TW202246882A - 遮罩基底、反射型遮罩及半導體元件之製造方法 - Google Patents

遮罩基底、反射型遮罩及半導體元件之製造方法 Download PDF

Info

Publication number
TW202246882A
TW202246882A TW111118479A TW111118479A TW202246882A TW 202246882 A TW202246882 A TW 202246882A TW 111118479 A TW111118479 A TW 111118479A TW 111118479 A TW111118479 A TW 111118479A TW 202246882 A TW202246882 A TW 202246882A
Authority
TW
Taiwan
Prior art keywords
film
light
mask
wavelength
reflective
Prior art date
Application number
TW111118479A
Other languages
English (en)
Inventor
池邊洋平
打田崇
Original Assignee
日商Hoya股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Hoya股份有限公司 filed Critical 日商Hoya股份有限公司
Publication of TW202246882A publication Critical patent/TW202246882A/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

本發明之課題為提供一種可製造出當以EUV曝光裝置來進行曝光轉印時,能夠實現優異轉印特性的反射型遮罩之遮罩基底。 一種遮罩基底,係於基板的主表面上依序設置有多層反射膜與圖案形成用薄膜。薄膜係由含金屬材料所構成,使薄膜相對於波長λ L=13.2nm的光之折射率為n L,使薄膜相對於波長λ M=13.5nm的光之折射率為n M,使薄膜相對於波長λ H=13.8nm的光之折射率為n H,當係數P=[(1-n H)/λ H-(1-n L)/λ L)]/[(1-n M)/λ M]時,係數P的絕對值會成為0.09以下。

