WO2003079292A1 - Defect inspection method - Google Patents

Defect inspection method Download PDF

Info

Publication number
WO2003079292A1
WO2003079292A1 PCT/JP2003/003174 JP0303174W WO03079292A1 WO 2003079292 A1 WO2003079292 A1 WO 2003079292A1 JP 0303174 W JP0303174 W JP 0303174W WO 03079292 A1 WO03079292 A1 WO 03079292A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
defect
target image
brightness
detected
Prior art date
Application number
PCT/JP2003/003174
Other languages
French (fr)
Japanese (ja)
Inventor
Shunji Maeda
Kaoru Sakai
Takafumi Okabe
Original Assignee
Hitachi High-Technologies Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High-Technologies Corporation filed Critical Hitachi High-Technologies Corporation
Publication of WO2003079292A1 publication Critical patent/WO2003079292A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95607Inspecting patterns on the surface of objects using a comparative method
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Definitions

  • the present invention compares an image of an object, such as a semiconductor wafer, a TFT, or a photomask, obtained using a lamp light, a laser light, or an electron beam, with a reference image stored in advance, and uses the difference.
  • the present invention relates to a defect inspection method for inspecting fine pattern defects and foreign matter.
  • the present invention relates to a defect inspection method suitable for performing a visual inspection of a semiconductor wafer.
  • a sample to be inspected in which a repetitive pattern is regularly arranged is sequentially imaged by a line sensor, compared with an image with a time delay of the repetitive pattern pitch, and the mismatched portion is detected as a pattern defect.
  • the actual position of the two images is not always the same due to the vibration of the stage and the tilt of the target object.
  • the image captured by the sensor and the delay of the repetitive pattern pitch The amount of positional deviation of the obtained image is obtained.
  • a difference between the images is obtained, and when the difference is larger than a specified threshold value, a defect is determined, and when the difference is small, a defect is determined. Defects, that is, normal.
  • 11 is an image to be inspected
  • 12 is an example of a reference image
  • 1a is a uniformly bright background area
  • lb is an area having a dark pattern on a bright background.
  • inspection target image 1 1 has defect 1c.
  • the waveform of the brightness at the position 1D-1D ' is as shown in FIG. 1 (b).
  • the misregistration amounts of 1 1 and 1 2 are obtained, and the difference image after the alignment of 1 1 and 1 2 is as shown in FIG.
  • the difference image is an image that is displayed in a gray scale according to the difference value at each corresponding position between the inspection target image and the reference image. If a portion where the difference value is equal to or larger than a specific threshold value TH is determined as a defect, only the defect 1 c of 11 is detected in FIG.
  • the inspection target is a semiconductor wafer
  • the inspection target image and the reference image are the same as shown in (a) 4a and (b) 4b in FIG.
  • a difference in brightness occurs in the pattern of (1), and the value of the difference increases as shown by 4c in FIG. 4 (a). This is a false alarm, and the threshold T H must be increased to prevent detection.
  • the threshold value must be set separately for the area with uneven brightness and the area without brightness.
  • the present invention provides a comparative inspection in which an image to be inspected is compared with a reference image and a defect is detected based on a difference between the images, and at the time of brightness comparison, data is voted for in a scatter diagram which is one of a multidimensional space.
  • the problem of the conventional inspection technology was solved by decomposing the scatter diagram based on the features and suppressing the spread of data on each decomposed scatter diagram so that a low threshold value could be set.
  • the scatter diagram which is one of the multidimensional spaces, is obtained by taking the brightness of the inspection object image and the reference image on the vertical and horizontal axes, respectively.
  • a highly sensitive defect inspection method and apparatus are provided.
  • pattern brightness unevenness caused by differences in film thickness, etc. is checked by adjusting the brightness between images without increasing the threshold value TH.
  • the aim is to reduce false alarms caused by uneven brightness and realize highly sensitive defect inspection.
  • the brightness is described here as a comparison target, but when the brightness is a target other than the brightness, the brightness is taken on the vertical axis and the horizontal axis of the scatter diagram.
  • three or more feature values may be selected to make the scatter diagram multidimensional.
  • a scatter diagram is created by voting (by plotting), the obtained scatter diagram is decomposed based on the feature amount, and each of the decomposed scatter diagrams is decomposed.
  • a method is provided for performing high-sensitivity defect inspection with a threshold. In general terms, by providing a method for matching target features such as brightness, inspection can be performed with high sensitivity without being affected by mismatching of normal parts, and the occurrence of false alarms can be reduced.
  • FIG. 1 is a diagram showing an example of an inspection target image and a detection waveform of brightness at that time.
  • Figure 2 shows an example of a conventional threshold setting method after alignment. is there.
  • FIG. 3 is a diagram showing an example of comparison results of images (a) and (b) of different brightness.
  • FIG. 4 is a diagram illustrating an image to be inspected when brightness unevenness occurs between the comparison chips and an example of a conventional threshold value setting method.
  • FIG. 5 is a block diagram showing an example of a schematic configuration of the inspection device.
  • FIG. 6 is a plan view of a semiconductor wafer to be inspected.
  • FIG. 7 is a flowchart showing the order of defect extraction and classification in the image comparison unit.
  • FIG. 8 is an image diagram of pixels of a detected image showing an example of a contrast calculation method at a target pixel.
  • FIG. 9 is an image diagram of pixels of a detected image showing an example of a contrast calculation method at a target pixel.
  • FIG. 10 is a diagram showing an example of an approximate straight line obtained in a brightness relationship (scatter diagram) between a detected image and a reference image.
  • FIG. 11 is a diagram showing an example of a feature space as a set of a two-dimensional space for each category.
  • FIG. 12 is a diagram showing an example of a two-dimensional feature space in both (a) and (b).
  • FIG. 13 is a diagram illustrating an example of a relationship between feature amounts between a detected image decomposed for each category and a reference image.
  • FIG. 14 is a diagram showing an example of the relationship between the feature amounts of the detected image and the reference image when the detected image is slightly shifted from the detected image and the reference image decomposed for each category.
  • FIG. 15 is a diagram illustrating an example of a category map, in which a detected image and a reference image are decomposed by contrast.
  • Fig. 16 shows (a) to (e), where the brightness It is a figure which shows an example of the behavior of fitting.
  • FIGS. 17 (a) to (c) are diagrams illustrating the operation of brightness correction on a scatter diagram.
  • FIG. 5 shows an example of the configuration of the device.
  • 51 is a sample (inspected object such as a semiconductor wafer)
  • 52 is a stage on which the sample 51 is mounted and moved
  • 53 is a detector
  • Illumination optical system 502 which collects light emitted from 501, Illuminates sample 51 with illumination light collected by illumination optical system 502, and forms an optical image obtained by reflection
  • the objective lens 503 includes an image sensor 504 that converts the formed optical image into an image signal according to the brightness.
  • Reference numeral 55 denotes an image processing unit, which detects a defect candidate on a wafer as a sample based on the image detected by the detection unit 53.
  • the image processing unit 55 converts an input signal from the image sensor 504 of the detection unit 53 into a digital signal.
  • the AD conversion unit 504 performs shading correction, dark level correction, and the like on the AD-converted digital signal.
  • Pre-processing unit 505 that performs image correction of the above, a delay memory 506 that stores the digital signal to be compared as a reference image signal, and a digital signal (detected image signal) detected by the detection unit 53 and a delay
  • a displacement detection unit 507 that detects the amount of displacement from the reference image signal stored in the memory 506, creates a scatter diagram by voting (by plotting), decomposes it further, and further decomposes the scatter diagram.
  • Scatterplot creator 508 b that calculates the correction coefficient based on Spatial information extraction unit 508 c that extracts spatial (position) information such as the spatial relationship (on the image of the pattern to be inspected), image comparison processing unit 508 a, coordinates and feature amounts of defect candidates (Area, size, etc.), detect the final defect, and classify the defect.
  • the image comparison processing unit 508 a includes a positioning unit that performs pixel-by-pixel positioning of the inspection image and the reference image using the positional shift amount calculated from 507, and each pixel of the image after the positioning.
  • a feature amount calculation unit a registration correction unit that corrects registration between the two images using a correction coefficient obtained from 508b by scatter plot decomposition, and a correction image of the detected image and the reference image after the correction.
  • An image comparison unit that calculates a difference at each corresponding pixel, and outputs a portion where the value of the difference calculated for each pixel is greater than a specific threshold value as a defect candidate; and a defect obtained based on the decomposition scatter diagram.
  • Spatial information obtained from 508 c for the candidate e.g., (Position information on the inspection pattern) and a spatial information for linking with the spatial information, and an image memory for temporarily storing an image.
  • Reference numeral 56 denotes an overall control unit, which has a display unit and an input unit that accept changes in inspection parameters (such as threshold values used for image comparison) from the user and display detected defect information. It comprises an interface unit 5110, a storage device 511 for storing feature amounts and images of detected defect candidates, and a CPU for performing various controls.
  • Reference numeral 512 denotes a mechanical controller that drives the stage 52 based on a control command from the overall control unit. Although not shown, the image processing unit 55, the detection unit 53, and the like are also driven by a command from the overall control unit 56.
  • the AD conversion unit 54 is provided on the image processing unit 55 side, and the detection unit 53 is provided with the image processing unit 55, the overall control unit 56, and the user interface. It may be configured to be installed separately from the evening space section 5110, the storage device 5111 and the like.
  • the output from the image sensor 504 is A / D converted by the A / D converter 54, and the converted digital signal is input to the image processor 55 via the communication means, and the pre-processor 5 The processing after 05 is performed.
  • the detection section 53 and the image processing section 55 are controlled by the overall control section 56.
  • a semiconductor wafer 51 to be inspected has a large number of chips of a pattern that should be identical, which are regularly arranged.
  • images are compared at the same position of two adjacent chips, for example, between the area 61 of FIG. 6 and the area 62 of the adjacent chip, and a difference between the two is obtained. Is detected as a defect.
  • the semiconductor wafer 51 as a sample is continuously moved by the stage 52 in, for example, the direction opposite to the scan A direction shown in FIG.
  • the optical image of the sample 51 is sequentially detected in the direction of scan A by the image sensor 504 of the detection unit 53, and the image of the chip is detected by the detection unit 5.
  • the image sensor 504 of the detection unit 53 outputs the input signal to the image processing unit 55.
  • the input analog signal is converted into a digital signal by the AD conversion unit 54, and shading correction and dark level correction are performed by the preprocessing unit 505. If necessary, perform processing to improve S / N by removing noise and enhancing edges. However, the image quality improvement processing by S / N improvement can be performed later.
  • the position shift detecting section 507 has an image signal (detected image signal) of the chip to be inspected outputted from the preprocessing section 505 and a stage inputted from the delay memory 506, and the stage moves by the chip interval. Image signal delayed by an The chip image signal (reference image signal) is input as a set.
  • the displacement detection unit 507 calculates the displacement between two images that are continuously input. At this time, the detected image signal and the reference image signal are continuously input, but the calculation of the positional deviation amount is performed sequentially for each processing unit with a specific length as one processing unit. It is important to select this length smaller than the period that affects the image, such as the stage or vibration of the optical system.
  • the calculation target of the positional deviation amount may not be all the images but a part thereof, and the position may be determined by judging from the image of the first chip of the scan shown in FIG. If the behavior of the stage has some reproducibility, the amount of misalignment obtained in the first scan A may be referred to, and the amplitude of the subsequent misalignment calculation in scan B may be determined. Further, the displacement amount may be obtained by matching such as a normalized correlation of the image, or may be calculated in a frequency domain. In the latter case, even if attention is paid only to the phase, the mouth is bust due to the difference in brightness, which is preferable.
  • each processing unit is determined and performed for each unit.
  • the image comparison processing unit 508 a aligns the images using the calculated positional shift amount, and creates an exploded scatter diagram described later in 508 b based on this information. Then, the detected image and the reference image are compared by the image comparing unit 508a, and an area where the difference value is larger than a specific threshold value is output as a defect candidate.
  • the feature extraction unit 509 performs editing such as deleting small defects as noise for each of the plurality of defect candidates, merging neighboring defect candidates as one defect, and so on. Area, size, other Calculate features for real-time ADC (Defect Classification) and output them as final defects. These pieces of information are stored in the storage device 5 11. Also, it is presented to the user via the user interface section 5 10.
  • the feature quantity in 509 may be the scatter plot axis or the feature quantity used for decomposition. In that case, the defect judgment and the classification can be realized simultaneously in one shot.
  • FIG. 4 (a) shows that these images are correct by the misregistration detection unit 507. This is an image of the difference at each corresponding position when the positional shift amount is calculated and the alignment is performed by the alignment unit of 508a, but in the case of the same pattern, there is a part with uneven brightness. The value of the difference increases.
  • FIG. 4 (b) shows the waveform of the difference at position 1D-1D '. If an area having a difference value equal to or larger than the threshold value TH is regarded as a defect, a cross pattern in which the difference value increases due to uneven brightness is detected in addition to the defect l c. These are false information.
  • the threshold from TH to TH2 To avoid detection of false alarms due to such uneven brightness, increase the threshold from TH to TH2, and perform inspection with low sensitivity as a whole, or set the threshold to TH in areas with uneven brightness. Second, in areas where there is no uneven brightness, adjust the sensitivity using multiple thresholds, such as setting the threshold to TH. For example, there is a method of performing an inspection.
  • the adjustment of the brightness between the images is corrected in advance by the adjustment correction unit of the image comparison processing unit 508a. Then, the difference between the two images is calculated in the image comparison unit using the detected image and the reference image in which the brightness adjustment between the images has been corrected.
