TW202244596A - Euv微影用反射型光罩基底、euv微影用反射型光罩、及彼等之製造方法 - Google Patents

Euv微影用反射型光罩基底、euv微影用反射型光罩、及彼等之製造方法 Download PDF

Info

Publication number
TW202244596A
TW202244596A TW111105247A TW111105247A TW202244596A TW 202244596 A TW202244596 A TW 202244596A TW 111105247 A TW111105247 A TW 111105247A TW 111105247 A TW111105247 A TW 111105247A TW 202244596 A TW202244596 A TW 202244596A
Authority
TW
Taiwan
Prior art keywords
film
layer
phase shift
euv
substrate
Prior art date
Application number
TW111105247A
Other languages
English (en)
Other versions
TWI841914B (zh
Inventor
河原弘朋
赤木大二郎
岩岡啓明
宇野俊之
末原道教
築山慧之
Original Assignee
日商Agc股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Agc股份有限公司 filed Critical 日商Agc股份有限公司
Publication of TW202244596A publication Critical patent/TW202244596A/zh
Application granted granted Critical
Publication of TWI841914B publication Critical patent/TWI841914B/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/48Protective coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本發明係關於一種EUV微影用反射型光罩基底,其係於基板上依序形成有反射EUV光之多層反射膜、及使EUV光之相位發生偏移之相位偏移膜者,上述相位偏移膜具有包含釕(Ru)及氮(N)之層1,上述層1之膜應力之絕對值為1000 MPa以下。

