TW202243498A - 針對來自多個源的參考信號之平行處理而分布接收鏈 - Google Patents

針對來自多個源的參考信號之平行處理而分布接收鏈 Download PDF

Info

Publication number
TW202243498A
TW202243498A TW111108617A TW111108617A TW202243498A TW 202243498 A TW202243498 A TW 202243498A TW 111108617 A TW111108617 A TW 111108617A TW 111108617 A TW111108617 A TW 111108617A TW 202243498 A TW202243498 A TW 202243498A
Authority
TW
Taiwan
Prior art keywords
prs
signal
chains
positioning
measurements
Prior art date
Application number
TW111108617A
Other languages
English (en)
Inventor
亞力山德羅斯 瑪諾拉寇斯
目克希 庫瑪
葛特隆 里斯塔德 歐普夏
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202243498A publication Critical patent/TW202243498A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • G01S5/0268Hybrid positioning by deriving positions from different combinations of signals or of estimated positions in a single positioning system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0244Accuracy or reliability of position solution or of measurements contributing thereto
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Abstract

描述了用於處理定位參考信號(PRS)或可用於決定用戶裝備(UE)之定位的其他參考信號的方法、系統及裝置。在一些態樣中,UE被組態以向網路實體報告指示用於決定一個或多個定位測量的接收(Rx)鏈之數量的資訊,從而指示(諸)定位測量中的不確定性量及結果定位估計之精度。在一些態樣中,UE被組態以接收在時間上至少部分地重疊的多個PRS信號,並使用一組單獨的Rx鏈來處理每個PRS以獲得定位測量。作為PRS處理之一部分,UE可以將搜尋窗口與PRS對齊。以這種方式,可以為不同的PRS信號保持不同的搜尋窗口,以最大化每個PRS之信號雜訊比。