Description

遮罩基底、反射型遮罩及半導體元件之製造方法
本發明係關於一種為用以製造半導體元件製造等所使用的曝光用遮罩之原版之遮罩基底、反射型遮罩及半導體元件之製造方法。
半導體元件製造中的曝光裝置在逐漸縮短光源波長的同時也在不斷發展。為實現更微細的圖案轉印,已開發出一種使用波長為13.5nm左右的極紫外線(EUV:Extreme Ultra Violet。以下有稱作EUV光的情況。)之EUV微影。EUV微影中,由於相對於EUV光為透明的材料較少,故會使用反射型遮罩。代表性的反射型遮罩有反射型二元式遮罩及反射型相移遮罩(反射型半調式相移遮罩)。
上述般EUV微影用反射型遮罩以及用以製作其之遮罩基底相關的技術已被記載於專利文獻1、2。
專利文獻1中揭示一種極紫外線曝光用遮罩,係具備形成於基板上之多層膜所構成的高反射部與形成於該多層膜的一部分上之單層膜所構成的低反射部。該遮罩中,來自該低反射部的反射光係相對於來自該高反射部的反射光而為5~15%的反射率,且相對於來自該高反射部的反射光會具有175~185度的相位差,相對於構成該低反射部之單層膜的曝光波長之折射率(1-δ)及消光係數β在以折射率(1-δ)及消光係數β作為座標軸之平面座標中,係位在連結特定點座標(1-δ,β)之區域內。
專利文獻2中揭示一種反射型遮罩基底,係於基板上依序具有多層反射膜、保護膜及會使EUV光的相位偏移之相移膜。該反射型遮罩基底的特徵為該相移膜係由具有2種以上的金屬之合金構成的材料所構成,來讓該相移膜表面的反射率為超過3%但20%以下,且具有特定的170度~190度的相位差,當以滿足k>α*n+β的折射率n、消光係數k之金屬元素群作為群A,滿足k<α*n+β的折射率n、消光係數k之金屬元素群作為群B,該合金係由該群A與該群B來分別選擇1種以上的金屬元素,並調整組成比,以使該相移膜的膜厚相對於設定膜厚而改變±0.5%時之該相位差的變化量為±2度的範圍,且反射率的變化量會成為±0.2%的範圍。(其中,α:比例常數,β:常數。)
專利文獻1:日本特開2006-228766號公報 專利文獻2:日本特開2018-146945號公報
若使得圖案愈微細及愈提高圖案尺寸或圖案位置的精確度,則半導體元件的電性特性及性能便會提升,又,可提高集積度及降低晶片尺寸。於是,EUV微影已被要求須具有較以往更為提升的高精度且微細尺寸的圖案轉印性能。目前已被要求須能夠對應於hp16nm(half pitch 16nm)世代之超微細且高精度的圖案形成。相對於上述般之需求,已被要求使用一種以EUV光作為曝光光線,且進一步地使用相移效果之反射型遮罩。
已進行設計來使得使用上述般相移效果的反射型遮罩會在EUV光的中心波長(即13.5nm)中,於基板的主表面上設置有多層反射膜,且讓該多層反射膜上所設置的圖案形成用薄膜(例如吸收體膜)具有相移效果。 反射型遮罩已被要求須更加提升曝光轉印特性。尤其是反射型遮罩(該反射型遮罩係具備形成有利用相移效果的轉印圖案(例如吸收體圖案)之薄膜)的情況,已被要求須更加提升該薄膜的光學特性。
因此,本發明之目的為提供一種可製造出當以EUV曝光裝置來進行曝光轉印時,能夠實現優異轉印特性的反射型遮罩之遮罩基底。
又,本發明之目的為提供一種當以EUV曝光裝置來進行曝光轉印時,能夠實現優異的轉印特性之反射型遮罩,以及提供一種使用該反射型遮罩之半導體元件的製造方法。
為解決上述課題,本發明係具有以下的構成。
(構成1) 一種遮罩基底,係於基板的主表面上依序設置有多層反射膜與圖案形成用薄膜; 該薄膜係由含金屬材料所構成; 使該薄膜相對於波長λ L=13.2nm的光之折射率為n L; 使該薄膜相對於波長λ M=13.5nm的光之折射率為n M; 使該薄膜相對於波長λ H=13.8nm的光之折射率為n H; 當係數P=[(1-n H)/λ H-(1-n L)/λ L)]/[(1-n M)/λ M]時; 該係數P的絕對值會成為0.09以下。
(構成2) 如構成1之遮罩基底,其中該薄膜相對於波長λ M的光之折射率n M為0.96以下。
(構成3) 如構成1或2之遮罩基底,其中該薄膜的厚度為未達100nm。
(構成4) 如構成1至3中之任一遮罩基底,其係於該多層反射膜與該薄膜之間具備保護膜。
(構成5) 如構成1至4中之任一遮罩基底,其中該薄膜係相對於該波長λ M的光,會使來自該薄膜的反射光與來自該多層反射膜的反射光之間產生130度至230度的相位差。
(構成6) 一種反射型遮罩,係於基板的主表面上依序設置有多層反射膜與形成有轉印圖案之薄膜; 該薄膜係由含金屬材料所構成; 使該薄膜相對於波長λ L=13.2nm的光之折射率為n L; 使該薄膜相對於波長λ M=13.5nm的光之折射率為n M; 使該薄膜相對於波長λ H=13.8nm的光之折射率為n H; 當係數P=[(1-n H)/λ H-(1-n L)/λ L)]/[(1-n M)/λ M]時; 該係數P的絕對值會成為0.09以下。
(構成7) 如構成6之反射型遮罩,其中該薄膜相對於波長λ M的光之折射率n M為0.96以下。
(構成8) 如構成6或7之反射型遮罩,其中該薄膜的厚度為未達100nm。
(構成9) 如構成6至8中之任一反射型遮罩,其係於該多層反射膜與該薄膜之間具備保護膜。
(構成10) 如構成6至9中之任一反射型遮罩,其中該薄膜係相對於該波長λ M的光,會使來自該薄膜的反射光與來自該多層反射膜的反射光之間產生130度至230度的相位差。
(構成11) 一種半導體裝置之製造方法,係具備使用如構成6至10中之任一反射型遮罩,來將該轉印圖案曝光轉印在半導體基板上的阻膜之工序。
依據本發明,便可提供一種可製造出當以EUV曝光裝置來進行曝光轉印時,能夠實現優異轉印特性的反射型遮罩之遮罩基底。
又,依據本發明,便可提供一種可製造出當以EUV曝光裝置來進行曝光轉印時,能夠實現優異轉印特性的反射型遮罩之反射型遮罩及其製造方法,且可提供一種使用該反射型遮罩之半導體元件的製造方法。
以下,針對本發明之實施型態加以說明,首先,就本發明完成的經過來加以說明。本案發明人針對當以EUV曝光裝置來進行曝光轉印時,能夠實現優異轉印特性的方法苦心進行了檢討。 本案發明人認為在構成圖案形成用薄膜之吸收體膜的材料選擇上,若亦考慮EUV光之中心波長以外的波長帶,則可提高反射型遮罩之吸收體圖案的光學特性。關於此,使用圖3來加以說明。圖3係顯示在本發明之實施型態的反射型遮罩基底中,當使用EUV光來作為曝光光線時,在多層反射膜上之反射率與波長的關係之圖表。如由同圖即可掌握般地,在EUV曝光裝置中,入射至多層反射膜的EUV光不僅是中心波長(即13.5nm),且在其附近的波長帶處亦會具有某種程度的振幅。如同圖所示,多層反射膜雖在中心波長(即13.5nm)處具有超過70%的高反射率,但在其附近的波長帶處亦具有無法忽視的反射率。例如在13.0nm~14.0nm的波長帶處,係具有超過10%的反射率,在13.2nm~13.8nm的波長帶處,則是具有超過30%的反射率。
膜材料的折射率n會依曝光光線的波長而改變。另一方面,反射型遮罩中,從多層反射膜所反射的EUV光與從吸收體膜所反射的EUV光之間的相位差φ可由下式(1)來計算出,該式(1)中使用了光的波長λ、在該波長λ中的折射率n、及膜厚d(由於為反射型,故光線路徑差會變成2d)。 與真空中(n=1)的相位差φ: 2π(1-n)×2d/λ=4π(1-n)d/λ…式(1) 推測該相位差φ若在具有波長帶之EUV光的各波長而愈接近相同數值(在具有波長帶之EUV光的各波長中之相位差φ的變異Δφ愈小),則相移效果便會愈高。
