TW202242166A - 減少物理氣相沉積(pvd)腔室中之顆粒的方法 - Google Patents

減少物理氣相沉積(pvd)腔室中之顆粒的方法 Download PDF

Info

Publication number
TW202242166A
TW202242166A TW111109857A TW111109857A TW202242166A TW 202242166 A TW202242166 A TW 202242166A TW 111109857 A TW111109857 A TW 111109857A TW 111109857 A TW111109857 A TW 111109857A TW 202242166 A TW202242166 A TW 202242166A
Authority
TW
Taiwan
Prior art keywords
thickness
deposition
deposition process
chamber
pvd
Prior art date
Application number
TW111109857A
Other languages
English (en)
Inventor
竇偉
曹勇
李明東
尚恩 拉凡
喬瑟林簡 拉瑪林簡
劉程玉
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202242166A publication Critical patent/TW202242166A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • H01J37/32504Means for preventing sputtering of the vessel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0652Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本文提供了用於減少物理氣相沉積(PVD)腔室中的顆粒形成的方法和設備的實施例。在一些實施例中,一種減少PVD腔室中的顆粒形成的方法包括:在設置於該PVD腔室中的基板支撐件上的對應系列的基板上執行複數個第一沉積製程,其中該PVD腔室包括蓋環,該蓋環設置在該基板支撐件周圍並且具有紋理化的外表面,並且其中在該複數個第一沉積製程的每個第一沉積製程期間將具有第一厚度的氮化矽層(SiN)沉積到該紋理化的外表面上;以及在該複數個第一沉積製程的子集之間在該蓋環上執行第二沉積製程,以在下伏氮化矽(underlying silicon nitride (SiN))層上沉積具有第二厚度的非晶矽層。