Description

針對來自多個源的參考信號之平行處理而分布接收鏈
本發明大體上係關於無線通信領域,更具體地說,係關於用戶裝備(UE)從多個源接收的參考信號,例如,來自複數個傳送接收點(TRP)的定位參考信號(PRS)之處理。
有時候,決定UE的位置是非常有用的。例如,在UE上執行的軟體應用程式可以使用UE的位置(例如,經緯度對)來計算從UE的位置到另一位置的路線。UE的位置可以使用不同的定位方法來決定。一些定位方法涉及UE與一個或多個衛星(例如,全球導航衛星系統(GNSS)的衛星)及/或與一個或多個地面實體(例如,TRP或基地台)之間的通信。例如,定位參考信號(PRS)有時由不同TRP廣播,並由接收PRS信號的UE處理,以便基於UE履行的測量(例如來自不同TRP的PRS信號的抵達時間之間的差)來估計UE的位置。
當UE接收到PRS時,對PRS進行解碼以提取有助於UE履行測量的資訊。每個PRS通常使用與第一Rx天線及第二Rx天線相關聯的一對接收(Rx)鏈來解碼。取決於UE所在的環境,UE有時可能無法使用一個或兩個Rx鏈成功解碼PRS。例如,當由於天氣條件、實體障礙物或由於缺乏直接視線而導致PRS的多路徑傳播而衰減PRS時,可發生由第一Rx天線接收的PRS的深度衰落。當PRS不能被解碼時,這可能會對結果位置決定之精度產生不利影響,因為UE可能具有更少的測量可依賴。
此外,履行PRS解碼的定時有時由UE與之通信的服務小區或參考小區決定。如果PRS由位於遠離服務/參考小區的源(例如,與相鄰小區相關聯的TRP)傳送,則在UE期望接收到PRS與實際接收到PRS之間可能存在延遲。如果UE嘗試根據服務/參考小區的定時來解碼PRS,這可能會降低PRS之信號雜訊比(SNR),可能會降低到無法成功解碼PRS的程度。可替代地,UE可以將搜尋窗口與每個PRS對齊,以便以更高的SNR順序解碼PRS信號,但這將增加處理時間。
本公開內容係關於用於處理用戶裝備(UE)從多個源接收的參考信號(例如,來自複數個傳送接收點(TRP)的定位參考信號(PRS))的技術。描述了用於決定UE用於履行一個或多個定位測量(例如,一個或多個抵達時間(TOA)測量及/或一個或多個參考信號時間差(RSTD)測量)的接收(Rx)鏈之數量的技術。
在一些態樣中,UE被組態以報告用於履行一個或多個定位測量的Rx鏈之數量,經由從UE發送到實體的通信,該實體使用定位測量計算UE的位置,或者基於UE根據定位測量決定的UE的位置履行下游處理。例如,UE可以向基地台、位置伺服器或其他網路實體報告用於決定精度稀釋(DOP)或指示UE位置中的不確定性程度的其他度量的Rx鏈之數量。在一些情況下,UE報告給的網路實體是另一個UE。
在一些態樣中,UE被組態以決定DOP或指示UE位置的不確定性程度的其他度量。當使用UE的位置時,例如當更新顯示以顯示UE的當前位置時,UE可以考慮DOP或其他度量。UE亦可以根據DOP或其他度量的值來重新組態自身以接收附加的參考信號或履行其他動作。
在一些態樣中,UE被組態以履行從不同源發送的PRS信號之處理。可以在時間上至少部分地重疊的PRS時機期間接收PRS信號,以便同時接收PRS信號。因此,UE可以履行PRS信號之平行處理,同時維持UE與位置伺服器、LMF或UE與之通信的其他網路實體之間的定位會話。在定位會話期間,UE可以接收及處理不用於定位的其他信號。此類其他信號可以包括例如經由服務小區傳達給UE的語音或數據信號。通常,此類其他信號之處理基於與服務小區或參考小區相關聯的定時參數(例如,符元邊界)。然而,可以基於其他定時參數來履行PRS信號之處理。例如,UE可以定義用於解碼來自TRP或其他PRS源的PRS的搜尋窗口,其中搜尋窗口不與服務/參考小區之任何符元邊界對齊。具體地,可以為每個TRP或PRS源定義單獨的搜尋窗口,使得搜尋窗口與來自TRP/源的PRS的實際接收時間對齊,從而最大化PRS之信號雜訊比。此外,PRS信號之處理可能涉及為每個PRS信號分配一組單獨的Rx鏈。例如,UE可以包括四個Rx鏈,並且使用兩個Rx鏈對來自第一TRP的PRS信號進行解碼,使用另外兩個Rx鏈對來自第二TRP的PRS信號進行解碼。同時接收及處理PRS信號可以顯著減少計算UE的位置(有時稱為建立定位固定)所花費的時間量。
現在將結合隨附圖式描述幾個示例性實施例,隨附圖式構成本文之一部分。雖然如下所述在一些實施例中實現了本公開內容的一個或多個態樣,在不脫離本公開內容的範疇的情況下可以使用其它實施例以及進行各種修改。
如本文所用,“RF(射頻)信號”包括通過發射器(或發射裝置)與接收器(或接收裝置)之間的空間傳輸資訊的電磁波。如本文所使用的,發射器可以向接收器傳送單個“RF信號”或多個“RF信號”。然而,由於RF信號通過多路徑信道的傳播特性,接收器可以接收與每個傳送的RF信號相對應的多個“RF信號”。發射器與接收器之間不同路徑上的相同傳送RF信號可被稱為“多路徑”RF信號。
由UE接收的RF信號可以是可用於決定UE定位的參考信號,例如,基於使用參考信號加上來自相對於UE的不同位置的多個源的附加參考信號推導出的定位測量。這種參考信號在本文中亦稱為“定位信號”。描述了其中參考信號是PRS信號(或簡稱“PRS”)的實施例。然而,本文描述的實施例可以應用於可用於決定位置的其他類型的參考信號,例如,同步信號塊(SSB)、追蹤參考信號(TRS)、信道狀態資訊參考信號(CSI-RS)及/或解調參考信號(DMRS)。
在一些實施例中,可以使用多個天線單元接收參考信號,每個天線單元與接收(Rx)鏈相關聯。UE可以配備多個天線元件及多個Rx鏈。每個Rx鏈可以包括硬體及/或軟體組件(例如,包括數位及/或類比電路的處理管線),硬體及/或軟體組件被組態以對與由單個天線元件接收的PRS或其他參考信號相對應的Rx信號履行信號處理。可替代地,在一些情況下,Rx鏈可被組態以處理與由一組天線元件接收的PRS/參考信號相對應的組合Rx信號。例如,兩個或多個天線元件可以形成接收平面,該接收平面被組態以從特定源接收PRS。平面中的每個天線元件可產生單獨Rx信號,該單獨Rx信號與平面中其他天線元件的Rx信號組合,以產生組合Rx信號,然後使用與平面相關聯的Rx鏈對組合Rx信號進行處理。因此,可用於實現本文所述的一個或多個實施例的UE可包括與單個天線元件相關聯的Rx鏈、與一組天線元件相關聯的Rx鏈,或兩者。
本文描述的實施例可以使用任何定位系統來實現,其中UE通信地耦合到一個或多個參考信號源。圖1中示出了適合於實現一個或多個實施例的定位系統的示例。圖1中的定位系統僅作為示例提供,並且用於說明不同實體在決定UE的位置時如何與UE互動。在實踐中,根據本文描述的實施例實現的定位系統可以包括比圖1所示的更多或更少的組件。
圖1是根據實施例的定位系統100的簡化圖示,其中UE 105、位置伺服器(LS)160及/或定位系統100的其他組件可以使用本文提供的技術來決定UE 105的估計的位置。本文描述的技術可以由定位系統100的一個或多個組件實現。定位系統100可以包括UE 105、用於全球導航衛星系統(GNSS)(例如全球定位系統(GPS))的一個或多個衛星110(亦稱為太空載具(SV))、基地台120、存取點(AP)130、LS 160、網路170及外部客戶端180。通常,定位系統100可以基於由UE 105接收及/或從UE 105發送的RF信號以及傳送及/或接收RF信號的其他組件(例如,GNSS衛星110、基地台120、AP 130)的已知位置來估計UE 105的位置。下面結合圖2討論關於特定位置估計技術的附加細節。
應該注意的是,圖1僅提供了各種組件的一般說明,其中任何一個或所有組件都可以酌情被利用,並且每個組件都可以根據需要進行複製。具體地說,儘管僅示出了一個UE 105,但是可以理解,許多UE(例如,數百、數千、數百萬等)可以利用定位系統100。類似地,定位系統100可以包括比圖1所示的更多或更少數量的基地台120及/或AP130。連接定位系統100中的各種組件的圖示連接包括數據及信令連接,其可包括附加(中間)組件、直接或間接實體及/或無線連接及/或附加網路。此外,根據期望的功能性,可以重新排列、組合、分離、替換及/或省略組件。在一些實施例中,例如,外部客戶端180可以直接連接到LS 160。本領域的普通技術人員將認識到對所示組件的許多修改。
根據所需的功能,網路170可以包括各種無線及/或有線網路中的任何一種。例如,網路170可以包括公共網路及/或私有網路、區域網路及/或廣域網路等的任意組合。此外,網路170可以利用一種或多種有線及/或無線通信技術。在一些實施例中,網路170可以包括例如蜂巢或其他行動網路、無線區域網路(WLAN)、無線廣域網路(WWAN)及/或網際網路。網路170的示例包括長期演進技術(LTE)無線網路、第五代(5G)無線網路(亦稱為新無線電(NR)無線網路或5G NR無線網路)、Wi-Fi WLAN及網際網路。LTE、5G及NR是由第三代合作夥伴計劃(3GPP)定義或正在定義的無線技術。網路170亦可以包括一個以上的網路及/或一種以上的網路類型。
基地台120及存取點(AP)130通信地耦合到網路170。在一些實施例中,基地台120可由蜂巢網路提供商擁有、維護及/或操作,並可採用各種無線技術中的任何一種,如下文所述。根據網路170的技術,基地台120可以包括節點B、演進型節點B(eNodeB或eNB)、基地收發器站台(BTS)、無線電基地台(RBS)、NR節點B(gNB)、下一代eNB(ng-eNB)等。作為gNB或ng-eNB的基地台120可以是下一代無線電存取網路(NG-RAN)之一部分,在網路170是5G網路的情況下,下一代無線電存取網路可以連接到5G核心網路(5GC)。例如,AP 130可以包括Wi-Fi AP或藍牙® AP。因此,UE 105可以通過使用第一通信鏈路133經由基地台120存取網路170,來與網路連接的裝置(例如LS 160)發送及接收資訊。另外或可替代地,由於AP 130亦可以與網路170通信地耦合,因此UE 105可以使用第二通信鏈路135與包括LS 160的網際網路連接的裝置通信。
如本文所用,術語“基地台”通常指單個實體傳輸點或多個共置的實體傳輸點,其可位於基地台120處。實體傳輸點可以包括基地台的天線陣列(例如,在多輸入多輸出(MIMO)系統中及/或基地台採用波束成形的情況下)。術語“基地台”亦可指多個非共置實體傳輸點,實體傳輸點可以是分布式天線系統(DAS)(經由傳輸媒體連接到共同源的空間上分離的天線的網路)或遠程無線電頭端(RRH)(連接到服務基地台的遠程基地台)。可替代地,非共置實體傳輸點可以是從UE 105接收測量報告的服務基地台以及UE 105正在測量其參考RF信號的相鄰基地台。
如本文所用,術語“小區”一般可指用於與基地台120通信的邏輯通信實體,並且可與用於區分經由相同或不同載波操作的相鄰小區的標識符(例如,實體小區標識符(PCID)、虛擬小區標識符(VCID))相關聯。在一些示例中,載波可以支援多個小區,並且可以根據不同的協定類型(例如,機器類型通信(MTC)、窄帶物聯網(NB-IoT)、增強行動寬帶(eMBB)或其他)來組態不同的小區,這些協定類型可以為不同類型的裝置提供存取。在某些情況下,術語“小區”可指邏輯實體在其上運行的地理覆蓋區域(例如,扇區)之一部分。
LS 160可包括伺服器及/或其他計算裝置,伺服器及/或其他計算裝置被組態以決定UE 105的估計的位置及/或向UE 105提供數據(例如,“輔助數據”)以便利位置決定。根據一些實施例,LS 160可以包括家庭安全用戶平面位置(SUPL)位置平臺(H-SLP),其可以支援由開放行動聯盟(OMA)定義的SUPL用戶平面(UP)位置解決方案,並且可以基於儲存在LS 160中的UE 105的訂用資訊支援UE 105的位置服務。在一些實施例中,LS 160可包括發現的SLP(D-SLP)或緊急SLP(E-SLP)。LS 160亦可以包括增強服務行動位置中心(E-SMLC),該中心使用用於UE 105的LTE無線電存取的控制平面(CP)位置解決方案來支援UE 105的位置。LS 160進一步可以包括位置管理功能(LMF),其支援使用用於UE 105的NR無線電存取的控制平面(CP)位置解決方案來支援UE 105的位置。在CP位置解決方案中,用於控制及管理UE 105的位置的信令可以在網路170的元件之間交換,並且可以使用現有的網路介面及協定與UE 105交換,並且可以從網路170的角度作為信令。在UP位置解決方案中,從網路170的角度來看,用於控制及管理UE 105的位置的信令可以作為數據(例如,使用網際網路協定(IP)及/或傳輸控制協定(TCP)傳輸的數據)在LS 160與UE 105之間交換。
如前所述(並在下文更詳細地討論),UE 105的估計的位置可基於對從UE 105發送及/或由UE 105接收的RF信號的測量。具體而言,這些測量可以提供關於UE 105與定位系統100中的一個或多個組件(例如,GNSS衛星110、AP 130、基地台120)的相對距離及/或角度的資訊。UE 105的估計的位置可以基於距離及/或角度測量以及一個或多個組件之已知定位以幾何方式(例如,使用多角測量及/或多邊測量)估計。
儘管諸如AP 130及基地台120之類的地面組件可以是固定的,但實施例不限於此。可以使用行動組件。此外,在一些實施例中,至少部分地基於UE 105與一個或多個其他UE(圖1中未示出)之間通信的RF信號的測量來估計UE 105的位置,這些UE可以是行動的。以這種方式在UE之間的直接通信可以包括側行鏈路及/或類似的裝置到裝置(D2D)通信技術。側行鏈路由3GPP定義,是基於蜂巢的LTE及NR標準下的D2D通信形式。
UE 105的估計的位置可用於各種應用中——例如,協助UE 105用戶的測向或導航,或協助另一用戶(例如,與外部客戶端180相關聯的用戶)定位UE 105。“位置”在本文中亦被稱為“位置估計”、“估計的位置”、“位置”、“定位”、“定位估計”、“定位固定”、“估計的定位”、“位置固定”或“固定”。UE 105的位置可以包括UE 105的絕對位置(例如,經緯度及可能的高度)或UE 105的相對位置(例如,表示為以北或以南、以東或以西的距離的位置,並且可能高於或低於某個其他已知的固定位置或某個其他位置,例如UE 105在某個已知先前時間的位置)。位置亦可以被指定為大地位置(緯度及經度)或城市位置(例如街道地址或使用其他與位置相關的名稱及標籤)。位置進一步可以包括不確定性或誤差指示,例如,位置預計會出現誤差的水平距離及可能的垂直距離,或者UE 105預計會以一定置信度(例如95%置信度)位於其中的區域或體積(例如圓或橢圓)的指示。
外部客戶端180可以是與UE 105有某種關聯(例如,可以由UE 105的用戶存取)的web伺服器或遠程應用程式,或者可以是伺服器、應用程式、,或向某個或某些其他用戶提供位置服務的計算機系統,其可包括獲取及提供UE 105的位置(例如,啟用諸如朋友或親戚查找器、資產追蹤或兒童或寵物位置等服務)。另外或可替代地,外部客戶端180可以獲得UE 105的位置,並將其提供給緊急服務提供商、政府機構等。
如前所述,示例性定位系統100可以使用無線通信網路來實現,例如基於LTE或5G NR的網路。 圖2示出了5G NR定位系統200的示意圖,示出了實現5G NR的定位系統(例如,定位系統100)的實施例。5G NR定位系統200可以被組態以通過使用存取節點210、214、216(可對應於圖1的基地台120及存取點130)及(可選地)LMF 220(可對應於LS 160)以實現一個或多個定位方法來決定UE 105的位置。這裡,5G NR定位系統200包括UE 105、包括下一代(NG)無線電存取網路(RAN)(NG-RAN)235的5G NR網路及5G核心網路(5G CN)240。5G網路亦可以被稱為NR網路;NG-RAN 235可稱為5G RAN或NR RAN;5G CN 240可以被稱為NG核心網路。NG-RAN及5G CN的標準化正在3GPP中進行。因此,NG-RAN 235及5G CN 240可能符合3GPP 5G支援的當前或未來標準。5G NR定位系統200可進一步利用來自諸如全球定位系統(GPS)或類似系統的GNSS系統的GNSS衛星110的資訊。下面描述5G NR定位系統200的附加組件。5G NR定位系統200可包括附加或替代組件。
應該注意的是,圖2僅提供了各種組件的一般說明,其中任何一個組件或所有組件都可以酌情被利用,每個組件都可以根據需要進行複製或省略。具體地說,儘管僅示出了一個UE 105,但是可以理解,許多UE(例如,數百、數千、數百萬等)可以利用5G NR定位系統200。類似地,5G NR定位系統200可以包括更多(或更少)數量的GNSS衛星110、gNB 210、ng-eNB 214、無線區域網路(WLAN)216、存取與行動性功能(AMF)215、外部客戶端230及/或其他組件。連接5G NR定位系統200中的各種組件的圖示連接包括數據及信令連接,其可包括附加(中間)組件、直接或間接實體及/或無線連接及/或附加網路。此外,根據期望的功能性,可以重新排列、組合、分離、替換及/或省略組件。
UE 105可以包括及/或被稱為裝置、行動裝置、無線裝置、行動終端、終端、行動站台(MS)、啟用安全用戶平面位置(SUPL)的終端(SET)或其他名稱。此外,UE 105可對應於蜂巢電話、智慧型電話、膝上型電腦、平板電腦、個人數據助理(PDA)、物聯網(IoT)裝置或一些其他可攜式或可移動裝置。通常,儘管不一定,UE 105可以支援使用一種或多種無線電存取技術(RAT)的無線通信,該無線電存取技術例如使用全球行動通信系統(GSM)、分碼多重存取(CDMA)、寬帶CDMA(WCDMA)、長期演進技術(LTE)、高速封包數據(HRPD)、IEEE 802.11 Wi-Fi®、藍牙、全球微波存取互通(WiMAX)™、5G NR(例如,使用NG-RAN 235及5G CN 240)等。UE 105亦可以支援使用WLAN 216的無線通信,WLAN 216(與一個或多個RAT類似,並且如先前關於圖1所述)可以連接到其他網路,例如網際網路。這些RAT中的一個或多個的使用可允許UE 105與外部客戶端230通信(例如,經由圖2中未示出的5G CN 240的元件,或可能經由閘道行動位置中心(GMLC)225),及/或允許外部客戶端230接收關於UE 105的位置資訊(例如,經由GMLC 225)。
UE 105可以包括單個實體,亦可以包括多個實體,例如在個人區域網路中,用戶可以使用音頻、視頻及/或數據I/O裝置及/或身體感測器以及單獨的有線或無線數據機。UE 105的位置估計可以被稱為位置、位置估計、位置固定、固定、定位、定位估計或定位固定,並且可以是大地測量的,從而為UE 105提供位置坐標(例如,緯度及經度),其可以包括或者不包括高度分量(例如,海平面以上的高度、地面高程、樓層高程或地下室高程以上的高度或以下的深度)。可替代地,UE 105的位置可以表示為城市位置(例如,郵政地址或諸如特定房間或樓層等的建築物中的某個點或小區域的指定)。UE 105的位置亦可以表示為區域或體積(以大地測量或城市形式定義),其中UE 105預計以某種機率或置信度水準(例如67%、95%等)位於其中。UE 105的位置進一步可以是相對位置,該相對位置包括例如相對於已知位置處的某個原點定義的距離及方向或相對X、Y(及Z)坐標,該已知位置可以通過大地測量、城市術語或參考地圖、樓層平面圖或建築平面圖上指示的點、面積或體積來定義。在本文含有的描述中,除非另有說明,否則術語位置的使用可以包括這些變體中的任何一個。當計算UE的位置時,通常需要求解局部X、Y及可能的Z坐標,然後,如果需要,將局部坐標轉換為絕對坐標(例如,對於緯度、經度及高於或低於平均海平面的高度)。
圖2所示的NG-RAN 235中的基地台可以對應於圖1中的基地台120,並且包括傳送接收點(TRP),並且可以包括NR節點B(gNB)210-1及210-2(在本文中統稱為gNB 210)及/或gNB的天線。NG-RAN 235中的成對 gNB 210可以彼此連接(例如,如圖2所示直接連接或經由其他gNB 210間接連接)。對5G網路的存取經由UE 105及gNB 210的一個或多個之間的無線通信被提供給UE 105,其可以使用5G NR代表UE 105提供對5G CN 240的無線通信存取。5G NR無線電存取亦可以被稱為NR無線電存取,或者被稱為5G無線電存取。在圖2中,UE 105的服務gNB被假定為gNB 210-1,儘管如果UE 105移動到另一個位置,其他gNB(例如gNB 210-2)可以充當服務gNB,或者可以充當輔助gNB以向UE 105提供附加吞吐量及帶寬。
圖2所示的NG-RAN 235中的基地台亦可以或替代地包括下一代演進型節點B,亦稱為ng-eNB,214。ng-eNB 214可以連接到NG-RAN 235中的一個或多個gNB 210–例如,直接地或經由其他gNB 210及/或其他ng-eNB間接地。ng-eNB 214可向UE 105提供LTE無線存取及/或演進型LTE(eLTE)無線存取。圖2中的一些gNB 210(例如,gNB 210-2)及/或ng-eNB 214可被組態以用作僅定位信標,其可傳送信號(例如,定位參考信號(PRS))及/或可廣播輔助數據以輔助UE 105的定位,但可不從UE 105或其他UE接收信號。注意,儘管圖2中僅示出了一個ng-eNB 214,但一些實施例可以包括多個ng-eNB 214。
5G NR定位系統200亦可以包括一個或多個WLAN 216,其可以連接到5G CN 240中的非3GPP交互工作功能(N3IWF)250(例如,在不受信任的WLAN 216的情況下)。例如,WLAN 216可以支援UE 105的IEEE 802.11 Wi-Fi存取,並且可以包括一個或多個Wi-Fi AP(例如,圖1的AP 130)。這裡,N3IWF 250可以連接到5G CN 240中的其他元件,例如AMF 215。在一些實施例中,WLAN 216可以支援另一個RAT,例如藍牙。N3IWF 250可支援UE 105對5G CN 240中其他元件的安全存取,及/或可支援WLAN 216及UE 105使用的一個或多個協定與5G CN 240中其他元件(例如AMF 215)使用的一個或多個協定的交互工作。例如,N3IWF 250可以支援與UE 105建立IPSec隧道,與UE 105終止IKEv2/IPSec協定,分別為控制平面及用戶平面終止與5G CN 240的N2及N3介面,通過N1介面在UE 105與AMF 215之間中繼上行鏈路及下行鏈路控制平面非存取層(NAS)信令。在一些其他實施例中,WLAN 216可以直接連接到5G CN 240中的元件(例如,如圖2所示的AMF 215),而不是經由N3IWF 250連接——例如,如果WLAN 216是5G CN 240的受信任WLAN。注意,儘管圖2中僅示出了一個WLAN 216,但一些實施例可以包括多個WLAN 216。