Description

EUV微影用反射型光罩基底、EUV微影用反射型光罩、及彼等之製造方法
本發明係關於一種用於半導體製造等之EUV(Extreme Ultra Violet:極紫外線)微影用反射型光罩基底(以下於本說明書中稱為「EUV光罩基底」)、EUV微影用反射型光罩(以下於本說明書中稱為「EUV光罩」)、及彼等之製造方法。
先前,於半導體產業中,作為於Si基板等形成包含微細圖案之積體電路所需之微細圖案之轉印技術,使用利用可見光或紫外光之光微影法。然而,隨著半導體裝置之微細化之加速,逐漸接近先前之光微影法之極限。於光微影法之情形時,圖案之解析極限為曝光波長之1/2左右。即便使用液浸法,亦只有曝光波長之1/4左右,即便使用ArF雷射(193 nm)之液浸法,預計極限亦只有20 nm~30 nm左右。對此,使用波長比ArF雷射更短之EUV光之曝光技術之EUV微影有望成為20 nm~30 nm以下之曝光技術。於本說明書中,EUV光係指軟X射線區域或真空紫外線區域之波長之光線。具體而言,係指波長10 nm~20 nm左右、尤其是13.5 nm±0.3 nm左右之光線。
EUV光易於被任何物質吸收,且該波長下物質之折射率接近1。由此,無法使用先前之使用可見光或紫外光之光微影法之類的折射光學系統。因此,EUV微影使用反射光學系統、即反射型光罩及反射鏡。
另一方面,提出一種不同於光之短波長化的使用相位偏移光罩之解像度提高技術。相位偏移光罩係藉由將光罩圖案之透過部之物質或形狀設為不同於相鄰之透過部,而對透過其等之光賦予180度之相位差。因此,於兩個透過部之間之區域,180度相位之不同之透過繞射光彼此相互抵消,光強度變得極小,光罩對比度提高,其結果,轉印時之焦點深度擴大,同時轉印精度提高。再者,原理上而言,相位差為180度最佳,實質上175度~185度左右即可充分獲得解像度提高效果。
作為相位偏移光罩之一種之半色調型光罩係如下相位偏移光罩:關於構成光罩圖案之材料,使用對曝光之光為半透過性之薄膜作為吸收層,使透過率衰減至百分之幾左右(通常相對於基板透過光為2.5%~15.0%左右),而與通常之基板透過光產生175度~185度左右之相位差,藉此提高圖案邊緣部之解像度,從而提高轉印精度。
EUV曝光使用反射光學系統,NA(數值孔徑)較小,且波長較短,因此其特有之問題在於:易於受到反射鏡或遮罩之表面凹凸之影響,不易高精度地解像目標微細線寬。由此,提出一種半色調型EUV光罩,其於使用反射光學系統之EUV曝光中亦可應用先前之準分子雷射曝光等中使用之半色調型光罩之原理(例如,參照專利文獻1)。
於專利文獻1中,藉由使用折射率n較小之包含Ru之層作為相位偏移膜,可減小用於獲得特定相位差之膜厚,形成更微細且高精度之相位偏移圖案。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利第5282507號
[發明所欲解決之問題]
由於圖案之微細化之要求,EUV光罩基底之微小之翹曲已成為問題。若EUV光罩基底之翹曲量超過300 nm,則於對EUV光罩基底進行圖案化時,有圖案之位置精度降低之虞。又,若產生此種大小之翹曲,則於使用由EUV光罩基底所製作之反射型光罩進行圖案轉印時,有產生圖案位置偏移或圖案缺陷之虞。
為了解決上述之先前技術之問題點,本發明之課題在於,提供一種具備相位偏移膜、翹曲得到抑制之EUV光罩基底。 [解決問題之技術手段]
[1]一種EUV微影用反射型光罩基底,其係於基板上依序形成有反射EUV光之多層反射膜、及使EUV光之相位發生偏移之相位偏移膜者, 上述相位偏移膜具有包含釕(Ru)及氮(N)之層1, 上述層1之膜應力之絕對值為1000 MPa以下。 [2]如[1]所記載之EUV微影用反射型光罩基底,其中利用面外XRD法(out of plane X-Ray Diffraction,面外X射線繞射)所得之、來源於上述層1之繞射峰中歸屬於Ruhcp(002)面之繞射峰之半高寬FWHM為0.5°以上。 [3]如[1]所記載之EUV微影用反射型光罩基底,其中利用面外XRD法所得之、來源於上述層1之繞射峰中歸屬於Ruhcp(002)面之繞射峰之繞射角2θ為42°以下。 [4]如[1]至[3]中任一項所記載之EUV微影用反射型光罩基底,其中藉由二次離子質譜法所測定之上述層1之( 102Ru +14N +)/ 102Ru +平均強度比為0.0030以上0.020以下。 [5]如[1]至[4]中任一項所記載之EUV微影用反射型光罩基底,其中上述相位偏移膜進而具有包含選自由鉻(Cr)、鉭(Ta)、鈦(Ti)、錸(Re)、鎢(W)、鉍(Bi)、錳(Mn)、鉑(Pt)、銅(Cu)、銥(Ir)及釩(V)所組成之群中之至少1種元素(X)之層2。 [6]如[5]所記載之EUV微影用反射型光罩基底,其中上述層2進而包含選自由氧(O)、N、硼(B)及碳(C)所組成之群中之至少1種元素。 [7]如[5]所記載之EUV微影用反射型光罩基底,其中上述層2進而包含Ru、及O與N中之至少一者。 [8]如[1]至[7]中任一項所記載之EUV微影用反射型光罩基底,其中上述相位偏移膜之膜厚為20 nm~60 nm。 [9]如[1]至[8]中任一項所記載之EUV微影用反射型光罩基底,其中來自上述多層反射膜之EUV光之反射光與來自上述相位偏移膜之EUV光之反射光之相位差為150度~250度,上述相位偏移膜表面之EUV光線反射率與上述多層反射膜表面之EUV光線反射率之相對反射率((相位偏移膜表面之EUV光線反射率/多層反射膜表面之EUV光線反射率)×100)為2%~37%。 [10]如[1]至[9]中任一項所記載之EUV微影用反射型光罩基底,其於上述多層反射膜與上述相位偏移膜之間,形成有上述多層反射膜之保護膜。 [11]如[10]所記載之EUV微影用反射型光罩基底,其中上述保護膜包含選自由Ru、鈀(Pd)、Ir、銠(Rh)、Pt、鋯(Zr)、鈮(Nb)、Ta、Ti及矽(Si)所組成之群中之至少1種元素。 [12]如[11]所記載之EUV微影用反射型光罩基底,其中上述保護膜進而包含選自由O、N、及B所組成之群中之至少1種元素。 [13]如[1]至[12]中任一項所記載之EUV微影用反射型光罩基底,其於上述相位偏移膜上具有蝕刻遮罩膜,上述蝕刻遮罩膜包含選自由Nb、Ti、Mo、Ta及Si所組成之群中之至少1種元素。 [14]如[13]所記載之EUV微影用反射型光罩基底,其中上述蝕刻遮罩膜進而包含選自由O、N、及B所組成之群中之至少1種元素。 [15]一種EUV微影用反射型光罩,其係於如[1]至[14]中任一項所記載之EUV微影用反射型光罩基底之上述相位偏移膜形成有圖案者。 [16]一種EUV微影用反射型光罩基底之製造方法,其特徵在於:其包括 於基板上形成反射EUV光之多層反射膜之步驟、及 於上述多層反射膜上形成使EUV光之相位發生偏移之相位偏移膜之步驟, 上述相位偏移膜具有包含Ru及N之層1, 上述層1係藉由於包含氬(Ar)及N 2且N 2之體積比為1 vol%~40 vol%之惰性氣體氛圍中,使用包含Ru之靶實施反應性濺鍍法而形成。 [17]一種EUV微影用反射型光罩基底之製造方法,其特徵在於:其包括 於基板上形成反射EUV光之多層反射膜之步驟、及 於上述多層反射膜上形成使EUV光之相位發生偏移之相位偏移膜之步驟, 上述相位偏移膜具有包含Ru及N之層1, 上述層1係藉由於包含Ar、氪(Kr)及N 2且N 2之體積比為1 vol%~40 vol%之惰性氣體氛圍中,使用包含Ru之靶實施反應性濺鍍法而形成。 [18]一種EUV微影用反射型光罩之製造方法,其特徵在於:對藉由如[16]或[17]所記載之EUV微影用反射型光罩基底之製造方法所製造之EUV微影用反射型光罩基底中之相位偏移膜進行圖案化,而形成圖案。 [發明之效果]
本發明之一實施方式之EUV光罩基底具備相位偏移膜,翹曲得到抑制。
以下參照圖式,對本發明之一實施方式之EUV光罩基底、及本發明之一實施方式之EUV光罩進行說明。
本發明之一實施方式之EUV微影用反射型光罩基底係於基板上依序形成有反射EUV光之多層反射膜、及使EUV光之相位發生偏移之相位偏移膜者,其特徵在於,上述相位偏移膜具有包含釕(Ru)及氮(N)之層1,上述層1之膜應力之絕對值為1000 MPa以下。
圖1係表示本發明之EUV光罩基底之一實施方式之概略剖視圖。圖1所示之EUV光罩基底1a係於基板11上依序形成有反射EUV光之多層反射膜12、多層反射膜12之保護膜13、及使EUV光之相位發生偏移之相位偏移膜14者。然而,於本發明之一實施方式之EUV光罩基底中,圖1所示之構成中,僅基板11、多層反射膜12、及相位偏移膜14是必須的,保護膜13係任意之構成要素。 再者,多層反射膜12之保護膜13係為了於相位偏移膜14之圖案形成時保護多層反射膜12而設置之任意層。
以下,對EUV光罩基底1a之各構成要素進行說明。
基板11滿足作為EUV光罩基底用之基板之特性。由此,基板11具有低熱膨脹係數,平滑性、平坦度、及對用於光罩基底或圖案形成後之光罩之洗淨等之洗淨液之耐性優異。低熱膨脹係數具體而言,係指20℃下之熱膨脹係數較佳為0±0.05×10 -7/℃,更佳為0±0.03×10 -7/℃。
作為基板11,具體而言,可使用具有低熱膨脹係數之玻璃、例如SiO 2-TiO 2系玻璃等,但並未限定於此,例如,亦可使用使β石英固溶體析出所得之結晶化玻璃、石英玻璃、矽、或金屬等基板。
基板11若具有表面粗糙度(rms)為0.15 nm以下之平滑之表面、及100 nm以下之平坦度,則於圖案形成後之光罩中可獲得高反射率及轉印精度,因此較佳。基板11之表面粗糙度(rms)係使用原子力顯微鏡(Atomic Force Microscope)進行測定。
基板11之大小或厚度等可根據遮罩之設計值等適當決定。於後續示出之實施例中,使用外形為6英吋(152 mm)見方、厚度為0.25英吋(6.3 mm)之SiO 2-TiO 2系玻璃。
基板11之形成有多層反射膜12之一側之表面較佳為不存在疵點。然而,即便疵點,不因凹狀疵點及/或凸狀疵點而產生相位疵點即可。
具體而言,較佳為凹狀疵點之深度及凸狀疵點之高度為2 nm以下,且該等凹狀疵點及凸狀疵點之半高寬為60 nm以下。凹狀疵點之半高寬係指凹狀疵點之深度之1/2深度位置時之寬度。凸狀疵點之半高寬係指凸狀疵點之高度之1/2高度位置時之寬度。
多層反射膜12藉由使高折射率層與低折射率層交替積層複數次,而實現高EUV光線反射率。於多層反射膜12中,高折射率層廣泛使用Mo,低折射率層廣泛使用Si。即,Mo/Si多層反射膜最常見。然而,多層反射膜並未限定於此,例如,亦可使用Ru/Si多層反射膜、Mo/Be多層反射膜、Mo化合物/Si化合物多層反射膜、Si/Mo/Ru多層反射膜、Si/Mo/Ru/Mo多層反射膜、Si/Ru/Mo/Ru多層反射膜。
多層反射膜12只要具有作為EUV光罩基底之反射層所需之特性,則並無特別限定。此處,對多層反射膜12特別要求之特性係高EUV光線反射率。具體而言,於以入射角度6度對多層反射膜12表面照射EUV光之波長區域之光線時,波長13.5 nm之光線反射率之最大值較佳為60%以上,更佳為65%以上。又,於多層反射膜12上設有保護膜13之情形時,同樣地,波長13.5 nm之光線反射率之最大值較佳為60%以上,更佳為65%以上。
構成多層反射膜12之各層之膜厚及層之重複單元之數可根據使用之膜材料及對反射層要求之EUV光線反射率而適當選擇。以Mo/Si多層反射膜為例,為了獲得EUV光線反射率之最大值為60%以上之多層反射膜12,多層反射膜使膜厚2.3 nm±0.1 nm之Mo層與膜厚4.5 nm±0.1 nm之Si層以重複單元數為30~60之方式積層即可。
再者,構成多層反射膜12之各層可使用磁控濺鍍法、離子束濺鍍法等周知之成膜方法成膜為所需之厚度。