Description

減少物理氣相沉積(PVD)腔室中之顆粒的方法
本揭露案的實施例大體而言係關於基板處理設備,並且更特定言之係關於減少基板處理設備中的顆粒形成。
濺射,亦稱為物理氣相沉積(physical vapor deposition, PVD),是一種在積體電路中形成特徵的方法。濺射在基板上沉積材料層。諸如靶標的源材料由離子轟擊以從靶標中噴射出材料。該材料然後沉積在基板上。發明人已經觀察到,在沉積製程期間,材料或污染物可沉積在腔室部件上。沉積到腔室部件上的材料可在每個連續的沉積製程期間形成一系列沉積層。沉積層可能易於剝落,尤其是當PVD腔室在製程期間和製程之間經歷熱循環時,此會在PVD腔室內產生不希望的顆粒和污染物。
因此,發明人已經提供了改進的PVD製程腔室及用於減少該等腔室中不希望的顆粒的方法。
本文提供了用於減少物理氣相沉積(PVD)腔室中的顆粒形成的方法和設備的實施例。在一些實施例中,一種減少PVD腔室中的顆粒形成的方法包括:在設置於該PVD腔室中的基板支撐件上的對應系列的基板上執行複數個第一沉積製程,其中該PVD腔室包括製程套組,該製程套組設置在該基板支撐件周圍並且具有紋理化的外表面,並且其中在該複數個第一沉積製程的每個第一沉積製程期間將具有第一厚度的氮化矽層(SiN)沉積到該紋理化的外表面上;以及在該複數個第一沉積製程的子集之間在該製程套組上執行第二沉積製程,以在下伏氮化矽(SiN)層上沉積具有第二厚度的非晶矽層。
在一些實施例中,一種減少物理氣相沉積(PVD)腔室中的顆粒形成的方法,包括:在設置於該PVD腔室中的基板支撐件上的對應系列的基板上執行複數個第一沉積製程,其中該PVD腔室包括蓋環,該蓋環設置在該基板支撐件周圍並且具有紋理化的外表面,並且其中在該複數個第一沉積製程的每個第一沉積製程期間將具有第一厚度的氮化矽層(SiN)沉積到該紋理化的外表面上;在該複數個第一沉積製程的子集之間在該蓋環上執行第二沉積製程,以在下伏氮化矽(SiN)層上沉積具有第二厚度的非晶矽層,其中該第二厚度大於該第一厚度;以及在該複數個第一沉積製程的第二子集之間在該蓋環上執行第三沉積製程,以沉積具有大於該第二厚度的第三厚度的一非晶矽層。
在一些實施例中,一種減少物理氣相沉積(PVD)腔室中的顆粒形成的方法,包括:在設置於該PVD腔室中的基板支撐件上的基板上執行第一沉積製程,其中該PVD腔室包括蓋環,該蓋環設置在該基板支撐件周圍並具有紋理化的外表面,並且其中在該第一沉積製程期間將具有第一厚度的氮化矽(SiN)層沉積到該紋理化的外表面上;在該PVD腔室中在約10個至約20個後續的對應基板上重複該第一沉積製程;以及在該PVD腔室中在該蓋環上執行第二沉積製程,以在下伏氮化矽(SiN)層上沉積具有第二厚度的非晶矽層。
下面描述本揭露案的其他及進一步的實施例。
本文提供了用於減少物理氣相沉積(PVD)腔室中的顆粒形成的方法和設備的實施例。當在設置於PVD腔室中的基板上執行沉積製程時,材料被沉積到腔室部件,諸如製程套組上。沉積到腔室部件上的材料可在每個連續的沉積製程期間形成一系列壓縮層。壓縮層可能易於剝落,尤其是當PVD腔室經歷熱循環時如此。本文所提供的方法促進在一或多個壓縮材料層上添加拉伸材料層,以防止在PVD腔室中經由例如剝落產生不希望的顆粒。
第1圖描繪根據本揭露案的至少一些實施例的減少物理氣相沉積(PVD)腔室中的顆粒形成的方法100的流程圖。在102處,方法100包括在PVD腔室(諸如下面參考第2圖所論述的製程腔室200)中,在設置於該PVD腔室中的基板支撐件(例如基板支撐件230)上的對應一系列基板(例如基板204)上執行複數個第一沉積製程。PVD腔室包括製程套組(例如,製程套組250),該製程套組設置在基板支撐件周圍並具有紋理化的外表面。該製程套組可包括蓋環(例如,蓋環255)、沉積環(例如沉積環254)、下遮蔽件(例如下遮蔽件252)或上遮蔽件(例如上遮蔽件251)中的一或多者。紋理化的外表面可經由任何合適的方法進行紋理化,例如經由噴砂(bead blasting)、電弧噴塗、增材製造(諸如3-D打印等)。在一些實施例中,紋理化的外表面包括複數個突起,該複數個突起之間的間距為約0.5毫米至約4.5毫米。在一些實施例中,紋理化的外表面包括複數個突起,該複數個突起的高度為約0.2毫米至約1.5毫米。