存取節點可以包括能夠在UE 105與AMF 215之間進行通信的各種網路實體中的任何一個。這可以包括gNB 210、ng-eNB 214、WLAN 216及/或其他類型的蜂巢基地台。然而,提供本文所述功能的存取節點可以另外或可替代地包括能夠與圖2中未示出的各種RAT中的任何一個進行通信的實體,其可以包括非蜂巢技術。因此,在下文描述的實施例中使用的術語“存取節點”可以包括但不一定限於gNB 210、ng-eNB 214或WLAN 216。
在一些實施例中,諸如gNB 210、ng-eNB 214或WLAN 216(單獨或與5G NR定位系統200的其他組件組合)的存取節點可被組態以響應於從LMF 220接收到對多個RAT的位置資訊的請求,對多個RAT中的一個進行測量(例如,對UE 105的測量)及/或從UE 105獲得測量,這些測量使用多個RAT中的一個或多個傳輸到存取節點。如上所述,雖然圖2描繪了分別被組態以根據5G NR、LTE及Wi-Fi通信協定進行通信的存取節點210、214及216,但是可以使用被組態以根據其他通信協定進行通信的存取節點,例如,對於通用行動通信服務(UMTS)地面無線電存取網路(UTRAN)使用WCDMA協定的節點B,對於演進型UTRAN(E-UTRAN)使用LTE協定的eNB,或者對於WLAN使用藍牙協定的藍牙®信標。例如,在向UE 105提供LTE無線存取的4G演進型封包系統(EPS)中,RAN可包括E-UTRAN,其可包括包括支援LTE無線存取的eNB的基地台。用於EPS的核心網路可以包括演進型封包核心(EPC)。然後,EPS可以包括E-UTRAN加上EPC,其中E-UTRAN對應於圖2中的NG-RAN 235,EPC對應於圖2中的5G CN 240。本文描述的用於使用共同或通用定位過程的UE 105定位的方法及技術可適用於此類其他網路。
gNB 210及ng-eNB 214可以與AMF 215通信,AMF 215用於定位功能,與LMF 220通信。AMF 215可支援UE 105的行動性,包括UE 105從第一RAT的存取節點210、214或216到第二RAT的存取節點210、214或216的小區改變及切換。AMF 215亦可以參與支援到UE 105的信令連接,並且可能支援UE 105的數據及語音承載。當UE 105存取NG-RAN 235或WLAN 216時,LMF 220可以支援UE 105的定位,並且可以支援定位過程及方法,包括受UE輔助/基於UE及/或基於網路的過程/方法,例如輔助GNSS(A-GNSS)、觀測抵達時間差(OTDOA)、即時動態(RTK),精密點定位(PPP)、差分全球導航衛星系統(DGNSS)、ECID、抵達角(AOA)、出發角(AOD)、WLAN定位及/或其他定位過程及方法。LMF 220亦可以處理例如從AMF 215或從GMLC 225接收的針對UE 105的位置服務請求。LMF 220可以連接到AMF 215及/或GMLC 225。LMF 220可以用其他名稱來指稱,例如位置管理器(LM)、位置功能(LF)、商業LMF(CLMF)或加值LMF(VLMF)。在一些實施例中,實現LMF 220的節點/系統可以附加地或可替代地實現其他類型的位置支援模組,例如演進型服務行動位置中心(E-SMLC)或服務位置協定(SLP)。注意,在一些實施例中,至少部分定位功能(包括決定UE的位置)可以在UE 105處履行(例如,通過處理由諸如gNB 210、ng-eNB 214及/或WLAN 216等無線節點傳送的下行鏈路PRS(DL-PRS)信號,及/或使用例如由LMF 220提供給UE 105的輔助數據)。
閘道行動位置中心(GMLC)225可以支援從外部客戶端230接收到的針對UE 105的位置請求,並且可以將這樣的位置請求轉發給AMF 215,以便由AMF 215轉發給LMF 220,或者可以將位置請求直接轉發給LMF 220。來自LMF 220的位置響應(例如,含有UE 105的位置估計)可以類似地直接或經由AMF 215返回給GMLC 225,然後GMLC 225可以將位置響應(例如,含有位置估計)返回給外部客戶端230。圖2中示出了GMLC 225連接到AMF 215及LMF 220,儘管在一些實現方式中5G CN 240可能只支援其中一個連接。
如圖2中進一步所示,LMF 220可以使用LPPa協定(亦可以被稱為NRPPa或NPPa)與gNB 210及/或與ng-eNB 214通信。NR中的LPPa協定可以與LTE中的LPPa協定(與LTE定位協定(LPP)相關)相同、類似或為其延伸,其中LPPa訊息經由AMF 215在gNB 210與LMF 220之間及/或在ng-eNB 214與LMF 220之間傳輸。如圖2中進一步所示,LMF 220及UE 105可以使用LPP協定進行通信。LMF 220及UE 105亦可以或者替代地使用LPP協定(在NR中,該協定亦可以被稱為NRPP或NPP)進行通信。這裡,LPP訊息可以經由AMF 215及用於UE 105的服務gNB 210-1或服務ng-eNB 214在UE 105與LMF 220之間傳輸。例如,LPP及/或LPP訊息可以使用用於基於服務的操作的訊息(例如,基於超文本傳輸協定(HTTP))在LMF 220與AMF 215之間傳輸,並且可以使用5G NAS協定在AMF 215與UE 105之間傳輸。LPP及/或LPP協定可用於支援使用受UE輔助及/或基於UE的定位方法(例如A-GNSS、RTK、OTDOA及/或增強小區ID(ECID))對UE 105進行定位。LPPa協定可用於使用基於網路的定位方法諸如ECID(例如,當與gNB 210或ng-eNB 214獲得的測量一起使用時)來支援UE 105的定位,及/或可由LMF 220用於從gNB 210及/或ng-eNB 214獲得位置相關資訊,例如,定義來自gNB 210及/或ng-eNB 214的DL-PRS傳輸的參數。
在UE 105存取WLAN 216的情況下,LMF 220可以使用LPPa及/或LPP來獲得UE 105的位置,其方式與剛才描述的UE 105存取gNB 210或ng-eNB 214的方式類似。因此,LPPa訊息可以經由AMF 215及N3IWF 250在WLAN 216與LMF 220之間傳輸,以支援UE 105的基於網路的定位及/或從WLAN 216向LMF 220傳輸其他位置資訊。可替代地,LPPa訊息可以經由AMF 215在N3IWF 250與LMF 220之間傳輸,以基於位置相關資訊及/或N3IWF 250已知或可存取的定位測量來支援UE 105的基於網路的定位,並使用LPPa從N3IWF 250傳輸到LMF 220。類似地,LPP及/或LPP訊息可以經由AMF 215、N3IWF 250在UE 105與LMF 220之間傳輸,並為UE 105服務WLAN 216,以支援LMF 220對UE 105的受UE輔助或基於UE的定位。
通過受UE輔助的定位方法,UE 105可以獲得定位測量,並將測量發送到位置伺服器(例如,LMF 220),以計算UE 105的位置估計。例如,定位測量可包括一個或多個接收信號強度指示(RSSI)、往返信號傳播時間(RTT)、參考信號接收功率(RSRP)、參考信號接收品質(RSRQ)、抵達時間(TOA)、參考信號時間差(RSTD)、AOA、差分AOA(DAOA)、AOD、或用於gNB 210、ng-eNB 214及/或用於WLAN 216的一個或多個存取點的定時提前(TA)。定位測量亦可以或替代地包括與RAT無關的定位方法的測量,例如GNSS(例如,GNSS偽距、GNSS碼相位及/或GNSS衛星110的GNSS載波相位)、WLAN等。
使用基於UE的定位方法,UE 105可獲得定位測量(例如,其可與用於受UE輔助的定位方法的定位測量相同或類似),並可進一步計算UE 105的位置(例如,借助於從諸如LMF 220的位置伺服器接收的輔助數據或由gNB 210、ng-eNB 214或WLAN 216廣播的輔助數據)。此外,在一些情況下,基於UE的定位方法可涉及與另一UE的側行鏈路通信。
通過基於網路的定位方法,一個或多個基地台(例如,gNB 210及/或ng-eNB 214)、一個或多個AP(例如,在WLAN 216中)或N3IWF 250可以獲得對於由UE 105傳送的信號的定位測量(例如,RSSI、RTT、RSRP、RSRQ、AOA或TOA的測量),及/或可接收由UE 105或在N3IWF 250的情況下由WLAN 216中的AP獲得的測量,並可將測量發送到位置伺服器(例如,LMF 220)以計算UE 105的位置估計。
在5G NR定位系統200中,UE 105進行的一些定位測量(例如,AOA、AOD、TOA)可以使用從基地台210及214接收的RF參考信號。這些信號可包括PRS信號,其可用於例如執行UE 105的基於OTDOA、AOD及RTT的定位。可用於定位的其他參考信號可包括小區特定參考信號(CRS)、信道狀態資訊參考信號(CSI-RS)、同步信號等。此外,信號可在發射(Tx)波束中傳送(例如,使用波束成形技術),其可影響角度測量,例如AOD。
圖3是定位系統300的簡化方塊圖,其可以體現圖1的定位系統100或圖2的定位系統200。如圖3所示,UE 305可以經由將UE 305耦合到基地台320-1的通信鏈路335來存取無線網路370。無線網路370可對應於例如圖1中的網路170或圖2中的WLAN 216。在圖3的示例中,基地台320-1與服務小區相關聯,並且通信鏈路335表示與服務小區的連接。UE 305可以與任意數量的實體建立不同類型的會話。例如,UE 305可以與服務小區建立會話以存取蜂巢語音及/或數據服務。UE 305與服務小區之間的會話可以由服務小區或UE 305發起,並且在一些情況下,可能已經作為來自前一服務小區的切換過程的結果而被轉移。UE 305亦可以與關於位置服務的實體建立會話,例如定位會話。例如,UE 305可以週期性地與位置伺服器360建立LTE定位協定(LPP)會話。在LPP會話期間,UE 305可以將基於PRS的測量傳達到位置伺服器360,以使位置伺服器360能夠使用這些測量來計算UE 305之定位。位置伺服器360進而可以將計算出的位置傳達給UE 305及/或基於計算出的位置履行一些動作。
如圖3所示,UE 305亦可以與其他基地台320(例如,基地台320-2及320-3)進行無線通信。這些附加基地台320可與覆蓋不同地理區域的相鄰小區相關聯。因此,基地台320-2及320-3可以遠離與基地台320-1相關聯的服務小區。在一些情況下,彼此不共置的多個基地台可與同一小區相關聯。然而,為了說明,可以假設圖3中的每個基地台320位於不同的位置並且與不同的小區相關聯。
UE 305可以從每個基地台320接收一個或多個無線定位信號350。例如,無線定位信號350可以包括由基地台320廣播或由基地台320根據UE 305的請求發送的DL-PRS信號。基地台320-1、320-2及320-3各自可分別傳送其自身的無線定位信號350-1、350-2及350-3。在一些實施例中,例如圖2的實施例,基地台320-1、320-2及320-3中的每一個可以對應於單獨的TRP。基地台320可以使用特定的時間或頻率資源來傳送其無線定位信號,以便不干擾來自其他基地台320的無線定位信號。在一些實施例中,無線定位信號350是時間及/或頻率多工的。儘管在圖3中未示出,但無線定位信號可以可選地包括從UE 305傳送到一個或多個基地台320的上行鏈路信號。
UE 305可被組態以使用無線定位信號350來履行定位測量,以支援位置決定過程。例如,UE 305可以使用本地時鐘捕獲每個無線定位信號350的TOA,測量無線定位信號350的RSTD,及/或根據用於位置決定過程的定位方法履行其他類型的定位測量。以下是基於下行鏈路或上行鏈路參考信號的定位測量以及這些定位測量支援的相應定位方法的非詳盡列表: -          DL-RSTD:支援DL-TDOA; -          DL-PRS RSRP(參考信號接收功率):支援DL-TDOA、DL-AoD(出發角)及多RTT(多往返時間); -          UE Rx Tx時間差:支援多RTT;及 -          SS-RSRP(同步信號RSRP)、SS-RSRQ(同步信號參考信號接收品質)、CSI-RSRP(信道狀態資訊RSRP)及CSI-RSRQ:每個都支援E-CID(增強小區ID)。
如前所述,可以支援基於UE的定位及/或基於網路的定位。因此,UE 305可以處理由UE 305獲得的定位測量,以本地計算UE的位置。可替代地,定位測量可以被傳達到另一個裝置,該裝置被組態以基於定位測量來計算UE的位置。例如,在一些實現方式中,位置伺服器360基於UE 305從無線定位信號350獲得的定位測量來計算UE的位置。在5G實現中,位置伺服器360可對應於如圖2中的LMF 220的LMF。此外,位置伺服器360可以整合到基地台(例如,gNB 210-1、gNB 210-2、ng-eNB 214)或獨立伺服器中。
除了接收無線定位信號350外,UE 305亦可以發送及/或接收其他類型的信號,例如同步信號或承載語音或數據的信號。例如,UE 305可以使用通信鏈路335,在基於無線定位信號350履行定位測量的同時,進行電話呼叫或下載網頁。一般來說,可以使用無線電訊框(例如,如圖4所示構造的無線電訊框)來傳達無線定位信號350及在UE 305與基地台320之間傳達的其他信號。
圖4是示出NR的訊框結構400的示例及相關聯的術語的圖,其可作為UE與基地台之間(例如,圖3中的UE 305與基地台320之間)的實體層通信的基礎。用於下行鏈路及上行鏈路通信中的每一個的傳輸時間線可以被劃分為無線電訊框的單元。每個無線電訊框可以具有預定的持續時間(例如,10ms),並且可以被劃分成10個子訊框,每個子訊框為1ms,索引為0到9。根據子載波間隔,每個子訊框可以包括可變數量的時槽。根據子載波間隔,每個時槽可以包括可變數量的符元週期(例如,7或14個符元)。每個時槽中的符元週期可以被分配索引。迷你時槽可以包括子時槽結構(例如,2、3或4個符元)。圖4中另外示出了子訊框的完整正交分頻多工(OFDM),示出了如何在時間及頻率上將子訊框劃分為複數個資源塊(RB)。單個RB可以包括跨越14個符元及12個子載波的資源元素(RE)的網格。
時槽中的每個符元可以指示鏈路方向(例如,下行鏈路(DL)、上行鏈路(UL)或靈活)或數據傳輸,並且每個子訊框的鏈路方向可以動態切換。鏈路方向可能基於時槽格式。每個時槽可以包括DL/UL數據以及DL/UL控制資訊。在NR中,傳送同步信號(SS)塊。SS塊包括主SS(PSS)、次SS(SSS)及雙符元實體廣播信道(PBCH)。SS塊可以在固定的時槽位置中傳送,例如如圖4所示的符元0-3。PSS及SSS可由UE用於小區搜尋及獲取。PSS可以提供半訊框定時,SS可以提供循環前綴(CP)長度及訊框定時。PSS及SSS可以提供小區標識。PBCH承載一些基本的系統資訊,例如下行鏈路系統帶寬、無線電訊框內的定時資訊、SS叢發集週期、系統訊框號等。
圖5是示出具有PRS定位時機的無線電訊框序列500的示例的圖。“PRS實例”或“PRS時機”是週期性重複時間窗口(例如,一組一個或多個連貫時槽)的一個實例,在該時間窗口中預期將傳送PRS。PRS時機亦可稱為“PRS定位時機”、“PRS定位實例”、“定位時機”、“定位實例”、“定位重複”,或簡稱為“時機”、“實例”或“重複”。子訊框序列500可適用於從定位系統100中的基地台120或定位系統300中的基地台320廣播PRS信號(DL-PRS信號)。無線電訊框序列500可用於5G NR中(例如,在5G NR定位系統200中)及/或LTE中。與圖4類似,時間在圖5中水平地表示(例如,在X軸上),時間從左向右增加。頻率垂直表示(例如,在Y軸上),頻率從下到上遞增(或遞減)。
圖5顯示了PRS時機510-1、510-2及510-3(本文統稱為定位時機510)如何由系統訊框編號(SFN)、小區特定子訊框偏移(Δ PRS)515及PRS週期性(T PRS)520決定。小區特定的PRS子訊框組態可由“PRS組態索引”(I PRS)定義,該“PRS組態索引”包括在輔助數據(例如,OTDOA輔助數據)中,該輔助數據可由管理3GPP標準定義。小區特定子訊框偏移(Δ PRS)515可以根據從系統訊框號(SFN)0開始到第一(後續)PRS定位時機的開始傳送的子訊框之數量來定義。
在適當組態(例如,通過操作及維護(O&M)伺服器)之後,PRS可由無線節點(例如,基地台120)傳送。PRS可以在分組到定位時機510中的特殊定位子訊框或時槽中傳送。例如,PRS定位時機510-1可以包括連貫定位子訊框之數量N PRS,其中數量N PRS可以在1到160之間(例如,可以包括值1、2、4及6以及其他值)。PRS時機510可被分組為一個或多個PRS時機組。如上所述,PRS時機510可以以由毫秒(或子訊框)間隔之數量T PRS表示的間隔週期性地發生,其中T PRS可以等於5、10、20、40、80、160、320、640或1280(或任何其他適當的值)。在一些態樣中,可以根據連貫定位時機的開始之間的子訊框之數量來測量T PRS
在一些態樣中,當UE在特定小區(例如,基地台)的輔助數據中接收到PRS組態索引I PRS時,UE可以使用儲存的索引數據決定PRS週期性T PRS520及小區特定子訊框偏移(Δ PRS)515。然後,當在小區中調度PRS時,UE可以決定無線電訊框、子訊框及時槽。輔助數據可以由例如位置伺服器(例如,圖1中的LS 160及/或圖2中的LMF 220)決定,並且包括用於參考小區及由各種無線節點支援的數個相鄰小區的輔助數據。
通常,來自使用相同頻率的網路中的所有小區的PRS時機在時間上對齊,並且相對於使用不同頻率的網路中的其他小區,可以具有固定的已知時間偏移(例如,小區特定子訊框偏移(Δ PRS)515)。在SFN同步網路中,所有無線節點(例如,基地台120)可以在訊框邊界及系統訊框編號上對齊。因此,在SFN同步網路中,由各種無線節點支援的所有小區可以對任何特定頻率的PRS傳輸使用相同的PRS組態索引。另一方面,在SFN異步網路中,各種無線節點可以在訊框邊界上對齊,但不在系統訊框編號上對齊。因此,在SFN異步網路中,每個小區的PRS組態索引可以由網路單獨組態,以便PRS時機在時間上對齊。如果UE 105可以獲得至少一個小區(例如,參考小區或服務小區)的小區定時(例如,SFN或訊框數),則UE 105可以決定參考小區及相鄰小區的PRS時機510的定時以進行OTDOA定位。其他小區的定時隨後可由UE 105基於例如來自不同小區的PRS時機重疊的假設來推導出。
在圖2所示的5G NR定位系統200中,TRP(例如,gNB 210、ng-eNB 214、WLAN 216)可以傳送訊框或其他實體層信令序列,來支援根據前面描述的訊框組態的PRS信號(即DL-PRS),這些訊框或實體信令序列可以被測量並用於UE 105的位置決定。如上所述,包括其他UE的其他類型的無線網路節點亦可以被組態以傳送以與上述方式類似(或者相同的)方式組態的PRS信號。因為無線網路節點對PRS的傳輸可以被定向到無線電範圍內的所有UE,所以無線網路節點可以被認為是傳送(或廣播)PRS。
在一些態樣中,由對於 “參考小區”(亦可以稱為“參考資源”)的位置伺服器(例如,LS 160),以及相對於參考小區的一個或多個“相鄰小區”或“鄰近小區”(亦可以稱為“目標小區”或“目標資源”)向UE提供OTDOA輔助數據。例如,輔助數據可以提供每個小區的中心信道頻率、各種PRS組態參數(例如,N PRS、T PRS、靜音序列、跳頻序列、PRS ID、PRS帶寬)、小區全域ID、與定向PRS相關聯的PRS信號特徵,及/或適用於OTDOA或某些其他定位方法的其他小區相關參數。UE 105可以通過在OTDOA輔助數據中指示UE 105的服務小區(例如,將參考小區指示為服務小區)來便利基於PRS的定位。
在一些態樣中,OTDOA輔助數據亦可以包括“預期參考信號時間差(RSTD)”參數以及預期RSTD參數的不確定性,RSTD參數向UE提供關於UE被預計將在參考小區與每個相鄰小區之間的當前位置處測量的RSTD值的資訊。預期的RSTD以及相關聯的不確定性可定義UE的搜尋窗口,在該窗口內,UE被預計將測量RSTD值。OTDOA輔助資訊亦可包括PRS組態資訊參數,其允許UE相對於參考小區的PRS定位時機,在從各種相鄰小區接收的信號上決定何時發生PRS定位時機,以及決定從各種小區傳送的PRS序列,以便測量信號ToA或RSTD。
使用RSTD測量、每個小區的已知絕對或相對傳輸定時,以及參考小區及相鄰小區的無線節點實體發射天線的(諸)已知位置,可以計算UE位置(例如,由UE 105或LS 160計算)。更具體地,相對於參考小區“Ref”的相鄰小區“k”的RSTD可以被給出為(ToA k- ToA Ref),其中ToA值可以以一個子訊框持續時間(1 ms)為模來測量,以消除在不同時間測量不同子訊框的影響。然後,不同小區的ToA測量可以被轉換為RSTD測量,並由UE 105發送到位置伺服器101。使用(i)RSTD測量,(ii)每個小區的已知絕對或相對發射定時,(iii)參考小區及相鄰小區的實體發射天線的(諸)已知位置,及/或(iv)諸如發射方向的定向PRS特性,可以決定UE位置。
圖6是示出根據實施例的UE 600的接收組件的簡化方塊圖。UE 600包括多個Rx鏈610-1、610-2、610-3。儘管僅示出了三個Rx鏈,但是UE可以具有更多或更少的Rx鏈,例如,四個、八個或更多的Rx鏈。當多個Rx鏈可用時,Rx鏈可用於MIMO通信。多個Rx鏈的另一個用途是通過不同的Rx鏈接收及處理相同的信號來增加信號分集,以便通過分集(例如,空間分集、時間分集或其他形式的分集)實現信號增益。當信號通過不同的傳播路徑傳送及接收時,例如在多路徑傳播場景中,可以實現空間分集。當信號沿不同路徑傳播時,可以使用間隔開的天線來接收及解碼信號。使用多個天線解碼信號的結果可以組合起來,以改善信號的接收。時間分集可能涉及在不同時間傳送同一信號的多個實例,這有助於緩解由於環境條件的變化的時變信號衰落,例如,當UE相對於信號源移動時,存在障礙物,或存在間歇性干擾時會產生環境條件的變化。如下文所述,在基於DL-PRS或其他類型的參考信號來決定UE的位置時,多個Rx鏈亦可用於減少處理時間並提高信號雜訊比(SNR)。