上述式(1)中,膜厚d會受到來自光學特性觀點的限制。因此,便著眼於上述式(1)中除了膜厚d外之4π(1-n)/λ的部分。 在苦心研究後,結果得到以下結論:以薄膜相對於波長λ L=13.2nm、λ M=13.5nm、λ H=13.8nm的各光之各折射率作為n L、n M、n H,若為當使得係數A L=4π×(1-n L)/λ L、A M=4π×(1-n M)/λ M、A H=4π×(1-n H)/λ H、係數P=(A H-A L)/A M時會滿足|P|≦0.09的條件之薄膜,則以EUV曝光裝置來進行曝光轉印時,便可將在EUV光的波長帶λ L=13.2nm~λ H=13.8nm中之相位差φ LH的變異Δφ(=φ HL。以下,亦有簡稱作「相位差Δφ」的情況。)的大小抑制為20度以下,從而可實現優異的轉印特性。此處,係數P可如以下般地展開。 係數P=(A H-A L)/A M=[(1-n H)/λ H-(1-n L)/λ L)]/[(1-n M)/λ M]
本發明是乃是上述般苦心研究的結果而完成的發明。此外,上述係數P的導出方法並未侷限於本發明之權利範圍(係數A L、A M、A H並非本發明之必須要素)。 本實施型態係設計為在EUV光的中心波長λ M處之相位差φ M會成為約1.2π(約216度)。其理由為會因反射型光學系統所致之雙重繞射(Double Diffraction)的發生,或吸收體圖案、多層膜的影響,而導致實效性的反射面會較吸收體膜與多層反射膜的界面而更靠近基板側的位置之緣故。然而,本發明並未侷限於此,亦可應用在例如被設計為在EUV光的中心波長λ M處之相位差φ M會成為π(180度)之圖案形成用薄膜。若使得相位差φ M成為π(180度)的情況,則在EUV光的波長帶(λ LH)處,藉由使得係數P的絕對值成為0.09以下,便可將相位差Δφ(=φ HL)的大小抑制在17度以下。
以下,針對本發明之實施型態,參照圖式來具體地說明。此外,以下的實施型態乃為將本發明予以具體化之際的一型態,而非將本發明限定在其範圍內。此外,圖式中針對相同或相當的部分,會有賦予相同符號而簡化或省略其說明之情況。
<反射型遮罩基底100的構成及其製造方法> 圖1係用以說明本實施型態之反射型遮罩基底100的構成之主要部分剖面示意圖。如圖1所示,反射型遮罩基底100係具有依序層積有基板1、多層反射膜2、保護膜3及吸收體膜4之構造。多層反射膜2係形成於第1主面(外側表面)側,會以高反射率來反射曝光光線,即EUV光。保護膜3係為了保護多層反射膜2而加以設置,且由相對於將後述吸收體膜4加以圖案化之際所使用的蝕刻劑及洗淨液而具有耐受性之材料所形成。吸收體膜4不僅會吸收EUV光且具有相移功能。又,基板1的第2主面(內側表面)側係形成有靜電夾具用的導電膜(圖中未顯示)。此外,亦可於吸收體膜4上具有蝕刻遮罩膜。
本說明書中,「於基板1的主表面上具有多層反射膜2」係指除了於基板1的表面相接地配置有多層反射膜2之情況以外,亦包括於基板1與多層反射膜2之間具有其他膜的情況。關於其他膜亦是相同。例如「於膜A上具有膜B」係指除了膜A與膜B是直接相接般地配置以外,亦包括於膜A與膜B之間具有其他膜的情況。又,本說明書中,例如「膜A係相接地配置於膜B的表面」係指膜A與膜B間並未介設有其他膜,膜A與膜B是直接相接般地配置。
以下,關於本實施型態,針對每個層來加以說明。
<<基板1>> 為了防止基板1因EUV光之曝光時的熱而導致吸收體圖案(轉印圖案)4a(參照圖2)發生變形,較佳宜使用具有0±5ppb/℃之範圍內的低熱膨脹係數者。可使用例如SiO 2-TiO 2系玻璃、多成分系玻璃陶瓷等來作為具有此範圍的低熱膨脹係數之材料。
基板1形成有轉印圖案(後述吸收體圖案4a係對應於此。)一側的第1主面由至少會獲得圖案轉印精確度、位置精確度之觀點來看,表面係被加工成高平坦度。當EUV曝光的情況,基板1形成有轉印圖案一側的主表面(第1主面)在132mm×132mm的區域中,平坦度較佳為0.1μm以下,更佳為0.05μm以下,特佳為0.03μm以下。又,與形成有轉印圖案一側為相反側的第2主面乃為安裝於曝光裝置時會被靜電夾持之面,在132mm×132mm的區域中,平坦度較佳為0.1μm以下,更佳為0.05μm以下,特佳為0.03μm以下。此外,反射型遮罩基底100中之第2主面側的平坦度在142mm×142mm的區域中,平坦度較佳為1μm以下,更佳為0.5μm以下,特佳為0.3μm以下。
又,基板1之表面平滑度的高低亦為極重要之項目。基板1之第1主面的表面粗糙度以均方根粗糙度(RMS)來說,較佳為0.1nm以下。此外,表面平滑度可使用原子力顯微鏡來測定。
進一步地,為了抑制基板1因形成於其上之膜(多層反射膜2等)的膜應力所致之變形,較佳宜具有高剛性。特別是基板1較佳宜具有65GPa以上的高楊氏係數。
<<多層反射膜2>> 多層反射膜2為一種會在反射型遮罩200中賦予能夠讓EUV光反射的功能之膜,且是週期性地層積有以折射率不同的元素來作為主成分的各層之多層膜。
一般來說,係使用交互地層積有40~60週期左右為高折射率材料的輕元素或其化合物的薄膜(高折射率層)與為低折射率材料的重元素或其化合物的薄膜(低折射率層)之多層膜來作為多層反射膜2。多層膜可以從基板1側依序層積有高折射率層與低折射率層的高折射率層/低折射率層之層積構造來作為1週期而層積複數週期。又,多層膜亦可以從基板1側依序層積有低折射率層與高折射率層的低折射率層/高折射率層之層積構造來作為1週期而層積複數週期。此外,多層反射膜2之最表面的層,即多層反射膜2之與基板1為相反側的表面層較佳為高折射率層。上述多層膜中,以從基板1依序層積有高折射率層與低折射率層的高折射率層/低折射率層之層積構造來作為1週期而層積複數週期的情況,則最上層便會成為低折射率層。此情況下,若是低折射率層構成了多層反射膜2的最表面,便會容易被氧化而導致反射型遮罩200的反射率減少。因此,較佳為在最上層的低折射率層上另形成高折射率層來作為多層反射膜2。另一方面,上述多層膜中,以從基板1側依序層積有低折射率層與高折射率層的低折射率層/高折射率層之層積構造來作為1週期而層積複數週期的情況,由於最上層會成為高折射率層,故保持現狀即可。
本實施型態中,係採用含有矽(Si)之層來作為高折射率層。作為含有Si之材料,除了Si單體以外,可使用於Si含有硼(B)、碳(C)、氮(N)及氧(O)之Si化合物。藉由使用含有Si之層來作為高折射率層,便可獲得EUV光的反射率優異之EUV微影用反射型遮罩200。又,本實施型態中,較佳宜使用玻璃基板來作為基板1。Si在與玻璃基板之密著性這點上亦非常優異。又,使用選自鉬(Mo)、釕(Ru)、銠(Rh)及鉑(Pt)之金屬單體或該等的合金來作為低折射率層。作為相對於例如波長13nm~14nm的EUV光之多層反射膜2,較佳宜使用交互地層積有40~60週期左右的Mo膜與Si膜之Mo/Si週期層積膜。此外,亦可以矽(Si)來形成為多層反射膜2的最上層之高折射率層。
多層反射膜2單獨的反射率通常為65%以上,上限通常為73%。此外,多層反射膜2之各構成層的厚度及週期只要依曝光波長來適當地選擇即可,係選擇會滿足布拉格反射的定律。多層反射膜2中雖分別存在有複數高折射率層及低折射率層,但高折射率層彼此及低折射率層彼此的厚度亦可不同。又,多層反射膜2之最表面的Si層之膜厚可在不會讓反射率降低之範圍來做調整。可使最表面之Si層(高折射率層)的膜厚為3nm~10nm的範圍。
多層反射膜2的形成方法在該技術領域中為公知。例如可藉由離子束濺射法而成膜出多層反射膜2的各層來加以形成。上述Mo/Si週期層積膜的情況,例如係藉由離子束濺射法,首先使用Si靶材來於基板1上成膜出厚度4nm左右的Si膜。之後使用Mo靶材來成膜出厚度3nm左右的Mo膜。以此Si膜/Mo膜作為1週期,而層積40~60週期來形成多層反射膜2(最表面的層為Si層)。此外,例如使多層反射膜2為60週期的情況,雖然工序數會較40週期增加,但可提高相對於EUV光之反射率。又,在多層反射膜2的成膜之際,較佳宜從離子源供應氪(Kr)離子粒子,並進行離子束濺射來形成多層反射膜2。