在一些實施例中,該複數個第一沉積製程包括使用包含氮氣或氮氣與氬氣的組合的製程氣體,以及經由氣體供應(例如,氣體供應266)供應該製程氣體。在使用期間,在一些實施例中,在複數個第一沉積製程的每個第一沉積製程期間將具有第一厚度的氮化矽(SiN)層沉積到製程套組的紋理化的外表面上。在一些實施例中,第一厚度為約100奈米至約300奈米。在一些實施例中,SiN層是壓縮應力層。例如,SiN層可具有約-2.0 GPa至約-1.0 GPa的壓縮應力。在該複數個第一沉積製程期間,複數個SiN層被沉積到製程套組上。在連續的第一沉積製程之間,製程腔室200可經歷熱循環,從而導致該複數個SiN層破裂和剝落。
在104處,方法100包括在該複數個第一沉積製程的子集之間在製程套組上執行第二沉積製程。在一些實施例中,如第4圖所示,具有第二厚度的非晶矽層(例如,非晶矽層404)沉積在下伏氮化矽(SiN)層(例如,氮化矽層402)上。非晶矽層有利地覆蓋SiN層並可抵消SiN層的壓縮應力,由此減少或減輕了可污染製程腔室的SiN的裂紋和剝落。在一些實施例中,非晶矽層是拉伸應力層。在一些實施例中,方法100進一步包括在第二沉積製程期間將PVD腔室的內部體積加壓至約10毫托至約20毫托的壓力,在該壓力下,所沉積的非晶矽層有利地具有較高的拉伸應力。例如,非晶矽層可具有約0.05 GPa至約0.3 GPa的拉伸應力。
在一些實施例中,該複數個第一沉積製程的子集可基於所處理的基板的數量、使用的千瓦-小時數等。例如,該複數個第一沉積製程的子集可包括處理約10個基板至約20個基板。在一些實施例中,該複數個第一沉積製程的子集包括處理約12個基板至約15個基板。在一些實施例中,約每20千瓦-時至60千瓦-時執行第二沉積製程。在一些實施例中,第二厚度大於每個子集中的該複數個第一沉積製程的組合厚度。在一些實施例中,該第二厚度為約1微米至約4微米。在一些實施例中,使用氬氣作為製程氣體來執行第二沉積製程。在一些實施例中,在第二沉積製程期間,擋板盤代替基板放置在基板支撐件上。可以重複複數個第一沉積製程和第二沉積製程,直到製程套組的壽命結束。
視情況,在106處,在該複數個第一沉積製程的第二子集之間在該製程套組上執行第三沉積製程,以沉積具有大於該第二厚度的第三厚度的非晶矽層。在一些實施例中,第三厚度為約3微米至約6微米。在一些實施例中,該第二子集包括約900個至約1500個基板。在一些實施例中,第二子集包括約1000個至約1200個基板。可以每第二子集重複第三沉積製程,直到製程套組的壽命結束。
第2圖描繪了根據本揭露案的至少一些實施例的PVD腔室(例如,製程腔室200)的示意性剖視圖。然而,其他製程腔室亦可受益於本文所揭示的本發明的裝置。製程腔室200包括腔室壁206,該腔室壁包封具有處理體積208和非處理體積209的內部體積。腔室壁206包括側壁216、底壁220和頂板224。頂板224可包括腔室蓋或類似的蓋子來密封內部體積。製程腔室200可以是獨立的腔室或者是多腔室平臺(未圖示)的一部分,該多腔室平臺具有由基板傳送機構(例如,基板傳送機器人)連接的互連腔室群集,該基板傳送機構在各個腔室之間傳送基板204。製程腔室200可以是能夠將材料濺射沉積到基板204上的PVD腔室。用於濺射沉積的合適材料的非限制性實例包括氮化矽(SiN)、氧化矽(SiO2)、非晶Si、矽碳氧化物(SiOC)、氮氧化矽(SiON)。
