TW202248884A - 用於判定與微影製程相關之隨機度量之方法 - Google Patents

用於判定與微影製程相關之隨機度量之方法 Download PDF

Info

Publication number
TW202248884A
TW202248884A TW111116139A TW111116139A TW202248884A TW 202248884 A TW202248884 A TW 202248884A TW 111116139 A TW111116139 A TW 111116139A TW 111116139 A TW111116139 A TW 111116139A TW 202248884 A TW202248884 A TW 202248884A
Authority
TW
Taiwan
Prior art keywords
training
metrology
data
metric
random
Prior art date
Application number
TW111116139A
Other languages
English (en)
Other versions
TWI815419B (zh
Inventor
奎索思托摩斯 巴提斯塔奇斯
馬克辛 帕薩瑞可
可拉吉 馬可斯 傑拉度 馬堤司 瑪麗亞 凡
維多 丹尼艾拉 路提梨亞諾
史考特 安德森 米德雷布魯克斯
柯恩 艾德瑞安納斯 凡斯庫瑞恩
尼爾斯 吉朋
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP21172589.0A external-priority patent/EP4086703A1/en
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202248884A publication Critical patent/TW202248884A/zh
Application granted granted Critical
Publication of TWI815419B publication Critical patent/TWI815419B/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

本發明提供一種判定一隨機度量之方法,該方法包含:獲得已經訓練以使經訓練光學度量衡資料與訓練隨機度量資料關聯之一經訓練模型,其中該訓練光學度量衡資料包含複數個量測信號,該複數個量測信號與一強度相關參數之跨自複數個訓練結構散射之輻射之一零或更高繞射階的分佈相關,且該訓練隨機度量資料包含與該複數個訓練結構相關之隨機度量值,其中該複數個訓練結構已經形成為具有該隨機度量所依賴之一或多個尺寸之一變化;獲得光學度量衡資料,該光學度量衡資料包含該強度相關參數之跨自一結構散射之輻射之一零或更高繞射階的一分佈;及使用該經訓練模型以自該光學度量衡資料推斷該隨機度量之一值。

