TW202242398A - 透明基板薄膜的瑕疵檢測方法及其系統 - Google Patents
透明基板薄膜的瑕疵檢測方法及其系統 Download PDFInfo
- Publication number
- TW202242398A TW202242398A TW110114897A TW110114897A TW202242398A TW 202242398 A TW202242398 A TW 202242398A TW 110114897 A TW110114897 A TW 110114897A TW 110114897 A TW110114897 A TW 110114897A TW 202242398 A TW202242398 A TW 202242398A
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- substrate
- pattern
- defect
- region
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/958—Inspecting transparent materials or objects, e.g. windscreens
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Photovoltaic Devices (AREA)
Abstract
本發明提出一種透明基板薄膜的瑕疵檢測方法及其系統。瑕疵檢測方法包括以下步驟:通過處理器取得具有透明基板薄膜的基板的基板影像;通過處理器對基板影像進行影像前處理,以決定感興趣區域;通過處理器對基板影像中的感興趣區域進行影像分割處理,以區別在感興趣區域中的周邊區域以及材料區域,並且產生遮罩影像;以及通過處理器比對遮罩影像與基板影像,以分析在基板影像的材料區域中的材料圖案是否具有圖案瑕疵,並且進而判斷基板是否具有瑕疵。
Description
本發明是有關於一種檢測技術,且特別是有關於一種透明基板薄膜的瑕疵檢測方法及其系統。
染料敏化太陽能電池(Dye-Sensitized Solar Cell,DSSC)是目前太陽能電池領域的主要發展方向之一。然而,在生產染料敏化太陽能電池的過程中,染料敏化太陽能電池的透明導電基板上需塗佈有至少一層二氧化鈦材料薄膜及至少一層染料薄膜,以作為導電層以及吸光層。對此,導電基板的生產良率涉及導電層以及吸光層是否被均勻塗佈、是否具有雜質或是否塗佈在正確位置上。然而,目前都是由人工的方式(錯誤率較高)來判斷導電基板上的導電層以及吸光層是否被正確塗佈,因此導致染料敏化太陽能電池的生產成本較高以及生產良率不佳的情況。此外,顯示器面板和觸控面板等表面具有薄膜材料圖案的透明基板也有類似的薄膜良率的問題。有鑑於此,以下將提出幾個實施例的解決方案。
本發明提供一種透明基板薄膜的瑕疵檢測方法及其系統,可自動且有效地檢測透明基板薄膜的基板是否具有瑕疵。
本發明的透明基板薄膜的瑕疵檢測方法包括以下步驟:通過處理器取得具有透明基板薄膜的基板的基板影像;通過處理器對基板影像進行影像前處理,以決定感興趣區域;通過處理器對基板影像中的感興趣區域進行影像分割處理,以區別在感興趣區域中的周邊區域以及材料區域,並且產生遮罩影像;以及通過處理器比對遮罩影像與基板影像,以分析在基板影像的材料區域中的材料圖案是否具有圖案瑕疵,並且進而判斷基板是否具有瑕疵。
本發明的透明基板薄膜的瑕疵檢測系統包括儲存裝置以及處理器。儲存裝置用以儲存多個模組。處理器耦接儲存裝置,並且通過執行所述多個模組,以進行以下操作:取得具有透明基板薄膜的基板的基板影像;對基板影像進行影像前處理,以決定感興趣區域;對基板影像中的感興趣區域進行影像分割處理,以區別在感興趣區域中的周邊區域以及材料區域,並且產生遮罩影像;以及比對遮罩影像與基板影像,以分析在基板影像的材料區域中的材料圖案是否具有圖案瑕疵,並且進而判斷基板是否具有瑕疵。