<<保護膜3>> 本實施型態之反射型遮罩基底100較佳宜於多層反射膜2與吸收體膜4間具有保護膜3。
為了由後述反射型遮罩200之製造工序中的乾蝕刻及洗淨來保護多層反射膜2,可於多層反射膜2上或相接於多層反射膜2的表面來形成保護膜3。保護膜3係由相對於將吸收體膜4加以圖案化之際所使用的蝕刻劑及洗淨液而具有耐受性之材料所形成。藉由於多層反射膜2上形成有保護膜3,便可抑制在使用具有多層反射膜2及保護膜3的基板1來製造反射型遮罩200(EUV遮罩)之際對多層反射膜2表面所造成的損傷。於是,多層反射膜2相對於EUV光之反射率特性便會變得良好。
當相接於保護膜3的表面之吸收體膜4為含有釕(Ru)之材料(Ru系材料)所構成的薄膜之情況,作為保護膜3的材料,可使用選自矽(Si)、含有矽(Si)及氧(O)之材料、含有矽(Si)及氮(N)之材料、含有矽(Si)與氧(O)及氮(N)之材料等矽系材料之材料。 另一方面,當相接於保護膜3的表面之吸收體膜4為鉭系材料或鉻系材料所構成的薄膜之情況,則保護膜3較佳宜含有釕。保護膜3的材料可為Ru金屬單體,或是於Ru包含有選自鈦(Ti)、鈮(Nb)、鉬(Mo)、鋯(Zr)、釔(Y)、硼(B)、鑭(La)、鈷(Co)及錸(Re)等至少1種金屬之Ru合金,包含有氮亦無妨。
EUV微影中,由於相對於曝光光線為透明的物質較少,故能夠防止異物附著在遮罩圖案面之EUV護膜在技術上並不容易。因此,應用未使用護膜的無護膜便成為主流。又,EUV微影中,會因EUV曝光而發生碳膜沉積在反射型遮罩,或所謂的氧化膜成長之曝光污染。於是,將EUV曝光用的反射型遮罩200使用於半導體元件的製造之階段中,便必須每次皆進行洗淨來去除遮罩上的異物或污染。因此,EUV曝光用的反射型遮罩200中,已被要求需較光微影用透光型遮罩而具有級數差異的遮罩洗淨耐受性。藉由反射型遮罩200係具有保護膜3,便可提高相對於洗淨液之洗淨耐受性。
保護膜3的膜厚只要能達成會保護多層反射膜2之功能,則未特別限制。由EUV光的反射率之觀點來看,保護膜3的膜厚較佳為1.0nm以上8.0nm以下,更佳為1.5nm以上6.0nm以下。
保護膜3的形成方法並未特別限制,可採用與公知的膜形成方法相同者。具體範例舉例有濺射法及離子束濺射法。
<<吸收體膜>> 本實施型態之反射型遮罩基底100係於多層反射膜2上或多層反射膜2上所形成之保護膜3上形成有吸收體膜(圖案形成用薄膜)4。吸收體膜4在反射型遮罩200的狀態中,係形成有吸收體圖案4a,該吸收體圖案4a會構成轉印圖案。 吸收體膜4在EUV曝光光線(中心波長(即13.5nm))中,相對於多層反射膜2的反射率之相對反射率R較佳為1%以上,更佳為2%以上。又,該相對反射率R較佳為40%以下。這是為了以相對於EUV曝光光線之遮罩檢查來確保充分的對比,且以曝光轉印時的圖案像來確保充分的對比之緣故。
本實施型態之後述反射型遮罩200中,在設置有吸收體膜4(吸收體圖案4a)的部分,係以會吸收EUV光來讓光減弱且不會對圖案轉印造成不良影響的程度來使部分光反射。另一方面,開口部(無吸收體膜4的部分)處,則是EUV光會從多層反射膜2(有保護膜3的情況,則是會介隔著保護膜3而從多層反射膜2)反射。來自形成有吸收體膜4之部分的反射光會與來自開口部的反射光而形成所欲的相位差。吸收體膜4係形成為相對於波長λ M(=13.5nm)的光,會使來自吸收體膜4的反射光與來自多層反射膜2的反射光之相位差成為130度至230度。相位差反轉了180度左右或220度左右的光彼此會在圖案邊緣部互相干擾,因而提高投影光學像的像對比。解析度會隨著其像對比的提升而上升,便可擴大曝光量裕度及焦點裕度等曝光相關的各種裕度。
吸收體膜4係由含有金屬元素之材料所構成。該金屬元素可為廣義的金屬元素,可選自鹼金屬、鹼土類金屬、過渡金屬或類金屬。吸收體膜4只要為一種與多層反射膜2之間會具有蝕刻選擇性(形成有保護膜3的情況則為與保護膜3之蝕刻選擇性)之膜,則可選自上述廣義的金屬元素。例如,可將鉻(Cr)、釩(V)、鈀(Pd)、鈦(Ti)、銥(Ir)、Rh(銠)、鉭(Ta)、鈮(Nb)、鉬(Mo)、釕(Ru)、錫(Sn)、鉑(Pt)等使用在吸收體膜4所含有的金屬元素。 又,吸收體膜4可在未背離本發明之效果的範圍內,使其含有選自氧、氮、碳、硼之至少1種以上。
使吸收體膜4相對於該波長λ L=13.2nm的光之折射率為n L,相對於波長λ M=13.5nm的光之折射率為n M,相對於波長λ H=13.8nm的光之折射率為n H,當係數P=[(1-n H)/λ H-(1-n L)/λ L)]/[(1-n M)/λ M]時,係數P的絕對值會成為0.09以下。藉此,則以EUV曝光裝置來進行曝光轉印時,便可將在EUV光的波長帶λ LH中之相位差Δφ(=φ HL)的大小抑制在20度以下。 又,若使得吸收體膜4在EUV光的波長帶λ L=13.2nm~λ H=13.8nm中,係數P的絕對值會成為0.085以下,則可將相位差Δφ抑制在18度以內,由這一點來看為佳。然後,若使得吸收體膜4在EUV光的波長帶λ L=13.2nm~λ H=13.8nm中,係數P的絕對值會成為0.07以下,則可將相位差Δφ抑制在15度以內,由這一點來看更佳。進一步地,若使得吸收體膜4在EUV光的波長帶λ L=13.2nm~λ H=13.8nm中,係數P的絕對值會成為0.045以下,則可將相位差Δφ抑制在10度以內,由這一點來看再更佳。 使吸收體膜4相對於該波長λ L=13.0nm的光之折射率為n L,相對於波長λ M=13.5nm的光之折射率為n M,相對於波長λ H=14.0nm的光之折射率為n H,當係數P=[(1-n H)/λ H-(1-n L)/λ L)]/[(1-n M)/λ M]時,係數P的絕對值會成為0.15以下。藉此,則以EUV曝光裝置來進行曝光轉印時,便可將在EUV光的波長帶λ LH中之相位差Δφ(=φ HL)的大小抑制在35度以下。 又,若使得吸收體膜4在EUV光的波長帶λ L=13.0nm~λ H=14.0nm中,係數P的絕對值會成為0.14以下,則可將相位差Δφ抑制在30度以內,由這一點來看為佳。然後,若使得吸收體膜4在EUV光的波長帶λ L=13.0nm~λ H=14.0nm中,係數P的絕對值會成為0.11以下,則可將相位差Δφ抑制在25度以內,由這一點來看更佳。進一步地,若使得吸收體膜4在EUV光的波長帶λ L=13.0nm~λ H=14.0nm中,係數P的絕對值會成為0.09以下,則可將相位差Δφ抑制在20度以內,由這一點來看再更佳。
作為吸收體膜4的材料,雖如上述般地並未特別限制,較佳可使用鉭系材料或鉻系材料。作為鉭系材料,除了鉭金屬以外,較佳宜應用使鉭(Ta)含有選自氮(N)、氧(O)、硼(B)及碳(C)的一種以上元素之材料等。當中又以包含有選自鉭(Ta)、氧(O)及硼(B)的至少一種元素者為佳。又,以含鉻材料來形成吸收體膜4的情況,除了鉻金屬以外,較佳宜應用於鉻(Cr)含有選自氧(O)、氮(N)、碳(C)、硼(B)及氟(F)的1種以上元素之材料等。特佳為含有鉻(Cr)的氮化物之材料。