例如,於使用離子束濺鍍法形成Si/Mo多層反射膜之情形時,較佳為使用Si靶作為靶,使用Ar氣體(氣壓1.3×10 -2Pa~2.7×10 -2Pa)作為濺鍍氣體,以離子加速電壓300 V~1500 V、成膜速度0.030 nm/sec~0.300 nm/sec使Si膜成膜為厚度4.5 nm。接著,使用Mo靶作為靶,使用Ar氣體(氣壓1.3×10 -2Pa~2.7×10 -2Pa)作為濺鍍氣體,以離子加速電壓300 V~1500 V、成膜速度0.030 nm/sec~0.300 nm/sec使Mo膜成膜為厚度2.3 nm。以此為1個週期,使Si膜及Mo膜積層40個週期~50個週期,藉此形成Si/Mo多層反射膜。
為了防止多層反射膜12表面之氧化,多層反射膜12之最上層較佳為不易氧化之材料之層。不易氧化之材料之層作為多層反射膜12之頂蓋層發揮功能。關於作為頂蓋層發揮功能之不易氧化之材料之層之具體例,可例舉Si層。於多層反射膜12為Si/Mo多層反射膜之情形時,將最上層設為Si層,藉此,該最上層作為頂蓋層發揮功能。於該情形時,頂蓋層之膜厚較佳為11±2 nm。
保護膜13較佳為以保護多層反射膜12為目的而設置,以於藉由蝕刻製程,通常是乾式蝕刻製程而於相位偏移膜14形成圖案時,使多層反射膜12不會由於蝕刻製程而受到損傷。因此,作為保護膜之材質,較佳為選擇不易受到相位偏移膜14之蝕刻製程之影響,亦即其蝕刻速度比相位偏移膜14慢,且不易因該蝕刻製程而受到損傷之物質。
為了滿足上述特性,保護膜13較佳為包含選自由Ru、鈀(Pd)、Ir、銠(Rh)、Pt、鋯(Zr)、鈮(Nb)、Ta、Ti及矽(Si)所組成之群中之至少1種元素。然而,由於Ru亦是相位偏移膜14之構成材料,故而於使用Ru作為保護膜13之材料之情形時,較佳為使用Ru與其他元素之合金。作為具體例,可例舉RuZr。
保護膜13可進而包含選自由O、N、及B所組成之群中之至少1種元素。即,可為上述元素之氧化物、氮化物、氮氧化物、硼化物。作為具體例,可例舉ZrO 2、SiO 2
保護膜13之厚度並無特別限定,於保護膜13為RuZr膜之情形時,較佳為2 nm~3 nm。
保護膜13可使用磁控濺鍍法、離子束濺鍍法等周知之成膜方法進行成膜。例如,於使用DC(direct-current,直流)濺鍍法形成RuZr膜之情形時,較佳為使用Ru靶及Zr靶作為靶,使用Ar氣體(氣壓1.0×10 -2Pa~1.0×10 0Pa)作為濺鍍氣體,以對Ru靶及Zr靶之輸入電力分別為100 W以上600 W以下、成膜速度0.020 nm/sec~1.000 nm/sec,成膜為厚度2 nm~3 nm。
於本發明之一實施方式之EUV光罩基底1a中,相位偏移膜14具有包含釕(Ru)及氮(N)之層1。
詳情如後所述,層1可使用濺鍍法而形成。於使用濺鍍法形成之層1中產生壓縮應力或拉伸應力。於按照下述實施例中記載之步序對層1之膜應力進行測定之情形時,壓縮應力為負值,拉伸應力為正值。無論層1中所產生之膜應力為壓縮應力、亦或拉伸應力,本發明之一實施方式之EUV光罩基底1a的層1之膜應力之絕對值均為1000 MPa以下。若層1之應力之絕對值處於上述範圍內,則可抑制EUV光罩基底之翹曲,翹曲量為300 nm以下。
層1包含Ru及N,若膜應力之絕對值處於上述範圍內,則層1中之Ru及N之含有比率並無特別限定。 作為層1中之Ru及N之含有比率之較佳例,可例舉含有98.0 at%~99.9 at%、N含有0.1 at%~2.0 at%之範圍之情形。
再者,上述層1中之各元素之含量係利用X射線光電子能譜儀(XPS)所得之測定值。
再者,亦可藉由除XPS以外之方法特定出層1中之Ru及N之含有比率之較佳例。例如,藉由二次離子質譜法(SIMS)所測定之層1之( 102Ru +14N +)輪廓除以 102Ru +,獲得( 102Ru +14N +)/ 102Ru +強度比之深度方向輪廓後,算出釕(Ru)之二次離子強度穩定為同一水平之區域之( 102Ru +14N +)/ 102Ru +平均強度比,藉此,可特定出層1中之Ru及N之含有比率之較佳例。
藉由SIMS所測定之層1之( 102Ru +14N +)/ 102Ru +平均強度比較佳為0.0030以上。又,藉由SIMS所測定之層1之( 102Ru +14N +)/ 102Ru +平均強度比較佳為0.020以下,更佳為0.0090以下。
本發明之一實施方式之EUV光罩基底1a之、藉由面外XRD法觀測之、來源於層1之繞射峰中歸屬於Ruhcp(002)面之繞射峰之半高寬FWHM較佳為0.5°以上。若半高寬FWHM為0.5°以上,則層1之結晶化得到抑制,相位偏移膜14表面之平滑性變高。半高寬FWHM較佳為0.5°以上,更佳為0.6°以上,再佳為0.65°以上。又,歸屬於Ruhcp(002)面之繞射峰之半高寬FWHM之上限並無特別限定,較佳為1.0°以下,更佳為0.9°以下。
本發明之一實施方式之EUV光罩基底1a之、利用面外XRD法所得之、來源於上述層1之繞射峰中歸屬於Ruhcp(002)面之繞射峰之繞射角2θ較佳為42°以下。若繞射角2θ為42°以下,則層1之結晶化得到抑制,相位偏移膜14表面之平滑性變高。繞射角2θ之下限並無特別限定,較佳為40.90°以上,更佳為41.00°以上,再佳為41.50°以上。又,歸屬於Ruhcp(002)面之繞射峰之繞射角2θ之上限較佳為42°以下,更佳為41.80°以下,再佳為41.60°以下。
於本說明書中,使用利用原子力顯微鏡(Atomic Force Microscope)測定之相位偏移膜14表面之表面粗糙度(rms)作為相位偏移膜14表面之平滑性之指標。 本發明之一實施方式之EUV光罩基底1a之、相位偏移膜14表面之表面粗糙度(rms)較佳為0.50 nm以下,更佳為0.45 nm以下。又,相位偏移膜14表面之表面粗糙度(rms)較佳為0.10 nm以上,更佳為0.15 nm以上,再佳為0.20 nm以上。
相位偏移膜14可進而具有包含選自由鉻(Cr)、鉭(Ta)、鈦(Ti)、錸(Re)、鎢(W)、鉍(Bi)、錳(Mn)、鉑(Pt)、銅(Cu)、銥(Ir)及釩(V)所組成之群中之至少1種元素(X)之層2。作為元素(X),較佳為Cr、Ta、Pt、Ir,更佳為Cr、Ta。
層2除元素(X)以外,可進而包含選自由氧(O)、N、硼(B)及碳(C)所組成之群中之至少1種元素。
又,層2除元素(X)以外,可進而包含Ru、及O與N中之至少一者。
於除元素(X)以外包含Ru、及O與N中之至少一者之情形時之一形態時,層2較佳為Ru及X之合計(Ru+X)含有40 at%~99 at%、O含有1 at%~60 at%之範圍,更佳為Ru+X含有50 at%~99 at%、O含有1 at%~50 at%之範圍,再佳為Ru+X含有80 at%~99 at%、O含有1 at%~20 at%之範圍。
於除元素(X)以外包含Ru、及O與N中之至少一者之情形時之另一形態時,層2較佳為Ru及X之合計(Ru+X)含有30 at%~98 at%、O含有1 at%~69 at%、N含有1 at%~69 at%之範圍,更佳為Ru+X含有50 at%~98 at%、O含有1 at%~30 at%、N含有1 at%~20 at%之範圍,再佳為Ru+X含有70 at%~98 at%、O含有1 at%~20 at%、N含有1 at%~10 at%之範圍。
於除元素(X)以外包含Ru、及O與N中之至少一者之情形時之又一形態時,於層1包含元素(X)之情形時,較佳為Ru及X之合計(Ru+X)含有30 at%~90 at%、N含有10 at%~70 at%之範圍,更佳為Ru+X含有60 at%~90 at%、N含有10 at%~40 at%之範圍。
上述3個形態之層2中之Ru與X之組成比(at%)(Ru:X)較佳為20:1~1:5之範圍,更佳為4:1~1:4之範圍,再佳為2:1~1:2之範圍。
再者,於上述3個形態中,層2包含2種以上之元素作為元素(X)之情形時,組成比(Ru:X)、以及Ru及X之合計(Ru+X)之X表示2種以上之元素之合計。
藉由相位偏移膜14具有層2,可調整EUV光線反射率。然而,若層2之厚度過厚,則反射率變得過小。由此,層1與層2之厚度之相對比((層1之厚度):(層2之厚度))較佳為於1:1~30:1之範圍內,更佳為於5:1~20:1之範圍內。 再者,於相位偏移膜14包含2個以上之層2之情形時,上述層2之厚度係2個以上之層2之合計膜厚。
於相位偏移膜14具有層2之情形時,相位偏移膜14中之層1與層2之配置並無特別限定。層2可形成於層1上,層1亦可形成於層2上。
EUV光罩基底1a中之相位偏移膜14之膜厚若為20 nm以上,則可實現作為以下所示之半色調型EUV光罩之相位偏移膜所需之光學特性,因此較佳。 又,相位偏移膜14中之層1之厚度若為10 nm以上,則可實現作為以下所示之半色調型EUV光罩之相位偏移膜所需之光學特性,因此較佳。
將以入射角度6度對相位偏移膜14表面照射EUV光之波長區域之光線時之波長13.5 nm之光線反射率作為相位偏移膜表面之EUV光線反射率,將以入射角度6度對多層反射膜12表面照射EUV光之波長區域之光線時之波長13.5 nm之光線反射率作為多層反射膜表面之EUV光線反射率,此時,相位偏移膜表面之EUV光線反射率與多層反射膜表面之EUV光線反射率之相對反射率((相位偏移膜表面之EUV光線反射率/多層反射膜表面之EUV光線反射率)×100)較佳為2%~37%,更佳為4%~20%,再佳為6%~15%。
又,來自多層反射膜12之EUV光之反射光與來自相位偏移膜14之EUV光之反射光之相位差較佳為150度~250度,更佳為180度~230度。
EUV光罩基底1a中之相位偏移膜14之膜厚更佳為30 nm以上,再佳為35 nm以上。 相位偏移膜14中之層1之厚度較佳為20 nm以上,更佳為30 nm以上。
EUV光罩基底1a中之相位偏移膜14之膜厚若為60 nm以下,則遮蔽效應降低,因此較佳。
原理上而言,半色調型EUV光罩之使用係於EUV微影中提高解像性之有效之方法。然而,於半色調型EUV光罩中最佳之反射率亦是取決於曝光條件或轉印之圖案,難以一概而論。
進而,由於EUV曝光為反射曝光,故而入射光並非垂直,而是自稍微傾斜(通常為6°左右)方向入射,藉由EUV光罩成為反射光。於EUV光罩中,相位偏移膜被加工成圖案,但由於EUV光傾斜入射,故而產生圖案之陰影。因此,根據入射方向及圖案之配置方向,藉由反射光形成之、晶圓上之轉印抗蝕圖案自本來之圖案位置偏移。以上被稱為遮蔽效應(Shadowing Effect),是EUV曝光之一個問題。
為了降低遮蔽效應,需縮短陰影之長度,為此,儘可能地降低圖案之高度即可,為了降低圖案之高度,需要儘可能地減小相位偏移膜之厚度。
EUV光罩基底1a中之相位偏移膜14之膜厚更佳為55 nm以下,再佳為50 nm以下。
相位偏移膜14之層1可使用反應性濺鍍法按照以下步序形成。
於使用反應性濺鍍法形成相位偏移膜14之層1之情形時,可於包含氬(Ar)及N 2且N 2之體積比為10 vol%~40 vol%之惰性氣體氛圍中,使用包含Ru之靶實施反應性濺鍍法。又,亦可於包含Ar、氪(Kr)及N 2且N 2之體積比為10 vol%~40 vol%之惰性氣體氛圍中,使用包含Ru之靶實施反應性濺鍍法。於後者之情形時,惰性氣體氛圍中之Kr之體積比較佳為30 vol%~50 vol%。
除上述以外之反應性濺鍍法之條件可於以下條件下實施。 氣壓:5×10 -2Pa~1.0 Pa,較佳為1×10 -1Pa~8×10 -1Pa,更佳為2×10 -1Pa~4×10 -2Pa。 每單位靶面積之輸入電力密度:1.0 W/cm 2~15.0 W/cm 2,較佳為3.0 W/cm 2~12.0 W/cm 2,更佳為4.0 W/cm 2~10.0 W/cm 2。 成膜速度:0.010 nm/sec~1.000 nm/sec,較佳為0.015 nm/sec~0.500 nm/sec,更佳為0.020 nm/sec~0.300 nm/sec。
於相位偏移膜14包含層2之情形時,層2可使用磁控濺鍍法、離子束濺鍍法等周知之成膜方法而形成。
例如,於使用反應性濺鍍法形成包含Ta作為元素(X)且包含O及N之層2之情形時,可使用Ta靶作為靶,使用O 2與N 2之混合氣體、或者包含惰性氣體、O 2及N 2之混合氣體作為濺鍍氣體,於以下成膜條件下實施。