基於上述,本發明的透明基板薄膜的瑕疵檢測方法及其系統,可對透明基板薄膜的基板的基板影像進行影像處理及影像分析,並且可基於基板影像的分析結果來有效地判斷具有透明基板薄膜的基板是否具有瑕疵。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
為了使本發明之內容可以被更容易明瞭,以下特舉實施例做為本揭示確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。
圖1是本發明的一實施例的瑕疵檢測系統的示意圖。參考圖1,瑕疵檢測系統100包括處理器110以及儲存裝置120。處理器100耦接儲存裝置120。在本實施例中,儲存裝置120可儲存邊緣檢測模組121、分割網路模組122、稠密卷積網路模組123以及線段檢測模組124,但本發明並不限於此。在本發明的另一些實施例中,儲存裝置120還可儲存其他相關影像處理及影像分析的模組或演算法,並且還可用於儲存本發明各實施例所述的影像資料、影像處理結果及影像分析結果。在本發明的又另一些實施例中,儲存裝置120可只儲存稠密卷積網路模組123或線段檢測模組124。
在本實施例中,處理器110可例如是圖形處理器(Graphics Processing Unit,GPU)、中央處理器(Central Processing Unit,CPU)、微處理器(Microprocessor Control Unit,MCU)或現場可程式閘陣列(Field Programmable Gate Array,FPGA)等諸如此類具有資料處理能力的數位及/或類比的處理電路、整合電路或晶片。儲存裝置120可為記憶體(Memory),並且可供處理器110存取資料,以使處理器110可執行本發明各實施例的方法與操作。
先說明的是,以下雖以太陽能電池基板(導電基板)為例進行說明,但本領域技術人員可以理解本發明亦可適用於其他表面具有薄膜材料圖案(透明基板薄膜)的透明基板(例如顯示器面板或觸控面板)。在本實施例中,瑕疵檢測系統100可用於對染料敏化太陽能電池(Dye-Sensitized Solar Cell,DSSC)進行瑕疵檢測,特別是對染料敏化太陽能電池的透明導電基板上的材料圖案進行分析,以自動化地判斷導電基板是否具有瑕疵。在本實施例中,導電基板上可例如包括透明基材以及塗佈在透明基材上的至少一層二氧化鈦(Titanium dioxide, TiO2)材料及至少一層染料(Dye)的至少其中之一。在本實施例中,所述透明基材可為玻璃或塑膠材料,但本發明並不加以限制。二氧化鈦材料可塗佈在導電基板作為導電層,並且染料可接著塗佈在導電基板的導電層上來作為吸光層。導電層與吸光層的範圍及形狀可為一致。並且,導電基板可依序塗佈有多層導電層與多層吸光層,其中所述多層導電層與所述多層吸光層為交錯堆疊。
值得注意的是,本發明的瑕疵檢測系統100可對僅塗佈有單一層二氧化鈦材料的電極層的導電基板的基板影像進行影像檢測,也可對塗佈有單一層二氧化鈦材料的電極層以及塗佈有單一層染料的基板影像進行影像檢測。甚至,本發明的瑕疵檢測系統100可對塗佈有多層二氧化鈦材料的電極層以及塗佈有多層染料的基板影像進行影像檢測。本發明的瑕疵檢測系統100可檢測出二氧化鈦材料的電極層及/或染料是否為完整塗佈或是否塗佈在正確的基板位置上。
圖2是本發明的一實施例的基板影像的取像示意圖。圖3是本發明的一實施例的基板影像的示意圖。參考圖1至圖3,在本發明的一些實施例中,瑕疵檢測系統100還可包括圖2的攝影機220以及光源230、240,並且處理器110耦接並控制光源230、240。或者,在本發明的另一些實施例中,瑕疵檢測系統100未包括圖2的攝影機220以及光源230、240。瑕疵檢測系統100可經由輸入介面接收由攝影機220取得的影像來進行瑕疵檢測。