又,吸收體膜4相對於波長λ M(=13.5nm)的光之折射率n M較佳為0.960以下,更佳為0.955以下。又,吸收體膜4的折射率n M較佳為0.850以上,更佳為0.870以上。 吸收體膜4相對於波長λ M的光之消光係數k M較佳為0.10以下,更佳為0.08以下,再更佳為0.05以下。從光學模擬的結果來看,相對於波長13.5nm的光,推測來多層反射膜2之反射光的光強度會較來自吸收體膜4的反射光要來得強,且吸收體膜4的反射光會隨著吸收體膜4的消光係數k M變大而降低。推測這是因為藉由使消光係數k M成為上述範圍,則可抑制吸收體膜4的反射光降低,故較佳。
雖依圖案或曝光條件而異,為了獲得相移效果,轉印圖案(吸收體圖案4a)相對於EUV光(中心波長(即13.5nm))之絕對反射率較佳為1%~30%,更佳為2%~25%。
吸收體膜4的相位差及反射率可藉由改變EUV曝光光線中的折射率n L、n M、n H、消光係數k L、k M、k H及膜厚d來做調整。吸收體膜4的膜厚較佳宜未達100nm,更佳為98nm以下,再更佳為90nm以下。吸收體膜4的膜厚較佳為30nm以上。此外,當具有保護膜3的情況,則吸收體膜4的相位差及反射率亦可考慮保護膜3的折射率n、消光係數k及膜厚來做調整。
上述特定材料的吸收體膜4可藉由所謂的DC濺射法及RF濺射法等濺射法,以及使用氧氣等的反應性濺射法之公知的方法來形成。靶材可含有1種金屬,當以2種以上的金屬來構成吸收體膜4的情況,則可使用含有2種以上的金屬(例如Ru與Cr)之合金靶材。又,以2種以上的金屬來構成吸收體膜4的情況,則構成吸收體膜4之薄膜便可藉由例如使用Ru靶材與Cr靶材與之共濺射來成膜。 此外,吸收體膜4亦可為包含有2層以上之多層膜。此情況下,吸收體膜4的所有層較佳宜皆滿足係數P的絕對值為0.09以下之條件。
<<蝕刻遮罩膜>> 可於吸收體膜4上或相接於吸收體膜4的表面來形成蝕刻遮罩膜(圖中未顯示)。作為蝕刻遮罩膜的材料,係使用吸收體膜4相對於蝕刻遮罩膜的蝕刻選擇比會變高般之材料。此處,「B相對於A的蝕刻選擇比」係指不需進行蝕刻之層(成為遮罩之層)(即A)與需進行蝕刻之層(即B)的蝕刻速率之比值。具體來說,係藉由「B相對於A的蝕刻選擇比=B的蝕刻速度/A的蝕刻速度」的算式來特定出。又,「選擇比較高」係指上述定義的選擇比相對於比較對象而為較大值。吸收體膜4相對於蝕刻遮罩膜的蝕刻選擇比較佳為1.5以上,更佳為3以上。
蝕刻遮罩膜的膜厚由精確度佳地於吸收體膜4形成轉印圖案來獲得作為蝕刻遮罩的功能之觀點來看,則最好是2nm以上。又,蝕刻遮罩膜的膜厚由使得阻膜的膜厚較薄之觀點來看,則最好是15nm以下。
<<導電膜>> 基板1的第2主面(內側表面)側(多層反射膜2形成面的相反側)一般來說會形成有靜電夾具用的導電膜(圖中未顯示)。靜電夾具用的導電膜所被要求之電性特性(片電阻)通常為100Ω/□(Ω/Square)以下。導電膜的形成方法可藉由例如磁控濺射法或離子束濺射法,且使用鉻(Cr)及鉭(Ta)等金屬及合金的靶材來形成。
導電膜之含鉻(Cr)材料較佳為含有Cr且進一步地含有選自硼(B)、氮(N)、氧(O)及碳(C)的至少一者之Cr化合物。
作為導電膜之含鉭(Ta)材料,較佳宜使用Ta(鉭)、含有Ta之合金、或是於該等任一者含有硼、氮、氧及碳的至少一者之Ta化合物。
導電膜的厚度只要是會滿足作為靜電夾具用之功能則未特別限制。導電膜的厚度通常為10nm~200nm。又,該導電膜亦兼具遮罩基底100之第2主面側的應力調整之功能。亦即,導電膜係被調整為可與來自第1主面側所形成的各種膜之應力取得平衡,來獲得平坦的反射型遮罩基底100。
<反射型遮罩200及其製造方法> 本實施型態之反射型遮罩200係於反射型遮罩基底100的吸收體膜4形成有轉印圖案(吸收體圖案4a)。形成有轉印圖案之吸收體膜4(吸收體圖案4a)係與上述本實施型態之反射型遮罩基底100的吸收體膜4相同。藉由將上述本實施型態之反射型遮罩基底100的吸收體膜4加以圖案化,便可形成轉印圖案(吸收體圖案4a)。吸收體膜4的圖案化可藉由特定的乾蝕刻氣體來進行。反射型遮罩200的吸收體圖案4a可吸收EUV光,又會使部分EUV光以特定相位差在開口部(未形成有吸收體圖案4a之部分)反射。該特定的乾蝕刻氣體可使用氯系氣體及氧氣的混合氣體、氧氣、以及氟系氣體等。為了將吸收體圖案4a加以圖案化,可依需要而於吸收體圖案4a上設置蝕刻遮罩膜。此情況下,可以蝕刻遮罩圖案作為遮罩來將吸收體膜4乾蝕刻,以形成吸收體圖案4a。
針對使用本實施型態之反射型遮罩基底100來製造反射型遮罩200之方法加以說明。
準備反射型遮罩基底100,並於其第1主面的吸收體膜4上形成阻膜(若反射型遮罩基底100已具有阻膜的情況則不需要)。將所欲的轉印圖案描繪(曝光)在該阻膜,且進一步地進行顯影、沖洗來形成特定的阻劑圖案(具有轉印圖案之阻膜)。
接著,以該阻劑圖案作為遮罩來蝕刻吸收體膜4,以形成吸收體圖案4a(具有轉印圖案的吸收體膜4)。在形成吸收體圖案4a後,去除所殘留的阻劑圖案(當形成有蝕刻遮罩膜的情況,則是以阻劑圖案作為遮罩來對蝕刻遮罩膜進行蝕刻以形成蝕刻遮罩圖案,並以此蝕刻遮罩圖案作為遮罩來形成吸收體圖案4a而去除蝕刻遮罩圖案。)。 最後,使用酸性或鹼性的水溶液來進行濕式洗淨,以製造出本實施型態之反射型遮罩200。
<半導體元件之製造方法> 本實施型態為一種半導體元件之製造方法,係具有使用上述反射型遮罩200或上述反射型遮罩200的製造方法所製造之反射型遮罩200,來將轉印圖案曝光轉印在半導體基板上的阻膜之工序。藉由將本實施型態之反射型遮罩200安裝在具有EUV光的曝光光源之曝光裝置,且將轉印圖案轉印在被轉印基板上所形成的阻膜,便可製造出半導體元件。於是,便可製造出具有微細且高精度的轉印圖案之半導體元件。
[實施例及比較例] 實施例1~16及比較例1、2 以下,針對實施例1~16及比較例1、2,參照圖式來加以說明。本實施型態並未侷限於該等實施例。此外,實施例中,關於相同的構成要素係使用相同的符號而簡化或省略說明。
作為實施例1~16及比較例1、2,針對反射型遮罩基底100的製造方法來加以說明。
準備第1主面及第2主面的兩主表面已經研磨後之6025尺寸(約152mm×152mm×6.35mm)的低熱膨脹玻璃基板(即SiO 2-TiO 2系玻璃基板)來作為基板1。進行粗研磨加工工序、精密研磨加工工序、局部加工工序及接觸研磨加工工序所構成的研磨,以使其成為平坦且平滑的主表面。
接著,藉由磁控濺射(反應性濺射)法且以下述條件來於SiO 2-TiO 2系玻璃基板1的第2主面(內側表面)形成CrN膜所構成的導電膜。導電膜係使用Cr靶材且在氬(Ar)氣與氮(N 2)氣的混合氣體氛圍中來進行成膜,以使其成為20nm的膜厚。
接著,於與形成有導電膜一側為相反側之基板1的主表面(第1主面)上形成多層反射膜2。為了使形成於基板1上之多層反射膜2成為適合於波長13.5nm的EUV光之多層反射膜2,而使其成為鉬(Mo)與矽(Si)所構成的週期層積反射膜。多層反射膜2係使用Mo靶材與Si靶材,且在氪(Kr)氣氛圍中藉由離子束濺射法來於基板1上交互地層積Mo層及Si層所形成。首先,以4.2nm的膜厚來成膜出Si膜,接著,以2.8nm的膜厚來成膜出Mo膜。以此為1週期來同樣地層積40週期,最後,以4.0nm的膜厚來成膜出Si膜,而形成多層反射膜2。
接著,在Ar氣體氛圍中,藉由濺射法來於多層反射膜2的表面成膜出膜厚3.5nm的保護膜3。此外,上述實施例1~16及比較例1、2中,保護膜3的材料係適當地選擇相對於將吸收體膜4加以圖案化之際所使用的乾蝕刻氣體會具有蝕刻耐受性之材料。
接著,在Ar氣體氛圍中,藉由濺射法來於保護膜3的表面成膜出吸收體膜4。上述實施例1~16及比較例1、2中,吸收體膜4的構成元素如下述表1-1、1-2所示,係適當地選擇適於各構成元素之濺射靶材。此外,上述實施例1~16及比較例1、2中,吸收體膜4係設計為在EUV光的中心波長λ M處之相位差φ M會成為1.2π(216度)。 之後,進行特定的洗淨處理等來製造出實施例1~16及比較例1、2中的反射型遮罩基底100。