製程腔室200包括基板支撐件230,該基板支撐件包括支撐基板204的基座234。基座234具有基板支撐表面238,該基板支撐表面具有與設置在製程腔室200的上部區段中的濺射靶240的濺射表面239實質上平行的平面。基座234的基板支撐表面238在處理期間接收並支撐基板204。基座234可包括靜電卡盤或加熱器(諸如電阻加熱器、熱交換器或其他合適的加熱設備)。在操作中,將基板204經由製程腔室200的側壁216中的基板裝載入口242引入到製程腔室200的非處理體積209中,並放置到基板支撐件230上,該基板支撐件在基板204的裝載期間處於非處理位置。基板支撐件230可以由支撐升降機構提升或降低,並且在由機器人臂將基板204放置在基板支撐件230上期間,升降指組件可用於將基板204提升和降低到基板支撐件230上。在電漿操作期間,基座234可維持在電浮動電勢或接地。
製程腔室200可包括密封裝置290,該密封裝置經由基底板289耦接至基座234,該基底板可耦接至基板支撐件230。密封裝置190被配置為在基板204的處理期間將處理體積208與非處理體積209流體隔離,使得僅在處理體積208中發生抽空至處理壓力和處理氣體輸送。因此,減少了抽空並將氣體輸送到處理體積208所需的時間。
製程腔室200亦包含製程套組250,該製程套組包括各種部件,該各種部件可容易地從製程腔室200移除,例如以清除部件表面的濺射沉積物,更換或維修被侵蝕的部件,或使製程腔室200適用於其他處理。製程套組250可由任何合適的材料,諸如鋁、不銹鋼、陶瓷材料等製成。氣體供應266被配置為在處理期間向處理空間208供應一或多種處理氣體。氣體供應266可耦接至氣體供應通道281,該氣體供應通道促進將一或多種處理氣體供應至處理體積208。此外,製程腔室200可包括流體耦合至處理體積208的抽氣增壓室280。抽氣增壓室280耦接至泵285,以抽空處理體積108。
在一些實施例中,製程套組250包括上遮蔽件251和下遮蔽件252。上遮蔽件的直徑經定大小為環繞濺射靶240的濺射表面239和基板支撐件230(例如,大於濺射表面239且大於基板支撐件230的支撐表面的直徑)。上遮蔽件可具有設置在下遮蔽件252頂上的上部部分257和從上部部分257向下延伸並與下遮蔽件252的至少一部分豎直重疊的下部部分258,該下部部分與下遮蔽件252的徑向內表面成間隔開的關係(例如,在下部部分258與下遮蔽件252之間限定間隙)。
下遮蔽件252包括圓柱形部分267、從圓柱形部分267的底部部分徑向向內延伸的凸耳268,以及從凸耳268的徑向最內側部分向上延伸並圍繞基板支撐件230的唇緣269。儘管上遮蔽件251和下遮蔽件252被描述為分開的元件,但是在一些實施例中,上遮蔽件251和下遮蔽件252可形成為一個一體結構。上遮蔽件251和下遮蔽件252可以由相同的材料或不同的材料,諸如鋁合金、不銹鋼或陶瓷形成。在一些實施例中,上遮蔽件251的上部部分257和圓柱形部分267的上部部分與環形適配器259介面連接,以形成抽氣增壓室180和氣體供應通道281,該抽氣增壓室和氣體供應通道兩者都流體耦合到處理體積208。在一些實施例中,絕緣環263可設置在環形適配器259與背板261之間,以將環形適配器259和腔室壁與背板261電絕緣。
製程套組250可包括設置在唇緣269頂上的蓋環255和設置在蓋環255下方的沉積環254。蓋環255的底表面與沉積環254介面連接。蓋環255至少部分地覆蓋沉積環254。沉積環254和蓋環255彼此合作,以減少在基板支撐件230的外圍壁和基板204的懸伸邊緣253上濺射沉積物的形成。
該製程腔室200進一步包括密封裝置190,該密封裝置耦接至基座134以當基座134處於處理位置時將處理體積108密封以與非處理體積109隔開。密封裝置190被配置為當基座134處於處理位置時選擇性地將處理體積108密封以與非處理體積109隔離,而當基座134處於非處理位置時,例如當處於降低的裝載位置時,允許處理體積108與非處理體積109流體耦合。