通常,Rx鏈包括處理組件,這些處理組件被組態以對來自一個或多個天線的Rx信號(例如,Rx信號614)履行信號處理。在圖6的示例中,處理組件被佈置在處理管線中。例如,每個Rx鏈610可以包括天線612及與天線612相關聯的處理管線620。天線612可以一起形成天線陣列,並且在一些情況下亦可以用於傳輸目的。處理管線620可以包括硬體及/或軟體組件,硬體及/或軟體組件被組態以對由與Rx鏈相關聯的天線接收的參考信號(例如,PRS)相對應的Rx信號履行信號處理。例如,每個處理管線620可以包括被組態以將類比Rx信號(例如,Rx信號614)轉換為數位信號的類比數位轉換器及被組態以通過使用參考載波信號解調Rx信號來恢復基帶信號的解調電路。通常,處理管線內的處理涉及按順序或分階段履行的一系列操作(例如,如上所述,先進行類比數位轉換,然後進行解調)。在一些情況下,Rx鏈內的處理可能涉及同時履行的操作,例如,一些階段可能重疊。
在圖6的示例中,每個Rx鏈與單獨的天線相關聯。因此,與Rx鏈相關聯的天線可以被認為是Rx鏈本身之一部分,如圖6所示。然而,並非所有情況都是如此。例如,在一些實施例中,UE可以包括兩個或多個平面,每個平面包括兩個或多個接收天線,其相應的Rx信號被組合(例如,在類比域中使用求和操作)成組合Rx信號,以便通過與平面相關聯的Rx鏈進行處理。組合Rx信號可以被生成以輸入到Rx鏈,或者被生成為Rx鏈履行的信號處理之一部分。例如,Rx鏈可以包括類比求和電路以及諸如類比數位轉換器等其他信號處理組件、用於將Rx信號或組合Rx信號轉換為基帶信號的組件等。
此外,每個處理管線620可包括一個或多個處理單元(例如,通用處理器或數位信號處理器(DSP)),一個或多個處理單元被組態以通過應用搜尋窗口來解碼接收的信號(例如,單個Rx信號或組合Rx信號)或從中推導出的信號(例如,基帶信號)。如上文在RSTD測量的上下文中所討論的,可以基於預期的RSTD參數及預期的RSTD參數的不確定性將搜尋窗口定義為UE被預計在其中測量RSTD值的窗口。更一般地,搜尋窗口可以是UE被預計在其中使用接收到的參考信號履行測量的任何窗口。因此,可以理解,搜尋窗口不限於RSTD,而是可替代地對應於在其中預計將使用一個或多個Rx鏈來處理PRS或其他參考信號的時間段。
在一些實施例中,搜尋窗口是一個時間段,在該時間段內,Rx鏈的一個或多個處理單元對正在被解碼的參考信號的樣本應用快速傅立葉變換(FFT)。因此,根據一些態樣,搜尋窗口可以是FFT窗口。例如,如果使用OFDM傳送參考信號,則在參考信號已經從其RF載波頻率下轉換到基帶頻率之後,可以對參考信號進行時間採樣,然後通過應用FFT將其轉換到頻域。FFT的結果可用於標識個別子載波的中心頻率,以及恢復與參考信號相對應的原始數據流。
測量引擎630被組態以基於處理管線620之輸出生成一個或多個測量650。例如,測量引擎630可以包括一個或多個處理器,一個或多個處理器被組態以基於接收時間(例如,根據UE的本地時鐘)計算TOA或RSTD值。例如,為了測量TOA,測量引擎630可以基於針對PRS時機獲得的FFT結果重構PRS信號序列,其中PRS時機包括多個子訊框、每個子訊框多個時槽以及每個時槽多個符元。在重構PRS信號序列之後,測量引擎630可以通過將重構的PRS信號序列與與從其傳送PRS信號的小區的小區ID相關聯的參考PRS信號序列的複共軛相乘來履行相關運算,從而產生一系列相關值。TOA可以基於相關值中峰值的定時來決定。RSTD可以被計算為來自參考小區/基地台的PRS信號的TOA與來自相鄰小區/基地台的PRS信號的TOA之間的差值。測量引擎630可以對其他類型的參考信號履行類似的測量。(諸)測量650可以包括來自相同類型的多個參考信號的測量(例如,從兩個或多個PRS信號推導出的一組測量650)。此外,在一些實施例中,測量引擎630可被組態以從多種類型的參考信號(例如,TRS或DMRS組合中的PRS)生成一組測量650,用於決定UE 600之定位。在一些實施例中,可以在Rx鏈610內本地履行一個或多個測量(例如,僅涉及一個參考信號的定位測量),並從Rx鏈發送到測量引擎630。
測量引擎630及/或Rx鏈610亦可以履行其他類型的定位測量,例如上面結合圖3描述的信號功率及/或信號品質測量。在一些實施例中,測量引擎630及/或Rx鏈610可被組態以履行以下任意組合(例如,兩個或更多):TOA測量、RSTD測量、RSRP測量、品質度量(例如,信號對干擾雜訊比(SINR)或RSSI),接收-傳送(Rx-Tx)測量(例如,傳送PRS與接收PRS之間的時間差)、角度測量(例如,AOA或AOD)、速度測量、都卜勒測量等。當履行基於UE的定位時,由測量引擎630生成的測量650可以輸入到UE本地的定位引擎(未描繪)。定位引擎可以包括硬體及/或軟體,硬體及/或軟體被組態以根據一個或多個定位方法(例如,DL-TDOA、DL-AoD、多RTT等)計算UE的位置。定位引擎可以使用一個或多個處理器來實現,在一些實現方式中,該處理器可以與測量引擎630及/或UE的組件共用。當履行基於網路的定位時,UE可以將測量引擎630生成的測量650傳送到位置伺服器,例如圖3中的位置伺服器360或圖2中的LMF 220。因此,定位引擎可以是位置伺服器本地的而不是UE本地的。
根據環境因素,例如UE 600的移動、基地台的移動(在行動基地台的情況下)、天氣、實體障礙物等,可能存在UE 600無法使用其所有Rx鏈610基於接收到的參考信號履行測量的情況。回到圖3的示例,假設圖6中的UE 600上的每個天線612接收與無線定位信號350-1、350-2或350-3之一相對應的單獨PRS。在時間T1,UE可以位於距離基地台320-1最近的位置,並且位於室外相對無障礙的環境中,因此幾乎沒有衰減地接收到每個無線定位信號350。在時間T2,UE可能已經移動到室內,使得無線定位信號350-2或無線定位信號350-3降級到深度衰落點,但是無線定位信號350-1僅輕微衰減。在這種情況下,在時間T2,UE可能無法使用接收深度衰落信號的Rx鏈成功解碼。因此,測量引擎630可以生成比在時間T1更少的測量,這降低了時間T2相對於時間T1的位置決定之精度。因此,可用於履行測量的Rx鏈可能因PRS時機的不同而不同。
在LTE中,UE通常被組態以使用兩個Rx鏈來履行測量。然而,與5G NR相比,對UE位置的LTE精度要求較低(5G之精度為幾米,而LTE之精度為數百米)。5G之增加的精度要求意味著在某些情況下,兩個Rx鏈可能不足以獲得對UE位置的足夠準確的估計。即使來自兩條Rx鏈的信號沒有深度衰落,這亦可能是真的。因此,對於計算UE的位置的UE或其他裝置來說,瞭解有多少Rx鏈曾經被用於決定任何給定位置計算的定位測量可能是有用的,因為所使用的Rx鏈之數量指示所得到的位置固定之精度。
UE的硬體能力有時會被報告給位置伺服器及/或其他實體,如基地台,這種報告可能包括UE可用的Rx天線總數。例如,3GPP TS(技術標準)37.355規定了一個可選資訊元素“numberOfRXantennas-r14”,該資訊元素可用於報告Rx天線之總數,在如圖6的示例中的天線與Rx鏈之間的一對一相關聯的情況下,其與Rx鏈之總數相同。在使用中,在定位會話開始時發送該可選資訊元素,以通知接收關於UE的能力的報告的實體。所報告的能力可以包括例如由UE支援的定位方法的列表。然而,傳統上不報告用於履行定位測量的Rx鏈之數量。因此,在傳統實現方式中,UE可最初報告其具有四個Rx天線(意味著總共四個Rx鏈),但UE可被組態以僅使用四個Rx鏈中的兩個來獲得定位測量,並且在一些情況下,使用兩個Rx鏈中的一個接收的PRS信號可能處於深度衰落,因此僅從兩個Rx鏈中的一個獲得測量。
因此,在一些態樣中,UE可以被組態以決定通過Rx鏈處理的參考信號處於深度衰落,並且基於該決定,防止參考信號被用於定位測量,或排除由參考信號產生的定位測量被用於計算定位。例如,UE可以決定不將從參考信號推導出的測量轉發到位置伺服器。決定參考信號處於深度衰落可能涉及決定參考信號的SNR或品質的其他指示符低於閾值。此外,UE可以被組態以報告曾經被用於決定一個或多個定位測量的Rx鏈之數量(例如,用於獲得TOA及RSTD測量的Rx鏈之數量)。該報告在圖6中被描繪為來自測量引擎630的附加輸出660。UE可以(例如,使用無線發射器)向位置伺服器(例如,LMF)、基地台(例如,gnB)或UE正在與之通信的某個其他實體發送該報告。在一些實施例中,可以針對每個PRS時機或定位時機履行該報告,以指示在PRS/定位時機期間曾經被用於決定定位測量的Rx鏈之數量。
可在每次測量的基礎上及/或為一組測量(該組包括一種或多種定位測量)報告被使用的Rx鏈之總數。例如,報告可以包括指示被用於給定測量或跨多個測量的Rx鏈之總數、用於跨多個測量的Rx鏈之平均數、用於多個測量中的任何單個測量的Rx鏈之最小(最少)數等資訊。例如,UE可以報告與二十個RSTD或Rx-Tx測量相關聯的單個數字(總數、最小值、平均值等)。可替代地或附加地,UE可以針對二十個測量中的每個單獨測量報告單獨的數字。此外,在一些實施例中,報告可包括曾經使用了多少Rx鏈的定性指示。例如,代替單個數值,UE可以指示被使用的Rx鏈之數量在特定範圍內(例如,0到4個Rx鏈、5到10個Rx鏈等)。作為另一個示例,UE可以指示跨不同測量使用的Rx鏈之數量是否相同。因此,可以報告與曾經被用於決定一個或多個定位測量的Rx鏈之數量有關的任何資訊。
關於用於決定定位測量的Rx鏈之數量的知識可以以多種方式應用。如上所述,使用的Rx鏈之數量表明了最終定位固定之精度(假設獲得了足夠的定位測量以獲得定位固定)。因此,在一些態樣中,計算UE(在一些情況下,UE本身)的位置的位置伺服器或其他實體可被組態以基於曾經被用於決定定位測量的Rx鏈之數量來計算,表明最終定位固定之精度或測量誤差之不確定性的精度稀釋(DOP)值或其他指標。DOP值或其他度量可以與得到的定位固定一起傳達給UE,以使UE能夠相應地響應。例如,UE可以基於DOP值決定定位固定足夠準確。可替代地,UE可以基於DOP值決定定位固定不夠準確,在這種情況下,UE可以切換到不同的定位方法(例如,涉及另一類型參考信號的定位方法)。UE及/或接收關於所使用的Rx鏈之數量的報告的實體可以採取其他動作。例如,UE可以請求TRP、基地台或其他參考信號源增加傳送的參考信號之數量,以便補償處於深度衰落中的參考信號。
圖7示出了用於PRS信號之傳輸的資源塊(RB)樣式700的示例。RB樣式700可對應於上文參考圖4所討論的子訊框。圖7中未示出的是用於其他類型信號的資源元素。然而,應當理解,圖7中的RB可以包括不對應於PRS信號的資源元素(RE)。參考圖4中的訊框結構,用於PRS信號之傳輸的RE的集合被稱為“PRS資源”。資源元素的集合可以跨越頻域中的多個RB及時域中的時槽中的一個或多個連貫符元,其中從TRP或基地台的天線埠傳送偽隨機正交相移鍵控(QPSK)序列。在時域中的給定OFDM符元中,PRS資源可以佔據頻域中的連貫RB。
給定RB內的PRS資源之傳輸具有特定的梳大小(亦稱為“梳密度”)。梳大小“N”表示PRS資源組態的每個符元內的子載波間隔(或頻率/音調間隔),其中組態使用RB的特定符元的每第N個子載波。例如,對於梳-4,與每第四個子載波(例如,子載波0、4、8)相對應的RE被用於傳送PRS資源的PRS。另外,在給定RB內的PRS資源之傳輸具有與該PRS資源跨越的符元之數量相對應的特定符元長度。如圖7所示,使用梳2-符元2選項在符元週期2及符元週期3期間傳送兩個PRS信號。這兩個PRS信號被標記為PRS ID 1及PRS ID 2,下面由其相應的PRS ID引用。
圖7亦示出了兩個PRS信號相對於服務小區邊界710的定時。服務小區邊界710可對應於與從服務小區傳送的信號相關聯的訊框邊界及/或子訊框邊界。例如,如圖7所示,服務小區邊界710可以包括符元邊界。如上文參考圖5所討論的,UE可以基於例如來自不同小區的PRS時機重疊的假設來決定參考小區(在圖7的示例中為服務小區)及相鄰小區的用於OTDOA定位的PRS時機的定時。如上文進一步討論的,UE可接收包括PRS組態參數的輔助數據,PRS組態參數可針對每個小區包括PRS ID、小區全域ID及小區特定子訊框偏移(Δ PRS)515。
在實踐中,UE可能不會同時從不同的小區接收PRS信號,即使PRS信號可以基本上同時傳送。這可能是由於小區與UE的距離不同(因此偏移515)。例如,回到圖3,UE 305可以比從基地台320-2接收PRS信號(例如,PRS ID 2)更早地從基地台320-1接收PRS信號(例如,圖7中的PRS ID 1),因為基地台320-1與服務小區相關聯,因此可能比與相鄰小區相關聯的基地台更靠近UE(偏移量為零或接近於零)。如圖7所示,PRS ID 1與服務小區邊界710時間對齊,使得PRS ID 1的符元的開始及結束與服務小區邊界710的符元0對齊。相反,PRS ID 2不與服務小區邊界710的任何符元對齊,並且相對於符元0延遲偏移720。
接收PRS ID 1及PRS ID 2的UE可以被組態以根據服務小區邊界710處理信號(語音、數據、PRS等),這些信號可以通過來自位置伺服器的輔助數據提供給UE,或者在某些情況下,直接從服務小區提供。由UE處理(例如,解碼)信號的定時可以由服務小區邊界710指示,並且在這個意義上,UE可以被認為與服務小區的定時同步。因此,UE可以期望PRS ID 1及PRS ID 2的符元與服務小區邊界710的相同符元(例如,符元0)對齊。然而,如上所述,並非所有PRS信號都可以與服務小區或參考小區邊界對齊。
如果UE嘗試使用服務小區的定時來處理PRS ID 1及PRS ID 2,則PRS ID 2的SNR將與PRS ID 2不與服務小區邊界對齊的時間量成正比地降低。結果,UE可能無法完全解碼PRS ID 2。反過來,SNR降低將降低測量報告性能,從而降低最終定位固定之精度。相反,由於PRS ID 1與符元0對齊,因此PRS ID 1的SNR最大化,因此使用PRS ID 1獲得的測量不太可能導致不太準確的定位固定。因此,UE根據與其服務小區或參考小區的定時不同的定時來處理至少一些PRS信號可能是有益的。
根據一個態樣,UE可以支援一種或多種方法,用於組態UE處理PRS信號的定時,以便不根據服務小區或參考小區的定時來限制定時。這種方法可以用作上述基於服務小區定時的PRS處理的替代方案。如下面結合圖9討論的,在一些實施例中,UE可以使用不同組的Rx鏈處理多個PRS信號,其中PRS信號被同時接收(例如,在至少部分地重疊的PRS時機期間)。在開始討論該處理方法之前,結合圖8描述用於處理PRS信號的替代方法。此外,如下文所述,圖8所示的方法具有使圖9的處理方法更適合於某些情況的缺點。
圖8示出了PRS處理之循環方法。根據圖8的方法,順序地處理PRS信號,一次一個,並且每次使用相同的Rx鏈(例如,與兩個或多個天線相關聯的一組Rx鏈)。在兩個PRS信號(例如,如圖7中的PRS ID 1及PRS ID 2)的簡單情況下,以交替方式處理PRS信號。例如,如圖8所示,在PRS時機1期間,UE可以通過將搜尋窗口(例如,FFT窗口)810對齊PRS ID 1來解碼PRS ID 1。這種對齊的作用是使接收到的PRS信號的能量最大化。UE可以基於PRS ID 1的預期延遲(在此實例中,延遲為零)及/或PRS ID 1的預期RSTD來對齊搜尋窗口。PRS信號的預期延遲及/或預期RSTD可以使用例如由位置伺服器或知道這些預期值的其他實體提供的PRS組態資訊提供給UE。類似地,在PRS時機2中,UE可以通過將搜尋窗口820對齊PRS ID 2來解碼PRS ID 2,從而最大化PRS ID 2的能量。PRS時機1中的解碼可以使用與PRS時機2中的解碼相同的Rx鏈來履行。該處理可在隨後的時機中重複,以循環方式解碼兩個PRS信號。
圖8的方法傾向於在所有PRS時機下最大化接收到的PRS信號的SNR,尤其是在對參考PRS信號履行相關程序後測量的SNR。然而,由於以循環方式履行PRS信號之處理,因此與基於服務小區邊界的處理相比,從所有PRS信號(例如,PRS ID 1及PRS ID 2)獲得測量所花費的總時間顯著增加。因此,圖8的方法可能在測量的報告中引入大量延遲,這取決於例如要測量的PRS信號之總數。因此,獲得定位固定所需的時間可能會增加。在極端情況下,測量的報告可能會延遲到測量變得過時的點(例如,因為UE已移動到不同的位置),因此產生的定位固定將不能代表UE的當前位置。
圖9示出了根據實施例的處理PRS信號的方法。圖9的方法涉及將Rx鏈分布到不同的集合中,其中每組Rx鏈用於處理在時間上至少部分地重疊的PRS時機期間接收的多個PRS信號中的單獨的PRS信號。以這種方式,可以同時處理多個PRS信號以減少處理時間。此外,可以在相應的搜尋窗口內處理每個PRS,以實現PRS的最大SNR。例如,與圖8所示的處理類似,搜尋窗口910可以應用於PRS ID1,單獨的搜尋窗口920可以應用於PRS ID2。搜尋窗口910可以與PRS ID1對齊,以在其相應的時機解碼PRS ID1。類似地,搜尋窗口920可以在其相應的時機被對齊以解碼PRS ID2。如上文關於圖8所述,可以基於預期延遲(例如,基於預期RSTD)履行對齊。
與圖8的robin-robin方法(在不同的PRS時機使用同一組Rx鏈一次處理一個PRS信號)不同,圖9的方法將不同組的Rx鏈分配給每個待處理的PRS信號。可同時處理的PRS信號之總數取決於UE上可用的Rx鏈之數量。如前所述,UE有時配備的UE多於根據慣用方法進行PRS處理所需的UE(例如,UE可以具有四個或更多Rx鏈)。因此,如圖9所示,可以使用包括接收鏈Rx 1及Rx 2的第一組Rx鏈(Rx鏈組1)來處理PRS ID1,而可以使用包括接收鏈Rx 3及Rx 4的第二組Rx鏈(Rx鏈組2)來處理PRS ID2。例如,Rx 1及Rx 2可各自被組態以處理與由相應天線元件接收的PRS ID1相對應的相應Rx信號。類似地,Rx 3及Rx 4可各自被組態以處理與由相應天線元件接收的PRS ID2相對應的相應Rx信號。在一個實施例中,每組Rx鏈包括至少兩個Rx鏈。然而,在一些情況下,例如當使用窄帶物聯網(NB-IoT)協定傳送PRS信號時,由單個Rx鏈組成的集合可用於PRS處理。此外,如上所述,可以將Rx鏈組態以處理與由一組天線元件接收的PRS相對應的組合Rx信號。因此,Rx鏈組1可以包括與形成第一平面的天線相關聯的Rx鏈。類似地,Rx鏈組2可以包括與形成與第一平面分離的第二平面的天線相關聯的Rx鏈。此外,一個集合中的Rx鏈總數不必在所有集合中都相同,即,一些集合可能比其他集合具有更多的Rx鏈。
Rx鏈分配給不同集合的方式可能因實施情況而異。在一些實施例中,預分配Rx鏈。例如,被組態以同時處理三個PRS信號的UE可以被組態以使用第一對Rx鏈來處理第一PRS,第二對Rx鏈來處理第二PRS,以及第三對Rx鏈來處理第三PRS,其中每對Rx鏈的成員是固定的。在另一實施例中,每組Rx鏈通過從可用Rx鏈池中選擇而動態形成。可以基於其Rx天線的空間位置來分配Rx鏈,例如,最小化由來自其他Rx鏈的鄰近Rx天線接收的PRS信號的干擾。在圖9的示例中,根據其對應天線在天線陣列中的相對定位對Rx鏈進行編號,例如,Rx 1的天線與Rx 2的天線相鄰,Rx 2的天線與Rx 3的天線相鄰,等等。因此,如圖9所示,每組Rx鏈可以與一組連貫的天線相關聯。然而,情況並非總是如此。此外,當要使用集合處理的PRS較弱時,例如,如測量的SNR低於閾值所示,可以將更多數量的Rx鏈分配給集合。將Rx鏈分配給不同集合的其他方法亦是可能的。
同一組Rx鏈可用於處理同一PRS的每一時機,至少直到獲得足夠的測量以履行位置估計或其他基於PRS的計算。例如,Rx鏈組1可被組態以處理與PRS ID1的每一時機相對應的Rx信號。類似地,Rx鏈組2可被組態以處理與PRS ID2的每一時機相對應的Rx信號。因此,每組Rx鏈可專屬於唯一PRS的處理。這將確保以一致的方式處理相同PRS的不同時機,因為不同的Rx鏈可能具有不同的處理延遲或其他可能影響結果測量的特徵。這亦有助於在同一PRS之多個時機進行測量。
此外,使用同一組Rx鏈來處理同一PRS的每一時機的另一個好處是,通過為PRS保持單獨的搜尋窗口(例如FFT窗口),可以使用相應的Rx鏈組獨立追蹤每個PRS。例如,通過將第一組Rx鏈分配給第一PRS,並將第二組Rx鏈分配給具有與第一PRS類似的中心信道頻率(例如,彼此之間的頻率小於等於50Mhz)的第二PRS,與對第一PRS及第二PRS兩者使用相同的Rx鏈相比,可以更準確地追蹤第一PRS及第二PRS。儘管每組Rx鏈可以保持其自己的搜尋窗口,但在某些情況下,不同組的Rx鏈可以調諧到相同的中心信道頻率。可以將Rx鏈調諧到相同的中心頻率,以組態Rx鏈用於處理與相同PRS相對應的Rx信號。可以將Rx鏈調諧到不同的中心頻率,以組態不同的Rx鏈來處理對應於不同PRS的Rx信號。當多個TRP或PRS源被組態以提供共同構成定位頻率層(PFL)的PRS資源時,亦可以使用調諧到相同的中心頻率。TRP或PRS源可以為多個PFL提供PRS資源,因此可以使用不同的中心頻率進行傳送,但同一PFL內的PRS資源通常使用相同的中心頻率進行傳送。
為了確保同一組Rx鏈處理同一PRS信號的不同時機,可以根據PRS源(例如TRP或基地台)的視距,將每組Rx鏈分配給不同的PRS。例如,可以針對每種時機測量實際延遲Δ PRS,並且可以使用同一組Rx鏈來處理測量到的延遲在彼此的特定範圍內及/或在為特定PRS(例如,預期RSTD)指定的預期延遲的特定範圍內的信號。
應當注意,在圖9的方法中,可能依賴於與服務小區或參考小區邊界的同步的其他類型的信號之處理仍然可以正常進行,假設有足夠的Rx鏈可用於此類附加處理。因此,可以以方便的方式處理PRS信號,同時最大化每個PRS信號的SNR,並且不會對非PRS信號的解碼的吞吐量產生不利影響。
圖10是根據實施例的用於報告定位測量的方法1000的流程圖。用於履行圖10所示功能的構件可由UE的硬體及/或軟體組件(例如,一個或多個處理器,包括UE中至少一個Rx鏈的處理器、實現測量引擎的處理器,或兩者)履行。除了UE之外,圖10中所示的其他功能可以由遠離UE的網路實體(例如,位置伺服器或LMF,或另一UE)以及一個或多個參考信號發射器(例如,與服務小區及一個或多個相鄰小區相關聯的TRP)來履行。在圖13中示出了UE的示例組件,下面將更詳細地描述圖13。