接著,針對實施例1~16及比較例1、2中的反射型遮罩基底100,如上述製造反射型遮罩200之方法所記載般地,藉由形成阻劑圖案且以阻劑圖案作為遮罩來蝕刻吸收體膜4,以形成吸收體圖案4a(具有轉印圖案的吸收體膜4),並使用酸性或鹼性的水溶液來進行濕式洗淨,以製造出實施例1~16及比較例1、2中的反射型遮罩200。
將實施例1~16及比較例1、2中的反射型遮罩基底100及反射型遮罩200中之吸收體膜4的構成元素;在EUV光的中心波長λ M(=13.5nm)處之折射率n M及消光係數k M;在波長λ L=13.2nm、λ M=13.5nm、λ H=13.8nm處之係數A L=4π×(1-n L)/λ L、A M=4π×(1-n M)/λ M、A H=4π×(1-n H)/λ H;膜厚d;在EUV光的波長帶λ L=13.2nm~λ H=13.8nm中之係數P=(A H-A L)/A M(=[(1-n H)/λ H-(1-n L)/λ L)]/[(1-n M)/λ M]);及相位差Δφ顯示於表1-1、表1-2。
[表1-1]
Figure 02_image001
[表1-2]
Figure 02_image003
如該等表1-1、1-2所示,實施例1~16所示之吸收體膜4的膜厚皆為未達100nm,在EUV光的波長帶λ L=13.2nm~λ H=13.8nm中,係數P的絕對值為0.09以下,可將相位差Δφ抑制在20度以內。實施例1~11、16所示之吸收體膜4進一步地,在EUV光的波長帶λ L=13.2nm~λ H=13.8nm中,係數P的絕對值為0.085以下,可將相位差Δφ抑制在18度以內。然後,實施例1~6、16所示之吸收體膜4在EUV光的波長帶λ L=13.2nm~λ H=13.8nm中,係數P的絕對值為0.07以下,可將相位差Δφ抑制在15度以內。另外,實施例1~3所示之吸收體膜4在EUV光的波長帶λ L=13.2nm~λ H=13.8nm中,係數P的絕對值為0.045以下,可將相位差Δφ抑制在10度以內。
另一方面,比較例1中,在EUV光的波長帶λ L=13.2nm~λ H=13.8nm中,吸收體膜4的相位差Δφ係超過22.49與20度,而具有無法忽視的相位差Δφ。又,比較例2中,吸收體膜4的膜厚為183.31nm,大幅超過未達100nm。
又,表1-1、1-2針對實施例1~16及比較例1、2,亦有顯示出在EUV光的波長帶λ L=13.0nm~λ H=14.0nm中之係數A L=4π×(1-n L)/λ L、A H=4π×(1-n H)/λ H、係數P=(A H-A L)/A M及相位差Δφ。如該等表1-1、1-2所示,實施例1~16所示之吸收體膜4在EUV光的波長帶λ L=13.0nm~λ H=14.0nm中之係數P的絕對值會成為0.15以下,可將相位差Δφ抑制在35度以內。然後,實施例1~12、16所示之吸收體膜4在EUV光的波長帶λ L=13.0nm~λ H=14.0nm中之係數P的絕對值會成為0.14以下,可將相位差Δφ抑制在30度以內。進一步地,實施例1~6、16所示之吸收體膜4在EUV光的波長帶λ L=13.0nm~λ H=14.0nm中之係數P的絕對值會成為0.11以下,可將相位差Δφ抑制在25度以內。進一步地,實施例1~5、16所示之吸收體膜4在EUV光的波長帶λ L=13.0nm~λ H=14.0nm中之係數P的絕對值會成為0.09以下,可將相位差Δφ抑制在20度以內。
又,將實施例1~16及比較例1、2中的反射型遮罩基底100及反射型遮罩200中之吸收體膜4的構成元素;在波長λ L=13.2nm、λ M=13.5nm、λ H=13.8nm處之係數E L=4π×(1-k L)/λ L、E M=4π×(1-k M)/λ M、E H=4π×(1-k H)/λ H;及在EUV光的波長帶λ L=13.2nm~λ H=13.8nm中之係數F=(E H-E L)/E M(=[(1-k H)/λ H-(1-k L)/λ L)]/[(1-k M)/λ M])顯示於表2-1、表2-2(k L、k M、k H為在波長λ L=13.2nm、λ M=13.5nm、λ H=13.8nm處之消光係數。)。此外,表2-1、2-2針對實施例1~16及比較例1、2,亦有顯示出在EUV光的波長帶λ L=13.0nm~λ H=14.0nm中之係數E L=4π×(1-k L)/λ L、E M=4π×(1-k M)/λ M、E H=4π×(1-k H)/λ H,以及在EUV光的波長帶λ L=13.0nm~λ H=14.0nm中之係數F=(E H-E L)/E M(=[(1-k H)/λ H-(1-k L)/λ L)]/[(1-k M)/λ M])。
[表2-1]
Figure 02_image005
[表2-2]
Figure 02_image007
關於消光係數k,在實施例1~16及比較例1、2中,並未見到有意義的差異。
將藉由實施例1~16所獲得之反射型遮罩200安裝在EUV掃描器,來對於半導體基板上形成有被加工膜與阻膜之晶圓進行EUV曝光,並將該曝光後的阻膜顯影,來使得被加工膜於半導體基板上形成阻劑圖案。
藉由實施例1~16所獲得之反射型遮罩200係具備在EUV光的中心波長λ M處之相位差φ M為1.2π,且在EUV光的波長帶λ L=13.2nm~λ H=13.8nm中係數P的絕對值會成為0.09以下之吸收體圖案4a。藉此,當使用EUV光作為曝光光線的情況,便可在EUV光的波長帶λ L=13.2nm~λ H=13.8nm中將相位差Δφ抑制在20度以內,且可精度佳地形成所要求的微細圖案,從而便可製造出具有微細且高精度的轉印圖案之半導體裝置。
進一步地,可藉由蝕刻來將該阻劑圖案轉印在被加工膜,又,藉由經過絕緣膜、導電膜的形成、摻雜物的導入、或退火等各種工序,來以高良率製造出具有所欲特性的半導體裝置。
比較例1之反射型遮罩200係具備在EUV光的波長帶λ L=13.2nm~λ H=13.8nm中係數P的絕對值會大於0.09之吸收體圖案4a。其結果,當使用EUV光作為曝光光線的情況,便會無法在EUV光的波長帶λ L=13.2nm~λ H=13.8nm中將相位差Δφ抑制在22.49度與20度以內,且無法充分地獲得相移效果。於是,便無法精度佳地形成所要求的微細圖案,且無法製造出具有微細且高精度的轉印圖案之半導體裝置。
進一步地,會無法藉由蝕刻來將該阻劑圖案轉印在被加工膜,又,無法藉由經過絕緣膜、導電膜的形成、摻雜物的導入、或退火等各種工序來以高良率製造出具有所欲特性的半導體裝置。
比較例2之反射型遮罩200是以SiO 2來構成吸收體膜4,並未含有金屬元素。其結果,則吸收體膜4的膜厚便會大幅超過184.31nm與100nm,而無法獲得良好的轉印特性,便無法製造出具有微細且高精度的轉印圖案之半導體裝置。
進一步地,會無法藉由蝕刻來將該阻劑圖案轉印在被加工膜,又,無法藉由經過絕緣膜、導電膜的形成、摻雜物的導入、或退火等各種工序來以高良率製造出具有所欲特性的半導體裝置。
1:基板 2:多層反射膜 3:保護膜 4:吸收體膜(圖案形成用薄膜) 4a:吸收體圖案(轉印圖案) 100:反射型遮罩基底 200:反射型遮罩
圖1係用以說明本發明之實施型態的反射型遮罩基底一概略構成例之主要部分剖面示意圖。 圖2係用以說明從反射型遮罩基底到反射型遮罩的一概略構成例之主要部分剖面示意圖。 圖3係顯示在本發明之實施型態的反射型遮罩基底中,當使用EUV光來作為曝光光線時,在多層反射膜上之反射率與波長的關係之圖表。