濺鍍氣體:O 2氣體與N 2之混合氣體,或者Ar氣體、O 2及N 2之混合氣體(混合氣體中之O 2氣體之體積比(O 2/((O 2+N 2)、或者(Ar+O 2+N 2)))=0.010~0.750,較佳為0.100~0.500,更佳為0.200~0.500。 混合氣體中之N 2氣體之體積比(N 2/((O 2+N 2)、或者(Ar+O 2+N 2)))=0.010~0.750,較佳為0.010~0.500,更佳為0.010~0.200。 氣壓:5×10 -2Pa~1×1.0 Pa,較佳為1×10 -1Pa~8×10 -1Pa,更佳為2×10 -1Pa~4×10 -1Pa。)。 每單位靶面積之輸入電力密度:1.0 W/cm 2~15.0 W/cm 2,較佳為3.0 W/cm 2~12.0 W/cm 2,更佳為4.0 W/cm 2~10.0 W/cm 2。 成膜速度:0.010 nm/sec~1.000 nm/sec,較佳為0.015 nm/sec~0.500 nm/sec,更佳為0.020 nm/sec~0.300 nm/sec。
例如,於使用反應性濺鍍法形成包含Cr作為元素(X)且包含N之層2之情形時,可使用Cr靶作為靶,使用N 2氣體、或者包含惰性氣體及N 2之混合氣體作為濺鍍氣體,於以下成膜條件下實施。
濺鍍氣體:N 2氣體,或者Ar氣體與N 2之混合氣體(濺鍍氣體中之N 2氣體之體積比(N 2/(Ar+N 2))=0.100~1.000,較佳為0.200~0.750,更佳為0.250~0.500。 氣壓:5×10 -2Pa~1.0 Pa,較佳為1×10 -1Pa~8×10 -1Pa,更佳為2×10 -1Pa~4×10 -2Pa。 每單位靶面積之輸入電力密度:1.0 W/cm 2~15.0 W/cm 2,較佳為3.0 W/cm 2~12.0 W/cm 2,更佳為4.0 W/cm 2~10.0 W/cm 2。 成膜速度:0.010 nm/sec~1.000 nm/sec,較佳為0.015 nm/sec~0.500 nm/sec,更佳為0.020 nm/sec~0.300 nm/sec。
再者,於使用除Ar以外之惰性氣體之情形時,該惰性氣體之濃度較佳為設為與上述Ar氣體濃度相同之濃度範圍。又,於使用複數種惰性氣體之情形時,較佳為將惰性氣體之合計濃度設為與上述Ar氣體濃度相同之濃度範圍。
相位偏移膜14之層1上之圖案形成較佳為使用以O 2、或者O 2與鹵素系氣體(氯系氣體、氟系氣體)之混合氣體作為蝕刻氣體之乾式蝕刻。
相位偏移膜14之層1較佳為可於以O 2、或者O 2與鹵素系氣體(氯系氣體、氟系氣體)之混合氣體作為蝕刻氣體實施乾式蝕刻時,以10 nm/min以上之蝕刻速度進行蝕刻。
作為O 2與鹵素系氣體之混合氣體,更佳為使用O 2較佳為含有40 vol%以上且未達100 vol%、更佳為75 vol%~90 vol%,且氯系氣體或氟系氣體較佳為含有超過0 vol%且為60 vol%以下、更佳為10 vol%~25 vol%之混合氣體。
作為氯系氣體,較佳為使用Cl 2、SiCl 4、CHCl 3、CCl 4、BCl 3等氯系氣體及其等之混合氣體。作為氟系氣體,較佳為使用CF 4、CHF 3、SF 6、BF 3、XeF 2等氟系氣體及其等之混合氣體。
於相位偏移膜14僅由層1所構成之情形時,相位偏移膜之圖案形成可僅藉由以O 2、或者O 2與鹵素系氣體(氯系氣體、氟系氣體)之混合氣體作為蝕刻氣體之乾式蝕刻實現,因此,圖案形成過程簡便。
於相位偏移膜14具有層1及層2之情形時,可藉由視需要使用2種以上之蝕刻氣體階段性地進行乾式蝕刻,而實現相位偏移膜之圖案形成。
例如,於相位偏移膜14具有層1、及包含Ta作為元素(X)之層2之情形時,層1進行以O 2、或者O 2與鹵素系氣體(氯系氣體、氟系氣體)之混合氣體作為蝕刻氣體之乾式蝕刻,層2進行以鹵素系氣體(氯系氣體、氟系氣體)作為蝕刻氣體之乾式蝕刻,藉此,可實現相位偏移膜之圖案形成。
又,於層2包含Cr、V、Mn、Re之類的、形成有揮發性之氧化物或者醯鹵化物之元素之情形時,對於層1及層2,僅進行以O 2、或者O 2與鹵素系氣體(氯系氣體、氟系氣體)之混合氣體作為蝕刻氣體之乾式蝕刻,藉此,可實現相位偏移膜之圖案形成。由此,即便相位偏移膜14具有層1及層2,圖案形成過程亦不繁雜,可簡便地實現相位偏移膜之圖案形成。
圖2係表示本發明之EUV光罩基底之另一實施方式之概略剖視圖。圖2所示之EUV光罩基底1b係於基板11上依序形成有反射EUV光之多層反射膜12、多層反射膜12之保護膜13、使EUV光之相位發生偏移之相位偏移膜14、及蝕刻遮罩膜15者。
EUV光罩基底1b之構成要素中,基板11、多層反射膜12、保護膜13、及相位偏移膜14與上述EUV光罩基底1a相同,因此省略。
已知一般而言,藉由於相位偏移膜上設置對相位偏移膜之蝕刻條件具有耐性之材料之層(蝕刻遮罩膜),可使抗蝕膜薄膜化。即,形成蝕刻遮罩膜,降低將相位偏移膜之蝕刻條件下之相位偏移膜之蝕刻速度設為1之情形時之、蝕刻遮罩膜之蝕刻速度之相對速度(蝕刻選擇比),藉此可使抗蝕膜薄膜化。
蝕刻遮罩膜15被要求相位偏移膜14之蝕刻條件下之蝕刻選擇比非常高。 因此,蝕刻遮罩膜15被要求對以O 2、或者O 2與鹵素系氣體(氯系氣體、氟系氣體)之混合氣體作為蝕刻氣體之乾式蝕刻具有較高之耐蝕刻性。
另一方面,蝕刻遮罩膜15較佳為於EUV微影中可藉由用作抗蝕膜之洗淨液之、使用酸或鹼之洗淨液而去除。
作為用於上述目的之洗淨液之具體例,可例舉硫酸過氧化氫混合物(SPM)、氨水過氧化氫混合物、氫氟酸。SPM係將硫酸與過氧化氫混合所得之溶液,可以較佳為4:1~1:3、更佳為3:1之體積比將硫酸與過氧化氫混合。此時,SPM之溫度基於提高蝕刻速度之方面而言,較佳為控制於100℃以上。
氨水過氧化氫混合物係將氨與過氧化氫混合所得之溶液,可將NH 4OH、過氧化氫及水以較佳為1:1:5~3:1:5之體積比加以混合。此時,氨水過氧化氫混合物之溫度較佳為控制於70℃~80℃。
為了滿足上述要求,本發明之一實施方式之EUV光罩基底1b之蝕刻遮罩膜15較佳為包含選自由Nb、Ti、Mo、Ta及Si所組成之群中之至少1種元素。蝕刻遮罩膜15可進而包含選自由O、N、及B所組成之群中之至少1種元素。即,可為上述元素之氧化物、氮氧化物、氮化物、硼化物。
作為蝕刻遮罩膜15之構成材料之具體例,例如,可例舉Nb、Nb 2O 5、NbON等Nb系材料。包含該等Nb系材料之蝕刻遮罩膜15可藉由以氯系氣體作為蝕刻氣體之乾式蝕刻進行蝕刻。又,可例舉Mo、MoO 3、MoON等Mo系材料。
包含該等Mo系材料之蝕刻遮罩膜15例如可藉由以氯系氣體作為蝕刻氣體之乾式蝕刻進行蝕刻。進而,可例舉Si、SiO 2、Si 3N 4等Si系材料。
包含該等Si系材料之蝕刻遮罩膜15例如可藉由以氟系氣體作為蝕刻氣體之乾式蝕刻進行蝕刻。再者,於使用Si系材料作為蝕刻遮罩膜15之情形時,較佳為使用氫氟酸作為洗淨液去除。
蝕刻遮罩膜15之膜厚若為20 nm以下,則於使用洗淨液去除之方面而言較佳。包含Nb系材料之蝕刻遮罩膜15之膜厚更佳為5 nm~15 nm。
蝕刻遮罩膜15可藉由公知之成膜方法例如磁控濺鍍法、離子束濺鍍法而形成。
例如,於藉由濺鍍法形成NbN膜之情形時,可於混合有包含He、Ar、Ne、Kr、Xe中之至少一者之惰性氣體(以下僅記載為惰性氣體)與氧之氣體氛圍中,使用Nb靶實施反應性濺鍍法。於使用磁控濺鍍法之情形時,具體而言,可於以下成膜條件下實施。
濺鍍氣體:Ar氣體與N 2之混合氣體(混合氣體中之O 2之體積比(N 2/(Ar+N 2))=15 vol%以上) 氣壓:5.0×10 -2~1.0 Pa,較佳為1.0×10 -1~8.0×10 -1Pa,更佳為2.0×10 -1~4.0×10 -1Pa 每單位靶面積之輸入電力密度:1.0 W/cm 2~15.0 W/cm 2,較佳為3.0 W/cm 2~12.0 W/cm 2,更佳為4.0 W/cm 2~10.0 W/cm 2成膜速度:0.010 nm/sec~1.0 nm/sec,較佳為0.015 nm/sec~0.50 nm/sec,更佳為0.020 nm/sec~0.30 nm/sec 靶與基板之間之距離:50 mm~500 mm,較佳為100 mm~400 mm,更佳為150 mm~300 mm
再者,於使用除Ar以外之惰性氣體之情形時,該惰性氣體之濃度較佳為設為與上述Ar氣體濃度相同之濃度範圍。又,於使用複數種惰性氣體之情形時,較佳為將惰性氣體之合計濃度設為與上述Ar氣體濃度相同之濃度範圍。
本發明之一實施方式之EUV光罩基底1a、1b除多層反射膜12、保護膜13、相位偏移膜14、蝕刻遮罩膜15以外,亦可具有EUV光罩基底之領域中公知之功能膜。
作為此種功能膜之具體例,例如,可例舉日本特表2003-501823號公報中記載之、為了促進基板之靜電夾持而塗佈於基板之背面側之高介電性塗層。此處,基板之背面係指圖1之基板11上之、形成有多層反射膜12之一側之相反側之面。
出於此種目的而塗佈於基板之背面之高介電性塗層係以薄片電阻成為100 Ω/□以下之方式選擇構成材料之導電率及厚度。作為高介電性塗層之構成材料,可自公知之文獻中記載者廣泛選擇。例如,可應用日本特表2003-501823號公報中記載之高介電常數之塗層,具體為包含Si、TiN、Mo、Cr、或TaSi之塗層。高介電性塗層之厚度例如可設為10~1000 nm。
高介電性塗層可藉由公知之成膜方法例如磁控濺鍍法、離子束濺鍍法等濺鍍法、CVD(Chemical Vapor Deposition,化學氣相沈積)法、真空蒸鍍法、電鍍法而形成。
本發明之一實施方式之EUV光罩基底之製造方法包括下述步驟a)~步驟b)。 a)於基板上形成反射EUV光之多層反射膜之步驟 b)於步驟a)中形成之多層反射膜上形成使EUV光之相位發生偏移之相位偏移膜之步驟 於步驟b)中,相位偏移膜具有包含Ru及N之層1。該層1係藉由於包含氬(Ar)及N 2且N 2之體積比為1 vol%~40 vol%之惰性氣體氛圍中,使用包含Ru之靶實施反應性濺鍍法而形成, 或者,該層1係藉由於包含Ar、氪(Kr)及N 2且N 2之體積比為1 vol%~40 vol%之惰性氣體氛圍中,使用包含Ru之靶實施反應性濺鍍法而形成。藉由於包含Kr之惰性氣體氛圍中形成層1,可實現層1之應力緩和。於惰性氣體包含Kr之情形時,惰性氣體中之Kr之體積比為20 vol%以上,較佳為80 vol%以下。
圖3係表示本發明之EUV光罩之一實施方式之概略剖視圖。
圖3所示之EUV光罩2係於圖1所示之EUV光罩基底1a之相位偏移膜14形成有圖案(相位偏移膜圖案)140。即,於基板11上依序形成有反射EUV光之多層反射膜12、多層反射膜12之保護膜13、及使EUV光之相位發生偏移之相位偏移膜14,於相位偏移膜14形成有圖案(相位偏移膜圖案)140。
EUV光罩2之構成要素中,基板11、多層反射膜12、保護膜13、及相位偏移膜14與上述EUV光罩基底1a相同。
於本發明之一實施方式之EUV光罩之製造方法中,對藉由本發明之一實施方式之EUV光罩基底之製造方法所製造之EUV光罩基底1b之相位偏移膜14進行圖案化,而形成圖案(相位偏移膜圖案)140。
參照圖式,對於EUV光罩基底1b之相位偏移膜14形成圖案之步序進行說明。
如圖4所示,於EUV光罩基底1b之蝕刻遮罩膜15上形成抗蝕膜30。接著,使用電子束繪圖機,如圖5所示,於抗蝕膜30形成抗蝕圖案300。
接著,以形成有抗蝕圖案300之抗蝕膜30作為遮罩,如圖6所示,於蝕刻遮罩膜15形成蝕刻遮罩膜圖案150。包含Nb系材料之蝕刻遮罩膜15之圖案形成可使用氯系氣體作為蝕刻氣體而實施乾式蝕刻。
接著,以形成有蝕刻遮罩膜圖案150之蝕刻遮罩膜15作為遮罩,如圖7所示,於相位偏移膜14形成相位偏移膜圖案140。
包含Ru之相位偏移膜14之圖案形成可使用O 2、或者O 2與鹵素系氣體(氯系氣體、氟系氣體)之混合氣體作為蝕刻氣體而實施乾式蝕刻。
接著,藉由使用酸或鹼之洗淨液,去除抗蝕膜30及蝕刻遮罩膜15,藉此獲得相位偏移膜圖案140露出之EUV光罩2。再者,抗蝕圖案300、及抗蝕膜30之大部分於形成相位偏移膜圖案140之過程中被去除,但為了去除殘存之抗蝕圖案300、抗蝕膜30及蝕刻遮罩膜15,藉由使用酸或鹼之洗淨液實施洗淨。 [實施例]