Description

用於判定與微影製程相關之隨機度量之方法
本發明關於用於在微影製程中將圖案施加至基板之方法及裝置。
微影裝置為將所要圖案施加基板上(通常施加至基板之目標部分上)之機器。微影裝置可用於例如積體電路(IC)之製造中。在彼情況下,圖案化器件(其替代地被稱為遮罩或倍縮光罩)可用以產生待形成於IC之個別層上的電路圖案。此圖案可轉印至基板(例如,矽晶圓)上之目標部分(例如,包含一個或若干個晶粒之部分)上。通常經由成像至提供於基板上之輻射敏通常感材料(抗蝕劑)層上來進行圖案之轉印。一般而言,單一基板將含有連續地經圖案化之鄰近目標部分之網路。已知的微影裝置包括:所謂的步進器,其中藉由一次性將整個圖案曝光至目標部分上來輻射每一目標部分;且所謂的掃描器,其中藉由在給定方向(「掃描」方向)上經由輻射光束而掃描圖案同時平行或反平行於此方向而同步地掃描基板來輻射每一目標部分。亦有可能藉由將圖案壓印至基板上來將圖案自圖案化器件轉印至基板。
為了監視微影製程,量測經圖案化基板之參數。舉例而言,參數可包括形成於經圖案化基板中或上之連續層之間的疊對誤差,及經顯影感光性抗蝕劑之臨界線寬或臨界尺寸(CD)。可對產品基板及/或對專用度量衡目標執行此量測。存在用於對在微影製程中形成之微觀結構進行量測之各種技術,包括使用掃描電子顯微鏡及各種特殊化工具。
在執行諸如將圖案施加於基板上或量測此類圖案之微影製程中,製程控制及/或品質監測方法可依賴於藉由微影製程形成之特徵的隨機分析。此類隨機分析當前需要高解析度度量衡,其通常可使用掃描電子顯微鏡SEM)來實施。然而,SEM度量衡較慢,且因此不適合用於大容量製造。
本發明之一個目標為提供一種以比當前使用SEM可能之更快速度進行隨機度量衡之方法。
在本發明之一第一態樣中,提供一種判定與一結構相關之一隨機度量之方法,該方法包含:獲得一經訓練模型,該模型已經訓練以使訓練光學度量衡資料與訓練隨機度量資料關聯,其中該訓練光學度量衡資料包含複數個量測信號,該複數個量測信號與一強度相關參數之跨包含於自一基板上之複數個訓練結構散射之輻射內之一零或更高繞射階的複數個角解析分佈相關,且該訓練隨機度量資料包含與該複數個訓練結構相關之隨機度量值,其中該複數個訓練結構已經形成為具有該隨機度量所依賴之一或多個尺寸之一變化;獲得光學度量衡資料,該光學度量衡資料包含該強度相關參數之跨包含於自一結構散射之輻射內之一零或更高繞射階之一角解析分佈;及使用該經訓練模型以自該光學度量衡資料推斷與該結構相關聯的該隨機度量之一值。
藉由使用使用如所描述之一經訓練模型,一種導出隨機度量之準確方法係不太耗時(相較於SEM度量衡)光學度量衡資料基於而為可能的。
在本發明之一第二態樣中,提供一種計算裝置,其包含一處理器且經組態以執行該第一態樣之該方法。
在本發明之一第三態樣中,提供一種掃描電子顯微法檢測裝置,其可操作以使一基板上之複數個特徵成像,且包含該第二態樣之該計算裝置。
在本發明之一第四態樣中,提供一種包含程式指令之電腦程式,該等程式指令可操作以在運行於一合適裝置上時執行該第一態樣之該方法。
在本發明之一第五態樣中,提供一種光學度量衡器件,其包含:一光學系統,其可操作以獲得包含與已經曝光於一微影製程中之一結構相關之至少一個量測信號的光學度量衡資料;非瞬態資料載體,其包含一經訓練模型,該模型已經訓練以自光學度量衡資料推斷該隨機度量之一或多個隨機度量值,該經訓練模型已針對訓練光學度量衡資料及訓練隨機度量資料來訓練,其中該訓練光學度量衡資料包含複數個量測信號,每一與已由一訓練基板上之複數個訓練結構之一訓練結構散射的經散射輻射相關;且該訓練隨機度量資料包含與該訓練結構相關之隨機度量值,其中該訓練結構之多個個例已經形成為具有該隨機度量所依賴之一或多個製程參數的一變化;及一處理器,其可操作以使用該經訓練模型以自該光學度量衡資料推斷該隨機度量之一值。
下文參看隨附圖式詳細地描述本發明之其他態樣、特徵及優點,以及本發明之各種實施例之結構及操作。應注意,本發明不限於本文中所描述之特定實施例。本文僅出於說明性目的呈現此類實施例。基於本文中所含之教示,額外實施例對於熟習相關技術者將為顯而易見的。
在詳細描述本發明之實施例之前,呈現可實施本發明之實施例之實例環境係具指導性的。
圖1在200處將微影裝置LA展示為實施大容量微影製造製程之工業生產設施之部分。在本實例中,製造製程經調適用於在基板上之半導體產品(積體電路)之製造,諸如,半導體晶圓。熟習此項技術者將瞭解,可藉由以此製程之變體處理不同類型之基板來製造廣泛多種產品。半導體產品之生產僅用作現今具有巨大商業意義之實例。
在微影裝置(或簡言之,「微影工具」200)內,在202處展示量測站MEA且在204處展示曝光站EXP。控制單元LACU在206處展示。在此實例中,每一基板訪問量測站及曝光站以被施加圖案。舉例而言,在光學微影裝置中,投影系統用以使用經調節輻射及投影系統將產品圖案自圖案化器件MA轉印至基板上。此藉由在輻射敏感抗蝕劑材料層中形成圖案影像而實現。
本文中所使用之術語「投影系統」應經廣泛地解釋為涵蓋適於所使用之曝光輻射或適於諸如浸潤液體之使用或真空之使用之其他因素的任何類型之投影系統,包括折射、反射、反射折射、磁性、電磁及靜電光學系統,或其任何組合。圖案化MA器件可為將圖案賦予至由圖案化器件傳輸或反射之輻射光束的遮罩或倍縮光罩。熟知操作模式包括步進模式及掃描模式。眾所周知,投影系統可以多種方式與用於基板及圖案化器件之支撐件及定位系統合作,以將所要圖案施加至跨基板之許多目標部分。可使用可程式化圖案化器件來替代具有固定圖案之倍縮光罩。舉例而言,輻射可包含在深紫外線(DUV)波帶或極紫外線(EUV)波帶中之電磁輻射。本發明亦適用於(例如)利用電子射束之其他類型之微影製程,例如,壓印微影及直寫微影。
微影裝置控制單元LACU控制各種致動器及感測器之所有移動及量測以收納基板W及倍縮光罩MA且實施圖案化操作。LACU亦包括用以實施與裝置之操作相關的所需計算之信號處理及資料處理能力。實務上,控制單元LACU將實現為許多子單元之系統,該等子單元各自處置裝置內之子系統或組件的即時資料獲取、處理及控制。
在曝光站EXP處將圖案施加至基板之前,在量測站MEA處處理基板以使得可進行各種預備步驟。該等預備步驟可包括使用位準感測器來映射基板之表面高度,及使用對準感測器來量測基板上之對準標記的位置。對準標記係以規則柵格圖案標稱地配置。然而,由於在產生標記時之不準確度且亦由於基板貫穿其處理而發生之變形,標記偏離理想柵格。因此,除了量測基板之位置及定向以外,對準感測器實務上亦必須詳細地量測跨基板區域之許多標記之位置(在裝置將以極高準確度在正確部位處印刷產品特徵的情況下)。裝置可屬於具有兩個基板台之所謂的雙載物台類型,每一基板台具有由控制單元LACU控制之定位系統。當在曝光站EXP處曝光一個基板台上之一個基板時,可在量測站MEA處將另一基板裝載至另一基板台上,使得可執行各種預備步驟。因此,對準標記之量測極耗時,且提供兩個基板台能夠顯著增加裝置之產出量。若在基板台處於量測站處以及處於曝光站處時位置感測器IF不能夠量測基板台之位置,則可提供第二位置感測器以使得能夠在兩個站處追蹤基板台之位置。微影裝置LA可例如屬於所謂的雙載物台類型,其具有兩個基板台以及兩個站-曝光站及量測站-在該等站之間可交換該等基板台。
在生產設施內,裝置200形成「微影單元」或「微影叢集」之部分,該「微影單元」或「微影叢集」亦含有塗佈裝置208以用於將感光性抗蝕劑及其他塗層應用至基板W以供由裝置200圖案化。在裝置200之輸出側處,提供烘烤裝置210及顯影裝置212以用於將經曝光圖案顯影至實體抗蝕劑圖案中。在所有此等裝置之間,基板處置系統負責支撐基板且將基板自一台器件轉移至下一台裝置。通常統稱為塗佈顯影系統之此等裝置處於塗佈顯影系統控制單元之控制下,塗佈顯影系統控制單元自身受監督控制系統SCS控制,監督控制系統SCS亦經由微影裝置控制單元LACU控制微影裝置。因此,不同裝置可操作以最大化產出量及處理效率。監督控制系統SCS接收配方資訊R,該配方資訊R非常詳細地提供待執行以產生每一經圖案化基板之步驟的定義。
一旦已在微影單元中施加並顯影圖案,即將經圖案化基板220轉印至諸如在222、224、226處說明之其他處理裝置。廣泛範圍之處理步驟藉由典型製造設施中之各種裝置來實施。出於實例起見,此實施例中之裝置222為蝕刻站,且裝置224執行蝕刻後退火步驟。將另外物理及/或化學處理步驟應用於另外裝置226等等中。可需要眾多類型之操作以製作實際器件,諸如,材料之沈積、表面材料特性之改質(氧化、摻雜、離子植入等等)、化學機械研磨(CMP),等等。實務上,裝置226可表示在一或多個裝置中執行之一系列不同處理步驟。作為另一實例,可提供用於實施自對準多重圖案化之裝置及處理步驟,以基於藉由微影裝置之前驅圖案而產生多個較小特徵。
眾多周知,半導體器件之製造涉及此處理之許多重複,以在基板上逐層地建置具有適當材料及圖案之器件結構。因此,到達微影叢集之基板230可為新近製備之基板,或其可為先前已在此叢集中或在另一裝置中完全地經處理之基板。類似地,取決於所需處理,留下裝置226上之基板232可經恢復以用於同一微影叢集中之後續圖案化操作,其可被預定用於不同叢集中之圖案化操作,或其可為成品產品而待發送用於切割及封裝。
產品結構之每一層需要製程步驟之不同集合,且用於每一層處之裝置226可在類型方面完全不同。另外,即使在待由裝置226應用之處理步驟在大設施中標稱地相同的情況下,亦可存在並行地工作以對不同基板執行步驟226之若干假設一致的機器。此等機器之間的設置或瑕疵之小差異可意謂其以不同方式影響不同基板。即使為每一層相對所共有之步驟,諸如蝕刻(裝置222)亦可藉由標稱地一致但並行地工作以最大化產出率之若干蝕刻裝置實施。此外,實務上,不同層根據待蝕刻之材料的細節需要不同蝕刻製程,例如化學蝕刻、電漿蝕刻,且需要特定要求,諸如各向異性蝕刻。
可在如剛才所提及之其他微影裝置中執行先前及/或後續製程,且可甚至在不同類型之微影裝置中執行先前及/或後續製程。舉例而言,器件製造製程中之在諸如解析度及疊對之參數方面要求極高的一些層相比於要求較不高之其他層可在更進階微影工具中予以執行。因此,一些層可曝光於浸潤型微影工具中,而其他層曝光於『乾式』工具中。一些層可曝光於在DUV波長下工作之工具中,而其他層係使用EUV波長輻射來曝光。
為了正確地且一致地曝光由微影裝置曝光之基板,需要檢測經曝光基板以量測性質,諸如後續層之間的疊對誤差、線厚度、臨界尺寸(CD)等。因此,經定位有微影單元LC之製造設施亦包括收納已在微影單元中經處理之基板W中之一些或全部的度量衡系統。將度量衡結果直接地或間接地提供至監督控制系統SCS。若偵測到誤差,則可對後續基板之曝光進行調整,尤其在可足夠迅速地且快速地進行度量衡使得同一批次之其他基板仍待曝光的情況下。此外,已經曝光之基板可剝離及重工以改良良率,或丟棄,藉此避免對已知有瑕疵之基板進行進一步處理。在基板之僅一些目標部分有瑕疵之情況下,可僅對良好的彼等目標部分執行進一步曝光。
圖1中亦展示度量衡裝置240,該度量衡裝置240經提供以用於在製造製程中之所需階段處進行產品之參數的量測。現代微影生產設施中之度量衡站之常見實例為散射計(例如暗場散射計、角度解析散射計或光譜散射計),且其可經應用以在裝置222中之蝕刻之前量測在220處之經顯影基板之性質。在使用度量衡裝置240之情況下,可判定出例如諸如疊對或臨界尺寸(CD)之重要效能參數並不滿足經顯影抗蝕劑中之指定準確度要求。在蝕刻步驟之前,存在經由微影叢集剝離經顯影抗蝕劑且重新處理基板220的機會。藉由監督控制系統SCS及/或控制單元LACU 206隨著時間推移進行小調整,可使用來自裝置240之度量衡結果242在微影叢集中維持圖案化操作之準確效能,藉此最小化製得不合格產品且要求重工之風險。
度量衡站之另一實例為掃描電子顯微鏡(SEM),其另外稱為電子射束(electron beam/e-beam)度量衡器件,除了散射計以外或作為散射計之替代例,亦可包括該掃描電子顯微鏡(SEM)。因而,度量衡裝置240可單獨包含電子射束或SEM度量衡器件,或除了散射計以外,度量衡裝置240亦可包含電子射束或SEM度量衡器件。電子射束及SEM度量衡器件具有直接量測特徵(亦即,其直接使特徵成像)之優點,而非在散射量測中使用之間接量測技術(其中參數值由被量測結構繞射之輻射的繞射階之重建構及/或不對稱性判定)。電子射束或SEM度量衡器件之主要缺點係比散射量測慢得多的量測速度,該量測速度限制電子射束或SEM度量衡器件對特定離線監視製程之潛在應用。
另外,可應用度量衡裝置240及/或其他度量衡裝置(未展示)以量測經處理基板232、234及傳入基板230之性質。可在經處理基板上使用度量衡裝置來判定諸如疊對或CD之重要參數。
微影投影裝置通常將經圖案化(亦即,藉由倍縮光罩)影像投影於緊接在基板上方之點處,且接著最終投影至抗蝕劑中。經投影影像稱為空中影像,其包含依據影像平面中之空間位置而變化的光強度之分佈。空中影像為曝光至抗蝕劑中之資訊源,從而形成溶解率之梯度,其使得三維抗蝕劑影像能夠在顯影期間呈現。
通常基於一或多個隨機度量而進行隨機誘發之故障預測。舉例而言,此類隨機度量可包括對一或多個尺寸參數之變化之隨機量測;例如以下中者一或多者:CD (所謂的局域CD均一性,LCDU)、線邊緣位置(所謂的線邊緣粗糙度LER),或線寬(所謂的線寬粗糙度LWR)。準確量測故障之數目係繁瑣的,此係由於可在最佳化製程中預期低故障率(例如,大約百萬分之一至十億分之一)。
使用微影投影裝置之成像將引起一或多個參數之隨機變化,諸如明顯的線寬粗糙度(LWR),及諸如孔之小二維特徵之局域CD變化。隨機變異可歸因於諸如抗蝕劑中之光子散粒雜訊、光子產生二次電子、光子吸收變化、光子產生酸的因素。在EUV微影之情況下,需要EUV之小的特徵大小進一步複合了此隨機變化。較小特徵之隨機變化為產品良率中之顯著因素,且證明包括於微影投影裝置之各種最佳化製程中矽合理的。
圖2 (a)示意性地描繪隨機效應、線邊緣粗糙度LER。假定所有條件在設計佈局上之特徵之邊緣903之三次曝光或曝光模擬中皆相同,則邊緣903之抗蝕劑影像903A、903B及903C可具有稍微不同之形狀及位置。可藉由分別平均化抗蝕劑影像903A、903B及903C來量測抗蝕劑影像903A、903B及903C之位置904A、904B及904C。邊緣903之LER可為位置904A、904B及904C之空間分佈之量度。舉例而言,LER可為空間分佈(假定該分佈為常態分佈)之3σ。可自邊緣903之許多曝光或模擬導出LER。
圖2 (b)示意性地描繪LWR。假定所有條件在設計佈局上具有寬度911之長矩形特徵910之三次曝光或曝光模擬中皆相同,則矩形特徵910之抗蝕劑影像910A、910B及910C可分別具有稍微不同寬度911A、911B及911C。矩形特徵910之LWR可為寬度911A、911B及911C之分佈之量度。舉例而言,LWR可為分佈(假定該分佈為常態分佈)之3σ。可自矩形特徵910之許多曝光或模擬導出LWR。在短特徵(例如,接觸孔)之內容背景中,由於長邊緣不可用於平均化該特徵之影像之部位,所以並未良好地界定該特徵之影像之寬度。相似量LCDU可用以特徵化隨機變化。LCDU為短特徵之影像之經量測CD之分佈(假定該分佈為常態分佈)的3σ。
