結構上; 形成一第二絕緣結構環繞該第一連接墊,其中該第二絕緣結構的頂部寬度大於底部寬度;以及 形成一電容結構於該第一連接墊上並且與該第一連接墊電性連接。 A method of manufacturing a dynamic random access memory, comprising: forming a plurality of bit line contact structures on a substrate; forming a plurality of bit line structures on the bit line contact structures, wherein each of the bit line structures extends along a first direction; forming a plurality of first insulating structures on the substrate, wherein each of the first insulating structures extends along a second direction intersecting with the first direction; forming a capacitive contact structure on the substrate, wherein the capacitive contact structure is located between the adjacent bit line structures and the adjacent first insulating structures; forming a first connection pad on the capacitive contact structure; forming a second insulating structure surrounding the first connection pad, wherein the width of the top of the second insulating structure is greater than the width of the bottom; and A capacitor structure is formed on the first connection pad and electrically connected to the first connection pad. 如請求項10之動態隨機存取記憶體的製造方法,其中形成該第二絕緣結構與形成該第一連接墊包括: 形成厚度不均一的一第一材料層於該些位元線結構及該電容接觸結構上,其中該第一材料層包括一第一絕緣材料; 進行一第一蝕刻製程,以部分地移除該第一材料層,且暴露出該電容接觸結構的一頂表面; 沉積一導電材料於該第一材料層及該電容接觸結構上; 進行一平坦化製程,以使該第一材料層的一頂表面與該導電材料的一頂表面共平面,其中在該平坦化製程之後,該導電材料形成該第一連接墊; 進行一第二蝕刻製程,以移除該第一材料層的一部分,且形成一凹口相鄰於該第一連接墊;以及 形成一第二絕緣材料於該凹口中,其中該第二絕緣材料不同於該第一絕緣材料, 其中該第二絕緣結構的一頂表面與該第一連接墊的一頂表面齊平。 The method for manufacturing a dynamic random access memory according to claim 10, wherein forming the second insulating structure and forming the first connection pad include: forming a first material layer with non-uniform thickness on the bit line structures and the capacitive contact structure, wherein the first material layer includes a first insulating material; performing a first etching process to partially remove the first material layer and expose a top surface of the capacitive contact structure; depositing a conductive material on the first material layer and the capacitive contact structure; performing a planarization process so that a top surface of the first material layer is coplanar with a top surface of the conductive material, wherein after the planarization process, the conductive material forms the first connection pad; performing a second etching process to remove a portion of the first material layer and form a recess adjacent to the first connection pad; and forming a second insulating material in the recess, wherein the second insulating material is different from the first insulating material, Wherein a top surface of the second insulating structure is flush with a top surface of the first connection pad. 如請求項11之動態隨機存取記憶體的製造方法,其中藉由該第一蝕刻製程移除該第一材料層的一懸突部分以形成該凹口。The method for manufacturing a dynamic random access memory according to claim 11, wherein a protrusion portion of the first material layer is removed by the first etching process to form the notch. 如請求項11之動態隨機存取記憶體的製造方法,其中該第二絕緣材料填滿該凹口,且剩餘的該第一材料層與該第二絕緣材料形成該第二絕緣結構。The method for manufacturing a dynamic random access memory according to claim 11, wherein the second insulating material fills the notch, and the remaining first material layer and the second insulating material form the second insulating structure. 如請求項11之動態隨機存取記憶體的製造方法,其中該第二絕緣材料未完全填滿該凹口,而形成一氣隙於該凹口中且位於該第一材料層與該第二絕緣材料之間,且其中剩餘的該第一材料層、該第二絕緣材料與該氣隙形成該第二絕緣結構。The manufacturing method of dynamic random access memory according to claim 11, wherein the second insulating material does not completely fill the notch, and an air gap is formed in the notch and is located between the first material layer and the second insulating material Between, and wherein the remaining first material layer, the second insulating material and the air gap form the second insulating structure. 如請求項10之動態隨機存取記憶體的製造方法,其中形成該第二絕緣結構與形成該第一連接墊包括: 形成厚度不均一的一第一材料層於該些位元線結構及該電容接觸結構上; 進行一第一蝕刻製程,以部分地移除該第一材料層,且暴露出該電容接觸結構的一頂表面; 沉積一導電材料於該第一材料層及該電容接觸結構上; 進行一平坦化製程,以使該第一材料層的一頂表面與該導電材料的一頂表面共平面; 在該平坦化製程之後,該導電材料形成該第一連接墊,且該第一連接墊與該電容接觸結構直接接觸; 進行一第二蝕刻製程,以完全移除該第一材料層,且形成暴露出該第一連接墊的側壁的一開口;以及 形成該第二絕緣結構於該開口中,其中該第二絕緣結構的材料不同於該第一材料層的材料。 The method for manufacturing a dynamic random access memory according to claim 10, wherein forming the second insulating structure and forming the first connection pad include: forming a first material layer with non-uniform thickness on the bit line structures and the capacitive contact structure; performing a first etching process to partially remove the first material layer and expose a top surface of the capacitive contact structure; depositing a conductive material on the first material layer and the capacitive contact structure; performing a planarization process so that a top surface of the first material layer is coplanar with a top surface of the conductive material; After the planarization process, the conductive material forms the first connection pad, and the first connection pad is in direct contact with the capacitive contact structure; performing a second etching process to completely remove the first material layer and form an opening exposing the sidewall of the first connection pad; and The second insulating structure is formed in the opening, wherein the material of the second insulating structure is different from that of the first material layer. 如請求項15之動態隨機存取記憶體的製造方法,其中形成該第二絕緣結構於該開口中包括形成一絕緣材料,且該絕緣材料並未完全填滿該開口,而形成一氣隙於該開口中且位於該絕緣材料下方,且其中該絕緣材料與該氣隙形成該第二絕緣結構。The manufacturing method of DRAM according to claim 15, wherein forming the second insulating structure in the opening includes forming an insulating material, and the insulating material does not completely fill the opening, and forms an air gap in the opening The opening is located under the insulating material, and wherein the insulating material and the air gap form the second insulating structure.
TW110119925A 2021-06-02 2021-06-02 Dynamic random access memory and method for manufacturing the same TWI761223B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110119925A TWI761223B (en) 2021-06-02 2021-06-02 Dynamic random access memory and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110119925A TWI761223B (en) 2021-06-02 2021-06-02 Dynamic random access memory and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TWI761223B TWI761223B (en) 2022-04-11
TW202249247A true TW202249247A (en) 2022-12-16