在取像過程中,染料敏化太陽能電池的導電基板210可被放置於封閉箱體200中的一平面上,其中所述平面可例如鋪設有黑絨布或具有特定顏色的平面物件。封閉箱體200為一暗箱,並且設置有光源230、240(本發明並不限制光源數量及設置位置)。在取像過程中,光源230、240可朝導電基板210進行照明。對此,由於二氧化鈦材料為接近透明的顏色且背景例如是黑絨布,因此經由光源230、240打光所造成的色偏影響會使得二氧化鈦材料的部分呈現為深綠色。如此一來,攝影機220可拍攝經由照明光照射放置在封閉箱體200中的導電基板210來取得如圖3所示的基板影像300。基板影像300可包括基板部分301與背景部分302。基板影像300的基板部分301可包括材料圖案311~314以及基準圖標P1~P4。值得注意的是,基板影像300中對應於二氧化鈦材料的材料圖案311~314的區域可例如為深綠色,並且材料圖案311~314以外的區域為不同顏色。基板影像300的基板部分301邊緣還可顯示出導電基板210的邊框。
圖4是本發明的一實施例的瑕疵檢測方法的流程圖。參考圖1、圖3至圖9,瑕疵檢測系統100可執行以下步驟S410~S440的瑕疵檢測操作。在步驟S410,瑕疵檢測系統100的處理器110可取得具有透明基板薄膜的基板的基板影像。對此,以下說明將以瑕疵檢測系統100的取得如圖3所示的染料敏化太陽能電池的導電基板的基板影像300為範例實施例來說明之。在步驟S420,處理器110可對基板影像進行影像前處理,決定感興趣區域(Region of Interest, ROI)。在本實施例中,處理器110可執行邊緣檢測模組121來對基板影像300進行邊緣檢測,以檢測基板影像300中的基板邊緣(例如玻璃基板邊緣),並且根據基板邊緣來區分基板影像300中的背景區域(即基板影像300的背景部分302)以及感興趣區域(即基板影像300的基板部分301)。處理器110可有效定義基板影像300的基板部分301以及背景部分302的區域及位置。
在步驟S430,處理器110可對基板影像300中的感興趣區域進行影像分割處理,以區別在感興趣區域中的周邊區域303以及材料區域304,並且產生如圖5所示的遮罩影像500。圖5是本發明的一實施例的遮罩影像的示意圖。在本實施例中,處理器110可執行分割網路模組122來對基板影像300進行影像處理,並且產生對應於基板影像300的基板部分301的遮罩影像500。分割網路模組122可包括一種深度學習分割網路架構的演算法,例如U-Net模型。分割網路模組122可將基板影像300的感興趣區域(即基板影像300的基板部分301)中的材料區域304找出來,並依據材料區域304來輸出對應的遮罩影像500。在本實施例中,遮罩影像500為二值化影像。遮罩影像500的影像區域520為對應於基板影像300的周邊區域303,並且具有第一數值(例如設定為二進制的數值“0”)。遮罩影像500的影像區域510為對應於基板影像300的材料區域304,並且具有第二數值(例如設定為二進制的數值“1”)。
在步驟S440,處理器110可比對遮罩影像500與基板影像300,以分析在基板影像300的材料區域304中的材料圖案是否具有圖案瑕疵,並且進而判斷基板是否具有瑕疵。在本實施例中,處理器110可比對遮罩影像500與基板影像300的感興趣區域,以從基板影像300的材料區域304擷取如圖6所示的材料圖案611~614。圖6是本發明的一實施例的材料圖案的示意圖。處理器110可將材料圖案611~614輸入至稠密卷積網絡模組123及/或線段檢測模組124,以判斷基板影像300是否具有雜質圖案瑕疵。具體而言,稠密卷積網絡模組123可輸出材料圖案是否具有非均勻圖案及/或雜質圖案的圖案瑕疵的判斷結果。線段檢測模組124可輸出材料圖案是否具有錯位瑕疵的判斷結果。稠密卷積網絡模組123可包括卷積神經網絡(Convolutional Neural Networks,CNN)架構的演算法,例如稠密連線網路(DenseNet)模型。線段檢測模組124可包括直線段檢測器(Line Segment Detector,LSD)的演算法。本發明的瑕疵檢測系統100可判斷基板影像300是否具有以下實施範例的至少其中一種圖案瑕疵。