圖3 (a)說明適合用於本文中所揭示之本發明之實施例中的度量衡裝置100之實例。在美國專利申請案第US 2006-033921、US 2010-201963及WO2017148982號中更詳細地解釋此類型之度量衡裝置之操作原理及其可以用於晶粒內度量衡(IDM)技術,該申請案以全文引用之方式併入本文中。貫穿裝置具有若干分支之光軸係由點線O表示。在此裝置中,由源110 (例如,氙氣燈)發射之輻射係經由光學系統而導向至基板W上,該光學系統包含:透鏡系統120、孔徑板130、透鏡系統140、部分反射表面150及物鏡160。在實施例中,此等透鏡系統120、140、160係以4F配置之雙重序列而配置。在實施例中,使用透鏡系統120來準直由輻射源110發射之輻射。可視需要使用不同透鏡配置。可藉由在呈現基板平面之空間光譜之平面中界定空間強度分佈來選擇輻射入射於基板上之角度範圍。詳言之,可藉由在為接物鏡光瞳平面之背向投影式影像之平面中在透鏡120與140之間插入合適形式之孔徑板130來進行此選擇。藉由使用不同孔徑,不同強度分佈(例如環形、偶極等)為可能的。在徑向及周邊方向上之照明之角度分佈以及諸如輻射之波長、偏振及/或相干性之性質可皆經調整以獲得所要結果。舉例而言,一或多個干涉濾光器130可提供於源110與部分反射表面150之間以選擇在比如400 nm至900 nm或甚至更低(諸如200 nm至300 nm)範圍內之所關注波長。干涉濾光器可為可調諧的,而非包含不同濾光器之集合。可使用光柵代替干涉濾光器。在實施例中,一或多個偏振器170可提供於源110與部分反射表面150之間以選擇所關注偏振。偏振器可為可調諧的,而非包含不同偏振器之集合。
在基板W垂直於物鏡160之光軸O的情況下置放目標T。因此,來自源110之輻射係由部分反射表面150反射且經由物鏡160聚焦至基板W上之目標T上之照明光點S (參見圖3 (b))中。在實施例中,物鏡160具有高數值孔徑(NA),理想地為至少0.9或至少0.95。浸潤度量衡裝置(使用相對高折射率流體,諸如水)甚至可具有大於1之數值孔徑。
與軸線O成角度而聚焦至照明光點之照明射線170、172產生繞射射線174、176。應記住,此等射線僅為覆蓋包括目標T之基板區域的許多平行射線中之一者。照明光點內之每一元件係在度量衡裝置之視場內。由於板130中之孔徑具有有限寬度(為接納有用量之輻射所必要),故入射射線170、172事實上將佔據一角度範圍,且繞射射線174、176將稍微散開。根據小目標之點散佈函數,每一繞射階將遍及一角度範圍而進一步擴散,而非如所展示之單一理想射線。
由基板W上之目標繞射之至少零階係由物鏡160收集,且被返回導向通過部分反射表面150。光學元件180將繞射光束之至少部分提供至光學系統182,該光學系統使用零階及/或一階繞射光束在感測器190 (例如CCD或CMOS感測器)上形成目標T之繞射光譜(光瞳平面影像)。在實施例中,提供孔徑186以濾出某些繞射階,使得將特定繞射階提供至感測器190。在實施例中,孔徑186允許實質上或主要僅零階輻射到達感測器190。在實施例中,感測器190可為二維偵測器以使得可量測基板目標T之二維角度散射光譜。感測器190可為例如CCD或CMOS感測器陣列,且可使用例如每圖框架40毫秒之積分時間。感測器190可用以量測在單一波長(或窄波長範圍)下之經重新導向輻射之強度、分離地在多個波長下之經重新導向輻射之強度,或遍及一波長範圍而積分之經重新導向輻射之強度。此外,感測器可用以分離地量測具有橫向磁偏振及/或橫向電偏振之輻射之強度,及/或橫向磁偏振輻射與橫向電偏振輻射之間的相位差。
視情況,光學元件180將繞射光束之至少部分提供至量測分支200以在感測器230 (例如CCD或CMOS感測器)上在基板W上形成目標之影像。量測分支200可用於各種輔助功能,諸如聚焦度量衡裝置(亦即,使得基板W能夠與目標160焦點對準),及/或用於暗場成像,其中圖像形成為具有零階阻斷,使得其僅包含單一繞射階或互補繞射階對。
為針對光柵之不同大小及形狀提供定製視場,在自源110至物鏡160之路徑上在透鏡系統140內設置可調整場光闌300。場光闌300含有孔徑302且位於與目標T之平面共軛的平面中,以使得照明光點變為孔徑302之影像。可根據放大因數而按比例調整影像,或孔徑與照明光點之大小關係可為1:1。為了使照明可適應於不同類型之量測,孔徑板300可包含圍繞一圓盤而形成之數個孔徑圖案,該圓盤旋轉以使所要圖案處於適當位置。可替代地或另外,可提供及調換一組板300以達成相同效果。另外或替代地,亦可使用可程式化孔徑器件,諸如可變形鏡面陣列或透射空間光調變器。
通常,目標將與其在平行於Y軸或平行於X軸而延行之週期性結構特徵對準。關於目標之繞射行為,具有在平行於Y軸之方向上延伸的特徵之週期性結構具有在X方向上之週期性,而具有在平行於X軸之方向上延伸的特徵之週期性結構具有在Y方向上之週期性。為了量測在兩個方向上之效能,通常提供兩種類型之特徵。雖然為了簡單起見將參考線及空間,但週期性結構無需由線及空間形成。此外,每一線及/或線之間的空間可為由較小子結構形成之結構。另外,週期性結構可經形成為在兩個維度上同時具有週期性(例如在週期性結構包含支柱及/或通孔的情況下)。
圖3 (b)說明典型目標T之平面視圖,及圖3 (a)之裝置中之照明光點S之範圍。為了獲得無來自周圍結構之干涉之繞射光譜,目標T在一實施例中為週期性結構(例如,光柵),寬度大於照明光點S之寬度(例如,直徑)。光點S之寬度可小於目標之寬度及長度。換言之,目標係由照明『填充不足』,且繞射信號基本上不含來自目標自身外之產品特徵及其類似者之任何信號。此情形簡化目標之數學重建構,此係由於可將目標視為無限的。
圖3 (a)中所描繪之器件可用於基於使用度量衡所獲得之量測資料而判定目標圖案之一或多個所關注變量的值。由偵測器190偵測之輻射提供用於目標T之經量測輻射分佈(或更一般而言角解析參數分佈)。
圖4 (a)描繪度量衡裝置302之示意性表示,其中在0.01 nm至100 nm之波長範圍內之輻射可用以量測基板上之結構之參數。圖4 (a)中所呈現之度量衡裝置302可適用於硬X射線、軟X射線或EUV域。
圖4 (a)說明本可使用文中所揭示之方法中的另外度量衡裝置302之示意性實體配置。此度量衡裝置302包含純粹藉助於實例使用硬X射線(HXR)及/或軟X射線(SXR)及/或EUV輻射(視情況掠入射)之光譜散射計。此類器件將在本文中稱為用於執行SXR度量衡之SXR度量衡器件,且無論所用之實際波長,所獲得之影像將稱為SXR影像。
檢測裝置302包含輻射源或稱為照明源310、照明系統312、基板支撐件316、偵測系統318、398及度量衡處理單元(MPU) 320。
此實例中之照明源310係用於產生EUV、硬X射線或軟X射線輻射。照明源310可基於如圖4 (a)中所展示之高階諧波產生(HHG)技術,且其亦可為其他類型之照明源,例如液體金屬射流源、逆康普頓散射(inverse Compton scattering) (ICS)源、電漿通道源、磁波盪器源或自由電子雷射(FEL)源。
對於HHG源之實例,如圖4 (a)中所展示,輻射源之主要組件為可操作以發射泵浦輻射之泵浦輻射源330以及氣體遞送系統332。視情況,泵浦輻射源330為雷射,視情況,泵浦輻射源330為脈衝式高功率紅外線或光學雷射。泵浦輻射源330可例如為具有光學放大器之以光纖為基礎之雷射,從而產生每脈衝可持續例如小於1奈秒(1 ns)的紅外線輻射之脈衝,其中脈衝重複率視需要達至若干兆赫茲。紅外線輻射之波長可係例如大約1微米(1 μm)。視情況,雷射脈衝作為第一泵浦輻射340經遞送至氣體遞送系統332,其中在氣體中,輻射之一部分轉換為比第一輻射高的頻率而成為發射輻射342。氣體供應件334將合適氣體供應至氣體遞送系統332,其中該合適氣體視情況由電源336離子化。氣體遞送系統332可為切斷管。藉由氣體遞送系統332提供之氣體界定一氣體目標,其可為氣流或靜態體積。舉例而言,氣體可為惰性氣體,諸如氖氣(Ne)、氦氣(He)或氬氣(Ar)。N 2、O 2、Ar、Kr、Xe氣體皆可被考慮。此等氣體可為同一裝置內可選擇的選項。
發射輻射可含有多個波長。若發射輻射為單色的,則可簡化量測計算(例如重建構),但較易於產生具有若干波長之輻射。發射輻射之發射發散角可為波長相依的。不同波長將例如在對不同材料之結構成像時提供不同等級的對比度。舉例而言,為了檢測金屬結構或矽結構,可將不同波長選擇為用於成像(碳基)抗蝕劑之特徵或用於偵測此等不同材料的污染之波長。可提供一或多個濾光器件344。舉例而言,諸如鋁(Al)或鋯(Zr)薄膜之濾光器可用以切斷基諧IR輻射以免進一步傳遞至檢測裝置中。可提供光柵(圖中未展示)以自產生之波長當中選擇一或多個特定波長。視情況,在真空環境內可含有光束路徑中之一些或全部,應記住,SXR及/或EUV輻射在空氣中行進時會被吸收。輻射源310及照明光學器件312之各種組件可為可調整的以在同一裝置內實施不同度量衡『配方』。舉例而言,可使不同波長及/或偏振為可選擇的。
取決於在檢測中之結構之材料,不同波長可提供至下部層中之所要程度之穿透。為了解析最小器件特徵及最小器件特徵當中之缺陷,則短波長很可能為較佳的。舉例而言,可選擇介於0.01至20 nm之範圍內或視情況介於1至10 nm之範圍內或視情況介於10至20 nm之範圍內的一或多個波長。短於5 nm之波長可在自半導體製造中之所關注材料反射時遭受極低臨界角。因此,選擇大於5 nm之波長可在較高入射角下提供較強信號。另一方面,若檢測任務是用於偵測某一材料之存在(例如)以偵測污染,則高達50 nm之波長可為有用的。
經濾光光束342自輻射源310進入檢測腔室350,在該檢測腔室中,包括所關注結構之基板W由基板支撐件316固持以用於在量測位置處檢測。所關注結構標記為T。視情況,檢測腔室350內之氛圍可由真空泵352維持為接近真空,使得SXR及/或EUV輻射可在無不當衰減的情況下傳遞穿過該氛圍。照明系統312具有將輻射聚焦至聚焦光束356中之功能,且可包含例如二維曲面鏡面或一系列一維曲面鏡面,如上文所提及的已公開美國專利申請案US2017/0184981A1 (其內容以全文引用之方式併入本文中)中所描述。執行該聚焦以在投影至所關注結構上時達成直徑低於10 μm之圓形或橢圓形光點S。基板支撐件316包含例如X-Y平移載物台及旋轉載物台,藉由X-Y平移載物台及旋轉載物台,可使基板W之任何部分在所要定向上到達光束之焦點。因此,輻射光點S形成於所關注結構上。可替代地或另外,基板支撐件316包含例如可按某一角度使基板W傾斜以控制所關注結構T上之所聚焦光束之入射角的傾斜載物台。
視情況,照明系統312將參考輻射光束提供至參考偵測器314,該參考偵測器可經組態以量測經濾光光束342中之不同波長的光譜及/或強度。參考偵測器314可經組態以產生信號315,該信號被提供至處理器310且濾光器可包含關於經濾光光束342之光譜及/或經濾光光束中之不同波長之強度的資訊。
反射輻射360係由偵測器318捕捉且光譜被提供至處理器320以用於計算目標結構T之性質。照明系統312及偵測系統318因此形成檢測裝置。此檢測裝置可包含屬於內容之全文係以引用方式併入本文中之US2016282282A1中所描述之種類的硬X射線、軟X射線及/或EUV光譜反射計。
若目標Ta具有某一週期性,則經聚焦光束356之輻射亦可經部分地繞射。繞射輻射397相對於入射角接著相對於反射輻射360以明確界定之角度遵循另一路徑。在圖4 (a)中,經吸取繞射輻射397以示意性方式被吸取,且繞射輻射397可遵循除經吸取路徑之外的許多其他路徑。檢測裝置302亦可包含偵測繞射輻射397之至少一部分及/或對繞射輻射397之至少一部分進行成像的另外偵測系統398。在圖4 (a)中,繪製單個其他偵測系統398,但檢測裝置302之實施例亦可包含多於一個另外偵測系統398,偵測系統398經配置於不同位置處以在複數個繞射方向上對繞射輻射397進行偵測及/或成像。換言之,照射於目標Ta上之經聚焦輻射光束的(更高)繞射階由一或多個另外偵測系統398偵測及/或成像。一或多個偵測系統398產生提供至度量衡處理器320之信號399。信號399可包括繞射光397之資訊及/或可包括自繞射光397獲得之影像。
為了輔助光點S與所要產品結構之對準及聚焦,檢測裝置302亦可提供在度量衡處理器320之控制下使用輔助輻射之輔助光學器件。度量衡處理器320亦可與位置控制器372通信,該位置控制器操作平移載物台、旋轉載物台及/或傾斜載物台。處理器320經由感測器接收基板之位置及定向的高度準確之回饋。感測器374可包括例如干涉計,其可給出大約數皮米之準確度。在檢測裝置302之操作中,由偵測系統318捕捉之光譜資料382經遞送至度量衡處理單元320。
圖4 (b)展示可藉由量測目標(例如,諸如圖3 (a)中所說明之目標)來獲得的繞射影像。光繞射及多個階在偵測器上被捕捉到。在此圖中,展示零階0階(鏡面反射)及兩個第一繞射階。光譜解析除鏡面反射以外之所有階(因此由第一階形成2D圖案)。應注意,相較於圖3 (a)之一次量測多個角度之度量衡器件,圖4 (a)之軟X射線設置一次量測整個光譜;亦即,光譜解析圖4 (b)之影像,而角解析由圖3 (a)之度量衡器件捕捉之光瞳影像。
在任一度量衡裝置中,可在量測操作期間提供基板支撐件以固持基板W。在度量衡裝置與微影裝置整合之實例中,兩個器件可具有同一基板台。可提供粗略定位器及精細定位器以相對於量測光學系統準確地定位基板。提供各種感測器及致動器(例如)以獲取所關注目標之位置,且將所關注目標帶入至物鏡下方之位置中。通常,將對基板W上之不同位置處之目標進行諸多量測。可在X及Y方向上移動基板支撐件以獲取不同目標,且可在Z方向上移動基板支撐件以獲得目標相對於光學系統之焦點之所要部位。舉例而言,當實務上光學系統可保持實質上靜止(通常在X及Y方向上,但可能亦在Z方向上)且僅基板移動時,方便地將操作考慮並描述為如同物鏡經帶入至相對於基板之不同位置。假定基板及光學系統之相對位置正確,則以下情況在原則上並不重要:基板及光學系統中的哪一個在真實世界中移動,基板及光學系統兩者是否均移動,或光學系統之一部分之組合移動(例如,在Z及/或傾斜方向上),而光學系統之剩餘部分靜止且基板移動(例如,在X及Y方向上,但亦視情況在Z及/或傾斜方向上)。
在實施例中,目標之量測準確度及/或敏感度可相對於提供至目標上之輻射光束之一或多個屬性,例如輻射光束之波長、輻射光束之偏光、輻射光束之強度分佈(亦即,角度或空間強度分佈)等等而變化。因此,可選擇理想地獲得(例如)目標之良好量測準確度及/或敏感度之特定量測策略。
