TW202247165A - Sustainable dram having principle power supply voltage unified with logic circuit - Google Patents

Sustainable dram having principle power supply voltage unified with logic circuit Download PDF

Info

Publication number
TW202247165A
TW202247165A TW111119848A TW111119848A TW202247165A TW 202247165 A TW202247165 A TW 202247165A TW 111119848 A TW111119848 A TW 111119848A TW 111119848 A TW111119848 A TW 111119848A TW 202247165 A TW202247165 A TW 202247165A
Authority
TW
Taiwan
Prior art keywords
voltage
dram
circuit
random access
dynamic random
Prior art date
Application number
TW111119848A
Other languages
Chinese (zh)
Other versions
TWI815481B (en
Inventor
盧超群
夏濬
戎博斗
Original Assignee
鈺創科技股份有限公司
新加坡商發明創新暨合作實驗室有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/333,836 external-priority patent/US20210295893A1/en
Priority claimed from US17/717,116 external-priority patent/US20220246199A1/en
Application filed by 鈺創科技股份有限公司, 新加坡商發明創新暨合作實驗室有限公司 filed Critical 鈺創科技股份有限公司
Publication of TW202247165A publication Critical patent/TW202247165A/en
Application granted granted Critical
Publication of TWI815481B publication Critical patent/TWI815481B/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4074Power supply or voltage generation circuits, e.g. bias voltage generators, substrate voltage generators, back-up power, power control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/408Address circuits
    • G11C11/4085Word line control circuits, e.g. word line drivers, - boosters, - pull-up, - pull-down, - precharge
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4094Bit-line management or control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4096Input/output [I/O] data management or control circuits, e.g. reading or writing circuits, I/O drivers or bit-line switches 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/145Applications of charge pumps; Boosted voltage circuits; Clamp circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/12Bit line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, equalising circuits, for bit lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/08Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Dram (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

A DRAM chip configured to couple with an external logic circuit and to couple with a principle power supply voltage source includes a first sustaining voltage generator and a DRAM core circuit. The first sustaining voltage generator produces a first voltage level which is higher than a voltage level corresponding to a signal ONE utilized in the DRAM chip. The DRAM core circuit with a DRAM cell includes an access transistor and a storage capacitor. The storage capacitor of the DRAM cell is configured to selectively coupled to the first sustaining voltage generator. A voltage level of the principle power supply voltage source to the DRAM chip is the same or substantially the same as that of a principle power supply voltage source to the external logic circuit.

Description

有與邏輯電路統一的主供電電壓源的動態隨機存取記憶體Dynamic random access memory with mains supply voltage source unified with logic circuits

本發明是有關於一種動態隨機存取記憶體,尤指一種具有與外部邏輯電路統一或相容的主供電電壓源的動態隨機存取記憶體。The present invention relates to a dynamic random access memory, especially a dynamic random access memory with a main power supply voltage source that is unified or compatible with an external logic circuit.

現有技術中,最廣泛使用的動態隨機存取記憶體(Dynamic Random Access Memory, DRAM)單元(cell)包含一存取電晶體和一儲存電容,其中存取電晶體的源極連接儲存電容,而存取電晶體的汲極則連接一位元線。位元線耦接第一級感測放大器,而第一級感測放大器從動態隨機存取記憶體單元所讀出(READ out)的信號通過行開關(column switches)後,再傳送至一第二級感測放大器,其中第二級感測放大器連接輸入/輸出線(也就是數據線)。該動態隨機存取記憶體在寫入操作(WRITE operation)期間,由輸入/輸出緩衝器所驅動的信號會被穩定在數據線,以及該數據線會進一步通過該第一級傳感放大器穩定該輸入/輸出緩衝器所驅動的信號以使正確的信號通過該存取電晶體寫入至該儲存電容。在該存取電晶體的主動模式(active mode,也就是該存取電晶體的開啟期間)期間,該存取電晶體負責該儲存電容的讀出操作(READ operation)或該儲存電容的寫入操作(WRITE operation),以及在該存取電晶體的非主動模式(inactive mode,也就是該存取電晶體關閉期間),該存取電晶體可避免該儲存電容所儲存的數據遺失。In the prior art, the most widely used DRAM (Dynamic Random Access Memory, DRAM) unit (cell) includes an access transistor and a storage capacitor, wherein the source of the access transistor is connected to the storage capacitor, and The drain of the access transistor is connected to a bit line. The bit line is coupled to the first-stage sense amplifier, and the signal read out by the first-stage sense amplifier from the dynamic random access memory unit (READ out) is transmitted to a first stage after passing through column switches. A two-stage sense amplifier, wherein the second-stage sense amplifier is connected to the input/output line (that is, the data line). During the WRITE operation of the DRAM, the signal driven by the I/O buffer is stabilized on the data line, and the data line is further stabilized by the first-stage sense amplifier. The signal driven by the I/O buffer enables the correct signal to be written into the storage capacitor through the access transistor. During the active mode (active mode, that is, the period when the access transistor is turned on) of the access transistor, the access transistor is responsible for the read operation (READ operation) of the storage capacitor or the writing of the storage capacitor operation (WRITE operation), and in the inactive mode of the access transistor (that is, when the access transistor is turned off), the access transistor can prevent the data stored in the storage capacitor from being lost.

在現有技術中,該存取電晶體被設計具有一高的臨界電壓以最小化通過該存取電晶體的漏電流,但隨之而來的缺點是當該存取電晶體開啟時,該存取電晶體的性能降低。因此,連接該存取電晶體的閘極的字元線必須被升壓或連接至一高的電壓VPP(通常來自一字元線驅動器)以允許該存取電晶體具有高驅動能力而將信號寫入至該儲存電容,其中電壓VPP是通過該字元線驅動器載入至該字元線或該存取電晶體的閘極。因為電壓VPP是施加在該存取電晶體的一高壓應力,所以該存取電晶體的閘極的電介質材料(例如,一氧化層或一高電介常數材料)必須比應用至該動態隨機存取記憶體的其他支援電路或週邊電路(例如命令解碼器,位址解碼器和其他輸入/輸出電路等)的閘極的電介質材料還要厚。因此,該存取電晶體的設計面臨不是只能維持高性能就是只能維持高可靠性的挑戰,且須在該存取電晶體的可靠性和性能之間進行了艱難的權衡取捨。然而在現有技術中,該存取電晶體的設計更專注于達成該存取電晶體的高可靠性,卻同時必須犧牲該存取電晶體的性能。In the prior art, the access transistor is designed with a high threshold voltage to minimize the leakage current through the access transistor, but the attendant disadvantage is that when the access transistor is turned on, the memory The performance of the transistor is degraded. Therefore, the word line connected to the gate of the access transistor must be boosted or connected to a high voltage VPP (usually from a word line driver) to allow the access transistor to have a high drive capability to pass the signal Writing to the storage capacitor, wherein the voltage VPP is loaded to the word line or the gate of the access transistor through the word line driver. Because the voltage VPP is a high voltage stress applied to the access transistor, the dielectric material (for example, an oxide layer or a high dielectric constant material) of the gate of the access transistor must be higher than that applied to the DRAM. The dielectric material of the gate of other supporting circuits or peripheral circuits of the memory (such as command decoder, address decoder and other input/output circuits, etc.) is also thicker. Therefore, the design of the access transistor faces the challenge of maintaining high performance or high reliability, and a difficult trade-off must be made between the reliability and performance of the access transistor. However, in the prior art, the design of the access transistor is more focused on achieving high reliability of the access transistor, but the performance of the access transistor must be sacrificed at the same time.

總結而言,關於該存取電晶體的設計,該存取電晶體必須具有該高的臨界電壓以降低該存取電晶體的漏電流(其中降低該存取電晶體的漏電流有助於延長該儲存電容中所儲存的電荷的保留時間),具有厚的閘極電介質材料以承受高的字元線電壓(例如電壓VPP),以及犧牲該存取電晶體的性能。因此,通過該存取電晶體對該儲存電容寫入一高電位信號(也就是信號“ONE”,其中信號“ONE”通常對應如圖1A所示的電壓VCCSA)將會花較長的時間達到或無法完全達到信號“ONE”所對應的電壓VCCSA。也就是說將信號“ONE”所對應的電壓VCCSA完全寫入至該儲存電容所耗費的寫入時間(WRITE time)將較長。In summary, regarding the design of the access transistor, the access transistor must have the high threshold voltage to reduce the leakage current of the access transistor (wherein reducing the leakage current of the access transistor helps to prolong The retention time of the charge stored in the storage capacitor), having a thick gate dielectric material to withstand high word line voltages (such as voltage VPP), and sacrificing the performance of the access transistor. Therefore, it will take a long time to write a high potential signal (that is, the signal "ONE", wherein the signal "ONE" usually corresponds to the voltage VCCSA shown in FIG. 1A ) to the storage capacitor through the access transistor. Or the voltage VCCSA corresponding to the signal "ONE" cannot be fully reached. That is to say, the writing time (WRITE time) consumed to completely write the voltage VCCSA corresponding to the signal “ONE” into the storage capacitor will be longer.

另外,請再參照圖1A,其中圖1A是說明動態隨機存取記憶體單元最常用的設計的示意圖,其中該動態隨機存取記憶體單元包含存取電晶體11和儲存電容12。存取電晶體11的閘極耦接於一字元線WL,感測放大器 20通過一位元線BL耦接於存取電晶體11。該動態隨機存取記憶體單元在寫入模式(WRITE mode)期間利用存取電晶體11做為一開關以控制電荷通過位元線BL儲存至儲存電容12,或是在讀取模式(READ mode)期間傳送儲存電容12所儲存的電荷至位元線BL,其中多個動態隨機存取記憶體單元分別連接位元線BL。例如,感測放大器20在該讀取模式期間通過該放大動態隨機存取記憶體單元傳送至位元線BL的信號以閂鎖信號“ONE”(其中信號“ONE”可例如為1.2V,信號“ONE”通常為感測放大器20所提供的電壓VCCSA)或信號“ZERO”(其中信號“ZERO” 可例如為0V,信號“ZERO”通常為感測放大器20所提供的電壓VSS),或者在該寫入模式期間,外界寫入信號“ONE”或信號“ZERO”至感測放大器20以儲存正確的信號至該動態隨機存取記憶體單元的儲存電容12。In addition, please refer to FIG. 1A again, wherein FIG. 1A is a schematic diagram illustrating the most common design of a DRAM unit, wherein the DRAM unit includes an access transistor 11 and a storage capacitor 12 . The gate of the access transistor 11 is coupled to a word line WL, and the sense amplifier 20 is coupled to the access transistor 11 through a bit line BL. The DRAM cell utilizes the access transistor 11 as a switch during the write mode (WRITE mode) to control the charge storage to the storage capacitor 12 through the bit line BL, or in the read mode (READ mode) ) period, transfer the charge stored in the storage capacitor 12 to the bit line BL, wherein a plurality of DRAM cells are respectively connected to the bit line BL. For example, sense amplifier 20 latches signal "ONE" (where signal "ONE" may be, for example, 1.2V, signal "ONE" is generally the voltage VCCSA provided by the sense amplifier 20) or a signal "ZERO" (wherein the signal "ZERO" may be, for example, 0V and the signal "ZERO" is generally the voltage VSS provided by the sense amplifier 20), or at During the write mode, the external writes a signal “ONE” or a signal “ZERO” to the sense amplifier 20 to store the correct signal to the storage capacitor 12 of the DRAM unit.

請參照圖1B,圖1B是說明動態隨機存取記憶體單元在存取(讀取或寫入)操作期間的相關信號的波形的示意圖。例如,該動態隨機存取記憶體單元(25奈米(nm)製程)的設計通常具有下列與動態隨機存取記憶體單元陣列的設計相關的參數∶位元線BL上的信號“ONE”的電壓為1.2V,字元線WL上的開啟電壓為2.7V(也就是電壓VPP為2.7V)以及字元線WL上的待機電壓約為-0.3V,該動態隨機存取記憶體單元的臨界電壓的範圍介於0.7V和0.9V之間,存取電晶體11的閘極的電介質材料必須承受2.7V的電壓強度(其中在老化應力(burn-in stress)的條件下,存取電晶體11的閘極的電介質材料更必須承受3.4V的電壓強度以維持可接受的可靠性裕度(reliability margin)),以及必須採用厚的存取電晶體11的閘極的電介質材料,其中厚的存取電晶體11的閘極的電介質材料會犧牲存取電晶體11的性能。Please refer to FIG. 1B . FIG. 1B is a schematic diagram illustrating waveforms of related signals of a DRAM cell during an access (read or write) operation. For example, the design of the DRAM cell (25 nanometer (nm) process) generally has the following parameters related to the design of the DRAM cell array: the signal "ONE" on the bit line BL The voltage is 1.2V, the turn-on voltage on the word line WL is 2.7V (that is, the voltage VPP is 2.7V) and the standby voltage on the word line WL is about -0.3V, the critical The voltage range is between 0.7V and 0.9V, and the dielectric material of the gate electrode of the access transistor 11 must withstand a voltage strength of 2.7V (wherein under the condition of aging stress (burn-in stress), the access transistor The dielectric material of the gate electrode of 11 must withstand the voltage strength of 3.4V to maintain an acceptable reliability margin (reliability margin)), and the dielectric material of the gate electrode of the access transistor 11 must be thick, wherein the thick The dielectric material of the gate of the access transistor 11 will sacrifice the performance of the access transistor 11 .

如圖1B所示,儲存電容12在一開始是處於一待機模式(standby made)或該非啟動模式(也就是說此時存取電晶體11關閉),且字元線WL上的電壓為-0.3V(待機電壓)。位元線BL和一位元線BLB上的電壓被等化(equalized)在電壓VCCSA的一半(即0.6V)。當儲存電容12進入該主動模式(也就是存取電晶體11開啟)時,字元線WL上的電壓從該待機電壓(-0.3V)被提升至電壓VPP(例如2.7V),其中電壓VPP遠大於電壓VCCSA(1.2V)和存取電晶體11的臨界電壓VT(可為0.7V或0.8V)的總和以在存取電晶體11的閘源極電壓(例如2.7V - 1.2V - 0.8V = 0.7V)上提供足夠大的驅動力。另外,因為存取電晶體11開啟,所以位元線BL可耦接儲存電容12。如圖1B所示,在該存取(讀出或寫入)操作期間,字元線WL上的電壓持續維持在電壓VPP,且在該存取操作期間之後是伴隨著一恢復階段(RESTORE phase)。在該恢復階段,感測放大器20將根據儲存電容12所儲存的信號“ONE”或信號“ZERO”對儲存電容12再充電。在該恢復階段後,字元線WL上的電壓將從電壓VPP下拉至該待機電壓(-0.3V),導致存取電晶體11再次處於該非主動模式。As shown in FIG. 1B, the storage capacitor 12 is initially in a standby mode (standby made) or the non-start mode (that is to say, the access transistor 11 is turned off at this time), and the voltage on the word line WL is -0.3 V (standby voltage). The voltages on the bit lines BL and BLB are equalized to half the voltage VCCSA (ie 0.6V). When the storage capacitor 12 enters the active mode (that is, the access transistor 11 is turned on), the voltage on the word line WL is raised from the standby voltage (-0.3V) to a voltage VPP (for example, 2.7V), wherein the voltage VPP Far greater than the sum of the voltage VCCSA (1.2V) and the threshold voltage VT (which can be 0.7V or 0.8V) of the access transistor 11 to achieve a gate-source voltage of the access transistor 11 (for example, 2.7V - 1.2V - 0.8 V = 0.7V) to provide sufficient driving force. In addition, since the access transistor 11 is turned on, the bit line BL can be coupled to the storage capacitor 12 . As shown in FIG. 1B, during the access (reading or writing) operation, the voltage on the word line WL is continuously maintained at the voltage VPP, and the access operation is followed by a recovery phase (RESTORE phase ). During the recovery phase, the sense amplifier 20 will recharge the storage capacitor 12 according to the signal “ONE” or the signal “ZERO” stored in the storage capacitor 12 . After the recovery phase, the voltage on the word line WL will be pulled down from the voltage VPP to the standby voltage (-0.3V), causing the access transistor 11 to be in the inactive mode again.

比起應用至該動態隨機存取記憶體的週邊電路中的電晶體,電壓VPP所造成的高壓應力將使得存取電晶體11被設計成具有較厚的閘極氧化層或閘極絕緣層,然而存取電晶體11較厚的閘極氧化層或閘極絕緣層將降低存取電晶體11的性能(例如存取電晶體11的短通道效應更嚴重,存取電晶體11的開啟/關閉電流的比值更小,以及衡量存取電晶體11的開啟/關閉的回應能力的擺幅斜率(swing slope)變差等)。另外,雖然存取電晶體11的臨界電壓是比應用在該動態隨機存取記憶體單元的週邊電路中的電晶體的臨界電壓還要高,但在該待機模式或該非激活模式期間,通過存取電晶體11的漏電流仍然很大到可降低儲存電容12中用於感測所需的儲存電荷。在12奈米或7奈米的鰭式場效電晶體(fin field-effect transistor, FinFET)製程技術中,當電壓VCCSA較低(例如0.6)時,存取電晶體11在該待機模式或該非激活模式期間的漏電流會變得更嚴重。因此,一主供電電壓源提供給該動態隨機存取記憶體的電壓位準或應用在該動態隨機存取記憶體的電壓VCCSA應保持在一定的電壓位準。Compared with the transistors applied to the peripheral circuits of the DRAM, the high voltage stress caused by the voltage VPP will make the access transistor 11 be designed to have a thicker gate oxide layer or gate insulating layer, However, the thicker gate oxide layer or gate insulating layer of the access transistor 11 will reduce the performance of the access transistor 11 (for example, the short channel effect of the access transistor 11 is more serious, and the opening/closing of the access transistor 11 The current ratio is smaller, and the swing slope (swing slope) to measure the turn-on/turn-off response capability of the access transistor 11 becomes worse, etc.). In addition, although the threshold voltage of the access transistor 11 is higher than that of the transistors used in the peripheral circuits of the DRAM unit, during the standby mode or the inactive mode, the memory The leakage current of the transistor 11 is still large enough to reduce the charge stored in the storage capacitor 12 for sensing. In the 12nm or 7nm fin field-effect transistor (fin field-effect transistor, FinFET) process technology, when the voltage VCCSA is low (for example, 0.6), the access transistor 11 is in the standby mode or the inactive The leakage current during mode becomes more severe. Therefore, the voltage level provided by a main power supply voltage source to the DRAM or the voltage VCCSA applied to the DRAM should be maintained at a certain voltage level.

另一方面,用於高性能計算或人工智慧(AI)系統的積體電路系統是由多個動態隨機存取記憶體晶片和一個邏輯晶片組成。該邏輯晶片現在可以通過使用10奈米的製程節點,或7奈米的製程節點和朝向5奈米發展的製程節點在矽晶圓上製造。上述製程節點基本上遵循摩爾定律,以及可通過元件微縮設計在每一個製程節點的特定區域內增加2倍的電晶體。但是能夠遵循摩爾定律的關鍵在於3D電晶體結構的發明和執行(例如:全繞式閘極(gate around),三閘極(Tri-gate)或鰭式場效電晶體(FinFET))。此外,3D形狀或結構的電晶體確實提供了高性能、低漏電流和高可靠性等優點。On the other hand, an integrated circuit system for high-performance computing or artificial intelligence (AI) systems is composed of multiple DRAM chips and a logic chip. The logic chip can now be fabricated on silicon wafers using the 10nm process node, or the 7nm process node and the process node progressing towards 5nm. The above-mentioned process nodes basically follow Moore's law, and transistors can be increased by 2 times in a specific area of each process node through component scaling design. But the key to being able to follow Moore's Law lies in the invention and implementation of 3D transistor structures (eg: gate around, tri-gate or FinFET). Furthermore, transistors with 3D shapes or structures do offer advantages such as high performance, low leakage current, and high reliability.

然而,在45奈米製程節點之後,動態隨機存取記憶體的微縮技術放緩,尤其在25奈米製程節點之後,十幾奈米的引入需要比摩爾定律預測的動態隨機存取記憶體歷史上每個製程節點需要兩年的時間長得多。一個關鍵原因在於3D動態隨機存取記憶體採用堆疊式電容結構,其中該堆疊式電容結構需要在電晶體結構形成後的高溫製程步驟。因此,該3D動態隨機存取記憶體內的電晶體的源極和汲極很難被控制得像電晶體微縮規則要求的那樣淺。因此,大多數動態隨機存取記憶體產品沒有採用廣泛使用在20奈米以下邏輯製程節點的相同製程技術。However, after the 45nm process node, the scaling of DRAM technology slows down, especially after the 25nm process node, the introduction of more than a dozen nanometers requires more than the history of DRAM predicted by Moore's Law Each process node takes much longer than two years. A key reason is that 3D DRAM uses a stacked capacitor structure, which requires a high-temperature process step after the transistor structure is formed. Therefore, it is difficult to control the source and drain of transistors in the 3D DRAM to be as shallow as required by transistor scaling rules. As a result, most DRAM products do not use the same process technologies that are widely used at logic process nodes below 20nm.