  • FIG. 7 is an example of the outline of the processing.
  • the registration unit 508a performs registration of the inspection image and the reference image in pixel units (70).
  • the feature amount of each pixel is calculated by the feature amount calculation unit of 508a for the image after the alignment (71), and the target image is decomposed into a plurality of pieces according to the feature amount in 508b (7). 2).
  • a plurality of scatter plots are created in 508b.
  • the group of pixels after decomposition is hereinafter referred to as a category (which may be referred to as a class).
  • a category with a high frequency is detected, and this is regarded as a normal category.
  • a correction coefficient for matching the brightness of the detected image and the reference image for each category is calculated using 508b while referring to the normal category (73).
  • the fitting correction unit of 508a corrects the brightness of one image so as to be close to the brightness of the other image for each category using the above-described correction coefficient, and thereby adjusts the brightness. Correction is performed (74).
  • the image comparison unit of 508a calculates the difference between the corresponding pixel of the corrected detected image and the corresponding pixel of the reference image (75), and the one that is larger than the threshold calculated for each pixel is regarded as a defect candidate. Extract (76).
  • the spatial information obtained from 508 c for example, Position
  • a check is made as to whether or not it belongs to the match (defect candidate) (77), and finally a defect is output (78), and at the same time, a defect classification is performed, for example, at 509 (7.9).
  • the defect classification may be performed at 508a based on the decomposition scatter diagram.
  • the feature amount of each pixel is calculated using the detected image and the reference image that are aligned in pixel units.
  • the feature amount includes statistics such as brightness, contrast, color information, texture information, brightness difference (shading difference) between the detected image and the reference image, variance of brightness, or feature amount in the frequency domain.
  • the contrast is calculated for all pixels in the target area.
  • contrast operations there are various types of contrast operations in contrast operations, and one of them is a range filter.
  • the contrast at the pixel at the coordinate position (i, j) in the target area is defined as the difference between the maximum value and the minimum value of the brightness in the neighboring area. If the fill size is 2 ⁇ 2, if the brightness at (i, j) is A and the neighboring brightnesses are B, C, and D, the formula is (1).
  • the size may be set according to the target, such as 3 ⁇ 3.
  • Contrast (i, j) Max (A, B, C, D) — Min (A, B, C, D)
  • the contrast at the pixel at the coordinate position (i, j) in the target area may be calculated by the second derivative. In this case, as shown in FIG. 9, the brightness A to I near 9 is used, and the word calculation by the equation (2) is completed.
  • D x B + H—2 XE,
  • Contrast (i, j) Max (Dx, Dy) ⁇ ⁇ ⁇ (2)
  • various calculation methods can be used to determine the amount of luminance change in the neighborhood. In this way, the contrast F c (i, j) for each pixel in the detected image and the contrast G c (i, j) for each pixel in the reference image are calculated, and the correspondence between the detected image and the reference image is calculated. Equation (3), difference (4), or the larger one (5) is used for the pixels to be processed.
  • the contrast of each image is integrated, and the contrast at each pixel is uniquely determined. Then, the image is decomposed in several steps according to the contrast value C (i, j) c.
  • contrast category what is decomposed into several stages is referred to as a contrast category.
  • the area where the brightness is uniform (low contrast area) like area 1a to the area where brightness j changes sharply like the pattern edge of area 1b (high contrast area) are gradually decomposed.
  • FIG. 10 is an approximate straight line obtained from a scatter diagram of pixels belonging to a certain contrast category.
  • One example is a method of least squares approximation (a method of finding a straight line that minimizes the sum of distances from each point).
  • the calculated slope a and the Y intercept b of the approximate straight line are the correction coefficients of the contrast category.
  • the brightness (the selected feature) of the detected image is corrected using the correction coefficient thus calculated, and the adjustment of the brightness (the selected feature) is performed.
  • the corrected detected image F (i, j)
  • the corrected detected image: F '(i, j) is calculated from the slope a of the approximate straight line and the Y intercept using equation (6).
  • the difference between the corrected brightness F ′ (i 5 j) of the detected image and the brightness G (i, j) of the reference image is obtained from the difference D (i, j) in equation (7), and the value of the difference Are larger than the set threshold TH as defect candidates.
  • D (i, j) F '(i, j)-G (i, j) ⁇ ⁇ (7)
  • the correction of the brightness (selected features) of the detected image is scattered as shown in equation (6).
  • FIG. 17 shows the operation.
  • the difference value D (i, j) is the distance and circumference from the converted straight line. This means that the closer the distance to the straight line, the smaller the value of the difference after correction.
  • the threshold value TH for defect detection is set outside the converted scatter plot. (Fig. 17 (b)). For this reason, in order to set the threshold TH low and perform highly sensitive inspections, it is necessary to make the converted scatter diagram slim as shown in Fig. 17 (c). Therefore, select a feature value that minimizes the spread of data on a scatter diagram (for example, the minimum variance).
  • the reason why the scatter diagram can be reduced by the method shown in FIG. 7 will be described.
  • the variation in film thickness occurs not only at the flat portion of the pattern but also at the edge portion.
  • most of the specularly reflected light at the edge does not reach the image sensor. What is observed is mainly the diffracted light. Therefore, the influence of the film thickness variation is smaller at the edge portion than in the flat portion. Therefore, even when comparing two adjacent chips on the wafer, the influence of the mismatch due to the film thickness variation is small at the edge. For this reason, as shown in FIG.
  • the threshold value is set appropriately, it is possible to detect even a minute defect at the edge portion, that is, a fine shape defect at the edge.
  • the threshold may be two values with a positive or negative sign, or may be an envelope (such as a polygonal line) that envelops the scatter plot. Further, if the gradation is converted based on the expression (6), a comparison with higher sensitivity can be realized.
  • contrast is one of the leading feature value candidates in bright-field detection.
  • the contrast may be divided at equal intervals or unequal intervals, and each may be assigned to a different category.
  • each pixel of the image is decomposed into contrast categories. This means that as shown in Fig. 11, scatter plots are prepared for the number of contrast categories.
  • the contrast calculation type, fill size, number of divisions to the contrast category, step size, etc. are determined by the lookup table. By doing so, the configuration can be flexibly changed.
  • the point is how to reduce the scattered light from the pattern edge by blocking it with the Fourier transform surface of the sample.
  • a light-shielding filter called a “spatial filter” corresponding to the frequency of the target pattern is inserted into the optical path to reduce the scattered light from the pattern. This can reduce the spread of the night on the scatter diagram. Therefore, a scatter diagram can also be used to evaluate the conformity of the spatial fill to the target pattern.
  • the color unevenness (normal area) is large in frequency due to its features such as widespread, repeated occurrence, and occurrence over the entire surface of a certain pattern.
  • the normal part concentrates on the scatter diagram, so the frequency increases.
  • defects are less frequent. Even large defects are often scattered on the scatter plot, and the frequency of each category is small. Using this, the defect and the color unevenness are identified.
  • a category whose frequency is equal to or higher than the set threshold value is searched in the feature space, and this category is regarded as normal. Then, the distance from the normal category is added to the mismatch information, or the value itself is output. This distance may be a short distance or a Mahalanobis distance normalized by a covariance matrix.
  • the discrimination plane hyperplane
  • the discrimination plane that separates different categories (also referred to as classes) in consideration of the pause error probability is trained.
  • the surface for identifying the normal category may be a straight line or a curve (including a broken line approximation).
  • the normal pattern limit is given as frequency data, and in the case of a linear discriminator, the weight and bias are learned.
  • the scatter diagram may store the normal range in the data table and compare it with this data table.
  • the scatter diagram (image) is decomposed by contrast or the like to make the scatter diagram slim, but the brightness, color information, texture information, variance of brightness, etc. of the detected image and reference image have been described.
  • Scatter plot (image) decomposition may be performed based on statistics or features in the frequency domain. In short, if the image is decomposed for each region having the same characteristic amount and the scatter diagram can be made slim, it is within the scope of the present invention.
  • the axis of the scatter diagram may be selected as the above feature or the calculation result thereof (for example, in the case of a feature amount of brightness, difference in brightness).
  • a scatter plot is created around the feature values selected in advance, and the adjustment of the target feature values is corrected to be affected by the mismatch of the normal part. Inspection can be performed with high sensitivity and the occurrence of false alarms can be reduced.
  • the feature amount is a comparison target.
  • a plurality of reference images whose positions are shifted little by little in the x and y directions, for example, in increments of 0.1 pixels, are created by techniques such as interpolation, etc. If you create a scatter diagram, decompose it, and select one with a slim data spread, a pair of aligned images is automatically selected, and you can perform alignment at the same time. Fig.
  • FIG. 14 shows, for example, that a reference image is created by shifting the position of the detected image little by little, then a scatter diagram is created according to the respective positional shifts, the scatter diagram is decomposed, and then the combination is performed.
  • FIG. 4 is a diagram showing that a slim scatter chart is selected in FIG. Using the above features, ifthen rules, fuzzy voting (voting), NN method (k-NN method), etc. It is also possible to classify defects by a pattern identification method. In this way, image alignment, defect judgment, and defect classification can be realized with one shot.o
  • creating or decomposing a scatter plot which is one of the multidimensional spaces, means that the detected images are stored with greatly reduced capacity, and as a compression method for image data, It is suitable. Furthermore, it is effective in preventing the explosion of the scale of image processing hardware, which has been improved in speed and has become more complex with larger functions.
  • the scatter diagram reduces the data volume by eliminating the spatial information, so the spatial information is kept to a minimum by selecting the features.
  • the scatter diagram may be slimmed down from two or three or more feature amounts.
  • the exploded scatter plot will have multi-dimensional axes.
  • the two axes of a scatterplot are brightness, which can be further broken down into four dimensions by contrast and brightness.
  • the processing described in this embodiment is performed in this four-dimensional box.
  • Fig. 15 shows an example (category map) of scatter plot decomposition by contrast for pixels whose brightness falls within the set gradation range.
  • the vertical axis divides categories by contrast, and the horizontal axis divides categories by brightness difference. It expresses the frequency for each category.
  • the contrast here is given by a value that does not take the absolute value in equation (4).
  • Multiple category maps are created according to the brightness category. Although it is described that the brightness is adjusted naturally, a feature amount other than the brightness may be adjusted.
  • the inconsistency output at 508a that is larger than the set threshold value on the scatter diagram is finally output as a defect candidate.
  • One defect candidate tends to be scattered rather than concentrated in one place on the scatter plot. This is because the position in the feature space is determined by the defect and the background pattern (the position corresponding to the defect on the reference image side) where the defect is present, so that it is not always concentrated on the scatter diagram.
  • the defect 1c in Fig. 3 (a) is concentrated on one place on the scatter diagram because the background is uniform, but if there is a defect 1d on the edge of pattern 4a, it is Since it is applied to both the uniform part and the edge part, it is scattered in at least two places on the exploded scatter diagram.
  • the inconsistency information (defect candidate information) dispersed on the scatter diagram also depends on the spatial proximity (on the image of the pattern to be inspected), which is its occurrence position, and the proximity (distance) in FIG.
  • defect 1 since it corresponds to the position where defect 1d occurred on the image, checking the spatial distance (spatial information) at that point allows checking whether or not the point belongs to the same defect candidate, resulting in higher reliability.
  • the degree of defect can be evaluated in degrees.
  • a certain spatial condition for example, a spatial condition (spatial information) such as a maximum brightness, is satisfied. Can also be determined.
  • the order statistics in the neighboring area for example, in a 3 ⁇ 3 pixel, the value obtained by multiplying the brightness order assigned to each pixel by the brightness max-min: the brightness at each pixel It is also possible to judge a defect using a value close to a maximum or a minimum).
  • the defect candidate may be determined using the order statistics in the local space. In each case, both the scatter diagram information and the space information on the image are used to determine whether a defect exists (77, 78 in Fig. 7).
  • FIG. 16 (d) is a waveform of the difference after brightness adjustment according to the present invention when there is uneven brightness in FIG. Brightness adjustment is performed, and the difference value decreases. Therefore, in the past, the threshold was set to TH2 for the entire area, or two thresholds, TH and TH2, were set to avoid the occurrence of false alarms. It is possible to avoid false alarms due to uneven brightness without dropping the light.
  • the detection sensitivity is limited to 100 nm, but according to the present invention, a detection sensitivity of 50 nm can be realized. is there.
  • the embodiment of the present invention has been described with reference to an example of a comparative inspection image in an optical appearance inspection apparatus for a semiconductor wafer, but an electron beam pattern inspection for detecting an image using an electron beam, and the like. It is also applicable to optical visual inspection using DUV light (ultraviolet light), VUV light (vacuum ultraviolet light), and EUV light (extreme ultraviolet light) as light sources. In this case, a detection sensitivity of 30 to 70 nm can be realized.
  • the inspection target is not limited to a semiconductor device, but can be applied to, for example, a TFT substrate, a photomask, a print plate, and the like, as long as defects are detected by comparing images.
  • the present invention by using information of a scatter diagram, which is one kind of multidimensional space, and comparison using decomposition information of a scatter diagram, high sensitivity can be obtained without being affected by mismatching of normal parts. Can be inspected. In addition, the occurrence of false alarms can be reduced by adjusting target features such as brightness. As a result, a low threshold can be set, and a high-sensitivity test can be stably realized.
  • the detection sensitivity can be easily adjusted.
  • the present invention relates to an appearance inspection for optically inspecting a defect generated during a process in a manufacturing process of a semiconductor wafer, a TFT, a photomask, and the like, and relates to a manufacturing process of a semiconductor wafer, a TFT, a photomask, and the like. It is used as a means to monitor the state of the process and maintain stable production.