以下使用實施例對本發明更詳細地進行說明,但本發明並不限定於該等實施例。例1~例8中,例1~例4為實施例,例5~例8為比較例。
<例1> 例1中,製作圖1所示之EUV光罩基底1a。 使用SiO 2-TiO 2系玻璃基板(外形為6英吋(152 mm)見方,厚度為6.3 mm)作為成膜用之基板11。該玻璃基板之20℃下之熱膨脹係數為0.02×10 -7/℃,楊氏模數為67 GPa,泊松比為0.17,比模數為3.07×10 7m 2/s 2。藉由研磨,使該玻璃基板具有表面粗糙度(rms)為0.15 nm以下之平滑之表面及100 nm以下之平坦度。
於基板11之背面側,使用磁控濺鍍法形成厚度為100 nm之Cr膜,藉此實施薄片電阻為100 Ω/□之高介電性塗層。
於呈平板形狀之通常之靜電吸盤上,經由形成之Cr膜固定基板11(外形為6英吋(152 mm)見方,厚度為6.3 mm),於該基板11之表面上使用離子束濺鍍法交替形成Si膜及Mo膜,以此為1個週期,反覆進行40個週期,藉此形成合計膜厚為272 nm((4.5 nm+2.3 nm)×40)之Si/Mo多層反射膜12。
進而,於Si/Mo多層反射膜12上,使用DC濺鍍法形成RuZr膜(膜厚2.5 nm),從而形成保護膜13。
Si膜、Mo膜及Ru膜之成膜條件如下所示。 (Si膜之成膜條件) 靶:Si靶(摻硼) 濺鍍氣體:Ar氣體(氣壓2.0×10 -2Pa) 電壓:700 V 成膜速度:0.077 nm/sec 膜厚:4.5 nm (Mo膜之成膜條件) 靶:Mo靶 濺鍍氣體:Ar氣體(氣壓2.0×10 -2Pa) 電壓:700 V 成膜速度:0.064 nm/sec 膜厚:2.3 nm (RuZr膜之成膜條件) 靶:Ru靶 Zr靶 濺鍍氣體:Ar氣體(氣壓2.0×10 -2Pa) Ru輸入電力:500 W Zr輸入電力:150 W 成膜速度:0.073 nm/sec 膜厚:2.5 nm
接著,於保護膜上使用反應性濺鍍法形成包含Ru及N之相位偏移膜14之層1。本實施例之相位偏移膜14係僅由層1所構成。相位偏移膜14之層1之成膜條件如下。
(層1之成膜條件) 靶:Ru靶 濺鍍氣體:Ar與N 2之混合氣體(Ar:90.0 vol%,N 2:10.0 vol%,氣壓:2.4×10 -1Pa) 每單位靶面積之輸入電力密度:6.91 W/cm 2成膜速度:0.059 nm/sec 膜厚:35 nm
對於藉由上述步序所得之EUV光罩基底1a,實施下述評價(1)~(4)。將結果表示於下述表中。於矽晶圓上形成有層1者關於下述評價(1)~(4),亦獲得相同之評價結果。
(1)層1之膜應力 關於層1之膜應力,於4英吋矽晶圓上按照與上述相同之步序使層1成膜,使用應力測定裝置按照以下步序進行評價。 藉由上述測定裝置對成膜前後之基材之翹曲量(曲率半徑)變化進行測定,由Stony式(下述式)算出層1之應力。 σ A=E st s 2/6(1-ν S)R(Stony式) Stoney式中,σ A係層1之膜應力,E s係基板20之楊氏模數,t s係基板20之厚度,ν S係基板20之泊松比,R係基板20之曲率半徑。 再者,於藉由上述步序所得之膜應力σ A為負值之情形時,應力為壓縮應力,於藉由上述步序所得之膜應力σ A為正值之情形時,應力為拉伸應力。
(2)EUV光罩基底之翹曲量 使用平坦度測定機對EUV光罩基底之翹曲量進行測定。於翹曲量為負值之情形時,EUV基底之主面側產生凸狀翹曲。於翹曲量為正值之情形時,EUV光罩基底之主面側產生凹狀翹曲。
(3)來源於層1之結晶峰 對於層1,使用面外XRD法實施測定。對來源於層1之繞射峰中歸屬於Ruhcp(002)面之繞射峰之半高寬FWHM及繞射角2θ進行測定。
(4)層1之表面粗糙度 使用原子力顯微鏡(Atomic Force Microscope)對層1表面之表面粗糙度(rms)進行測定。
(5)EUV波長區域之相位差及相對反射率之計算 藉由光學模擬,求出來自多層反射膜12之EUV光之反射光與來自相位偏移膜14之EUV光之反射光之相位差、及相位偏移膜14表面之EUV光線反射率與多層反射膜12表面之EUV光線反射率之相對反射率。模擬所需之多層反射膜12之光學常數係使用Center for X-Ray Optics, Lawrence Berkeley National Laboratory之資料庫之值。相位偏移膜14之光學常數係使用Center for X-Ray Optics, Lawrence Berkeley National Laboratory之資料庫之值、或藉由測定13.5 nm區域之反射率之「角相依性」而進行評價所得者。
具體而言,EUV反射率、EUV光之入射角度、及光學常數由下式表示。 R=|(sinθ-((n+ik) 2-cos 2θ) 1/2)/(sinθ+((n+ik) 2-cos 2θ) 1/2)| 其中,θ係EUV光之入射角度,R係入射角度θ下之EUV反射率,n係相位偏移膜14之折射率,k係相位偏移膜14之消光係數。使用前式對各EUV入射角度下之反射率測定值進行擬合,藉此可估出EUV光學常數((折射率(n)、消光係數(k)))。 相位偏移膜14之層1之折射率(n)為0.884,消光係數(k)為0.017。 EUV波長區域之相位差為225度,相對反射率為22.9%。
(6)藉由SIMS所測定之層1之( 102Ru +14N +)/ 102Ru +平均強度比 層1之( 102Ru +14N +)/ 102Ru +平均強度比之算出使用二次離子質譜法(Secondary Ion Mass Spectrometory:SIMS)。氮(N)係離子化率極低、於SIMS中高感度分析困難之元素,作為此種氮(N)之高感度分析法,已知對主成分離子與氮(N)結合作為二次離子之分子離子進行測定之方法(參考文獻1:日本專利第3114380號)。按照以下步序,使用SIMS對層1之( 102Ru +14N +)/ 102Ru +平均強度比進行測定。
(一)首先,製作於矽晶圓上成膜有釕(Ru)之試樣。此時,除不導入氮(N)而使釕(Ru)成膜所得之試樣以外,製作以成膜時之氮(N 2)之體積比為10%成膜之試樣、及以成膜時之氮(N 2)之體積比為40%成膜之試樣,共計3個試樣。
(二)接著,將作為測定對象之試樣及(一)中製作之試樣同時搬送至SIMS裝置內,依序進行測定,使用氧離子作為一次離子,獲得氮(N)結合於 102Ru +102Ru +之分子離子( 102Ru +14N +)作為二次離子之、二次離子強度之深度方向輪廓。此時,亦同時獲得成為層1之上層或下層之主成分、或基板之主成分之二次離子之深度方向輪廓。
SIMS之測定使用ADEPT1010(ULVAC-PHI公司製造)。關於SIMS之測定條件,使用氧離子作為一次離子種類,於加速電壓:3 kV、電流值:50 nA、入射角:相對於試樣面之法線為45°、一次離子之光柵尺寸:400 μm×400 μm之條件下,進行一次離子照射。
關於二次離子之檢測,檢測區域設定為80 μm×80 μm(一次離子之光柵尺寸之4%),檢測器之場孔徑(Field Aperture)設定為3,所測定之二次離子之場軸電位(Field Axis Potensital)均設定為0,對極性為正之二次離子進行檢測。此時,使用中和槍。再者,為了確保測定精度,較佳為使裝置內儘可能為高真空。 此次SIMS之測定過程中之主腔室之真空度約為4.5×10 -9Torr。
(三)其後,( 102Ru +14N +)之輪廓除以 102Ru +,獲得( 102Ru +14N +)/ 102Ru +強度比之深度方向輪廓。接著,算出釕(Ru)之二次離子強度穩定為同一水平之區域之( 102Ru +14N +)/ 102Ru +平均強度比。
此時,確認(一)中製作之不導入氮(N)而使釕(Ru)成膜所得之試樣之( 102Ru +14N +)/ 102Ru +平均強度比、以氮(N 2)之體積比為10%成膜之試樣之( 102Ru +14N +)/ 102Ru +平均強度比、以氮(N 2)之體積比為40%成膜之試樣之( 102Ru +14N +)/ 102Ru +平均強度比之大小關係為與成膜時之氮(N)流量對應之關係。
(四)於釕(Ru)上存在上層之情形時,將其主成分之二次離子強度開始下降且釕(Ru)之二次離子強度穩定為同一水平之區域作為平均強度比之算出區域,於釕(Ru)上存在下層之情形時,將其主成分之二次離子強度開始上升且釕(Ru)之二次離子強度穩定為同一水平之區域作為平均強度比之算出區域。
如此,對各試樣測定3次層1之( 102Ru +14N +)/ 102Ru +平均強度比,將其等之平均值作為層1之( 102Ru +14N +)/ 102Ru +平均強度比。
將例1之相位偏移膜14之層1之( 102Ru +14N +)/ 102Ru +強度比之深度方向輪廓表示於圖8。
根據圖8,關於例1之相位偏移膜14之層1之( 102Ru +14N +)/ 102Ru +平均強度比,將二次離子強度穩定為同一水平之48秒至225秒之區域作為平均強度比之算出區域。 其結果,例1之相位偏移膜14之層1之( 102Ru +14N +)/ 102Ru +平均強度比為0.0041。 再者,藉由XPS對例1之相位偏移膜14之層1測定N,結果為檢測下限以下(1 at%以下)。
<例2> 例2中,將相位偏移膜14之層1之成膜條件設為下述條件,除此以外,按照與例1相同之步序實施。 (層1之成膜條件) 靶:Ru靶 濺鍍氣體:Ar、Kr及N 2之混合氣體(Ar:58.9 vol%,Kr:31.1 vol%,N 2:10.0 vol%,氣壓:2.4×10 -1Pa) 每單位靶面積之輸入電力密度:6.91 W/cm 2成膜速度:0.057 nm/sec 膜厚:35 nm
層1之折射率(n)為0.887,消光係數(k)為0.017。 EUV波長區域之相位差為218度,相對反射率為23.7%。 層1之( 102Ru +14N +)/ 102Ru +強度比為0.0035。 藉由XPS對層1測定N,結果為檢測下限以下(1 at%以下)。
藉由於包含Kr之惰性氣體氛圍下成膜,可實現層1之應力緩和,因此較佳。層1中可含有Kr。層1中之Kr可藉由拉塞福逆散射譜法(RBS:Rutherford Back-Scattering Spectroscopy)或電子探針微分析儀(EPMA:Electron Probe Micro Analyzer)等進行測定。
<例3> 例3中,將相位偏移膜14之層1之成膜條件設為下述條件,除此以外,按照與例1相同之步序實施。 (層1之成膜條件) 靶:Ru靶 濺鍍氣體:Ar、Kr及N 2之混合氣體(Ar:38.7 vol%,Kr:41.6 vol%,N 2:19.7 vol%,氣壓:2.4×10 -1Pa) 每單位靶面積之輸入電力密度:6.91 W/cm 2成膜速度:0.053 nm/sec 膜厚:35 nm
層1之折射率(n)為0.890,消光係數(k)為0.017。 EUV波長區域之相位差為212度,相對反射率為24.7%。 層1之( 102Ru +14N +)/ 102Ru +平均強度比為0.0053。 藉由XPS對層1測定N,結果為檢測下限以下(1 at%以下)。
<例4> 例4中,將相位偏移膜14之層1之成膜條件設為下述條件,除此以外,按照與例1相同之步序實施。 (層1之成膜條件) 靶:Ru靶 濺鍍氣體:Ar、Kr及N 2之混合氣體(Ar:17.8 vol%,Kr:42.7 vol%,N 2:39.5 vol%,氣壓:2.4×10 -1Pa) 每單位靶面積之輸入電力密度:6.91 W/cm 2成膜速度:0.047 nm/sec 膜厚:35 nm
層1之折射率(n)為0.889,消光係數(k)為0.017。 EUV波長區域之相位差為214度,相對反射率為24.4%。 層1之( 102Ru +14N +)/ 102Ru +平均強度比為0.0089。 藉由XPS對層1測定N,結果為檢測下限以下(1 at%以下)。