更糟糕的是,當邏輯/單晶片系統(System on Chip, SoC)的性能可通過10奈米以下的製程技術和設計技術得到高速的進展,特別是由於3D三閘極電晶體結構的使用和改進,所以放緩的動態隨機存取記憶體的技術演進將使得眾所周知的記憶體牆(Memory-Wall)效應(實際上是動態隨機存取記憶體牆(DRAM-Wall))變得更糟,其中該記憶體牆降低了邏輯電路和記憶體之間的數據傳輸速率。數據頻寬和隨機存取時間的性能差距越來越大,導致傳統的動態隨機存取記憶體無法作為向邏輯/單晶片系統提供數據或儲存數據的載體。To make matters worse, when logic/system on chip (SoC) performance can be rapidly advanced through sub-10nm process technology and design technology, especially due to the use of 3D tri-gate transistor structure and improvement, so slowing down the evolution of DRAM technology will make the well-known Memory-Wall effect (actually DRAM-Wall) worse, Among other things, the memory wall reduces the data transfer rate between the logic circuit and the memory. The performance gap between data bandwidth and random access time is getting bigger and bigger, so traditional DRAM cannot be used as a carrier for providing data or storing data to logic/single-chip systems.

為了解決該記憶體牆的問題,動態隨機存取記憶體技術的發展導向了3D-動態隨機存取記憶體技術,即高頻寬記憶體(High Bandwidth Memory, HBM)。然而,在由電子設備工程聯合委員會(Joint Electron Device Engineering Council, JEDEC)發佈的高頻寬記憶體標準中,該主供電電壓源提供給該動態隨機存取記憶體的電壓Vdd被定義為1.2V,其中該主供電電壓源是該動態隨機存取記憶體的外部電源。另一方面,應用在該邏輯晶片中三閘極電晶體的主供電電壓源所提供的電壓為0.6至0.7V。如圖1C所示,動態隨機存取記憶體電路100包含一輸入/輸出電路110(包含信號位準轉換電路,驅動阻抗調諧電路等)、一周邊電路120(包含命令/位址解碼器等)和一動態隨機存取記憶體核心電路130(包含動態隨機存取記憶體單元陣列等)。在動態隨機存取記憶體電路100和邏輯電路300之間有一個實體層電路(有時稱為實體層)200,其中實體層電路200還包含一輸入/輸出實體層電路210(也包含信號位準轉換電路,以及驅動阻抗調諧電路等)和一邏輯實體層電路220。另外,邏輯實體層電路220是用以和一邏輯電路300通信。由於動態隨機存取記憶體電路100的製程技術演進速度減慢和漏電流問題,所以動態隨機存取記憶體電路100的外部供電電壓源所提供的電壓Va可介於2.5V~1.1V之間,但邏輯電路300的外部供電電壓源所提供的電壓Va'則可介於0.9V~0.6V之間。例如,電壓Va是動態隨機存取記憶體電路100的外部電壓,且電壓Va可被動態隨機存取記憶體電路100用來產生各種電壓,例如前面提到的電壓VCCSA,電壓1/2VCCSA,和電壓VPP等,其中電壓VCCSA的電壓位準可與電壓Va的電壓位準相同或不同In order to solve the problem of the memory wall, the development of DRAM technology leads to 3D-DRAM technology, that is, High Bandwidth Memory (HBM). However, in the high-bandwidth memory standard issued by the Joint Electron Device Engineering Council (JEDEC), the voltage Vdd provided by the main supply voltage source to the DRAM is defined as 1.2V, where The main supply voltage source is an external power source of the DRAM. On the other hand, the voltage provided by the main power supply voltage source applied to the tri-gate transistor in the logic chip is 0.6 to 0.7V. As shown in FIG. 1C, the DRAM circuit 100 includes an input/output circuit 110 (including a signal level conversion circuit, a driving impedance tuning circuit, etc.), a peripheral circuit 120 (including a command/address decoder, etc.) and a DRAM core circuit 130 (including a DRAM cell array, etc.). Between the dynamic random access memory circuit 100 and the logic circuit 300, there is a physical layer circuit (sometimes referred to as a physical layer) 200, wherein the physical layer circuit 200 also includes an input/output physical layer circuit 210 (also includes signal bits Quasi conversion circuit, and driving impedance tuning circuit, etc.) and a logical physical layer circuit 220. In addition, the logic physical layer circuit 220 is used for communicating with a logic circuit 300 . Due to the slowdown of the process technology evolution of the DRAM circuit 100 and the leakage current problem, the voltage Va provided by the external power supply voltage source of the DRAM circuit 100 can be between 2.5V~1.1V. , but the voltage Va' provided by the external power supply voltage source of the logic circuit 300 can be between 0.9V~0.6V. For example, the voltage Va is an external voltage of the DRAM circuit 100, and the voltage Va can be used by the DRAM circuit 100 to generate various voltages, such as the aforementioned voltage VCCSA, voltage 1/2VCCSA, and Voltage VPP, etc., wherein the voltage level of the voltage VCCSA may be the same as or different from the voltage level of the voltage Va

由於電壓Va與電壓Va'之間的差異,所以如圖1D所示,在傳統的動態隨機存取記憶體電路中,動態隨機存取記憶體電路100的輸入/輸出電路110將包含一輸出電位轉換電路和一輸入比較器,其中該輸出電位轉換電路是用以調高或調低動態隨機存取記憶體電路100的輸出信號的電壓位準至一預定位準,且該預定位準是實體層電路200的輸入/輸出層電路210可以接受的。此外,該輸入比較器可將來自實體層電路200的輸入信號與參考電壓Vref進行比較,並轉換為相對應的信號DQ。同理,如圖1E所示,輸入/輸出實體電路210也包含一個輸入比較器和一輸出電位轉換電路,其中輸入/輸出實體電路210的輸出電位轉換電路是用以將來自實體層電路200的輸出信號的電壓位準調高或調低至動態隨機存取記憶體電路100的輸入/輸出電路110可接受的預定位準。輸入/輸出實體電路210的輸入比較器可將來自動態隨機存取記憶體電路100的輸入信號與另一個參考電壓Vref'進行比較,並轉換為相對應的信號DQ'。因此,因為動態隨機存取記憶體電路100的外部供電電壓源所提供的電壓Va和邏輯電路300的外部供電電壓源所提供的電壓Va'之間的不相容性,導致在優化能源效率和性能同步方面出現困難。Due to the difference between the voltage Va and the voltage Va', as shown in FIG. 1D, in a conventional DRAM circuit, the input/output circuit 110 of the DRAM circuit 100 will include an output potential conversion circuit and an input comparator, wherein the output potential conversion circuit is used to increase or decrease the voltage level of the output signal of the dynamic random access memory circuit 100 to a predetermined level, and the predetermined level is an entity The input/output layer circuit 210 of the layer circuit 200 is acceptable. In addition, the input comparator can compare the input signal from the physical layer circuit 200 with the reference voltage Vref, and convert it into a corresponding signal DQ. Similarly, as shown in FIG. 1E , the input/output physical circuit 210 also includes an input comparator and an output potential conversion circuit, wherein the output potential conversion circuit of the input/output physical circuit 210 is used to convert the output potential from the physical layer circuit 200 The voltage level of the output signal is adjusted up or down to a predetermined level acceptable to the I/O circuit 110 of the DRAM circuit 100 . The input comparator of the input/output physical circuit 210 can compare the input signal from the DRAM circuit 100 with another reference voltage Vref' and convert it into a corresponding signal DQ'. Therefore, because of the incompatibility between the voltage Va' provided by the external power supply voltage source of the DRAM circuit 100 and the voltage Va' provided by the external power supply voltage source of the logic circuit 300, resulting in optimization of energy efficiency and Difficulty with performance synchronization.

另外,請參照圖1F,圖1F是說明傳統低功率的動態隨機存取記憶體單元在寫入操作期間的相關信號的波形的示意圖,其中以一寫入數據XIO(例如信號“ONE”或高電位信號)將被一數據輸入電路DI接收,然後被傳送到具有重負載的一全域輸入/輸出路徑GIO,以及寫入數據XIO在全域輸入/輸出路徑GIO的電壓位準為1.1V(例如應用在該動態隨機存取記憶體單元的感測放大器的電壓VCCSA)為例。然後在全域輸入/輸出路徑GIO上的寫入數據XIO將被傳送到一數據線感測放大器70,其中數據線感測放大器70傳送寫入數據XIO至主要數據線路徑(也就是一數據線 DL和一互補數據線DLB)。然而該主要數據線路徑也還是具有重負載,以及寫入數據XIO在數據線 DL的電壓位準也為1.1V。然後在數據線 DL的寫入數據XIO將被傳送到一記憶體陣列75,其中寫入數據XIO通過位元線BL將被儲存至記憶體陣列75中的一相關的儲存節點。如圖1F所示,寫入數據XIO在位元線BL的電壓位準通常為1.1V,且全域輸入/輸出路徑GIO和數據線 DL是數據路徑的部分。為了滿足低功耗,寫入數據XIO在全域輸入/輸出路徑GIO的電壓位準,寫入數據XIO在數據線 DL的電壓位準,以及寫入數據XIO在位元線BL的電壓位準應盡可能降低,例如1.1V。然而,儲存在該相關的儲存節點上的較低電壓將遭受嚴重的漏電流問題並導致儲存的數據失效。In addition, please refer to FIG. 1F. FIG. 1F is a schematic diagram illustrating waveforms of related signals of a conventional low-power DRAM unit during a write operation, wherein a write data XIO (such as a signal "ONE" or a high Potential signal) will be received by a data input circuit DI, and then sent to a global input/output path GIO with a heavy load, and the voltage level of the write data XIO in the global input/output path GIO is 1.1V (for example, the application In the DRAM cell sense amplifier voltage VCCSA) for example. The write data XIO on the global input/output path GIO will then be transferred to a data line sense amplifier 70, wherein the data line sense amplifier 70 transfers the write data XIO to the main data line path (ie, a data line DL and a complementary data line DLB). However, the main data line path still has a heavy load, and the voltage level of the write data XIO on the data line DL is also 1.1V. Then the write data XIO on the data line DL will be transmitted to a memory array 75, wherein the write data XIO will be stored to an associated storage node in the memory array 75 through the bit line BL. As shown in FIG. 1F , the voltage level of the write data XIO on the bit line BL is usually 1.1V, and the global input/output path GIO and the data line DL are part of the data path. In order to meet low power consumption, the voltage level of the write data XIO on the global input/output path GIO, the voltage level of the write data XIO on the data line DL, and the voltage level of the write data XIO on the bit line BL should be As low as possible, eg 1.1V. However, lower voltages stored on the associated storage nodes suffer from serious leakage current problems and cause stored data to become invalid.

本發明的一實施例提供一種耦接於一外部邏輯電路和一主供電電壓源的動態隨機存取記憶體。該動態隨機存取記憶體包含一第一維持電壓源和一動態隨機存取記憶體核心電路。該第一維持電壓源用於產生一第一電壓,其中該第一電壓高於應用在該動態隨機存取記憶體中一高電位信號的電壓位準。該動態隨機存取記憶體核心電路具有一動態隨機存取記憶體單元,其中該動態隨機存取記憶體單元包含一存取電晶體和一儲存電容。該儲存電容是選擇性地耦接該第一維持電壓源。該主供電電壓源提供給該動態隨機存取記憶體的電壓位準是和另一主供電電壓源提供給該外部邏輯電路的電壓位準相同或是實質上相同。An embodiment of the present invention provides a DRAM coupled to an external logic circuit and a main supply voltage source. The DRAM includes a first sustain voltage source and a DRAM core circuit. The first maintaining voltage source is used to generate a first voltage, wherein the first voltage is higher than the voltage level of a high potential signal applied in the DRAM. The DRAM core circuit has a DRAM unit, wherein the DRAM unit includes an access transistor and a storage capacitor. The storage capacitor is selectively coupled to the first sustain voltage source. The voltage level provided by the main power supply voltage source to the DRAM is the same or substantially the same as the voltage level provided by another main power supply voltage source to the external logic circuit.

在本發明的一實施例中,該動態隨機存取記憶體另包含一輸入/輸出電路和介於該輸入/輸出電路和該動態隨機存取記憶體核心電路之間的一周邊電路,其中施加在該周邊電路内的一電晶體的汲極的一操作供電電壓和該主供電電壓源提供給該動態隨機存取記憶體的該電壓位準相同。In an embodiment of the present invention, the DRAM further includes an input/output circuit and a peripheral circuit between the I/O circuit and the DRAM core circuit, wherein the application An operating supply voltage of a drain of a transistor in the peripheral circuit is the same as the voltage level provided to the DRAM by the main supply voltage source.

在本發明的一實施例中,施加在該動態隨機存取記憶體核心電路內的一電晶體的汲極的一操作供電電壓和該主供電電壓源提供給該動態隨機存取記憶體的該電壓位準相同,且該動態隨機存取記憶體核心電路內的該電晶體異於該存取電晶體。In one embodiment of the present invention, an operating supply voltage applied to the drain of a transistor in the DRAM core circuit and the main supply voltage source are provided to the DRAM The voltage levels are the same, and the transistor in the DRAM core circuit is different from the access transistor.

在本發明的一實施例中,應用在該動態隨機存取記憶體中該高電位信號的電壓位準和該主供電電壓源提供給該動態隨機存取記憶體的電壓位準相同。In an embodiment of the present invention, the voltage level of the high potential signal applied in the DRAM is the same as the voltage level provided to the DRAM by the main power supply voltage source.

在本發明的一實施例中,該動態隨機存取記憶體另包含一輸入/輸出電路和介於該輸入/輸出電路和該動態隨機存取記憶體核心電路之間的一周邊電路,其中該輸入/輸出電路沒有一輸入比較電路和一輸出電位轉換電路。In an embodiment of the present invention, the DRAM further includes an I/O circuit and a peripheral circuit between the I/O circuit and the DRAM core circuit, wherein the The input/output circuit does not have an input comparison circuit and an output potential conversion circuit.

在本發明的一實施例中,該主供電電壓源提供給該動態隨機存取記憶體的該電壓位準是介於0.9V和0.5V之間。In an embodiment of the invention, the voltage level provided by the main power supply voltage source to the DRAM is between 0.9V and 0.5V.

在本發明的一實施例中,該動態隨機存取記憶體另包含一字元線,其中該字元線耦接於該存取電晶體的閘極,該字元線於一第一時間區間與一第二時間區間被選擇以開啟該存取電晶體,該第二時間區間位於該第一時間區間後,以及在該第二時間區間,該第一維持電壓源電耦接於該儲存電容。In an embodiment of the present invention, the DRAM further includes a word line, wherein the word line is coupled to the gate of the access transistor, and the word line is in a first time interval and a second time interval is selected to turn on the access transistor, the second time interval is located after the first time interval, and during the second time interval, the first sustain voltage source is electrically coupled to the storage capacitor .

在本發明的一實施例中,該第一時間區間是一存取操作區間,以及該第二時間區間是一恢復階段。In an embodiment of the present invention, the first time interval is an access operation interval, and the second time interval is a recovery phase.

在本發明的一實施例中,在該存取操作區間,一升壓電壓源(kicking charge source)電耦接於該動態隨機存取記憶體的一位元線。In an embodiment of the present invention, a kicking charge source is electrically coupled to a bit line of the DRAM during the access operation period.

本發明的另一實施例提供一種耦接於一外部邏輯電路和一主供電電壓源的動態隨機存取記憶體。該動態隨機存取記憶體包含一動態隨機存取記憶體核心電路、一輸入/輸出電路和一周邊電路。該動態隨機存取記憶體核心電路具有一動態隨機存取記憶體單元,其中該動態隨機存取記憶體單元包含一存取電晶體和一儲存電容。該輸入/輸出電路耦接於該外部邏輯電路。該周邊電路設置於該輸入/輸出電路和該動態隨機存取記憶體核心電路之間。該主供電電壓源提供給該動態隨機存取記憶體的電壓位準是和另一主供電電壓源提供給該外部邏輯電路的電壓位準相同或是實質上相同,以及該主供電電壓源提供給該動態隨機存取記憶體的電壓位準不大於0.9V。Another embodiment of the present invention provides a DRAM coupled to an external logic circuit and a main supply voltage source. The dynamic random access memory includes a dynamic random access memory core circuit, an input/output circuit and a peripheral circuit. The DRAM core circuit has a DRAM unit, wherein the DRAM unit includes an access transistor and a storage capacitor. The input/output circuit is coupled to the external logic circuit. The peripheral circuit is arranged between the I/O circuit and the DRAM core circuit. The voltage level provided by the main supply voltage source to the DRAM is the same or substantially the same as the voltage level provided by another main supply voltage source to the external logic circuit, and the main supply voltage source provides The voltage level for the DRAM is not greater than 0.9V.

在本發明的一實施例中,施加在該周邊電路内的一電晶體的汲極的一操作供電電壓和該主供電電壓源提供給該動態隨機存取記憶體的該電壓位準相同。In an embodiment of the present invention, an operating supply voltage applied to a drain of a transistor in the peripheral circuit is the same as the voltage level provided to the DRAM by the main supply voltage source.

在本發明的一實施例中,施加在該動態隨機存取記憶體核心電路內的一電晶體的汲極的一操作供電電壓和該主供電電壓源提供給該動態隨機存取記憶體的該電壓位準相同,且該動態隨機存取記憶體核心電路內的該電晶體異於該存取電晶體。In one embodiment of the present invention, an operating supply voltage applied to the drain of a transistor in the DRAM core circuit and the main supply voltage source are provided to the DRAM The voltage levels are the same, and the transistor in the DRAM core circuit is different from the access transistor.

在本發明的一實施例中,應用在該動態隨機存取記憶體中該高電位信號的電壓位準和該主供電電壓源提供給該動態隨機存取記憶體的電壓位準相同。In an embodiment of the present invention, the voltage level of the high potential signal applied in the DRAM is the same as the voltage level provided to the DRAM by the main power supply voltage source.

在本發明的一實施例中,該輸入/輸出電路沒有一輸入比較電路和一輸出電位轉換電路。In an embodiment of the present invention, the input/output circuit does not have an input comparison circuit and an output level conversion circuit.

在本發明的一實施例中,該動態隨機存取記憶體另包含一第一維持電壓源和一字元線。該第一維持電壓源用於產生一第一電壓,其中該第一電壓高於應用在該動態隨機存取記憶體中一高電位信號的電壓位準。該字元線耦接於該存取電晶體的閘極,其中該字元線於一第一時間區間與一第二時間區間被選擇以開啟該存取電晶體,該第二時間區間位於該第一時間區間後,以及在該第二時間區間,該第一維持電壓源電耦接於該儲存電容。In an embodiment of the present invention, the DRAM further includes a first sustain voltage source and a word line. The first maintaining voltage source is used to generate a first voltage, wherein the first voltage is higher than the voltage level of a high potential signal applied in the DRAM. The word line is coupled to the gate of the access transistor, wherein the word line is selected to turn on the access transistor during a first time interval and a second time interval, the second time interval is located at the After the first time interval, and during the second time interval, the first maintaining voltage source is electrically coupled to the storage capacitor.

在本發明的一實施例中,該第一時間區間是一存取操作區間,以及該第二時間區間是一恢復階段。In an embodiment of the present invention, the first time interval is an access operation interval, and the second time interval is a recovery phase.

本發明的另一實施例提供一種記憶體系統。該記憶體系統包含一動態隨機存取記憶體晶片和一邏輯晶片。該邏輯晶片電耦接於該動態隨機存取記憶體晶片。一主供電電壓源提供給該動態隨機存取記憶體晶片的電壓位準是和另一主供電電壓源提供給該邏輯晶片的電壓位準相同或是實質上相同,且該主供電電壓源提供給該動態隨機存取記憶體晶片的電壓位準 不大於0.9V。Another embodiment of the present invention provides a memory system. The memory system includes a DRAM chip and a logic chip. The logic chip is electrically coupled to the DRAM chip. The voltage level provided to the DRAM chip by a main supply voltage source is the same or substantially the same as the voltage level provided by another main supply voltage source to the logic chip, and the main supply voltage source provides The voltage level for the DRAM chip is not greater than 0.9V.

在本發明的一實施例中,該動態隨機存取記憶體晶片包含一動態隨機存取記憶體電路,該邏輯晶片包含一邏輯電路和一實體層電路,提供給該動態隨機存取記憶體晶片的該主供電電壓源也提供給該動態隨機存取記憶體電路,以及提供給該邏輯晶片的該另一主供電電壓源 也提供給該邏輯電路和該實體層電路。In one embodiment of the present invention, the DRAM chip includes a DRAM circuit, and the logic chip includes a logic circuit and a physical layer circuit, which are provided to the DRAM chip The main supply voltage source provided to the DRAM circuit is also provided to the DRAM circuit, and the other main supply voltage source provided to the logic chip is also provided to the logic circuit and the physical layer circuit.