在1002,UE與網路實體建立定位會話,即,為了基於使用參考信號推導出的定位測量來估計UE的定位/位置的會話。定位會話可以由UE或網路實體發起。例如,作為在1002中建立定位會話之一部分,UE可以發送指示UE想要開始定位會話(例如,LPP會話)的訊息。通常,在諸如定位會話的通信會話期間的通信可能涉及一個或多個交易,每個交易包括從第一端點(例如,UE)發送到第二端點(例如,網路實體)的訊息,以及在第二端點成功解碼來自第一端點的訊息之後從第二端點發送回第一端點的確認。如果第二端點不能解碼該訊息,則第二端點可能不發送確認,這進而可能導致第一端點重新傳送該訊息。為簡單起見,在圖10中省略了確認及重傳。
在1004,網路實體可以向UE發送請求能力訊息。請求能力訊息是請求UE列舉其功能性的訊息。此類功能性可包括硬體資源、軟體資源、支援的定位方法等。
在1006,UE向網路實體提供其能力。例如,UE可以發送提供能力訊息(例如,OTDOA提供能力訊息),該訊息包括列舉UE的能力的一個或多個資訊元素,例如,UE具有的可用的Rx天線/鏈之總數。然而,如上所述,可用的Rx鏈之總數可能不同於實際用於履行定位測量的Rx鏈之總數,例如,因為UE被組態以使用少於可用的Rx鏈之總數,及/或因為由於參考信號的深度衰落而無法使用分配用於處理特定參考信號的Rx鏈。
在1008,網路實體請求位置資訊。所請求的位置資訊可以包括UE能夠提供的定位測量,如1006中的提供能力訊息中列舉的能力所示。
在1010處,可用於決定定位測量的參考信號(例如,PRS信號)從多個源傳送,從該定位測量可根據一個或多個定位方法計算UE之定位。例如,可以從與服務小區相關聯的TRP及與相鄰小區相關聯的TRP傳送這樣的參考信號,如圖3所示。參考信號可以同時廣播,並且在參考信號已經被傳送之後UE接收參考信號所花費的時間量指示UE與參考信號的發射器之間的距離。1010中傳送的參考信號可以週期性地重複傳送,例如,每個參考信號可以以固定間隔重複。
在1012,UE在定位會話期間接收1010中傳送的參考信號中的至少一個。然後,UE通過使用一個或多個Rx鏈處理至少一個參考信號來決定一個或多個定位測量。例如,一個或多個定位測量可以包括TOA測量、RSTD測量、RSRP測量、品質度量(例如,SINR或RSSI)、Rx-Tx測量、角度測量、速度測量、都卜勒測量或其任何組合。通常,從多個參考信號推導出的定位測量一起用於計算定位(例如,通過三邊測量)。因此,是否可以計算定位取決於決定了多少個定位測量。如上所述,可以使用一組單獨的Rx鏈來處理與特定參考信號相對應的Rx信號或組合Rx信號。因此,如果在1012中接收到多個參考信號,則可以使用一組不同的Rx鏈來處理每個參考信號。在一些情況下,1012中的至少一個參考信號之處理可涉及輔助數據的使用。因此,在1012之前的定位會話中的某個點,UE可以向網路實體發送請求輔助數據訊息,網路實體可以用提供輔助數據訊息進行響應。提供輔助數據訊息的內容可以包括例如一個或多個預期RSTD值。
在1014,UE向網路實體提供位置資訊。由UE提供的位置資訊可以以位置資訊訊息的形式提供,該位置資訊訊息含有包括在1012中決定的一個或多個定位測量的報告。該報告亦可以包括與曾經被用於決定一個或多個定位測量的Rx鏈之數量有關的資訊。該資訊可用來決定(諸)定位測量的正確性的置信度水準。使用的Rx鏈之數量越多,置信度越高,因此使用(諸)定位測量計算的結果定位之精度越高。可包含在報告中的資訊示例包括但不限於,用於決定多個定位測量的Rx鏈之總數,用於決定多個定位測量中的單個定位測量的Rx鏈之總數,跨多個定位測量使用的Rx鏈之平均數,及/或用於決定多個定位測量中任何單個定位測量的Rx鏈之最低數。此外,在某些情況下,報告可能會標識使用了哪些特定的Rx鏈及/或相關聯的天線元件。因此,該報告可以代替或除了上述類型的資訊之外,包括標識UE配備的Rx鏈中的哪些Rx鏈用於決定第一PRS之定位測量的資訊(每個Rx鏈可以被分配一個數字或其他唯一標識符),哪些天線元件提供了經處理以決定第一PRS之定位測量的Rx信號或組合Rx信號,及/或指示與決定(諸)定位測量有關的Rx鏈及其相關聯的組件的實際使用的其他資訊。
在1016,網路實體使用1014中提供的位置資訊計算UE之定位,假設作為位置資訊之一部分提供了足夠數量的定位測量。網路實體的計算可以考慮與使用了多少Rx鏈有關的資訊,如1014中所報告的。例如,網路實體可以決定幾何精度稀釋(GDOP)度量或指示計算定位的不確定度的其他度量。可替代地,在某些情況下,定位及/或不確定性度量可由UE本身計算。
在1016中計算出UE之定位後,網路實體可以將計算出的定位傳回UE,可能與GDOP或指示計算出的定位的不確定度的其他度量一起。此外,UE及/或網路實體可以基於計算出的定位、GDOP/其他度量及/或與使用了多少個Rx鏈有關的資訊來採取行動。例如,UE可以響應於GDOP低於閾值,切換到不同的定位方法,重新組態自身以處理附加的參考信號(例如,通過分配附加的Rx鏈來決定與接收至少一個參考信號的另一實例相關的一個或多個定位測量),或從參考信號發射器請求附加的參考信號。
圖11是根據實施例的用於使用多個Rx鏈履行定位測量的方法1100的流程圖。用於履行圖11所示功能的構件可由UE的硬體及/或軟體組件(例如,UE中至少兩個Rx鏈的處理器、實現測量引擎的處理器,或兩者)履行。儘管關於PRS信號進行了描述,但圖11的方法可用於從在時間上重疊的其他類型的參考信號生成定位測量。
在1102,在第一PRS時機期間,使用UE的第一組天線元件從第一發射器裝置接收第一PRS。第一組天線元件通常包括至少兩個Rx天線,但在某些情況下可能包括少至一個Rx天線。第一發射器裝置可以是第一組天線元件範圍內的任何PRS源(例如,基地台或TRP)。例如,第一PRS可以是由與UE的當前服務小區相關聯的TRP週期性地廣播的信號。
在1104,在第二PRS時機期間,使用UE的第二組天線元件從第二發射器裝置接收第二PRS。第一組天線元件與第二組天線元件分開。第一組天線元件及第二組天線元件中的每個天線元件與Rx鏈相關聯。與任何特定天線元件相關聯的Rx鏈被組態以處理與由單個天線元件接收的PRS相對應的Rx信號(例如,如圖6的示例所示),或者被組態以處理與由一組天線元件接收的PRS相對應的組合Rx信號(例如,當第一組天線元件或第二組天線元件形成接收平面時)。
1102中第一PRS的源及1104中第二PRS的源可以是位於不同位置的兩個發射器裝置。例如,如果第一PRS的源是與服務小區相關聯的TRP,則第二TRP的源可以是與相鄰小區相關聯的TRP。兩個PRS源可被組態以大約同時(即基本上同時)傳送其各自的PRS。因為PRS源位於不同的位置,所以第一PRS及第二PRS可能在不同的時間抵達UE。然而,由於第一PRS時機與第二PRS時機至少部分地重疊,第一PRS及第二PRS可以同時被接收。
在1106,UE可以使用與第一組天線元件相關聯的一個或多個Rx鏈來處理第一PRS。具體而言,可以使用與第一組天線元件相關聯的一個或多個Rx鏈(例如,圖9的示例中的Rx 1及Rx 2)來處理與第一PRS相對應的Rx信號或組合Rx信號。類似地,在1106,UE可以使用與第二組天線元件相關聯的一個或多個Rx鏈(例如,Rx 3及Rx 4)來處理與第二PRS相對應的Rx信號或組合Rx信號。1106中的處理可能涉及將單獨的搜尋窗口與每個PRS對齊。如上所述,對齊可以基於每個PRS的預期延遲(例如,預期RSTD)。在一些實施例中,搜尋窗口是決定PRS信號的哪些時間樣本經受傅立葉變換的FFT窗口。當第一PRS及第二PRS被同時接收並使用不同組的Rx鏈進行處理時,第一PRS的處理及第二PRS的處理可以平行發生。然而,處理第一PRS的(諸)Rx鏈可以在與處理第二PRS的(諸)Rx鏈不同的時間輸出結果。
在1108處,使用:(i)與第一PRS相對應的Rx信號或組合Rx信號之處理之結果及(ii)與第二PRS相對應的Rx信號或組合Rx信號之處理之結果,來決定定位測量。在1108中決定的定位測量可以包括上述任何類型的定位測量,例如TOA測量、RSTD測量、RSRP測量、品質度量(例如,SINR或RSSI)、Rx-Tx測量、角度測量、速度測量、都卜勒測量或其任何組合。例如,在1108中決定的定位測量可以包括第一PRS及第二PRS中的每一個的TOA測量及RSTD測量。一旦決定了定位測量,就可以將定位測量報告給網路實體(例如,位置伺服器),以由網路實體計算UE之定位。可替代地,可以使用UE的一個或多個處理單元本地處理定位測量以計算UE的位置。因此,圖11的方法適用於基於UE的定位方法以及受UE輔助的定位方法。
圖12是根據實施例的用於分配Rx鏈的方法1200的流程圖。用於履行圖12所示功能的構件可由UE的硬體及/或軟體組件(例如,UE中至少兩個Rx鏈的處理器、實現測量引擎的處理器,或兩者)履行。儘管關於PRS進行了描述,但圖12的方法可用於從時間上重疊的其他類型的參考信號生成定位測量。可以執行圖12的方法來分配Rx鏈,以用於履行本文描述的任何與Rx鏈相關的操作,包括上文參考圖10及11描述的操作。
在1202,UE的Rx鏈被分配用於處理Rx信號或與一個或多個源(例如,第一PRS及第二PRS)傳送的PRS相對應的組合Rx信號。在典型使用中,最初至少分配兩個Rx鏈。然而,取決於UE的組態,最初只能分配一個Rx鏈。例如,一些UE可被組態以使用單個Rx鏈來履行處理,以在特定操作條件(例如,低功率或睡眠模式)期間節省功率或減少計算資源。此外,在1202中分配的Rx鏈之數量可以取決於使用場景,並且該數量可以在不同類型的UE之間變化。例如,物聯網裝置可以組態以使用比智慧型手機或汽車導航系統更少的Rx鏈。
1202中分配的每個Rx鏈可組態以處理與PRS相對應的Rx信號或組合Rx信號。如上所述,天線可以被佈置成形成接收平面,以便來自平面中的多個天線的Rx信號被組合以通過Rx鏈進行處理。可替代地,可以將Rx鏈組態以處理來自單個天線的Rx信號。因此,每個分配的Rx鏈與一個或多個天線相關聯。作為分配1202之一部分,可以將個別Rx鏈分配給每個PRS。例如,如果UE配備有八個Rx鏈並且及有兩個PRS要處理,那麼及UE可以選擇兩個Rx鏈用於處理與第一PRS相對應的Rx信號,以及另外兩個Rx鏈用於處理與第二PRS相對應的Rx信號。在一些情況下,UE可被組態以分配用於處理不同PRS的同一組Rx鏈,以便在分配用於處理第一PRS的Rx信號的Rx鏈與分配用於處理第二PRS的Rx信號的Rx鏈之間存在部分或完全重疊。
在1204,使用1202中分配的Rx鏈處理Rx信號,以決定每個PRS的一個或多個定位測量。處理可以涉及前面描述的各種操作中的任何一種,包括基帶轉換、類比數位轉換、應用傅立葉變換等。通常,為每個PRS決定相同類型的測量(例如,第一PRS的RSTD或RSRP測量及第二PRS的另一個RSTD或RSTP測量)。然而,在一些情況下,UE可以為不同的PRS決定不同類型的測量。
在1206處,UE可選擇性地生成報告,該報告指示用於決定1204中的一個或多個定位測量的Rx鏈之數量。例如,可以根據圖10所示的方法履行報告。
在1208,基於滿足或一個或多個條件,決定應調整(增加或減少)分配給一個或多個PRS的Rx鏈之數量。這些條件可以是在UE的組態中指定的條件,例如,編程到UE的記憶體中或硬連線到諸如圖6的測量引擎630之類的處理組件中。在一些情況下,這些條件可以通過無線通信提供給UE,例如,來自在1206中接收到報告的網路實體,或者來自被組態以使用在1204中決定的測量來估計UE之定位的某個其他實體。因此,條件可以是固定的,亦可以是可重新組態的。這些條件可以包括與性能相關的條件,例如使用1204中決定的測量獲得的位置估計之精度。UE亦可以與當前的操作狀態相關。例如,UE可以被組態以在UE的電池電平低於某個值時減少分配的Rx鏈之總數。作為另一個示例,UE可被組態以在需要更高的定位精度時增加分配的Rx鏈之總數。例如,由於第一PRS的中心信道頻率接近或類似於(例如,在閾值頻率範圍內)第二PRS的中心信道頻率,UE可以決定通過使用與用於第二PRS的Rx鏈分離的第一PRS的Rx鏈來提高位置精度。
1208中的決定導致決定重新分配UE配備的Rx鏈。例如,如果同一組Rx鏈最初在1202中分配給第一PRS及第二PRS,1208中的決定的一個可能結果是,應將一組單獨的Rx鏈(例如,當前未使用的兩個Rx鏈)分配給第二PRS,以便使用該組單獨的Rx鏈處理與第二PRS之後續時機相對應的Rx信號,而初始組的Rx鏈用於處理與第一PRS之後續時機相對應的Rx信號。因此,UE對於不同的PRS可以在使用分開的Rx鏈組及使用相同的Rx鏈組之間切換。可替代地,UE可以被組態以總是為不同的PRS使用分開的Rx鏈組,但是分配給給定PRS的Rx鏈之數量可以在UE操作過程中變化。例如,在1208中的決定可導致決定將更多Rx鏈分配給第一PRS,同時保持用於第二PRS的Rx鏈之數量相同。
在1210,根據1208中的決定結果重新分配UE的Rx鏈。1210中的重新分配可能涉及改變分配給至少一個PRS的Rx鏈。作為重新分配RX鏈之一部分,UE可以組態或重新組態用於特定PRS的RX鏈。例如,新分配給第一PRS的Rx鏈使用的搜尋窗口可被更新以對應於與第一PRS的下一時機對齊的窗口。作為另一個示例,UE可以更新Rx鏈使用的中心信道頻率,以匹配Rx鏈已分配給的PRS的中心信道頻率。
在1212,使用重新分配的Rx鏈處理與PRS之後續時機相對應的Rx信號。因此,現在分配給第一PRS的(諸)Rx鏈可以處理一個或多個Rx信號或與第一PRS之後續時機相對應的組合Rx信號。類似地,現在分配給第二PRS的(諸)Rx鏈可以處理與第二PRS之後續時機相對應的一個或多個Rx信號或組合Rx信號,其中第二PRS之後續時機與第一PRS之後續時機至少部分地重疊(例如,圖7中描述的場景)。由此產生的定位測量隨後可被UE用於估計其自身的位置,或被發送到另一實體,該實體基於定位測量估計UE的位置。
圖13示出了UE 1302的一個實施例,其可以如上所述被利用。例如,UE 1302可以履行圖10或圖11所示的方法的一個或多個功能。UE 1302亦可以實現上述UE中的一個或多個(例如,圖1中的UE 105、圖3中的UE 305及/或圖6中的UE 600)。應注意,圖13僅旨在提供各種組件的一般性說明,其中任何或所有組件都可酌情被利用。應注意,在一些情況下,圖13中所示的組件可以是單個實體裝置本地的及/或在各種聯網裝置中分布的。此外,如前所述,在先前描述的實施例中討論的UE的功能可以由圖13所示的一個或多個硬體及/或軟體組件執行。
所示的UE 1302包括硬體元件,這些硬體元件可以通過匯流排1305進行電耦合(或者根據需要可以以其他方式進行通信)。硬體元件可以包括(諸)處理單元1310,其可以包括但不限於一個或多個通用處理器、一個或多個專用處理器(例如數位信號處理器(DSP)晶片、圖形加速處理器、特定應用積體電路(ASIC)等),及/或其他處理結構或構件。如圖13所示,一些實施例可以具有單獨的DSP 1320,這取決於所需的功能。可以在(諸)處理單元1310及/或無線通信介面1330(下文討論)中提供基於無線通信的位置決定及/或其他決定。UE 1302亦可以包括一個或多個輸入裝置1370,其可以包括但不限於一個或多個鍵盤、觸摸屏、觸摸板、麥克風、按鈕、撥號盤、開關等;以及一個或多個輸出裝置1315,其可包括但不限於一個或多個顯示器(例如,觸摸屏)、發光二極體(LED)、揚聲器等。
UE 1302亦可以包括無線通信介面1330,其可以包括但不限於數據機、網路卡、紅外通信裝置、無線通信裝置、,及/或晶片組(例如藍牙®裝置、IEEE 802.11裝置、IEEE 802.15.4裝置、Wi-Fi裝置、WiMAX裝置、WAN裝置及/或各種蜂巢裝置等),及/或可使UE 1302能夠與上述實施例中描述的其他裝置通信的晶片組。無線通信介面1330可允許例如經由eNB、gNB、ng-eNB、存取點、各種基地台及/或其他存取節點類型及/或其他網路組件、計算機系統、及/或與TRP通信耦合的任何其他電子裝置,如本文所述,與網路的TRP通信(例如,傳送及接收)數據及信令。可以經由發送及/或接收無線信號1334的一個或多個無線通信天線1332來履行通信。根據一些實施例,(諸)無線通信天線1332可包括複數個離散天線、天線陣列或其任何組合。
根據所需功能,無線通信介面1330可包括單獨的接收器及發射器,或收發器、發射器及/或接收器的任何組合,以與基地台(例如,ng-eNB及gNB)以及其他地面收發器(例如無線裝置及存取點)通信。UE 1302可以與包括各種網路類型的不同數據網路通信。例如,無線廣域網路(WWAN)可以是CDMA網路、分時多重存取(TDMA)網路、分頻多重存取(FDMA)網路、正交分頻多重存取(OFDMA)網路、單載波分頻多重存取(SC-FDMA)網路、WiMAX(IEEE 802.16)網路,等等。CDMA網路可以實現一個或多個RAT,例如CDMA2000、WCDMA等。CDMA2000包括IS-95、IS-2000及/或IS-856標準。TDMA網路可以實現GSM、數位先進行動電話系統(D-AMPS)或其他RAT。OFDMA網路可能會採用LTE、LTE Advanced,5G NR等。5G NR、LTE、LTE Advanced、GSM及WCDMA在來自3GPP的文件中進行了描述。Cdma2000在一個名為“第三代合作夥伴項目4”(3GPP2)的聯合體的文件中進行了描述。3GPP及3GPP2文件可公開獲取。無線區域網路(WLAN)亦可以是IEEE 802.11x網路,無線個人區域網路(WPAN)可以是藍牙網路、IEEE 802.15x或某種其他類型的網路。本文描述的技術亦可用於WWAN、WLAN及/或WPAN的任何組合。
UE 1302進一步可以包括(諸)感測器1340。感測器1340可包括但不限於一個或多個慣性感測器及/或其他感測器(例如,(諸)加速計、(諸)陀螺儀、(諸)攝像頭、(諸)磁強計、(諸)高度計、(諸)麥克風、(諸)近接感測器、(諸)光感測器、(諸)氣壓計等),其中一些可用於獲取定位相關測量及/或其他資訊。
UE 1302的實施例亦可以包括全球導航衛星系統(GNSS)接收器1380,該接收器能夠使用天線1382(可以與天線1332相同)從一個或多個GNSS衛星接收信號1384。基於GNSS信號測量的定位可被利用來補充及/或合併本文所述的技術。GNSS接收器1380可以使用慣用技術從GNSS系統(例如全球定位系統(GPS)、伽利略(Galileo)、GLONASS、日本上空的準天頂衛星系統(QZSS)、印度上空的印度區域導航衛星系統(IRNSS),中國上空的北斗導航衛星系統(BDS)等)的GNSS衛星提取UE 1302之定位。此外,GNSS接收器1380可與各種增強系統(例如,基於衛星的增強系統(SBAS))一起使用,這些系統可與一個或多個全球及/或區域導航衛星系統(例如廣域增強系統(WAAS),歐洲同步衛星導航覆蓋服務(EGNOS)、多功能衛星增強系統(MSAS)及靜地軌道增強導航系統(GAGAN)等)相關聯或以其他方式啟用與其一起使用。
可以注意到,儘管GNSS接收器1380在圖13中被圖示為明確的組件,但實施例並不限於此。如本文所使用的,術語“GNSS接收器”可包括組態以獲得GNSS測量(來自GNSS衛星的測量)的硬體及/或軟體組件。因此,在一些實施例中,GNSS接收器可以包括由一個或多個處理單元(例如處理單元1310、DSP 1320及/或無線通信介面1330(例如,在數據機中)內的處理單元)執行的測量引擎(作為軟體)。GNSS接收器亦可以可選地包括定位引擎,其可以使用延伸卡爾曼濾波器(EKF)、加權最小平方(WLS)、Hatch濾波器、粒子濾波器等,使用來自測量引擎的GNSS測量來決定GNSS接收器之定位。定位引擎亦可以由一個或多個處理單元執行,例如處理單元1310或DSP 1320。
UE 1302進一步可以包括及/或與記憶體1360通信。記憶體1360可以包括但不限於本地及/或網路可存取記憶體、磁盤驅動器、驅動器陣列、光儲存裝置、固態儲存裝置,例如隨機存取記憶體(RAM)及/或唯讀記憶體(ROM),其可以是可編程的、快閃可更新的及/或諸如此類的。這種儲存裝置可以被組態以實現任何適當的數據儲存,包括但不限於各種檔案系統、數據庫結構等。
UE 1302的記憶體1360亦可以包括軟體元件(圖13中未示出),包括作業系統、裝置驅動程式、可執行庫及/或其他代碼,例如一個或多個應用程式,其可以包括由各種實施例提供的計算機程式,及/或可以被設計為實現方法,及/或組態由其他實施例提供的系統,如本文所述。僅作為示例,關於上述方法描述的一個或多個過程可以實現為可由UE 1302(及/或UE 1302內的處理單元1310或DSP 1320)執行的記憶體1360中的代碼及/或指令。在一個態樣中,這樣的代碼及/或指令可用於組態及/或調整通用計算機(或其他裝置)以根據所述方法履行一個或多個操作。
對於本領域技術人員來說,顯而易見的是,可以根據具體要求進行實質性的變更。例如,亦可以使用定制硬體及/或在硬體、軟體(包括可攜式軟體,例如小型應用程式等)或兩者中實現特定元素。此外,可以採用與諸如網路輸入/輸出裝置的其他計算裝置的連接。
參考所附圖式,可以包括記憶體的組件可以包括非暫時性機器可讀媒體。本文使用的術語“機器可讀媒體”及“計算機可讀媒體”是指參與提供導致機器以特定方式操作的數據的任何儲存媒體。在上文提供的實施例中,各種機器可讀媒體可涉及向處理單元及/或其他裝置提供指令/代碼以供執行。另外或可替代地,機器可讀媒體可用於儲存及/或攜帶此類指令/代碼。在許多實現方式中,計算機可讀媒體是實體及/或有形儲存媒體。這種媒體可以採取多種形式,包括但不限於非揮發性媒體、揮發性媒體及傳輸媒體。計算機可讀媒體的常見形式包括,例如,磁性及/或光學媒體、具有孔洞圖案的任何其他實體媒體、RAM、可編程ROM(PROM)、可抹除PROM(EPROM)、FLASH-EPROM、任何其他儲存晶片或卡匣、載波,如下文所述,或計算機可以從中讀取指令及/或代碼的任何其他媒體。
本文討論的方法、系統及裝置是示例。各種實施例可酌情省略、替代或添加各種過程或組件。例如,關於某些實施例描述的特徵可以在各種其他實施例中組合。實施例的不同態樣及元素可以以類似的方式組合。本文提供的圖的各種組件可以用硬體及/或軟體實現。此外,技術不斷發展,因此許多元素都是示例,並不將本公開內容的範疇限制在這些特定示例中。