對於具有非均勻圖案及/或雜質圖案的圖案瑕疵,如圖6的材料圖案611、613為均勻塗佈的圖案。材料圖案612具有非均勻區域601的圖案瑕疵,其中非均勻區域601可例如是因為二氧化鈦材料及/或染料未均勻塗佈所導致。材料圖案614具有雜質圖案602~605的圖案瑕疵,其中雜質圖案602~605可例如是因為灰層或雜質所導致。因此,稠密卷積網絡模組123可預先經訓練後而可辨別或分類均勻圖案、非均勻圖案以及雜質圖案。經由稠密卷積網絡模組123的運算及分類,稠密卷積網絡模組123可輸出材料圖案612、614為具有圖案瑕疵的運算結果,並且可輸出材料圖案611、613為不具有圖案瑕疵的運算結果。在本實施例中,處理器110可基於上述的圖案瑕疵的運算結果來產生或提供對應的導電基板的瑕疵檢測資訊。
對於具有錯位瑕疵的圖案瑕疵,搭配參考圖7,圖7是本發明的另一實施例的基板影像的示意圖。處理器110可對基板影像300的感興趣區域301中的材料圖案311~314(即圖6的材料圖案611~614已被辨識出,以對比至基板影像300)執行第一方向T1的線段檢測,以取得材料圖案311~314的邊緣線段3111、3112、3121、3122、3131、3132、3141、3142。然而,本發明並不限於第一方向T1的線段檢測,處理器110還可對基板影像300的感興趣區域301中的材料圖案311~314執行第二方向T2,或任意方向上的線段檢測。接著,搭配參考圖8,圖8是本發明的一實施例的樣板影像的示意圖。樣板影像800可為生產者塗佈二氧化鈦材料及/或染料的預設參考圖案。在本實施例中,處理器110可比較對應於基板影像300的樣板影像800中的參考邊緣線段8111、8112、8121、8122、8131、8132、8141、8142與邊緣線段3111、3112、3121、3122、3131、3132、3141、3142,以判斷材料圖案311~314是否具有錯位瑕疵的圖案瑕疵。
舉例而言,樣板影像800同樣包括材料圖案811~814以及參考基準圖標PA~PD,並且材料圖案811~814具有參考邊緣線段8111、8112、8121、8122、8131、8132、8141、8142。處理器110可根據樣板影像800中的參考基準圖標PA來計算參考邊緣線段8111、8112、8121、8122、8131、8132、8141、8142相對於參考基準圖標PA的參考距離K1~K8。處理器110可根據基板影像300中的基準圖標P1(對應於參考基準圖標PA)來計算邊緣線段3111、3112、3121、3122、3131、3132、3141、3142相對於基準圖標P1的距離D1~D8。接著,處理器110可逐一判斷距離D1~D8與參考距離K1~K8的距離差是否大於門檻值。當某一距離與對應的某一參考距離的距離差大於門檻值則判斷對應的材料圖案具有錯位瑕疵。另外,本實施例的距離以及門檻值可以是以像素為單位、以公尺為單位或其他長度單位,而本發明並不加以限制。
然而,本發明的處理器110計算距離及參考距離的方式不限上述。處理器110也可根據基板影像300中的基準圖標P1~P4的至少其中之一來計算材料圖案311~314的第一方向T1及/或第二方向T2的邊緣線段與對應的基準圖標之間的距離,並且根據樣板影像800中的參考基準圖標PA~PD的至少其中之一來計算材料圖案811~814的第一方向T1及/或第二方向T2的邊緣線段與對應的參考基準圖標之間的參考距離。
以材料圖案311具有錯位瑕疵為例,搭配參考圖9,圖9是本發明的另一實施例的材料圖案的示意圖。如圖9所示,材料圖案311具有第二方向T2的偏移,因此材料圖案311的沿著第一方向T1的兩側的邊緣線段與參考邊緣線段未重疊。對此,處理器110所計算的距離D1與參考距離K1之間具有距離差,並且處理器110所計算的距離D2與參考距離K2之間具有距離差。因此,處理器110可判斷距離D1與參考距離K1之間的距離差是否大於門檻值,並且判斷距離D2與參考距離K2之間的距離差是否大於門檻值。若距離差未大於門檻值,則表示此偏移在可接受範圍。反之,若距離差大於門檻值,則處理器110將發出警示表示材料圖案311具有錯位瑕疵。