Claims (11)

  1. 一種遮罩基底,係於基板的主表面上依序設置有多層反射膜與圖案形成用薄膜; 該薄膜係由含金屬材料所構成; 使該薄膜相對於波長λ L=13.2nm的光之折射率為n L; 使該薄膜相對於波長λ M=13.5nm的光之折射率為n M; 使該薄膜相對於波長λ H=13.8nm的光之折射率為n H; 當係數P=[(1-n H)/λ H-(1-n L)/λ L)]/[(1-n M)/λ M]時; 該係數P的絕對值會成為0.09以下。
  2. 如申請專利範圍第1項之遮罩基底,其中該薄膜相對於波長λ M的光之折射率n M為0.96以下。
  3. 如申請專利範圍第1項之遮罩基底,其中該薄膜的厚度為未達100nm。
  4. 如申請專利範圍第1至3中之任一遮罩基底,其係於該多層反射膜與該薄膜之間具備保護膜。
  5. 如申請專利範圍第1至3中之任一遮罩基底,其中該薄膜係相對於該波長λ M的光,會使來自該薄膜的反射光與來自該多層反射膜的反射光之間產生130度至230度的相位差。
  6. 一種反射型遮罩,係於基板的主表面上依序設置有多層反射膜與形成有轉印圖案之薄膜; 該薄膜係由含金屬材料所構成; 使該薄膜相對於波長λ L=13.2nm的光之折射率為n L; 使該薄膜相對於波長λ M=13.5nm的光之折射率為n M; 使該薄膜相對於波長λ H=13.8nm的光之折射率為n H; 當係數P=[(1-n H)/λ H-(1-n L)/λ L)]/[(1-n M)/λ M]時; 該係數P的絕對值會成為0.09以下。
  7. 如申請專利範圍第6項之反射型遮罩,其中該薄膜相對於波長λ M的光之折射率n M為0.96以下。
  8. 如申請專利範圍第6項之反射型遮罩,其中該薄膜的厚度為未達100nm。
  9. 如申請專利範圍第6至8項中任一項之反射型遮罩,其係於該多層反射膜與該薄膜之間具備保護膜。
  10. 如申請專利範圍第6至8項中任一項之反射型遮罩,其中該薄膜係相對於該波長λ M的光,會使來自該薄膜的反射光與來自該多層反射膜的反射光之間產生130度至230度的相位差。
  11. 一種半導體裝置之製造方法,係具備使用如申請專利範圍第6至10項中任一項之反射型遮罩,來將該轉印圖案曝光轉印在半導體基板上的阻膜之工序。
TW111118479A 2021-05-27 2022-05-18 遮罩基底、反射型遮罩及半導體元件之製造方法 TW202246882A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021089300 2021-05-27
JP2021-089300 2021-05-27