事實證明,有時,主要是出於常見用法的原因,可以方便地引用諸如位元、資訊、值、元素、符元、字符、變數、術語、編號、數字等信號。然而,應該理解的是,所有這些或類似的術語都與適當的物理量相關聯,只是方便的標籤。除非另有明確說明,從上述討論中可以明顯看出,應理解,在本說明書的整個討論中,使用諸如“處理”、“用計算機計算”、“計算”、“決定”、“查明”、“標識”、“關聯”、“測量”、“履行”等術語指的是特定器具的動作或過程,例如專用計算機或類似的專用電子計算裝置。因此,在本說明書的上下文中,專用計算機或類似的專用電子計算裝置能夠操縱或轉換信號,通常表示為記憶體、暫存器或其他資訊儲存裝置、傳輸裝置或專用計算機或類似專用電子計算裝置的顯示裝置中的物理電子量、電量或磁量。
本文中使用的術語“及”及“或”可能包括多種含義,至少部分取決於使用這些術語的上下文。通常,“或”如果用於關聯一個列表,例如A、B或C,則意指A、B及C,在這裡用於包容性意義,以及A、B或C,在這裡用於排他性意義。此外,本文中使用的術語“一個或多個”可用於以單數形式描述任何特性、結構或特徵,或可用於描述特性、結構或特徵的一些組合。然而,應當注意的是,這僅僅是一個說明性示例,並且所主張的主題不限於此示例。此外,術語“其中至少一個”如果用於關聯列表,例如A、B或C,則可解釋為表示A、B及/或C的任何組合,例如A、AB、AA、AAB、AABBCCC等。
在描述了幾個實施例之後,可以使用各種修改、替代構造及均等物,而不偏離本公開內容的精神。例如,上述元素可以僅僅是更大系統的組件,其中其他規則可以優先於各種組件的應用或否則修改各種組件的應用。此外,在考慮上述要素之前、期間或之後,可能會採取數個步驟。因此,上述描述不限制本公開內容的範疇。
鑒於本描述,實施例可以包括特性的不同組合。實施示例在以下編號的條款中描述: 條款1.一種報告用於決定定位測量的資源之方法,該方法包含由用戶裝備(UE)履行以下操作:使用一個或多個接收(Rx)鏈決定參考信號之一個或多個定位測量,其中每個Rx鏈處理與單個天線單元接收到的參考信號相對應的Rx信號或與一組天線單元接收到的參考信號相對應的組合Rx信號;以及向網路實體報告該一個或多個定位測量及指示用於決定該一個或多個定位測量的Rx鏈之數量的資訊。 條款2.如條款1之方法,其中該一個或多個定位測量包括抵達時間(TOA)測量、參考信號時間差(RSTD)測量、參考信號接收功率(RSRP)測量、信號對干擾雜訊比(SINR)測量、接收信號強度指示(RSSI)測量、品質度量、接收-傳送(Rx-Tx)測量、角度測量、速度測量、都卜勒測量或其組合。 條款3.如條款1或2之方法,其中指示用於決定該一個或多個定位測量的Rx鏈之該數量的該資訊包含以下各項中至少一個之指示:用於決定多個定位測量的Rx鏈之總數,用於決定多個定位測量中的單個定位測量的Rx鏈之總數,跨多個定位測量使用的Rx鏈之平均數,或用於決定多個定位測量中的任何單個定位測量的Rx鏈之最低數。 條款4.如條款1-3中任一項之方法,其中指示用於決定該一個或多個定位測量的Rx鏈之該數量的該資訊標識使用了哪些Rx鏈或哪些天線元件提供了Rx信號或經過處理的組合Rx信號中的至少一個,以決定該一個或多個定位測量。 條款5.如條款1-4中任一項之方法,進一步包含:基於指示用於決定該一個或多個定位測量的Rx鏈之該數量的該資訊來決定該一個或多個定位測量之精度。 條款6.如條款5之方法,進一步包含:基於低於閾值的該精度來請求附加參考信號之傳輸。 條款7.如條款5或6之方法,進一步包含:根據第一定位方法並將該一個或多個定位測量與附加參考信號之定位測量結合使用來計算該UE之定位;以及基於該精度低於閾值切換到第二定位方法。 條款8.如條款1-7中任一項之方法,進一步包含:分配第一Rx鏈用於處理與該參考信號相對應的Rx信號或組合Rx信號;分配第二Rx鏈用於處理與第二參考信號相對應的Rx信號或組合Rx信號,其中第二Rx鏈與第一Rx鏈分離。 條款9.如條款8之方法,其中基於決定該參考信號及該第二參考信號具有相似的中心信道頻率來分配該第一Rx鏈及該第二Rx鏈。 條款10.如條款8或9之方法,進一步包含:使用該第二Rx鏈處理與該第二參考信號相對應的該Rx信號或組合Rx信號;以及使用該第二Rx鏈之輸出來決定該第二參考信號之一個或多個定位測量。 條款11.如條款1-10中任一項之方法,進一步包含:在接收該參考信號之前,報告該UE可用的Rx鏈之總數,其中用於決定該一個或多個定位的Rx鏈之總數小於該UE可用的Rx鏈之該總數。 條款12.如第11條之方法,其中報告對該UE可用的Rx鏈之該總數包含向該網路實體發送能力(Capabilities)訊息,並且其中報告指示用於決定該一個或多個定位的Rx鏈之該數量的資訊包含向該網路實體發送位置資訊訊息。 條款13.如條款1-12中任一項之方法,其中決定該一個或多個定位測量包含:將與由第一天線元件接收的該參考信號相對應的Rx信號轉換為基帶信號;使用與該第一天線元件相關聯的Rx鏈對該基帶信號履行數位信號處理,其中該數位信號處理包括快速傅立葉變換。 條款14.如條款1-12中任一項之方法,其中決定該一個或多個定位測量包含:將與由第一組天線元件接收的該參考信號相對應的組合Rx信號轉換為基帶信號;以及使用與該第一組天線元件相關聯的Rx鏈對該基帶信號履行數位信號處理,其中該數位信號處理包括快速傅立葉變換。 條款15.一種裝置,包含:複數個天線元件;複數個接收(Rx)鏈,包括一個或多個Rx鏈,每個Rx鏈被組態以處理與由該複數個天線元件中的單個天線元件接收的參考信號相對應的Rx信號或與由該複數個天線元件中的一組天線元件接收的參考信號相對應的組合Rx信號;一個或多個處理器被組態以使用來自該一個或多個Rx鏈的輸出來決定該參考信號之一個或多個定位測量;無線發射器,被組態以向網路實體報告該一個或多個定位測量及指示用於決定該一個或多個定位測量的Rx鏈之數量的資訊。 條款16.如條款15之裝置,其中該一個或多個定位測量包括抵達時間(TOA)測量、參考信號時間差(RSTD)測量、參考信號接收功率(RSRP)測量、信號對干擾雜訊比(SINR)測量、接收信號強度指示(RSSI)測量、品質度量、接收-傳送(Rx-Tx)測量、角度測量、速度測量、都卜勒測量或其組合。 條款17.如條款15或16之裝置,其中指示用於決定該一個或多個定位測量的Rx鏈之該數量的該資訊包含以下各項中至少一個之指示:用於決定多個定位測量的Rx鏈之總數,用於決定多個定位測量中的單個定位測量的Rx鏈之總數,跨多個定位測量使用的Rx鏈之平均數,或用於決定多個定位測量中的任何單個定位測量的Rx鏈之最低數。 條款18.如條款15-17中任一項之裝置,其中指示用於決定該一個或多個定位測量的Rx鏈之該數量的該資訊標識使用了哪些Rx鏈或哪些天線元件提供了Rx信號或經過處理的組合Rx信號中的至少一個,以決定該一個或多個定位測量。 條款19.如條款15-18中任一項之裝置,其中該一個或多個處理器被組態以基於指示用於決定該一個或多個定位的Rx鏈之該數量的該資訊來決定該一個或多個定位測量之精度。 條款20.如條款19之裝置,其中該裝置被組態以基於低於閾值的該精度來請求附加參考信號之傳輸。 條款21.如條款19或20之裝置,其中該一個或多個處理器被組態以:根據第一定位方法並將該一個或多個定位測量與附加參考信號之定位測量結合使用來計算該裝置之定位;以及基於該精度低於閾值切換到第二定位方法。 條款22.如條款15-21中任一項之裝置,其中該一個或多個處理器被組態以:分配第一Rx鏈用於處理與該參考信號相對應的Rx信號或組合Rx信號;分配第二Rx鏈用於處理與第二參考信號相對應的Rx信號或組合Rx信號,其中該第二Rx鏈與該第一Rx鏈分離。 條款23.如條款22之裝置,其中該一個或多個處理器被組態以基於決定該參考信號及該第二參考信號具有相似的中心信道頻率來分配該第一Rx鏈及該第二Rx鏈。 條款24.如條款22或23之裝置,其中該一個或多個處理器被組態以:使用該第二Rx鏈處理與該第二參考信號相對應的該Rx信號或組合Rx信號;並且使用該第二Rx鏈之輸出決定該第二參考信號之一個或多個定位測量。 條款25.如條款15-24中任一項之裝置,其中該無線發射器被組態以在接收到該參考信號之前,報告該裝置可用的Rx鏈之總數,並且其中決定該一個或多個定位測量的Rx鏈之總數小於該裝置可用的Rx鏈之該總數。 條款26.如條款25之裝置,其中為了報告該裝置可用的Rx鏈之該總數,該無線發射器被組態以向該網路實體發送能力訊息,並且其中為了報告指示用於決定該一個或多個定位測量的Rx鏈之該數量的該資訊,該無線發射器被組態以向該網路實體發送位置資訊訊息。 條款27.如條款15-26中任一項之裝置,其中該複數個Rx鏈包括第一Rx鏈,該第一Rx鏈被組態以:將與由第一天線元件接收的該參考信號相對應的Rx信號轉換為基帶信號;對該基帶信號進行數位信號處理,其中該數位信號處理包括快速傅立葉變換。 條款28.如條款15-26中任一項之裝置,其中該複數個Rx鏈包括第一Rx鏈,該第一Rx鏈被組態以:將與由第一組天線元件接收的該參考信號相對應的組合Rx信號轉換為基帶信號;對該基帶信號進行數位信號處理,其中該數位信號處理包括快速傅立葉變換。 條款29.一種含有指令的非暫時性計算機可讀媒體,該指令當由一個或多個處理器執行時,使該一個或多個處理器:使用一個或多個接收(Rx)鏈來決定參考信號之一個或多個定位測量,其中,每個Rx鏈被組態以處理與由單個天線元件接收的該參考信號相對應的Rx信號或與由一組天線元件接收的該參考信號相對應的組合Rx信號;向網路實體報告該一個或多個定位測量及指示用於決定該一個或多個定位測量的Rx鏈之數量的資訊。 條款30.一種裝置,包含:複數個天線元件;複數個接收(Rx)鏈,包括一個或多個Rx鏈,每個Rx鏈被組態以處理與由該複數個天線元件中的單個天線元件接收的參考信號相對應的Rx信號或與由該複數個天線元件中的一組天線元件接收的該參考信號相對應的組合Rx信號;用於使用來自該一個或多個Rx鏈的輸出來決定該參考信號之一個或多個定位測量的構件;以及用於向網路實體報告該一個或多個定位測量及指示用於決定該一個或多個定位測量的Rx鏈之數量的資訊的構件。 條款31.一種使用用戶裝備(UE)之多個接收(Rx)鏈來決定定位測量之方法,該方法包含由該UE履行以下操作:使用與第一組天線元件相關聯的Rx鏈,處理與第一定位參考信號(PRS)相對應的Rx信號或組合Rx信號;使用與與該第一組天線元件分離的第二組天線元件相關聯的Rx鏈來處理與第二PRS相對應的Rx信號或組合Rx信號,其中與該第一PRS相對應的該Rx信號或組合Rx信號是在第一PRS時機期間生成的,並且其中與該第二PRS相對應的該Rx信號或組合Rx信號是在與該第一PRS時機至少部分地重疊的第二PRS時機期間生成的;以及使用:(i)與該第一PRS相對應的該Rx信號或組合Rx信號之該處理之結果及(ii)與該第二PRS相對應的該Rx信號或組合Rx信號之該處理之結果,來決定該定位測量。 條款32.如條款31之方法,進一步包含:接收與服務小區或參考小區相關聯的定時資訊,該定時資訊指示符元邊界;使用與該第一組天線元件相關聯的該Rx鏈,將第一快速傅立葉變換(FFT)窗口與該第一PRS時機對齊;使用與該第二組天線元件相關聯的該Rx鏈將第二FFT窗口與該第二PRS時機對齊,其中該第一FFT窗口及該第二FFT窗口對齊而不考慮該符元邊界;並且與使用該第二FFT窗口履行第二FFT平行地使用該第一FFT窗口履行第一FFT。 條款33.如條款31或32之方法,其中該第一PRS時機與第一符元之邊界對齊,並且其中該第二PRS時機與該第一PRS時機在時間上部分地重疊並且不與任何符元邊界對齊。 條款34.如條款32或33之方法,其中將該第一FFT窗口與該第一PRS時機對齊包含:接收指示該第一PRS時機相對於符元邊界的預期時間延遲的輔助數據;基於該輔助數據指示的該預期時間延遲決定該第一FFT窗口之開始。 條款35.如第34條之方法,其中該輔助數據是從gNodeB基地台或位置管理功能(LMF)接收的。 條款36.如條款34或35之方法,其中該預期時間延遲作為與傳送該第一PRS的發射器裝置相關聯的預期參考信號時間差(RSTD)來接收。 條款37.如條款31-36中任一項之方法,進一步包含:組態該Rx鏈,使得與該第一PRS之後續時機相對應的Rx信號或組合Rx信號由與該第一組天線元件相關聯的該Rx鏈來處理,而不是由與該第二組天線元件相關聯的該Rx鏈來處理。 條款38.如條款31-37中任一項之方法,其中該第一PRS及該第二PRS來自位於距該UE不同距離處的傳送/接收點(TRP)。 條款39.如條款31-38中任一項之方法,其中該第一PRS來自服務小區,並且其中該第二PRS來自相鄰小區。 條款40.如條款31-39中任一項之方法,進一步包含:使用與該第一組天線元件相關聯的附加Rx鏈來處理與該第一PRS相對應的單獨Rx信號或組合Rx信號;以及使用與該第二組天線元件相關聯的附加Rx鏈處理與該第二PRS相對應的單獨Rx信號或組合Rx信號。 條款41.如條款31-40中任一項之方法,進一步包含:決定該第一PRS及該第二PRS具有相似的中心信道頻率;並且響應於決定該第一PRS及該第二PRS具有相似的中心信道頻率,為該第一PRS及該第二PRS分配單獨的Rx鏈。 條款42.一種裝置,包含:第一組天線元件,被組態以在第一PRS時機期間生成與第一定位參考信號(PRS)相對應的Rx信號或組合Rx信號;第二組天線元件,被組態以在與該第一PRS時機至少部分地重疊的第二PRS時機期間生成與第二PRS相對應的Rx信號或組合Rx信號;複數個接收(Rx)鏈,包括:與該第一組天線元件相關聯的Rx鏈,並且與該第一組天線元件相關聯的該Rx鏈被組態以處理與該第一PRS相對應的該Rx信號或組合Rx信號;以及與該第二組天線元件相關聯的Rx鏈,並且與該第二組天線元件相關聯的該Rx鏈被組態以處理與該第二PRS相對應的該Rx信號或組合Rx信號;以及一個或多個處理器,被組態以使用以下各項來決定定位測量:(i)由與該第一組天線元件相關聯的該Rx鏈基於處理與該第一PRS相對應的該Rx信號或組合Rx信號而生成的結果,以及(ii)由與該第二組天線元件相關聯的該Rx鏈基於處理與該第二PRS相對應的Rx信號或組合Rx信號而生成的結果。 條款43.如條款42之裝置,其中:該裝置被組態以接收與服務小區或參考小區相關聯的定時資訊,該定時資訊指示符元邊界;與該第一組天線元件相關聯的該Rx鏈被組態以將第一快速傅立葉變換(FFT)窗口與該第一PRS時機對齊並且不考慮該符元邊界,並且進一步被組態以使用該第一FFT窗口履行第一FFT;以及與該第二組天線元件相關聯的該Rx鏈被組態以將第二FFT窗口與該第二PRS時機對齊並且不考慮該符元邊界,以及進一步被組態以使用該第二FFT窗口履行第二FFT,並且與由與該第一組天線元件相關聯的該Rx鏈履行第一FFT平行。 條款44.如條款42或43之裝置,其中該第一PRS時機與第一符元之邊界對齊,並且其中該第二PRS時機與該第一PRS時機在時間上部分地重疊並且不與任何符元邊界對齊。 條款45.如條款43或44之裝置,其中該裝置被組態以接收指示該第一PRS時機相對於符元邊界的預期時間延遲的輔助數據,並且其中將該第一FFT窗口與該第一PRS時機對齊,該裝置被組態以基於由該輔助數據指示的該預期時間延遲來決定該第一FFT窗口之開始。 條款46.如條款45之裝置,其中該輔助數據是從gNodeB基地台或位置管理功能(LMF)接收的。 條款47.如條款45或46之裝置,其中該裝置被組態以接收該預期時間延遲作為與傳送該第一PRS的發射器裝置相關聯的預期參考信號時間差(RSTD)。 條款48.如條款42-47中任一項之裝置,其中該一個或多個處理器被組態以使與該第一PRS之後續時機相對應的Rx信號或組合Rx信號由與該第一組天線元件相關聯的該Rx鏈來處理,而不是由與該第二組天線元件相關聯的該Rx鏈來處理。 條款49.如條款42-48中任一項之裝置,其中該發射器裝置是位於距該裝置不同距離處的傳送/接收點(TRP)。 條款50.如條款42-49中任一項之裝置,其中該第一PRS是從服務小區接收的,並且其中該第二PRS是從相鄰小區接收的。 條款51.如條款42-50中任一項之裝置,其中多個Rx鏈與該第一組天線元件相關聯並且每個Rx鏈被組態以處理與該第一PRS相對應的單獨Rx信號或組合Rx信號,並且其中多個Rx鏈與該第二組天線元件相關聯並且每個Rx鏈被組態以處理與該第二PRS相對應的單獨Rx信號或組合Rx信號。 條款52.如條款42-51中任一項之裝置,其中該一個或多個處理器被組態以:決定該第一PRS及該第二PRS具有相似的中心信道頻率;以及響應於決定該第一PRS及該第二PRS具有相似的中心信道頻率,為該第一PRS及該第二PRS分配單獨的Rx鏈。 條款53.一種裝置,包含:第一組天線元件,被組態以在第一PRS時機期間生成與第一定位參考信號(PRS)相對應的Rx信號或組合Rx信號;第二組天線元件,被組態以在與第一PRS時機至少部分地重疊的第二PRS時機期間生成與第二PRS相對應的Rx信號或組合Rx信號;複數個接收(Rx)鏈,包括與該第一組天線元件相關聯的Rx鏈及與該第二組天線元件相關聯的Rx鏈;用於組態與該第一組天線元件相關聯的該Rx鏈以處理與該第一PRS相對應的該Rx信號或組合Rx信號的構件;用於組態與該第二組天線元件相關聯的該Rx鏈以處理與該第二PRS相對應的Rx信號或組合Rx信號的構件;以及使用以下各項來決定定位測量的構件:(i)由與該第一組天線元件相關聯的該Rx鏈基於處理與該第一PRS相對應的該Rx信號或組合Rx信號生成的結果以及(ii)由與該第二組天線元件相關聯的該Rx鏈基於處理與該第二PRS相對應的該Rx信號或組合Rx信號生成的結果。 條款54.一種含有指令的非暫時性計算機可讀媒體,該指令當由一個或多個處理器執行時,使該一個或多個處理器:使用與第一組天線元件相關聯的Rx鏈,來處理與第一定位參考信號(PRS)相對應的Rx信號或組合Rx信號;使用與與該第一組天線元件分離的第二組天線元件相關聯的Rx鏈來處理與第二PRS相對應的Rx信號或組合Rx信號,其中與該第一PRS相對應的該Rx信號或組合Rx信號是在第一PRS時機期間生成的,並且其中與該第二PRS相對應的該Rx信號或組合Rx信號是在與該第一PRS時機至少部分地重疊的第二PRS時機期間生成的;並且使用以下各項來決定定位測量:(i)與該第一PRS相對應的該Rx信號或組合Rx信號之該處理之結果以及(ii)與該第二PRS相對應的該Rx信號或組合Rx信號之該處理之結果。
100:定位系統 105、145:用戶裝備(UE) 110:全球導航衛星系統(GNSS)衛星 120:基地台 130:存取點(AP) 133:第一通信鏈路 135:第二通信鏈路 140:RF信號 160:位置伺服器(LS) 170:網路 180:外部客戶端 200:5G NR定位系統 210-1、210-2NR節點B(gNB) 214:下一代演進型節點B(ng-eNB) 215:存取與行動性功能(AMF) 216:無線區域網路(WLAN) 220:位置管理功能(LMF) 225:閘道行動位置中心(GMLC) 230:外部客戶端 235:下一代無線電存取網路(NG-RAN) 240:5G核心網路(5G CN) 250:非3GPP交互工作功能(N3IWF) 300:定位系統 305:用戶裝備(UE) 320-1、320-2、320-3:基地台 335:通信鏈路 350-1、350-2、350-3:無線定位信號 360:位置伺服器 370:無線網路 400:訊框結構 500:無線電訊框序列 510-1、510-2、510-3:定位參考信號(PRS)定位時機 515:小區特定子訊框偏移 520:PRS週期性 600:用戶裝備(UE) 610-1、610-2、610-3:接收(Rx)鏈 612-1、612-2、612-3:天線 614-1、614-2、614-3:Rx信號 620-1、620-2、620-3:處理管線 630:測量引擎 650:測量 660:附加輸出 700:資源塊(RB)樣式 710:服務小區邊界 720:偏移 810、820、910、920:搜尋窗口 1000:用於報告定位測量的方法 1002:建立定位會話 1004:請求能力 1006:提供能力 1008:請求位置資訊 1010:傳送參考信號 1012:在定位會話期間接收至少一個參考信號,然後決定一個或多個定位測量 1014:提供位置資訊 1016:使用位置資訊計算UE之定位 1100:用於使用多個Rx鏈履行定位測量的方法 1102:接收第一PRS 1104:接收第二PRS 1106:處理與第一PRS、第二PRS相對應的Rx信號或組合Rx信號 1108:使用處理之結果來決定定位測量 1200:用於分配Rx鏈的方法 1202:分配Rx鏈用於處理Rx信號或組合Rx信號 1204:使用分配的Rx鏈處理Rx信號,以決定一個或多個定位測量 1206:生成指示用於決定一個或多個定位測量的Rx鏈之數量的報告 1208:決定應增加或減少分配給一個或多個PRS的Rx鏈之數量 1210:重新分配Rx鏈 1212:使用重新分配的Rx鏈處理與PRS之後續時機相對應的Rx信號 1302:用戶裝備(UE) 1305:匯流排 1310:(諸)處理單元 1315:(諸)輸出裝置 1320:數位信號處理器(DSP) 1330:無線通信介面 1332、1382:天線 1334、1384:信號 1340:(諸)感測器 1360:記憶體 1370:(諸)輸入裝置 1380:全球導航衛星系統(GNSS)接收器
圖1是根據實施例的定位系統的示意圖。
圖2是第五代(5G)新無線電(NR)定位系統的示意圖,圖示了在5G NR通信系統內實現的定位系統(例如,圖1的定位系統)的實施例。
圖3是可以體現圖1或圖2的定位系統的定位系統的簡化方塊圖。
圖4是顯示NR的訊框結構示例及相關聯的術語的圖。
圖5是顯示具有定位參考信號(PRS)定位時機的無線電訊框序列的示例的圖。
圖6是示出根據實施例的UE的接收組件的簡化方塊圖。
圖7示出了用於PRS信號之傳輸的資源塊樣式的示例。
圖8示出了PRS處理之循環方法。
圖9示出了根據實施例的處理PRS信號的方法。
圖10是根據實施例的用於報告定位測量的方法的流程圖。
圖11是根據實施例的使用多個Rx鏈履行定位測量的方法的流程圖。
圖12是根據實施例的用於分配Rx鏈的方法的流程圖。
圖13示出了可在本文所述實施例中利用的UE的實施例。
根據某些示例實現,各圖中的類似符號表示類似的元素。此外,可以通過在元素的第一個數字後面加上字母或連字符以及第二個數字來指示元素之多個實例。例如,元素110之多個實例可被指示為110-1、110-2、110-3等或110a、110b、110c等。當僅使用第一個數字來指稱元素時,應理解為元素的任何實例(例如,前一示例中的元素110將指稱元素110-1、110-2及110-3或元素110a、110b及110c)。
710:服務小區邊界
910、920:搜尋窗口

Claims (54)

  1. 一種報告用於決定定位測量的資源之方法,該方法包含由用戶裝備(UE)履行以下操作: 使用一個或多個接收(Rx)鏈來決定參考信號之一個或多個定位測量,其中每個Rx鏈處理與由單個天線元件接收的該參考信號相對應的Rx信號或與由一組天線元件接收的該參考信號相對應的組合Rx信號;以及 向網路實體報告該一個或多個定位測量及指示用於決定該一個或多個定位測量的Rx鏈之數量的資訊。
  2. 如請求項1之方法,其中該一個或多個定位測量包括抵達時間(TOA)測量、參考信號時間差(RSTD)測量、參考信號接收功率(RSRP)測量、信號對干擾雜訊比(SINR)測量、接收信號強度指示(RSSI)測量,品質度量、接收-傳送(Rx-Tx)測量、角度測量、速度測量、都卜勒測量或其組合。
  3. 如請求項1之方法,其中指示用於決定該一個或多個定位測量的Rx鏈之該數量的該資訊包含以下各項中的至少一個之指示:用於決定多個定位測量的Rx鏈之總數,用於決定多個定位測量中的單個定位測量的Rx鏈之總數,跨多個定位測量使用的Rx鏈之平均數,或用於決定多個定位測量中任何單個定位測量的Rx鏈之最低數。
  4. 如請求項1之方法,其中指示用於決定該一個或多個定位測量的Rx鏈之該數量的該資訊標識了使用了哪些Rx鏈,或者哪些天線元件提供了Rx信號或經過處理的組合Rx信號中的至少一個,以決定該一個或多個定位測量。
  5. 如請求項1之方法,進一步包含: 基於指示用於決定該一個或多個定位測量的Rx鏈之該數量的該資訊來決定該一個或多個定位測量之精度。
  6. 如請求項5之方法,進一步包含: 基於低於閾值的該精度來請求附加參考信號之傳輸。
  7. 如請求項5之方法,進一步包含: 根據第一定位方法並將該一個或多個定位測量與附加參考信號之定位測量結合使用來計算該UE之定位;以及 基於該精度低於閾值切換到第二定位方法。
  8. 如請求項1之方法,進一步包含: 分配第一Rx鏈,用於處理與該參考信號相對應的Rx信號或組合Rx信號;以及 分配第二Rx鏈,用於處理與第二參考信號相對應的Rx信號或組合Rx信號,其中該第二Rx鏈與該第一Rx鏈分離。
  9. 如請求項8之方法,其中基於決定該參考信號及該第二參考信號具有相似的中心信道頻率來分配該第一Rx鏈及該第二Rx鏈。
  10. 如請求項8之方法,進一步包含: 使用該第二Rx鏈處理與該第二參考信號相對應的該Rx信號或組合Rx信號;以及 使用該第二Rx鏈之輸出來決定該第二參考信號之一個或多個定位測量。
  11. 如請求項1之方法,進一步包含: 在接收該參考信號之前,報告該UE可用的Rx鏈之總數,其中用於決定該一個或多個定位測量的Rx鏈之總數小於該UE可用的Rx鏈之該總數。
  12. 如請求項11之方法,其中報告該UE可用的Rx鏈之該總數包含向該網路實體發送能力訊息,並且其中報告指示用於決定該一個或多個定位測量的Rx鏈之該數量的該資訊包含向該網路實體發送位置資訊訊息。
  13. 如請求項1之方法,其中決定該一個或多個定位測量包含: 將與由第一天線元件接收的該參考信號相對應的Rx信號轉換為基帶信號;以及 使用與該第一天線元件相關聯的Rx鏈對該基帶信號履行數位信號處理,其中該數位信號處理包括快速傅立葉變換。
  14. 如請求項1之方法,其中決定該一個或多個定位測量包含: 將與由第一組天線元件接收的該參考信號相對應的組合Rx信號轉換為基帶信號;以及 使用與該第一組天線元件相關聯的Rx鏈對該基帶信號履行數位信號處理,其中該數位信號處理包括快速傅立葉變換。
  15. 一種裝置,包含: 複數個天線元件; 複數個接收(Rx)鏈,包括一個或多個Rx鏈,每個Rx鏈被組態以處理與由該複數個天線元件中的單個天線元件接收的參考信號相對應的Rx信號,或處理與由該複數個天線元件中的一組天線元件接收的該參考信號相對應的組合Rx信號;以及 一個或多個處理器,被組態以使用來自該一個或多個Rx鏈的輸出來決定該參考信號之一個或多個定位測量;以及 一種無線發射器,被組態以向網路實體報告該一個或多個定位測量及指示用於決定該一個或多個定位測量的Rx鏈之數量的資訊。
  16. 如請求項15之裝置,其中該一個或多個定位測量包括抵達時間(TOA)測量、參考信號時間差(RSTD)測量、參考信號接收功率(RSRP)測量、信號對干擾雜訊比(SINR)測量、接收信號強度指示(RSSI)測量,品質度量、接收-傳送(Rx-Tx)測量、角度測量、速度測量、都卜勒測量或其組合。
  17. 如請求項15之裝置,其中指示用於決定該一個或多個定位測量的Rx鏈之該數量的該資訊包含以下各項中的至少一個之指示:用於決定多個定位測量的Rx鏈之總數,用於決定多個定位測量中單個定位測量的Rx鏈之總數,跨多個定位測量使用的Rx鏈之平均數,或用於決定多個定位測量中任何單個定位測量的Rx鏈之最低數。
  18. 如請求項15之裝置,其中指示用於決定該一個或多個定位測量的Rx鏈之該數量的該資訊標識了使用了哪些Rx鏈,或者哪些天線元件提供了Rx信號或經過處理的組合Rx信號中的至少一個,以決定該一個或多個定位測量。
  19. 如請求項15之裝置,其中該一個或多個處理器被組態以基於指示用於決定該一個或多個定位測量的Rx鏈之該數量的該資訊來決定該一個或多個定位測量之精度。
  20. 如請求項19之裝置,其中該裝置被組態以基於低於閾值的該精度來請求附加參考信號之傳輸。
  21. 如請求項19之裝置,其中該一個或多個處理器被組態以: 根據第一定位方法並將該一個或多個定位測量與附加參考信號之定位測量結合使用來計算該裝置之定位;以及 基於該精度低於閾值切換到第二定位方法。
  22. 如請求項15之裝置,其中該一個或多個處理器被組態以: 分配第一Rx鏈,用於處理與該參考信號相對應的Rx信號或組合Rx信號;以及 分配第二Rx鏈,用於處理與第二參考信號相對應的Rx信號或組合Rx信號,其中該第二Rx鏈與該第一Rx鏈分離。
  23. 如請求項22之裝置,其中該一個或多個處理器被組態以基於決定該參考信號及該第二參考信號具有相似的中心信道頻率來分配該第一Rx鏈及該第二Rx鏈。
  24. 如請求項22之裝置,其中該一個或多個處理器被組態以: 使用該第二Rx鏈處理與該第二參考信號相對應的該Rx信號或組合Rx信號;以及 使用該第二Rx鏈之輸出決定該第二參考信號之一個或多個定位測量。
  25. 如請求項15之裝置,其中該無線發射器被組態以在接收到該參考信號之前,報告該裝置可用的Rx鏈之總數,其中,用於決定該一個或多個定位測量的Rx鏈之總數小於該裝置可用的Rx鏈之該總數。
  26. 如請求項25之裝置,其中為了報告該裝置可用的Rx鏈之該總數,該無線發射器被組態以向該網路實體發送能力訊息,並且其中為了報告指示用於決定該一個或多個定位測量的Rx鏈之該數量的該資訊,該無線發射器被組態以向該網路實體發送位置資訊訊息。
  27. 如請求項15之裝置,其中該複數個Rx鏈包括第一Rx鏈,該第一Rx鏈被組態以: 將與由第一天線元件接收的該參考信號相對應的Rx信號轉換為基帶信號;以及 對該基帶信號履行數位信號處理,其中該數位信號處理包括快速傅立葉變換。
  28. 如請求項15之裝置,其中該複數個Rx鏈包括第一Rx鏈,該第一Rx鏈被組態以: 將與由第一組天線元件接收的該參考信號相對應的組合Rx信號轉換為基帶信號;以及 對該基帶信號履行數位信號處理,其中該數位信號處理包括快速傅立葉變換。
  29. 一種含有指令的非暫時性計算機可讀媒體,該指令當由一個或多個處理器執行時,使該一個或多個處理器: 使用一個或多個接收(Rx)鏈來決定參考信號之一個或多個定位測量,其中每個Rx鏈被組態以處理與由單個天線元件接收的該參考信號相對應的Rx信號或與由一組天線元件接收的該參考信號相對應的組合Rx信號;以及 向網路實體報告該一個或多個定位測量及指示用於決定該一個或多個定位測量的Rx鏈之數量的資訊。
  30. 一種裝置,包含: 複數個天線元件; 複數個接收(Rx)鏈,包括一個或多個Rx鏈,每個Rx鏈被組態以處理與由該複數個天線元件中的單個天線元件接收的參考信號相對應的Rx信號,或處理與由該複數個天線元件中的一組天線元件接收的該參考信號相對應的組合Rx信號; 用於使用來自該一個或多個Rx鏈的輸出來決定該參考信號之一個或多個定位測量的構件;以及 用於向網路實體報告該一個或多個定位測量及指示用於決定該一個或多個定位測量的Rx鏈之數量的資訊的構件。
  31. 一種使用用戶裝備(UE)之多個接收(Rx)鏈來決定定位測量之方法,該方法包含由該UE履行以下操作: 使用與第一組天線元件相關聯的Rx鏈,處理與第一定位參考信號(PRS)相對應的Rx信號或組合Rx信號; 使用與與該第一組天線元件分離的第二組天線元件相關聯的Rx鏈來處理與第二PRS相對應的Rx信號或組合Rx信號,其中與該第一PRS相對應的該Rx信號或組合Rx信號是在第一PRS時機期間生成的,並且其中與該第二PRS相對應的該Rx信號或組合Rx信號是在與該第一PRS時機至少部分地重疊的第二PRS時機期間生成的;以及 使用:(i)與該第一PRS相對應的該Rx信號或組合Rx信號之該處理之結果及(ii)與該第二PRS相對應的該Rx信號或組合Rx信號之該處理之結果,來決定該定位測量。
  32. 如請求項31之方法,進一步包含: 接收與服務小區或參考小區相關聯的定時資訊,該定時資訊指示符元邊界; 使用與該第一組天線單元相關聯的該Rx鏈,將第一快速傅立葉變換(FFT)窗口與該第一PRS時機對齊; 使用與該第二組天線單元相關聯的該Rx鏈,將第二FFT窗口與該第二PRS時機對齊,其中該第一FFT窗口及該第二FFT窗口對齊而不考慮該符元邊界;以及 與使用該第二FFT窗口履行第二FFT平行地使用該第一FFT窗口履行第一FFT。
  33. 如請求項32之方法,其中該第一PRS時機與第一符元之邊界對齊,其中該第二PRS時機與該第一PRS時機在時間上部分重疊,並且不與任何符元邊界對齊。
  34. 如請求項32之方法,其中將該第一FFT窗口與該第一PRS時機對齊包含: 接收指示該第一PRS時機相對於符元邊界的預期時間延遲的輔助數據;以及 基於由該輔助數據指示的該預期時間延遲來決定該第一FFT窗口之開始。
  35. 如請求項34之方法,其中該輔助數據是從gNodeB基地台或位置管理功能(LMF)接收的。
  36. 如請求項34之方法,其中該預期時延被接收為與傳送該第一PRS的發射裝置相關聯的預期參考信號時間差(RSTD)。
  37. 如請求項31之方法,進一步包含: 組態該Rx鏈,使得與該第一PRS之後續時機相對應的Rx信號或組合Rx信號由與該第一組天線元件相關聯的該Rx鏈來處理,而不是由與該第二組天線元件相關聯的該Rx鏈來處理。
  38. 如請求項31之方法,其中該第一PRS及該第二PRS來自位於距該UE不同距離處的傳送/接收點(TRP)。
  39. 如請求項31之方法,其中該第一PRS來自服務小區,並且該第二PRS來自相鄰小區。
  40. 如請求項31之方法,進一步包含: 使用與該第一組天線元件相關聯的附加Rx鏈來處理與該第一PRS相對應的單獨Rx信號或組合Rx信號;以及 使用與該第二組天線元件相關聯的附加Rx鏈來處理與該第二PRS相對應的單獨Rx信號或組合Rx信號。
  41. 如請求項31之方法,進一步包含: 決定該第一PRS及該第二PRS具有相似的中心信道頻率;以及 響應於決定該第一PRS及該第二PRS具有相似的中心信道頻率,為該第一PRS及該第二PRS分配單獨的Rx鏈。
  42. 一種裝置,包含: 第一組天線元件,被組態以在第一PRS時機期間生成與第一定位參考信號(PRS)相對應的Rx信號或組合Rx信號; 第二組天線元件,被組態以在與該第一PRS至少部分地重疊的第二PRS時機期間生成與第二PRS相對應的Rx信號或組合Rx信號; 複數個接收(Rx)鏈,包括: 與該第一組天線元件相關聯的Rx鏈,並且與該第一組天線元件相關聯的該Rx鏈被組態以處理與該第一PRS相對應的該Rx信號或組合Rx信號;以及 與該第二組天線元件相關聯的Rx鏈,並且與該第二組天線元件相關聯的該Rx鏈被組態以處理與該第二PRS相對應的該Rx信號或組合Rx信號;以及 一個或多個處理器,被組態以使用以下各項來決定定位測量:(i)由與該第一組天線元件相關聯的該Rx鏈基於處理與該第一PRS相對應的該Rx信號或組合Rx信號而生成的結果,以及(ii)由與該第二組天線元件相關聯的該Rx鏈基於處理與該第二PRS相對應的該Rx信號或組合Rx信號而生成的結果。
  43. 如請求項42之裝置,其中: 該裝置被組態以接收與服務小區或參考小區相關聯的定時資訊,該定時資訊指示符元邊界; 與該第一組天線元件相關聯的該Rx鏈被組態以將第一快速傅立葉變換(FFT)窗口與該第一PRS時機對齊,而不考慮該符元邊界,並且進一步被組態以使用該第一FFT窗口履行第一FFT;以及 與該第二組天線元件相關聯的該Rx鏈被組態以將第二FFT窗口與該第二PRS時機對齊,而不考慮該符元邊界,以及進一步被組態以使用該第二FFT窗口履行第二FFT,並且與由與該第一組天線元件相關聯的該Rx鏈履行該第一FFT平行。
  44. 如請求項43之裝置,其中該第一PRS時機與第一符元之邊界對齊,並且其中該第二PRS時機與該第一PRS時機在時間上部分地重疊,並且不與任何符元邊界對齊。
  45. 如請求項43之裝置,其中該裝置被組態以接收指示該第一PRS時機相對於符元邊界的預期時間延遲的輔助數據,並且其中將該第一FFT窗口與該第一PRS時機對齊,該裝置被組態以基於由該輔助數據指示的該預期時間延遲來決定該第一FFT窗口之開始。
  46. 如請求項45之裝置,其中該輔助數據是從gNodeB基地台或位置管理功能(LMF)接收的。
  47. 如請求項45之裝置,其中該裝置被組態以接收該預期時間延遲作為與傳送該第一PRS的發射裝置相關聯的預期參考信號時間差(RSTD)。
  48. 如請求項42之裝置,其中,該一個或多個處理器被組態以使與該第一PRS之後續時機相對應的Rx信號或組合Rx信號由與該第一組天線元件相關聯的該Rx鏈來處理,而不是由與該第二組天線元件相關聯的該Rx鏈來處理。
  49. 如請求項42之裝置,其中該發射器裝置是位於距該裝置不同距離處的傳送/接收點(TRP)。
  50. 如請求項42之裝置,其中該第一PRS是從服務小區接收的,並且其中該第二PRS是從相鄰小區接收的。
  51. 如請求項42之裝置,其中多個Rx鏈與該第一組天線元件相關聯並且每個Rx鏈被組態以處理與該第一PRS相對應的單獨Rx信號或組合Rx信號,並且其中多個Rx鏈與該第二組天線元件相關聯並且每個Rx鏈被組態以處理與該第二PRS相對應的單獨Rx信號或組合Rx信號。
  52. 如請求項42之裝置,其中該一個或多個處理器被組態以: 決定該第一PRS及該第二PRS具有相似的中心信道頻率;以及 響應於決定該第一PRS及該第二PRS具有相似的中心信道頻率,為該第一PRS及該第二PRS分配單獨的Rx鏈。
  53. 一種裝置,包含: 第一組天線元件,被組態以在第一PRS時機期間生成與第一定位參考信號(PRS)相對應的Rx信號或組合Rx信號; 第二組天線元件,被組態以在與第一PRS時機至少部分地重疊的第二PRS時機期間生成與第二PRS相對應的Rx信號或組合Rx信號; 複數個接收(Rx)鏈,包括與該第一組天線元件相關聯的Rx鏈及與該第二組天線元件相關聯的Rx鏈; 用於組態與該第一組天線元件相關聯的該Rx鏈以處理與該第一PRS相對應的該Rx信號或組合Rx信號的構件; 用於組態與該第二組天線元件相關聯的該Rx鏈以處理與該第二PRS相對應的該Rx信號或組合Rx信號的構件;以及 用於使用以下各項來決定定位測量的構件:(i)由與該第一組天線元件相關聯的該Rx鏈基於處理與該第一PRS相對應的該Rx信號或組合Rx信號生成的結果,以及(ii)由與該第二組天線元件相關聯的該Rx鏈基於處理與該第二PRS相對應的該Rx信號或組合Rx信號生成的結果。
  54. 一種含有指令的非暫時性計算機可讀媒體,該指令當由一個或多個處理器執行時,使該一個或多個處理器: 使用與第一組天線元件相關聯的Rx鏈,來處理與第一定位參考信號(PRS)相對應的Rx信號或組合Rx信號; 使用與與該第一組天線元件分離的第二組天線元件相關聯的Rx鏈來處理與第二PRS相對應的Rx信號或組合Rx信號,其中與該第一PRS相對應的該Rx信號或組合Rx信號是在第一PRS時機期間生成的,並且其中與該第二PRS相對應的該Rx信號或組合Rx信號是在與該第一PRS時機至少部分地重疊的第二PRS時機期間生成的;以及 使用以下各項來決定定位測量:(i)與該第一PRS相對應的該Rx信號或組合Rx信號之該處理之結果以及(ii)與該第二PRS相對應的該Rx信號或組合Rx信號之該處理之結果。
TW111108617A 2021-04-21 2022-03-09 針對來自多個源的參考信號之平行處理而分布接收鏈 TW202243498A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GR20210100284 2021-04-21
GR20210100284 2021-04-21
WOPCT/US22/71039 2022-03-08
PCT/US2022/071039 WO2022226445A1 (en) 2021-04-21 2022-03-08 Distributing receive chains for parallel processing of reference signals from multiple sources

Publications (1)

Publication Number Publication Date
TW202243498A true TW202243498A (zh) 2022-11-01

Family

ID=81328115

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111108617A TW202243498A (zh) 2021-04-21 2022-03-09 針對來自多個源的參考信號之平行處理而分布接收鏈

Country Status (8)

Country Link
US (1) US20240142564A1 (zh)
EP (1) EP4327116A1 (zh)
JP (1) JP2024518691A (zh)
KR (1) KR20230172483A (zh)
CN (1) CN117157549A (zh)
BR (1) BR112023021123A2 (zh)
TW (1) TW202243498A (zh)
WO (1) WO2022226445A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160345229A1 (en) * 2015-05-22 2016-11-24 Qualcomm Incorporated Wlan and wwan cooperative support of wwan functionality
CN110476466B (zh) * 2017-04-03 2022-06-07 苹果公司 到定位服务器的ue能力指示
US20180302891A1 (en) * 2017-04-15 2018-10-18 Qualcomm Incorporated Enabling carrier aggregation receiver chains of a user equipment
US10804983B2 (en) * 2017-09-22 2020-10-13 Qualcomm Incorporated Tuning a subset of receive chains of a component carrier away from MIMO communication to perform an inter-frequency positioning reference signal measurement
US10609673B2 (en) * 2018-04-30 2020-03-31 Qualcomm Incorporated Reference signal measurement in mobile device having multiple antenna receiver

Also Published As

Publication number Publication date
US20240142564A1 (en) 2024-05-02
JP2024518691A (ja) 2024-05-02
WO2022226445A1 (en) 2022-10-27
BR112023021123A2 (pt) 2023-12-12
EP4327116A1 (en) 2024-02-28
CN117157549A (zh) 2023-12-01
KR20230172483A (ko) 2023-12-22

Similar Documents

Publication Publication Date Title
US20230269694A1 (en) Association between nr prs and lte crs in dynamic spectrum sharing
US20230354245A1 (en) Simultaneous processing of multiple positioning frequency layers in nr by a ue
US20230180177A1 (en) Phase characteristic capability reporting for sounding reference signal (srs) stitching
KR20240001327A (ko) 비동기식 차량 네트워크들에서의 그룹-기반 포지셔닝 설계
KR20230156812A (ko) 커버리지 밖 셀룰러 네트워크들에서 차량-ue들을 위한 분산 포지셔닝 절차
US20240142564A1 (en) Distributing receive chains for parallel processing of reference signals from multiple sources
US11985644B2 (en) Measurement behavior in a processing window
US20230099307A1 (en) Processing window design for positioning
US20230261814A1 (en) Phase characteristic capability reporting for positioning
US20230110581A1 (en) Measurement behavior in a processing window
US20240104202A1 (en) Positioning reference signal attack detection in a wireless communication network
US20230319766A1 (en) Group common downlink control information (dci) for aperiodic positioning reference signal (prs) triggering
KR20230164070A (ko) 사용자 장비(ue) 포지셔닝에서의 포지셔닝 기준 신호(prs) 보안화
KR20230170656A (ko) 사용자 장비(ue) 포지셔닝에서 기준 신호 측정들을 위한 안테나 호핑
KR20230154817A (ko) 공유 물리 채널을 이용한 라디오 주파수 (rf) 감지
CN118020264A (zh) 用于定位的处理窗口设计