值得注意的是,本發明的錯位瑕疵不限於圖9所示,並且處理器110為獨立比對材料圖案311的每一個側邊。並且,處理器110可比對材料圖案311的每一個側邊,而不限於第一方向T1上的邊緣線段的比對。如圖9所示,材料圖案311還具有第一方向T1的偏移,因此處理器110也可比對材料圖案311的沿著第二方向T2的側邊的邊緣線段與參考邊緣線段,以判斷材料圖案311是否具有錯位瑕疵。
綜上所述,本發明的透明基板薄膜的瑕疵檢測方法及其系統,可對表面具有薄膜材料圖案的透明基板的基板影像進行快速、準確且自動化的瑕疵檢測,以有效判斷在基板影像中的薄膜材料圖案是否被正確地塗佈。本發明的透明基板薄膜的瑕疵檢測方法及其系統可分析基板影像中的薄膜材料圖案是否具有非均勻圖案及/或雜質圖案的圖案瑕疵及具有錯位瑕疵的圖案瑕疵的至少其中之一,進而可判斷對應於此基板影像的透明基板是否具有瑕疵。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
100:瑕疵檢測系統
110:處理器
120:儲存裝置
121:邊緣檢測模組
122:分割網路模組
123:稠密卷積網路模組
124:線段檢測模組
200:封閉箱體
210:導電基板
220:攝影機
230、240:光源
300:基板影像
301:基板部分
302:背景部分
303:周邊區域
304:材料區域
311~314、611~614、811~814:材料圖案
3111、3112、3121、3122、3131、3132、3141、3142:邊緣線段
500:遮罩影像
510、520:影像區域
601:非均勻區域
602~605:雜質圖案
800:樣板影像
8111、8112、8121、8122、8131、8132、8141、8142:參考邊緣線段
D1~D8:距離
K1~K8:參考距離
P1~P4:基準圖標
PA~PD:參考基準圖標
S410、S420、S430、S440:步驟
T1:第一方向
T2:第二方向
圖1是本發明的一實施例的瑕疵檢測系統的示意圖。
圖2是本發明的一實施例的基板影像的取像示意圖。
圖3是本發明的一實施例的基板影像的示意圖。
圖4是本發明的一實施例的瑕疵檢測方法的流程圖。
圖5是本發明的一實施例的遮罩影像的示意圖。
圖6是本發明的一實施例的材料圖案的示意圖。
圖7是本發明的另一實施例的基板影像的示意圖。
圖8是本發明的一實施例的樣板影像的示意圖。
圖9是本發明的另一實施例的材料圖案的示意圖。
S410、S420、S430、S440:步驟
Claims (20)
- 一種透明基板薄膜的瑕疵檢測方法,包括: 通過一處理器取得具有該透明基板薄膜的一基板的一基板影像; 通過該處理器對該基板影像進行一影像前處理,以決定一感興趣區域; 通過該處理器對該基板影像中的該感興趣區域進行一影像分割處理,以區別在該感興趣區域中的一周邊區域以及一材料區域,並且產生一遮罩影像;以及 通過該處理器比對該遮罩影像與該基板影像,以分析在該基板影像的該材料區域中的一材料圖案是否具有一圖案瑕疵,並且進而判斷該基板是否具有瑕疵。
- 如請求項1所述的瑕疵檢測方法,其中決定該感興趣區域的步驟包括: 通過該處理器對該基板影像進行一邊緣檢測,以檢測該基板影像中的一基板邊緣,並且根據該基板邊緣區分該基板影像中的一背景區域以及該感興趣區域。
- 如請求項1所述的瑕疵檢測方法,其中決定對該基板影像中的該感興趣區域進行該影像分割處理的步驟包括: 通過該處理器將標記有該感興趣區域的該基板影像輸入至一分割網絡模組,以使該分割網絡模組輸出該遮罩影像。
- 如請求項3所述的瑕疵檢測方法,其中該遮罩影像為一二值化影像, 其中該遮罩影像中對應於該感興趣區域中的該周邊區域具有一第一數值,並且該遮罩影像中對應於該感興趣區域中的該材料區域具有一第二數值。
- 如請求項1所述的瑕疵檢測方法,其中通過該處理器比對該遮罩影像與該基板影像,以分析在該基板影像的該材料區域中的該材料圖案是否具有該圖案瑕疵的步驟包括: 通過該處理器比對該遮罩影像與該基板影像,以從該基板影像的該材料區域擷取該材料圖案;以及 通過該處理器將該材料圖案輸入至一稠密卷積網絡模組,以使該稠密卷積網絡模組輸出該材料圖案是否具有該圖案瑕疵的一判斷結果。