Publications (1)

Publication Number Publication Date
TW202246882A true TW202246882A (zh) 2022-12-01

Family

ID=84229845

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111118479A TW202246882A (zh) 2021-05-27 2022-05-18 遮罩基底、反射型遮罩及半導體元件之製造方法

Country Status (4)

Country Link
JP (1) JPWO2022249863A1 (zh)
KR (1) KR20240011685A (zh)
TW (1) TW202246882A (zh)
WO (1) WO2022249863A1 (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228766A (ja) 2005-02-15 2006-08-31 Toppan Printing Co Ltd 極端紫外線露光用マスク、マスクブランク、及び露光方法
JP4346656B2 (ja) * 2007-05-28 2009-10-21 Hoya株式会社 反射型マスクブランク及び反射型マスク
US8663878B2 (en) * 2012-07-05 2014-03-04 Taiwan Semiconductor Manufacturing Company, Ltd. Mask and method for forming the same
JP6287099B2 (ja) * 2013-05-31 2018-03-07 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク
US11237472B2 (en) * 2017-03-02 2022-02-01 Hoya Corporation Reflective mask blank, reflective mask and manufacturing method thereof, and semiconductor device manufacturing method
JP6861095B2 (ja) 2017-03-03 2021-04-21 Hoya株式会社 反射型マスクブランク、反射型マスク及び半導体装置の製造方法
JP2021071685A (ja) * 2019-11-01 2021-05-06 凸版印刷株式会社 反射型マスク及び反射型マスクの製造方法

Also Published As

Publication number Publication date
WO2022249863A1 (ja) 2022-12-01
KR20240011685A (ko) 2024-01-26
JPWO2022249863A1 (zh) 2022-12-01

Similar Documents

Publication Publication Date Title
TWI775442B (zh) 反射型遮罩基底、反射型遮罩及半導體裝置之製造方法
US8288062B2 (en) Reflective mask blank for EUV lithography
JP4693395B2 (ja) 反射型マスクブランクス及び反射型マスク並びに半導体装置の製造方法
JP6287099B2 (ja) Euvリソグラフィ用反射型マスクブランク
WO2018135468A1 (ja) 導電膜付き基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク及び半導体装置の製造方法
WO2015012151A1 (ja) 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスク及びその製造方法、並びに半導体装置の製造方法
JP2015008283A (ja) 反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法
JP2006332153A (ja) 反射型マスクブランク及び反射型マスク並びに半導体装置の製造方法
KR101161950B1 (ko) 반사형 마스크 블랭크와 반사형 마스크, 및 이들의 제조 방법
WO2019131506A1 (ja) 導電膜付き基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク及び半導体装置の製造方法
US7700245B2 (en) Reflective mask blank, reflective mask, and method of manufacturing semiconductor device
JP2010109336A (ja) 反射型マスクの製造方法
US20220187699A1 (en) Reflective mask blank for euvl, reflective mask for euvl, and method of manufacturing reflective mask for euvl
US20240069428A1 (en) Reflective mask blank, reflective mask, reflective mask manufacturing method, and semiconductor device manufacturing method
JP5333016B2 (ja) Euvリソグラフィ用反射型マスクブランク
TW202246882A (zh) 遮罩基底、反射型遮罩及半導體元件之製造方法
US20240184193A1 (en) Mask blank, reflective mask, and method for producing semiconductor device
WO2022181310A1 (ja) マスクブランク、反射型マスク、および半導体デバイスの製造方法
JP7480927B2 (ja) 反射型マスクブランク、反射型マスク、反射型マスクの製造方法
WO2022259915A1 (ja) マスクブランク、反射型マスク及び半導体デバイスの製造方法
JP2021039335A (ja) 反射膜付基板、マスクブランク、反射型マスク、及び半導体デバイスの製造方法
TW202227899A (zh) 遮罩基底用基板、附帶多層反射膜的基板、遮罩基底、轉印用遮罩的製造方法、及半導體元件的製造方法
TW202242535A (zh) 反射型遮罩基底及反射型遮罩