<例5> 例5中,將相位偏移膜14之層1之成膜條件設為下述條件,除此以外,按照與例1相同之步序實施。 (層1之成膜條件) 靶:Ru靶 濺鍍氣體:Ar氣體(Ar:100 vol%,氣壓:2.4×10 -1Pa) 每單位靶面積之輸入電力密度:6.91 W/cm 2成膜速度:0.058 nm/sec 膜厚:35 nm
層1之折射率(n)為0.886,消光係數(k)為0.017。 EUV波長區域之相位差為221度,相對反射率為23.3%。 層1之( 102Ru +14N +)/ 102Ru +平均強度比為0.0025,為本底水準。 藉由XPS對層1測定N,結果為檢測下限以下(1 at%以下)。
<例6> 例6中,將相位偏移膜14之層1之成膜條件設為下述條件,除此以外,按照與例1相同之步序實施。 (層1之成膜條件) 靶:Ru靶 濺鍍氣體:Ar與N 2之混合氣體(Ar:80.0 vol%,N 2:20.0 vol%,氣壓:2.4×10 -1Pa) 每單位靶面積之輸入電力密度:6.91 W/cm 2成膜速度:0.055 nm/sec 膜厚:35 nm
層1之折射率(n)為0.885,消光係數(k)為0.017。 EUV波長區域之相位差為223度,相對反射率為23.1%。 層1之( 102Ru +14N +)/ 102Ru +平均強度比為0.0060。 藉由XPS對層1測定N,結果為檢測下限以下(1 at%以下)。
<例7> 例7中,將相位偏移膜14之層1之成膜條件設為下述條件,除此以外,按照與例1相同之步序實施。 (層1之成膜條件) 靶:Ru靶 濺鍍氣體:Ar與N 2之混合氣體(Ar:60.0 vol%,N 2:40.0 vol%,氣壓:2.4×10 -1Pa) 每單位靶面積之輸入電力密度:6.91 W/cm 2成膜速度:0.046 nm/sec 膜厚:35 nm
層1之折射率(n)為0.888,消光係數(k)為0.017。 EUV波長區域之相位差為216度,相對反射率為24.2%。 層1之( 102Ru +14N +)/ 102Ru +平均強度比為0.0100。 藉由XPS對層1測定N,結果為檢測下限以下(1 at%以下)。
<例8> 例7中,將相位偏移膜14之層1之成膜條件設為下述條件,除此以外,按照與例1相同之步序實施。 (層1之成膜條件) 靶:Ru靶 濺鍍氣體:Kr氣體(Kr:100.0 vol%,氣壓:2.4×10 -1Pa) 每單位靶面積之輸入電力密度:6.91 W/cm 2成膜速度:0.059 nm/sec 膜厚:35 nm
層1之折射率(n)為0.890,消光係數(k)為0.017。 EUV波長區域之相位差為212度,相對反射率為24.9%。 層1之( 102Ru +14N +)/ 102Ru +平均強度比為0.0025,為本底水準。 藉由XPS對層1測定N,結果為檢測下限以下(1 at%以下)。
[表1]
表1
   濺鍍氣體 成膜速度(nm/sec) 膜應力(MPa) 翹曲量(nm) RMS (nm) Ruhcp(002)
Ar(vol%) Kr(vol%) N 2(vol%) 2θ(deg) FMHW(deg)
例1 90.0 0.0 10.0 0.059 -720 -232 0.28 41.67 0.67
例2 58.9 31.1 10.0 0.057 -121 -39 0.41 41.74 0.67
例3 38.7 41.6 19.7 0.053 3 1 0.40 41.51 0.70
例4 17.8 42.7 39.5 0.047 -543 -175 0.43 40.96 0.88
例5 100.0 0.0 0.0 0.058 -2212 -714 0.32 42.05 0.40
例6 80.0 0.0 20.0 0.055 -1200 -387 0.27 41.17 1.09
例7 60.0 0.0 40.0 0.046 -2430 -784 0.25 40.74 1.06
例8 0.0 100.0 0.0 0.059 -2012 649 1.03 42.30 0.49
於層1之膜應力之絕對值為1000 MPa以下之例1~4之情形時,EUV光罩基底之翹曲得到抑制,翹曲量為300 nm以下。 於層1之膜應力之絕對值超過1000 MPa之例5~8之情形時,EUV光罩基底之翹曲較大,翹曲量超過300 nm。 例1~4中,藉由面外XRD法觀測之、來源於層1之繞射峰中歸屬於Ruhcp(002)面之繞射峰之半高寬FWHM為0.5°以上,繞射角2θ為42°以下,層1之結晶化得到抑制。藉此,相位偏移膜14表面之平滑性較高,相位偏移膜14表面之表面粗糙度(rms)為0.50 nm以下。
例2~4中,藉由於Kr氣體氛圍下形成層1,可緩和層1之應力。推定層1含有少量Kr。
<例9> 例9中,使用反應性濺鍍法形成使包含Ru及N之層1與包含Ta、O及N之層2依序積層所得之相位偏移膜14,除此以外,按照與例3相同之步序實施。 (層1之成膜條件) 靶:Ru靶 濺鍍氣體:Ar、Kr及N 2之混合氣體(Ar:38.7 vol%,Kr:41.6 vol%,N 2:19.7 vol%,氣壓:2.4×10 -1Pa) 每單位靶面積之輸入電力密度:6.91 W/cm 2成膜速度:0.053 nm/sec 膜厚:30 nm
層1之膜應力為+3 MPa。 層1之膜厚與層1之膜應力之乘積之絕對值、即總應力(MPa・nm)為90 MPa・nm。 層1之折射率(n)為0.890,消光係數(k)為0.017。 EUV波長區域之相位差為212度,相對反射率為24.7%。 層1之( 102Ru +14N +)/ 102Ru +平均強度比為0.0053。
(層2之成膜條件) 靶:Ta靶 濺鍍氣體:Ar、O 2及N 2之混合氣體(Ar:50 vol%,O 2:40 vol%,N 2:10 vol%,氣壓:2.0×10 -1Pa) 每單位靶面積之輸入電力密度:7.40 W/cm 2成膜速度:0.028 nm/sec 膜厚:15 nm
層2之膜應力為-375 MPa。 層2之膜厚與層2之膜應力之乘積之絕對值、即總應力(MPa・nm)為5625 MPa・nm。 層2之折射率(n)為0.890,消光係數(k)為0.017。 相位偏移膜14之EUV波長區域之相位差為212度,相對反射率為24.7%。 EUV光罩基底之翹曲為-51 nm。 層1及層2之總應力之和較佳為35000 MPa・nm以下,例9中為5715 MPa・nm,EUV光罩基底之翹曲可得到抑制。
<例10> 例10中,使用反應性濺鍍法,形成使包含Ru及N之層1、與、作為層2之包含Ta及N之層(TaN層)及包含Ta、O及N之層(TaON層)依序積層所得之相位偏移膜14,除此以外,按照與例3相同之步序實施。 (層1之成膜條件) 靶:Ru靶 濺鍍氣體:Ar、Kr及N 2之混合氣體(Ar:38.7 vol%,Kr:41.6 vol%,N 2:19.7 vol%,氣壓:2.4×10 -1Pa) 每單位靶面積之輸入電力密度:6.91 W/cm 2成膜速度:0.053 nm/sec 膜厚:30 nm
層1之膜應力為+3 MPa。 層1之膜厚與層1之膜應力之乘積之絕對值、即總應力(MPa・nm)為90 MPa・nm。 層1之折射率(n)為0.890,消光係數(k)為0.017。 EUV波長區域之相位差為212度,相對反射率為24.7%。 層1之( 102Ru +14N +)/ 102Ru +平均強度比為0.0053。
(層2(TaN層)之成膜條件) 靶:Ta靶 濺鍍氣體:Ar與N 2之混合氣體(Ar:72 vol%,N 2:28 vol%,氣壓:2.0×10 -1Pa) 每單位靶面積之輸入電力密度:8.3 W/cm 2成膜速度:0.04 nm/sec 膜厚:10 nm
層2中,TaN層之膜應力為-2000 MPa。 層2中,TaN層之折射率(n)為0.948,消光係數(k)為0.033。 層2中之TaN層之膜厚與層2中之TaN層之膜應力之乘積之絕對值、即總應力(MPa・nm)為20000 MPa・nm。
(層2(TaON層)之成膜條件) 靶:Ta靶 濺鍍氣體:Ar、O 2及N 2之混合氣體(Ar:50 vol%,O 2:40 vol%,N 2:10 vol%,氣壓:2.0×10 -1Pa) 每單位靶面積之輸入電力密度:7.40 W/cm 2成膜速度:0.028 nm/sec 膜厚:5 nm
層2中,TaON層之膜應力為-375 MPa。 層2中之TaON層之膜厚與層2中之TaON層之膜應力之乘積之絕對值、即總應力(MPa・nm)為1875 MPa・nm。 層2中,TaON層之折射率(n)為0.890,消光係數(k)為0.017。 相位偏移膜14之EUV波長區域之相位差為218度,相對反射率為17.4%。 EUV光罩基底之翹曲為-293 nm。 層1及層2(TaN層、TaON層)之總應力之和較佳為35000 MPa・nm以下,例10中為21965 MPa・nm,EUV光罩基底之翹曲可得到抑制。
<例11> 例11中,使用反應性濺鍍法形成使包含Cr及N之層2與包含Ru及N之層1依序積層所得之相位偏移膜14,除此以外,按照與例3相同之步序實施。 (層2之成膜條件) 靶:Cr靶 濺鍍氣體:Ar與N 2之混合氣體(Ar:80 vol%,N 2:20 vol%,氣壓:2.0×10 -1Pa) 每單位靶面積之輸入電力密度:9.9 W/cm 2成膜速度:0.09 nm/sec 膜厚:10 nm
層2之膜應力為-300 MPa。 層2之膜厚與層2之膜應力之乘積之絕對值、即總應力(MPa・nm)為3000 MPa・nm。 層2之折射率(n)為0.922,消光係數(k)為0.039。 (層1之成膜條件) 靶:Ru靶 濺鍍氣體:Ar、Kr及N 2之混合氣體(Ar:38.7 vol%,Kr:41.6 vol%,N 2:19.7 vol%,氣壓:2.4×10 -1Pa) 每單位靶面積之輸入電力密度:6.91 W/cm 2成膜速度:0.053 nm/sec 膜厚:30 nm
層1之膜應力為+3 MPa。 層1之膜厚與層1之膜應力之乘積之絕對值、即總應力(MPa・nm)為90 MPa・nm。 層1之折射率(n)為0.890,消光係數(k)為0.017。 EUV波長區域之相位差為212度,相對反射率為24.7%。 層1之( 102Ru +14N +)/ 102Ru +平均強度比為0.0053。 相位偏移膜14之EUV波長區域之相位差為230度,相對反射率為17.6%。 EUV光罩基底之翹曲為-24 nm。 層1及層2之總應力之和較佳為35000 MPa・nm以下,例11中為3090 MPa・nm,EUV光罩基底之翹曲可得到抑制。
以上,參照圖式對各種實施方式進行了說明,但不言而喻,本發明並不限定於該等例。顯然,業者可於申請專利範圍所記載之範疇內想到各種變化例或修正例,可知其等當然亦屬於本發明之技術範圍。又,可於不脫離發明之主旨之範圍內,將上述實施方式中之各構成要素任意組合。
再者,本申請案係基於2021年2月16日提出申請之日本專利申請(特願2021-022583),將其內容引用於本申請案中作為參照。
1a、1b:EUV光罩基底 2:EUV光罩 11:基板 12:多層反射膜 13:保護膜 14:相位偏移膜 15:蝕刻遮罩膜 30:抗蝕膜 140:相位偏移膜圖案 150:蝕刻遮罩膜圖案 300:抗蝕圖案
圖1係表示本發明之EUV光罩基底之一實施方式之概略剖視圖。 圖2係表示本發明之EUV光罩基底之另一實施方式之概略剖視圖。 圖3係表示本發明之EUV光罩之一實施方式之概略剖視圖。 圖4係表示對圖2所示之EUV光罩基底1b進行圖案形成之步序之圖,於EUV光罩基底1b之蝕刻遮罩膜15上形成有抗蝕膜30。 圖5係表示緊接圖4之步序之圖,於抗蝕膜30形成有抗蝕圖案300。 圖6係表示緊接圖5之步序之圖,於蝕刻遮罩膜15形成有蝕刻遮罩膜圖案150。 圖7係表示緊接圖6之步序之圖,於相位偏移膜14形成有相位偏移膜圖案140。 圖8係藉由二次離子質譜法(SIMS)所測定之例1之相位偏移膜14之層1之( 102Ru +14N +)/ 102Ru +強度比之深度方向輪廓。