在本發明的一實施例中,該記憶體系統另包含一基礎晶片(based chip),其中該基礎晶片電耦接於該動態隨機存取記憶體晶片,以及該主供電電壓源提供給該動態隨機存取記憶體晶片的電壓位準是和另一主供電電壓源提供給該基礎晶片的電壓位準相同或是實質上相同。In an embodiment of the present invention, the memory system further includes a base chip, wherein the base chip is electrically coupled to the DRAM chip, and the main power supply voltage source is provided to the dynamic random access memory chip. The voltage level of the random access memory chip is the same or substantially the same as the voltage level supplied to the base chip by another main power supply voltage source.

在本發明的一實施例中,該動態隨機存取記憶體晶片包含一動態隨機存取記憶體電路,該邏輯晶片包含一邏輯電路,以及該基礎晶片包含一實體層電路;其中提供給該動態隨機存取記憶體晶片的該主供電電壓源也提供給該動態隨機存取記憶體電路,提供給該邏輯晶片的該另一主供電電壓源也提供給該邏輯電路,以及提供給該基礎晶片的該主供電電壓源也提供給該實體層電路。In one embodiment of the present invention, the DRAM chip includes a DRAM circuit, the logic chip includes a logic circuit, and the base chip includes a physical layer circuit; wherein the dynamic The main supply voltage source of the random access memory chip is also provided to the dynamic random access memory circuit, the other main supply voltage source provided to the logic chip is also provided to the logic circuit, and to the base chip The main supply voltage source is also provided to the physical layer circuit.

在本發明的一實施例中,該動態隨機存取記憶體晶片包含一動態隨機存取記憶體單元和一第一維持電壓源,該動態隨機存取記憶體單元包含一儲存電容和一存取電晶體,該第一維持電壓源產生一第一電壓,以及該第一電壓高於應用在該動態隨機存取記憶體中一高電位信號的電壓位準,其中該第一維持電壓源在該存取電晶體關閉前耦接於該儲存電容。In one embodiment of the present invention, the DRAM chip includes a DRAM unit and a first sustain voltage source, and the DRAM unit includes a storage capacitor and an access Transistor, the first sustain voltage source generates a first voltage, and the first voltage is higher than the voltage level of a high potential signal applied in the dynamic random access memory, wherein the first sustain voltage source is in the The access transistor is coupled to the storage capacitor before it is turned off.

在本發明的一實施例中,該動態隨機存取記憶體另包含一輸入/輸出電路和和介於該輸入/輸出電路和該動態隨機存取記憶體單元之間的一周邊電路,以及該輸入/輸出電路沒有一輸入比較電路和一輸出電位轉換電路。In an embodiment of the present invention, the DRAM further includes an I/O circuit and a peripheral circuit between the I/O circuit and the DRAM unit, and the The input/output circuit does not have an input comparison circuit and an output potential conversion circuit.

在本發明的一實施例中,該記憶體系統另包含一實體層電路,其中該實體層電路包含一輸入/輸出實體層電路,以及該輸入/輸出實體層電路沒有一輸入比較電路和一輸出電位轉換電路。In an embodiment of the present invention, the memory system further includes a physical layer circuit, wherein the physical layer circuit includes an input/output physical layer circuit, and the input/output physical layer circuit does not have an input comparison circuit and an output Potential conversion circuit.

本發明的另一實施例提供一種動態隨機存取記憶體。該動態隨機存取記憶體包含一動態隨機存取記憶體單元、一感測放大器和一數據路徑。該動態隨機存取記憶體單元包含一存取電晶體和一儲存電容。該感測放大器通過一位元線耦接於該動態隨機存取記憶體單元。該數據路徑耦接於該感測放大器。在一高電位信號被寫入該儲存電容的過程中,在該數據路徑上的該高電位信號的電壓位準小於儲存在該儲存電容中的該高電位信號的電壓位準,且在該數據路徑上的該高電位信號的電壓位準是介於0.9V和0.5V之間。Another embodiment of the present invention provides a dynamic random access memory. The DRAM includes a DRAM unit, a sense amplifier and a data path. The DRAM unit includes an access transistor and a storage capacitor. The sense amplifier is coupled to the DRAM unit through a bit line. The data path is coupled to the sense amplifier. During the process of a high potential signal being written into the storage capacitor, the voltage level of the high potential signal on the data path is lower than the voltage level of the high potential signal stored in the storage capacitor, and during the data path The voltage level of the high potential signal on the path is between 0.9V and 0.5V.

在本發明的一實施例中,僅有在由一電子設備工程聯合委員會(Joint Electron Device Engineering Council, JEDEC)的雙倍數據速率記憶體規範所定義的一預定時間後,該高電位信號的電壓位準才會被儲存於該儲存電容。In one embodiment of the present invention, only after a predetermined time defined by the double data rate memory specification of the Joint Electron Device Engineering Council (JEDEC), the voltage of the high potential signal The level will be stored in the storage capacitor.

在本發明的一實施例中,該數據路徑包含一全域輸入/輸出路徑(global I/O path)和一數據線,以及在該全域輸入/輸出路徑上或在該數據線上的該高電位信號的電壓位準是介於0.7V和0.5V之間。In an embodiment of the present invention, the data path includes a global I/O path and a data line, and the high potential signal on the global I/O path or on the data line The voltage level is between 0.7V and 0.5V.

本發明的另一實施例提供一種動態隨機存取記憶體。該動態隨機存取記憶體包含一動態隨機存取記憶體單元、一感測放大器和一數據路徑。該動態隨機存取記憶體單元包含一存取電晶體和一儲存電容。該感測放大器通過一位元線耦接於該動態隨機存取記憶體單元。該數據路徑耦接於該感測放大器。在該數據路徑上對應一高電位信號的讀取數據的電壓位準高於在該數據路徑上對應另一高電位信號的寫入數據的電壓位準。Another embodiment of the present invention provides a dynamic random access memory. The DRAM includes a DRAM unit, a sense amplifier and a data path. The DRAM unit includes an access transistor and a storage capacitor. The sense amplifier is coupled to the DRAM unit through a bit line. The data path is coupled to the sense amplifier. The voltage level of read data corresponding to a high potential signal on the data path is higher than the voltage level of write data corresponding to another high potential signal on the data path.

在本發明的一實施例中,該寫入數據是儲存在該儲存電容,以及儲存在該儲存電容中的該寫入數據的一電壓位準高於在該數據路徑上的該寫入數據的電壓位準。In an embodiment of the present invention, the written data is stored in the storage capacitor, and a voltage level of the written data stored in the storage capacitor is higher than that of the written data on the data path voltage level.

在本發明的一實施例中,在該數據路徑上對應該高電位信號的讀取數據的電壓位準是介於1.2V和1.0V之間,以及在該數據路徑上對應該另一高電位信號的寫入數據的電壓位準是介於0.9V和0.5V之間。In an embodiment of the present invention, the voltage level of the read data corresponding to the high potential signal on the data path is between 1.2V and 1.0V, and the voltage level corresponding to the other high potential on the data path The voltage level of the write data of the signal is between 0.9V and 0.5V.

本發明的另一實施例提供一種動態隨機存取記憶體。該動態隨機存取記憶體包含一動態隨機存取記憶體單元、一感測放大器和一數據路徑。該動態隨機存取記憶體單元包含一存取電晶體和一儲存電容。該感測放大器通過一位元線耦接於該動態隨機存取記憶體單元。該數據路徑耦接於該感測放大器。在一讀取操作期間,一全域輸入/輸出路徑上或在一數據線上的一電壓振幅大於在一寫入操作期間,該全域輸入/輸出路徑上或該數據線上的一電壓振幅。Another embodiment of the present invention provides a dynamic random access memory. The DRAM includes a DRAM unit, a sense amplifier and a data path. The DRAM unit includes an access transistor and a storage capacitor. The sense amplifier is coupled to the DRAM unit through a bit line. The data path is coupled to the sense amplifier. During a read operation, a voltage amplitude on a global I/O path or on a data line is greater than a voltage amplitude on the global I/O path or on the data line during a write operation.

在本發明的一實施例中,在該讀取操作期間,該全域輸入/輸出路徑上或該數據線上的該電壓振幅是介於1.2V和1.0V之間,以及在該寫入操作期間,該全域輸入/輸出路徑上或該數據線上的該電壓振幅是介於0.8V和0.6V之間。In an embodiment of the present invention, during the read operation, the voltage amplitude on the global input/output path or the data line is between 1.2V and 1.0V, and during the write operation, The voltage amplitude on the global input/output path or the data line is between 0.8V and 0.6V.

在本發明的一實施例中,應用於該動態隨機存取記憶體操作的一控制信號和一地址信號的電壓振幅大於在該寫入操作期間,該全域輸入/輸出路徑上或該數據線上的該電壓振幅。In one embodiment of the present invention, a control signal and an address signal applied to the DRAM operation have a voltage amplitude greater than that on the global I/O path or on the data line during the write operation. the voltage amplitude.

本發明揭露一種具有維持存取架構的動態隨機存取記憶體(Dynamic Random Access Memory,DRAM),其中維持電壓源在該動態隨機存取記憶體單元所包含的存取電晶體關閉之前,電耦接於該動態隨機存取記憶體單元所包含的儲存電容,以及該維持電壓源所提供的電壓位準是高於應用於該動態隨機存取記憶體中的一常規高電位信號(即一信號“ONE”)電壓值,或低於應用於該動態隨機存取記憶體中的一常規低電位信號(即一信號“ZERO”)電壓值。又於該動態隨機存取記憶體進行其他特定操作時(例如自動預充電階段(auto-precharge phase),回復階段(RESTORE phase),刷新階段(refresh phase),以及預充電階段)將使該動態隨機存取記憶體單元中存取電晶體被開啟。因此,在該存取電晶體開啟期間,該維持電壓源將電耦接至該動態隨機存取記憶體單元的該儲存電容,所以即使在該存取電晶體關閉後仍有漏電流通過該存取電晶體,但該儲存電容所儲存的電荷仍可比現有的動態隨機存取記憶體的架構維持更長的一段時間。The present invention discloses a dynamic random access memory (Dynamic Random Access Memory, DRAM) with sustaining access architecture, wherein the sustaining voltage source is electrically coupled before the access transistors included in the dynamic random access memory unit are turned off. connected to the storage capacitor included in the dynamic random access memory unit, and the voltage level provided by the sustain voltage source is higher than a conventional high potential signal (i.e. a signal "ONE") voltage value, or lower than a conventional low potential signal (ie, a signal "ZERO") voltage value applied to the DRAM. When the DRAM performs other specific operations (such as auto-precharge phase, recovery phase (RESTORE phase), refresh phase (refresh phase, and pre-charge phase) will make the dynamic random access memory Access transistors in random access memory cells are turned on. Therefore, during the turn-on period of the access transistor, the sustain voltage source will be electrically coupled to the storage capacitor of the DRAM cell, so there is still leakage current through the memory even after the access transistor is turned off. However, the charge stored in the storage capacitor can still be maintained for a longer period of time than the existing DRAM architecture.

本發明的第一實施例:First embodiment of the present invention:

圖2是說明第一實施例的動態隨機存取記憶體單元在存取(讀取或寫入)操作期間的相關信號的波形的示意圖,其中該動態隨機存取記憶體單元可參照圖1A。如圖2所示,該動態隨機存取記憶體在一開始是處於一待機模式(standby mode),且字元線WL被偏壓在一待機電壓(-0.3V)以完全關閉存取電晶體11。在該第一實施例中,電壓VCCSA為1.2V,電壓VSS為0V,信號“ONE”(也就是一高電位信號)為1.2V,以及信號“ZERO” (也就是一低電位信號,且等於地端所具有的電位)為0V。另外,在該第一實施例中,位元線BL和位元線BLB上的電壓被均等在0.6V,也就是說位元線BL和位元線BLB上的電壓被均等在介於信號“ONE”(1.2V)和信號“ZERO”(0V)之間。FIG. 2 is a schematic diagram illustrating waveforms of related signals during an access (read or write) operation of the DRAM unit of the first embodiment, wherein the DRAM unit can refer to FIG. 1A . As shown in FIG. 2, the DRAM is in a standby mode at the beginning, and the word line WL is biased at a standby voltage (-0.3V) to completely turn off the access transistor 11. In the first embodiment, the voltage VCCSA is 1.2V, the voltage VSS is 0V, the signal "ONE" (that is, a high potential signal) is 1.2V, and the signal "ZERO" (that is, a low potential signal, equal to The potential of the ground terminal) is 0V. In addition, in the first embodiment, the voltages on the bit line BL and the bit line BLB are equalized at 0.6V, that is to say, the voltages on the bit line BL and the bit line BLB are equalized between the signal " ONE” (1.2V) and the signal “ZERO” (0V).

在一時間T0,字元線WL上的電壓將從待機電壓(-0.3V)提升至電壓VPP(2.7V)以開啟存取電晶體11,其中電壓VPP(2.7V)是遠大於電壓VCCSA(1.2V)和存取電晶體11的臨界電壓VT(0.8V)的總和,也就是說電壓VPP(2.7V)可為開啟的存取電晶體11提供足夠的驅動力以將信號“ONE”或信號“ZERO”傳送到位元線BL和位元線BLB。然後感測放大器20被啟動以放大位元線BL和位元線BLB上的信號直到位元線BL和位元線BLB上的信號被發展到一定大小。在一時間T1之後 ,可執行讀取操作(通過感測放大器20放大位元線BL和位元線BLB上從動態隨機存取記憶體單元所讀取的信號),或該寫入操作(外界寫入信號“ONE”或信號“ZERO”至感測放大器20以儲存正確的信號至該動態隨機存取記憶體單元的儲存電容12)。當然除了該讀取操作和該寫入操作外,其他動態隨機存取記憶體的操作也可在時間T1後執行。也就是說在時間T1到一時間T2之間,該動態隨機存取記憶體單元可以執行該存取操作,其中時間T1到時間T2之間的時間區間為一第一時間區間。At a time T0, the voltage on the word line WL will be raised from the standby voltage (-0.3V) to the voltage VPP (2.7V) to turn on the access transistor 11, wherein the voltage VPP (2.7V) is much higher than the voltage VCCSA ( 1.2V) and the threshold voltage VT (0.8V) of the access transistor 11, that is to say, the voltage VPP (2.7V) can provide sufficient driving force for the turned-on access transistor 11 to turn the signal "ONE" or Signal "ZERO" is transmitted to bit line BL and bit line BLB. Sense amplifier 20 is then enabled to amplify the signal on bit line BL and bit line BLB until the signal on bit line BL and bit line BLB is developed to a certain level. After a time T1, the read operation (the signal read from the DRAM cell on the bit line BL and the bit line BLB is amplified by the sense amplifier 20), or the write operation (external Writing the signal “ONE” or the signal “ZERO” to the sense amplifier 20 stores the correct signal to the storage capacitor 12 of the DRAM cell). Of course, besides the read operation and the write operation, other DRAM operations can also be performed after the time T1. That is to say, the DRAM unit can perform the access operation between the time T1 and a time T2, wherein the time interval between the time T1 and the time T2 is a first time interval.

在時間T2後的該回復階段,電壓VPP持續從字元線WL載入至存取電晶體11的閘極的電介質材料以合理地縮短該回復階段的時間。在該回復階段,一第一維持電壓源電耦接於該動態隨機存取記憶體單元的儲存電容12,其中該第一維持電壓源可提供高於電壓VCCSA(1.2V)或信號“ONE”(1.2V)的第一電壓VCCSA+M1,該第一維持電壓源可通過開啟如圖3A所示的開關13電連接或耦接感測放大器20以耦接於儲存電容12,以及圖3A是說明感測放大器20選擇性地耦接於該第一維持電壓源的示意圖。另外,如圖3A所示,在該回復階段,通過關閉開關14使一常規電壓源(VCCSA)斷開感測放大器20,以及通過開啟開關13使該第一維持電壓源(VCCSA+M1)連接該感測放大器 20。另外,電壓M1可以是正數以使一第一電壓VCCSA+M1高於電壓VCCSA。在本發明的一實施例中,電壓M1可介於電壓VCCSA(1.2V)的1/3和電壓VCCSA(1.2V)的2/3之間,例如0.6V。例如,當儲存電容12最初是儲存信號“ONE”(1.2V)時,在該回復階段,第一電壓VCCSA+M1(1.2V+0.6V)是從該第一維持電壓源通過感測放大器20傳送並儲存至儲存電容12。也就是說如圖2所示,在一時間T3關閉存取電晶體11前(其中當關閉存取電晶體11時,字元線WL上的電壓將從電壓VPP逐漸被下拉至該待機電壓(-0.3V)),儲存電容12可由該第一維持電壓源提供高於信號“ONE”(VCCSA)的第一電壓VCCSA+M1。因此,即使在關閉存取電晶體11後仍有漏電流通過存取電晶體11,但儲存電容12所儲存的電荷仍可比該現有的動態隨機存取記憶體的架構維持更長的一段時間。在本發明的一實施例中,在關閉存取電晶體11後或在該回復階段後,該第一維持電壓源(VCCSA+M1)可斷開感測放大器20。另外,在關閉存取電晶體11後或在該回復階段後,位元線BL和位元線BLB可耦接於用以提供一電壓VBl的一位元線電壓源,所以位元線BL和位元線BLB上的電壓可在關閉存取電晶體11後或在該回復階段後被重置於電壓VBl(如圖2所示)。During the recovery phase after time T2, the voltage VPP is continuously loaded from the word line WL to the dielectric material of the gate of the access transistor 11 to reasonably shorten the recovery phase time. In the recovery phase, a first sustaining voltage source is electrically coupled to the storage capacitor 12 of the DRAM unit, wherein the first sustaining voltage source can provide a voltage higher than VCCSA (1.2V) or the signal “ONE” (1.2V) of the first voltage VCCSA+M1, the first sustaining voltage source can be electrically connected or coupled to the sense amplifier 20 to be coupled to the storage capacitor 12 by turning on the switch 13 shown in FIG. 3A , and FIG. 3A is A schematic diagram illustrating that the sense amplifier 20 is selectively coupled to the first sustain voltage source. Additionally, as shown in FIG. 3A, during the recovery phase, a normal voltage source (VCCSA) is disconnected from the sense amplifier 20 by closing switch 14, and the first sustaining voltage source (VCCSA+M1) is connected by opening switch 13. The sense amplifier 20 . In addition, the voltage M1 can be a positive number so that a first voltage VCCSA+M1 is higher than the voltage VCCSA. In an embodiment of the present invention, the voltage M1 may be between 1/3 of the voltage VCCSA (1.2V) and 2/3 of the voltage VCCSA (1.2V), such as 0.6V. For example, when the storage capacitor 12 initially stores the signal “ONE” (1.2V), in the recovery phase, the first voltage VCCSA+M1 (1.2V+0.6V) is passed from the first sustain voltage source through the sense amplifier 20 sent and stored in the storage capacitor 12. That is to say, as shown in FIG. 2, before the access transistor 11 is turned off at a time T3 (wherein when the access transistor 11 is turned off, the voltage on the word line WL will be gradually pulled down from the voltage VPP to the standby voltage ( −0.3V)), the storage capacitor 12 can be supplied with a first voltage VCCSA+M1 higher than the signal “ONE” (VCCSA) by the first sustaining voltage source. Therefore, even though there is still leakage current through the access transistor 11 after the access transistor 11 is turned off, the charge stored in the storage capacitor 12 can still be maintained for a longer period of time than the conventional DRAM architecture. In one embodiment of the present invention, the first sustain voltage source (VCCSA+M1) may turn off the sense amplifier 20 after turning off the access transistor 11 or after the recovery phase. In addition, after the access transistor 11 is turned off or after the recovery phase, the bit line BL and the bit line BLB can be coupled to a bit line voltage source for providing a voltage VB1, so the bit line BL and the bit line The voltage on bit line BLB can be reset to voltage VB1 after switching off access transistor 11 or after the recovery phase (as shown in FIG. 2 ).