Abstract

A defect inspection method for comparing an image to be inspected with a reference image to obtain a difference, according to which a defect can be found. In order to prevent false information caused by luminance difference between the images, conventionally, a large threshold value is set to lower the sensitivity. In order to solve this problem, the difference between the image to be inspected and the reference image is reduced by performing scatter diagram decomposition and comparison or adjustment of the object to be compared. This allows a difference between images caused by thickness difference in a wafer and can prevent generation of false information without lowering sensitivity.

Description

明 細  Details
欠陥検査方法 技術分野 Defect inspection method Technical field
本発明は、 ランプ光もしくはレーザ光、 或いは電子線などを用いて得 られた半導体ウェハ、 T F T、 ホトマスクなどの対象物の画像と、 あら かじめ記憶されている参照画像を比較し、 その差異から微細なパターン 欠陥や異物等の検査を行う欠陥検査方法に関する。 特に半導体ウェハの 外観検査を行うのに好適な欠陥検査方法に関する。 技術背景  The present invention compares an image of an object, such as a semiconductor wafer, a TFT, or a photomask, obtained using a lamp light, a laser light, or an electron beam, with a reference image stored in advance, and uses the difference. The present invention relates to a defect inspection method for inspecting fine pattern defects and foreign matter. In particular, the present invention relates to a defect inspection method suitable for performing a visual inspection of a semiconductor wafer. Technology background
検査対象画像と参照画像とを比較して欠陥検出を行う従来の技術とし ては、 特開平 0 5— 2 6 4 4 6 7号公報に記載の方法が知られている。  As a conventional technique for performing defect detection by comparing an inspection target image with a reference image, a method described in Japanese Patent Application Laid-Open No. H05-2646467 is known.
これは、 繰返しパターンが規則的に並んでいる検査対象試料をライン センサで順次撮像し、 繰返しパターンピッチ分の時間遅れをおいた画像 と比較し、 その不一致部をパターン欠陥として検出するものである。 し かし、 実際にはステージの振動や対象物の傾きなどがあり、 2枚の画像 の位置が合っているとは限らないため、 センサで撮像した画像と、 繰返 しパターンピッチ分の遅延された画像の位置ずれ量を求める。 そして、 求められた位置ずれ量に基づき 2枚の画像の位置合わせを行った後、 画 像間の差をとり、 差が規定のしきい値よりも大きいときに欠陥と、 小さ いときは非欠陥、 即ち正常と判定する。  In this method, a sample to be inspected in which a repetitive pattern is regularly arranged is sequentially imaged by a line sensor, compared with an image with a time delay of the repetitive pattern pitch, and the mismatched portion is detected as a pattern defect. . However, the actual position of the two images is not always the same due to the vibration of the stage and the tilt of the target object.Therefore, the image captured by the sensor and the delay of the repetitive pattern pitch The amount of positional deviation of the obtained image is obtained. Then, after aligning the two images based on the obtained positional deviation amount, a difference between the images is obtained, and when the difference is larger than a specified threshold value, a defect is determined, and when the difference is small, a defect is determined. Defects, that is, normal.
上記従来技術の課題を説明する。 例えば、 第 1図の 1 1は検査対象画 像、 1 2は参照画像の一例であり、 1 aは一様に明るい下地領域、 l b は明るい下地に暗いパターンがある領域である。 また、 検査対象画像 1 1には欠陥 1 cがある。 本例の画像において、 位置 1 D— 1 D 'での明 るさの波形は第 1図 (b ) のようになっている。 ここで、 1 1 と 1 2の 位置ずれ量が求められ、 1 1 と 1 2の位置合せ後の差画像は第 2図のよ うになる。 差画像とは検査対象画像と参照画像の対応する各位置での差 の値に応じて濃淡差表示した画像のことである。 差の値が特定のしきい 値 T H以上となる部分を欠陥とするならば、 第 2図において 1 1の欠陥 1 cのみが検出される。 The problem of the above-described conventional technology will be described. For example, in FIG. 1, 11 is an image to be inspected, 12 is an example of a reference image, 1a is a uniformly bright background area, and lb is an area having a dark pattern on a bright background. In addition, inspection target image 1 1 has defect 1c. In the image of this example, the waveform of the brightness at the position 1D-1D 'is as shown in FIG. 1 (b). Here, the misregistration amounts of 1 1 and 1 2 are obtained, and the difference image after the alignment of 1 1 and 1 2 is as shown in FIG. The difference image is an image that is displayed in a gray scale according to the difference value at each corresponding position between the inspection target image and the reference image. If a portion where the difference value is equal to or larger than a specific threshold value TH is determined as a defect, only the defect 1 c of 11 is detected in FIG.
検査対象物が半導体ウェハの場合、ウェハ内での膜厚の違いがあると、 第 3図の ( a ) の 4 a、 ( b ) の 4 bに示すように検査対象画像と参照 画像の同一のパターンで明るさの違いが生じ、 その差の値は第 4図( a ) の 4 cのように大きくなる。 これは虚報であり、 検出しないようにする ためには、 しきい値 T Hを大きくせざるを得ない。 もしくは明るさむら のある領域とない領域でしきい値を別に設定せざるを得ない。  When the inspection target is a semiconductor wafer, if there is a difference in the film thickness within the wafer, the inspection target image and the reference image are the same as shown in (a) 4a and (b) 4b in FIG. A difference in brightness occurs in the pattern of (1), and the value of the difference increases as shown by 4c in FIG. 4 (a). This is a false alarm, and the threshold T H must be increased to prevent detection. Alternatively, the threshold value must be set separately for the area with uneven brightness and the area without brightness.
このように、 半導体ウェハの場合、 そのパターンの位置精度が高く位 置情報が信頼できるという意味で、 比較的高精度な空間 (位置) 情報に 対し、あいまいな明るさ情報を如何に処理するかが、大きな課題である。 発明の開示  As described above, in the case of a semiconductor wafer, in the sense that the positional accuracy of the pattern is high and the positional information is reliable, how to process the ambiguous brightness information with respect to the relatively accurate spatial (position) information. But this is a big issue. Disclosure of the invention
本発明は、 検査対象画像を参照画像と比較してその差異から欠陥を検 出する比較検査において、 明るさの比較時に、 多次元空間の一つである 散布図にデータを投票し、 得られた散布図を特徴に基づき分解し、 分解 した各散布図上のデ一夕の拡がりを抑えることにより、 低いしきい値を 設定可能としたことにより、 従来検査技術の課題を解決した。  The present invention provides a comparative inspection in which an image to be inspected is compared with a reference image and a defect is detected based on a difference between the images, and at the time of brightness comparison, data is voted for in a scatter diagram which is one of a multidimensional space. The problem of the conventional inspection technology was solved by decomposing the scatter diagram based on the features and suppressing the spread of data on each decomposed scatter diagram so that a low threshold value could be set.
ここで、 多次元空間の一つである散布図は、 検査対象画像と参照画像 の明るさを、 それぞれ縦軸と横軸にとったものである。 これにより、 色 むらによる虚報を低減するとともに、 高感度な欠陥検査方法及び装置を 提供することにある。 特に、 半導体ウェハを対象とした検査では膜厚の 違いなどから生じるパターンの明るさむらについて、 画像間の明るさを 合わせ込んで検査を行うことにより、 しきい値 T Hを大きくすることな く、 明るさむらによる虚報を低減し、 高感度な欠陥検査を実現すること にある。 なお、 比較検査において、 ここでは明るさを比較対象として説 明するが、 明るさ以外を対象とする場合は、 それを散布図の縦軸と横軸 にとるものとする。 また、 3つ以上の特徴量を選び、 散布図を多次元化 してもよい。 Here, the scatter diagram, which is one of the multidimensional spaces, is obtained by taking the brightness of the inspection object image and the reference image on the vertical and horizontal axes, respectively. As a result, false alarms due to color unevenness are reduced, and a highly sensitive defect inspection method and apparatus are provided. To provide. In particular, in the inspection of semiconductor wafers, pattern brightness unevenness caused by differences in film thickness, etc. is checked by adjusting the brightness between images without increasing the threshold value TH. The aim is to reduce false alarms caused by uneven brightness and realize highly sensitive defect inspection. Note that, in the comparative inspection, the brightness is described here as a comparison target, but when the brightness is a target other than the brightness, the brightness is taken on the vertical axis and the horizontal axis of the scatter diagram. Also, three or more feature values may be selected to make the scatter diagram multidimensional.
すなわち、 本発明は、 検査対象画像と参照画像との比較において、 散 布図を投票により (プロッ トすることにより) 作成し、 得られた散布図 を特徴量に基づき分解し、 分解した各散布図上のデ一夕の拡がりを抑え ることにより、 低いしきい値を設定可能とする方法を備えている。 さら に、 対象の膜厚等の違いにより画像間の同一となるパターン間で明るさ の違いが生じていても、 あらかじめ明るさを合わせ込むことにより、 明 るさむらの有無にかかわらず、 低しきい値で高感度な欠陥検査を行う方 法を備えている。 一般的に表現すると、 明るさなどの対象特徴量の合わ せ込みを行う方法を備えることにより、 正常部の不一致の影響を受ける ことなく、 高感度に検査でき、 かつ虚報の発生を低減できる。  That is, according to the present invention, in the comparison between the inspection object image and the reference image, a scatter diagram is created by voting (by plotting), the obtained scatter diagram is decomposed based on the feature amount, and each of the decomposed scatter diagrams is decomposed. There is a method that can set a low threshold value by suppressing the spread of data on the diagram. Furthermore, even if there is a difference in brightness between the same patterns between images due to differences in the target film thickness, etc., by adjusting the brightness in advance, regardless of whether there is uneven brightness, A method is provided for performing high-sensitivity defect inspection with a threshold. In general terms, by providing a method for matching target features such as brightness, inspection can be performed with high sensitivity without being affected by mismatching of normal parts, and the occurrence of false alarms can be reduced.
これらの方法を備えることにより、 全検査対象領域に対し、 低しきい 値であっても虚報を発生しない高感度な欠陥検査方法を提供する。 さら に、 欠陥の分類方法や画像デ一夕の圧縮方法を提供する。 図面の簡単な説明  By providing these methods, a highly sensitive defect inspection method that does not generate a false alarm even at a low threshold value for all inspection target areas is provided. In addition, it provides a method for classifying defects and a method for compressing image data. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 検査対象画像とその時の明るさの検出波形の一例を示す図 である。  FIG. 1 is a diagram showing an example of an inspection target image and a detection waveform of brightness at that time.
第 2図は、 位置合せ後の、 従来のしきい値設定方法の一例を示す図で ある。 Figure 2 shows an example of a conventional threshold setting method after alignment. is there.
第 3図は、' ( a ) 、 (b ) 異なる明るさの画像の比較結果の一例を示 す図である。  FIG. 3 is a diagram showing an example of comparison results of images (a) and (b) of different brightness.
第 4図は、 比較チップ間に明るさむらがあつた時の検査対象画像と従 来のしきい値設定方法の一例を示す図である。  FIG. 4 is a diagram illustrating an image to be inspected when brightness unevenness occurs between the comparison chips and an example of a conventional threshold value setting method.
第 5図は、 検査装置の概略構成の一例を示すプロヅク図である。 第 6図は、 検査対象となる半導体ウェハの平面図である。  FIG. 5 is a block diagram showing an example of a schematic configuration of the inspection device. FIG. 6 is a plan view of a semiconductor wafer to be inspected.
第 7図は、 画像比較部における欠陥抽出 ·分類の順序を示すフロー図 である。  FIG. 7 is a flowchart showing the order of defect extraction and classification in the image comparison unit.
第 8図は、 着目画素でのコントラス ト演算方法の一例を示す検出画像 の画素のイメージ図である。  FIG. 8 is an image diagram of pixels of a detected image showing an example of a contrast calculation method at a target pixel.
第 9図は、 着目画素でのコントラス ト演算方法の一例を示す検出画像 の画素のイメージ図である。  FIG. 9 is an image diagram of pixels of a detected image showing an example of a contrast calculation method at a target pixel.
第 1 0図は、 検出画像と参照画像との明るさの関係 (散布図) におい て求めた近似直線の一例を示す図である。  FIG. 10 is a diagram showing an example of an approximate straight line obtained in a brightness relationship (scatter diagram) between a detected image and a reference image.
第 1 1図は、 カテゴリごとの 2次元空間の集合としての.特徴空間の一 例を示す図である。  FIG. 11 is a diagram showing an example of a feature space as a set of a two-dimensional space for each category.
第 1 2図は、 ( a ) ( b )共に、 2次元特徴空間の一例を示す図である。 第 1 3図は、 カテゴリごとに分解した検出画像と参照画像との特徴量 の関係の一例を示す図である。  FIG. 12 is a diagram showing an example of a two-dimensional feature space in both (a) and (b). FIG. 13 is a diagram illustrating an example of a relationship between feature amounts between a detected image decomposed for each category and a reference image.
第 1 4図は、 カテゴリごとに分解した検出画像と参照画像とのうち、 検出画像を少しずらしたときの検出画像と参照画像との特徴量の関係の 一例を示す図である。  FIG. 14 is a diagram showing an example of the relationship between the feature amounts of the detected image and the reference image when the detected image is slightly shifted from the detected image and the reference image decomposed for each category.
第 1 5図は、カテゴリマップの一例を示し、検出画像と参照画像とを、 コン トラス トにより分解した例を示す図である。  FIG. 15 is a diagram illustrating an example of a category map, in which a detected image and a reference image are decomposed by contrast.
第 1 6図は、 ( a ) 〜 ( e ) は、 散布図の直線近似による明るさの合 わせ込みの挙動の一例を示す図である。 Fig. 16 shows (a) to (e), where the brightness It is a figure which shows an example of the behavior of fitting.
第 1 7図は、 ( a ) 〜 ( c ) は、 散布図上での明るさ補正の動作を説 明する図である。 発明を実施するための最良の形態  FIGS. 17 (a) to (c) are diagrams illustrating the operation of brightness correction on a scatter diagram. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の一実施例を第 1図から第 1 7図により、 詳細に説明す る o  Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 17.