Claims (18)

  1. 一種EUV微影用反射型光罩基底,其係於基板上依序形成有反射EUV光之多層反射膜、及使EUV光之相位發生偏移之相位偏移膜者, 上述相位偏移膜具有包含釕(Ru)及氮(N)之層1, 上述層1之膜應力之絕對值為1000 MPa以下。
  2. 如請求項1之EUV微影用反射型光罩基底,其中利用面外XRD法所得之、來源於上述層1之繞射峰中歸屬於Ruhcp(002)面之繞射峰之半高寬FWHM為0.5°以上。
  3. 如請求項1之EUV微影用反射型光罩基底,其中利用面外XRD法所得之、來源於上述層1之繞射峰中歸屬於Ruhcp(002)面之繞射峰之繞射角2θ為42°以下。
  4. 如請求項1至3中任一項之EUV微影用反射型光罩基底,其中藉由二次離子質譜法所測定之上述層1之( 102Ru +14N +)/ 102Ru +平均強度比為0.0030以上0.020以下。
  5. 如請求項1至4中任一項之EUV微影用反射型光罩基底,其中上述相位偏移膜進而具有包含選自由鉻(Cr)、鉭(Ta)、鈦(Ti)、錸(Re)、鎢(W)、鉍(Bi)、錳(Mn)、鉑(Pt)、銅(Cu)、銥(Ir)及釩(V)所組成之群中之至少1種元素(X)之層2。
  6. 如請求項5之EUV微影用反射型光罩基底,其中上述層2進而包含選自由氧(O)、N、硼(B)及碳(C)所組成之群中之至少1種元素。
  7. 如請求項5之EUV微影用反射型光罩基底,其中上述層2進而包含Ru、及O與N中之至少一者。
  8. 如請求項1至7中任一項之EUV微影用反射型光罩基底,其中上述相位偏移膜之膜厚為20 nm~60 nm。
  9. 如請求項1至8中任一項之EUV微影用反射型光罩基底,其中來自上述多層反射膜之EUV光之反射光與來自上述相位偏移膜之EUV光之反射光之相位差為150度~250度,上述相位偏移膜表面之EUV光線反射率與上述多層反射膜表面之EUV光線反射率之相對反射率((相位偏移膜表面之EUV光線反射率/多層反射膜表面之EUV光線反射率)×100)為2%~37%。
  10. 如請求項1至9中任一項之EUV微影用反射型光罩基底,其於上述多層反射膜與上述相位偏移膜之間,形成有上述多層反射膜之保護膜。
  11. 如請求項10之EUV微影用反射型光罩基底,其中上述保護膜包含選自由Ru、鈀(Pd)、Ir、銠(Rh)、Pt、鋯(Zr)、鈮(Nb)、Ta、Ti及矽(Si)所組成之群中之至少1種元素。
  12. 如請求項11之EUV微影用反射型光罩基底,其中上述保護膜進而包含選自由O、N、及B所組成之群中之至少1種元素。
  13. 如請求項1至12中任一項之EUV微影用反射型光罩基底,其於上述相位偏移膜上具有蝕刻遮罩膜,上述蝕刻遮罩膜包含選自由Nb、Ti、Mo、Ta及Si所組成之群中之至少1種元素。
  14. 如請求項13之EUV微影用反射型光罩基底,其中上述蝕刻遮罩膜進而包含選自由O、N、及B所組成之群中之至少1種元素。
  15. 一種EUV微影用反射型光罩,其係於如請求項1至14中任一項之EUV微影用反射型光罩基底之上述相位偏移膜形成有圖案者。
  16. 一種EUV微影用反射型光罩基底之製造方法,其特徵在於:其包括 於基板上形成反射EUV光之多層反射膜之步驟、及 於上述多層反射膜上形成使EUV光之相位發生偏移之相位偏移膜之步驟, 上述相位偏移膜具有包含Ru及N之層1, 上述層1係藉由於包含氬(Ar)及N 2且N 2之體積比為1 vol%~40 vol%之惰性氣體氛圍中,使用包含Ru之靶實施反應性濺鍍法而形成。
  17. 一種EUV微影用反射型光罩基底之製造方法,其特徵在於:其包括 於基板上形成反射EUV光之多層反射膜之步驟、及 於上述多層反射膜上形成使EUV光之相位發生偏移之相位偏移膜之步驟, 上述相位偏移膜具有包含Ru及N之層1, 上述層1係藉由於包含Ar、氪(Kr)及N 2且N 2之體積比為1 vol%~40 vol%之惰性氣體氛圍中,使用包含Ru之靶實施反應性濺鍍法而形成。
  18. 一種EUV微影用反射型光罩之製造方法,其特徵在於:對藉由如請求項16或17之EUV微影用反射型光罩基底之製造方法所製造之EUV微影用反射型光罩基底中之相位偏移膜進行圖案化,而形成圖案。
TW111105247A 2021-02-16 2022-02-14 Euv微影用反射型光罩基底、euv微影用反射型光罩、及彼等之製造方法 TWI841914B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-022583 2021-02-16
JP2021022583 2021-02-16