濺射靶240連接至DC電源246和RF電源248中的一者或兩者。DC電源246可以相對於上遮蔽件251向濺射靶240施加偏壓,該上遮蔽件在濺射製程期間可為電浮動的。當DC電源246向濺射靶240、上遮蔽件251、基座234和連接到DC電源246的其他腔室部件供應電力時,RF電源248激勵濺射氣體以形成濺射氣體的電漿。所形成的電漿撞擊並轟擊濺射靶240的濺射表面239,以將材料從濺射表面139濺射到基板204上。在一些實施例中,由RF電源248供應的RF能量的頻率範圍可為約2 MHz茲至約60 MHz茲,或者例如,可以使用諸如2 MHz、13.56 MHz、27.12 MHz、或60 MHz的非限制性頻率。在一些實施例中,可以提供複數個(亦即,兩個或更多個)RF電源,以提供複數個上述頻率的RF能量。
在一些實施例中,製程腔室200可包括磁場產生器264,該磁場產生器設置在濺射靶240上方以使磁場在濺射靶240周圍成型,從而改善濺射靶240的濺射。電容性產生的電漿可由磁場產生器264增強,在該磁場產生器中例如永磁體或電磁線圈可以在製程腔室200中提供磁場,該磁場具有旋轉磁場,該旋轉磁場的旋轉軸垂直於基板204的平面。製程腔室200可另外或替代地包括磁場產生器264,該磁場產生器在製程腔室200的濺射靶240附近產生磁場,以增加鄰近濺射靶240的高密度電漿區域中的離子密度,從而改善靶材料的濺射。在一些實施例中,濺射靶240耦接至背板246,該背板設置在濺射靶240與磁場產生器264之間。
在一些實施例中,製程腔室200可額外包括排氣裝置270。排氣裝置270包括排氣埠271,該排氣埠可接收一些用過的製程氣體並將該用過的氣體傳送到排氣導管272,該排氣導管具有節流閥279以控制製程腔室200中的氣體壓力。排氣導管272連接至一或多個排氣泵273。
製程腔室200的各種部件可由控制器274控制。控制器274包括具有指令集的程式代碼,以操作部件來執行本文所述的方法。例如,控制器274可包括程式代碼,該程式代碼包括但不限於操作基座234和基板傳送機構的基板定位指令集;基於經處理的基板的數量執行第二沉積製程或第三沉積製程的指令;操作氣流控制閥以設定濺射氣體到製程腔室200的流量的氣流控制指令集;操作以維持製程腔室200中的壓力的氣體壓力控制指令集;操作RF電源248以設定氣體激勵功率位準的氣體激勵器控制指令集;控制基座234中的溫度控制系統的溫度控制指令集;和監測製程腔室200中的製程的製程監測指令集。
第3圖描繪根據本揭露案的一些實施例的製程套組150的一部分的特寫等距視圖。製程套組150的外表面300有利地被紋理化以促進沉積材料的附著。例如,第3圖描繪了外表面300,該外表面經由增材製造技術紋理化並且包括複數個突起302,該複數個突起從外表面300延伸並在該複數個突起之間形成複數個谷306。增材製造通常是一種藉由鋪設連續的薄材料層來製造三維部件的技術。該複數個突起302可具有上表面308,該上表面具有約0.6毫米至約1.4毫米的直徑312。該複數個突起320可以分開第一距離314。在一些實施例中,第一距離314為約0.5毫米至約4.5毫米。在一些實施例中,第一距離314可以從該複數個突起302中的相應突起的上表面量測。在一些實施例中,該複數個突起302具有從製程套組250的外表面300至該複數個突起302的上表面308的約0.2毫米至約1.5毫米的高度316。
第4圖描繪了在複數次第一沉積製程和第二沉積製程之後,根據本揭露案的一些實施例的製程套組的示意性側視圖。如第4圖所示,製程套組250具有複數個SiN層402,其中每個SiN層(例如,402a,402b......402n)對應於第一沉積製程。在一些實施例中,該複數個SiN層402包括約10個至約20個層。在一些實施例中,該複數個SiN層402中的每個SiN層的第一厚度406是約100奈米至約300奈米。非晶矽層404設置在該複數個SiN層402上。在一些實施例中,非晶矽層404具有約1微米至約4微米的第二厚度410。