実施例として、 半導体ウェハを対象とした光学式外観検査装置におけ る欠陥検査方法を例にとる。 第 5図は装置の構成の一例を示したもので ある。 5 1は試料 (半導体ウェハなどの被検査物) 、 5 2は試料 5 1を 搭載し、 移動させるステージ、 5 3は検出部で、 試料 5 1を照射するた めの光源 5 0 1、 光源 5 0 1から出射した光を集光する照明光学系 5 0 2、 照明光学系 5 0 2で集光された照明光で試料 5 1を照明し、 反射し て得られる光学像を結像させる対物レンズ 5 0 3、 結像された光学像を 明るさに応じて画像信号に変換するィメ一ジセンサ 5 0 4により構成さ れる。 5 5は画像処理部で、 検出部 5 3で検出された画像により試料で あるウェハ上の欠陥候補を検出する。  As an example, a defect inspection method in an optical appearance inspection apparatus for a semiconductor wafer will be described as an example. FIG. 5 shows an example of the configuration of the device. 51 is a sample (inspected object such as a semiconductor wafer), 52 is a stage on which the sample 51 is mounted and moved, 53 is a detector, and a light source 501 and a light source for irradiating the sample 51 Illumination optical system 502, which collects light emitted from 501, Illuminates sample 51 with illumination light collected by illumination optical system 502, and forms an optical image obtained by reflection The objective lens 503 includes an image sensor 504 that converts the formed optical image into an image signal according to the brightness. Reference numeral 55 denotes an image processing unit, which detects a defect candidate on a wafer as a sample based on the image detected by the detection unit 53.
画像処理部 5 5は、 検出部 5 3のイメージセンサ 5 0 4からの入力信 号をデジタル信号に変換する A D変換部 5 4、 A D変換されたデジタル 信号に対してシェーディング補正、 暗レベル補正等の画像補正を行う前 処理部 5 0 5、 比較対象のデジタル信号を参照画像信号として格納して おく遅延メモリ 5 0 6、 検出部 5 3で検出されたデジタル信号 (検出画 像信号) と遅延メモリ 5 0 6に格納された参照画像信号との位置ずれ量 を検出する位置ずれ検出部 5 0 7、 散布図を投票により (プロッ トする ことにより) 作成し、 さらに分解し、 さらに分解散布図を基に合わせ込 み補正係数を演算する分解散布図作成部 5 0 8 b、 不一致間(欠陥候補) の空間的 (被検査パターンの画像上の) 近接関係などの空間 (位置) 情 報を抽出する空間情報抽出部 5 0 8 c、 画像比較処理部 5 0 8 a、 欠陥 候補の座標や特徴量 (面積、 サイズなど) を算出して最終 な欠陥を検 出して欠陥分類する特徴抽出部 5 0 9から構成される。 画像比較処理部 5 0 8 aは、 5 0 7から算出された位置ずれ量を用いて検査画像と参照 画像の画素単位の位置合わせを行う位置合わせ部と、 該位置合わせ後の 画像について各画素の特徴量 (明るさ、 コン トラス ト、 色情報、 テクス チヤ情報、 検出画像と参照画像での明るさの差 (濃淡差) 、 或いは周波 数領域) を演算して 5 0 8 bに送信する特徴量算出部と、 5 0 8 bから 散布図分解によつて得られる補正係数を用いて両画像間の合わせ込みの 補正を行う合わせ込み補正部と、 該補正後の検出画像と参照画像の対応 する各画素で差分を演算し、 画素毎に演算される差分の値が特定のしき い値より大きい部分を欠陥候補として出力する画像比較部と、 該分解散 布図を基に得られる欠陥候補について 5 0 8 cから得られる空間情報 (例えば被検査パターン上の位置情報) とのリンクを行う空間情報との 結合部と、 画像を一時記憶する画像メモリ とを有する。 The image processing unit 55 converts an input signal from the image sensor 504 of the detection unit 53 into a digital signal.The AD conversion unit 504 performs shading correction, dark level correction, and the like on the AD-converted digital signal. Pre-processing unit 505 that performs image correction of the above, a delay memory 506 that stores the digital signal to be compared as a reference image signal, and a digital signal (detected image signal) detected by the detection unit 53 and a delay A displacement detection unit 507 that detects the amount of displacement from the reference image signal stored in the memory 506, creates a scatter diagram by voting (by plotting), decomposes it further, and further decomposes the scatter diagram. Scatterplot creator 508 b that calculates the correction coefficient based on Spatial information extraction unit 508 c that extracts spatial (position) information such as the spatial relationship (on the image of the pattern to be inspected), image comparison processing unit 508 a, coordinates and feature amounts of defect candidates (Area, size, etc.), detect the final defect, and classify the defect. The image comparison processing unit 508 a includes a positioning unit that performs pixel-by-pixel positioning of the inspection image and the reference image using the positional shift amount calculated from 507, and each pixel of the image after the positioning. (Brightness, contrast, color information, texture information, difference in brightness (shading difference) between the detected image and the reference image, or the frequency domain), and sends it to 508b A feature amount calculation unit, a registration correction unit that corrects registration between the two images using a correction coefficient obtained from 508b by scatter plot decomposition, and a correction image of the detected image and the reference image after the correction. An image comparison unit that calculates a difference at each corresponding pixel, and outputs a portion where the value of the difference calculated for each pixel is greater than a specific threshold value as a defect candidate; and a defect obtained based on the decomposition scatter diagram. Spatial information obtained from 508 c for the candidate (e.g., (Position information on the inspection pattern) and a spatial information for linking with the spatial information, and an image memory for temporarily storing an image.
5 6は全体制御部で、 ユーザからの検査パラメ一夕 (画像比較で用い られるしきい値など) の変更を受け付けたり、 検出された欠陥情報を表 示したりする表示手段と入力手段を持つユーザィンターフェース部 5 1 0、検出された欠陥候補の特徴量や画像などを記憶する記憶装置 5 1 1、 各種制御を行う C P Uで構成される。 5 1 2は全体制御部からの制御指 令に基づいてステージ 5 2を駆動するメカニカルコントロ一ラである。 なお、 図示していないが、画像処理部 5 5、検出部 5 3等も全体制御部 5 6からの指令により駆動される。  Reference numeral 56 denotes an overall control unit, which has a display unit and an input unit that accept changes in inspection parameters (such as threshold values used for image comparison) from the user and display detected defect information. It comprises an interface unit 5110, a storage device 511 for storing feature amounts and images of detected defect candidates, and a CPU for performing various controls. Reference numeral 512 denotes a mechanical controller that drives the stage 52 based on a control command from the overall control unit. Although not shown, the image processing unit 55, the detection unit 53, and the like are also driven by a command from the overall control unit 56.
なお、第 5図に示した構成において、 A D変換部 5 4を画像処理部 5 5 の側に設け、検出部 5 3を画像処理部 5 5、 全体制御部 5 6、 ユーザィン 夕一フヱ一ス部 5 1 0、 記憶装置 5 1 1などから切り離して設置する構 成にしても良い。この場合、ィメ一ジセンサ 5 0 4からの出力は A D変換 部 5 4で A D変換され、 この変換されたデジタル信号が通信手段を介し て、画像処理部 5 5に入力され、前処理部 5 0 5以降の処理が施される。 そして、この場合も、検出部 5 3 と画像処理部 5 5 とは、 全体制御部 5 6 で制御される。 In the configuration shown in FIG. 5, the AD conversion unit 54 is provided on the image processing unit 55 side, and the detection unit 53 is provided with the image processing unit 55, the overall control unit 56, and the user interface. It may be configured to be installed separately from the evening space section 5110, the storage device 5111 and the like. In this case, the output from the image sensor 504 is A / D converted by the A / D converter 54, and the converted digital signal is input to the image processor 55 via the communication means, and the pre-processor 5 The processing after 05 is performed. In this case as well, the detection section 53 and the image processing section 55 are controlled by the overall control section 56.
検査対象となる半導体ウェハ 5 1は、 第 6図に示すように同一である はずのパターンのチップが多数、 規則的に並んでいる。 第 5図の検査装 置では、 隣接する 2つのチップの同じ位置、 例えば第 6図の領域 6 1 と それに隣接するチップの領域 6 2との間で画像を比較し、 両者の間に差 異がある部分を欠陥として検出する。  As shown in FIG. 6, a semiconductor wafer 51 to be inspected has a large number of chips of a pattern that should be identical, which are regularly arranged. In the inspection device shown in FIG. 5, images are compared at the same position of two adjacent chips, for example, between the area 61 of FIG. 6 and the area 62 of the adjacent chip, and a difference between the two is obtained. Is detected as a defect.
その作用を説明すると、 全体制御部 5 6では、 試料である半導体ゥェ ハ 5 1をステージ 5 2により、 例えば第 6図に示すスキャン Aの方向と 反対の方向へ連続的に移動させる。 このステージ 5 2の連続的な移動に 同期して、 検出部 5 3のイメージセンサ 5 0 4でスキャン Aの方向に順 次試料 5 1の光学像が検出されて、 チップの像が検出部 5 3より取り込 まれる。 検出部 5 3のイメージセンサ 5 0 4は入力された信号を画像処 理部 5 5に出力する。  Explaining the operation, in the overall control unit 56, the semiconductor wafer 51 as a sample is continuously moved by the stage 52 in, for example, the direction opposite to the scan A direction shown in FIG. In synchronization with the continuous movement of the stage 52, the optical image of the sample 51 is sequentially detected in the direction of scan A by the image sensor 504 of the detection unit 53, and the image of the chip is detected by the detection unit 5. Imported from 3. The image sensor 504 of the detection unit 53 outputs the input signal to the image processing unit 55.
画像処理部 5 5では、 まず入力されたアナログ信号を A D変換部 5 4 でデジタル信号に変換し、 前処理部 5 0 5にてシェーディング補正、 暗 レベル補正などを行う。 また、 必要に応じてノイズの除去とエッジ強調 により S / Nを向上させる処理を行う。 ただし、 S / N向上による画質 改善処理は、 後で行うこともできる。 位置ずれ検出部 5 0 7には、 前処 理部 5 0 5から出力される検査対象チップの画像信号 (検出画像信号) と、 遅延メモリ 5 0 6から入力される、 ステージがチヅプ間隔分移動す る時間だけ遅延された画像信号、 すなわち、 検査対象チップの 1つ前の チップの画像信号 (参照画像信号) がセッ トで入力される。 In the image processing unit 55, first, the input analog signal is converted into a digital signal by the AD conversion unit 54, and shading correction and dark level correction are performed by the preprocessing unit 505. If necessary, perform processing to improve S / N by removing noise and enhancing edges. However, the image quality improvement processing by S / N improvement can be performed later. The position shift detecting section 507 has an image signal (detected image signal) of the chip to be inspected outputted from the preprocessing section 505 and a stage inputted from the delay memory 506, and the stage moves by the chip interval. Image signal delayed by an The chip image signal (reference image signal) is input as a set.
ステージの移動に同期して順次入力されるこれら 2チヅプの画像信号 は、 ステージの振動があったり、 ステージ上にセッ トされたウェハが傾 いていると、 対応する箇所での信号とはならない。 このため、 位置ずれ 検出部 5 0 7では連続的に入力される 2つの画像間の位置ずれ量を算出 する。 この時、 検出画像信号、 参照画像信号は連続して入力されるが、 位置ずれ量の算出は特定の長さを一処理単位とし、 処理単位毎に順次行 う。 この長さは、 画像に影響するステージや光学系の振動等の周期より 小さく選ぶことが重要である。  These two-chip image signals sequentially input in synchronization with the movement of the stage do not become signals at the corresponding locations when the stage vibrates or the wafer set on the stage is inclined. For this reason, the displacement detection unit 507 calculates the displacement between two images that are continuously input. At this time, the detected image signal and the reference image signal are continuously input, but the calculation of the positional deviation amount is performed sequentially for each processing unit with a specific length as one processing unit. It is important to select this length smaller than the period that affects the image, such as the stage or vibration of the optical system.
ここで、位置ずれ量の算出対象をすベての画像とせず、その一部とし、 その位置を、 第 6図に示すスキャンの先頭チップの画像から判定して決 めてもよい。 また、 ステージの挙動にある程度再現性があれば、 最初の スキヤン Aで求めた位置ずれ量を参照し、 その後のスキヤン Bでの位置 ずれ量算出の振り幅を決めてもよい。 また、 位置ずれ量は、 画像の正規 化相関等のマッチングにより求めてもよいし、 周波数領域で算出しても よい。 後者の場合、 位相のみに着目しても、 明るさの違いにより口バス トであり、 好適である。  Here, the calculation target of the positional deviation amount may not be all the images but a part thereof, and the position may be determined by judging from the image of the first chip of the scan shown in FIG. If the behavior of the stage has some reproducibility, the amount of misalignment obtained in the first scan A may be referred to, and the amplitude of the subsequent misalignment calculation in scan B may be determined. Further, the displacement amount may be obtained by matching such as a normalized correlation of the image, or may be calculated in a frequency domain. In the latter case, even if attention is paid only to the phase, the mouth is bust due to the difference in brightness, which is preferable.
以下の処理についても各々の処理単位を定め、 その単位毎に行う。 画 像比較処理部 5 0 8 aの位置合わせ部では算出された位置ずれ量を用い て画像の位置合わせを行い、 5 0 8 bにて後述する分解散布図作成を行 い、 この情報に基づいて、 5 0 8 aの画像比較部で検出画像と参照画像 を比較して、 その差の値が特定のしきい値より大きい領域を欠陥候補と して出力する。  In the following processing, each processing unit is determined and performed for each unit. The image comparison processing unit 508 a aligns the images using the calculated positional shift amount, and creates an exploded scatter diagram described later in 508 b based on this information. Then, the detected image and the reference image are compared by the image comparing unit 508a, and an area where the difference value is larger than a specific threshold value is output as a defect candidate.
特徴抽出部 5 0 9では、 複数の欠陥候補各々について、 小さいものを ノイズとして削除したり、 近隣の欠陥候補同士を一つの欠陥としてマ一 ジするなどの編集を行い、 ウェハ内での位置や面積、 サイズ、 その他の リアルタイム AD C (Au t o D e f e c t C l a s s i f i c a t i o n : 欠陥分類) 向けの特徴量を算出し、 最終的な欠陥として出力 する。 これらの情報は、 記憶装置 5 1 1に保存する。 また、 ユーザイン 夕一フェース部 5 1 0を介して、 ユーザに提示する。 5 0 9での特徴量 は、 散布図の軸や分解に用いた特徴量でもよく、 その場合は、 欠陥判定 と分類が同時に一撃に実現できる。 The feature extraction unit 509 performs editing such as deleting small defects as noise for each of the plurality of defect candidates, merging neighboring defect candidates as one defect, and so on. Area, size, other Calculate features for real-time ADC (Defect Classification) and output them as final defects. These pieces of information are stored in the storage device 5 11. Also, it is presented to the user via the user interface section 5 10. The feature quantity in 509 may be the scatter plot axis or the feature quantity used for decomposition. In that case, the defect judgment and the classification can be realized simultaneously in one shot.