進一步,在本發明的另一實施例中,在該回復階段,一第二維持電壓源耦接該動態隨機存取記憶體單元的儲存電容12。如圖3B所示,該第二維持電壓源可通過開啟一開關23提供低於電壓VSS(0V)或信號“ZERO”(0V)的一第二電壓VSS-M2至感測放大器20,其中圖3B是說明感測放大器20選擇性地耦接於該第二維持電壓源的示意圖,以及電壓M2為一正電壓。在本發明的一實施例中,電壓M2可介於0.4V和0.8V之間,例如0.6V。另外,當該第二維持電壓源在該回復階段耦接於感測放大器20時,例如通過關閉開關24以使感測放大器20不能接收電壓VSS。當儲存電容12最初是儲存信號“ZERO”時,在該回復階段,第二電壓VSS-M2(-0.6V)是從該第二維持電壓源通過感測放大器20傳送並儲存至儲存電容12。也就是說如圖2所示,在時間T3後完全關閉存取電晶體11前(其中當關閉存取電晶體11時,字元線WL上的電壓將從電壓VPP逐漸被下拉至字元線WL處於該待機模式的待機電壓),儲存電容12可由該第二維持電壓源提供第二電壓VSS-M2(也就是說在時間T3關閉存取電晶體11前,儲存電容12是儲存第二電壓VSS-M2),其中第二電壓VSS-M2低於信號“ZERO”(也就是該常規低電位信號)。在本發明的一實施例中,在關閉存取電晶體11後或在該回復階段後,該第二維持電壓源可斷開感測放大器20。Further, in another embodiment of the present invention, in the recovery phase, a second sustain voltage source is coupled to the storage capacitor 12 of the DRAM unit. As shown in FIG. 3B, the second sustaining voltage source can provide a second voltage VSS-M2 lower than the voltage VSS (0V) or the signal “ZERO” (0V) to the sense amplifier 20 by turning on a switch 23, wherein FIG. 3B is a schematic diagram illustrating that the sense amplifier 20 is selectively coupled to the second sustain voltage source, and the voltage M2 is a positive voltage. In an embodiment of the present invention, the voltage M2 may be between 0.4V and 0.8V, such as 0.6V. In addition, when the second sustaining voltage source is coupled to the sense amplifier 20 during the recovery phase, the sense amplifier 20 cannot receive the voltage VSS, for example by closing the switch 24 . When the storage capacitor 12 initially stores the signal “ZERO”, in the recovery phase, the second voltage VSS-M2 (−0.6V) is transmitted from the second sustain voltage source through the sense amplifier 20 and stored to the storage capacitor 12 . That is to say, as shown in FIG. 2, before the access transistor 11 is completely turned off after time T3 (wherein when the access transistor 11 is turned off, the voltage on the word line WL will be gradually pulled down from the voltage VPP to the word line WL is at the standby voltage of the standby mode), the storage capacitor 12 can be provided with the second voltage VSS-M2 by the second sustaining voltage source (that is to say, before the time T3 closes the access transistor 11, the storage capacitor 12 stores the second voltage VSS-M2), wherein the second voltage VSS-M2 is lower than the signal “ZERO” (that is, the normal low level signal). In an embodiment of the present invention, the second sustain voltage source may turn off the sense amplifier 20 after turning off the access transistor 11 or after the recovery phase.

當然,在本發明的另一實施例中,在該回復階段,該第一維持電壓源和該第二維持電壓源都耦接於該動態隨機存取記憶體單元的儲存電容12。因此,在字元線WL上的電壓從電壓VPP被下拉至字元線WL處於該待機模式的待機電壓之前,當儲存電容12最初是儲存信號“ONE”時,第一電壓VCCSA+M1(1.2V+0.6V)儲存至儲存電容12;或當儲存電容12最初是儲存信號“ZERO”時,第二電壓VSS-M2(-0.6V)儲存至儲存電容12。Of course, in another embodiment of the present invention, in the recovery phase, both the first sustain voltage source and the second sustain voltage source are coupled to the storage capacitor 12 of the DRAM unit. Therefore, before the voltage on the word line WL is pulled down from the voltage VPP to the standby voltage where the word line WL is in the standby mode, when the storage capacitor 12 initially stores the signal “ONE”, the first voltage VCCSA+M1 (1.2 V+0.6V) is stored in the storage capacitor 12; or when the storage capacitor 12 initially stores the signal “ZERO”, the second voltage VSS-M2 (−0.6V) is stored in the storage capacitor 12 .

本發明的第二實施例:Second embodiment of the present invention:

為了減少漏電流以保持儲存電容12所儲存的電荷不會通過存取電晶體11洩漏出,通常存取電晶體11被設計成具有非常高的臨界電壓。當電壓VCCSA降至0.6V時,在該動態隨機存取記憶體的設計中,7奈米或5奈米製程的三閘極(Tri-gate)電晶體或鰭式場效電晶體將被應用至該動態隨機存取記憶體單元的週邊電路,其中應用至該週邊電路的電晶體的臨界電壓將會對應地縮小,例如應用至該週邊電路的電晶體的臨界電壓被降至0.3V。然而在本發明的第二實施例中,存取電晶體11的臨界電壓可根據上述減少漏電流的概念被有意地提高至0.5V-0.6V。因此,從儲存電容12流出的漏電流可被大幅地減少至少3~4個數量級(如果用於衡量漏電流的S因數為68mV/數量級(decade)且存取電晶體11的臨界電壓被提高至0.6V,則從儲存電容12流出的漏電流將比應用至該週邊電路的Tri-gate電晶體的漏電流低4個數量級;如果存取電晶體11的臨界電壓提高至0.5V,則從儲存電容12流出的漏電流將比應用至該週邊電路的Tri-gate電晶體的漏電流降低2~3個數量級)。因此,在本發明的第二實施例中,存取電晶體11的臨界電壓將被提高到接近電壓VCCSA或至少超過0.6V的80%。另外,在本發明的第二實施例中,存取電晶體11(例如鰭式場效電晶體或三閘極(Tri-gate)電晶體)的閘極的電介質材料的厚度仍然和應用至該週邊電路的電晶體的閘極的電介質材料的厚度相同或幾乎相同,所以存取電晶體11使用Tri-gate結構的高性能的優點仍可被維持住。In order to reduce the leakage current and keep the charge stored in the storage capacitor 12 from leaking out through the access transistor 11 , the access transistor 11 is generally designed to have a very high threshold voltage. When the voltage VCCSA drops to 0.6V, in the design of the dynamic random access memory, the 7nm or 5nm process tri-gate (Tri-gate) transistor or fin field effect transistor will be applied to The peripheral circuit of the DRAM unit, wherein the threshold voltage of the transistor applied to the peripheral circuit will be correspondingly reduced, for example, the threshold voltage of the transistor applied to the peripheral circuit is reduced to 0.3V. However, in the second embodiment of the present invention, the threshold voltage of the access transistor 11 can be intentionally increased to 0.5V-0.6V according to the above concept of reducing the leakage current. Therefore, the leakage current flowing from the storage capacitor 12 can be greatly reduced by at least 3 to 4 orders of magnitude (if the S factor used to measure the leakage current is 68mV/decade and the threshold voltage of the access transistor 11 is increased to 0.6V, the leakage current flowing from the storage capacitor 12 will be 4 orders of magnitude lower than the leakage current of the Tri-gate transistor applied to the peripheral circuit; if the critical voltage of the access transistor 11 is increased to 0.5V, the storage The leakage current flowing out of the capacitor 12 will be 2~3 orders of magnitude lower than the leakage current of the Tri-gate transistor applied to the peripheral circuit). Therefore, in the second embodiment of the present invention, the threshold voltage of the access transistor 11 will be increased to close to the voltage VCCSA or at least exceed 80% of 0.6V. In addition, in the second embodiment of the present invention, the thickness of the dielectric material of the gate of the access transistor 11 (such as a fin field effect transistor or a tri-gate transistor) is still applied to the peripheral The dielectric materials of the gates of the transistors of the circuit have the same or almost the same thickness, so the high performance advantage of using the Tri-gate structure for the access transistor 11 can still be maintained.

圖4是說明該第二實施例所公開的該動態隨機存取記憶體單元在存取(讀出或寫入)操作期間的相關信號的波形的示意圖,其中在該第二實施例中,信號“ONE”為0.6V以及信號“ZERO”為0V(也就是該地端所具有的電位)。在時間後T2在該回復階段,一第一維持電壓源耦接於該動態隨機存取記憶體單元的儲存電容12。該第一維持電壓源可提供高於電壓VCCSA(0.6V)或信號“ONE”(0.6V)的一第一電壓VCCSA+K,其中該第一維持電壓源可通過電連接或耦接感測放大器20以耦接儲存電容12,且電壓K為一正電壓。在本發明的一實施例中,電壓K可介於電壓VCCSA(0.6V)的1/3和電壓VCCSA(0.6V)的2/3之間,例如0.3V或0.4V。另外,在本發明的另一實施例中,電壓K也可以是0.05V~0.4V之間的任一值,如0.05V, 0.1V, 0.2V, 0.3 V或0.4V等。因此,當儲存電容12最初是儲存信號“ONE”(0.6V)時,在該回復階段,第一電壓VCCSA+K(0.6V+0.4V)是提供給儲存電容12。也就是說如圖4所示,在時間T3完全關閉存取電晶體11前(其中當關閉存取電晶體11時,字元線WL上的電壓將從電壓VPP被下拉至字元線WL處於該待機模式的待機電壓),儲存電容12可由該第一維持電壓源提供第一電壓VCCSA+K,其中第一電壓VCCSA+K高於信號“ONE”(0.6V)。因此,當儲存電容12最初是儲存信號“ONE”(0.6V)時,在字元線WL上的電壓被上拉至電壓VPP後且在被下拉至該待機電壓前,第一電壓VCCSA+K(1V)可被儲存至儲存電容12。另外,在本發明的一實施例中,在該回復階段後,位元線BL和位元線BLB可耦接於用以提供電壓VBl的該位元線電壓源,所以位元線BL和位元線BLB上的電壓位準將被重置於電壓VBl(如圖4所示)。4 is a schematic diagram illustrating waveforms of related signals during the access (read or write) operation of the DRAM unit disclosed in the second embodiment, wherein in the second embodiment, the signal "ONE" is 0.6V and the signal "ZERO" is 0V (that is, the potential of the ground terminal). After time T2 in the recovery phase, a first sustain voltage source is coupled to the storage capacitor 12 of the DRAM cell. The first sustain voltage source can provide a first voltage VCCSA+K higher than the voltage VCCSA (0.6V) or the signal “ONE” (0.6V), wherein the first sustain voltage source can be sensed by an electrical connection or coupling The amplifier 20 is coupled to the storage capacitor 12, and the voltage K is a positive voltage. In an embodiment of the present invention, the voltage K may be between 1/3 of the voltage VCCSA (0.6V) and 2/3 of the voltage VCCSA (0.6V), such as 0.3V or 0.4V. In addition, in another embodiment of the present invention, the voltage K can also be any value between 0.05V~0.4V, such as 0.05V, 0.1V, 0.2V, 0.3V or 0.4V. Therefore, when the storage capacitor 12 initially stores the signal “ONE” (0.6V), the first voltage VCCSA+K (0.6V+0.4V) is provided to the storage capacitor 12 during the recovery phase. That is to say, as shown in FIG. 4 , before the access transistor 11 is completely turned off at time T3 (wherein when the access transistor 11 is turned off, the voltage on the word line WL will be pulled down from the voltage VPP to the word line WL at The standby voltage of the standby mode), the storage capacitor 12 can be provided with the first voltage VCCSA+K by the first sustaining voltage source, wherein the first voltage VCCSA+K is higher than the signal “ONE” (0.6V). Therefore, when the storage capacitor 12 initially stores the signal “ONE” (0.6V), after the voltage on the word line WL is pulled up to the voltage VPP and before being pulled down to the standby voltage, the first voltage VCCSA+K (1V) can be stored in the storage capacitor 12 . In addition, in an embodiment of the present invention, after the recovery phase, the bit line BL and the bit line BLB can be coupled to the bit line voltage source for providing the voltage VB1, so the bit line BL and the bit line The voltage level on the cell line BLB will be reset to the voltage VB1 (as shown in FIG. 4 ).

另外,如前面所述,當儲存電容12最初是儲存信號“ZERO”時,在字元線WL上的電壓被上拉至電壓VPP後且在被下拉至該待機電壓前,該第二維持電壓源所提供的第二電壓可被儲存至儲存電容12,其中該第二維持電壓源所提供的第二電壓是低於儲存信號“ZERO”,例如-0.4V。In addition, as mentioned above, when the storage capacitor 12 initially stores the signal “ZERO”, after the voltage on the word line WL is pulled up to the voltage VPP and before being pulled down to the standby voltage, the second sustain voltage The second voltage provided by the source can be stored in the storage capacitor 12 , wherein the second voltage provided by the second sustain voltage source is lower than the storage signal “ZERO”, for example −0.4V.

本發明的第三實施例:The third embodiment of the present invention:

圖5是本發明的第三實施例所公開的用於預充電(precharge)操作的電路和功能方塊的示意圖,其中在該第三實施例中,電壓VCCSA為0.6V以及電壓VSS為0V(也就是該地端的電位)。在該預充電操作中,所有在儲存區5(Sec 5)中連接被選擇的字元線的動態隨機存取記憶體單元(之後稱為第一動態隨機存取記憶體單元)將被預充電,以及在其他在儲存區(例如Sec4,Sec6等)連接未被選擇的字元線的動態隨機存取記憶體單元(之後稱為第二動態隨機存取記憶體單元)將處於空閒狀態(idle state)。5 is a schematic diagram of a circuit and functional blocks for a precharge operation disclosed in a third embodiment of the present invention, wherein in the third embodiment, the voltage VCCSA is 0.6V and the voltage VSS is 0V (also is the potential of the terminal). In this precharge operation, all the DRAM cells connected to the selected word line in the storage area 5 (Sec 5) (hereinafter called the first DRAM cell) will be precharged , and other DRAM units (hereinafter referred to as second DRAM units) connected to unselected word lines in the storage area (such as Sec4, Sec6, etc.) will be in an idle state (idle state).

感測放大器41、42(耦接於該第一動態隨機存取記憶體單元)將根據一預充電脈衝信號30連接一第三維持電壓源,其中該第三維持電壓源可提供一第三電壓VHSA(0.6V+K),所以一較強的汲源極電場可以加速恢復該第一動態隨機存取記憶體單元在該預充電操作時的信號。第三電壓VHSA高於電壓VCCSA(0.6V)約幾百毫伏(mV),例如 0.3V或0.4V。另外,在被選擇的字元線關閉之前(也就是該第一動態隨機存取記憶體單元內的存取電晶體完全關閉之前),高於信號“ONE” 的第三電壓VHSA(0.6V+0.4V)然後可以儲存在儲存電容中。另一方面,因為耦接於該第二動態隨機存取記憶體單元的感測放大器沒有接收到預充電脈衝信號30,所以仍然耦合到電壓 VCCSA。The sense amplifiers 41, 42 (coupled to the first DRAM unit) are connected to a third sustain voltage source according to a precharge pulse signal 30, wherein the third sustain voltage source can provide a third voltage VHSA (0.6V+K), so a stronger drain-to-source electric field can speed up recovery of the signal of the first DRAM unit during the pre-charge operation. The third voltage VHSA is higher than the voltage VCCSA (0.6V) by about several hundred millivolts (mV), such as 0.3V or 0.4V. In addition, before the selected word line is turned off (that is, before the access transistor in the first DRAM unit is completely turned off), the third voltage VHSA (0.6V+ 0.4V) can then be stored in the storage capacitor. On the other hand, because the sense amplifier coupled to the second DRAM cell does not receive the pre-charge pulse signal 30, it is still coupled to the voltage VCCSA.

另外,請參照圖6,圖6是說明耦接於該第一動態隨機存取記憶體單元的感測放大器在該預充電操作中的示意圖,其中用於輔助說明圖6的符號的說明如下:In addition, please refer to FIG. 6. FIG. 6 is a schematic diagram illustrating the sense amplifier coupled to the first DRAM unit in the precharge operation, wherein the symbols used to assist in explaining FIG. 6 are as follows:

LSLP ∶連接該第一動態隨機存取記憶體單元的感測放大器中用於接收高電壓的節點;LSLP: a node connected to the sense amplifier of the first DRAM unit for receiving high voltage;

LSLN ∶連接該第一動態隨機存取記憶體單元的感測放大器中用於接收低電壓的節點;LSLN: a node connected to the sense amplifier of the first DRAM unit for receiving a low voltage;

Vpl ∶ 電路板上的共同電壓;Vpl: Common voltage on the circuit board;

SN ∶ 儲存節點;SN: storage node;

WL ∶ 字元線;WL: word line;

BL∶ 位元線;BL: bit line;

Vsg1,2 ∶連接該第一動態隨機存取記憶體單元的感測放大器中的P型金氧半電晶體P1、P2的源閘極電壓;Vsg1,2: connected to the source gate voltage of the P-type metal oxide semiconductor transistor P1, P2 in the sense amplifier of the first DRAM unit;

Vgs3,4 ∶連接該第一動態隨機存取記憶體單元的感測放大器中的N型金氧半電晶體N3、N4的閘源極電壓;Vgs3,4: connected to the gate source voltage of the N-type metal oxide semiconductor transistor N3, N4 in the sense amplifier of the first DRAM unit;

Vsg5,6 ∶連接該第一動態隨機存取記憶體單元的感測放大器中的P型金氧半電晶體P5、P6的源閘極電壓;Vsg5,6: connected to the source gate voltage of the P-type metal oxide semiconductor transistor P5, P6 in the sense amplifier of the first DRAM unit;

Vgs7,8 ∶連接該第一動態隨機存取記憶體單元的感測放大器中的N型金氧半電晶體N7、N8的閘源極電壓。Vgs7,8 : connected to the gate-source voltage of the N-type metal-oxide-semiconductor transistors N7 and N8 in the sense amplifier of the first DRAM unit.

請再參照圖6,字元線WL100耦接於多個儲存節點,例如儲存節點SN1、SN9。當信號“ONE”(0.6V)儲存在連接字元線WL100的儲存節點SN1時,且在預充電命令被開啟以及在字元線WL100被選擇(也就是字元線WL100開啟)後,節點LSLP上的電壓從0.6V被提升到第三電壓VHSA(1.0V)以及節點LSLN上的電壓仍維持0V。因此,P型金氧半電晶體P1關閉以及源閘極電壓Vsg1為0V。同樣地,P型金氧半電晶體P2開啟以及源閘極電壓Vsg2從0.6V被提升至1.0V,以及1.0V的電壓通過位元線BL1對儲存節點SN1完全充電。此時,N型金氧半電晶體N3開啟以及閘源極電壓Vgs3也從0.6V被提升至1.0V。另外,N型金氧半電晶體N4關閉以及閘源極電壓Vgs4為0V。Referring to FIG. 6 again, the word line WL100 is coupled to a plurality of storage nodes, such as storage nodes SN1 and SN9 . When the signal "ONE" (0.6V) is stored in the storage node SN1 connected to the word line WL100, and after the precharge command is turned on and the word line WL100 is selected (that is, the word line WL100 is turned on), the node LSLP The voltage on the node LSLN is boosted from 0.6V to the third voltage VHSA (1.0V) and the voltage on the node LSLN remains at 0V. Therefore, the PMOS transistor P1 is turned off and the source-gate voltage Vsg1 is 0V. Similarly, the PMOS transistor P2 is turned on and the source-gate voltage Vsg2 is raised from 0.6V to 1.0V, and the voltage of 1.0V is fully charged to the storage node SN1 through the bit line BL1. At this time, the NMOS transistor N3 is turned on and the gate-source voltage Vgs3 is also increased from 0.6V to 1.0V. In addition, the NMOS transistor N4 is turned off and the gate-source voltage Vgs4 is 0V.

當信號“ZERO”(0V)儲存在連接字元線WL100的儲存節點SN9時,且在該預充電命令被開啟以及在字元線WL100被選擇後,節點LSLP上的電壓從0.6V被提升到第三電壓VHSA(1.0V)以及節點LSLN上的電壓仍維持0V。因此,P型金氧半電晶體P5開啟以及源閘極電壓Vsg5從0.6V被提升至1.0V。同樣地,P型金氧半電晶體P6關閉以及源閘極電壓Vsg6為0V。此時,N型金氧半電晶體N7關閉以及閘源極電壓Vgs7為0V。另外,N型金氧半電晶體N8開啟以及閘源極電壓Vgs8從0.6V被提升至1.0V,以及儲存節點SN9的電壓通過位元線BL9被強力地恢復至0V。當然,如前面所述,在該預充電操作中,當圖6所示的儲存電容最初是儲存信號“ZERO”時,節點LSLN可接收其他維持電壓源所提供的一電壓VLSN(0V-K),其中電壓VLSN是低於信號“ZERO”,以及在本發明的第三實施例中,電壓VLSN可為-0.4V。然後,在該預充電操作中,儲存節點SN9的電壓通過位元線BL9被強力地恢復至-0.4V。When the signal "ZERO" (0V) is stored at the storage node SN9 connected to the word line WL100, and after the precharge command is turned on and the word line WL100 is selected, the voltage on the node LSLP is raised from 0.6V to The third voltage VHSA (1.0V) and the voltage on the node LSLN still maintain 0V. Therefore, the PMOS transistor P5 is turned on and the source-gate voltage Vsg5 is raised from 0.6V to 1.0V. Similarly, the P-type MOSFET P6 is turned off and the source-gate voltage Vsg6 is 0V. At this time, the NMOS transistor N7 is turned off and the gate-source voltage Vgs7 is 0V. In addition, the NMOS transistor N8 is turned on and the gate-source voltage Vgs8 is raised from 0.6V to 1.0V, and the voltage of the storage node SN9 is strongly restored to 0V through the bit line BL9. Of course, as mentioned above, in the precharge operation, when the storage capacitor shown in FIG. 6 initially stores the signal “ZERO”, the node LSLN can receive a voltage VLSN(0V-K) provided by other sustaining voltage sources. , wherein the voltage VLSN is lower than the signal “ZERO”, and in the third embodiment of the present invention, the voltage VLSN may be -0.4V. Then, in this precharge operation, the voltage of the storage node SN9 is strongly restored to -0.4V through the bit line BL9.