為了監控包括至少一個圖案轉印步驟(例如,光學微影步驟)之圖案化製程(例如,器件製造製程),檢測經圖案化的基板且量測/判定經圖案化的基板之一或多個參數。一或多個參數可包括例如:形成於經圖案化基板中或形成於經圖案化基板上之連續層之間的疊對、例如形成於經圖案化基板中或形成於經圖案化基板上之特徵的臨界尺寸(CD) (例如,臨界線寬)、光學微影步驟之聚焦或聚焦誤差、光學微影步驟之劑量或劑量誤差、光學微影步驟之光學像差、置放誤差(例如,邊緣置放誤差)等等。可對產品基板自身之目標及/或對設置於基板上之專用度量衡目標執行此量測。可在抗蝕劑顯影後但在蝕刻前執行量測,或可在蝕刻之後執行量測。
在實施例中,自量測製程獲得之參數為自直接自量測製程判定之參數導出之參數。作為實例,自量測參數獲得之經導出參數為用於圖案化製程之邊緣置放誤差(EPE)。邊緣置放誤差提供藉由圖案化製程產生之結構之邊緣位置之變化。在實施例中,自疊對值導出邊緣置放誤差。在實施例中,自疊對值與至少一個隨機度量之組合導出邊緣置放誤差。在實施例中,自疊對值、至少一個CD隨機度量值(例如,CDU、LCDU)與(視情況)亦另一隨機度量(例如,個別結構之邊緣粗糙度、形狀不對稱性等)之組合導出的邊緣置放。在實施例中,邊緣置放誤差包含經組合之疊對誤差及CD誤差之極值(例如,3倍標準偏差,亦即,3σ)。在實施例中,邊緣置放誤差具有以下形式(或包含以下項中之至少前兩者):
Figure 02_image001
其中 σ overlay 對應於疊對之標準偏差,對應於疊對之標準偏差, σ CDUstructures 對應於在圖案化製程中產生之結構之臨界尺寸均一性(CDU)的標準偏差, σ OPE.PBA 對應於光學式近接效應(OPE)及/或近接偏置平均值(PBA)之標準偏差,該標準偏差為間距處之CD與參考CD之間的差,且 σ LER,LPE 對應於線邊緣粗糙度(LER)及/或局域置放誤差(LPE)的標準偏差。雖然以上之公式係關於標準偏差,但其可以不同可比得上之統計方式(諸如方差)來公式化。
存在用於對在圖案化製程中形成之結構進行量測的各種技術,包括使用掃描電子顯微鏡、以影像為基礎之量測工具及/或各種特殊化工具。如上文所論述,專用度量衡工具之快速且非侵入性形式為輻射光束經導向至基板之表面上之目標上且量測經散射(經繞射/經反射)光束之性質的度量衡工具。藉由評估由基板散射之輻射之一或多個性質,可判定基板之一或多個性質。此可稱為基於繞射之度量衡。此基於繞射之度量衡之一個此類應用在目標內的特徵不對稱性之量測中。此可用作(例如)疊對之量測,但其他應用亦為已知的。舉例而言,可藉由比較繞射光譜之相對部分(例如,比較週期性光柵之繞射光譜中之-1階與+1階)而量測不對稱性。此量測可如(例如)全文以引用方式併入本文中之美國專利申請公開案US2006-066855中所描述來進行。基於繞射之度量衡之另一應用在目標內之特徵寬度(CD)之量測中。此等技術可使用上文關於圖3或圖4所描述之裝置及方法。
藉由諸如圖3 (a)或圖4中所描繪之裝置及藉由本文中所揭示之方法來量測之目標或結構可包含一個或複數個幾何學上對稱單位胞元或特徵。因此,目標T或結構可僅包含單位胞元或特徵之單一實體個例或可包含單位胞元或特徵之複數個實體個例。
目標/結構可為經專門設計之目標。在實施例中,目標係用於切割道。在實施例中,目標可為晶粒內目標,亦即,目標係在器件圖案當中(且因此在切割道之間)。在實施例中,目標可具有可比得上器件圖案特徵之特徵寬度或間距。舉例而言,目標特徵寬度或間距可小於或等於器件圖案之最小特徵大小或間距的300%、小於或等於器件圖案之最小特徵大小或間距的200%、小於或等於器件圖案之最小特徵大小或間距的150%,或小於或等於器件圖案之最小特徵大小或間距的100%。
目標或結構可為器件結構。舉例而言,目標或結構可為記憶體器件之一部分(其常常具有幾何學上對稱或可在幾何學上對稱之一或多個結構)。在器件結構為非週期性或非規則(例如,邏輯結構)之情況下,目標可表面上類似於(例如,相似特徵大小及組態之)邏輯結構,使得其包含模仿邏輯結構之曝光效能的邏輯結構之規則化提取。
理想地,對於每一結構,單位胞元/特徵之實體個例或單位胞元/特徵之複數個實體個例共同地填充度量衡裝置之光束點。在彼狀況下,經量測結果基本上僅包含來自單位胞元之實體個例(或其複數個個例)之資訊。在實施例中,光束點具有為50微米或更小、40微米或更小、30微米或更小、20微米或更小、15微米或更小、10微米或更小、5微米或更小或2微米或更小之橫截面寬度。結構特徵可具有20nm間距之比例,且因此若光束點例如為5µm,則每一量測或捕捉可包含在200個與300個之間的特徵(例如,約250個)。因此,每一結構或目標可包含數百個特徵。
隨機之本質係與吸收劑量相關,吸收劑量歸因於(吸收)光子及抗蝕劑化學物雜訊之有限數目而波動。此實際上反映於不同特徵之間及/或遍及特徵之長度的CD變化中。因此,在本揭示之內容背景中之隨機度量可包含缺陷率或其他缺陷度量,或例如以下之平均值(average)或平均值(mean):線邊緣粗糙度(LER)、線寬粗糙度(LWR)、LCDU、接觸孔LCDU、圓邊緣粗糙度(CER)、邊緣置放誤差(EPE)或其組合。
目前,可藉由計算自SEM (例如,電子射束)影像獲得之缺陷判定故障率。通常,此故障率估計係藉由收集多個度量衡點(例如,接觸孔(CH))且對樣本內之故障的數目進行計數來執行。儘管電子射束度量衡為準確的,但其為費時的,且因此對於大規模缺陷度量衡並非始終為實用的且非理想的。由於平均CD很大程度上係關於圖案缺陷率,因此CD SEM幫助HVM作為良率指示符。如自例如幾百個CH計算之平均CD足以獲得故障率之粗略估計。然而,由於焦點波動,具有相同平均CD之CH陣列可具有不同故障率。
本文中提議使用光學度量衡(例如,以散射計為基礎之度量衡)光瞳量測以用於跨晶圓之快速隨機缺陷率估計。此類度量衡可使用原始光瞳資料(例如,器件內度量衡(IDM)原始光瞳資料)或SXR影像(例如,諸如圖4 (b)中所說明之使用諸如圖4 (a)中所說明之度量衡工具獲得的2D光譜解析影像)作為用於例如,機器學習模型(例如,神經網路模型或卷積類神經網路(CNN))之經訓練模型之輸入,該模型經訓練以自原始光瞳資料/SXR光譜解析繞射影像資料推斷缺陷率預測及/或其他隨機度量預測。
關於IDM實施例,量測可產生各別角解析量測信號。舉例而言,器件內度量衡可基於在光瞳平面中自接著結構之照明由晶圓上之結構散射之輻射偵測量測信號,該量測信號包含角解析分佈(例如,角解析強度及/或繞射效率分佈)。繞射效率(無因次值)描述繞射光束之相對強度,且可包含經繞射相對於入射光強度之比率。光瞳平面處量測之此類角解析分佈將在以下描述中簡單稱為「光瞳」或「光瞳量測」。舉例而言,所使用之光瞳可為原始光瞳或未處理光瞳(除視情況以外任何正規化)。
角解析分佈可僅自由結構散射之輻射之零階、僅自由結構散射之輻射之一或多個高階或由結構散射之輻射之零階與一或多個高階的組合獲得。基於零階(強度分佈)之分析以推斷器件(給定器件特徵為週期性的)解析度處之疊對/CD之IDM度量衡描述於例如前述WO2017148982中。
關於SXR實施例,每一量測可產生各別光譜解析量測信號。舉例而言,SXR度量衡可基於在一或多個(例如共軛)光瞳平面中自接著結構之照明由晶圓上之結構散射之輻射偵測量測信號,該量測信號包含經量測亮場影像或光譜解析分佈(例如,光譜解析強度及/或繞射效率分佈或影像)。繞射效率(無因次值)描述繞射光束之相對強度,且可包含經繞射相對於入射光強度之比率。光瞳平面處量測之此類光譜解析分佈將在以下描述中簡單稱為「SXR影像」或「SXR量測」(無論所使用之實際波長)。舉例而言,所使用之SXR影像可為原始SXR影像或未處理SXR影像(除視情況以外任何正規化)。由於用於SXR度量衡之小波長,有可能解析器件間距之特徵。因此,相較於IDM,我們可預期SEM度量衡值與SXR度量衡之間的較好關聯性。
可對包含與產品特徵類似或相同之特徵大小的目標或結構及/或直接對產品特徵執行IDM及/或SXR度量衡,其限制條件為其足夠規則化(例如週期性)。可自抗蝕劑中之結構之預蝕刻量測(亦即,在顯影之後的度量衡ADI)及/或結構之蝕刻後量測(亦即,在蝕刻之後的度量衡AEI)獲得IDM/SXR度量衡資料。
此類方法可例如促進包含光學度量衡及SEM度量衡之組合之混合度量衡技術,使得(例如)可執行快速光學晶圓掃描,且此光學度量衡之結果用以朝向幾個臨界位置導引較慢但更準確(或至少更高解析度)SEM檢測。
在光學(例如,IDM或SXR)度量衡中,量測解析度不夠高以實現個別隨機變化及缺陷之直接檢測;例如此可針對每10000個或更良好特徵發生約單一缺陷特徵(應注意,量測點可包含多於100個個別特徵用於單一量測)。然而,本發明者已判定此類量測(IDM或SXR)可用作用於合適地經訓練模型之輸入,該合適地經訓練模型隨後能夠提供諸如總缺陷率或其他缺陷度量及/或LCDU之一或多個隨機度量的極準確估計;例如當遍及變化之製程參數(例如,變化之劑量及焦點條件)測試時。
隨機缺陷可由光子散粒雜訊及抗蝕劑化學物雜訊兩者引起,由於此,抗蝕劑中之隨機變化性為空中影像相依性及抗蝕劑相依性兩者。本發明者已觀測特定圖案之隨機性質與圖案之平均幾何及材料性質良好關聯,此資訊存在於IDM原始光瞳或SXR繞射影像中。舉例而言,用於給定圖案及抗蝕劑之缺陷率及LCDU變化隨諸如劑量及/或焦點變化之製程參數變化而變化。IDM光瞳或SXR繞射影像含有關於平均化3D剖面,之資訊,該諮詢亦隨劑量及/或焦點變化而變化。因此,藉由變化一或多個製程參數(例如,焦點曝光矩陣)及/或訓練基板上之訓練結構或目標之間的特徵尺寸,機器學習模型可在自此等結構之量測獲得的光瞳/SXR繞射影像上進行訓練。製程參數(諸如,焦點及/或劑量)變化致使幾何性質改變(靈敏度取決於抗蝕劑特性)。此等幾何性質(可用SEM/電子射束工具量測)與隨機度量關聯,且亦可由光學(例如,IDM/SXR)度量衡來量測。
可瞭解,經印刷圖案上之焦點效應可不由電子射束工具捕捉,但仍由光學工具捕捉。因此,劑量及/或焦點中之變化可致使隨機圖案改變可由電子射束工具捕捉(例如,故障率及LCDU);然而,本發明者已判定可實際上通孔光學度量衡較好捕捉影響故障率之3D改變。
可對已知或觀測到之缺陷率或其他基於隨機度量之製程窗訓練機器學習模型,該製程窗界定包含製程參數值之製程空間,該製程參數值預期產生良好或無缺陷的晶粒(至少依據可接受機率),且使得製程窗外之製程參數值可預期產生具有不可接受的缺陷機率的管芯。舉例而言,可在如由電子射束/SEM工具或具有足夠解析度以直接量測隨機度量/缺陷率之任何其他工具所量測的此類基於缺陷率之製程窗上訓練機器學習模型。在特定實例中,製程窗可包含焦點曝光窗口,其中焦點及劑量為遍及由電子射束/SEM工具量測之結構而變化從而界定製程窗的所關注製程參數。跨製程窗或焦點曝光窗口之所有或部分的例如光瞳量測或SXR繞射影像之光學量測自如由電子射束/SEM工具量測之同一晶圓獲得。光學量測及對應基於SEM之缺陷率資料/製程窗可一起使用作為至機器學習模型之訓練輸入。舉例而言,每一光學量測可用其對應缺陷率資料及製程參數值來標記且用以訓練機器學習模型。另外或可替代地焦點及/或劑量,製程參數可關於用於曝光之倍縮光罩之參數,例如諸如CD之成像特徵尺寸所依賴之倍縮光罩特徵尺寸。藉由改變此倍縮光罩特徵尺寸,CD可有意地跨訓練晶圓上之多個結構變化,因此提供局域CD隨機度量(例如LCDU),其上可訓練機器學習模型使得其可將IDM光瞳/SXR繞射影像映射至LCDU預測。如同焦點/劑量實例,此LCD變化可與包含預期產生可接受機率之LCDU值之製程視窗相關聯。
除來自對應於SEM資料之晶圓之光瞳資料/SXR繞射影像資料之外,訓練資料亦可包含來自參考及/或模擬之標稱資訊性信號(例如,標稱資訊性光瞳/SXR繞射影像)。該等標稱資訊性信號可關於非缺陷結構/晶圓(例如,來自極佳地形成之結構之經模擬光瞳)及/或具有特定缺陷之特定實例之結構/晶圓。以此方式,模型可學習如何對比光學經量測資料與標稱資訊性信號且較佳將其差異回歸至給定故障率。因此,訓練資料可包含含有來自經曝光訓練晶圓之經量測光學資料(IDM光瞳或SXR繞射影像及標稱資訊性信號(如所描述之標稱經量測或經模擬IDM光瞳或SXR繞射影像)之張量。
經訓練機器學習模型接著可用以基於光瞳量測輸入而推斷缺陷故障率及/或其他隨機度量。
機器學習模型可為CNN。更特定言之,CNN可包含輸入層、輸出層及其間之隱藏層。隱藏層可包含例如數個重複之卷積層、激活層及批次正規化層,接著一或多個下降層及一或多個完全連接層。在實施例中,激活層可施加對數激活函數以便線性地跨越缺陷率之指數範圍。
圖5為描述此類方法之流程圖。在步驟400處,使用掃描器曝光晶圓,其中至少一個製程參數遍及晶圓而變化。因此,經曝光晶圓可包含複數個訓練結構,其中之每一者可包含特徵之多個個例。訓練結構可皆為相似的,除在用於其形成之一或多個製程參數中可存在變化以外。在此內容背景中,製程參數可描述用以使結構自倍縮光罩(例如,焦點及/或劑量)成像之微影裝置之參數及/或諸如(諸如CD之經成像特徵尺寸所依賴之)倍縮光罩特徵尺寸之倍縮光罩參數。舉例而言,可針對焦點及/或劑量之不同值重複結構;例如,以與焦點曝光矩陣FEM相似之方式,及/或用於CD之不同值。
用以訓練模型之訓練結構可與將經量測以獲得光學度量衡資料之結構相似或基本相同,經訓練模型將用以在生產設定或HVM設定中推斷隨機度量。然而,此並非必需的,且可適應一些不同,其中由經訓練模型對推斷準確度產生有可能的影響。
在步驟410處,自使用高解析度度量衡工具量測步驟400處所曝光之晶圓上之結構獲得高解析度度量衡資料,例如具有足夠解析度能夠個別地成像每一特徵或結構及/或直接判定缺陷率。因此,高解析度度量衡工具可具有比光學度量衡工具更高的解析度,且可包含SEM/電子射束工具。基於此高解析度度量衡資料,可判定隨機度量資料,從而描述製程之製程窗。製程窗可描述製程空間或製程參數值之範圍,針對該範圍缺陷/缺陷率或其他隨機度量之數目為可接受的,例如低於臨限值。此指示不存在缺陷之可接受機率,其限制條件為製程參數保持於製程窗內,而在此窗之外,缺陷/缺陷率或其他隨機度量之數目可視為不可接受的(亦即,指示不存在缺陷之不可接受機率)。
在步驟420處,可使用光學度量衡工具來(例如,在光瞳平面中)量測同一晶圓以獲得光瞳量測或光學度量衡資料。因此,晶圓可在步驟400處用適合於此類光學度量衡之結構或目標成像。在實施例中,光學度量衡資料可包含角解析分佈(例如,經由IDM度量衡獲得)或光譜解析分佈(例如,經由SXR度量衡獲得),諸如角或光譜解析強度分佈或角或光譜解析繞射效率分佈。強度或繞射效率可正規化(下文提供更多細節)。光學度量衡資料可關於量測具有不同照明條件(例如,照明波長、照明偏振及晶圓定向中之一或多者的組合)之同一結構。