ここで、 画像比較処理部 5 08 aで単なる差の値から欠陥候補を求め た場合、 それら全てが真の欠陥であるとは限らない。 その例を以下に説 明する。  Here, when the image comparison processing unit 508a obtains defect candidates from a mere difference value, not all of them are true defects. Examples are described below.
半導体ウェハ 5 1の膜厚が一様でない場合、 検査対象画像と参照画像 には明るさ (輝度) の違いが生じる。 例えば、 第 4図の 4 a、 4 bの 3 つ並んだ十字は、 検査対象画像 1 1と参照画像 1 2内の対応するパター ンであるが、 膜厚の違いにより、 明るさが大きく異なっている (以下、 明るさむらと記述する。 また、 検出画像 1 1にのみ欠陥 1 cがある。 第 4図 (a) は、 これらの画像に対し、 位置ずれ検出部 5 07で正し い位置ずれ量が算出され、 5 0 8 aの位置合わせ部で位置合わせが行わ れた時の各対応する位置での差の画像であるが、 同一パターンであって も明るさむらのある部分では差の値が大きくなる。  If the film thickness of the semiconductor wafer 51 is not uniform, a difference in brightness (luminance) occurs between the inspection target image and the reference image. For example, the three crosses 4a and 4b in Fig. 4 are the corresponding patterns in the inspection target image 11 and the reference image 12, but the brightness differs greatly due to the difference in film thickness. (Hereinafter, it is described as uneven brightness. In addition, only the detected image 11 has a defect 1c. FIG. 4 (a) shows that these images are correct by the misregistration detection unit 507. This is an image of the difference at each corresponding position when the positional shift amount is calculated and the alignment is performed by the alignment unit of 508a, but in the case of the same pattern, there is a part with uneven brightness. The value of the difference increases.
第 4図 ( b ) は、 位置 1 D— 1 D 'での差の波形である。 差の値がし きい値 TH以上の領域を欠陥とするならば、 欠陥 l cの他に、 明るさむ らにより差の値が大きくなる十字のパターンも検出される。 これらは虚 報である。  FIG. 4 (b) shows the waveform of the difference at position 1D-1D '. If an area having a difference value equal to or larger than the threshold value TH is regarded as a defect, a cross pattern in which the difference value increases due to uneven brightness is detected in addition to the defect l c. These are false information.
このような明るさむらによる虚報の検出を避けるため、 しきい値を T Hから TH 2へと高く し、 全体に低感度で検査を行う、 もしくは、 明る さむらがある部分ではしきい値を TH 2に、 明るさむらがない部分では しきい値を T Hに設定するなど複数個のしきい値を用いた感度調整をし て検査を行う等の方法が考えられる。 To avoid detection of false alarms due to such uneven brightness, increase the threshold from TH to TH2, and perform inspection with low sensitivity as a whole, or set the threshold to TH in areas with uneven brightness. Second, in areas where there is no uneven brightness, adjust the sensitivity using multiple thresholds, such as setting the threshold to TH. For example, there is a method of performing an inspection.
本発明では、 画像比較処理部 5 0 8 aの合わせ込み補正部において、 検出画像と参照画像の差分を演算する前に、 あらかじめ画像間の明るさ の合わせ込みの補正を行う。 そして、 この画像間の明るさ合わせ込みの 補正が行われた検出画像と参照画像を用いて、画像比較部において両画 像間の差分を演算する。  In the present invention, before the difference between the detected image and the reference image is calculated, the adjustment of the brightness between the images is corrected in advance by the adjustment correction unit of the image comparison processing unit 508a. Then, the difference between the two images is calculated in the image comparison unit using the detected image and the reference image in which the brightness adjustment between the images has been corrected.
第 7図は、 処理の概要の一例である。 まず、 位置ずれ検出部 5 0 7で 算出した位置ずれ量により、 5 0 8 aの位置合わせ部で検査画像と参照 画像の画素単位の位置合わせを行う ( 7 0 ) 。  FIG. 7 is an example of the outline of the processing. First, on the basis of the displacement amount calculated by the displacement detection unit 507, the registration unit 508a performs registration of the inspection image and the reference image in pixel units (70).
この位置合わせ後の画像について 5 0 8 aの特徴量算出部で各画素の 特徴量を演算し ( 7 1 ) 、 5 0 8 bで特徴量に応じて対象画像を複数個 に分解する ( 7 2 ) 。 これにより、 5 0 8 bで多次元空間の 1種である 複数の散布図が作成される。 分解後の画素のまとまりを以下、 カテゴリ (クラスと称してもよい) と記述する。 さらに、 高頻度のカテゴリを検 出し、 これを正常カテゴリ とみなす。  The feature amount of each pixel is calculated by the feature amount calculation unit of 508a for the image after the alignment (71), and the target image is decomposed into a plurality of pieces according to the feature amount in 508b (7). 2). As a result, a plurality of scatter plots, one kind of multidimensional space, are created in 508b. The group of pixels after decomposition is hereinafter referred to as a category (which may be referred to as a class). Furthermore, a category with a high frequency is detected, and this is regarded as a normal category.
次に、 各カテゴリ毎に検出画像と参照画像の明るさを合わせ込むため の補正係数を、 5 0 8 bで正常カテゴリを参照しながら演算する( 7 3 )。 5 0 8 aの合わせ込み補正部は、 上記補正係数を用いてカテゴリ毎に、 一方の画像の明るさを他方の画像の明るさに近くなるように補正するこ とにより明るさの合わせ込みの補正を行う ( 7 4 ) 。 そして 5 0 8 aの 画像比較部は補正後の検出画像と参照画像の対応する各画素で差分を演 算し ( 7 5 ) 、 画素毎に演算されるしきい値より大きいものを欠陥候補 として抽出する ( 7 6 ) 。  Next, a correction coefficient for matching the brightness of the detected image and the reference image for each category is calculated using 508b while referring to the normal category (73). The fitting correction unit of 508a corrects the brightness of one image so as to be close to the brightness of the other image for each category using the above-described correction coefficient, and thereby adjusts the brightness. Correction is performed (74). Then, the image comparison unit of 508a calculates the difference between the corresponding pixel of the corrected detected image and the corresponding pixel of the reference image (75), and the one that is larger than the threshold calculated for each pixel is regarded as a defect candidate. Extract (76).
最後に、 空間情報との結合部において、 後述するように、 分解散布図 を基に画像比較部から得られる不一致 (欠陥候補) について、 5 0 8 c から得られる空間情報 (例えば被検査パターン上の位置) を基に同一不 一致 (欠陥候補) に属すか否かをチエツクし ( 77 ) 、 最終的に欠陥を 出力する ( 7 8 ) と同時に、 例えば 5 09で欠陥分類を行う ( 7 ·9 ) 。 なお、 欠陥分類は、 分解散布図をベースに、 5 08 aで行ってもよい。 次に、 7 1〜 74までの明るさ合わせ込みの処理手順の一例を詳細に 説明する。 ここでは、 比較する検出画像と参照画像のうち、 一方の検出 画像に対して明るさ (選んだ特徴量) の補正を行うこととする。 まず、 画素単位で位置の合った検出画像と参照画像を用いて、 各画素の特徴量 を演算する。 特徴量には、 明るさ、 コン トラス ト、 色情報、 テクスチャ 情報、 検出画像と参照画像での明るさの差 (濃淡差) 、 明るさの分散値 などの統計量、或いは周波数領域における特徴量など多数あるが、以下、 特徴量としてコントラス トを用いた場合を例にとって説明する。 Finally, at the connection with the spatial information, as described later, for the mismatch (defect candidate) obtained from the image comparison unit based on the scatter diagram, the spatial information obtained from 508 c (for example, Position) A check is made as to whether or not it belongs to the match (defect candidate) (77), and finally a defect is output (78), and at the same time, a defect classification is performed, for example, at 509 (7.9). The defect classification may be performed at 508a based on the decomposition scatter diagram. Next, an example of a processing procedure for adjusting the brightness from 71 to 74 will be described in detail. Here, the brightness (selected feature amount) is corrected for one of the detected image and the reference image to be compared. First, the feature amount of each pixel is calculated using the detected image and the reference image that are aligned in pixel units. The feature amount includes statistics such as brightness, contrast, color information, texture information, brightness difference (shading difference) between the detected image and the reference image, variance of brightness, or feature amount in the frequency domain. Although there are a number of such cases, a case where contrast is used as a feature will be described below as an example.
まず、 対象領域内の全画素についてコン トラス トを各々演算する。 コ ン トラス ト演算には各種のォペレ一夕があるが、 その 1つにレンジフィ ル夕 (range filter) がある。 これは、 第 8図に示すように対象領域内 の座標位置 ( i, j ) の画素におけるコン トラス トを、 近傍領域での明 るさの最大値と最小値の差とするものである。 フィル夕サイズを 2 X 2 にした場合、 ( i , j ) での明るさが A、 近傍の明るさが B、 C、 Dな らば計算式は ( 1 ) 式となる。 勿論、 3 X 3等、 対象に合わせてサイズ は設定すればよい。  First, the contrast is calculated for all pixels in the target area. There are various types of contrast operations in contrast operations, and one of them is a range filter. As shown in Fig. 8, the contrast at the pixel at the coordinate position (i, j) in the target area is defined as the difference between the maximum value and the minimum value of the brightness in the neighboring area. If the fill size is 2 × 2, if the brightness at (i, j) is A and the neighboring brightnesses are B, C, and D, the formula is (1). Of course, the size may be set according to the target, such as 3 × 3.
コン トラス ト ( i , j ) =Max (A,B,C,D) — Min ( A, B , C , D ) Contrast (i, j) = Max (A, B, C, D) — Min (A, B, C, D)
• · · ( 1 ) また、 画質に応じて、 レンジフィル夕ではなくノイズの影響を低減す るパ一センタイルフィル夕を用いてもよい。 また、 対象領域内の座標位 置 ( i、 j ) の画素におけるコン トラス トを 2次微分値で計算してもよ い。 この場合、 第 9図に示すように 9近傍の明るさ A〜 Iを使い、 ( 2 ) 式による言十算を ί了う。 D x=B + H— 2 XE、 • (1) Also, depending on the image quality, a percentile fill that reduces the effect of noise may be used instead of a range fill. Also, the contrast at the pixel at the coordinate position (i, j) in the target area may be calculated by the second derivative. In this case, as shown in FIG. 9, the brightness A to I near 9 is used, and the word calculation by the equation (2) is completed. D x = B + H—2 XE,
D y=D + F- 2 xE  D y = D + F- 2 xE
コン トラス ト ( i , j ) =Max (D x, D y) · · · ( 2 ) この他にも近傍内での輝度変化量を求めるために様々な演算方法を取 り得る。 このようにして検出画像での各画素についてコントラス ト F c ( i, j ) 、 参照画像の各画素についてコント ラス ト G c ( i , j ) を それそれ演算し、検出画像と参照画像の対応する画素での平均( 3 )式、 もしくは差分 (4) 式、 もしくは大きい方をとる ( 5 ) 式などして 2枚  Contrast (i, j) = Max (Dx, Dy) · · · (2) In addition, various calculation methods can be used to determine the amount of luminance change in the neighborhood. In this way, the contrast F c (i, j) for each pixel in the detected image and the contrast G c (i, j) for each pixel in the reference image are calculated, and the correspondence between the detected image and the reference image is calculated. Equation (3), difference (4), or the larger one (5) is used for the pixels to be processed.
j  j
の画像のコン トラス トを統合し、 各画素でのコン トラス トを一意に決定 する。 そしてコン トラス ト値 C ( i , j ) に G応じて数段階に画像を分解 c The contrast of each image is integrated, and the contrast at each pixel is uniquely determined. Then, the image is decomposed in several steps according to the contrast value C (i, j) c.
する。以下、数段階に分解したものをコントラス トカテゴリと記述する。 その結果として、 領域 1 aのような明るさが一様な部分 (低コントラス ト領域) から領域 1 bのパターンエッジ部のように明る jさが急峻に変化 する部分 (高コン トラス ト領域) までが段階的に分解される。 I do. Hereinafter, what is decomposed into several stages is referred to as a contrast category. As a result, the area where the brightness is uniform (low contrast area) like area 1a to the area where brightness j changes sharply like the pattern edge of area 1b (high contrast area) Are gradually decomposed.
C ( i 5 j ) = (F c ( i , j ) +G c ( i , j ) ) /2 C (i 5 j) = (F c (i, j) + G c (i, j)) / 2
(3)
Figure imgf000014_0001
(3)
Figure imgf000014_0001
(4) c ( j ) = Max ( F c (  (4) c (j) = Max (F c (
( 5 ) 次に、 明るさ (選んだ特徴量) を合わせ込むための補正係数をコント ラス トカテゴリ毎に演算する。  (5) Next, a correction coefficient for adjusting brightness (selected feature amount) is calculated for each contrast category.
その一例を第 1 0図により説明する。 まず、 同じコン トラス トカテゴ リに属する画素について、 横軸を検出画像の明るさ (選んだ特徴量) 、 縦軸をそれに対応する参照画像の明るさ (選んだ特徴量) とした散布図 を作る。 そして、 散布図から近似直線を求める。 ここで、 頻度が小さい カテゴリは、 欠陥の可能性があるため、 高頻度な正常カテゴリデ一夕を 代用する。 最近傍決定則を用いて、 近傍の正常カテゴリのデ一夕、 或い は着目カテゴリ と近傍正常カテゴリを含むデ一夕を用いて、 直線近似を 行う。 An example will be described with reference to FIG. First, for pixels belonging to the same contrast category, create a scatter plot with the horizontal axis representing the brightness of the detected image (the selected feature) and the vertical axis representing the brightness of the corresponding reference image (the selected feature). . Then, an approximate straight line is obtained from the scatter diagram. Where the frequency is small Since the category may be defective, substitute the frequently used normal category data. A linear approximation is performed by using the nearest neighbor decision rule or by using the data of the neighboring normal category or the data including the focused category and the neighboring normal category.
第 1 0図の 1 0 1は、 あるコントラス トカテゴリに属する画素の散布 図から求めた近似直線である。 近似直線の算出方法は各種あるが、 その 一例として最小 2乗近似 (各点からの距離の総和が最小となるような直 線を求める方法) がある。 そして、 算出された近似直線の傾き aと Y切 片 bがそのコントラス トカテゴリの補正係数となる。 こうして算出した 補正係数を用いて検出画像の明るさ (選んだ特徴) を補正し、 明るさ (選 んだ特徴) の合わせ込みの補正を行う。  10 in FIG. 10 is an approximate straight line obtained from a scatter diagram of pixels belonging to a certain contrast category. There are various methods for calculating the approximate straight line. One example is a method of least squares approximation (a method of finding a straight line that minimizes the sum of distances from each point). Then, the calculated slope a and the Y intercept b of the approximate straight line are the correction coefficients of the contrast category. The brightness (the selected feature) of the detected image is corrected using the correction coefficient thus calculated, and the adjustment of the brightness (the selected feature) is performed.