第5圖描繪根據本揭露案的一些實施例的複數個沉積製程500的方塊圖。在一些實施例中,該複數個沉積製程500包括複數個子集502(例如,子集502a至502n)。該複數個子集502中的每個子集包括複數個第一沉積製程504(例如,第一沉積製程504a至504n),其中SiN層沉積到製程套組250上。在一些實施例中,第一沉積製程504n對應於該複數個子集502中的相應子集中的第10次至約第20次第一沉積製程。在每個子集的第一沉積製程504n之後,在製程套組250上執行包括非晶矽沉積的第二沉積製程510。
在一些實施例中,該複數個沉積製程500包括複數個第二子集506(為清楚起見,第5圖中僅圖示一個)。該複數個第二子集506中的每個第二子集包括該複數個子集的複數個第一沉積製程504。例如,第二子集506a包括用於子集502a至502n的複數個第一沉積製程504a至504n。包括非晶矽沉積的第三沉積製程520可在複數個第二子集506的每個第二子集之後在製程套組250上執行。在一些實施例中,第三沉積製程520可以在處理約900個至約1500個基板之後執行。因此,可以重複第二沉積製程510和第三沉積製程520,直到製程套組250的壽命結束。在一些實施例中,製程套組250的壽命結束對應於處理約2000個至約4000個基板。
儘管前面是針對本揭露案的實施例,但是在不脫離本揭露案的基本範疇的情況下,可以設計本揭露案的其他及進一步的實施例。
100:方法 102:步驟 104:步驟 106:步驟 190:密封裝置 200:製程腔室 204:基板 206:腔室壁 208:處理體積 209:非處理體積 216:側壁 220:底壁 224:頂板 230:基板支撐件 234:基座 238:基板支撐表面 239:濺射表面 240:濺射靶 242:基板裝載入口 246:DC電源 248:RF電源 250:製程套組 251:上遮蔽件 252:下遮蔽件 253:懸伸邊緣 254:沉積環 255:蓋環 257:上部部分 258:下部部分 259:環形適配器 261:背板 263:絕緣環 264:磁場產生器 266:氣體供應 267:圓柱形部分 268:凸耳 269:唇緣 270:排氣裝置 271:排氣埠 272:排氣導管 273:排氣泵 274:控制器 279:節流閥 280:抽氣增壓室 281:氣體供應通道 285:泵 289:基底板 290:密封裝置 300:外表面 302:突起 306:谷 308:上表面 312:直徑 314:第一距離 316:高度 402:SiN層 402a:SiN層 402b:SiN層 402n:SiN層 404:非晶矽層 406:第一厚度 410:第二厚度 500:沉積製程 502:子集 502a:子集 502n:子集 504:第一沉積製程 504a:第一沉積製程 504n:第一沉積製程 506:第二子集 506a:第二子集 510:第二沉積製程 520:第三沉積製程
藉由參考附圖中描繪的本揭露案的說明性實施例,可以理解上面簡要總結並且下面更詳細論述的本揭露案的實施例。然而,附圖僅圖示了本揭露案的典型實施例,因此不應被認為是對範疇的限制,因為本揭露案可以允許其他同等有效的實施例。
第1圖描繪根據本揭露案的至少一些實施例的減少物理氣相沉積(PVD)腔室中的顆粒形成的方法的流程圖。
第2圖描繪根據本揭露案的至少一些實施例的PVD腔室的示意性剖視圖。
第3圖描繪根據本揭露案的一些實施例的製程套組的一部分的特寫等距視圖。
第4圖描繪根據本揭露案的一些實施例的製程套組的一部分的示意性側視圖。
第5圖描繪根據本揭露案的至少一些實施例的複數個沉積製程的方塊圖。
為了促進理解,在可能的情況下,使用相同的附圖標記來表示附圖中共用的元件。附圖不是按比例繪製的,並且為了清楚起見可以簡化。一個實施例的元件和特徵可以有益地結合到其他實施例中,而無需進一步敘述。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
100:方法
102:步驟
104:步驟
106:步驟