Publications (2)

Publication Number Publication Date
TW202244596A true TW202244596A (zh) 2022-11-16
TWI841914B TWI841914B (zh) 2024-05-11

Family

ID=

Also Published As

Publication number Publication date
KR20230084301A (ko) 2023-06-12
KR20240036124A (ko) 2024-03-19
JP7260078B2 (ja) 2023-04-18
JP2023086742A (ja) 2023-06-22
US20230324785A1 (en) 2023-10-12
JPWO2022176749A1 (zh) 2022-08-25
WO2022176749A1 (ja) 2022-08-25
JP7428287B2 (ja) 2024-02-06
US11953822B2 (en) 2024-04-09
KR102645567B1 (ko) 2024-03-11

Similar Documents

Publication Publication Date Title
US11036127B2 (en) Reflective mask blank and reflective mask
US9423684B2 (en) Reflective mask blank for EUV lithography and process for its production
US11822229B2 (en) Reflective mask blank for EUV lithography, mask blank for EUV lithography, and manufacturing methods thereof
US7029803B2 (en) Attenuating phase shift mask blank and photomask
US8956787B2 (en) Reflective mask blank for EUV lithography and process for producing the same
US9097976B2 (en) Reflective mask blank for EUV lithography
EP2600388B1 (en) Substrate provided with reflecting layer for euv lithography, and reflective mask blank for euv lithography
US8927181B2 (en) Reflective mask blank for EUV lithography
US20220299862A1 (en) Reflective mask blank for euv lithography, reflective mask for euv lithography, and method for manufacturing mask blank and mask
US11187972B2 (en) Reflective mask blank, method of manufacturing reflective mask and method of manufacturing semiconductor device
TWI823862B (zh) 反射型遮罩基底及反射型遮罩
TWI830018B (zh) Euv微影用反射型光罩基底
US20220121102A1 (en) Reflective mask blank, reflective mask, method for producing same, and method for producing semiconductor device
WO2019103024A1 (ja) 反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法
KR20190103001A (ko) 위상 시프트 마스크 블랭크, 위상 시프트 마스크의 제조 방법, 및 표시 장치의 제조 방법
WO2022118762A1 (ja) Euvリソグラフィ用反射型マスクブランク、euvリソグラフィ用反射型マスク、およびそれらの製造方法
TW202244596A (zh) Euv微影用反射型光罩基底、euv微影用反射型光罩、及彼等之製造方法
TWI841914B (zh) Euv微影用反射型光罩基底、euv微影用反射型光罩、及彼等之製造方法
JP7271760B2 (ja) 多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体デバイスの製造方法
WO2023199888A1 (ja) 反射型マスクブランク、反射型マスクブランクの製造方法、反射型マスク、反射型マスクの製造方法
TW202417976A (zh) Euv微影用反射型光罩基底