実際には、 検出画像の明るさが F ( i , j ) だったとすると、 補正後 の検出画像: F' ( i , j ) を近似直線の傾き aと Y切片わから ( 6 ) 式で 算出する。 そして、 検出画像の補正後の明るさ F' ( i 5 j ) と参照画像 の明るさ G ( i, j ) の差異を ( 7) 式の差分 D ( i , j ) で求め、 差 の値が設定したしきい値 T Hより大きい部分を欠陥候補とする。 Actually, assuming that the brightness of the detected image is F (i, j), the corrected detected image: F '(i, j) is calculated from the slope a of the approximate straight line and the Y intercept using equation (6). . Then, the difference between the corrected brightness F ′ (i 5 j) of the detected image and the brightness G (i, j) of the reference image is obtained from the difference D (i, j) in equation (7), and the value of the difference Are larger than the set threshold TH as defect candidates.
F, ( i , j ) = a xF ( i , j ) +b · · · ( 6 ) F, (i, j) = a xF (i, j) + b · · · (6)
D ( i, j ) = F ' ( i , j ) - G ( i , j ) · · · (7) 検出画像の明るさ (選んだ特徴) の補正は、 ( 6 ) 式が示す通り、 散 布図を傾き 45度、 y切片 0の直線上にのせるために各画素の明るさ(選 んだ特徴量) を散布図内で回転 (回転量:ゲイン) 、 シフ ト (シフ ト量 : オフセ ヅ ト)させるのと同等である。第 1 7図はその動作を示している。 そして差の値 D ( i , j ) は変換後の直線からの距離と周等となる。 こ れは、 直線との距離が近い点ほど補正後の差の値が小さくなることを意 味する。 D (i, j) = F '(i, j)-G (i, j) · · (7) The correction of the brightness (selected features) of the detected image is scattered as shown in equation (6). Rotate the brightness (selected feature amount) of each pixel in the scatter diagram (rotation amount: gain), shift (shift amount: Offset). FIG. 17 shows the operation. Then, the difference value D (i, j) is the distance and circumference from the converted straight line. This means that the closer the distance to the straight line, the smaller the value of the difference after correction.
また、 欠陥検出のためのしきい値 T Hは変換後の散布図の外側に設定 することになる (第 1 7図 (b ) ) 。 このため、 しきい値 T Hを低く設 定し、 高感度な検査を行うためには第 1 7図 ( c ) に示すように変換後 の散布図をスリムにする必要がある。 従って、 特徴量は、 散布図上でデ 一夕の拡がりが最小 (例えば分散最小) になるものを選ぶ。 Also, the threshold value TH for defect detection is set outside the converted scatter plot. (Fig. 17 (b)). For this reason, in order to set the threshold TH low and perform highly sensitive inspections, it is necessary to make the converted scatter diagram slim as shown in Fig. 17 (c). Therefore, select a feature value that minimizes the spread of data on a scatter diagram (for example, the minimum variance).
ここで、 第 7図に示した方法により、 散布図のばらつきが低減できる 理由を説明する。 L S Iウェハの場合、 膜厚の変動は、 パターン平坦部 のみならずエッジ部でも生じる。 しかし、 明視野検出においては、 エツ ジ部での正反射光の多くは、 ィメ一ジセンサに到達しない。 観察される のは、 主に回折光である。 従って、 エッジ部では膜厚変動の影響は平坦 部に比べ小さいものとなる。 従って、 ウェハ上で隣接する 2つのチップ の比較でも、 膜厚変動による不一致の影響はエッジ部では小さい。 この ため、 第 1 1図に示すように、 エッジ部のコン トラス トに基づき、 2枚 の画像の散布図を分解すれば、 ェッジ部ではばらつきの小さい散布図が 得られる。 従って、 しきい値を適切に設定すれば、 エッジ部の欠陥、 即 ちパ夕一ンの形状欠陥が微細なものまで検出可能となる。  Here, the reason why the scatter diagram can be reduced by the method shown in FIG. 7 will be described. In the case of an LSI wafer, the variation in film thickness occurs not only at the flat portion of the pattern but also at the edge portion. However, in bright-field detection, most of the specularly reflected light at the edge does not reach the image sensor. What is observed is mainly the diffracted light. Therefore, the influence of the film thickness variation is smaller at the edge portion than in the flat portion. Therefore, even when comparing two adjacent chips on the wafer, the influence of the mismatch due to the film thickness variation is small at the edge. For this reason, as shown in FIG. 11, if the scatter diagram of the two images is decomposed based on the contrast of the edge portion, a scatter diagram with small variations can be obtained in the edge portion. Therefore, if the threshold value is set appropriately, it is possible to detect even a minute defect at the edge portion, that is, a fine shape defect at the edge.
しきい値は、 正負の符合をもつ 2つの値でもよいし、 散布図デ一夕を 包み込むような包絡線 (折れ線など) としてもよい。 また、 ( 6 ) 式に 基づき、 階調を変換すれば、 さらに高感度な比較が実現できる。  The threshold may be two values with a positive or negative sign, or may be an envelope (such as a polygonal line) that envelops the scatter plot. Further, if the gradation is converted based on the expression (6), a comparison with higher sensitivity can be realized.
このように、 回折光の振る舞いに着目して特徴量を選ぶと、 明視野検 出ではコン トラス トが有力な特徴量候補のひとつとなる。 なお、 コント ラス トは等間隔或いは不等間隔で分け、 それぞれを異なるカテゴリとし てよい。 第 7図では、 画像の各画素をコン トラス トカテゴリに分解して いるが、 これは第 1 1図に示すように、 散布図をコントラス トカテゴリ 数だけ用意していることになる。  In this way, if feature values are selected by focusing on the behavior of the diffracted light, contrast is one of the leading feature value candidates in bright-field detection. In addition, the contrast may be divided at equal intervals or unequal intervals, and each may be assigned to a different category. In Fig. 7, each pixel of the image is decomposed into contrast categories. This means that as shown in Fig. 11, scatter plots are prepared for the number of contrast categories.
実機では、 コントラス ト演算フィル夕の種類、 フィル夕サイズ、 コン トラス トカテゴリへの分割数、 刻み幅などはルヅクアツプテーブルで定 義することにより、 フレキシブルに変更可能な構成とできる。 In the actual machine, the contrast calculation type, fill size, number of divisions to the contrast category, step size, etc. are determined by the lookup table. By doing so, the configuration can be flexibly changed.
また、 パターンエッジのコントラス トでなく、 そのエッジ情報を等価 的に有する C A Dデ一夕に基づく レイヤ一情報を使用しても、 拡がりを 抑制した、 分離性のより散布図分解が可能である。 この場合、 レイヤー の重なる領域は、 別レイヤ一と見なした方がよい。 なお、 本考えは、 主 成分分析のように、 軸を選ぶことによって特徴量を減らすものではない が、 類似した考えは適用可能である。  In addition, even if layer information based on CAD data that has the edge information equivalently is used instead of the pattern edge contrast, the spread can be suppressed and the scatterplot decomposition can be performed because of the separability. In this case, the area where the layers overlap should be regarded as another layer. Note that this idea does not reduce the feature value by selecting the axes as in the principal component analysis, but similar ideas can be applied.
D U V光や V U V光などでは、 主にレ一ザ光源が使用されるが、 発明 者らが特閧 2 0 0 1 - 1 9 4 3 2 3号公報に記載したような、 対物レン ズを介して照明を行う同軸落射 · 明視野検出ならば、 上記考えが成り立 つ  In the case of DUV light or VUV light, a laser light source is mainly used. However, the present inventors use an objective lens as described in Japanese Patent Application Publication No. 2001-194432. The above idea holds for coaxial epi-illumination and bright-field detection
喑視野検出の場合は、平坦部からの散乱光は検出されず安定であるが、 パターンエツジ部の微妙な形状の違い等で明るさが変動し、 散布図は高 コン トラス ト部でバラつきが大きくなる。 従って、 如何にパターンエツ ジからの散乱光を試料のフ一リェ変換面で遮光して減少させるかがボイ ントになる。 このために、 対象パターンの周波数に対応した 「空間フィ ル夕」 と呼ぶ遮光用のフィル夕を光路中に挿入して、 パターンからの散 乱光を低減している。 これにより、 散布図上でデ一夕の拡がりが小さく できる。 従って、 対象パターンに対する空間フィル夕の形状適合性の評 価にも、 散布図が使用可能である。  喑 In the case of visual field detection, the scattered light from the flat part is not detected and it is stable, but the brightness fluctuates due to slight differences in the shape of the pattern edge, etc. growing. Therefore, the point is how to reduce the scattered light from the pattern edge by blocking it with the Fourier transform surface of the sample. For this purpose, a light-shielding filter called a “spatial filter” corresponding to the frequency of the target pattern is inserted into the optical path to reduce the scattered light from the pattern. This can reduce the spread of the night on the scatter diagram. Therefore, a scatter diagram can also be used to evaluate the conformity of the spatial fill to the target pattern.
散布図を分散最小基準などの判断基準を用いて、 正しく分解するため の特徴量として、 コン トラス トの差、 濃淡差、 明るさ (情報) 、 テクス チヤ情報、 散布図上の頻度情報など、 対象や検出方法に応じて、 様々な 特徴量が用いられる。 いずれも、 分解された散布図上で、 デ一夕がない スパースなエリアを確保できると、 このエリアにマッピングされた欠陥 が検出でき、 検査感度が向上することになる。 換言すれば、 スパースな エリアを確保できるよう、 特徴量を選ぶことになる。 スパースなエリア とは、 頻度が定めたしきい値以下のカテゴリをさす。 このカテゴリが多 いほど、 欠陥の検出感度が向上する。 Features such as contrast differences, shading differences, brightness (information), texture information, frequency information on scatter diagrams, etc., are used to correctly decompose the scatter diagram using criteria such as the minimum variance criterion. Various features are used depending on the target and the detection method. In any case, if a sparse area with no data is secured on the disassembled scatter diagram, defects mapped to this area can be detected and inspection sensitivity will be improved. In other words, sparse The feature amount is selected so that the area can be secured. A sparse area is a category whose frequency is less than or equal to a defined threshold. The more this category, the better the defect detection sensitivity.
ここでは、 頻度 (画素数) を用いた例をさらに説明する。 一般的な特 徴量として、 色むら (正常領域) は広範囲に渡っている、 繰り返して発 生したり、 あるパターンの全面で発生する等の特長により、 その頻度は 大きい。 勿論、 正常部は散布図上で集中するため、 頻度が大きくなる。  Here, an example using frequency (the number of pixels) will be further described. As a general feature, the color unevenness (normal area) is large in frequency due to its features such as widespread, repeated occurrence, and occurrence over the entire surface of a certain pattern. Of course, the normal part concentrates on the scatter diagram, so the frequency increases.
これに対し、 欠陥 (非正常領域) は頻度が小さい。 たとえ大きな欠陥 でも、 散布図上では散らばることが多く、 各カテゴリの頻度は小さいも のとなる。 これを利用して欠陥と色むらの識別を行う。 ここでは、 頻度 が設定したしきい値以上のカテゴリを特徴量空間内でサーチ(探索)し、 このカテゴリを正常とみなす。 そして、 正常カテゴリからの距離を不一 致情報に付加し、 或いは値そのものを出力する。 この距離はュ一クリ ツ ド距離でもよいし共分散行列で正規化したマハラノビス距離でもよい。 通常、 パターン認識の分野では、 第 1 2図 ( a ) に示すように、 ペイ ズ誤り確率を考慮して異なるカテゴリ (クラスとも言う) を分離する識 別面 (超平面) を トレーニングデ一夕により求める。  On the other hand, defects (abnormal regions) are less frequent. Even large defects are often scattered on the scatter plot, and the frequency of each category is small. Using this, the defect and the color unevenness are identified. Here, a category whose frequency is equal to or higher than the set threshold value is searched in the feature space, and this category is regarded as normal. Then, the distance from the normal category is added to the mismatch information, or the value itself is output. This distance may be a short distance or a Mahalanobis distance normalized by a covariance matrix. Normally, in the field of pattern recognition, as shown in Fig. 12 (a), the discrimination plane (hyperplane) that separates different categories (also referred to as classes) in consideration of the pause error probability is trained. Ask by
一方、 本実施例では、 第 1 2図 (b ) に示すように、 正常カテゴリ (同 図右側のデ一夕) のみを トレーニングデータにより正しく求め、 欠陥デ —夕は正常カテゴリからの距離として表現でき、 ユーザはこの距離に対 する 2値化を行うことにより所望の結果を得る。 しきい値にもよるが、 見逃しを防く、論理になっている (虚報は発生しやすいが、 しきい値で制 御できる) 。  On the other hand, in the present embodiment, as shown in FIG. 12 (b), only the normal category (data on the right side of the figure) is correctly obtained from the training data, and the defect data is expressed as the distance from the normal category. The user can obtain the desired result by binarizing the distance. Depending on the threshold, it is a logic that prevents oversight (false alarms are likely to occur, but can be controlled by thresholds).
正常カテゴリを識別する面は、 直線でもよいし、 曲線 (折れ線近似を 含む)でもよい。ここでは、正常パターン限界を頻度デ一夕として与え、 線形識別器の場合、 その重みとバイアスを与えることが学習になる。 な お、 散布図はデータテーブルに正常範囲を記憶しておき、 このデータテ —ブルと比較してもよい。 The surface for identifying the normal category may be a straight line or a curve (including a broken line approximation). Here, the normal pattern limit is given as frequency data, and in the case of a linear discriminator, the weight and bias are learned. What Note that the scatter diagram may store the normal range in the data table and compare it with this data table.
以上、 散布図 (画像) の分解をコントラス トなどにより行い、 散布図 をスリム化する例を説明したが、検出画像や参照画像の明るさ、色情報、 テクスチャ情報、 明るさの分散値等の統計量、 或いは周波数領域での特 徴などにより、 散布図 (画像) 分解を行っても構わない。 要は、 同じ特 徴量をもつ領域毎に画像を分解し、 散布図がスリム化できれば、 それが 本発明の範囲となる。  In the above, an example has been described in which the scatter diagram (image) is decomposed by contrast or the like to make the scatter diagram slim, but the brightness, color information, texture information, variance of brightness, etc. of the detected image and reference image have been described. Scatter plot (image) decomposition may be performed based on statistics or features in the frequency domain. In short, if the image is decomposed for each region having the same characteristic amount and the scatter diagram can be made slim, it is within the scope of the present invention.
また、 散布図の軸を、 上記特徴、 或いはそれらの演算結果 (例えば、 明るさという特徴量の場合、 明るさの差) に選んでもよい。 すなわち、 第 1 3図に示すように、 あらかじめ選んだ特徴量を軸にした散布図を作 成し、 この対象特徴量の合わせ込みの補正を行うことにより、 正常部の 不一致の影響を受けることなく、 高感度に検査でき、 かつ虚報の発生を 低減できる。  In addition, the axis of the scatter diagram may be selected as the above feature or the calculation result thereof (for example, in the case of a feature amount of brightness, difference in brightness). In other words, as shown in Fig. 13, a scatter plot is created around the feature values selected in advance, and the adjustment of the target feature values is corrected to be affected by the mismatch of the normal part. Inspection can be performed with high sensitivity and the occurrence of false alarms can be reduced.