Claims (20)

  1. 一種減少一物理氣相沉積(PVD)腔室中的顆粒形成的方法,包括以下步驟: 在設置於該PVD腔室中的一基板支撐件上的一對應系列的基板上執行複數個第一沉積製程,其中該PVD腔室包括一製程套組,該製程套組設置在該基板支撐件周圍並且具有一紋理化的外表面,並且其中在該複數個第一沉積製程的每個第一沉積製程期間將具有的一厚度小於或等於一第一厚度的一氮化矽層沉積到該紋理化的外表面上;以及 在該複數個第一沉積製程的子集之間在該製程套組上執行一第二沉積製程,以在該複數個第一沉積製程期間沉積的該等氮化矽層中的一最終氮化矽層上沉積具有一第二厚度的一非晶矽層。
  2. 如請求項1所述之方法,其中該複數個第一沉積製程的該等子集包括處理約10個基板至約20個基板。
  3. 如請求項1所述之方法,進一步包括以下步驟:在該第二沉積製程期間將該PVD腔室的一內部體積加壓至約10毫托至約20毫托的一壓力。
  4. 如請求項1所述之方法,其中該第一厚度為約100奈米至約300奈米。
  5. 如請求項1所述之方法,其中該第二厚度為約1微米至約4微米。
  6. 如請求項1所述之方法,進一步包括以下步驟:在該複數個第一沉積製程的一第二子集之間在該製程套組上執行一第三沉積製程,以沉積具有大於該第二厚度的一第三厚度的一非晶矽層。
  7. 如請求項6所述之方法,其中該第二子集包括約900個至約1500個基板。
  8. 如請求項1至7中任一項所述之方法,其中該氮化矽層是一壓縮應力層,並且該非晶矽層是一拉伸應力層。
  9. 如請求項1至7中任一項所述之方法,其中該第二沉積製程包括使用氬氣作為一製程氣體。
  10. 如請求項1至7中任一項所述之方法,其中該複數個第一沉積製程包括使用包含氮氣和氬氣的一製程氣體。
  11. 一種減少一物理氣相沉積(PVD)腔室中的顆粒形成的方法,包括以下步驟: 在設置於該PVD腔室中的一基板支撐件上的一對應系列的基板上執行複數個第一沉積製程,其中該PVD腔室包括一蓋環,該蓋環設置在該基板支撐件周圍並且具有一紋理化的外表面,並且其中在該複數個第一沉積製程的每個第一沉積製程期間將具有的一厚度小於或等於一第一厚度的一氮化矽層沉積到該紋理化的外表面上; 在該複數個第一沉積製程的子集之間在該蓋環上執行一第二沉積製程,以在該複數個第一沉積製程期間沉積的該等氮化矽層中的一最終氮化矽層上沉積具有一第二厚度的一非晶矽層,其中該第二厚度大於該第一厚度;以及 在該複數個第一沉積製程的一第二子集之間在該蓋環上執行一第三沉積製程,以沉積具有大於該第二厚度的一第三厚度的一非晶矽層。
  12. 如請求項11所述之方法,進一步包括:在該第二沉積製程期間將一擋板盤放置在該基板支撐件上。
  13. 如請求項11所述之方法,其中該紋理化的外表面包括複數個突起,該複數個突起具有在約0.5毫米至約4.5毫米之間的一間距。
  14. 如請求項11所述之方法,其中該紋理化的外表面包括複數個突起,該複數個突起具有約0.2毫米至約1.5毫米的一高度。
  15. 如請求項11至14中任一項所述之方法,其中以下中的至少一者: 該第一厚度為約100奈米至約300奈米, 該第二厚度為約1微米至約4微米,或者 該第三厚度為約3微米至約6微米。
  16. 如請求項11至14中任一項所述之方法,其中該第二沉積製程約每20千瓦-時至60千瓦-時執行一次,並且其中該第三沉積製程約每250千瓦-時至350千瓦-時執行一次。
  17. 如請求項11至14中任一項所述之方法,進一步包括以下步驟:在該第二沉積製程期間將該PVD腔室的一內部體積加壓至約10毫托至約20毫托的一壓力。
  18. 一種減少一物理氣相沉積(PVD)腔室中的顆粒形成的方法,包括以下步驟: 在設置於該PVD腔室中的一基板支撐件上的一基板上執行一第一沉積製程,其中該PVD腔室包括一蓋環,該蓋環設置在該基板支撐件周圍並具有一紋理化的外表面,並且其中在該第一沉積製程期間將具有的一厚度小於或等於一第一厚度的一氮化矽層沉積到該紋理化外表面上; 在該PVD腔室中在約10個至約20個後續的對應基板上重複該第一沉積製程;以及 在該PVD腔室中在該蓋環上執行一第二沉積製程,以在一下伏氮化矽層上沉積具有一第二厚度的一非晶矽層。
  19. 如請求項18所述之方法,進一步包括: 在約900個至約1500個基板上執行該第一沉積製程之後,在該PVD腔室中在該蓋環上執行一第三沉積製程,以沉積具有一第三厚度的一非晶矽層。
  20. 如請求項19所述之方法,其中該第二厚度大於該第一厚度,並且該第三厚度大於該第一厚度。
TW111109857A 2021-03-17 2022-03-17 減少物理氣相沉積(pvd)腔室中之顆粒的方法 TW202242166A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/203,786 US11450514B1 (en) 2021-03-17 2021-03-17 Methods of reducing particles in a physical vapor deposition (PVD) chamber
US17/203,786 2021-03-17