本發明的第The present invention's first Four 實施例Example :

在本發明的第四實施例中,如圖7所示,在時間T0後,字元線WL上的電壓上升以開啟該動態隨機存取記憶體單元的存取電晶體11。然後,在該動態隨機存取記憶體單元的存取(讀出或寫入)期間,執行啟動命令ACM,以及在啟動命令ACM執行期間,通過關閉如圖3A所示的開關14和開啟開關13以使提供電壓VCCSA+ΔN的電壓源連接感測放大器20以降低時間間隔tRCD,其中時間間隔tRCD(由電子設備工程聯合委員會(Joint Electron Device Engineering Council, JEDEC)的雙倍數據速率記憶體規範所定義),以及電壓VCCSA+ΔN略高於電壓 VCCSA。因此,在時間T1和時間T2之間(也就是說該存取操作期間),在啟動命令ACM執行期間,位元線BL上的電壓至少會泵送(或踢擊)到電壓VCCSA+ΔN。這種泵送(或踢擊)位元線BL上的電壓可稱為啟動踢擊(active kick),且該啟動踢擊將加速信號感測。結束執行啟動命令ACM或該啟動踢擊後,在隨後的存取(讀出或寫入)期間,電壓VCCSA連接感測放大器20,然後位元線BL上的電壓將回歸到電壓VCCSA。同理,在時間T2後的該恢復階段(或該預充電階段),該第一維持電壓源(或提供高於電壓VCCSA 的不同維持電壓的電壓源)再次耦接於該動態隨機存取記憶體單元的儲存電容12。也就是說在該恢復階段(或該預充電階段),通過關閉如圖3A所示的開關14和開啟開關13以使提供電壓VCCSA的電壓源斷開感測放大器20,以及使該第一維持電壓源(提供第一電壓VCCSA+M1)連接感測放大器20。此時,位元線BL上的電壓至少會被泵送(或踢擊)到第一電壓VCCSA+M1。這種泵送(或踢擊)位元線BL上的電壓可稱為恢復踢擊(restore kick)。如此,在字元線WL上的電壓被下拉至完全關閉該動態隨機存取記憶體單元的存取電晶體11之前,高於信號“ONE”(電壓VCCSA)的第一電壓VCCSA+M1被提供給該動態隨機存取記憶體單元的儲存電容12,所以即使在關閉該動態隨機存取記憶體單元的存取電晶體11後仍有漏電流通過存取電晶體11,該動態隨機存取記憶體單元的儲存電容12所儲存的電荷仍可比該現有的動態隨機存取記憶體的架構維持更長的一段時間。In the fourth embodiment of the present invention, as shown in FIG. 7, after time T0, the voltage on the word line WL rises to turn on the access transistor 11 of the DRAM cell. Then, during the access (reading or writing) of the DRAM unit, the activation command ACM is executed, and during the execution of the activation command ACM, by closing the switch 14 and opening the switch 13 as shown in FIG. 3A Connecting the voltage source providing the voltage VCCSA+ΔN to the sense amplifier 20 reduces the time interval tRCD, where the time interval tRCD (defined by the Double Data Rate memory specification of the Joint Electron Device Engineering Council (JEDEC) Definition), and the voltage VCCSA+ΔN is slightly higher than the voltage VCCSA. Therefore, between time T1 and time T2 (that is to say during the access operation), the voltage on the bit line BL will be pumped (or kicked) at least to the voltage VCCSA+ΔN during the execution of the enable command ACM. This pumping (or kicking) of the voltage on the bit line BL may be referred to as an active kick, and the active kick will speed up signal sensing. After executing the enable command ACM or the enable kick, during the subsequent access (read or write), the voltage VCCSA is connected to the sense amplifier 20, and then the voltage on the bit line BL will return to the voltage VCCSA. Similarly, in the recovery phase (or the pre-charging phase) after time T2, the first sustaining voltage source (or a voltage source providing a different sustaining voltage higher than the voltage VCCSA) is coupled to the DRAM again The storage capacitor 12 of the body unit. That is to say, in the recovery phase (or the pre-charge phase), by closing the switch 14 and opening the switch 13 as shown in FIG. A voltage source (providing a first voltage VCCSA+M1 ) is connected to the sense amplifier 20 . At this time, the voltage on the bit line BL will be pumped (or kicked) at least to the first voltage VCCSA+M1. This pumping (or kicking) of the voltage on the bit line BL may be referred to as a restore kick. Thus, before the voltage on the word line WL is pulled down to completely turn off the access transistor 11 of the DRAM cell, the first voltage VCCSA+M1 higher than the signal “ONE” (voltage VCCSA) is provided For the storage capacitor 12 of the DRAM unit, so even after the access transistor 11 of the DRAM unit is turned off, there is still leakage current through the access transistor 11, the DRAM The charge stored in the storage capacitor 12 of the cell can still be maintained for a longer period of time than the conventional DRAM architecture.

在本發明的一實施例中,應用在該啟動踢擊的電壓VCCSA+ΔN是低於應用在該恢復踢擊的第一電壓VCCSA+M1。在本發明的另一實施例中,應用在該啟動踢擊的電壓VCCSA+ΔN和應用在該恢復踢擊的第一電壓VCCSA+M1相同或實質上相同。電壓VCCSA+ΔN和第一電壓VCCSA+M1可以分別由兩個不同的電壓源產生,又或者應用在該啟動踢擊的電壓VCCSA+ΔN也可以由該第一維持電壓源產生,但調整連接該第一維持電壓源到位元線BL 的期間以使位元線BL上的電壓被泵送(或踢擊)到電壓VCCSA+ΔN,而不是被泵送(或踢擊)到第一電壓VCCSA+M1。當然,在本發明中,可由該動態隨機存取記憶體內部產生或轉換第一電壓VCCSA+M1、電壓VCCSA+ΔN以及電壓VCCSA,或由該動態隨機存取記憶體外部的其他電壓源提供或轉換第一電壓VCCSA+M1、電壓VCCSA+ΔN以及電壓VCCSA。另外,在該啟動踢擊期間,位元線BL上的電壓可通過一個自舉電路(bootstrap circuit)泵送(或踢擊)到電壓VCCSA+ΔN,其中該自舉電路中的一個電容是耦接於位元線BL。無論是上述電壓源還是該自舉電路都可視為充電源,所以位元線BL上的電壓可被該充電源泵送(或踢擊)到電壓VCCSA+ΔN。In an embodiment of the present invention, the voltage VCCSA+ΔN applied to the start-up kick is lower than the first voltage VCCSA+M1 applied to the recovery kick. In another embodiment of the present invention, the voltage VCCSA+ΔN applied to the start-up kick is the same or substantially the same as the first voltage VCCSA+M1 applied to the recovery kick. The voltage VCCSA+ΔN and the first voltage VCCSA+M1 can be generated by two different voltage sources respectively, or the voltage VCCSA+ΔN applied to the starting kick can also be generated by the first sustaining voltage source, but the adjustment and connection of the The duration of the first sustain voltage source to the bit line BL so that the voltage on the bit line BL is pumped (or kicked) to the voltage VCCSA+ΔN instead of being pumped (or kicked) to the first voltage VCCSA+ M1. Certainly, in the present invention, the first voltage VCCSA+M1, the voltage VCCSA+ΔN, and the voltage VCCSA can be generated or converted inside the DRAM, or provided by other voltage sources outside the DRAM or The first voltage VCCSA+M1, the voltage VCCSA+ΔN, and the voltage VCCSA are converted. Additionally, during the start-up kick, the voltage on bit line BL can be pumped (or kicked) to the voltage VCCSA+ΔN by a bootstrap circuit in which a capacitor is coupled Connected to the bit line BL. Both the above-mentioned voltage source and the bootstrap circuit can be regarded as the charging source, so the voltage on the bit line BL can be pumped (or kicked) by the charging source to the voltage VCCSA+ΔN.

本發明的第五實施例Fifth Embodiment of the Invention :

圖8A是本發明的第五實施例所公開的動態隨機存取記憶體單元在操作期間的相關電壓的波形的示意圖。類似於圖7所示的該第四實施例,在時間T1和時間T2之間,執行啟動命令ACM,以及在啟動命令ACM執行期間,該第一維持電壓源(提供第一電壓VCCSA+M1)連接感測放大器20。因此,在啟動命令ACM執行期間,位元線BL上的電壓至少會被泵送(或踢擊(kick up))到第一電壓VCCSA+M1。結束執行啟動命令ACM後,電壓VCCSA連接感測放大器20,然後位元線BL上的電壓將回歸到電壓VCCSA。在啟動命令ACM後,在時間T2前可執行一(或多)讀取命令RC,以及在讀取命令RC執行期間,該第一維持電壓源(提供第一電壓VCCSA+M1)再次連接感測放大器20。因此,在讀取命令RC執行期間,位元線BL上的電壓至少會被泵送(或踢擊)到第一電壓VCCSA+M1。結束執行讀取命令RC後,通過開啟如圖3A所示的開關14和關閉開關13以使電壓VCCSA連接感測放大器20,然後位元線BL上的電壓將回歸到電壓VCCSA。在讀取命令RC執行期間對位元線BL的這種泵送(或踢擊)將改善信號發展時間(signal development time)。例如,在該第五實施例中,電壓VCCSA為1.1V以及M1為0.2V,則在讀取命令RC執行期間,具有該泵送(或踢擊)的信號發展時間將比不具有該泵送(或踢擊)的信號發展時間快約20%~30%。FIG. 8A is a schematic diagram of waveforms of related voltages during operation of the DRAM cell disclosed in the fifth embodiment of the present invention. Similar to the fourth embodiment shown in FIG. 7, between time T1 and time T2, the activation command ACM is executed, and during the execution of the activation command ACM, the first sustaining voltage source (providing the first voltage VCCSA+M1) Connect sense amplifier 20. Therefore, during the execution of the enable command ACM, the voltage on the bit line BL will be pumped (or kicked up) at least to the first voltage VCCSA+M1. After the start command ACM is executed, the voltage VCCSA is connected to the sense amplifier 20, and then the voltage on the bit line BL will return to the voltage VCCSA. After the start command ACM, one (or more) read commands RC can be executed before time T2, and during the execution of the read command RC, the first sustain voltage source (providing the first voltage VCCSA+M1) is connected to the sense again Amplifier 20. Therefore, during the execution of the read command RC, the voltage on the bit line BL will be pumped (or kicked) at least to the first voltage VCCSA+M1. After the execution of the read command RC is finished, the voltage VCCSA is connected to the sense amplifier 20 by turning on the switch 14 and closing the switch 13 as shown in FIG. 3A , and then the voltage on the bit line BL will return to the voltage VCCSA. This pumping (or kicking) of the bit line BL during the execution of the read command RC will improve the signal development time. For example, in this fifth embodiment, the voltage VCCSA is 1.1V and M1 is 0.2V, then during the execution of the read command RC, the signal development time with the pumping (or kicking) will be longer than without the pumping (or kick) signal development time is about 20%~30% faster.

同理,在時間T2後的該恢復階段,提供電壓VCCSA的電壓源斷開感測放大器20以及該第一維持電壓源(提供第一電壓VCCSA+M1)連接感測放大器20,此時,位元線BL上的電壓至少會被泵送(或踢擊)到第一電壓VCCSA+M1。如此,高於信號“ONE”(電壓VCCSA)的第一電壓VCCSA+M1被提供給該動態隨機存取記憶體單元的儲存電容12。然而在本發明的另一實施例中,如圖8B所示,在時間T2後的該恢復階段,提供電壓VCCSA的電壓源仍然連接感測放大器20,而不是該第一維持電壓源連接感測放大器20。Similarly, in the recovery phase after the time T2, the voltage source providing the voltage VCCSA is disconnected from the sense amplifier 20 and the first sustaining voltage source (providing the first voltage VCCSA+M1) is connected to the sense amplifier 20. At this time, the bit The voltage on the primary line BL will be pumped (or kicked) at least to the first voltage VCCSA+M1. Thus, the first voltage VCCSA+M1 higher than the signal “ONE” (voltage VCCSA) is provided to the storage capacitor 12 of the DRAM cell. However, in another embodiment of the present invention, as shown in FIG. 8B, during the recovery phase after time T2, the voltage source providing voltage VCCSA is still connected to the sense amplifier 20 instead of the first sustaining voltage source connected to the sense amplifier 20. Amplifier 20.

另外,在本發明的另一實施例中,如圖8C所示,在啟動命令ACM執行期間,位元線BL上的電壓不會被泵送(或踢擊)到第一電壓VCCSA+M1,但在讀取命令RC執行期間,位元線BL上的電壓會被泵送(或踢擊)到第一電壓VCCSA+M1。在時間T2後的該恢復階段,該第一維持電壓源(提供第一電壓VCCSA+M1)連接感測放大器20,此時,位元線BL上的電壓至少會被泵送(或踢擊)到第一電壓VCCSA+M1。In addition, in another embodiment of the present invention, as shown in FIG. 8C, during the execution of the start command ACM, the voltage on the bit line BL will not be pumped (or kicked) to the first voltage VCCSA+M1, But during the execution of the read command RC, the voltage on the bit line BL will be pumped (or kicked) to the first voltage VCCSA+M1. During this recovery phase after time T2, the first sustain voltage source (providing the first voltage VCCSA+M1) is connected to the sense amplifier 20, at which point the voltage on the bit line BL is at least pumped (or kicked) to the first voltage VCCSA+M1.

本發明的第六實施例Sixth embodiment of the present invention :

圖8D是本發明的第六實施例所公開的動態隨機存取記憶體單元在操作期間的相關電壓的波形的示意圖。類似於圖8A所示的該第五實施例,在時間T1和時間T2之間,有一啟動命令ACM以及跟隨啟動命令ACM的至少一讀取命令RC被執行,以及在啟動命令ACM和讀取命令RC執行期間,通過開啟如圖3A所示的開關13以使該第一維持電壓源(提供第一電壓VCCSA+M1)連接感測放大器20。此外,在啟動命令ACM和讀取命令RC執行期間,通過開啟如圖3B所示的開關23以使該第二維持電壓源(VSS-M2)連接感測放大器20。因此,在啟動命令ACM和讀取命令RC執行期間,位元線BL上的電壓至少會被泵送(或踢擊)到第一電壓VCCSA+M1以及位元線BLB上的電壓至少會被泵送(或踢擊)到第二電壓VSS-M2。在結束執行啟動命令ACM和讀取命令RC後,通過開啟如圖3A所示的開關14和關閉開關13以使電壓VCCSA連接感測放大器20以及通過開啟如圖3B所示的開關24和關閉開關23以使電壓VSS連接感測放大器20,然後位元線BL上的電壓將回歸到電壓VCCSA 以及位元線BLB上的電壓將回歸到電壓VSS。FIG. 8D is a schematic diagram of waveforms of relevant voltages during operation of the DRAM cell disclosed in the sixth embodiment of the present invention. Similar to the fifth embodiment shown in FIG. 8A, between time T1 and time T2, an activation command ACM and at least one read command RC following the activation command ACM are executed, and between the activation command ACM and the read command During RC execution, the first sustain voltage source (providing the first voltage VCCSA+M1 ) is connected to the sense amplifier 20 by turning on the switch 13 as shown in FIG. 3A . In addition, during the execution of the enable command ACM and the read command RC, the second sustain voltage source (VSS-M2) is connected to the sense amplifier 20 by turning on the switch 23 as shown in FIG. 3B . Therefore, during the execution of the start command ACM and the read command RC, the voltage on the bit line BL will be pumped (or kicked) at least to the first voltage VCCSA+M1 and the voltage on the bit line BLB will be pumped at least sent (or kicked) to the second voltage VSS-M2. After completing the execution of the start command ACM and the read command RC, the voltage VCCSA is connected to the sense amplifier 20 by opening the switch 14 and closing the switch 13 as shown in FIG. 3A and by opening the switch 24 and closing the switch as shown in FIG. 3B 23 to connect sense amplifier 20 to voltage VSS, then the voltage on bit line BL will return to voltage VCCSA and the voltage on bit line BLB will return to voltage VSS.

同理,在時間T2後的該恢復階段,通過分別關閉圖3A所示的開關14以及如圖3B所示的開關24以使提供電壓VCCSA的電壓源和提供電壓VSS的電壓源斷開感測放大器20,以及通過開啟圖3A所示的開關13以使該第一維持電壓源(提供第一電壓VCCSA+M1)連接感測放大器20和通過開啟圖3B所示的開關23以使該第二維持電壓源(提供第二電壓VSS-M2)連接感測放大器20。如此,位元線BL上的電壓至少會被泵送(或踢擊)到第一電壓VCCSA+M1以及位元線BLB上的電壓至少會被泵送(或踢擊)到第二電壓VSS-M2。Similarly, in the recovery phase after the time T2, the voltage source providing the voltage VCCSA and the voltage source providing the voltage VSS are disconnected by turning off the switch 14 shown in FIG. 3A and the switch 24 shown in FIG. 3B respectively. amplifier 20, and the first sustain voltage source (providing the first voltage VCCSA+M1) is connected to sense amplifier 20 by opening switch 13 shown in FIG. The sustain voltage source (providing the second voltage VSS-M2 ) is connected to the sense amplifier 20 . Thus, the voltage on bit line BL is pumped (or kicked) at least to the first voltage VCCSA+M1 and the voltage on bit line BLB is pumped (or kicked) to at least the second voltage VSS- M2.

圖8E是說明在該動態隨機存取記憶體單元的操作期間位元線BL上的電壓和該踢擊期間的關係示意圖。對應該恢復(或該預充電)階段的位元線BL上的電壓的踢擊期間K4的長度比對應啟動命令ACM的位元線BL上的電壓的踢擊期間K1的長度長,或是踢擊期間K4比對應讀取命令RC的位元線BL上的電壓的踢擊期間K2、K3的長度長。此外,對應啟動命令ACM的位元線BL上的電壓的踢擊期間K1的長度等於對應讀取命令RC的位元線BL上的電壓的踢擊期間K2、K3的長度。當然,在踢擊期間K1~K3,位元線BL上的電壓可通過一個自舉電路(boostrap circuit)泵送(或踢擊)到第一電壓VCCSA+M1或高於電壓VCCSA的其他電壓準位(例如電壓VCCSA+ΔN,其中0<ΔN<M1),其中該自舉電路中的一個電容是耦接於位元線BL,且該自舉電路也稱為泵送電壓源。無論是上述電壓源還是該自舉電路都可視為充電源,所以位元線BL上的電壓可被該充電源泵送(或踢擊)到第一電壓VCCSA+M1或電壓VCCSA+ΔN。同理,位元線BLB上的電壓也可被泵送(或踢擊)到第二電壓VSS-M2(或電壓VSS-ΔN,其中0<ΔN<M2)。FIG. 8E is a diagram illustrating the relationship between the voltage on the bit line BL and the kick period during the operation of the DRAM cell. The length of the kicking period K4 corresponding to the voltage on the bit line BL of the recovery (or the pre-charging) stage is longer than the length of the kicking period K1 of the voltage on the bit line BL corresponding to the start command ACM, or the kicking The kick period K4 is longer than the kick periods K2 and K3 corresponding to the voltage on the bit line BL of the read command RC. In addition, the length of the kick period K1 corresponding to the voltage on the bit line BL of the start command ACM is equal to the lengths of the kick periods K2 and K3 corresponding to the voltage on the bit line BL of the read command RC. Of course, during the kick period K1~K3, the voltage on the bit line BL can be pumped (or kicked) to the first voltage VCCSA+M1 or other voltage levels higher than the voltage VCCSA through a bootstrap circuit (boostrap circuit). bit (for example, voltage VCCSA+ΔN, where 0<ΔN<M1), wherein a capacitor in the bootstrap circuit is coupled to the bit line BL, and the bootstrap circuit is also called a pumping voltage source. Both the above-mentioned voltage source and the bootstrap circuit can be regarded as the charging source, so the voltage on the bit line BL can be pumped (or kicked) by the charging source to the first voltage VCCSA+M1 or the voltage VCCSA+ΔN. Similarly, the voltage on the bit line BLB can also be pumped (or kicked) to the second voltage VSS-M2 (or voltage VSS-ΔN, where 0<ΔN<M2).

當然,在本發明的另一實施例中,電壓VCCSA可以在0.9V~0.5V(如0.9V,0.8V,0.7V或0.6V)或更低的範圍內,而第一電壓VCCSA+M1仍然可以在1.1V~2.5V的範圍內(例如1.1V,1.2V,1.35V,1.5V,1.8V,或2.5V等)以克服漏電流問題並保持該動態隨機存取記憶體單元的可接受的電荷保留時間。因此,根據本發明的一實施例,由於該動態隨機存取記憶體電路的漏電流問題得到了緩解,即使存在放緩的動態隨機存取記憶體的技術推進(DRAM technology migration)的條件下,一主供電電壓源提供給該動態隨機存取記憶體的電壓位準還是可以降低到1.0V~0.5V或更低。因此,主供電電壓源提供給該動態隨機存取記憶體的電壓位準將和另一主供電電壓源提供給邏輯晶片的電壓位準相同或是實質上相同。Of course, in another embodiment of the present invention, the voltage VCCSA can be in the range of 0.9V~0.5V (such as 0.9V, 0.8V, 0.7V or 0.6V) or lower, and the first voltage VCCSA+M1 is still It can be in the range of 1.1V~2.5V (such as 1.1V, 1.2V, 1.35V, 1.5V, 1.8V, or 2.5V, etc.) to overcome the leakage current problem and keep the DRAM cell acceptable charge retention time. Therefore, according to an embodiment of the present invention, since the leakage current problem of the DRAM circuit is alleviated, even under the condition of slowing DRAM technology migration, The voltage level provided by a main power supply voltage source to the DRAM can still be reduced to 1.0V-0.5V or lower. Therefore, the voltage level provided by the main power supply voltage source to the DRAM is the same or substantially the same as the voltage level provided by another main power supply voltage source to the logic chip.

本發明的第七實施例Seventh embodiment of the present invention :

圖9A是本發明的第七實施例所公開的動態隨機存取記憶體電路500的示意圖。如圖9A所示,動態隨機存取記憶體電路500包含一個輸入/輸出電路510、一周邊電路520和一動態隨機存取記憶體核心電路530。一實體層電路(或實體層)400位於動態隨機存取記憶體電路500和一邏輯電路300之間。實體層電路400還包含一輸入/輸出實體層電路410和一邏輯實體層電路420。通常動態隨機存取記憶體電路500會在一動態隨機存取記憶體晶片中,實際層電路400和邏輯電路300會被設置在與該動態隨機存取記憶體晶片分開的另一晶片(例如邏輯晶片)中。例如,該邏輯晶片包含一記憶體控制器,其中該記憶體控制器是邏輯電路300,以及也包含與該動態隨機存取記憶體晶片和該記憶體控制器互動的實體層電路(或實體層)400。FIG. 9A is a schematic diagram of a DRAM circuit 500 disclosed in the seventh embodiment of the present invention. As shown in FIG. 9A , the DRAM circuit 500 includes an input/output circuit 510 , a peripheral circuit 520 and a DRAM core circuit 530 . A physical layer circuit (or physical layer) 400 is located between the DRAM circuit 500 and a logic circuit 300 . The physical layer circuit 400 further includes an input/output physical layer circuit 410 and a logical physical layer circuit 420 . Usually the DRAM circuit 500 will be in a DRAM chip, and the actual layer circuit 400 and the logic circuit 300 will be arranged in another chip (such as a logic circuit) separated from the DRAM chip. chip). For example, the logic chip includes a memory controller, where the memory controller is logic circuit 300, and also includes physical layer circuitry (or physical layer circuitry) that interacts with the DRAM chip and the memory controller. )400.

在本發明的另一實施例中,實體層電路400和邏輯電路300可以分別設置在兩個獨立的晶片中。例如,動態隨機存取記憶體電路500可以包含多個堆疊在一起的動態隨機存取記憶體晶片。然後該堆疊的動態隨機存取記憶體晶片被放置在包含實體層電路(或實體層)400的基礎晶片(或中介層(interposer))上。邏輯電路300是數位電路或記憶體控制器,且邏輯電路300設置在與該基礎晶片分開的另一個邏輯晶片中。In another embodiment of the present invention, the physical layer circuit 400 and the logic circuit 300 may be respectively disposed in two independent chips. For example, DRAM circuit 500 may comprise a plurality of DRAM chips stacked together. The stacked DRAM die is then placed on a base die (or interposer) containing physical layer circuitry (or physical layer) 400 . The logic circuit 300 is a digital circuit or a memory controller, and the logic circuit 300 is provided in another logic die separate from the base die.

根據本發明的一實施例,動態隨機存取記憶體電路500的主供電電壓源所提供的電壓Vnew可介於1.0V和0.5V之間(或0.9V和0. 5V之間)或更低,正好與邏輯電路3000的主供電電壓源所提供的電壓Va'的範圍相同,其中由於快速縮減邏輯技術的演進,電壓Va'早已經介於1.0V和0.5V之間(或0.9V和0. 5V之間)或更低。另外,電壓Vnew是動態隨機存取記憶體電路500的外部電壓,且電壓Vnew可被動態隨機存取記憶體電路500用來產生各種應用在周邊電路520或動態隨機存取記憶體核心電路530的電壓,例如前面提到的電壓VCCSA,第一電壓VCCSA+M1,電壓1/2VCCSA,和電壓VPP等。電壓VCCSA的電壓位準可以和電壓Vnew的電壓位準相同或不同。此外,在動態隨機存取記憶體電路500外可以有另一個用以產生一電壓Vhigh的電壓源,且電壓Vhigh高於電壓Vnew,其中電壓Vhigh可以用來產生電壓Vpp或第一電壓VCCSA+M1以達到改善轉換效率的目的。According to an embodiment of the present invention, the voltage Vnew provided by the main power supply voltage source of the DRAM circuit 500 may be between 1.0V and 0.5V (or between 0.9V and 0.5V) or lower , which is exactly the same as the range of the voltage Va' provided by the main supply voltage source of the logic circuit 3000, where the voltage Va' has already been between 1.0V and 0.5V (or 0.9V and 0 . 5V) or lower. In addition, the voltage Vnew is an external voltage of the DRAM circuit 500, and the voltage Vnew can be used by the DRAM circuit 500 to generate various voltages applied to the peripheral circuit 520 or the DRAM core circuit 530. Voltages, such as the aforementioned voltage VCCSA, the first voltage VCCSA+M1, the voltage 1/2VCCSA, and the voltage VPP. The voltage level of the voltage VCCSA may be the same as or different from that of the voltage Vnew. In addition, there may be another voltage source outside the DRAM circuit 500 for generating a voltage Vhigh, and the voltage Vhigh is higher than the voltage Vnew, wherein the voltage Vhigh may be used to generate the voltage Vpp or the first voltage VCCSA+M1 In order to achieve the purpose of improving the conversion efficiency.

此外,由於電壓Vnew與電壓Va'相同或實質上相同,所以輸出電位轉換電路(將輸出信號的電壓位準調高或調低)和傳統動態隨機存取記憶體電路100中的輸入/輸出電路 110內的輸入比較器可被移除。因此,根據本發明的一實施例,如圖9B所示,因為動態隨機存取記憶體電路500的輸入/輸出電路510不包含前面提到的輸出電位轉換電路和輸入比較器,所以輸入至其他動態隨機存取記憶體電路(例如周邊電路520)的數據或從其他動態隨機存取記憶體電路(例如周邊電路520)輸出的數據不必通過輸入/輸出電路510轉換或比較。此外,輸入至其他動態隨機存取記憶體電路(例如周邊電路520)的數據或從其他動態隨機存取記憶體電路(例如周邊電路520)輸出的數據的振幅可以設定為電壓Vnew的振幅。In addition, since the voltage Vnew is the same or substantially the same as the voltage Va', the output level conversion circuit (adjusting the voltage level of the output signal up or down) and the input/output circuit in the conventional DRAM circuit 100 The input comparator within 110 can be removed. Therefore, according to an embodiment of the present invention, as shown in FIG. 9B, since the input/output circuit 510 of the DRAM circuit 500 does not include the aforementioned output potential conversion circuit and input comparator, the input to other Data from DRAM circuits (such as peripheral circuit 520 ) or data output from other DRAM circuits (such as peripheral circuit 520 ) do not need to be converted or compared by I/O circuit 510 . In addition, the amplitude of data input to or output from other DRAM circuits (eg, the peripheral circuit 520 ) can be set as the amplitude of the voltage Vnew.

如前所述,動態隨機存取記憶體電路500包含輸入/輸出電路510、周邊電路520,以及動態隨機存取記憶體核心電路530。周邊電路520至少包含命令/地址解碼器和/或其他包含電晶體的電路,而動態隨機存取記憶體核心電路530至少包含動態隨機存取記憶體單元陣列和/或其他包含電晶體的相關電路。在本發明的一實施例中,施加在周邊電路520内的一電晶體的汲極的一操作供電電壓的電壓位準可和電壓Vnew的電壓位準相同。此外,施加在動態隨機存取記憶體核心電路530內的一電晶體的汲極的一操作供電電壓的電壓位準也可和電壓Vnew的電壓位準相同,且動態隨機存取記憶體核心電路530內的內的該電晶體異於存取電晶體11。當然,應用在該動態隨機存取記憶體中的信號“ONE”或該高電位信號的電壓位準也可和電壓Vnew的電壓位準相同。As mentioned above, the DRAM circuit 500 includes an input/output circuit 510 , a peripheral circuit 520 , and a DRAM core circuit 530 . The peripheral circuit 520 includes at least a command/address decoder and/or other circuits including transistors, and the DRAM core circuit 530 includes at least a dynamic random access memory cell array and/or other related circuits including transistors . In an embodiment of the present invention, the voltage level of an operation supply voltage applied to the drain of a transistor in the peripheral circuit 520 may be the same as the voltage level of the voltage Vnew. In addition, the voltage level of an operating supply voltage applied to the drain of a transistor in the DRAM core circuit 530 may also be the same as the voltage level of the voltage Vnew, and the DRAM core circuit The transistor in 530 is different from the access transistor 11. Certainly, the voltage level of the signal “ONE” or the high potential signal applied in the DRAM can also be the same as the voltage level of the voltage Vnew.

同樣地,根據本發明的一實施例,如圖9C所示,因為實體層電路400的輸入/輸出實體層電路410也可以移除前面提到的輸出電位轉換電路(將輸出信號的電壓位準調高或調低)和輸入比較器,所以輸入至其他實體層電路(例如邏輯實體層電路420)的數據或從其他實體層電路(例如邏輯實體層電路420)輸出的數據不必通過實體層電路400的輸入/輸出電路410轉換或比較。此外,輸入至其他實體層電路(例如邏輯實體層電路420)的數據或從其他實體層電路(例如邏輯實體層電路420)輸出的數據的振幅可以設定為電壓Va'(即電壓Vnew)的振幅。Similarly, according to an embodiment of the present invention, as shown in FIG. 9C, because the input/output physical layer circuit 410 of the physical layer circuit 400 can also remove the aforementioned output potential conversion circuit (change the voltage level of the output signal turn up or turn down) and input comparators, so data input to or output from other physical layer circuits (such as logical physical layer circuit 420) does not have to pass through the physical layer circuit The input/output circuit 410 of 400 converts or compares. In addition, the amplitude of data input to or output from other physical layer circuits (such as the logical physical layer circuit 420) can be set as the amplitude of the voltage Va' (ie, the voltage Vnew). .

因此,在本發明中,邏輯電路300、實體層電路400和動態隨機存取記憶體電路500的不同主供電電壓源的電壓位準可以全部相同。如果動態隨機存取記憶體電路500被設置在一動態隨機存取記憶體晶片中,則實體層電路400和邏輯電路300會被設置在另一和該動態隨機存取記憶體晶片分開的邏輯晶片中,其中該動態隨機存取記憶體晶片的主供電電壓源的電壓位準可和該邏輯晶片的主供電電壓源的電壓位準相同。Therefore, in the present invention, the voltage levels of different main power supply voltage sources of the logic circuit 300 , the physical layer circuit 400 and the DRAM circuit 500 may all be the same. If the DRAM circuit 500 is disposed in a DRAM chip, the physical layer circuit 400 and the logic circuit 300 will be disposed in another logic chip that is separate from the DRAM chip wherein, the voltage level of the main power supply voltage source of the DRAM chip can be the same as the voltage level of the main power supply voltage source of the logic chip.

另外,在本發明的另一實施例中,實體層電路400的輸入/輸出實體層電路410和動態隨機存取記憶體電路500被設置在一動態隨機存取記憶體晶片中,而實體層電路400的邏輯實體層電路420和邏輯電路300則設置在另一邏輯晶片中。再次該動態隨機存取記憶體晶片的主供電電壓源的電壓位準可和該邏輯晶片的主供電電壓源的電壓位準相同。In addition, in another embodiment of the present invention, the input/output physical layer circuit 410 and the DRAM circuit 500 of the physical layer circuit 400 are arranged in a DRAM chip, and the physical layer circuit The logic physical layer circuit 420 and logic circuit 300 of 400 are disposed in another logic chip. Again, the voltage level of the main power supply voltage source of the DRAM chip can be the same as the voltage level of the main power supply voltage source of the logic chip.

另外,在本發明的另一實施例中,當邏輯電路300、實體層電路400和動態隨機存取記憶體電路500分別設置在一邏輯晶片、一基礎晶片(或中介層)和一個動態隨機存取記憶體晶片,則該動態隨機存取記憶體晶片的主供電電壓源的電壓位準和該基礎晶片的主供電電壓源的電壓位準相同,以及也和該邏輯晶片的主供電電壓源的電壓位準相同。In addition, in another embodiment of the present invention, when the logic circuit 300, the physical layer circuit 400 and the DRAM circuit 500 are respectively arranged on a logic chip, a base chip (or interposer) and a DRAM If the memory chip is taken, the voltage level of the main power supply voltage source of the dynamic random access memory chip is the same as that of the main power supply voltage source of the base chip, and is also the same as the voltage level of the main power supply voltage source of the logic chip. The voltage levels are the same.

如前所述,有必要降低寫入數據XIO在該數據路徑(全域輸入/輸出路徑GIO和數據線 DL)上,在位元線BL(位元線BLB)上,和/或該動態隨機存取記憶體單元的儲存節點上的電壓位準以實現低功率應用。然而儲存在該相關儲存節點中的較低電壓將遭受嚴重的漏電流問題,導致儲存的數據失效。在本發明的一實施例中,在該回復階段提高位元線BL的電壓位準可以應用在該寫入操作以節省電力。圖10是說明了在本發明的一實施例中,在該動態隨機存取記憶體單元的寫入操作過程中的相關信號波形的示意圖,以及圖11是說明在該動態隨機存取記憶體單元的寫入操作過程中應用於該感測放大器選擇性地耦接於兩個分開的電壓VCCSA、VCCSAh的電路的示意圖,其中電壓VCCSAh的電壓位準高於電壓VCCSA的電壓位準。當圖1F所示的寫入數據XIO(例如信號“ONE”或高電位信號)通過數據輸入電路DI輸入到全域輸入/輸出路徑GIO時,在全域輸入/輸出路徑GIO上寫入數據XIO的電壓位準將被保持為電壓VCCSA(例如0.7V)以節省電力。然而對應信號“ONE”(或高電位信號)的寫入數據XIO的電壓位準可高於電壓VCCSA,如電壓VSSCAh。然後在全域輸入/輸出路徑GIO上寫入數據XIO將通過數據線感測放大器70傳遞給數據線DL。如圖10所示,在數據線 DL上寫入數據XIO的電壓位準也被數據線感測放大器70保持為電壓VCCSA,其中為了省電目的,所以在圖10的實施例中,電壓VCCSA被設定為(但不限於)0.7V。然後數據線DL上的寫入數據XIO將被傳遞到記憶體陣列75中的位元線BL。如圖11所示,當對應儲存節點SN的一字元線WL66被選擇以開啟一存取電晶體66時,在記憶體陣列75中,兩個分開的電壓VCCSA(例如0.7V)和電壓VCCSAh(例如1.1V)可在不同的時間被選擇性地耦接於感測放大器80。在字元線WL66被選擇後,電壓VCCSA首先被耦接於感測放大器80,以及一位元開關BS100開啟以寫入數據(也就是信號“ONE”)至存取電晶體66,導致位元線BL上的電壓位準也被提升到電壓VCCSA。同時,本領域具有熟知技藝者應該知道控制信號EN1、EN2被致能以及控制信號EN3被去能。如圖10所示,位元線BL上的電壓位準在電壓VCCSA保持了一段時間,然而在一預定時間(時段tWR(write recovery time))結束後,在該恢復階段,位元線BL上的電壓位準將被提升到電壓VCCSAh(或稱為恢復踢擊(restore kick)),其中時段tWR是由電子設備工程聯合委員會(Joint Electron Device Engineering Council,JEDEC)的雙倍數據速率記憶體規範所定義,以及時段tWR是最後一次寫入時脈的上升緣到該預充電命令之間的時段。另外,時段tWR可以確保該恢復踢擊(restore kick)只有在寫入週期完成後才可以開始。As mentioned earlier, it is necessary to reduce the write data XIO on the data path (global input/output path GIO and data line DL), on the bit line BL (bit line BLB), and/or the DRAM The voltage level on the storage node of the memory cell is taken for low power applications. However, lower voltages stored in the associated storage nodes suffer from serious leakage current problems, resulting in invalidation of stored data. In an embodiment of the present invention, increasing the voltage level of the bit line BL during the recovery phase can be applied to the write operation to save power. FIG. 10 is a schematic diagram illustrating relevant signal waveforms during a write operation of the DRAM unit in an embodiment of the present invention, and FIG. A schematic diagram of a circuit for selectively coupling the sense amplifier to two separate voltages VCCSA, VCCSAh during a write operation, wherein the voltage level of the voltage VCCSAh is higher than that of the voltage VCCSA. When the write data XIO shown in FIG. 1F (such as a signal "ONE" or a high potential signal) is input to the global input/output path GIO through the data input circuit DI, the voltage of the write data XIO on the global input/output path GIO The level will be kept at VCCSA (eg 0.7V) to save power. However, the voltage level of the written data XIO corresponding to the signal “ONE” (or a high potential signal) may be higher than the voltage VCCSA, such as the voltage VSSCAh. Then the data XIO written on the global input/output path GIO will be passed to the data line DL through the data line sense amplifier 70 . As shown in FIG. 10, the voltage level of the data XIO written on the data line DL is also maintained at the voltage VCCSA by the data line sense amplifier 70. For the purpose of power saving, in the embodiment of FIG. 10, the voltage VCCSA is Set to (but not limited to) 0.7V. Then the write data XIO on the data line DL will be transferred to the bit line BL in the memory array 75 . As shown in FIG. 11, when a word line WL66 corresponding to the storage node SN is selected to turn on an access transistor 66, in the memory array 75, two separate voltages VCCSA (for example, 0.7V) and voltage VCCSAh (eg, 1.1V) can be selectively coupled to the sense amplifier 80 at different times. After word line WL66 is selected, voltage VCCSA is first coupled to sense amplifier 80, and bit switch BS100 is turned on to write data (ie, signal "ONE") to access transistor 66, causing bit The voltage level on line BL is also raised to voltage VCCSA. Meanwhile, those skilled in the art should know that the control signals EN1 and EN2 are enabled and the control signal EN3 is disabled. As shown in FIG. 10, the voltage level on the bit line BL is maintained at the voltage VCCSA for a period of time, but after a predetermined time (period tWR (write recovery time)) ends, in this recovery phase, the bit line BL The voltage level will be raised to the voltage VCCSAh (or called the restore kick (restore kick)), where the period tWR is specified by the double data rate memory specification of the Joint Electron Device Engineering Council (JEDEC) Definition, and the period tWR is the period between the rising edge of the last write clock and the precharge command. In addition, the period tWR can ensure that the restore kick can only start after the write cycle is completed.

因此,如圖10所示,在時段tWR結束後,位元線BL上的電壓位準將被提升(也就是該恢復踢擊(restore kick))到電壓VCCSAh,其中在圖10的實施例中,電壓VCCSAh等於(但不限於)1.1V且比電壓VCCSA高。此時,請同時參照圖10、圖11,在對應儲存節點SN的字元線WL66被關閉之前,電壓VCCSAh將被耦接於感測放大器80和位元線BL,然後到儲存節點SN,所以位元線BL上的電壓位準將從電壓VCCSA提升到電壓VCCSAh。因此,基於該恢復踢擊(restore kick)到電壓VCCSAh,所以即使在該寫入操作期間,全域輸入/輸出路徑GIO和數據線DL上的電壓位準的都是電壓VCCSA,但還是會有足夠的電荷儲存在儲存節點SN中。另外,如圖10所示的PRC為一預充電命令。Therefore, as shown in FIG. 10, after the period tWR ends, the voltage level on the bit line BL will be raised (that is, the restore kick) to the voltage VCCSAh, wherein in the embodiment of FIG. 10, The voltage VCCSAh is equal to (but not limited to) 1.1V and higher than the voltage VCCSA. At this time, please refer to FIG. 10 and FIG. 11 at the same time. Before the word line WL66 corresponding to the storage node SN is turned off, the voltage VCCSAh will be coupled to the sense amplifier 80 and the bit line BL, and then to the storage node SN, so The voltage level on bit line BL will be raised from voltage VCCSA to voltage VCCSAh. Therefore, based on the restore kick (restore kick) to the voltage VCCSAh, even if the voltage levels on the global input/output path GIO and the data line DL are all at the voltage VCCSA during the write operation, there will still be sufficient The charge of is stored in the storage node SN. In addition, the PRC shown in FIG. 10 is a precharge command.

因為位元線BL上的電壓位準會從電壓VCCSA(0.7V或其他比1.1V低的電壓)提升到電壓VCCSAh(1.1V),所以本發明顯然可以克服現有技術的漏電流的問題。也就是說即使寫入數據XIO在全域輸入/輸出路徑GIO、數據線 DL和位元線BL上的電壓位準降低到0.7V、0.6V或更低,因為基於該恢復踢擊(restore kick)到電壓VCCSAh而有足夠的電荷儲存在相關的儲存節點上,所以本發明仍然不會出現漏電流的問題和數據失效。如圖12所示,在該寫入操作時,寫入數據XIO在全域輸入/輸出路徑GIO、數據線 DL和位元線BL上的電壓位準可以降低到0.7V(甚至0.6V或更低),如此操作電流也會降低。例如,當寫入數據XIO在全域輸入/輸出路徑GIO、數據線 DL和位元線BL上的電壓位準從1.1V降到0. 7 V(減少35%),該操作電流將從141 mA減少到35 mA,其中操作電流141 mA是對應寫入數據XIO在全域輸入/輸出路徑GIO、數據線 DL和位元線BL上的電壓位準保持在1.1V的情況。Since the voltage level on the bit line BL is raised from the voltage VCCSA (0.7V or other voltages lower than 1.1V) to the voltage VCCSAh (1.1V), the present invention can obviously overcome the leakage current problem of the prior art. That is to say, even if the voltage level of the written data XIO on the global input/output path GIO, the data line DL and the bit line BL drops to 0.7V, 0.6V or lower, because based on the restore kick (restore kick) To the voltage VCCSAh, there is sufficient charge stored on the relevant storage nodes, so the present invention still does not have the problem of leakage current and data failure. As shown in FIG. 12, during the write operation, the voltage level of the write data XIO on the global input/output path GIO, the data line DL and the bit line BL can be reduced to 0.7V (or even 0.6V or lower ), so the operating current will also be reduced. For example, when the voltage level of the write data XIO on the global input/output path GIO, the data line DL and the bit line BL drops from 1.1V to 0.7 V (35% reduction), the operating current will be reduced from 141 mA It is reduced to 35 mA, and the operating current of 141 mA corresponds to the situation that the voltage level of the write data XIO on the global input/output path GIO, the data line DL and the bit line BL is kept at 1.1V.

另一方面,在該讀取操作期間,當讀取數據對應於信號“ONE”(或高電位信號)時,在本發明的一實施例中,該讀取數據在全域輸入/輸出路徑GIO和數據線 DL上的電壓位準可以高於電壓VCCSA,例如電壓VSSCAh。例如,如圖12所示,該讀取數據(對應於信號“ONE”)在全域輸入/輸出路徑GIO和數據線 DL上的電壓位準被設定為1.1V,且高於寫入數據(對應信號“ONE”)在全域輸入/輸出路徑GIO和數據線 DL上的電壓位準,其中該寫入數據(對應信號“ONE”)在全域輸入/輸出路徑GIO和數據線 DL上的電壓位準被設定為電壓VCCSA(例如0.7V)。同樣地,應用於動態隨機存取記憶體操作的一控制信號和一地址信號的電壓位準也被設定為1.1V(當對應信號“ONE”時),且高於該寫入數據(對應信號“ONE”)在全域輸入/輸出路徑GIO和數據線 DL上的電壓位準。On the other hand, during the read operation, when the read data corresponds to the signal “ONE” (or a high potential signal), in one embodiment of the present invention, the read data is transmitted between the global input/output paths GIO and The voltage level on the data line DL may be higher than the voltage VCCSA, such as the voltage VSSCAh. For example, as shown in FIG. 12, the voltage level of the read data (corresponding to the signal "ONE") on the global input/output path GIO and the data line DL is set to 1.1V, which is higher than that of the write data (corresponding to signal "ONE") on the global input/output path GIO and the voltage level on the data line DL, wherein the write data (corresponding to the signal "ONE") is on the global input/output path GIO and the voltage level on the data line DL It is set to voltage VCCSA (for example, 0.7V). Similarly, the voltage levels of a control signal and an address signal applied to the DRAM operation are also set to 1.1V (when corresponding to signal “ONE”), which is higher than the write data (corresponding to signal “ONE”) is the voltage level on the global input/output path GIO and the data line DL.

因此,在該讀取操作中,全域輸入/輸出路徑GIO和數據線DL(或該數據路徑)上的電壓振幅將不同於在該寫入操作中,全域輸入/輸出路徑GIO和數據線DL(或該數據路徑)上的電壓振幅。特別的是全域輸入/輸出路徑GIO和/或數據線DL上的讀取數據組(包含信號“ONE”和信號“ZERO”)的電壓振幅高於全域輸入/輸出路徑GIO和/或數據線DL上的寫入數據組(包含信號“ONE”和信號“ZERO”)的電壓振幅。另外,在本發明的一實施例中,應用於動態隨機存取記憶體操作(例如該讀取操作、該寫入操作或其他操作)的該控制信號和該位址信號的電壓振幅將不同於或高於在該寫入操作中,該數據路徑上的電壓振幅。Therefore, in the read operation, the voltage amplitude on the global input/output path GIO and the data line DL (or the data path) will be different from that in the write operation on the global input/output path GIO and the data line DL ( or the voltage amplitude on the data path). In particular, the voltage amplitude of the read data set (comprising the signal "ONE" and the signal "ZERO") on the global input/output path GIO and/or the data line DL is higher than that of the global input/output path GIO and/or the data line DL The voltage amplitude of the write data set (including the signal "ONE" and the signal "ZERO") on . In addition, in an embodiment of the present invention, the voltage amplitudes of the control signal and the address signal applied to DRAM operations (such as the read operation, the write operation, or other operations) will be different from or higher than the voltage amplitude on the data path during the write operation.

綜上所述,本發明公開了具有與該邏輯電路統一的主供電電壓源的可持續的動態隨機存取記憶體。在該動態隨機存取記憶體單元的該存取電晶體關閉(或耦接於該動態隨機存取記憶體單元的該字元線關閉)之前,可以將高於信號“ONE”(或高電位信號)的電壓位準的第一電壓恢復或儲存到該動態隨機存取記憶體單元。在該存取電晶體關閉後,即使有漏電流通過該存取電晶體,該儲存電容所儲存的電荷仍可比現有的動態隨機存取記憶體的架構維持更長的一段時間。由於該動態隨機存取記憶體電路的漏電流問題得到緩解,所以即使存在放緩的動態隨機存取記憶體技術演進,該動態隨機存取記憶體的主供電電壓源所提供的電壓仍可以降低到1.0V~0.5V或更低。因此,該主供電電壓源提供給該動態隨機存取記憶體的電壓位準是和另一主供電電壓源提供給該外部邏輯電路的電壓位準相同或是實質上相同。此外,因為該主供電電壓源提供給該動態隨機存取記憶體的電壓位準和該另一主供電電壓源提供給該外部邏輯電路的電壓位準之間的相容性可同時優化能源效率和性能同步,所以不僅提高了操作速度,而且節省了晶片的面積和功耗。此外,因為在該數據路徑上的寫入數據的電壓振幅低於在該數據路徑上的讀取數據的電壓振幅,所以該寫入操作的電流或功耗將被降低。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 In summary, the present invention discloses a sustainable DRAM with a unified main power supply voltage source for the logic circuit. Before the access transistor of the DRAM cell is turned off (or the word line coupled to the DRAM cell is turned off), the signal "ONE" (or high potential signal) restores or stores the first voltage of the voltage level to the DRAM unit. After the access transistor is turned off, even if there is a leakage current through the access transistor, the charge stored in the storage capacitor can still be maintained for a longer period of time than the existing DRAM architecture. Since the leakage current problem of the DRAM circuit is alleviated, the voltage provided by the main supply voltage source of the DRAM can be reduced even in the presence of slowing DRAM technology evolution to 1.0V~0.5V or lower. Therefore, the voltage level provided by the main power supply voltage source to the DRAM is the same or substantially the same as the voltage level provided by another main power supply voltage source to the external logic circuit. In addition, energy efficiency can be optimized simultaneously because of the compatibility between the voltage level provided by the main supply voltage source to the DRAM and the voltage level provided by the other main supply voltage source to the external logic circuit Synchronized with performance, it not only improves the operation speed, but also saves the area and power consumption of the chip. Furthermore, since the voltage amplitude of writing data on the data path is lower than that of reading data on the data path, the current or power consumption of the writing operation will be reduced. The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

11、66:存取電晶體 12:儲存電容 13、14、23、24:開關 20、41、42、80:感測放大器 21:電壓均衡電路 30:預充電脈衝信號 70:數據線感測放大器 75:記憶體陣列 100、500:動態隨機存取記憶體電路 110、210、510:輸入/輸出電路 120、520:周邊電路 130、530:動態隨機存取記憶體核心電路 141:清除電路 142:開關電路 143:比較器電路 200、400:實體層電路 210、410:輸入/輸出實體層電路 220、420:邏輯實體層電路 300:邏輯電路 ACM:啟動指令 BL、BLB、BL1、BL9、BL1B、BL9B:位元線 BS100:位元開關 DQ、DQ':信號 DL:數據線 DLB:互補數據線 DI:數據輸入電路 EN1、EN2、EN3:控制信號 GIO:全域輸入/輸出路徑 K1、K2、K3、K4:踢擊期間 LSLP、LSLN:節點 N3、N4、N7、N8:N型金氧半電晶體 P1、P2、P5、P6:P型金氧半電晶體 RC:讀取指令 Sec:存儲區 SN1、SN9、SN:儲存節點 T0、T1、T2、T3:時間 tWR:時段 VREF、Vref':參考電壓 VCCSA、VSS、VBl、VPP 、M1、M2、K、ΔN、VCCSAh:電壓 VT:臨界電壓 Vpl:共同電壓 VHSA:第三電壓 WL、WL00、WL66:字元線 XIO:寫入數據 11, 66: access transistor 12: storage capacitor 13, 14, 23, 24: switch 20, 41, 42, 80: sense amplifier 21: Voltage equalization circuit 30: Precharge pulse signal 70: Data Line Sense Amplifier 75: Memory array 100, 500: Dynamic random access memory circuit 110, 210, 510: input/output circuit 120, 520: Peripheral circuits 130, 530: Dynamic random access memory core circuit 141: clear circuit 142: switch circuit 143: Comparator circuit 200, 400: physical layer circuit 210, 410: input/output physical layer circuit 220, 420: logical physical layer circuit 300: logic circuit ACM: start command BL, BLB, BL1, BL9, BL1B, BL9B: bit lines BS100: bit switch DQ, DQ': signal DL: data line DLB: complementary data line DI: data input circuit EN1, EN2, EN3: control signal GIO: global input/output path K1, K2, K3, K4: during kicking LSLP, LSLN: Node N3, N4, N7, N8: N-type metal oxide semiconductor P1, P2, P5, P6: P-type metal oxide semiconductor crystal RC: read command Sec: storage area SN1, SN9, SN: storage nodes T0, T1, T2, T3: time tWR: time period VREF, Vref': reference voltage VCCSA, VSS, VBl, VPP, M1, M2, K, ΔN, VCCSAh: Voltage VT: critical voltage Vpl: common voltage VHSA: third voltage WL, WL00, WL66: word line XIO: write data

圖1A是說明該動態隨機存取記憶體單元最常用的設計的示意圖。 圖1B是說明該動態隨機存取記憶體單元在存取(讀出或寫入)操作期間的相關電壓的波形的示意圖。 圖1C是說明在現有技術中邏輯電路、實體層電路和動態隨機存取記憶體電路的功能方塊示意圖。 圖1D是說明在現有技術中該動態隨機存取記憶體電路的輸入/輸出電路的功能方塊示意圖。 圖1E是說明在現有技術中該實體層電路的輸入/輸出實體層電路的功能方塊示意圖。 圖1F是說明傳統低功率的動態隨機存取記憶體單元在寫入操作期間的相關信號的波形的示意圖。 圖2是本發明的第一實施例所公開的該動態隨機存取記憶體單元在存取(讀出或寫入)操作期間的相關電壓的波形的示意圖。 圖3A是說明感測放大器選擇性地耦接於一第一維持電壓源的示意圖。 圖3B是說明感測放大器選擇性地耦接於該第二維持電壓源的示意圖 圖4是本發明的第二實施例所公開的該動態隨機存取記憶體單元在存取(讀出或寫入)操作期間的相關電壓的波形的示意圖。 圖5是本發明的第三實施例所公開的用於預充電操作的電路和功能方塊的示意圖 圖6是說明耦接於該第一動態隨機存取記憶體單元的感測放大器在該預充電操作中的示意圖。 圖7是本發明的第四實施例所公開的動態隨機存取記憶體單元在操作期間的相關電壓的波形的示意圖。 圖8A是本發明的第五實施例所公開的動態隨機存取記憶體單元在操作期間的相關電壓的波形的示意圖。 圖8B是本發明的另一實施例所公開的動態隨機存取記憶體單元在操作期間的相關電壓的波形的示意圖。 圖8C是本發明的另一實施例所公開的動態隨機存取記憶體單元在操作期間的相關電壓的波形的示意圖。 圖8D是本發明的第六實施例所公開的動態隨機存取記憶體單元在操作期間的相關電壓的波形的示意圖。 圖8E是說明在該動態隨機存取記憶體單元的操作期間位元線上的電壓和該踢擊期間的關係示意圖。 圖9A是本發明的一實施例所公開的邏輯電路、實體層電路和動態隨機存取記憶體電路的功能方塊示意圖。 圖9B是本發明的一實施例所公開的該動態隨機存取記憶體電路的輸入/輸出電路的功能方塊示意圖。 圖9C是本發明的一實施例所公開的該實體層電路的輸入/輸出實體層電路的功能方塊示意圖。 圖10是說明在本發明的一實施例中,在該動態隨機存取記憶體單元的寫入操作過程中的相關信號波形的示意圖。 圖11是說明在該動態隨機存取記憶體單元的寫入操作過程中應用於該感測放大器選擇性地耦接於兩個分開的電壓的電路的示意圖。 圖12是說明在該讀取操作期間和該寫入操作期間,在該數據路徑上的電壓振幅的示意圖。 FIG. 1A is a schematic diagram illustrating the most common design of the DRAM cell. FIG. 1B is a schematic diagram illustrating waveforms of related voltages of the DRAM cell during an access (read or write) operation. FIG. 1C is a schematic functional block diagram illustrating a logic circuit, a physical layer circuit and a DRAM circuit in the prior art. FIG. 1D is a functional block diagram illustrating the input/output circuit of the DRAM circuit in the prior art. FIG. 1E is a functional block diagram illustrating an input/output physical layer circuit of the physical layer circuit in the prior art. FIG. 1F is a schematic diagram illustrating waveforms of related signals of a conventional low power DRAM cell during a write operation. FIG. 2 is a schematic diagram of waveforms of relevant voltages during access (read or write) operations of the DRAM cell disclosed in the first embodiment of the present invention. FIG. 3A is a schematic diagram illustrating that the sense amplifier is selectively coupled to a first sustain voltage source. FIG. 3B is a schematic diagram illustrating that a sense amplifier is selectively coupled to the second sustain voltage source. FIG. 4 is a schematic diagram of waveforms of relevant voltages during access (read or write) operations of the DRAM cell disclosed in the second embodiment of the present invention. Fig. 5 is a schematic diagram of the circuit and functional blocks for the pre-charging operation disclosed in the third embodiment of the present invention FIG. 6 is a schematic diagram illustrating a sense amplifier coupled to the first DRAM cell during the precharge operation. FIG. 7 is a schematic diagram of waveforms of related voltages during operation of the DRAM cell disclosed in the fourth embodiment of the present invention. FIG. 8A is a schematic diagram of waveforms of related voltages during operation of the DRAM cell disclosed in the fifth embodiment of the present invention. 8B is a schematic diagram of waveforms of related voltages during operation of the DRAM cell disclosed in another embodiment of the present invention. FIG. 8C is a schematic diagram of waveforms of related voltages during operation of the DRAM cell disclosed in another embodiment of the present invention. FIG. 8D is a schematic diagram of waveforms of relevant voltages during operation of the DRAM cell disclosed in the sixth embodiment of the present invention. 8E is a schematic diagram illustrating the relationship between the voltage on the bit line and the kick period during the operation of the DRAM cell. FIG. 9A is a schematic functional block diagram of a logic circuit, a physical layer circuit and a DRAM circuit disclosed by an embodiment of the present invention. FIG. 9B is a functional block diagram of the input/output circuit of the DRAM circuit disclosed by an embodiment of the present invention. FIG. 9C is a functional block diagram of the input/output physical layer circuit of the physical layer circuit disclosed by an embodiment of the present invention. FIG. 10 is a schematic diagram illustrating related signal waveforms during a write operation of the DRAM cell according to an embodiment of the present invention. FIG. 11 is a schematic diagram illustrating a circuit for selectively coupling the sense amplifier to two separate voltages during a write operation of the DRAM cell. FIG. 12 is a schematic diagram illustrating voltage amplitudes on the data path during the read operation and during the write operation.

70:數據線感測放大器 70: Data Line Sense Amplifier

75:記憶體陣列 75: Memory array

BL、BLB:位元線 BL, BLB: bit line

DL:數據線 DL: data line

DLB:互補數據線 DLB: complementary data line

DI:數據輸入電路 DI: data input circuit

GIO:全域輸入/輸出路徑 GIO: global input/output path

XIO:寫入數據 XIO: write data

Claims (32)

一種耦接於一外部邏輯電路和一主供電電壓源的動態隨機存取記憶體,包含: 一第一維持電壓源,用於產生一第一電壓,其中該第一電壓高於應用在該動態隨機存取記憶體中一高電位信號的電壓位準;及 一動態隨機存取記憶體核心電路,具有一動態隨機存取記憶體單元,其中該動態隨機存取記憶體單元包含一存取電晶體和一儲存電容; 其中該儲存電容是選擇性地耦接該第一維持電壓源; 其中該主供電電壓源提供給該動態隨機存取記憶體的電壓位準是和另一主供電電壓源提供給該外部邏輯電路的電壓位準相同或是實質上相同。 A dynamic random access memory coupled to an external logic circuit and a main supply voltage source, comprising: a first sustain voltage source for generating a first voltage, wherein the first voltage is higher than the voltage level of a high potential signal applied in the dynamic random access memory; and A dynamic random access memory core circuit has a dynamic random access memory unit, wherein the dynamic random access memory unit includes an access transistor and a storage capacitor; wherein the storage capacitor is selectively coupled to the first sustain voltage source; The voltage level provided by the main power supply voltage source to the DRAM is the same or substantially the same as the voltage level provided by another main power supply voltage source to the external logic circuit. 如請求項1所述的動態隨機存取記憶體,另包含一輸入/輸出電路和介於該輸入/輸出電路和該動態隨機存取記憶體核心電路之間的一周邊電路,其中施加在該周邊電路内的一電晶體的汲極的一操作供電電壓和該主供電電壓源提供給該動態隨機存取記憶體的該電壓位準相同。The dynamic random access memory as described in claim 1 further comprises an input/output circuit and a peripheral circuit between the input/output circuit and the dynamic random access memory core circuit, wherein the An operating supply voltage of a drain of a transistor in the peripheral circuit is the same as the voltage level provided to the DRAM by the main supply voltage source. 如請求項2所述的動態隨機存取記憶體,其中施加在該動態隨機存取記憶體核心電路內的一電晶體的汲極的一操作供電電壓和該主供電電壓源提供給該動態隨機存取記憶體的該電壓位準相同,且該動態隨機存取記憶體核心電路內的該電晶體異於該存取電晶體。The dynamic random access memory as described in claim 2, wherein an operation supply voltage applied to the drain of a transistor in the core circuit of the dynamic random access memory and the main supply voltage source are provided to the dynamic random access memory The voltage levels for accessing memory are the same, and the transistor in the DRAM core circuit is different from the access transistor. 如請求項3所述的動態隨機存取記憶體,其中應用在該動態隨機存取記憶體中該高電位信號的電壓位準和該主供電電壓源提供給該動態隨機存取記憶體的電壓位準相同。The dynamic random access memory as described in claim 3, wherein the voltage level of the high potential signal applied in the dynamic random access memory and the voltage provided by the main power supply voltage source to the dynamic random access memory same level. 如請求項1所述的動態隨機存取記憶體,另包含一輸入/輸出電路和介於該輸入/輸出電路和該動態隨機存取記憶體核心電路之間的一周邊電路,其中該輸入/輸出電路沒有一輸入比較電路和一輸出電位轉換電路。The dynamic random access memory as described in claim 1 further comprises an input/output circuit and a peripheral circuit between the input/output circuit and the core circuit of the dynamic random access memory, wherein the input/output The output circuit does not have an input comparison circuit and an output potential conversion circuit. 如請求項1所述的動態隨機存取記憶體,其中該主供電電壓源提供給該動態隨機存取記憶體的該電壓位準是介於0.9V和0.5V之間。The DRAM according to claim 1, wherein the voltage level provided by the main power supply voltage source to the DRAM is between 0.9V and 0.5V. 如請求項1所述的動態隨機存取記憶體,另包含一字元線,其中該字元線耦接於該存取電晶體的閘極,該字元線於一第一時間區間與一第二時間區間被選擇以開啟該存取電晶體,該第二時間區間位於該第一時間區間後,以及在該第二時間區間,該第一維持電壓源電耦接於該儲存電容。The dynamic random access memory as described in Claim 1, further comprising a word line, wherein the word line is coupled to the gate of the access transistor, and the word line is connected to a word line in a first time interval A second time interval is selected to turn on the access transistor, the second time interval is located after the first time interval, and in the second time interval, the first sustaining voltage source is electrically coupled to the storage capacitor. 如請求項7所述的動態隨機存取記憶體,其中該第一時間區間是一存取操作區間,以及該第二時間區間是一恢復階段。The DRAM according to claim 7, wherein the first time interval is an access operation interval, and the second time interval is a recovery phase. 如請求項8所述的動態隨機存取記憶體,其中在該存取操作區間,一升壓電壓源(kicking charge source)電耦接於該動態隨機存取記憶體的一位元線。The DRAM according to claim 8, wherein during the access operation period, a kicking charge source is electrically coupled to a bit line of the DRAM. 一種耦接於一外部邏輯電路和一主供電電壓源的動態隨機存取記憶體,包含: 一動態隨機存取記憶體核心電路具有一動態隨機存取記憶體單元,其中該動態隨機存取記憶體單元包含一存取電晶體和一儲存電容; 一輸入/輸出電路,耦接於該外部邏輯電路;及 一周邊電路,設置於該輸入/輸出電路和該動態隨機存取記憶體核心電路之間; 其中該主供電電壓源提供給該動態隨機存取記憶體的電壓位準是和另一主供電電壓源提供給該外部邏輯電路的電壓位準相同或是實質上相同,以及該主供電電壓源提供給該動態隨機存取記憶體的電壓位準不大於0.9V。 A dynamic random access memory coupled to an external logic circuit and a main supply voltage source, comprising: A dynamic random access memory core circuit has a dynamic random access memory unit, wherein the dynamic random access memory unit includes an access transistor and a storage capacitor; an input/output circuit coupled to the external logic circuit; and a peripheral circuit arranged between the input/output circuit and the dynamic random access memory core circuit; Wherein the voltage level provided by the main power supply voltage source to the DRAM is the same or substantially the same as the voltage level provided by another main power supply voltage source to the external logic circuit, and the main power supply voltage source The voltage level provided to the DRAM is not greater than 0.9V. 如請求項10所述的動態隨機存取記憶體,其中施加在該周邊電路内的一電晶體的汲極的一操作供電電壓和該主供電電壓源提供給該動態隨機存取記憶體的該電壓位準相同。The dynamic random access memory as described in claim 10, wherein an operating power supply voltage applied to a drain of a transistor in the peripheral circuit and the main power supply voltage source are provided to the dynamic random access memory The voltage levels are the same. 如請求項11所述的動態隨機存取記憶體,其中施加在該動態隨機存取記憶體核心電路內的一電晶體的汲極的一操作供電電壓和該主供電電壓源提供給該動態隨機存取記憶體的該電壓位準相同,且該動態隨機存取記憶體核心電路內的該電晶體異於該存取電晶體。The dynamic random access memory as described in claim 11, wherein an operation supply voltage applied to the drain of a transistor in the core circuit of the dynamic random access memory and the main supply voltage source are provided to the dynamic random access memory The voltage levels for accessing memory are the same, and the transistor in the DRAM core circuit is different from the access transistor. 如請求項12所述的動態隨機存取記憶體,其中應用在該動態隨機存取記憶體中該高電位信號的電壓位準和該主供電電壓源提供給該動態隨機存取記憶體的電壓位準相同。The dynamic random access memory as claimed in claim 12, wherein the voltage level of the high potential signal applied in the dynamic random access memory and the voltage provided by the main power supply voltage source to the dynamic random access memory same level. 如請求項10所述的動態隨機存取記憶體,其中該輸入/輸出電路沒有一輸入比較電路和一輸出電位轉換電路。The DRAM according to claim 10, wherein the input/output circuit does not have an input comparison circuit and an output potential conversion circuit. 如請求項10所述的動態隨機存取記憶體,另包含: 一第一維持電壓源,用於產生一第一電壓,其中該第一電壓高於應用在該動態隨機存取記憶體中一高電位信號的電壓位準;及 一字元線,耦接於該存取電晶體的閘極,其中該字元線於一第一時間區間與一第二時間區間被選擇以開啟該存取電晶體,該第二時間區間位於該第一時間區間後,以及在該第二時間區間,該第一維持電壓源電耦接於該儲存電容。 The dynamic random access memory as described in claim item 10, further comprising: a first sustain voltage source for generating a first voltage, wherein the first voltage is higher than the voltage level of a high potential signal applied in the dynamic random access memory; and a word line coupled to the gate of the access transistor, wherein the word line is selected to turn on the access transistor during a first time interval and a second time interval, the second time interval is located at After the first time interval, and during the second time interval, the first sustain voltage source is electrically coupled to the storage capacitor. 如請求項15所述的動態隨機存取記憶體,其中該第一時間區間是一存取操作區間,以及該第二時間區間是一恢復階段。The DRAM according to claim 15, wherein the first time interval is an access operation interval, and the second time interval is a recovery phase. 一種記憶體系統,包含: 一動態隨機存取記憶體晶片;及 一邏輯晶片,電耦接於該動態隨機存取記憶體晶片; 其中一主供電電壓源提供給該動態隨機存取記憶體晶片的電壓位準是和另一主供電電壓源提供給該邏輯晶片的電壓位準相同或是實質上相同,且該主供電電壓源提供給該動態隨機存取記憶體晶片的電壓位準不大於0.9V。 A memory system comprising: a dynamic random access memory chip; and a logic chip electrically coupled to the dynamic random access memory chip; The voltage level provided by one of the main power supply voltage sources to the DRAM chip is the same or substantially the same as the voltage level provided by the other main power supply voltage source to the logic chip, and the main power supply voltage source The voltage level provided to the DRAM chip is not greater than 0.9V. 如請求項17所述的記憶體系統,其中該動態隨機存取記憶體晶片包含一動態隨機存取記憶體電路,該邏輯晶片包含一邏輯電路和一實體層電路,提供給該動態隨機存取記憶體晶片的該主供電電壓源也提供給該動態隨機存取記憶體電路,以及提供給該邏輯晶片的該另一主供電電壓源 也提供給該邏輯電路和該實體層電路。The memory system as claimed in claim 17, wherein the DRAM chip includes a DRAM circuit, and the logic chip includes a logic circuit and a physical layer circuit for providing the DRAM The main supply voltage source of the memory die is also provided to the DRAM circuit, and the other main supply voltage source provided to the logic die is also provided to the logic circuit and the physical layer circuit. 如請求項17所述的記憶體系統,另包含一基礎晶片(based chip),其中該基礎晶片電耦接於該動態隨機存取記憶體晶片,以及該主供電電壓源提供給該動態隨機存取記憶體晶片的電壓位準是和另一主供電電壓源提供給該基礎晶片的電壓位準相同或是實質上相同。The memory system as described in claim 17, further comprising a base chip (based chip), wherein the base chip is electrically coupled to the DRAM chip, and the main power supply voltage source is provided to the DRAM The voltage level of the memory chip is the same or substantially the same as the voltage level provided to the base chip by another main power supply voltage source. 如請求項19所述的記憶體系統,其中該動態隨機存取記憶體晶片包含一動態隨機存取記憶體電路,該邏輯晶片包含一邏輯電路,以及該基礎晶片包含一實體層電路;其中提供給該動態隨機存取記憶體晶片的該主供電電壓源也提供給該動態隨機存取記憶體電路,提供給該邏輯晶片的該另一主供電電壓源也提供給該邏輯電路,以及提供給該基礎晶片的該主供電電壓源也提供給該實體層電路。The memory system of claim 19, wherein the DRAM chip includes a DRAM circuit, the logic chip includes a logic circuit, and the base chip includes a physical layer circuit; wherein there is provided The main supply voltage source to the DRAM chip is also provided to the DRAM circuit, the other main supply voltage source provided to the logic chip is also provided to the logic circuit, and to the The main supply voltage source of the base die is also provided to the physical layer circuitry. 如請求項17所述的記憶體系統,其中該動態隨機存取記憶體晶片包含一動態隨機存取記憶體單元和一第一維持電壓源,該動態隨機存取記憶體單元包含一儲存電容和一存取電晶體,該第一維持電壓源產生一第一電壓,以及該第一電壓高於應用在該動態隨機存取記憶體中一高電位信號的電壓位準,其中該第一維持電壓源在該存取電晶體關閉前耦接於該儲存電容。The memory system according to claim 17, wherein the DRAM chip includes a DRAM unit and a first sustain voltage source, and the DRAM unit includes a storage capacitor and An access transistor, the first sustain voltage source generates a first voltage, and the first voltage is higher than the voltage level of a high potential signal applied in the dynamic random access memory, wherein the first sustain voltage A source is coupled to the storage capacitor before the access transistor is turned off. 如請求項21所述的記憶體系統,其中該動態隨機存取記憶體另包含一輸入/輸出電路和和介於該輸入/輸出電路和該動態隨機存取記憶體單元之間的一周邊電路,以及該輸入/輸出電路沒有一輸入比較電路和一輸出電位轉換電路。The memory system according to claim 21, wherein the DRAM further comprises an input/output circuit and a peripheral circuit between the I/O circuit and the DRAM unit , and the input/output circuit does not have an input comparison circuit and an output potential conversion circuit. 如請求項17所述的記憶體系統,另包含一實體層電路,其中該實體層電路包含一輸入/輸出實體層電路,以及該輸入/輸出實體層電路沒有一輸入比較電路和一輸出電位轉換電路。The memory system as described in claim 17, further comprising a physical layer circuit, wherein the physical layer circuit includes an input/output physical layer circuit, and the input/output physical layer circuit does not have an input comparison circuit and an output potential conversion circuit. 一種動態隨機存取記憶體,包含: 一動態隨機存取記憶體單元,包含一存取電晶體和一儲存電容; 一感測放大器,通過一位元線耦接於該動態隨機存取記憶體單元;及 一數據路徑,耦接於該感測放大器; 其中在一高電位信號被寫入該儲存電容的過程中,在該數據路徑上的該高電位信號的電壓位準小於儲存在該儲存電容中的該高電位信號的電壓位準,且在該數據路徑上的該高電位信號的電壓位準是介於0.9V和0.5V之間。 A dynamic random access memory comprising: A dynamic random access memory unit, including an access transistor and a storage capacitor; a sense amplifier coupled to the DRAM unit through a bit line; and a data path coupled to the sense amplifier; Wherein in the process of a high potential signal being written into the storage capacitor, the voltage level of the high potential signal on the data path is lower than the voltage level of the high potential signal stored in the storage capacitor, and in the The voltage level of the high potential signal on the data path is between 0.9V and 0.5V. 如請求項24所述的動態隨機存取記憶體,其中僅有在由一電子設備工程聯合委員會(Joint Electron Device Engineering Council,JEDEC)的雙倍數據速率記憶體規範所定義的一預定時間後,該高電位信號的電壓位準才會被儲存於該儲存電容。The dynamic random access memory as claimed in claim 24, wherein only after a predetermined time defined by the double data rate memory specification of an Electronic Equipment Engineering Joint Committee (Joint Electron Device Engineering Council, JEDEC), The voltage level of the high potential signal is stored in the storage capacitor. 如請求項24所述的動態隨機存取記憶體,其中該數據路徑包含一全域輸入/輸出路徑(global I/O path)和一數據線,以及在該全域輸入/輸出路徑上或在該數據線上的該高電位信號的電壓位準是介於0.7V和0.5V之間。The dynamic random access memory as described in claim 24, wherein the data path includes a global I/O path (global I/O path) and a data line, and on the global I/O path or on the data The voltage level of the high potential signal on the line is between 0.7V and 0.5V. 一種動態隨機存取記憶體,包含: 一動態隨機存取記憶體單元,包含一存取電晶體和一儲存電容; 一感測放大器,通過一位元線耦接於該動態隨機存取記憶體單元;及 一數據路徑,耦接於該感測放大器; 其中在該數據路徑上對應一高電位信號的讀取數據的電壓位準高於在該數據路徑上對應另一高電位信號的寫入數據的電壓位準。 A dynamic random access memory comprising: A dynamic random access memory unit, including an access transistor and a storage capacitor; a sense amplifier coupled to the DRAM unit through a bit line; and a data path coupled to the sense amplifier; Wherein the voltage level of read data corresponding to a high potential signal on the data path is higher than the voltage level of write data corresponding to another high potential signal on the data path. 如請求項27所述的動態隨機存取記憶體,其中該寫入數據是儲存在該儲存電容,以及儲存在該儲存電容中的該寫入數據的一電壓位準高於在該數據路徑上的該寫入數據的電壓位準。The dynamic random access memory as claimed in claim 27, wherein the write data is stored in the storage capacitor, and a voltage level of the write data stored in the storage capacitor is higher than that on the data path The voltage level of the written data. 如請求項27所述的動態隨機存取記憶體,其中在該數據路徑上對應該高電位信號的讀取數據的電壓位準是介於1.2V和1.0V之間,以及在該數據路徑上對應該另一高電位信號的寫入數據的電壓位準是介於0.9V和0.5V之間。The dynamic random access memory as described in claim 27, wherein the voltage level of the read data corresponding to the high potential signal on the data path is between 1.2V and 1.0V, and on the data path The voltage level of the write data corresponding to the other high potential signal is between 0.9V and 0.5V. 一種動態隨機存取記憶體,包含: 一動態隨機存取記憶體單元,包含一存取電晶體和一儲存電容; 一感測放大器,通過一位元線耦接於該動態隨機存取記憶體單元;及 一數據路徑,耦接於該感測放大器; 其中在一讀取操作期間,一全域輸入/輸出路徑上或在一數據線上的一電壓振幅大於在一寫入操作期間,該全域輸入/輸出路徑上或該數據線上的一電壓振幅。 A dynamic random access memory comprising: A dynamic random access memory unit, including an access transistor and a storage capacitor; a sense amplifier coupled to the DRAM unit through a bit line; and a data path coupled to the sense amplifier; During a read operation, a voltage amplitude on a global I/O path or on a data line is greater than a voltage amplitude on the global I/O path or on the data line during a write operation. 如請求項30所述的動態隨機存取記憶體,其中在該讀取操作期間,該全域輸入/輸出路徑上或該數據線上的該電壓振幅是介於1.2V和1.0V之間,以及在該寫入操作期間,該全域輸入/輸出路徑上或該數據線上的該電壓振幅是介於0.8V和0.6V之間。The dynamic random access memory as described in claim 30, wherein during the read operation, the voltage amplitude on the global input/output path or the data line is between 1.2V and 1.0V, and at During the write operation, the voltage amplitude on the global I/O path or the data line is between 0.8V and 0.6V. 如請求項30所述的動態隨機存取記憶體,其中應用於該動態隨機存取記憶體操作的一控制信號和一地址信號的電壓振幅大於在該寫入操作期間,該全域輸入/輸出路徑上或該數據線上的該電壓振幅。The dynamic random access memory of claim 30, wherein voltage amplitudes of a control signal and an address signal applied to the dynamic random access memory operation are greater than that of the global input/output path during the write operation the voltage amplitude on or on the data line.
TW111119848A 2021-05-28 2022-05-27 Sustainable dram having principle power supply voltage unified with logic circuit TWI815481B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US17/333,836 US20210295893A1 (en) 2018-12-10 2021-05-28 Sustainable dram having principle power supply voltage unified with logic circuit
US17/333,836 2021-05-28
US202163195078P 2021-05-31 2021-05-31
US63/195,078 2021-05-31
US17/717,116 US20220246199A1 (en) 2018-12-10 2022-04-10 Dynamic memory with sustainable storage architecture
US17/717,116 2022-04-10

Publications (2)

Publication Number Publication Date
TW202247165A true TW202247165A (en) 2022-12-01
TWI815481B TWI815481B (en) 2023-09-11

Family

ID=84157261

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111119848A TWI815481B (en) 2021-05-28 2022-05-27 Sustainable dram having principle power supply voltage unified with logic circuit

Country Status (4)

Country Link
JP (2) JP7486545B2 (en)
KR (1) KR20220161213A (en)
CN (1) CN115410612A (en)
TW (1) TWI815481B (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164813A (en) * 1998-11-30 2000-06-16 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit
KR100778178B1 (en) * 2000-07-07 2007-11-22 모사이드 테크놀로지스 코포레이션 Method and apparatus for synchronization of row and column access operations
US7864597B2 (en) * 2004-11-29 2011-01-04 Stmicroelectronics, Inc. Method and circuit for controlling generation of a boosted voltage in devices receiving dual supply voltages
US7499307B2 (en) * 2005-06-24 2009-03-03 Mosys, Inc. Scalable embedded DRAM array
KR100911196B1 (en) * 2007-12-07 2009-08-06 주식회사 하이닉스반도체 Semiconductor Memory Apparatus
US7852686B2 (en) * 2008-04-03 2010-12-14 Taiwan Semiconductor Manufacturing Company, Ltd. Circuit and method for a sense amplifier with instantaneous pull up/pull down sensing
US8391094B2 (en) * 2009-02-10 2013-03-05 Taiwan Semiconductor Manufacturing Company, Ltd. Memory circuits, systems, and operating methods thereof
US11302383B2 (en) * 2018-12-10 2022-04-12 Etron Technology, Inc. Dynamic memory with sustainable storage architecture
CN117457634A (en) * 2018-12-10 2024-01-26 钰创科技股份有限公司 Unified integrated circuit system

Also Published As

Publication number Publication date
CN115410612A (en) 2022-11-29
JP7486545B2 (en) 2024-05-17
KR20220161213A (en) 2022-12-06
JP2022183131A (en) 2022-12-08
TWI815481B (en) 2023-09-11
JP2024074824A (en) 2024-05-31

Similar Documents

Publication Publication Date Title
US7872923B2 (en) Low voltage sensing scheme having reduced active power down standby current
US8354863B2 (en) Control signal generation circuit and sense amplifier circuit using the same
US7505341B2 (en) Low voltage sense amplifier and sensing method
US7019561B2 (en) Low-voltage sense amplifier and method
US8295113B2 (en) Semiconductor device
US9183921B2 (en) Circuit for reducing leakage current
US7675798B2 (en) Sense amplifier control circuit and semiconductor device using the same
US11349479B2 (en) Input buffer circuit
TW201812763A (en) Ultra-low-voltage CMOS circuit and the same for memory
US20110032780A1 (en) Semiconductor device
TW200532688A (en) Semiconductor storage device
US20220246199A1 (en) Dynamic memory with sustainable storage architecture
US20210295893A1 (en) Sustainable dram having principle power supply voltage unified with logic circuit
TWI793437B (en) Dynamic memory with enhanced access and restore architecture
TWI815481B (en) Sustainable dram having principle power supply voltage unified with logic circuit
TWI699764B (en) Memory write operation apparatus and method
KR20080083432A (en) Write driver of semiconductor memory device and operation method thereof
TWI809818B (en) Dynamic memory with sustainable storage architecture and clean up circuit
TWI810800B (en) Dynamic random access memory chip
JP2004039105A (en) Semiconductor memory
CN114078512A (en) Dynamic random access memory with reinforced access and recovery structure