在步驟430處,針對隨機度量資料及光學度量衡資料來訓練諸如深度卷積類神經網路之機器學習模型,使得其能夠將光學度量衡資料(例如,光瞳影像或SXR繞射影像)映射或回歸至隨機度量資料(例如,特定故障率或LCDU值)。如已提及,與光學度量衡資料(例如,光瞳影像或SXR繞射影像)相似之類型之額外度量衡資料亦可包括於訓練資料中,額外度量衡資料與標稱資訊性信號相關,例如與特定隨機度量實例(例如,零缺陷或特定缺陷類型/率)相關。此額外度量衡資料可包含經模擬及/或經量測標稱資訊性信號。
如所熟知,訓練可包括驗證步驟,使得訓練資料劃分成訓練集及驗證集。在實施例中,可對CDU晶圓執行驗證。CDU晶圓可以最佳劑量及最佳焦點(例如,使用來自訓練集之已知值)而曝光,但亦可包含經訓練模型在之前從未發現之劑量及焦點變化。此進一步訓練模型以能夠「內插」於用於訓練集之劑量及焦點條件之間。
在步驟440處,經訓練模型可用於自與生產晶圓相關之一或多個光學量測光瞳或SXR繞射影像(例如,目標/規則產品結構上之IDM或SXR度量衡)推斷隨機度量。此步驟可包含將光瞳或SXR繞射影像輸入至接著可自輸入推斷隨機度量之經訓練模型。
其可展示,相較於強度分佈,當機器學習模型已針對每目標包含個別缺陷率值之驗證資料來驗證時,繞射效率分佈可展示較佳預測效能。強度分佈實施例表明在遍及多目標平均化驗證資料時更可接受效能;例如,驗證資料包含用於經平均化之多個光瞳或SXR繞射影像(用於多目標)之缺陷率(例如,缺陷率之對數之平均)。
圖6為如經由高解析度(例如SEM)度量衡DR (SEM)以習知方式獲得之缺陷率相對於如經由光學(例如IDM)度量衡DR (IDM)使用根據本揭示之教示之經訓練模型獲得之缺陷率之曲線。可見在由兩者方法所獲得之值之間存在接近完全關聯性,使得來自光學度量衡之模型推斷基本上僅執行以及用於量測缺陷速率之習知SEM度量衡。測試已展示基於SEM量測之平均LCDU與使用經訓練模型及本文中之教示自光學度量衡獲得之平均LCDU值之間的極相似關係。預期將針對其他隨機度量發現相似關聯性。
如所陳述,訓練可基於強度光學度量衡資料或繞射效率光學度量衡資料。在使用繞射效率中存在一些優點,包括在使用針對單一目標量測來驗證之經訓練模型並非對數個目標之量測求平均時不太依賴訓練資料集(亦即,用於較小訓練集之較佳效能,例如與每場低於50個、40個或35個目標相關)之大小及較佳效能。相比之下,基於強度之實施例針對平均化度量衡資料(例如,大於10個或大於20個目標或大於50個目標)來驗證時展示可靠推斷。
儘管可理想地對在生產中很可能遇到之所有製程參數值執行模型之訓練,但本發明者已判定經訓練模型可以良好準確度自與製程參數值相關之光瞳預測隨機度量,該製程參數值不用於訓練且因此該模型在之前從未遇到過。因此,模型能夠「內插」於(且可能外插超出)用於訓練集之劑量與焦點條件之間。
步驟420可包含經量測光瞳強度或繞射效率之任擇地正規化。正規化強度 Intensity_norm p,i,j,k 可藉由高解析度判定中間正規化強度 Intensity_norm' p,i,j,k 來在高解析度步驟中判定:
Figure 02_image003
其中i為用於訓練資料之場指標= 1.. N fields_train ,j為用於訓練資料之目標指標= 1.. N targets_train ,k為用於訓練資料之通道指標= 1.. N channels (其中通道可關於特定照明條件(偏振)及基板之定向),且p為用於訓練資料之像素指標= 1.. N pixels (其中每一光瞳可包含多個像素,各自具有對應強度(或繞射效率)值 Intensity p,i,j,k . max p,i,j(Intensity p,i,j,k) 描述遍及資料集之最大強度值。可以相同方式執行繞射效率正規化)
任擇地第二步驟可包含判定正規化強度 Intensity_norm p,i,j,k 如:
Figure 02_image005
對於K=1.. N channels 對於p=1.. N pixels 。繞射效率正規化可以與繞射效率相同之方式執行。替代地,可使用中間正規化強度 Intensity_norm' p,i,j,k 。替代地,可自正規化強度光瞳減去居於例如模擬之理想化(參考)光瞳。
上述描述係關於獲得諸如光瞳(例如,使用諸如圖3 (a)所說明之工具在光瞳平面處成像)或SXR繞射影像(例如,使用諸如圖4 (a)所說明之工具在光瞳平面處成像)之光學量測,且使用合適經訓練模型將其映射至隨機度量。
在另一實施例中,相似技術將應用於使用亮場檢測工具獲得之亮場影像(不同於已描述之光譜解析SXR影像)。亮場檢測工具在積體電路製造製程中用於缺陷偵測。
亮場檢測(BFI)影像可藉由以下操作獲得:以高角度入射光(例如,關於水平面45至90度)照明樣本(例如,基板上之結構)從而產生「明亮」視場,收集由結構反射之輻射且在影像平面處將此反射輻射成像於攝影機上。藉由查看經獲取BFI影像與同一圖案之參考BFI影像之間的差,有可能偵測(以有限準確度)缺陷之存在。
通常,在BFI影像中,缺陷相對於明亮背景呈現為黑暗。然而,典型BFI影像含有比指示缺陷之單一暗點更多之資訊;其一般含有更多其他候選(一般較小)暗點,使得背景類似白色雜訊影像。若分類算法並不足夠穩固,則此等其他暗點中之每一者可錯誤地識別為缺陷。BFI影像可很大程度上受周圍圖案影響,且可很可能偵測到隨機剖面變化。
預期BFI影像將展示對線邊緣粗糙度之靈敏度。然而,本發明之通常僅分類BFI影像內之缺陷以便提取相關圖案缺陷率之BFI影像處理並不使用影像內之有價值的周圍圖案資訊。
因此,可使用諸如深度卷積類神經網路之機器學習模型以便將完整BFI影像回歸至給定圖案缺陷率。因此,經由BFI獲得之影像之集合可在訓練階段期間映射至如例如由SEM工具或類似者判定之圖案故障率。至模型之輸入可為包含經量測亮場影像之張量。類似於先前實施例,訓練資料亦可包含來自參考及/或模擬(例如,與零缺陷影像及/或特定缺陷相關)之一或多個標稱資訊性亮場影像。以此方式,模型將學習如何對比經量測校準影像與標稱校準影像且較佳將其差異回歸至給定故障率。
方法可藉由對每場多個獨立目標進行組合預測估計來用缺陷率之不確定性擴增。
圖7為描述此類方法之流程圖。在步驟500處,使用掃描器曝光晶圓,其中至少一個製程參數遍及晶圓而變化。因此,經曝光晶圓可包含複數個訓練結構,其中之每一者可包含特徵之多個個例。訓練結構可皆為相似的,除在用於其形成之一或多個製程參數中可存在變化以外。在此內容背景中,製程參數可描述用以使結構自倍縮光罩(例如,焦點及/或劑量)成像之微影裝置之參數及/或諸如(諸如CD之經成像特徵尺寸所依賴之)倍縮光罩特徵尺寸之倍縮光罩參數。舉例而言,可針對焦點及/或劑量之不同值重複結構;例如,以與焦點曝光矩陣FEM相似之方式,及/或用於CD之不同值。
用以訓練模型之訓練結構可與將經量測以獲得檢測影像資料(例如,影像平面資料或亮場檢測影像資料,諸如BFI影像)之結構相似或基本上相同,經訓練模型將用以在生產設定或HVM設定中推斷隨機度量。然而,此並非必需的,且可適應一些不同,其中由經訓練模型對推斷準確度產生有可能的影響。
在步驟510處,自使用高解析度度量衡工具量測步驟500處所曝光之晶圓上之結構獲得高解析度度量衡資料,例如具有足夠解析度能夠個別地成像每一特徵或結構及/或直接及準確地分類缺陷且從而判定圖案缺陷率。因此,高解析度度量衡工具可具有比光學度量衡工具更高的解析度,且可包含SEM/電子射束工具。基於此高解析度度量衡資料,可判定隨機度量資料,從而描述製程之製程窗。製程窗可描述製程空間或製程參數值之範圍,針對該範圍缺陷/缺陷率或其他隨機度量之數目為可接受的,例如低於臨限值。此指示不存在缺陷之可接受機率,其限制條件為製程參數保持於製程窗內,而在此窗之外,缺陷/缺陷率或其他隨機度量之數目可視為不可接受的(亦即,指示不存在缺陷之不可接受機率)。
在步驟520處,可使用檢測影像工具(例如,亮場檢測工具)來量測同一晶圓,該檢測影像工具捕捉影像平面中之影像以獲得檢測影像資料。檢測影像資料可關於量測具有不同照明條件(例如,照明波長、照明偏振及晶圓定向中之一或多者的組合)之同一結構。
在步驟530處,諸如深度卷積類神經網路之機器學習模型針對隨機度量資料及檢測影像資料來訓練,使得其能夠將檢測影像資料映射或回歸至隨機度量資料(例如,特定故障率或LCDU值)。如已提及,與檢測影像資料(例如,BFI影像)相似之類型之額外度量衡資料亦可包括於訓練資料中,額外度量衡資料與標稱資訊性信號相關,例如與特定隨機度量實例(例如,零缺陷或特定缺陷類型/率)相關。此額外度量衡資料可包含經模擬及/或經量測標稱資訊性影像。
如同先前實施例,可執行可與前述驗證步驟相同之驗證步驟。
在步驟540處,經訓練模型可用於自與生產晶圓相關之一或多個檢測影像(例如,亮場檢測影像)推斷隨機度量。此步驟可包含將檢測影像輸入至接著可自輸入推斷隨機度量之經訓練模型。
其可展示,相較於強度分佈,當機器學習模型已針對每目標包含個別缺陷率值之驗證資料來驗證時,繞射效率分佈可展示較佳預測效能。強度分佈實施例表明在遍及多目標平均化驗證資料時更可接受效能;例如,驗證資料包含用於經平均化之多個光瞳或檢測影像(用於多目標)之缺陷率(例如,缺陷率之對數之平均)。
經提議之方法可對幾個獨立目標/結構(例如,其中獨立關於特定視場)進行組合預測,以便獲得不確定估計以及更準確預測。
本文所揭示之方法可應用於使用光學度量衡工具/散射計執行EPE度量衡。EPE(上文所描述)為包含隨機及系統性兩者之組成度量。在實施例中,EPE可自使用如本文所揭示之經訓練模型及方法判定LCDU來判定且將此與習知疊對量測(例如,使用光學度量衡工具之基於繞射之疊對或基於微繞射之疊對方法)組合。
應瞭解,由訓練機器學習模型提供之任何缺陷率預測並非為二進位的(亦即,缺陷/無缺陷),但替代地可提供用於特定圖案或多個檢測圖案之預期缺陷率的預測。舉例而言,可針對每一單獨圖案/結構單獨地訓練機器學習模型以獲得用於圖案/結構類型之專用模型。此類模型可例如在具有小製程窗之重要圖案上訓練。在另一實施例中,其可為訓練單一模型以將用於多個不同特徵/目標之光瞳映射至單一缺陷率預測或單一「全域」缺陷率。在此實施例中,有可能僅在一個圖案上進行訓練可為足夠的,以便教示其以推斷此類全域缺陷率。
在以下經編號條項之清單中揭示本發明之其他實施例: 1.  一種判定與微影製程相關之至少一個隨機度量之方法,該方法包含: 獲得經訓練機器學習模型,該機器學習模型已經訓練以自光學度量衡資料推斷用於該隨機度量之一或多個隨機度量值,該經訓練機器學習模型已針對訓練光學度量衡資料及訓練隨機度量資料來訓練,其中該訓練光學度量衡資料包含複數個量測信號,每一與已由訓練基板上之複數個訓練結構的訓練結構散射之經散射輻射相關;且訓練隨機度量資料包含與該訓練結構相關之隨機度量值,其中該訓練結構之多個個例已經形成為具有該隨機度量所依賴之一或多個製程參數的變化;獲得包含與已曝光於微影製程中之結構相關之至少一個量測信號的光學度量衡資料;及使用經訓練機器學習模型以自該光學度量衡資料推斷該隨機度量之值。 2.  如條項1之方法,其中該量測信號中之每一者包含角解析參數分佈。 3.  如條項2之方法,其中每一角解析參數分佈包含角解析強度分佈或角解析繞射效率分佈。 4.  如條項2或3之方法,其中每一角解析參數分佈包含自該零階經散射輻射獲得的角解析參數分佈。 5.  如條項2、3或4之方法,其中每一角解析參數分佈包含自該一或多個高階經散射輻射獲得的角解析參數分佈,高階包含除零階以外之繞射階。 6.  如條項中2至5任一項之方法,其包含使該角解析參數分佈正規化之步驟。 7.  如條項1之方法,其中該量測信號中之每一者包含光譜解析參數分佈。 8.  如條項7之方法,其中每一角解析參數分佈包含光譜解析強度分佈或光譜解析繞射效率分佈。 9.  如條項7或8之方法,其中每一角解析參數分佈自包含5nm與30nm之間;或更特定言之10nm與20nm之間的波長之量測輻射。 10.   如條項7、8或9之方法,其中每一角解析參數分佈包含自該至少一或多個高階經散射輻射獲得之光譜解析參數分佈,高階包含除零階以外之繞射階。 11.    如條項中7至10任一項之方法,其包含使該角解析參數分佈正規化之步驟。 12.   如任一前述條項之方法,其中該機器學習模型包含卷積類神經網路。 13.   如條項12之方法,其中該卷積類神經網路包含施加對數激活函數之一或多個激活層。 14.   如任一前述條項之方法,其中該訓練隨機度量資料描述隨機度量值或相關尺寸度量值之可接受空間或範圍,及該一或多個製程參數之製程參數值的對應可接受空間或範圍。 15.   如任一前述條項之方法,其包含以下之初始步驟: 獲得該訓練光學度量衡資料及隨機度量資料;及 針對該經訓練機器學習模型及隨機度量資料來訓練該經訓練機器學習模型。 16.   如條項15之方法,其包含獲得高解析度度量衡資料;及自該高解析度度量衡資料判定該隨機度量資料。 17.   如條項16之方法,其中該高解析度度量衡資料自掃描電子顯微鏡度量衡獲得。 18.   如任一前述條項之方法,其中經訓練光學度量衡資料進一步包含與以下中之一者或兩者相關之標稱資訊性度量衡資料: 非缺陷量測及/或模擬;及 特定缺陷量測或模擬。 19.   如任一前述條項之方法,其包含使用隨機度量之經推斷值以決定在何處及/或在何時執行另外高解析度度量衡。 20.   如任一前述條項之方法,其中該一或多個製程參數包含在形成該訓練結構時焦點及劑量中之一者或兩者。 21.   如任一前述條項之方法,其中該一或多個製程參數包含用以曝光該訓練結構之圖案化器件上之一或多個特徵尺寸。 22.   如任一前述條項之方法,其中該隨機度量包含以下中之一或多者:缺陷率或其他缺陷度量、線邊緣粗糙度、線寬粗糙度、局域臨界尺寸均一性、圓邊緣粗糙度或邊緣置放誤差。 23.   一種處理裝置,其包含處理器且經組態以執行如任一前述條項之方法。 24.   一種光學檢測裝置,其可操作以量測且獲得該光學度量衡資料,且包含如條項23之計算裝置。 25.   一種電腦程式,其包含可操作以在運行於一合適裝置上時執行如條項1至22中任一項之方法的程式指令。 26.   一種非暫時性電腦程式載體,其包含如條項25之電腦程式。 27.   一種光學度量衡器件,其包含: 光學系統,其可操作以獲得包含與已經曝光於微影製程中之結構相關之至少一個量測信號的光學度量衡資料;非瞬態資料載體,其包含經訓練機器學習模型,該機器學習模型已經訓練以自光學度量衡資料推斷該隨機度量之一或多個隨機度量值,該經訓練機器學習模型已針對訓練光學度量衡資料及訓練隨機度量資料來訓練,其中訓練光學度量衡資料包含複數個量測信號,每一與已由訓練基板上之複數個訓練結構之訓練結構散射之經散射輻射相關;且訓練隨機度量資料包含與該訓練結構相關之隨機度量值,其中該訓練結構之多個個例已經形成為具有該隨機度量所依賴之一或多個製程參數的變化;及處理器,其可操作以使用經訓練機器學習模型以自該光學度量衡資料推斷該隨機度量之值。 28.   如條項27之光學度量衡器件,其中該量測信號中之每一者包含角解析參數分佈。 29.   如條項28之光學度量衡器件,其中每一角解析參數分佈包含角解析強度分佈或角解析繞射效率分佈。 30.   如條項28或29之光學度量衡器件,其中每一角解析參數分佈包含自該零階經散射輻射獲得之角解析參數分佈。 31.   如條項28至30中任一項之光學度量衡器件,其中每一角解析參數分佈包含自該一或多個高階經散射輻射獲得之角解析參數分佈,高階包含除零階以外之繞射階。 32.   如條項27之光學度量衡器件,其中該量測信號中之每一者包含光譜解析參數分佈。 33.   如條項32之光學度量衡器件,其中每一角解析參數分佈包含光譜解析強度分佈或光譜解析繞射效率分佈。 34.   如條項32或33之光學度量衡器件,其中每一角解析參數分佈自包含5 nm與30 nm之間;或更特定言之10 nm與20 nm之間的波長之量測輻射。 35.   如條項32至34中任一項之光學度量衡器件,其中每一角解析參數分佈包含自該至少一或多個高階經散射輻射獲得之光譜解析參數分佈,高階包含除零階以外之繞射階。 36.   如條項27至35中任一項之光學度量衡器件,其中機器學習模型包含卷積類神經網路。 37.   如條項36之光學度量衡器件,其中該卷積類神經網路包含可操作以施加對數激活函數之一或多個激活層。 38.   如條項27至37中任一項之光學度量衡器件,其中該訓練隨機度量資料描述隨機度量值或相關尺寸度量值之可接受空間或範圍,及該一或多個製程參數之製程參數值的對應可接受空間或範圍。 39.   如條項27至38中任一項之光學度量衡器件,其中該一或多個製程參數包含在形成該訓練結構時焦點及劑量中之一者或兩者。 40.   如條項27至39中任一項之光學度量衡器件,其中隨機度量包含以下中之一或多者:缺陷率或其他缺陷度量、線邊緣粗糙度、線寬粗糙度、局域臨界尺寸均一性、圓邊緣粗糙度或邊緣置放誤差。 41.   一種判定與結構相關之隨機度量之方法,該方法包含: 獲得經訓練機器學習模型,該機器學習模型已經訓練以使訓練光學度量衡資料與訓練隨機度量資料關聯,其中訓練光學度量衡資料包含與自基板上之複數個訓練結構散射之輻射相關的複數個量測信號,且訓練隨機度量資料包含與該複數個訓練結構相關之隨機度量值,其中複數個訓練結構已經形成為具有該隨機度量所依賴之一或多個尺寸之變化;自結構獲得光學度量衡資料;及使用經訓練機器學習模型以自該光學度量衡資料推斷與結構相關聯的該隨機度量之值。 42.   如條項41之方法,其中隨機度量表示小空間尺度處之缺陷機率或CD變化,例如小於CD的1000倍。 43.   如條項41或42之方法,其中該量測信號為在由結構或訓練結構散射之後的輻射之零階光瞳強度分佈。 44.   如條項41至43中任一項之方法,其中訓練隨機度量資料使用電子射束度量衡工具獲得。 45.   如條項41至44中任一項之方法,其中一或多個尺寸之變化與微影裝置之製程參數的變化相關聯,諸如曝光劑量及/或焦點設定。 46.   一種電腦程式,其包含可操作以在運行於合適裝置上時執行如條項41至45中任一項之方法的程式指令。 47.   一種非暫時性電腦程式載體,其包含如條項46之電腦程式。 48.   一種判定與結構相關之隨機度量之方法,該方法包含: 獲得經訓練機器學習模型,該機器學習模型已經訓練以使訓練光學度量衡資料與訓練隨機度量資料關聯,其中訓練光學度量衡資料包含與自基板上之複數個訓練結構散射之輻射相關的複數個量測信號,且訓練隨機度量資料包含與該複數個訓練結構相關之隨機度量值,其中複數個訓練結構已經形成為具有該隨機度量所依賴之一或多個尺寸之變化;自結構獲得光學度量衡資料;及使用經訓練機器學習模型以自光學度量衡資料推斷與結構相關聯的隨機度量之值。
在以下經編號條項之清單中揭示本發明之額外其他實施例: 1.  一種判定與微影製程相關之至少一個隨機度量之方法,該方法包含: 獲得經訓練模型,該模型已經訓練以自檢測影像資料推斷該隨機度量之一或多個隨機度量值,該經訓練模型已針對訓練檢測影像資料及訓練隨機度量資料來訓練,其中訓練檢測影像資料包含複數個檢測影像,每一與已由訓練基板上之複數個訓練結構的訓練結構反射之反射輻射相關;且訓練隨機度量資料包含與該訓練結構相關之隨機度量值,其中該訓練結構之多個個例已經形成為具有該隨機度量所依賴之一或多個製程參數的變化;獲得包含與已曝光於微影製程中之結構相關之至少一個檢測影像的檢測影像資料;及使用經訓練模型以自該檢測影像資料推斷該隨機度量之值。 2.  如條項1之方法,其中該檢測影像中之每一者包含在用以獲得該檢測影像之檢測成像器件之影像平面或其共軛處捕捉之各別結構的影像。 3.  如條項1或2之方法,其中該等檢測影像包含亮場檢測影像。 4.  如任一前述條項之方法,其中模型包含機器學習模型、類神經網路或卷積類神經網路。 5.  如條項4之方法,其中該卷積類神經網路包含施加對數激活函數之一或多個激活層。 6.  如任一前述條項之方法,其中該訓練隨機度量資料描述隨機度量值或相關尺寸度量值之可接受空間或範圍,及該一或多個製程參數之製程參數值的對應可接受空間或範圍。 7.  如任一前述條項之方法,其包含以下之初始步驟: 獲得該訓練檢測影像資料及隨機度量資料;及 針對該訓練檢測影像資料及隨機度量資料來訓練該經訓練模型。 8.  如條項7之方法,其包含獲得高解析度度量衡資料;及自該高解析度度量衡資料判定該隨機度量資料。 9.  如條項8之方法,其中該高解析度度量衡資料自掃描電子顯微鏡度量衡獲得。 10.   如任一前述條項之方法,其中訓練檢測影像資料進一步包含與以下中之一者或兩者相關之標稱資訊性度量衡資料: 非缺陷檢測及/或模擬;及 特定缺陷檢測或模擬。 11.    如任一前述條項之方法,其包含使用隨機度量之經推斷值以決定在何處及/或在何時執行另外高解析度度量衡。 12.   如任一前述條項之方法,其中該一或多個製程參數包含在形成該訓練結構時焦點及劑量中之一者或兩者。 13.   如任一前述條項之方法,其中該一或多個製程參數包含用以曝光該訓練結構之圖案化器件上之一或多個特徵尺寸。 14.   如任一前述條項之方法,其中該隨機度量包含以下中之一或多者:缺陷率或其他缺陷度量、線邊緣粗糙度、線寬粗糙度、局域臨界尺寸均一性、圓邊緣粗糙度或邊緣置放誤差。 15.   一種處理裝置,其包含處理器且經組態以執行如任一前述條項之方法。 16.   一種光學檢測裝置,其可操作以量測且獲得該檢測影像資料,且包含如條項15之計算裝置。 17.   一種電腦程式,其包含可操作以在運行於合適裝置上時執行如條項1至16中任一項之方法的程式指令。 18.   一種非暫時性電腦程式載體,其包含如條項17之電腦程式。 19.   一種檢測成像器件,其包含: 成像系統,其可操作以獲得包含與已經曝光於微影製程中之結構相關之至少一個檢測影像的檢測影像資料;非瞬態資料載體,其包含經訓練模型,該模型已經訓練以自檢測影像資料推斷該隨機度量之一或多個隨機度量值,該經訓練模型已針對訓練檢測影像資料及訓練隨機度量資料來訓練,其中訓練檢測影像資料包含複數個檢測影像,每一與已由訓練基板上之複數個訓練結構的訓練結構反射之反射輻射相關;且訓練隨機度量資料包含與該訓練結構相關之隨機度量值,其中該訓練結構之多個個例已經形成為具有該隨機度量所依賴之一或多個製程參數的變化;及處理器,其可操作以使用經訓練模型以自該檢測影像資料推斷該隨機度量之值。 20.   如條項19之檢測成像器件,其包含該檢測成像器件之影像平面或其共軛處之攝影機,以用於捕捉該檢測影像。 21.   如條項19或20之檢測成像器件,其中該檢測成像器件包含亮場成像器件,且每一檢測影像包含亮場檢測影像。 22.   如條項19至21之檢測成像器件,其中模型包含機器學習模型、類神經網路或卷積類神經網路。 23.   如條項22之檢測成像器件,其中該卷積類神經網路包含可操作以施加對數激活函數之一或多個激活層。 24.   如條項19至23中任一項之檢測成像器件,其中該訓練隨機度量資料描述隨機度量值或相關尺寸度量值之可接受空間或範圍,及該一或多個製程參數之製程參數值的對應可接受空間或範圍。 25.   如條項19至24中任一項之檢測成像器件,其中該一或多個製程參數包含在形成該訓練結構時焦點及劑量中之一者或兩者。 26.   如條項19至25中任一項之檢測成像器件,其中隨機度量包含以下中之一或多者:缺陷率或其他缺陷度量、線邊緣粗糙度、線寬粗糙度、局域臨界尺寸均一性、圓邊緣粗糙度或邊緣置放誤差。 27.   一種判定與結構相關之隨機度量之方法,該方法包含: 獲得經訓練模型,該模型已經訓練以使訓練檢測影像資料與訓練隨機度量資料關聯,其中訓練檢測影像資料包含與自基板上之複數個訓練結構反射之輻射相關的複數個檢測影像,且訓練隨機度量資料包含與該複數個訓練結構相關之隨機度量值,其中複數個訓練結構已經形成為具有該隨機度量所依賴之一或多個尺寸之變化;自結構獲得檢測影像資料;及使用經訓練模型以自該檢測影像資料推斷與結構相關聯的該隨機度量之值。. 28.   如條項27之方法,其中隨機度量表示小空間尺度處之缺陷機率或CD變化,例如小於CD的1000倍。 29.   如條項27或28之方法,其中檢測影像為結構或訓練結構之亮場檢測影像。 30.   如條項27至29中任一項之方法,其中訓練隨機度量資料使用電子射束度量衡工具獲得。 31.   如條項27至30中任一項之方法,其中一或多個尺寸之變化與微影裝置之製程參數的變化相關聯,諸如曝光劑量及/或焦點設定。 32.   一種電腦程式,其包含可操作以在運行於合適裝置上時執行如條項27至31中任一項之方法的程式指令。 33.   一種非暫時性電腦程式載體,其包含如條項32之電腦程式。 34.   一種判定與結構相關之隨機度量之方法,該方法包含: 獲得經訓練模型,該模型已經訓練以使訓練檢測影像資料與訓練隨機度量資料關聯,其中訓練檢測影像資料包含與自基板上之複數個訓練結構反射之輻射相關的複數個檢測影像,且訓練隨機度量資料包含與該複數個訓練結構相關之隨機度量值,其中複數個訓練結構已經形成為具有該隨機度量所依賴之一或多個尺寸之變化;自結構獲得檢測影像資料;及使用經訓練模型以自檢測影像資料推斷與結構相關聯的隨機度量之值。
關於微影裝置所使用之術語「輻射」及「光束」涵蓋所有類型之電磁輻射,包括紫外線(UV)輻射(例如,具有為或為約365 nm、355 nm、248 nm、193 nm、157 nm或126 nm之波長)及極紫外線(EUV)輻射(例如,具有在5 nm至20 nm之範圍內之波長),以及粒子射束,諸如,離子射束或電子射束。
在內容背景允許之情況下,術語「透鏡」可指各種類型之光學組件中之任一者或組合,包括折射、反射、磁性、電磁及靜電光學組件。
對特定實施例之前述描述將因此完全地揭示本發明之一般性質:在不脫離本發明之一般概念的情況下,其他人可藉由應用熟習此項技術者所瞭解之知識針對各種應用而容易地修改及/或調適此等特定實施例,而無需進行不當實驗。因此,基於本文中所呈現之教示及導引,此等調適及修改意欲在所揭示之實施例之等效者的涵義及範圍內。應理解,本文中之措辭或術語係出於(例如)描述而非限制之目的,以使得本說明書之術語或措辭待由熟習此項技術者按照該等教示及該指導進行解譯。
因此,本發明之廣度及範疇不應受上述例示性實施例中之任一者限制,而應僅根據以下申請專利範圍及其等效者來界定。
110:度量衡裝置/輻射源 120:透鏡系統 130:孔徑板 140:透鏡系統 150:部分反射表面 160:物鏡 170:偏振器/射線 172:射線 174:繞射射線 176:繞射射線 180:光學元件 182:光學系統 186:孔徑 190:感測器 200:微影工具/裝置 206:控制單元LACU 208:塗佈裝置 210:烘烤裝置 212:顯影裝置 220:基板 222:裝置 224:裝置 226:裝置/步驟 230:傳入基板/感測器 232:基板 234:基板 240:度量衡裝置 242:度量衡結果 300:可調整場光闌 302:孔徑/度量衡裝置/檢測裝置 310:照明源/處理器 312:照明系統 314:參考偵測器 315:信號 316:基板支撐件 318:偵測系統 320:度量衡處理單元 330:泵浦輻射源 332:氣體遞送系統 334:氣體供應件 336:電源 340:第一泵浦輻射 342:發射輻射/經濾光光束 344:濾光器件 350:檢測腔室 352:真空泵 356:聚焦光束 360:反射輻射 372:位置控制器 374:感測器 382:光譜資料 397:繞射輻射 398:偵測系統 399:信號 400:步驟 410:步驟 420:步驟 430:步驟 440:步驟 500:步驟 510:步驟 520:步驟 530:步驟 540:步驟 903:邊緣 903A:抗蝕劑影像 903B:抗蝕劑影像 903C:抗蝕劑影像 904A:位置 904B:位置 904C:位置 910:長矩形特徵 910A:抗蝕劑影像 910B:抗蝕劑影像 910C:抗蝕劑影像 911:寬度 911A:寬度 911B:寬度 911C:寬度 EXP:曝光站 IF:位置感測器 LA:微影裝置 LACU:微影設備控制單元 MA:圖案化器件 MEA:量測站 O:點線/光軸 R:配方資訊 S:光點 SCS:監督控制系統 T:目標 Ta:目標 W:基板
現將參看隨附圖式藉助於實例來描述本發明之實施例,在該等圖式中: 圖1描繪微影裝置連同形成用於半導體器件之生產設施的其他裝置; 圖2示意性地描繪隨機變化之兩個實例:(a)線邊緣粗糙度LER;及(b)示意性地線寬粗糙度(LWR); 圖3 (a)為可操作以實施根據實施例之方法之第一光學度量衡裝置的示意圖;且(b)為使用此類工具可量測之目標; 圖4 (a)為可操作以實施根據實施例之方法之第二光學度量衡裝置的示意圖,其中所用EUV及/或SXR輻射;及(b)如可使用此類度量衡器件偵測之繞射圖案; 圖5為描述根據本發明之實施例之訓練及使用機器學習模型以自光學度量衡資料推斷隨機相關資料之第一方法的流程圖; 圖6為如使用掃描電子顯微鏡所量測之缺陷率DR (SEM)相對於如使用諸如圖3 (a)或圖4 (a)中所說明之光學度量衡工具所量測之缺陷率DR (IDM)之曲線;及 圖7為描述根據本發明之實施例之訓練及使用機器學習模型以自光學度量衡資料推斷隨機相關資料之第二方法的流程圖。
302:孔徑/度量衡裝置/檢測器件
310:照明源/處理器
312:照明系統
314:參考偵測器
315:信號
316:基板支撐件
318:偵測系統
320:度量衡處理單元
330:泵浦輻射源
332:氣體遞送系統
334:氣體供應件
336:電源
340:第一泵浦輻射
342:發射輻射/經濾光光束
344:濾光器件
350:檢測腔室
352:真空泵
356:聚焦光束
360:反射輻射
372:位置控制器
374:感測器
382:光譜資料
397:繞射輻射
398:偵測系統
399:信號
S:光點
Ta:目標
W:基板

Claims (15)

  1. 一種判定與一結構相關之一隨機度量之方法,該方法包含: 獲得一經訓練模型,該模型已經訓練以使訓練光學度量衡資料與訓練隨機度量資料關聯,其中該訓練光學度量衡資料包含複數個量測信號,該複數個量測信號與一強度相關參數之跨包含於自一基板上之複數個訓練結構散射之輻射內之一零或更高繞射階的複數個角解析分佈相關,且該訓練隨機度量資料包含與該複數個訓練結構相關之隨機度量值,其中該複數個訓練結構已經形成為具有該隨機度量所依賴之一或多個尺寸之一變化; 獲得光學度量衡資料,該光學度量衡資料包含該強度相關參數之跨包含於自一結構散射之輻射內之一零或更高繞射階的一角解析分佈;及 使用該經訓練模型以自該光學度量衡資料推斷與該結構相關聯的該隨機度量之一值。
  2. 如請求項1之方法,其中該等量測信號中之每一者進一步包含該強度相關參數之跨包含於自該基板上之該多個訓練結構散射之輻射內之一零或更高繞射階的光譜解析分佈。
  3. 如請求項1之方法,其中該參數為繞射效率。
  4. 如請求項1之方法,其中該訓練光學度量衡資料進一步包含與以下中之一者或兩者相關之標稱資訊性度量衡資料:非缺陷量測及/或模擬;及特定缺陷量測或模擬。
  5. 如請求項1之方法,其中該模型包含一機器學習模型、類神經網路或卷積類神經網路。
  6. 如請求項1之方法,其中一或多個尺寸之該變化與用於將該訓練結構應用於該訓練基板之一微影製程之一或多個製程參數的一變化相關聯。
  7. 如請求項6之方法,其中該訓練隨機度量資料描述隨機度量值或相關尺寸度量值之一可接受空間或範圍,及該一或多個製程參數值之一對應可接受空間或範圍。
  8. 如請求項6之方法,其中該一或多個製程參數為以下中之一或多者:劑量、焦點。
  9. 如請求項1之方法,其進一步包含以下初始步驟: 獲得該訓練光學度量衡資料及隨機度量資料;及 針對該訓練光學度量衡資料及隨機度量資料來訓練該經訓練模型。
  10. 如請求項9之方法,其包含:獲得高解析度度量衡資料;及自該高解析度度量衡資料判定該隨機度量資料。
  11. 如請求項10之方法,其中自掃描電子顯微鏡度量衡獲得該高解析度度量衡資料。
  12. 如請求項1之方法,其進一步包含使用該隨機度量之該經推斷值以決定在何處及/或何時執行進一步高解析度度量衡。
  13. 如請求項1之方法,其中該隨機度量包含以下中之一或多者:缺陷率或其他缺陷度量、線邊緣粗糙度、線寬粗糙度、局域臨界尺寸均一性、圓邊緣粗糙度或邊緣置放誤差。
  14. 一種電腦程式,其包含可操作以在運行於一合適裝置上時執行如請求項1至13中任一項之方法的程式指令。
  15. 一種非暫時性電腦程式載體,其包含如請求項14之電腦程式。
TW111116139A 2021-05-06 2022-04-28 用於判定與微影製程相關之隨機度量之方法 TWI815419B (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
EP21172589.0A EP4086703A1 (en) 2021-05-06 2021-05-06 Method for determining a stochastic metric relating to a lithographic process
EP21172589.0 2021-05-06
EP21179403 2021-06-15
EP21179403.7 2021-06-15
EP21214225 2021-12-14
EP21214225.1 2021-12-14
EP22156035.2 2022-02-10
EP22156035 2022-02-10

Publications (2)

Publication Number Publication Date
TW202248884A true TW202248884A (zh) 2022-12-16
TWI815419B TWI815419B (zh) 2023-09-11

Family

ID=81597994

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111116139A TWI815419B (zh) 2021-05-06 2022-04-28 用於判定與微影製程相關之隨機度量之方法

Country Status (3)

Country Link
IL (1) IL308126A (zh)
TW (1) TWI815419B (zh)
WO (1) WO2022233546A1 (zh)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3392106A (en) 1966-03-29 1968-07-09 Exxon Research Engineering Co Hydrocracking catalyst compositions and processes utilizing a crystalline aluminosilicate promoted with zinc and a group vi-beta metal compound
US7791727B2 (en) 2004-08-16 2010-09-07 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
NL2004094A (en) 2009-02-11 2010-08-12 Asml Netherlands Bv Inspection apparatus, lithographic apparatus, lithographic processing cell and inspection method.
US10151986B2 (en) * 2014-07-07 2018-12-11 Kla-Tencor Corporation Signal response metrology based on measurements of proxy structures
KR102010941B1 (ko) 2015-03-25 2019-08-14 에이에스엠엘 네델란즈 비.브이. 계측 방법, 계측 장치 및 디바이스 제조 방법
CN108431692B (zh) 2015-12-23 2021-06-18 Asml荷兰有限公司 量测方法、量测设备和器件制造方法
EP3398123A4 (en) * 2015-12-31 2019-08-28 KLA - Tencor Corporation ACCELERATED TRAINING OF A MODEL BASED ON AUTOMATIC LEARNING FOR SEMICONDUCTOR APPLICATIONS
US10546790B2 (en) 2016-03-01 2020-01-28 Asml Netherlands B.V. Method and apparatus to determine a patterning process parameter
WO2021043519A1 (en) * 2019-09-04 2021-03-11 Asml Netherlands B.V. Method and apparatus for lithographic process performance determination
KR102550350B1 (ko) * 2017-09-08 2023-07-04 에이에스엠엘 네델란즈 비.브이. 기계 학습 보조 광 근접 오차 보정을 위한 트레이닝 방법들
US11921433B2 (en) * 2018-04-10 2024-03-05 Lam Research Corporation Optical metrology in machine learning to characterize features
JP6974635B2 (ja) * 2018-06-14 2021-12-01 ノヴァ リミテッドNova Ltd 半導体製造計測および処理制御

Also Published As

Publication number Publication date
TWI815419B (zh) 2023-09-11
WO2022233546A1 (en) 2022-11-10
IL308126A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JP7003150B2 (ja) 確率性を仮定した計量および加工
US10670974B2 (en) Metrology apparatus for and a method of determining a characteristic of interest of a structure on a substrate
US10133192B2 (en) Method and apparatus for determining the property of a structure, device manufacturing method
TWI689796B (zh) 用於配方選擇的方法、電腦程式產品、及基板量測裝置
KR102146434B1 (ko) 측정을 향상시키기 위한 비대칭 서브 해상도 피처를 사용하는 리소그래피 공정의 광학적 메트롤로지
JP5389235B2 (ja) オーバーレイエラーを判定するための方法及び装置
US10634490B2 (en) Determining edge roughness parameters
KR20180030163A (ko) 검사 장치, 검사 방법 및 제조 방법
TWI457721B (zh) 控制微影裝置的方法、元件製造方法、微影裝置、電腦程式產品及改善微影程序的數學模型之方法
US9201310B2 (en) Method of measuring overlay error and a device manufacturing method
US11353796B2 (en) Method and apparatus for determining a radiation beam intensity profile
US10725387B2 (en) Determining an edge roughness parameter of a periodic structure
CN112689801A (zh) 使用图像品质度量的量测数据校正
KR102293144B1 (ko) 계측 타겟 측정 레시피의 자동 선택
CN108292107B (zh) 二维或三维形状的分层式表示
EP3851915A1 (en) Method for correcting measurements in the manufacture of integrated circuits and associated apparatuses
EP3528048A1 (en) A metrology apparatus for and a method of determining a characteristic of interest of a structure on a substrate
US11392043B2 (en) Method and metrology apparatus for determining estimated scattered radiation intensity
TWI815419B (zh) 用於判定與微影製程相關之隨機度量之方法
EP4086703A1 (en) Method for determining a stochastic metric relating to a lithographic process
CN117255972A (zh) 用于确定与光刻过程有关的随机度量的方法
EP4137889A1 (en) Metrology measurement method and apparatus
KR20240016285A (ko) 계측 측정 방법 및 장치
EP3467589A1 (en) Determining edge roughness parameters
NL2021703A (en) Method and apparatus for determining a radiation beam intensity profile