Family

ID=82199216

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110119925A TWI761223B (en) 2021-06-02 2021-06-02 Dynamic random access memory and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI761223B (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101076888B1 (en) * 2009-06-29 2011-10-25 주식회사 하이닉스반도체 Interconnection wire of semiconductor device and manufacturing method therefor
KR101934366B1 (en) * 2012-10-25 2019-01-02 삼성전자주식회사 Semiconductor devices having recessed active regions and methods for fabricating the same
KR102161800B1 (en) * 2013-12-06 2020-10-06 삼성전자주식회사 Semiconductor devices and methods of manufacturing the same
KR102411401B1 (en) * 2016-03-08 2022-06-22 삼성전자주식회사 Method of manufacturing semiconductor devices
US10217748B2 (en) * 2017-05-25 2019-02-26 Winbond Electronics Corp. Dynamic random access memory and method of manufacturing the same
CN107910328B (en) * 2017-12-12 2023-09-22 长鑫存储技术有限公司 Method for manufacturing storage node contact in semiconductor device and semiconductor device
US11469235B2 (en) * 2019-09-27 2022-10-11 Nanya Technology Corporation Semiconductor device and method for fabricating the same

Also Published As

Publication number Publication date
TWI761223B (en) 2022-04-11

Similar Documents

Publication Publication Date Title
US8102008B2 (en) Integrated circuit with buried digit line
TWI685841B (en) Dram and method for manufacturing the same
KR100583965B1 (en) Method of fabricating a semiconductor device for reducing parasitic capacitance between bit lines and semiconductor device fabricated thereby
KR20190087843A (en) Semiconductor device
CN108269805B (en) Semiconductor memory device and method of manufacturing the same
CN111725218B (en) Vertical semiconductor device
CN110970351A (en) Semiconductor memory capacitor contact structure and preparation method
CN110858562B (en) Method for manufacturing semiconductor element and semiconductor element manufactured by same
KR100496259B1 (en) Wiring formed by employing a damascene process, method for forming the wiring, semiconductor device including the same, and method for manufacturing the semiconductor device
US11610611B2 (en) Dynamic random access memory and method for manufacturing the dram having a bottom surface of a bit line contact structure higher than a top surface of a dielectric layer formed on a buried word line
US20100314674A1 (en) Semiconductor device and method for manufacturing the same
US11665889B2 (en) Semiconductor memory structure
TWI761223B (en) Dynamic random access memory and method for manufacturing the same
TWI753736B (en) Dynamic random access memory and method for manufacturing the same
CN108269804B (en) The production method of semiconductor storage
CN113241346B (en) Semiconductor device and method of forming the same
US20130285193A1 (en) Metal-insulator-metal (mim) capacitor with deep trench (dt) structure and method in a silicon-on-insulator (soi)
US11917811B2 (en) Dynamic random access memory and method for manufacturing the same
CN111785718B (en) Dynamic random access memory and manufacturing method thereof
CN115707228A (en) Dynamic random access memory and manufacturing method thereof
WO2023184571A1 (en) Semiconductor structure and preparation method therefor
US20230145857A1 (en) Semiconductor devices
CN110277389B (en) Semiconductor structure with conductive line and manufacturing method of stop layer
CN117954380A (en) Semiconductor structure and preparation method thereof
KR20010004976A (en) Method of forming a contact hole in a semiconductor device