ところで、 特徴量が比較対象となるものである。  By the way, the feature amount is a comparison target.
特徴量が明るさの場合には、 明るさ補正となり、 コン トラス トの場合 にはコントラス ト補正となる。 他の特徴量の場合も同様である。 また、 第 1 4図に示すように、 x、 y方向に例えば 0 . 1画素刻みで少しづつ 位置をずらした複数の参照画像を補間等の技術により作成し、 検出画像 との間でそれそれ散布図を作成、 分解し、 データの拡がりがスリムなも のを選択すれば、 位置の合った画像のペアが自動的に選ばれ、 位置合せ も同時に行うことができる。 第 1 4図は、 例えば、 検出画像に対し、 少 しずつ位置をずらした参照画像を作成し、 次にそれそれの位置ずれに応 じて、 散布図を作成し、 分解し、 次に組合せの中で、 スリムな散布図を 選択することを示す図である。 なお、 上記特徴量を用いて、 i f t h e nルール、 ファジーボ一ティング (投票) 、 N N法 (k一 N N法) な どパターン識別法により欠陥の分類を行うことも可能になる。 このよう に、 画像の位置合せ、 欠陥判定、 欠陥分類を一撃で実現することができ る o When the feature value is brightness, brightness correction is performed, and when the feature value is contrast, contrast correction is performed. The same applies to other feature amounts. As shown in Fig. 14, a plurality of reference images whose positions are shifted little by little in the x and y directions, for example, in increments of 0.1 pixels, are created by techniques such as interpolation, etc. If you create a scatter diagram, decompose it, and select one with a slim data spread, a pair of aligned images is automatically selected, and you can perform alignment at the same time. Fig. 14 shows, for example, that a reference image is created by shifting the position of the detected image little by little, then a scatter diagram is created according to the respective positional shifts, the scatter diagram is decomposed, and then the combination is performed. FIG. 4 is a diagram showing that a slim scatter chart is selected in FIG. Using the above features, ifthen rules, fuzzy voting (voting), NN method (k-NN method), etc. It is also possible to classify defects by a pattern identification method. In this way, image alignment, defect judgment, and defect classification can be realized with one shot.o
さらに、 多次元空間のひとつである散布図を作成したり、 分解するこ とは、 検出した画像を、 容量を大幅に削減して、 記憶するということに なり、 画像データの圧縮方法としても、 好適である。 さらに、 速度が向 上し、 機能が複雑化して大規模化が進む画像処理ハードウェアの規模の 爆発を防ぐ意味で、 有効である。 散布図は、 空間情報をなくすことによ り、 データ容量の圧縮が図られている訳で、 特徴量を選ぶことにより、 空間情報を最低限もたせていることになる。  Furthermore, creating or decomposing a scatter plot, which is one of the multidimensional spaces, means that the detected images are stored with greatly reduced capacity, and as a compression method for image data, It is suitable. Furthermore, it is effective in preventing the explosion of the scale of image processing hardware, which has been improved in speed and has become more complex with larger functions. The scatter diagram reduces the data volume by eliminating the spatial information, so the spatial information is kept to a minimum by selecting the features.
また、 ひとつの特徴量を用いて画像を分解し、 明るさを合わせ込む例 を示したが、 2つ或いは 3つ以上の特徴量から散布図のスリム化を行つ てもよい。分解された散布図は多次元の軸を有することになる。例えば、 散布図の 2軸は明るさであるが、 これを、 コントラス トや明るさを軸に さらに分解し、 4次元化したものとできる。 この 4次元ボックス内で、 本実施例で述べた処理を行う。  Also, an example has been described in which an image is decomposed using one feature amount and the brightness is adjusted, but the scatter diagram may be slimmed down from two or three or more feature amounts. The exploded scatter plot will have multi-dimensional axes. For example, the two axes of a scatterplot are brightness, which can be further broken down into four dimensions by contrast and brightness. The processing described in this embodiment is performed in this four-dimensional box.
第 1 5図は、 明るさが設定階調範囲に入る画素に関して、 コントラス トにより散布図分解した例 (カテゴリマップ) を示したものである。 縦 軸がコン トラストでカテゴリ分割を行い、 横軸が明るさの差でカテゴリ 分割したものである。 そして、 各カテゴリ毎の頻度を表現したものであ る。 ここでのコン トラス トは、 ( 4 ) 式で絶対値を取ってない値で与え られるものである。 明るさのカテゴリに応じて、 このカテゴリマップが 複数枚作成される。 なお、 当然ながら、 明るさを合わせ込むと説明した が、 明るさ以外の特徴量を合わせ込んでもよい。  Fig. 15 shows an example (category map) of scatter plot decomposition by contrast for pixels whose brightness falls within the set gradation range. The vertical axis divides categories by contrast, and the horizontal axis divides categories by brightness difference. It expresses the frequency for each category. The contrast here is given by a value that does not take the absolute value in equation (4). Multiple category maps are created according to the brightness category. Although it is described that the brightness is adjusted naturally, a feature amount other than the brightness may be adjusted.
次に、 分解散布図作成部 5 0 8 b、 空間情報抽出部 5 0 8 c及び画像 比較処理部 5 0 8 a内の空間情報との結合部における実施例を説明する < 上記した散布図分解により、 5 0 8 aにて出力される不一致は、 散布 図上では設定したしきい値より大きいものが欠陥候補として最終出力さ れる。 一つの欠陥候補は、 散布図上では一力所に集中するのではなく、 分散する傾向にある。 なぜなら、 欠陥及び欠陥がある背景 (参照画像側 の欠陥相当位置)パターンによって、特徴量空間内の位置が決まるので、 散布図上に集中するとは限らないためである。 Next, a description will be given of an embodiment in a connection section with the spatial information in the decomposition scatter diagram creation section 508 b, the spatial information extraction section 508 c, and the image comparison processing section 508 a. As a result of the above-described scatter diagram decomposition, the inconsistency output at 508a that is larger than the set threshold value on the scatter diagram is finally output as a defect candidate. One defect candidate tends to be scattered rather than concentrated in one place on the scatter plot. This is because the position in the feature space is determined by the defect and the background pattern (the position corresponding to the defect on the reference image side) where the defect is present, so that it is not always concentrated on the scatter diagram.
例えば、 第 3図 ( a ) の欠陥 1 cは、 背景が一様であるため、 散布図 上で一力所に集中するが、 パターン 4 aのエッジにかかる欠陥 1 dがあ れば、 それは一様部とエッジ部の両方にかかるので、 分解散布図上で少 なくても 2力所の分解散布図に分散する。 このため、 散布図上で分散さ れた不一致情報 (欠陥候補情報) も、 その発生位置である空間的な (被 検査パターンの画像上の) 近接性 (距離) 、 第 3図 ( a ) の欠陥 1 の 場合は、 画像上で欠陥 1 dの発生位置に対応するので、 その点の空間的 距離 (空間情報) をチェックすれば、 同一欠陥候補に属すかどうかがチ エックでき、 より高信頼度で、 欠陥らしさを評価できる。  For example, the defect 1c in Fig. 3 (a) is concentrated on one place on the scatter diagram because the background is uniform, but if there is a defect 1d on the edge of pattern 4a, it is Since it is applied to both the uniform part and the edge part, it is scattered in at least two places on the exploded scatter diagram. For this reason, the inconsistency information (defect candidate information) dispersed on the scatter diagram also depends on the spatial proximity (on the image of the pattern to be inspected), which is its occurrence position, and the proximity (distance) in FIG. In the case of defect 1, since it corresponds to the position where defect 1d occurred on the image, checking the spatial distance (spatial information) at that point allows checking whether or not the point belongs to the same defect candidate, resulting in higher reliability. The degree of defect can be evaluated in degrees.
また、 逆に、 たとえ不一致 (欠陥候補) と判定された場合も、 空間的 なある種の条件、 例えば、 明るさが極大値になっているなどの空間条件 (空間情報) を満たせば、 正常と判定することもできる。 また、 近傍領 域内の順序統計量 (例えば、 3 x 3画素内において、 各画素に付けられ る明るさの大小の順序に明るさの m a x— m i nを掛けた値 :各画素に おいて明るさが極大または極小に近い値) 等を用いて、 欠陥判定するこ とも可能である。 このように、 局所空間内の順序統計量を用いて、 欠陥 候補の判定を行ってもよい。 いずれの場合も、 散布図情報と画像上の空 間情報の両方を見て、欠陥かどうか判定するものである(第 7図の 7 7、 7 8 ) 。  Conversely, even if it is determined that there is a mismatch (candidate defect), a certain spatial condition, for example, a spatial condition (spatial information) such as a maximum brightness, is satisfied. Can also be determined. In addition, the order statistics in the neighboring area (for example, in a 3 × 3 pixel, the value obtained by multiplying the brightness order assigned to each pixel by the brightness max-min: the brightness at each pixel It is also possible to judge a defect using a value close to a maximum or a minimum). As described above, the defect candidate may be determined using the order statistics in the local space. In each case, both the scatter diagram information and the space information on the image are used to determine whether a defect exists (77, 78 in Fig. 7).
以上述べたように、 本発明では、 2枚の画像を比較し、 その差の値か ら欠陥を検出する検査において、 散布図分解を用いた比較を行ったり、 明るさの合わせ込みを行うものである。 第 1 6図 ( d ) は、 第 4図で明 るさむらがあったときの本発明による明るさ合わせ込み後の差の波形で ある。 明るさの合わせ込みが行われ、 差の値が小さくなる。 このため、 従来、 しきい値を全領域に対し T H 2に設定する、 もしくは T Hと T H 2の 2つのしきい値を設定して、 虚報の発生を避けていたが、 本発明に より、 感度を落とさずに明るさむらによる虚報の発生を避けることがで ぎる。 As described above, in the present invention, two images are compared, and the difference In the inspection to detect defects from the scatter plot, comparison using scatter plot decomposition is performed and brightness adjustment is performed. FIG. 16 (d) is a waveform of the difference after brightness adjustment according to the present invention when there is uneven brightness in FIG. Brightness adjustment is performed, and the difference value decreases. Therefore, in the past, the threshold was set to TH2 for the entire area, or two thresholds, TH and TH2, were set to avoid the occurrence of false alarms. It is possible to avoid false alarms due to uneven brightness without dropping the light.
また、 唯一の低しきい値 T H 3での高感度検査と容易な感度調整を可 能とすることもできる。 更に、 通常の可視光を光源として用いた光学式 外観検査装置において、検出感度は 1 0 0 nmが限度であるが、 本発明に よれば、 5 0 n mの検出感度を実現することが可能である。  In addition, it is possible to perform a high-sensitivity inspection using only the low threshold value TH3 and easily adjust the sensitivity. Furthermore, in an optical visual inspection device using ordinary visible light as a light source, the detection sensitivity is limited to 100 nm, but according to the present invention, a detection sensitivity of 50 nm can be realized. is there.
以上、 本発明の一実施例を、 半導体ウェハを対象とした光学式外観検 査装置における比較検査画像を例にとつて説明したが、 電子線を用いて 画像を検出する電子線式パターン検査や、 D U V光 (紫外光) 、 V U V 光 (真空紫外光) 、 E U V光 (極紫外光) を光源とした光学式外観検査 にも適用可能である。 この場合、 検出感度は、 3 0〜 7 0 n mを実現す ることができる。 また、 検査対象は半導体ゥヱハに限られるわけではな く、 画像の比較により欠陥検出が行われているものであれば、 例えば T F T基板、 ホトマスク、 プリン ト板などにも適用可能である。  As described above, the embodiment of the present invention has been described with reference to an example of a comparative inspection image in an optical appearance inspection apparatus for a semiconductor wafer, but an electron beam pattern inspection for detecting an image using an electron beam, and the like. It is also applicable to optical visual inspection using DUV light (ultraviolet light), VUV light (vacuum ultraviolet light), and EUV light (extreme ultraviolet light) as light sources. In this case, a detection sensitivity of 30 to 70 nm can be realized. In addition, the inspection target is not limited to a semiconductor device, but can be applied to, for example, a TFT substrate, a photomask, a print plate, and the like, as long as defects are detected by comparing images.
以上に説明したごとく本発明によれば、 多次元空間の 1種である散布 図の情報 ·散布図の分解情報を用いた比較により、 正常部の不一致の影 響を受けることなく、 高感度に検査できる。 また、 明るさなどの対象特 徴量を合わせ込むことにより、 虚報の発生を低減できる。 これにより、 低しきい値の設定が可能となり、 高感度検査を安定して実現できる。  As described above, according to the present invention, by using information of a scatter diagram, which is one kind of multidimensional space, and comparison using decomposition information of a scatter diagram, high sensitivity can be obtained without being affected by mismatching of normal parts. Can be inspected. In addition, the occurrence of false alarms can be reduced by adjusting target features such as brightness. As a result, a low threshold can be set, and a high-sensitivity test can be stably realized.
また、 虚報発生の低減と欠陥検出の高感度化との両立が容易なので、 検出感度の調整を容易に行うことができる。 In addition, since it is easy to simultaneously reduce the occurrence of false alarms and increase the sensitivity of defect detection, The detection sensitivity can be easily adjusted.
更 、 本発明を光学式外観検査装置における比較検査に適用すること により、 低い虚報率を保った状態で、 安定して検出感度 50 nmを維持 することができる。  Furthermore, by applying the present invention to a comparative inspection in an optical appearance inspection apparatus, it is possible to stably maintain a detection sensitivity of 50 nm while maintaining a low false alarm rate.
また、 電子線式パターン検査や D UVを光源とした外観検査に適用す ることにより、 安定して検出感度 3 0〜70 nmを維持することが可能 でになる。 さらに、 画像処理のハードウェア規模を合理的な規模に抑え ることができる。 産業上の利用可能性  In addition, by applying it to electron beam pattern inspection and appearance inspection using DUV as a light source, it is possible to stably maintain a detection sensitivity of 30 to 70 nm. Furthermore, the hardware scale of image processing can be reduced to a reasonable scale. Industrial applicability
本発明は、 半導体ウェハ、 T F T、 ホトマスクなどの製造工程におい て、 工程の途中で発生した欠陥を光学的に検査する外観検査に関するも のであって、 半導体ウェハ、 T F T、 ホトマスクなどの製造工程におい て、 工程の状態を監視して安定した製造を維持する手段として利用され る。  The present invention relates to an appearance inspection for optically inspecting a defect generated during a process in a manufacturing process of a semiconductor wafer, a TFT, a photomask, and the like, and relates to a manufacturing process of a semiconductor wafer, a TFT, a photomask, and the like. It is used as a means to monitor the state of the process and maintain stable production.