Publications (1)

Publication Number Publication Date
TW202242166A true TW202242166A (zh) 2022-11-01

Family

ID=83284150

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111109857A TW202242166A (zh) 2021-03-17 2022-03-17 減少物理氣相沉積(pvd)腔室中之顆粒的方法

Country Status (6)

Country Link
US (1) US11450514B1 (zh)
JP (1) JP2024510611A (zh)
KR (1) KR20230156778A (zh)
CN (1) CN117295842A (zh)
TW (1) TW202242166A (zh)
WO (1) WO2022197723A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240128075A1 (en) * 2022-10-14 2024-04-18 Applied Materials, Inc. Particle Reduction in Physical Vapor Deposition of Amorphous Silicon

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380414A (en) * 1993-06-11 1995-01-10 Applied Materials, Inc. Shield and collimator pasting deposition chamber with a wafer support periodically used as an acceptor
US5707498A (en) * 1996-07-12 1998-01-13 Applied Materials, Inc. Avoiding contamination from induction coil in ionized sputtering
US6589398B1 (en) * 2002-03-28 2003-07-08 Novellus Systems, Inc. Pasting method for eliminating flaking during nitride sputtering
US7579067B2 (en) 2004-11-24 2009-08-25 Applied Materials, Inc. Process chamber component with layered coating and method
US20060292310A1 (en) 2005-06-27 2006-12-28 Applied Materials, Inc. Process kit design to reduce particle generation
US10468235B2 (en) 2013-09-18 2019-11-05 Applied Materials, Inc. Plasma spray coating enhancement using plasma flame heat treatment
US20160168687A1 (en) 2014-12-14 2016-06-16 Applied Materials, Inc. Particle reduction in a deposition chamber using thermal expansion coefficient compatible coating
US9773665B1 (en) * 2016-12-06 2017-09-26 Applied Materials, Inc. Particle reduction in a physical vapor deposition chamber
WO2019007488A1 (en) 2017-07-04 2019-01-10 Cleanpart Group Gmbh TREATMENT CHAMBER COMPONENT AND METHOD FOR FORMING SURFACE TEXTURE
US10861969B2 (en) 2018-07-16 2020-12-08 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming FinFET structure with reduced Fin buckling

Also Published As

Publication number Publication date
US20220301828A1 (en) 2022-09-22
KR20230156778A (ko) 2023-11-14
US11450514B1 (en) 2022-09-20
JP2024510611A (ja) 2024-03-08
WO2022197723A1 (en) 2022-09-22
CN117295842A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
US10214815B2 (en) Surface treated aluminum nitride baffle
TWI816698B (zh) 具有改良的處理空間密封之基板處理腔室
TWI544530B (zh) 基材清洗室及清潔與調節之方法
TWI752545B (zh) 使用陶瓷塗覆的石英蓋體的基板處理腔室及方法
TWI691607B (zh) 濺射噴淋頭
TWI577820B (zh) Means for improving MOCVD reaction method and improvement method thereof
TW202242166A (zh) 減少物理氣相沉積(pvd)腔室中之顆粒的方法
TW202204677A (zh) 用於高頻處理的蓋堆疊
CN116568862A (zh) 陈化处理腔室的方法
US20220013336A1 (en) Process kit with protective ceramic coatings for hydrogen and nh3 plasma application
JP2004193440A (ja) 成膜方法及び成膜装置
KR20080083956A (ko) 반도체 디바이스 제조설비의 진공 장치