- 如請求項5所述的瑕疵檢測方法,其中該圖案瑕疵包括在該材料圖案中具有一非均勻區域或一雜質圖案。
- 如請求項1所述的瑕疵檢測方法,其中通過該處理器比對該遮罩影像與該基板影像,以分析在該基板影像的該材料區域中的該材料圖案是否具有該圖案瑕疵的步驟包括: 通過該處理器比對該遮罩影像與該基板影像,以從該基板影像的該材料區域擷取該材料圖案; 通過該處理器對該材料圖案執行一線段檢測,以取得該材料圖案的一邊緣線段;以及 通過該處理器比較對應於該基板影像的一樣板影像中的一參考邊緣線段與該邊緣線段,以判斷該材料圖案是否具有一錯位瑕疵的該圖案瑕疵。
- 如請求項7所述的瑕疵檢測方法,其中比較該參考邊緣線段與該邊緣線段,以判斷該材料圖案是否具有該錯位瑕疵的該圖案瑕疵的步驟包括: 通過該處理器根據該樣板影像中的一參考基準圖標來計算該參考邊緣線段相對於該參考基準圖標的一參考距離; 通過該處理器根據該基板影像中的一基準圖標來計算該邊緣線段相對於該基準圖標的一距離;以及 通過該處理器判斷該距離與該參考距離的一距離差是否大於一門檻值,以判斷該材料圖案具有該錯位瑕疵。
- 如請求項1所述的瑕疵檢測方法,其中該材料圖案對應於形成在該基板上的至少一層二氧化鈦材料及至少一層染料的至少其中之一。
- 如請求項1所述的瑕疵檢測方法,其中該基板影像通過一攝影機拍攝經由一照明光照射放置在一封閉箱體中的該基板來取得。
- 一種透明基板薄膜的瑕疵檢測系統,包括: 一儲存裝置,用以儲存多個模組;以及 一處理器,耦接該儲存裝置,並且通過執行該些模組,以進行以下操作: 取得具有該透明基板薄膜的一基板的一基板影像; 對該基板影像進行一影像前處理,以決定一感興趣區域; 對該基板影像中的該感興趣區域進行一影像分割處理,以區別在該感興趣區域中的一周邊區域以及一材料區域,並且產生一遮罩影像;以及 比對該遮罩影像與該基板影像,以分析在該基板影像的該材料區域中的一材料圖案是否具有一圖案瑕疵,並且進而判斷該基板是否具有瑕疵。
- 如請求項11所述的瑕疵檢測系統,其中該處理器決定該感興趣區域的操作包括: 對該基板影像進行一邊緣檢測,以檢測該基板影像中的一基板邊緣,並且根據該基板邊緣區分該基板影像中的一背景區域以及該感興趣區域。
- 如請求項11所述的瑕疵檢測系統,其中該處理器對該基板影像中的該感興趣區域進行該影像分割處理的操作包括: 將標記有該感興趣區域的該基板影像輸入至一分割網絡模組,以使該分割網絡模組輸出該遮罩影像。
- 如請求項11所述的瑕疵檢測系統,其中該遮罩影像為一二值化影像, 其中該遮罩影像中對應於該感興趣區域中的該周邊區域具有一第一數值,並且該遮罩影像中對應於該感興趣區域中的該材料區域具有一第二數值。
- 如請求項11所述的瑕疵檢測系統,其中該處理器比對該遮罩影像與該基板影像,以分析在該基板影像的該材料區域中的該材料圖案是否具有該圖案瑕疵的操作包括: 比對該遮罩影像與該基板影像,以從該基板影像的該材料區域擷取該材料圖案;以及 將該材料圖案輸入至一稠密卷積網絡模組,以使該稠密卷積網絡模組輸出該材料圖案是否具有該圖案瑕疵的一判斷結果。
- 如請求項15所述的瑕疵檢測系統,其中該圖案瑕疵包括在該材料圖案中具有一非均勻區域或一雜質圖案。
- 如請求項11所述的瑕疵檢測系統,其中該處理器比對該遮罩影像與該基板影像,以分析在該基板影像的該材料區域中的該材料圖案是否具有該圖案瑕疵的操作包括: 比對該遮罩影像與該基板影像,以從該基板影像的該材料區域擷取該材料圖案; 對該材料圖案執行一線段檢測,以取得該材料圖案的一邊緣線段;以及 比較對應於該基板影像的一樣板影像中的一參考邊緣線段與該邊緣線段,以判斷該材料圖案是否具有一錯位瑕疵的該圖案瑕疵。
- 如請求項17所述的瑕疵檢測系統,其中該處理器比較該參考邊緣線段與該邊緣線段,以判斷該材料圖案是否具有該錯位瑕疵的該圖案瑕疵的操作包括: 根據該樣板影像中的一參考基準圖標來計算該參考邊緣線段相對於該參考基準圖標的一參考距離; 根據該基板影像中的一基準圖標來計算該邊緣線段相對於該基準圖標的一距離;以及 判斷該距離與該參考距離的一距離差是否大於一門檻值,以判斷該材料圖案具有該錯位瑕疵。
- 如請求項11所述的瑕疵檢測系統,其中該材料圖案對應於形成在該基板上的至少一層二氧化鈦材料及至少一層染料的至少其中之一。
- 如請求項11所述的瑕疵檢測系統,其中該基板影像通過一攝影機拍攝經由一照明光照射放置在一封閉箱體中的該基板來取得。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110114897A TWI802873B (zh) | 2021-04-26 | 2021-04-26 | 透明基板薄膜的瑕疵檢測方法及其系統 |
CN202110672688.8A CN113406112B (zh) | 2021-04-26 | 2021-06-17 | 透明基板薄膜的瑕疵检测方法及其系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110114897A TWI802873B (zh) | 2021-04-26 | 2021-04-26 | 透明基板薄膜的瑕疵檢測方法及其系統 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202242398A true TW202242398A (zh) | 2022-11-01 |
TWI802873B TWI802873B (zh) | 2023-05-21 |
Family
ID=77684806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110114897A TWI802873B (zh) | 2021-04-26 | 2021-04-26 | 透明基板薄膜的瑕疵檢測方法及其系統 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113406112B (zh) |
TW (1) | TWI802873B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114393895B (zh) * | 2022-01-21 | 2024-05-17 | 山东晶创新材料科技有限公司 | 一种基于聚丙烯长丝非织造布的复合防水卷材tpo制备方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200844429A (en) * | 2007-05-15 | 2008-11-16 | Chi-Hao Yeh | An automatic optical inspection approach for detecting and classifying the surface defects on coating brightness enhancement film |
CN102725859B (zh) * | 2009-02-04 | 2016-01-27 | 应用材料公司 | 太阳能生产线的计量与检测套组 |
WO2011016441A1 (ja) * | 2009-08-04 | 2011-02-10 | 国立大学法人奈良先端科学技術大学院大学 | 太陽電池の評価方法、評価装置、メンテナンス方法、メンテナンスシステム、および太陽電池モジュールの製造方法 |
US8605276B2 (en) * | 2011-11-01 | 2013-12-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Enhanced defect scanning |
JP2014048206A (ja) * | 2012-08-31 | 2014-03-17 | Sharp Corp | 欠陥分類装置、欠陥分類方法、制御プログラム、および記録媒体 |
TWI603074B (zh) * | 2015-07-03 | 2017-10-21 | 元智大學 | 光學薄膜缺陷辨識方法及其系統 |
TWI787296B (zh) * | 2018-06-29 | 2022-12-21 | 由田新技股份有限公司 | 光學檢測方法、光學檢測裝置及光學檢測系統 |
CN111382615A (zh) * | 2018-12-28 | 2020-07-07 | 致茂电子(苏州)有限公司 | 影像检测方法 |
-
2021
- 2021-04-26 TW TW110114897A patent/TWI802873B/zh active
- 2021-06-17 CN CN202110672688.8A patent/CN113406112B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
TWI802873B (zh) | 2023-05-21 |
CN113406112B (zh) | 2024-08-23 |
CN113406112A (zh) | 2021-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI787296B (zh) | 光學檢測方法、光學檢測裝置及光學檢測系統 | |
US20230127852A1 (en) | Adversarial training method for noisy labels | |
TW201935025A (zh) | 顯示器上的缺陷偵測系統及方法 | |
TWI808265B (zh) | 用於半導體基板之臨界尺寸量測的以深度學習為基礎之自適應關注區域 | |
JP2008286586A (ja) | パターン検査方法及び装置 | |
CN112394071B (zh) | 基板缺陷检查装置及方法 | |
JP2019144245A (ja) | 前処理を含む線欠陥検出システム及び方法 | |
CN112033965A (zh) | 基于差分图像分析的3d弧形表面缺陷检测方法 | |
WO2011152445A1 (ja) | 太陽電池パネルのel検査装置、及びel検査方法 | |
TWI693629B (zh) | 基板檢查裝置、基板處理裝置及基板檢查方法 | |
JP2020136368A (ja) | 画像生成装置、検査装置及び画像生成方法 | |
WO2003079292A1 (fr) | Procede d'inspection de defaut | |
TW201512649A (zh) | 偵測晶片影像瑕疵方法及其系統與電腦程式產品 | |
TWI802873B (zh) | 透明基板薄膜的瑕疵檢測方法及其系統 | |
JP2004177139A (ja) | 検査条件データ作成支援プログラム及び検査装置及び検査条件データ作成方法 | |
JP2020012754A (ja) | 基板検査方法及び基板検査装置 | |
TWI822968B (zh) | 濾色器檢查裝置、檢查裝置、濾色器檢查方法及檢查方法 | |
TW201824180A (zh) | 檢查裝置、檢查方法以及電腦可讀取的記錄媒體 | |
CN116864409A (zh) | 一种基于cuda加速的高精度晶圆表面缺陷实时检测方法 | |
JP2010256053A (ja) | 形状欠損検査装置、形状モデリング装置および形状欠損検査プログラム | |
CN110426395B (zh) | 一种太阳能el电池硅片表面检测方法及装置 | |
Choi et al. | Deep learning based defect inspection using the intersection over minimum between search and abnormal regions | |
Lee | 16‐4: Invited Paper: Region‐Based Machine Learning for OLED Mura Defects Detection | |
CN113781419A (zh) | 一种柔性pcb板缺陷检测方法、视觉系统、装置及介质 | |
JP2012237585A (ja) | 欠陥検査方法 |