Claims

請 求 の 範 囲 The scope of the claims
1 . 欠陥を検査する方法であって、 以下のステップを含む: 1. A method for inspecting defects, including the following steps:
試料を撮像して検査対象画像を得;  Imaging a sample to obtain an image to be inspected;
前記試料を撮像して前記検査対象画像の比較対象となる比較対 象画像を得;  Imaging the sample to obtain a comparison target image to be compared with the inspection target image;
前記検査対象画像と比較対象画像との明るさゃコントラス トな どの特徴量を求め;  Obtain features such as brightness / contrast between the inspection target image and the comparison target image;
該求めた前記検査対象画像と比較対象画像との特徴量を予め設 定した特徴量を軸にもつ多次元の特徴量空間に投票し ; そして  Voting the obtained feature amounts of the inspection target image and the comparison target image in a multidimensional feature amount space having a preset feature amount as an axis; and
該多次元の特徴量空間に投票したデ一夕を用いて前記検査対象 画像を前記比較対象画像と比較して欠陥を検出する。  The defect is detected by comparing the inspection target image with the comparison target image using the data voted in the multidimensional feature amount space.
2 . 請求の範囲 1記載の欠陥を検査する方法であって、 前記多次元 の特徴量空間は、 前記検査対象画像と前記比較対象画像の明るさゃコン トラス トなど、 予め定めたいくつかの特徴量からなる散布図である。 2. The method for inspecting a defect according to claim 1, wherein the multi-dimensional feature amount space includes a predetermined number of contrasts such as brightness / contrast of the inspection target image and the comparison target image. It is a scatter diagram which consists of a feature quantity.
3 . 請求の範囲 2記載の欠陥を検査する方法であって、 前記予め定 めたいくつかの特徴量からなる散布図を他の特徴量により複数の散布図 に分解し、 該分解された複数の散布図を用いて、 欠陥を検出する。 3. The method for inspecting a defect according to claim 2, wherein the scatter diagram composed of the predetermined plurality of feature amounts is decomposed into a plurality of scatter diagrams by other feature amounts, and the decomposed plurality of scatter diagrams are obtained. The defect is detected using the scatter plot of.
4 . 請求の範囲 3記載の欠陥を検査する方法であって、 前記分解さ れた各散布図を用いて、 前記検査対象画像と前記比較対象画像間で定め た特徴量について、 合わせ込みを行う。 4. The method for inspecting a defect according to claim 3, wherein, using each of the decomposed scatter diagrams, matching is performed on a feature amount determined between the inspection target image and the comparison target image. .
5 . 請求の範囲 3記載の欠陥を検査する方法であって、 前記分解さ れた各散布図を用いて、 散布図或いは各散布図上の頻度に基づき、 正常 カテゴリを求め、 正常カテゴリからのユークリヅ ド距離或いはマハラノ ビス距離などの距離を不一致情報に付加する。 · 5. The method for inspecting a defect according to claim 3, wherein each of the decomposed scatter diagrams is used to determine whether the scatter diagram or the frequency on each scatter diagram is normal. A category is obtained, and a distance such as a Euclidean distance or a Mahalanobis distance from a normal category is added to the mismatch information. ·
6 . 請求の範囲 3記載の欠陥を検査する方法であって、 散布図上の デ一夕の分離性が良くなるように特徴を選び、 散布図を分解する。 6. A method for inspecting defects according to claim 3, wherein a characteristic is selected so as to improve the separability of data on a scatter diagram, and the scatter diagram is decomposed.
7 . 請求の範囲 3記載の欠陥を検査する方法であって、 前記散布図 から得られる情報と前記画像上から得られる空間情報との両方を用いて. 欠陥を検出する。 7. The defect inspection method according to claim 3, wherein the defect is detected using both information obtained from the scatter diagram and spatial information obtained from the image.
8 . 請求の範囲 3記載の欠陥を検査する方法であって、 明るさなど の特徴量を比較対象として、 それらの特徴量或いはそれらの差などの演 算結果を散布図の軸に選び、 欠陥を検出する。 8. A method for inspecting a defect according to claim 3, wherein feature values such as brightness are compared with each other, and an operation result such as those feature values or a difference between them is selected as an axis of the scatter diagram, and the defect is selected. Is detected.
9 . 請求の範囲 1記載の欠陥を検査する方法であって、 前記多次元 の特徴量空間に投票したデータを用いて前記検出した欠陥を分類するこ とを更に含む。 9. The method for inspecting a defect according to claim 1, further comprising: classifying the detected defect using data voted in the multidimensional feature amount space.
1 0 . 請求の範囲 9記載の欠陥を検査する方法であって、 前記分類し た欠陥を、分類ごとに分離して画面上に表示する。 10. The method for inspecting defects according to claim 9, wherein the classified defects are displayed on a screen separately for each classification.
1 1 . 請求の範囲 1記載の欠陥を検査する方法であって、 前記検査対 象画像と比較対象画像の明るさゃコントラス トなど定めた特徴量を軸に もつ多次元の特徴量空間に投票することにより画像データの容量を削減 し、 該容量を削減した画像デ一夕を用いて欠陥を検出する。 11. The method for inspecting a defect according to claim 1, wherein the voting is performed in a multi-dimensional feature amount space having a feature amount defined as an axis such as brightness of the image to be inspected and an image to be compared and contrast. Thus, the capacity of the image data is reduced, and the defect is detected using the image data with the reduced capacity.
1 2 . 欠陥を検査する方法であって、 以下のステップを含む: 試料を撮像して検査対象画像を得 ; ; 前記試料を撮像して前記検査対象画像の比較対象となる比較対 象画像を得; 12. A method for inspecting a defect, comprising the steps of: imaging a sample to obtain an image to be inspected;; imaging the sample to obtain an image to be compared with the image to be inspected. Gain;
該検査対象画像と比較対象画像とについて複数の特徴ごとの特 徴量を求め;  Determining a feature amount of each of a plurality of features for the inspection target image and the comparison target image;
該求めた特徴量の情報を用いて前記検査対象画像と比較対象画 像との前記複数の特徴ごとの特徴量の分布を求め ;  Using the information on the obtained feature amounts to obtain a distribution of feature amounts for each of the plurality of features in the inspection target image and the comparison target image;
該求めた複数の特徴ごとの特徴量の分布の情報に基づいて前記 検査対象画像と前記比較対象画像との明るさの違いを補正し;  Correcting the difference in brightness between the image to be inspected and the image to be compared based on the obtained information on the distribution of the feature amounts for each of the plurality of features;
該明るさの違いを補正した前記検査対象画像と前記比較対象画 像とを比較して欠陥を検出する。  A defect is detected by comparing the inspection target image corrected for the difference in brightness with the comparison target image.
1 3 . 請求の範囲 1 2記載の欠陥を検査する方法であって、 前記検査 対象画像と比較対象画像との位置ずれを画素単位で補正するステツプを 更に有し、該画素単位で位置ずれを補正した前記検査対象画像と比較対 象画像とについて前記複数の特徴ごとの特徴量を求める。 13. The method for inspecting a defect according to claim 12, further comprising: a step of correcting a positional shift between the inspection target image and the comparison target image in pixel units, wherein the positional deviation is corrected in pixel units. A feature amount for each of the plurality of features is obtained for the corrected inspection target image and the comparison target image.
1 4 . 請求の範囲 1 2記載の欠陥を検査する方法であって、 前記明る さの違いを補正した前記検査対象画像と前記比較対象画像とを比較して 欠陥を検出するステツプにおいて、 前記検査対象画像と前記比較対象画 像とを比較して不一致を検出し、該検出した不一致の前記複数の特徴ご との特徴量の分布の情報を得、該得た特徴量の分布の情報に基いて欠陥 を検出する。 14. The method for inspecting a defect according to claim 12, wherein the step of comparing the image to be inspected corrected for the difference in brightness and the image to be compared to detect a defect includes the step of inspecting the defect. A mismatch is detected by comparing the target image with the comparison target image, information on the distribution of the feature amounts of the plurality of detected mismatches is obtained, and based on the information on the obtained distribution of the feature amounts. To detect defects.
1 5 . 請求の範囲 1 2記載の欠陥を検査する方法であって、 前記検査 対象画像と前記比較対象画像とを比較して欠陥を検出すると共に、 該検 出した欠陥を分類する。 15. A method for inspecting a defect according to claim 12, wherein the inspection is performed. A defect is detected by comparing the target image with the comparison target image, and the detected defect is classified.
PCT/JP2003/003174 2002-03-18 2003-03-17 Defect inspection method WO2003079292A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-073504 2002-03-18
JP2002073504A JP2003271927A (en) 2002-03-18 2002-03-18 Defect inspecting method

Publications (1)

Publication Number Publication Date
WO2003079292A1 true WO2003079292A1 (en) 2003-09-25

Family

ID=28035242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003174 WO2003079292A1 (en) 2002-03-18 2003-03-17 Defect inspection method

Country Status (2)

Country Link
JP (1) JP2003271927A (en)
WO (1) WO2003079292A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111128777A (en) * 2019-12-12 2020-05-08 福建省福联集成电路有限公司 Method for detecting core particle defect and storage medium
CN111815565A (en) * 2020-06-11 2020-10-23 上海华虹宏力半导体制造有限公司 Wafer back side detection method and device and storage medium

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158780A (en) 2003-11-20 2005-06-16 Hitachi Ltd Method and device for inspecting defect of pattern
JP4115378B2 (en) * 2003-12-01 2008-07-09 徳島県 Defect detection method
JP2010151824A (en) * 2005-01-14 2010-07-08 Hitachi High-Technologies Corp Method and apparatus for inspecting pattern
JP2006220644A (en) 2005-01-14 2006-08-24 Hitachi High-Technologies Corp Method and apparatus for inspecting pattern
JP2006266943A (en) * 2005-03-24 2006-10-05 Sony Corp Apparatus and method for inspecting defect
JP2007017264A (en) * 2005-07-07 2007-01-25 Sharp Corp Method and device for evaluating image processing algorithm, method and device for generating image processing algorithm, program, and program recording medium
DE102005044502B8 (en) * 2005-09-16 2010-01-28 Suss Microtec Test Systems Gmbh Method for inspecting a plurality of repetitive structures
JP2007093330A (en) * 2005-09-28 2007-04-12 Olympus Corp Defect extraction device and defect extraction method
US8103087B2 (en) 2006-01-20 2012-01-24 Hitachi High-Technologies Corporation Fault inspection method
JP5028014B2 (en) * 2006-02-08 2012-09-19 株式会社日立ハイテクノロジーズ Pattern inspection method and apparatus
US7391510B2 (en) * 2006-01-26 2008-06-24 Orbotech Ltd System and method for inspecting patterned devices having microscopic conductors
JP5090041B2 (en) 2006-04-03 2012-12-05 ルネサスエレクトロニクス株式会社 Focus adjustment method, apparatus using the method, and wafer used in the method
JP4872438B2 (en) * 2006-04-20 2012-02-08 大日本印刷株式会社 Inspection device, inspection method, and inspection processing program
JP4928862B2 (en) * 2006-08-04 2012-05-09 株式会社日立ハイテクノロジーズ Defect inspection method and apparatus
US7643140B2 (en) 2007-03-29 2010-01-05 Hitachi High-Technologies Corporation Method and apparatus for inspecting a semiconductor device
JP2010025713A (en) 2008-07-18 2010-02-04 Hitachi High-Technologies Corp Flaw inspection method and flaw inspection device
JP5275017B2 (en) 2008-12-25 2013-08-28 株式会社日立ハイテクノロジーズ Defect inspection method and apparatus
WO2012105055A1 (en) 2011-02-04 2012-08-09 株式会社日立製作所 Optical filtering method, device therefor, substrate-defect inspection method, and apparatus therefor
JP5581343B2 (en) * 2012-01-13 2014-08-27 株式会社日立ハイテクノロジーズ Defect inspection method and apparatus
JP2017041113A (en) * 2015-08-20 2017-02-23 日本電気株式会社 Image processing device, image processing system, image processing method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304718A (en) * 1998-04-21 1999-11-05 Hitachi Ltd Defect-inspecting method and device
JP2001077165A (en) * 1999-09-06 2001-03-23 Hitachi Ltd Defect inspection method, its device, defect analysis method and its device
JP2001097869A (en) * 1999-09-28 2001-04-10 Fuso Pharmaceutical Industries Ltd New antitumor agent
JP2001194323A (en) * 1999-10-29 2001-07-19 Hitachi Ltd Method and device for inspecting pattern defect

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3878340B2 (en) * 1998-09-18 2007-02-07 株式会社ルネサステクノロジ Pattern defect inspection method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304718A (en) * 1998-04-21 1999-11-05 Hitachi Ltd Defect-inspecting method and device
JP2001077165A (en) * 1999-09-06 2001-03-23 Hitachi Ltd Defect inspection method, its device, defect analysis method and its device
JP2001097869A (en) * 1999-09-28 2001-04-10 Fuso Pharmaceutical Industries Ltd New antitumor agent
JP2001194323A (en) * 1999-10-29 2001-07-19 Hitachi Ltd Method and device for inspecting pattern defect

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOSHIHARU MAEDA, KENJI OKA: "Sanpuzu joho o mochiita jukaiki bunseki ni yoru shikiichi settei shuho no teian", JOURNAL OF THE JAPAN SOCIETY OF PRECISION ENGINEERING, vol. 66, no. 12, 5 December 2000 (2000-12-05), pages 1885 - 1889, XP002968485 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111128777A (en) * 2019-12-12 2020-05-08 福建省福联集成电路有限公司 Method for detecting core particle defect and storage medium
CN111128777B (en) * 2019-12-12 2022-08-19 福建省福联集成电路有限公司 Method for detecting core particle defects and storage medium
CN111815565A (en) * 2020-06-11 2020-10-23 上海华虹宏力半导体制造有限公司 Wafer back side detection method and device and storage medium

Also Published As

Publication number Publication date
JP2003271927A (en) 2003-09-26

Similar Documents

Publication Publication Date Title
WO2003079292A1 (en) Defect inspection method
US8103087B2 (en) Fault inspection method
US7734082B2 (en) Defect inspection method
JP3397101B2 (en) Defect inspection method and apparatus
US10127652B2 (en) Defect detection and classification based on attributes determined from a standard reference image
US9778206B2 (en) Defect inspection device and defect inspection method
US7720275B2 (en) Method and apparatus for detecting pattern defects
US8639019B2 (en) Method and apparatus for inspecting pattern defects
TW490591B (en) Pattern inspection apparatus, pattern inspection method, and recording medium
US7142708B2 (en) Defect detection method and its apparatus
JP5641463B2 (en) Defect inspection apparatus and method
CN113570605B (en) Defect detection method and system based on liquid crystal display panel
JP2005321237A (en) Pattern inspection method and pattern inspection device
JP4060558B2 (en) Defect inspection method and apparatus
JP3660763B2 (en) Inspection pattern inspection method, manufacturing process diagnosis method, and semiconductor substrate manufacturing method
KR20180081820A (en) Registration and design in the die internal inspection Reduction of the noise caused by the peripheral part
JP3625236B2 (en) Defect inspection method for inspection pattern and semiconductor manufacturing process evaluation method
JP2004177139A (en) Support program for preparation of inspection condition data, inspection device, and method of preparing inspection condition data
JPH11304718A (en) Defect-inspecting method and device
US10533953B2 (en) System and method for wafer inspection with a noise boundary threshold
KR20240004240A (en) Deep generative model-based alignment for semiconductor applications
JP2007192688A (en) Flaw inspection method
JP2012083351A (en) Defect inspection device and method of the same
US20020141634A1 (en) Pattern defect inspection apparatus and method
JP4013510B2 (en) Defect inspection method and apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase