TW202231275A - 一種用於克服免疫抑制或刺激抗癌免疫反應的藥物組合和方法 - Google Patents

一種用於克服免疫抑制或刺激抗癌免疫反應的藥物組合和方法 Download PDF

Info

Publication number
TW202231275A
TW202231275A TW110116080A TW110116080A TW202231275A TW 202231275 A TW202231275 A TW 202231275A TW 110116080 A TW110116080 A TW 110116080A TW 110116080 A TW110116080 A TW 110116080A TW 202231275 A TW202231275 A TW 202231275A
Authority
TW
Taiwan
Prior art keywords
combination
chidamide
inhibitor
plus
cancer
Prior art date
Application number
TW110116080A
Other languages
English (en)
Inventor
周承翰
吳奕宏
陳嘉雄
趙月秀
陳嘉南
Original Assignee
華上生技醫藥股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華上生技醫藥股份有限公司 filed Critical 華上生技醫藥股份有限公司
Publication of TW202231275A publication Critical patent/TW202231275A/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • A61K31/167Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4406Non condensed pyridines; Hydrogenated derivatives thereof only substituted in position 3, e.g. zimeldine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/502Pyridazines; Hydrogenated pyridazines ortho- or peri-condensed with carbocyclic ring systems, e.g. cinnoline, phthalazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本發明係關於一種克服腫瘤微環境中之免疫抑制或刺激針對癌症之免疫反應的方法,其包含向個體投與組蛋白去乙醯酶(HDAC)抑制劑與酪胺酸激酶抑制劑(TKI)之組合。

Description

一種用於克服免疫抑制或刺激抗癌免疫反應的藥物組合和方法
本發明係關於免疫療法。特定言之,本發明提供一種藥物組合及其在調節腫瘤微環境及癌症免疫療法中之應用。
腫瘤免疫學中癌症治療之新時代將在使用免疫-腫瘤學(IO)療法以提高抗癌免疫反應方面提供巨大進展。免疫檢查點抑制劑(ICI)為最有前景的IO療法之一,其可以釋放細胞毒性T淋巴球(CTL)有效攻擊及殺滅腫瘤之能力,尤其靶向PD-1 (程式化細胞死亡蛋白1)/PD-L1(程式化死亡配位體1)軸阻斷之ICI。迄今為止,已開發出若干STI。然而,僅約20%患者對抗PD-1/抗PD-L1抗體單藥療法有反應。約80%之患者不獲得由原發性及獲得性抗性引起之臨床益處。因此,對PD1/PD-L1阻斷之抗性為克服免疫療法之極其重要問題。
原發性抗性係指無藉由PD-1/PD-L1阻斷進行反應之情況。相較於免疫療法與化學療法或靶向療法,免疫療法具有相對較高之原發性抗性比率,且因此臨床益處受到限制。據估計,約60%接受免疫療法之患者具有原發性抗性。然而,獲得性抗性係指對PD-1/PD-L1阻斷之初始反應隨著疾病進展而發生且最終發生復發的情況。據估計,約20%接受免疫療法之患者具有獲得性抗性。對PD1/PD-L1阻斷之低反應率及原發性或獲得性抗性可與腫瘤微環境(TME)相關( Annals of Oncology , 27 , 8 , 2016 8 , 1492 頁至第 1504 )。TME為控制腫瘤免疫反應之動態及複雜之組合物。PD-1/PD-L1阻斷之原發性或獲得性抗性之主要機制可包括若干因素,諸如TME狀態、PD-L1表現、腫瘤新抗原表現及呈遞、細胞信號路徑、免疫基因表現及表觀遺傳修飾。
諸多組合治療策略希望藉由PD-1/PD-L1阻斷克服抗藥性問題。許多方法集中於藉由使用抗PD-1抗體或抗PD-L1抗體與其他試劑之組合來增加對PD1/PD-L1阻斷之敏感性。然而,此等藥物組合無法達成所要治療益處,且其功效及安全性係可疑的。
本發明人出人意料地發現,酪胺酸激酶抑制劑(TKI)加組蛋白去乙醯酶(HDAC)抑制劑經由調變TME而顯著改良抗癌功效。此外,TKI加與ICI組合之HDAC抑制劑藉由PD1/PD-L1阻斷顯著克服原發性或獲得性抗性,且提高免疫療法之功效。
在一個態樣中,本發明提供一種經由克服腫瘤微環境中之免疫抑制或刺激抗癌免疫反應來抑制或治療個體中之癌症的方法,其包含向該個體投與包含組蛋白去乙醯酶(HDAC)抑制劑或其藥學上可接受之鹽及酪胺酸激酶抑制劑(TKI)或其藥學上可接受之鹽的組合;其中該HDAC抑制劑或其藥學上可接受之鹽及酪胺酸激酶抑制劑或其藥學上可接受之鹽調配為一種藥劑,或該HDAC抑制劑及酪胺酸激酶抑制劑各自調配為用於同時、分開或依序投與之單一藥劑。
在另一態樣中,本發明提供一種藥物組合,其用於經由克服腫瘤微環境中之免疫抑制或刺激抗癌免疫反應來抑制或治療個體中之癌症的方法中,其中該組合包含組蛋白去乙醯酶(HDAC)抑制劑或其藥學上可接受之鹽及酪胺酸激酶抑制劑(TKI)或其藥學上可接受之鹽;其中該HDAC抑制劑或其藥學上可接受之鹽及酪胺酸激酶抑制劑或其藥學上可接受之鹽調配為一種藥劑,或該HDAC抑制劑及酪胺酸激酶抑制劑各自調配為用於同時、分開或依序投與之單一藥劑。
在另一態樣中,本發明亦提供藥物組合,其包含組蛋白去乙醯酶(HDAC)抑制劑或其藥學上可接受之鹽及酪胺酸激酶抑制劑(TKI)或其藥學上可接受之鹽;其中該HDAC抑制劑或其藥學上可接受之鹽及酪胺酸激酶抑制劑或其藥學上可接受之鹽調配為一種藥劑,或該HDAC抑制劑及酪胺酸激酶抑制劑各自調配為用於同時、分開或依序投與之單一藥劑。在本發明之一些實施例中,藥物組合中HDAC抑制劑及TKI之量分別在約10% (w/w)至約70% (w/w)及約10% (w/w)至約70% (w/w)的範圍內。在另一實施例中,藥物組合進一步包含免疫檢查點抑制劑。在本發明之一些實施例中,組合中免疫檢查點抑制劑之量在約0.5% (w/w)至約20% (w/w)的範圍內。
在另一態樣中,本發明提供一種包含組蛋白去乙醯酶(HDAC)抑制劑或其藥學上可接受之鹽與酪胺酸激酶抑制劑(TKI)或其藥學上可接受之鹽的組合之用途,其用於製造單一藥劑或多種藥劑,該藥劑用於經由克服腫瘤微環境中之免疫抑制或刺激免疫反應來抑制或治療個體中之癌症,其中該HDAC抑制劑或其藥學上可接受之鹽及酪胺酸激酶抑制劑或其藥學上可接受之鹽調配為一種藥劑,或該HDAC抑制劑及酪胺酸激酶抑制劑各自調配為用於同時、分開或依序投與之單一藥劑。
在本發明之一些實施例中,本文所描述之組合中HDAC抑制劑及TKI之量分別在約10% (w/w)至約70% (w/w)及約10% (w/w)至約70% (w/w)的範圍內。
在一個實施例中,本發明提供一種經由克服腫瘤微環境中之免疫抑制或刺激免疫反應來治療個體中之癌症的方法,其包含向該個體投與包含組蛋白去乙醯酶(HDAC)抑制劑或其藥學上可接受之鹽、酪胺酸激酶抑制劑(TKI)或其藥學上可接受之鹽與免疫檢查點抑制劑(ICI)之組合;其中該組蛋白去乙醯酶(HDAC)抑制劑或其藥學上可接受之鹽、該酪胺酸激酶抑制劑(TKI)或其藥學上可接受之鹽及該免疫檢查點抑制劑調配為一種藥劑,或該HDAC抑制劑或其藥學上可接受之鹽、該酪胺酸激酶抑制劑或其藥學上可接受之鹽及該免疫檢查點抑制劑中之一或兩者調配為用於同時、分開或依序投與之多種藥劑。
在另一實施例中,本發明提供一種藥物組合,其用於經由克服腫瘤微環境中之免疫抑制或刺激抗癌免疫反應來治療個體中之癌症的方法中,其中該組合包含組蛋白去乙醯酶(HDAC)抑制劑或其藥學上可接受之鹽、酪胺酸激酶抑制劑(TKI)或其藥學上可接受之鹽與免疫檢查點抑制劑之組合;其中組蛋白去乙醯酶(HDAC)抑制劑或其藥學上可接受之鹽、酪胺酸激酶抑制劑(TKI)或其藥學上可接受之鹽及免疫檢查點抑制劑(ICI)調配為一種藥劑,或HDAC抑制劑或其藥學上可接受之鹽、酪胺酸激酶抑制劑或其藥學上可接受之鹽及免疫檢查點抑制劑中之一或兩者調配為用於同時、分開或依序投與之多種藥劑。
在另一實施例中,本發明提供一種組合在製造單一藥劑或多種藥劑中之用途,其用於經由克服腫瘤微環境中之免疫抑制或刺激免疫反應來抑制或治療個體中之癌症,其中該組合包含組蛋白去乙醯酶(HDAC)抑制劑或其藥學上可接受之鹽、酪胺酸激酶抑制劑(TKI)或其藥學上可接受之鹽與免疫檢查點抑制劑(ICI)之組合;其中該組蛋白去乙醯酶(HDAC)抑制劑或其藥學上可接受之鹽、該酪胺酸激酶抑制劑(TKI)或其藥學上可接受之鹽及該免疫檢查點抑制劑調配為一種藥劑,或該HDAC抑制劑或其藥學上可接受之鹽、該酪胺酸激酶抑制劑或其藥學上可接受之鹽及該免疫檢查點抑制劑中之一或兩者調配為用於同時、分開或依序投與之多種藥劑。
在本發明之一個實施例中,本文中所描述之組合中免疫檢查點抑制劑之量在約0.5% (w/w)至約20% (w/w)的範圍內。
在一個實施例中,在本文所描述之組合中,組蛋白去乙醯酶(HDAC)抑制劑或其藥學上可接受之鹽、酪胺酸激酶抑制劑(TKI)或其藥學上可接受之鹽及免疫檢查點抑制劑之量分別在約10% (w/w)至約70% (w/w)、約10% (w/w)至約70% (w/w)及約0.5% (w/w)至約20% (w/w)的範圍內。
在本發明之一些實施例中,本文所描述之免疫檢查點抑制劑為抗細胞毒性T淋巴球抗原4 (CTLA-4)抗體或試劑、抗程式化細胞死亡蛋白1 (PD-1)抗體或試劑、抗程式化死亡-配位體1 (PD-L1)抗體或試劑、抗T細胞免疫球蛋白及黏蛋白域3 (TIM-3)抗體或試劑、抗B淋巴球及T淋巴球衰減因子(BTLA)抗體或試劑、抗含V域Ig之T細胞活化抑制因子(VISTA)抗體或試劑、抗淋巴球活化基因3 (LAG-3)抗體或試劑、KIR (殺傷細胞免疫球蛋白樣受體)抑制劑或抗體、A2AR (腺苷A2A受體)抑制劑、CD276抑制劑或抗體或VTCN1抑制劑或抗體。更佳地,免疫檢查點抑制劑為派姆單抗(pembrolizumab)、蘭利珠單抗(lambrolizumab)、皮立珠單抗(pidilizumab)、納武單抗(nivolumab)、度伐利尤單抗(durvalumab)、阿維魯單抗(avelumab)或阿特珠單抗(atezolizumab)。
在本發明之一些實施例中,本文所描述之癌症包括(但不限於)黑色素瘤、頭頸癌、梅克爾細胞癌(merkel cell carcinoma)、肝細胞癌、腎細胞癌、大腸直腸癌、子宮內膜癌、子宮頸癌、食道鱗狀細胞癌、小細胞肺癌、非小細胞肺癌、乳癌、胃癌、食管胃交界部癌、典型霍奇金氏淋巴瘤(classical Hodgkin lymphoma)、非霍奇金氏淋巴瘤(Non-Hodgkin lymphoma)、尿道上皮癌、原發性縱隔大B細胞淋巴瘤、神經膠母細胞瘤、胰臟癌、良性前列腺增生、前列腺癌、卵巢癌、慢性淋巴球性白血病、梅克爾細胞癌(Merkel cell carcinoma)、急性骨髓性白血病、膽囊癌、膽管癌、膀胱癌及子宮癌。
在另一實施例中,癌症為免疫檢查點抑制劑抗性癌症或未能對癌症免疫療法起反應之癌症。
在一個實施例中,個體尚未接受癌症療法。在另一實施例中,個體已接受癌症療法但未能治療。在一些實施例中,癌症療法為放射線療法、化學療法或免疫療法。在另一實施例中,免疫療法為抗PD1免疫療法、抗PD L1免疫療法或抗CTL4免疫療法。
在本發明之一些實施例中,如本文所描述之HDAC抑制劑或其藥學上可接受之鹽為必須抑制I類HDAC之I類選擇性HDAC抑制劑或泛HDAC抑制劑。HDAC抑制劑或其藥學上可接受之鹽之實例包括(但不限於)苯甲醯胺類HDAC抑制劑。較佳地,HDAC抑制劑為西達本胺(Chidamide)、恩替諾特(Entinostat)、伏立諾他(Vorinostat)、羅米地辛(Romidepsin)、帕比司他(Panobinostat)、貝利司他(Belinostat)、丙戊酸(Valproic acid)、莫塞替諾特(Mocetinostat)、艾貝司他(Abexinostat)、普雷司他(Pracinostat)、瑞米司他(Resminostat)、吉維司他(Givinostat)、奎諾司他(Quisinostat)、度馬諾司他(Domatinostat)、奎斯司他(Quisnostat)、CUDC-101、CUDC-907、普雷司他(Pracinostat)、西他司他(Citarinostat)、卓西司他(Droxinostat)、艾貝司他(Abexinostat)、瑞考司他(Ricolinostat)、泰克地那林(Tacedinaline)、非美諾司他(Fimepinostat)、突巴辛(Tubacin)、瑞米司他(瑞米司他)、ACY-738、替諾斯汀(Tinostamustine)、土巴他汀A (Tubastatin A)、吉維司他(Givinostat)及達諾司他(Dacinostat)。
在本發明之一些實施例中,如本文所描述之TKI或其藥學上可接受之鹽為受體酪胺酸激酶之抑制劑。較佳地,如本文所描述之TKI或其藥學上可接受之鹽為血管內皮生長因子受體(VEGFR)之抑制劑。TKI或其藥學上可接受之鹽之實例包括(但不限於)卡博替尼(Cabozantinib)、瑞戈非尼(Regorafenib)、阿西替尼(Axitinib)、阿法替尼(Afatinib)、尼達尼布(Ninetedanib)、克唑替尼(Crizotinib)、阿來替尼Alectinib)、曲美替尼(Trametinib)、達拉非尼(Dabrafenib)、舒尼替尼(Sunitinib)、魯索利替尼(Ruxolitinib)、維羅非尼(Vemurafenib)、索拉非尼(Sorafenib)、普納替尼(Ponatinib)、康奈非尼(Encorafenib)、布加替尼(Brigatinib)、帕唑帕尼(Pazopanib)、達沙替尼(Dasatinib)、伊馬替尼(Imatinib)、樂伐替尼(Lenvatinib)、凡德他尼(Vandetanib)、索凡替尼(surufatinib)及司曲替尼(Sitravatinib)。
在一些其他實施例中,如本文所描述之組合之實例包括(但不限於)以下: (i)抗CTLA4抗體、抗PD1或抗PD L1抗體(ICI)、瑞戈非尼、卡博替尼、依魯替尼(Ibrutinib)、阿西替尼或其藥學上可接受之鹽(TKI)及西達本胺或西達本胺-k30或其藥學上可接受之鹽(HDAC); (ii)抗CTLA-4抗PD1或抗PD L1抗體(ICI)、瑞戈非尼、卡博替尼、依魯替尼、阿西替尼或其藥學上可接受之鹽(TKI)及西達本胺-HCl鹽(HDAC)。
在一些其他實施例中,如本文所描述之組合之實例包括(但不限於)以下: (1)抗-CTLA-4抗體(ICI) + 瑞戈非尼(TKI) + 西達本胺或西達本胺-k30 (HDAC); (2)抗-CTLA-4抗體(ICI) + 卡博替尼(TKI) + 西達本胺或西達本胺-k30 (HDAC);及 (3)抗CTLA-4抗體(ICI) + 卡博替尼(TKI) + 西達本胺-HCl鹽(HDAC)。
在本發明之一些實施例中,如本文所述之方法或組合進一步包含投與一或多種額外抗癌劑。
除非另外規定,否則本文所使用之所有技術及科學術語具有與本發明所屬領域之本領域的技術人員通常所理解相同之含義。儘管類似或等效於本文所描述之方法及材料的任何方法及材料可用於本發明之實踐或測試中,但現在描述較佳方法及材料。所提及之所有公開案均以引用的方式併入本文中。
術語「一(a及an)」係指冠詞之一個或超過一個(亦即,至少一個)語法對象。藉助於實例,「元素」意謂一種元素或大於一種元素。除非另外說明,否則「或」之使用意謂「及/或」。
如本文所使用,術語「個體」、「個人」或「患者」在本文中可互換地使用,且係指脊椎動物,較佳地為哺乳動物,更佳地為人類。哺乳動物包括(但不限於)鼠類、猿猴、人類、農畜、運動型動物及寵物。亦涵蓋活體外獲得或活體外培養之生物實體之組織、細胞及其後代。
如本文所使用,「治療有效量」意謂足以治療罹患疾病之個體(例如神經變性病)或減輕與疾病相關之症狀或併發症的量。
如本文所使用,術語「治療(treat)」、「治療(treating)」、「治療(treatment)」及其類似術語係指減少或改善病症及/或與其相關的症狀。應瞭解,雖然不排除,但治療障礙或病症並不需要完全消除與其相關的障礙、病症或症狀。
如本文所使用,術語「免疫療法」係指藉由包含誘導、提高、抑制或以其他方式改良免疫反應之方法治療罹患疾病或處於感染或遭受疾病復發之風險中的個體。
如本文所使用,術語「程式化細胞死亡蛋白1 (PD-1)」係指屬於CD28家族之免疫抑制受體。PD-1在活體內主要在先前活化之T細胞上表現,且結合於兩種配位體PD-L1與PD-L2。如本文所使用,術語「PD-1」包括人類PD-1 (hPD-1)、hPD-1之變異體、同功異型物及物種同源物,及具有hPD-1之至少一種常見抗原決定基之類似物。可依據GenBank寄存編號U64863找到完整的hPD-1序列。
如本文所使用,術語「程式化死亡-配位體1 (PD-L1)」為PD-1之兩種細胞表面醣蛋白配位體之一(另一者為PD-L2),其在結合至PD-1後下調T細胞活化及細胞介素分泌。如本文所使用,術語「PD-L1」包括人類PD-L1 (hPD-L1)、hPD-L1之變異體、同功異型物及物種同源物,以及與hPD-L1具有至少一個共同抗原決定基之類似物。完整hPD-L1序列可見於Genbank寄存編號Q9NZQ7。
如本文所使用,「抗體」及其「抗原結合片段」涵蓋天然存在之免疫球蛋白(例如IgM、IgG、IgD、IgA、IgE等)以及非天然存在之免疫球蛋白,包括例如單鏈抗體、嵌合抗體(例如人類化鼠抗體)、異結合物抗體(例如雙特異性抗體)、Fab'、F(ab').sub.2、Fab、Fv及rIgG。如本文所使用,「抗原結合片段」為全長抗體之一部分,其保留特異性識別抗原之能力,以及此類部分之各種組合。
如本文所使用,術語「癌症」係指特徵為異常細胞在體內不受控生長之一組廣泛疾病。不受調控之細胞分裂及生長導致惡性腫瘤形成,該等惡性腫瘤侵入鄰近組織且亦可經由淋巴系統或血流轉移至身體之遠端部分。如本文所使用,「癌症」係指原發性、轉移性及復發性癌症。
如本文所使用,如本文所使用之術語「組合」、「治療組合」或「藥物組合」定義一個單位劑型中的固定組合或用於組合投與的分裝部分之套組,其中化合物A及化合物B可同時獨立地或在時間間隔內分別地投與。
如本文所使用,術語「藥學上可接受」在本文中定義係指適合於與個體(例如哺乳動物或人類)之組織接觸而無過度毒性、刺激過敏性反應及與合理益處/風險比相稱之其他問題併發症的彼等化合物、材料、組合物及/或劑型,其在合理醫學判斷之範疇內。
如本文所使用,術語「共投與」或「組合投與」定義為涵蓋向單個患者投與所選治療劑,且意欲包括未必藉由相同投與途徑投與或同時投與試劑之治療方案。
本發明開發集中於調節腫瘤微環境組分,藉此移除腫瘤微環境中之免疫抑制或刺激抗癌細胞之免疫系統的方法及組合。腫瘤微環境為促成腫瘤引發、腫瘤進展及對療法之反應的癌症生物學之重要態樣。腫瘤微環境由異質細胞群體組成,異質細胞群體包括惡性細胞及經由廣泛串擾支持腫瘤增殖、侵襲及轉移性潛能的細胞。腫瘤細胞通常誘導免疫抑制微環境,其有利於產生免疫細胞之免疫抑制群,諸如骨髓衍生之抑制細胞(MDSC)及調節性T細胞(Treg)。因此,腫瘤微環境內之標靶未經揭示可幫助引導且改良藉由增強宿主抗癌免疫反應起作用之各種癌症療法,尤其免疫療法之作用。該方法及組合不僅在抑制或治療癌症中提供有利作用而且提供同步作用。
因此,本發明之第一態樣提供一種克服腫瘤微環境中之免疫抑制或刺激抗癌天然之免疫反應或對一線免疫檢查點抑制劑療法具有抗性的方法,其包含向個體投與組蛋白去乙醯酶抑制劑與酪胺酸激酶抑制劑之組合。在一個實施例中,該方法包含將HDAC抑制劑及TKI與免疫檢查點抑制劑組合之組合投與個體。可替代地,本發明提供HDAC抑制劑及TKI之藥物組合在製造用於克服腫瘤微環境中之免疫抑制或刺激抗癌免疫反應之藥劑中的用途。可替代地,本發明提供一種用於克服腫瘤微環境中之免疫抑制或刺激抗癌免疫反應之藥物組合,其中該藥物組合包含HDAC抑制劑及TKI。較佳地,藥物組合進一步包含免疫檢查點抑制劑。
本發明之第二態樣為提供包含HDAC抑制劑及TKI之藥物組合。較佳地,藥物組合進一步包含免疫檢查點抑制劑。
在一個實施例中,藥物組合中HDAC抑制劑及TKI之量分別在約10% (w/w)至約70% (w/w)及約10% (w/w)至約70% (w/w)的範圍內。
在一些實施例中,藥物組合中HDAC抑制劑之量在約20% (w/w)至約70% (w/w)、約30% (w/w)至約70% (w/w)、約40% (w/w)至約70% (w/w)、約20% (w/w)至約60% (w/w)、約30% (w/w)至約60% (w/w)、約40% (w/w)至約60% (w/w)或約35% (w/w)至約60% (w/w)的範圍內。
在一些實施例中,藥物組合中TKI之量在約20%(w/w)至約70%(w/w)、約30%(w/w)至約70%(w/w)、約40%(w/w)至約70%(w/w)、約20%(w/w)至約60% w/w)、約30%(w/w)至約60% w/w)、約40%(w/w)至約60%(w/w)或約35%(w/w)至約60%(w/w)的範圍內。
HDAC抑制劑具有顯著改良免疫調節活性之極有效的表觀遺傳調變特性。HDAC為催化自組蛋白上之離胺酸移除乙醯基的酶類別。此類去乙醯化使得組蛋白更緊密地包裹DNA。HDAC抑制控制引起基因表現調節之染色質重塑。HDAC已顯示為藉由介導之基因表現參與致癌轉化,該基因表現影響細胞週期進程、增殖及細胞凋亡。研究作為癌症以及寄生蟲、感染(諸如AIDS)及發炎疾病之可能治療標靶之HDAC。基於其輔助域與酵母組蛋白去乙醯酶之同源性,18種當前已知之人類組蛋白去乙醯酶歸類為四組(I至IV)。包括HDAC1、HDAC2、HDAC3及HDAC8之I類係關於酵母RPD3基因;IIA類包括HDAC4、HDAC5、HDAC7及HDAC9;包括HDAC6及HDAC10之IIB類係關於酵母Hda1基因;III類,亦稱為去乙醯化酶,係關於irS2基因且包括SIRT1-7;及僅含有HDAC11類之IV類具有I類及II類二者之特徵。
在本發明之一個實施例中,HDAC抑制劑為I類HDAC或II類HDAC之抑制劑。較佳地,HDAC抑制劑為I類HDAC之選擇性抑制劑。在一些實施例中,HDAC抑制劑為苯甲醯胺類之組蛋白去乙醯酶(HDAC)抑制劑。在一些實施例中,HDAC抑制劑包括(但不限於)西達本胺、恩替諾特、伏立諾他、羅米地辛、帕比司他、貝利司他、丙戊酸、莫塞替諾特、艾貝司他、普雷司他、瑞米司他、吉維司他、奎諾司他、度馬諾司他、奎斯司他、CUDC-101、CUDC-907、普雷司他、西他司他、卓西司他、艾貝司他、瑞考司他、泰克地那林、非美諾司他、突巴辛、瑞米司他、ACY-738、替諾斯汀、土巴他汀A、吉維司他及達諾司他。在一些實施例中,HDAC抑制劑為西達本胺、恩替諾特、伏立諾他或莫塞替諾特。
酪胺酸激酶(TK)為催化將磷酸酯基團自ATP轉移至酪胺酸殘基之酶。其充當細胞功能中之開關,諸如觸發細胞存活、分化、增殖之信號轉導。TK屬於一類含有受體酪胺酸激酶(RTK)及非受體酪胺酸激酶之酶。RTK為細胞過程之關鍵調節劑,且鑑別為與若干病理生理疾病有關。迄今為止,已鑑別出二十種RTK之子家族,諸如人類中之EGFR (表皮生長因子受體)、FGFR (纖維母細胞生長因子受體)、VEGFR (血管內皮生長因子受體)、RETR (RET受體)、EPHR (Eph受體)及DDR (盤盤狀蛋白域受體)。RTK分子含有兩個區,包括具有單個跨膜螺旋之細胞外配位體結合區,及含有具有額外羧基-(C-)末端之蛋白酪胺酸激酶域以及近膜調節區之細胞質區。較佳地,根據本發明之TKI為血管內皮生長因子受體(VEGFR)抑制劑,包括VEGFR1、VEGFR2及VEGFR3以抑制血管生成。更佳地,TKI為卡博替尼、瑞戈非尼、阿西替尼、阿法替尼、尼達尼布、克唑替尼、阿來替尼、曲美替尼、達拉非尼、舒尼替尼、魯索替尼、維羅非尼、索拉非尼、普納替尼、康奈非尼、布加替尼、帕唑帕尼、達沙替尼、伊馬替尼、樂伐替尼、凡德他尼、索凡替尼或司曲替尼。
儘管不意欲受任何理論限制,但咸信多靶向激酶抑制劑擁有極有效的調變TME及提高免疫反應之能力,尤其與免疫檢查點抑制劑(諸如抗PD-1或抗PD-L1抗體)組合。其達成比PD-1/PD-L1阻斷單藥療法更佳的治療功效結果。
在一個實施例中,免疫檢查點抑制劑可與本文所描述之藥物組合組合使用以刺激抗癌細胞免疫反應且治療癌症。適用於本發明之免疫檢查點抑制劑包含抑制性受體之拮抗劑,其抑制PD-1、CTLA-4、T細胞免疫球蛋白3、B及T淋巴球衰減因子、T細胞活化或淋巴球活化基因3路徑之V域Ig抑制因子,諸如抗PD-1抗體或試劑、抗PD-L1抗體或試劑、抗CTLA-4抗體或試劑、抗TIM-3 (T細胞免疫球蛋白-3)抗體或試劑、抗BTLA (B及T淋巴球衰減因子)抗體或試劑、抗VISTA(T細胞活化之V域Ig抑制因子)抗體或試劑、抗LAG-3 (淋巴球活化基因3)抗體或試劑、KIR (殺傷細胞免疫球蛋白樣受體)抗體或試劑、TIM-3 (T細胞免疫球蛋白域及黏蛋白域3)抗體或試劑、A2AR(腺苷A2A受體)抑制劑、CD276抗體或試劑及VCTN1抗體或試劑。PD-1或PD-L1抑制劑之實例包括但不限於阻斷人類PD-1之人類化抗體,諸如派姆單抗(抗PD-1 Ab,商品名Keytruda ®)或皮立珠單抗(抗PD-1 Ab)、Bavencio ®(抗PD-L1 Ab,阿維魯單抗)、Imfinzi ®(抗PD-L1 Ab,德瓦魯單抗)及Tecentriq ®(抗PD-L1 Ab,阿特珠單抗)以及全人類抗體,諸如納武單抗(抗PD-1 Ab,商品名Opdivo ®)及西米普利單抗-rwlc (cemiplimab-rwlc) (抗PD-1 Ab,商品名Libtayo ®)。其他PD-1抑制劑可包括表現可溶性PD-1配位體,包括阻斷人類PD1/PD-L1,諸如BMS-1166之小分子藥物,但不限於PD-L2 Fc融合蛋白,亦稱為B7-DC-Ig或AMP-244及目前在研究及/或開發中用於療法之其他PD-1抑制劑。另外,免疫檢查點抑制劑可包括(但不限於)阻斷PD-L1之人類化或全人類抗體(諸如德瓦魯單抗及MIH1)及當前所研究之其他PD-L1抑制劑。在一些實施例中,免疫檢查點抑制劑之量在約0.5% (w/w)至約15% (w/w)、0.5% (w/w)至約10% (w/w)、0.5% (w/w)至約5% (w/w)、1.0% (w/w)至約20% (w/w)、1.0% (w/w)至約15% (w/w)、1.0% (w/w)至約10% (w/w)或1.0% (w/w)至約5% (w/w)的範圍內。
在一個實施例中,HDAC抑制劑及TKI與免疫檢查點抑制劑同時或以任一順序或交替而依序投與。在本發明之一些實施例中,HDAC抑制劑、TKI及免疫檢查點抑制劑同時投與。
在另一實施例中,該方法進一步包含投與一或多種額外抗癌劑。額外抗癌劑為本文所描述或此項技術中已知之任何抗癌劑。在一個實施例中,額外抗癌劑為化學療法或基於鉑之雙重化學療法。在一個實施例中,額外抗癌劑為抗VEGF抗體或VEGFR小分子抑制劑。在其他實施例中,抗癌劑為鉑劑(例如順鉑(cisplatin)、卡鉑(carboplatin))、有絲分裂抑制劑(例如紫杉醇(paclitaxel)、白蛋白結合之紫杉醇、多烯紫杉醇(docetaxel)、克癌易(taxotere)、docecad)、氟化長春花生物鹼(例如長春氟寧(vinflunine)、javlor)、長春瑞賓(vinorelbine)、長春花鹼(vinblastine)、依託泊苷(etoposide)或培美曲塞吉西他濱(pemetrexed gemcitabin)。在一個實施例中,額外抗癌劑為5-氟尿嘧啶(5-FU)。在某些實施例中,額外抗癌劑為此項技術中已知之任何其他抗癌劑。
本發明之藥物組合可用「載劑」調配。如本文所使用,「載劑」包括任何溶劑、分散介質、媒劑、包衣、稀釋劑、抗細菌劑及/或抗真菌劑、等張劑、吸收延遲劑、緩衝劑、載體溶液、懸浮液、膠體及其類似物。此項技術已熟知用於藥物活性物質之該介質及/或該等試劑的用途。舉例而言,藥物組合可專門調配成以固體或液體形式投與,包括適於以下之形式:(1)經口投與,例如灌藥(水性或非水性溶液或懸浮液)、口含錠、糖衣藥丸、膠囊、丸劑、錠劑(例如靶向經頰、舌下及全身性吸收之錠劑)、大丸劑、散劑、顆粒劑、施用於舌頭之糊劑;(2)非經腸投與,例如藉由以例如無菌溶液或懸浮液或持續釋放調配物形式皮下、肌肉內、靜脈內或硬膜外注射;(3)局部施用,例如以乳膏、洗劑、凝膠、軟膏或控制釋放貼片或噴霧劑形式施用於皮膚;(4)陰道內或直腸內,例如以子宮托、乳膏、栓劑或泡沫形式;(5)舌下;(6)經眼;(7)經皮;(8)經黏膜;或(9)經鼻。
在另一態樣中,本發明提供一種治療個體之癌症的方法,該方法包含向該個體投與本發明之藥物組合。
在一些實施例中,癌症包括(但不限於)黑色素瘤、頭頸癌、梅克爾細胞癌、肝細胞癌、腎細胞癌、大腸直腸癌、子宮內膜癌、子宮頸癌、食道鱗狀細胞癌、小細胞肺癌、非小細胞肺癌、乳癌、胃癌、食管胃交界部癌、典型霍奇金氏淋巴瘤、非霍奇金氏淋巴瘤、尿道上皮癌、原發性縱隔大B細胞淋巴瘤、神經膠母細胞瘤、胰臟癌、良性前列腺增生、前列腺癌、卵巢癌、慢性淋巴細胞性白血病、梅克爾細胞癌、急性骨髓性白血病、膽囊癌、膽管癌、膀胱癌或子宮癌。
在一些實施例中,本發明之藥物組合可以單一調配物或藥劑形式提供。在其他實施例中,本發明之藥物組合可以分離調配物或藥劑形式提供。藥物組合可以適於一或多種較佳投與途徑之多種形式及/或複數種形式調配。因此,藥物組合可以經由一或多種已知途徑投與,包括例如經口、非經腸(例如經皮內、經皮、經皮下、經肌內、經靜脈內、經腹膜內等)或局部(例如經鼻內、經肺內、經乳房內、經陰道內、經子宮內、經皮內、經皮、經直腸等)。藥物組合或其一部分可以投與至黏膜表面,諸如藉由投與至例如鼻黏膜或呼吸道黏膜(例如藉由噴霧劑或氣霧劑)。藥物組合或其一部分亦可以經由持續或延遲釋放投與。
調配物可宜以單位劑型呈現且可藉由藥劑學技術中熟知之任何方法來製備。製備與藥學上可接受之載劑之組合的方法包括使本發明之藥物組合與構成一或多種附屬成分之載劑結合的步驟。一般而言,調配物可藉由使活性化合物與液體載劑、細粉狀固體載劑或兩者均勻及/或緊密地結合,且隨後必要時使產物成形為所需調配物來製備。
有效治療包括癌症之特定病症或病況之化合物之量將視病症或病況之性質而定,且可藉由標準臨床技術確定。另外,活體外分析可視情況用於幫助鑑別最佳劑量範圍。待用於調配物中之精確劑量亦將視投與途徑及疾病或病症之進展而定,且應根據醫師之判斷及各患者之情況來決定。對於組合或組合之各組分而言,較佳劑量將在0.01至1000 mg/kg體重、0.1 mg/kg至100 mg/kg、1 mg/kg至100 mg/kg、10 mg/kg至75 mg/kg、0.1至1 mg/kg等的範圍內。
藉由以下實例來說明本發明。應理解,將根據如本文所闡述之本發明之範疇及精神廣泛地解釋特定實例、材料、量以及程序。 實例 材料與方法
為了克服原發性及獲得性抗性及 HPD 至一線 PD - 1 檢查點阻斷療法。攜帶皮下CT26腫瘤之雄性Balb/c小鼠(1×10 6個細胞/小鼠)用抗PD-1抗體(購自InvivoMab,cat#BE00146)之一線療法治療(平均腫瘤體積:在治療開始時為113 mm 3),以2.5 mg/kg腹膜內(i.p.)投與,每3天一次持續3次給藥來治療。當腫瘤對用抗PD-1抗體治療(其中腫瘤顯著收縮)作出反應時,則連續給予治療持續3次給藥(亦即總計6次給藥)。若腫瘤在抗PD-1抗體治療開始時收縮(在3次給藥之後),則其由於連續抗PD-1抗體治療(亦即總6次給藥)而逐漸生長,此係由於部分有效地抑制腫瘤生長,且進一步尺寸變大以產生獲得性抗性。當腫瘤在抗PD-1抗體治療開始時(3次給藥之後)未反應且滿足腫瘤體積連續增加2.5至3次之標準時(且腫瘤體積<600 mm 3),其視為原發性抗性。然而,過度進展性疾病(HPD)定義為在一線抗PD-1抗體治療之3次給藥之後腫瘤生長大於600 mm 3。此等小鼠具有原發性抗性、獲得性抗性及HPD之小鼠隨後在二線療法中重新入選以用於功效研究,如 1 ( A )中所示。二線療法如下。作為對照之抗IgG抗體(購自InvivoMab,cat#BE0089,Bio X Cell)、抗PD-1抗體(購自InvivoMab,cat#BE0146,Bio X Cell)及抗CTLA-4抗體(購自InvivoMab,cat#BE0164,Bio X Cell)以2.5 mg/kg經腹膜內投與,每3天一次持續6次給藥。抗CTLA-4 Ab(2.5 mg/kg)+西達本胺-HCl (50 mg/kg)+塞內昔布(50 mg/kg)、抗CTLA-4 Ab(2.5 mg/kg)+瑞戈非尼(30 mg/kg)+西達本胺-k30 (50 mg/kg)及抗CTLA-4 Ab(2.5 mg/kg)+卡博替尼(30 mg/kg)+西達本胺-k30 (50 mg/kg)每天經口投與,持續16次。每2至3天量測腫瘤直徑,且使用卡尺計算腫瘤體積(以mm 3計)。自治療開始量測抗癌活性,直至腫瘤體積達到3,000 mm 3。腫瘤體積計算為長度×寬度 2×0.5。
動物模型中之抗大腸直腸癌活性。動物研究由臺北醫科大學機構動物護理及使用委員會(Taipei Medical University Institutional Animal Care and Use Committee) (TMU IACUC,編號:LAC-2020-0103、LAC-2019-0644)批准及監督。對於所有動物實驗,使用六至八週齡雄性BALB/c小鼠(臺灣國家實驗動物中心(National Laboratory Animal Center, Taiwan))。CT26細胞系購自ATCC。CT26腫瘤細胞系在37℃、5% CO 2下在補充有10% (v/v) FBS之RPMI-1640中生長。藉由將1×10 6個CT26細胞與基質膠(354248,Corning®)一起皮下注射至小鼠左側腹中來建立腫瘤,且藉由量測兩個垂直直徑來確定生長。在隨機分組及治療之前,使腫瘤生長8至12天(腫瘤尺寸約110至250 mm 3)。當腫瘤體積達到3000 mm 3以上時,對動物實施安樂死。抗IgG抗體(BE0089,Lot #716719J3,Bio X Cell)、抗PD-1抗體(BE0146、Lot #717918D1、Lot #735019J3、Lot #780120J3、Lot #735019O1,Bio X Cell)、抗PD-L1抗體(BE0101,Lot #720619F1,Bio X Cell)及抗CTLA-4抗體(BE0164,Lot #702418A2B,Bio X Cell)以2.5 mg/kg腹膜內投與,一週兩次持續三週。在100 μL之無菌PBS (pH 7.4,Invitrogen Life Technologies)中將所有抗體稀釋至適當濃度。給予阿西替尼(HY-10065,30 mg/kg,每天經口,美國MedChemExpress)、樂伐替尼(HY-10981,10 mg/kg,每天經口,美國MedChemExpress)、奧拉帕尼(HY-10162,50 mg/kg,每天經口,美國MedChemExpress)、依魯替尼(HY-10997,6 mg/kg,每天經口,美國MedChemExpress)、卡博替尼(HY-13016,30 mg/kg,每天經口,美國MedChemExpress)、瑞戈非尼(HY-1031,30 mg/kg,每天經口,美國MedChemExpress)、RMC-4550 (HY-116009,30 mg/kg,每天經口,美國MedChemExpress)、司曲替尼(HY-16961,20 mg/kg,每天經口,美國MedChemExpress)、恩替諾特(HY-12163,20 mg/kg,經口q2d,美國MedChemExpress)、伏立諾他(HY-10221,150 mg/kg,每天經口,美國MedChemExpress)、西達本胺-k30或西達本胺-HCl鹽(50 mg/kg,每天經口,產自臺灣臺北GNTbm)、塞內昔布(50 mg/kg,每天經口,膠囊/Celebrex ®,Pfizer Pharmaceuticals LLC)持續16天。將阿西替尼、樂伐替尼、奧拉帕尼、依魯替尼、卡博替尼、瑞戈非尼、恩替諾特、伏立諾他、RMC-4550、司曲替尼及塞內昔布溶解於DMSO中且在投與之前稀釋於PBS中。將西達本胺-k30及西達本胺-HCl鹽溶解於水中。當腫瘤體積達到3000 mm 3以上時,對動物實施安樂死。自治療開始量測抗癌活性,直至腫瘤體積達到3,000 mm 3。腫瘤體積計算為長度×寬度 2×0.5。在此研究中,吾等定義完全反應(CR,在治療結束後三天,攜帶腫瘤之小鼠中腫瘤生長<0.5倍);部分反應(PR,在治療結束後三天,攜帶腫瘤之小鼠中腫瘤尺寸≥0.5倍腫瘤生長,但<1倍腫瘤生長);穩定疾病(SD,在治療結束後三天,攜帶腫瘤之小鼠中腫瘤尺寸≥1倍腫瘤生長,但<5倍腫瘤生長);進展性疾病(PD,在治療結束後三天,攜帶腫瘤之小鼠中腫瘤尺寸≥5倍腫瘤生長)來評估治療功效。復發定義為在第一次腫瘤評估後,具有CR或PR反應之小鼠的腫瘤生長至少5倍時。
為了說明本發明之組合可克服用抗PD-1 Ab治療之後的抗藥性問題,首先用抗PD-1 Ab治療所有小鼠。
動物模型中之腫瘤再攻擊。治療後具有PR/CR反應之所有小鼠均在對側用CT26細胞再攻擊(請參見 6 ( F ))。在初次腫瘤評估(第27±2天)之後的第34±2天進行用CT26之再攻擊,其為7天(第41±2天),其中注射5×10 6個CT26細胞/小鼠。在用CT26細胞再攻擊之後,使腫瘤再生長7天(第41±2天)以測定基線為1倍。再過10天(第51±2天)之後,針對再攻擊評估腫瘤生長。若滿足以下準則中之兩者,則將反應視為再攻擊誘導之復發(recurrence/relapse):首先,當相較於第41±2天之基線,腫瘤尺寸超過2倍;其次,第51±2天之腫瘤體積超過300 mm 3。復發發生在免疫性未充分活化時。若抑制腫瘤生長,則意謂免疫性經活化。
動物模型中之存活率。腫瘤評估之後,每三天或四天量測一次小鼠之腫瘤體積(每週兩次)。當腫瘤體積達到3,000 mm 3時,攜帶腫瘤之小鼠經視為死亡。對所有治療組進行記錄及分析。
流式細胞量測術 以下抗體及試劑用於流式細胞量測術:CD8a PerCP-Cy5.5 (53-6.7;BioLegend)、CD4 PE (GK 1.5;BioLegend)、CD25 PerCP-Cy5.5 (PC61;BioLegend)、Foxp3 PE (MF14;BioLegend)、CD3 APC (17A2;BioLegend)、CD11b APC (M1/70;BioLegend)、Ly-6C PerCP-Cy5.5 (HK 1.4;BioLegend)、Ly-6G PE (1A8;BioLegend)、MHC-ll-PE (BM8;BioLegend)、CD45 FITC (30-F11;BioLegend)。流式細胞量測術用測徑規(BD Biosciences)進行,且用FACS Diva軟體(BD Biosciences)分析資料。
為了評估腫瘤中腫瘤浸潤淋巴球之水準,進行進一步分析以分析瘤內CD8 +、CD4 +、調節T細胞(Treg)、PMN-MDSC、M-MDSC、TAM群。在開始卡博替尼或瑞戈非尼治療之後第12天自小鼠切除之腫瘤樣品首先純化腫瘤浸潤淋巴球,其中存在或不存在西達本胺-k30加抗PD-1 Ab。簡言之,收穫原發性腫瘤組織,稱重且切碎成細小碎片。將含1 mg/mL膠原蛋白酶IV (Sigma-Aldrich)之HBSS (Invitrogen Life Technologies)以每200 mg腫瘤組織1 mL之比率添加至各樣品中。樣品在37℃下在翻轉震盪器上培育150分鐘。所得組織勻漿經0.4 μm過濾且在PBS (BD Biosciences)中洗滌三次,經由Percoll梯度分離以分離單核細胞,且每個樣品1×10 6個細胞用於抗體標記。使用此前建立之CD45 +CD3 +CD8的表現型標準評估CD8 +T細胞;使用此前建立之CD45 +CD3 +CD25 +FoxP3 +的表現型標準評估Treg細胞水準;使用此前建立之CD45 +/CD11b +/Ly6G +/Ly6C -及CD45 +/CD11b +/Ly6G -/ Ly6C +的表現型標準分別評估PMN-MDSC及M-MDSC細胞水準;使用此前建立之CD45 +CD11b +CHM-ll +Ly6C +的表現型標準評估TAM細胞水準,且將總單核細胞用作公分母。
RNA 定量及定性。將在一線抗PD-1 Ab療法之後的抗藥性小鼠隨機分組且經不同方案治療,且切除腫瘤並在開始二線治療之後的第13天收集。將天然攜帶CT26腫瘤之小鼠隨機分組且用不同方案治療,且切除腫瘤且在開始治療之後的第9天收集。所有腫瘤樣品在液氮中速凍,且樣品接著在Trizol (Invitrogen Life Technologies)中均質化。使用SimpliNano™-Biochrom分光光度計(Biochrom,MA,USA)檢查RNA純度及定量。藉由Qsep 100 DNA/RNA分析器(BiOptic Inc.,臺灣)監測RNA降解及完整性。結果顯示於 1314中。
轉錄組測序之文庫製備。將每樣品1 μg總RNA之總量用作RNA樣品製備之輸入材料。使用KAPA mRNA高製備型試劑盒(瑞士巴塞爾羅氏之KAPA生物系統(KAPA Biosystems, Roche, Basel, Switzerland))遵循製造商之建議產生測序文庫,且添加索引代碼以將序列定性至每一樣本。PCR產物使用KAPA純珠粒系統純化,且在Qsep 100 DNA/RNA分析器(BiOptic Inc.,臺灣)上評估文庫品質。
生物資訊 藉由CASAVA鹼基識別將藉由高通量測序獲得之原始資料(Illumina NovaSeq 6000平台)轉型成原始測序讀數且儲存為FASTQ格式。使用FastQC及MultiQC檢查fastq檔案之品質。藉由Trimmomatic (v0.38)過濾所獲得之原始成對末端讀數以丟棄低品質讀數,修整接頭序列,且用以下參數消除劣質鹼基:LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:30。將所獲得之高品質資料(清晰讀數)用於後續分析。來自各樣品之讀段對藉由HISAT2軟體(v2.1.0)與參考基因體比對。使用FeatureCounts (v1.6.0)對定位至個別基因之讀段數目進行計數。對於基因表現,在無生物重複之情況下使用DEGseq (v1.36.1)進行「M值之切尾均值(Trimmed Mean)」(TMM)的歸一化且有生物重複之情況下使用DESeq2 (v1.22.1)進行「相對Log表現體」(RLE)的歸一化。在R中使用DEGseq(無生物重複)及DESeq2(有生物複製)進行兩種病況之分化表現基因(DEG)之分析,其分別基於負二項分佈及泊松分佈模型。使用本傑明(Benjamini)及Hochberg之方法調節所得p值,以控制FDR。使用clusterProfiler (v3.10.1)進行DEG之GO及KEGG路徑富集分析。以1,000個排列進行基因體富集分析(GSEA)以自分子標籤資料庫(MSigDB)鑑別富集之生物功能及活化路徑。MSigDB係與GSEA軟體一起使用之註釋基因體集合,該軟體包括標誌基因體、位置基因體、經驗證基因體、模體基因體、計算基因體、GO基因體、致癌基因體及免疫基因體。另外,使用R中之WGCNA (v1.64)藉由基於表現模式之相關係數之共表現網路封裝建構加權基因共表現網路分析(WGCNA)。
實例 1 為克服在攜帶 CT26 之小鼠中的藉由酪胺酸激酶抑制劑加 HDAC 抑制劑與抗 CTLA - 4 抗體之來自一線抗 PD - 1 Ab 治療之抗性
在此實例中,用二線療法治療小鼠以模擬在人類一線癌症療法中發生的一線抗藥性之治療,其中接受第一線抗PD-1抗體療法之大部分人類癌症患者將產生抗性,包括原發性及獲得性抗性或過度進展性疾病(HPD)-用於在一線抗PD-1抗體療法已失敗時評估使用酪胺酸激酶抑制劑加HDAC抑制劑與抗CTLA-4抗體之組合的二線療法的抗癌效力。為評估一線抗PD-1抗體抗藥性之不同治療之有效性,設計具有治療時程之平台,如 1 ( A )中所概述。如圖1中所示,首先,110隻小鼠用作為一線治療之抗PD-1抗體治療,且10隻小鼠用作為陰性對照之抗IgG抗體治療。110隻小鼠中之18隻藉由一線抗PD-1抗體治療實現反應,其中獲得16.4% (18/110)之客觀反應率(ORR)。如 1 ( B )( C )中所示,與攜帶CT26腫瘤之小鼠模型中之抗IgG Ab組相比,顯著抑制對一線抗PD-1 Ab治療起反應之小鼠的腫瘤體積。110隻小鼠中之八十五隻顯示對一線抗PD-1抗體治療之原發性抗性,其中發生率為77.3% (85/110)。此外,用一線抗PD-1抗體治療之獲得性抗性逐漸發展且最終以28% (7/25)之發生率復發,如 1中所示。此等結果表明對用一線抗PD-1抗體治療之原發性抗性為癌症免疫療法之極具挑戰性的問題。吾人對TKI加HDAC抑制劑是否可經由調節TME來改良ICI敏感性有興趣。對於研究,在用抗PD-1抗體(2.5 mg/kg;Lot#735019O1)經腹膜內投與持續三次給藥(每3天一次給藥)之一線治療之前,使腫瘤生長8天(腫瘤尺寸平均為約113 mm 3)。在對一線抗PD-1抗體治療起反應之小鼠中,腫瘤受到抑制或維持,亦即,腫瘤繼續縮小且達成CR或PR反應,其中ORR為16.4%。然而,當腫瘤符合治療失敗準則時:(1)在三次給藥之一線抗PD-1抗體治療之後,在第16天腫瘤體積連續增加2.5至3倍(腫瘤尺寸平均為396.8 mm 3),及(2)腫瘤體積為<600 mm 3,將小鼠定義為產生原發性抗性且再入選二線治療。將對抗PD-1 Ab療法具有原發性抗性之此等小鼠進一步隨機分組。關於HPD小鼠(發病率約10%,11/110),定義為具有過度進展性疾病,其中腫瘤體積>600 mm 3,平均腫瘤體積為754.7 mm 3,如 1 ( A )中所示。如所指示存在九個不同治療組(n=9至10隻小鼠/組)。將具有原發性抗性之小鼠隨機分為五個不同二線治療組,包括抗IgG Ab(2.5 mg/kg;Lot #716719J3)、抗CTLA-4 Ab (2.5 mg/kg;Lot #702418A2B)、作為陽性對照之抗CTLA-4 Ab與西達本胺-HCl鹽(50 mg/kg)加塞內昔布之組合、抗CTLA-4 Ab與瑞戈非尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合及抗CTLA-4 Ab與卡博替尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組。抗CTLA-4抗體經腹膜內(i.p.)投與持續六次給藥(每3天一次給藥)。西達本胺-k30、西達本胺-HCl鹽、瑞戈非尼及卡博替尼係藉由經口投予每天一次持續16天來給予。如 2 ( A ) 2 ( B )所示,抗CTLA-4 Ab與瑞戈非尼加西達本胺-k30之組合,及抗CTLA-4 Ab與卡博替尼加西達本胺-k30之組合組的兩個組比抗CTLA-4 Ab與西達本胺-HCl鹽加塞內昔布組及僅抗CTLA-4 Ab組之陽性對照更強效抑制腫瘤生長。此等結果表明抗CTLA-4 Ab與瑞戈非尼或卡博替尼加西達本胺-k30之組合具有TME活性之極有效調節以克服對抗PD-1 Ab之一線治療的原發性抗性。此結果亦表明抗CTLA-4 Ab與西達本胺-k30加瑞戈非尼或卡博替尼之組合方案比抗CTLA-4 Ab與西達本胺-HCl鹽加塞內昔布之組合方案更有力地克服原發性抗性。如 2 ( C )中所示,各治療組中之小鼠的體重未顯著減輕。如 3 ( A ) 3 ( C )中所示,用抗CTLA-4 Ab(2.5 mg/kg)與卡博替尼(30 mg/kg)加西達本胺-HCl鹽(50 mg/kg)之組合治療HPD小鼠16天,且大型腫瘤意外地展示生長抑制且藉由在此治療方案下連續縮小來控制一些腫瘤。結果表明抗CTLA-4 Ab與西達本胺-HCl鹽加卡博替尼之組合為恢復HPD之極有效的方案。吾人之先前研究已證明與西達本胺-k30相比,西達本胺-HCl鹽更有效地調變TME。此結果亦表明,相較於原發性抗性小鼠,HPD小鼠中之更快腫瘤生長需要用抗CTLA-4 Ab與卡博替尼加西達本胺-HCl鹽之組合治療以經由TME中之免疫調節顯著抑制腫瘤生長,從而提高免疫反應。各抗藥小鼠之個別結果亦示於 4中。在抗IgG Ab組中,5隻小鼠實現具有快速腫瘤生長之PD。用抗CTLA-4 Ab之治療實現5隻SD小鼠及2隻PD小鼠(相較於抗IgG Ab)。用抗CTLA-4 Ab與西達本胺-HCl鹽加塞內昔布之組合作為陽性對照之治療顯示3個小鼠達成CR且4個小鼠達成SD,且1個小鼠達成PD (反應率37.5%)。然而,用抗CTLA-4 Ab與瑞戈非尼加西達本胺-k30之組合治療顯示5隻小鼠達成CR,1隻小鼠達成PR,且僅2隻小鼠達成SD (反應率62.5%)。當為抗CTLA-4 Ab與卡博替尼加西達本胺-k30之組合時,結果表明3隻小鼠達成CR,1隻小鼠達成PR,且3隻小鼠達成SD (反應率57.1%)。然而,用抗CTLA-4 Ab與卡博替尼加西達本胺-HCl鹽之組合治療HPD小鼠顯示2隻小鼠達成CR且9隻小鼠達成SD (反應率18.1%)。儘管HPD小鼠之免疫反應率非常高,但在用此二線方案治療之後大多數腫瘤被抑制生長。此結果為令人感興趣的,因為HPD腫瘤極難以有效減少及抑制。關於獲得性抗性之發生率,觀測到初始一線抗PD-1 Ab治療對攜帶CT26之小鼠具有有效反應,但在用抗PD-1 Ab連續治療之後,其並未有效地抑制腫瘤生長。此現象定義為對抗PD-1 Ab治療之獲得性抗性。吾人關注評估抗PTLA-4 Ab與瑞戈非尼加西達本胺-k30之組合在對抗PD-1 Ab具有獲得性抗性之小鼠中的治療作用,如 5中所示。使用方案抗CTLA-4 Ab與瑞戈非尼加西達本胺-k30之組合的治療有效地抑制對抗PD-1 Ab具有原發性抗性之小鼠中的腫瘤生長(如 5 ( A ) 2 ( A )中所示),然而,相同方案表明對抗PD-1 Ab治療具有獲得性抗性之小鼠中腫瘤生長顯著抑制,如 5 ( B )中所示,其顯示1個小鼠達成CR且6個小鼠達成SD (反應率14.1%),如 5 ( C )中所示。此外,吾人對評估具有原發性、獲得性抗性或HPD對抗PD-1 Ab治療之小鼠的存活率有興趣。如 5 ( D )中所示,對於具有原發性抗性之小鼠,抗CTLA-4 Ab(2.5 mg/kg)與瑞戈非尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合達成87.5%之總存活率;抗CTLA-4 Ab(2.5 mg/kg)與卡博替尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組達成71.4%之總存活率;作為陽性對照之抗CTLA-4 Ab (2.5 mg/kg)與西達本胺-HCl鹽(50 mg/kg)加塞內昔布(50 mg/kg)之組合組達成37.5%之總存活率。此結果表明與陽性對照組相比,此兩組在延長存活率方面極有力。關於HPD小鼠,用抗CTLA-4 Ab (2.5 mg/kg)與卡博替尼(30 mg/kg)加西達本胺-HCl鹽(50 mg/kg)之組合治療達成45.4%之極好總存活率。此結果值得注意,因為HPD小鼠僅達成18.1%之ORR,但由於顯著抑制腫瘤生長而達成45.4%之總存活率。結果引起方案可能已具有TME之強調變能力,從而導致連續腫瘤抑制,其將甚至在治療結束之後一個月維持。在抗CTLA-4 Ab與瑞戈非尼/卡博替尼加西達本胺-k30之組合的方案之治療組中亦出現類似結果,其中總存活率更佳於ORR。如 5 ( E )中所示,具有獲得性抗性之小鼠在用抗CTLA-4 Ab (2.5 mg/kg)與瑞戈非尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合治療之後達成57.1%之總存活率。此類似於HPD小鼠之存活率。此等結果充分表明,抗CTLA-4 Ab與瑞戈非尼/托紮替尼加西達本胺-HCl鹽/西達本胺-k30之組合具有極有效活性以調變TME且顯著提高免疫反應以克服對一線抗PD-1 Ab治療之抗性。如 2中所示,在最後一次藥物投與之後3天進行初始ORR評估,然而由於觀測到連續腫瘤縮小,在最後一次藥物投與之後10天額外安排第二次ORR評估。在對一線抗PD-1 Ab療法具有原發性抗性之小鼠中,用抗CTLA-4 Ab與瑞戈非尼加西達本胺-k30之組合組治療將ORR自62.5%顯著提高至87.5%,且在第二次評估中將CR自5隻顯著增加至7隻小鼠。類似現象亦顯示於抗CTLA-4 Ab與卡博替尼加西達本胺-k30之組合組中:其在對一線抗PD-1 Ab療法具有原發性抗性之小鼠中,在第二次評估中將ORR自57.1%顯著增加至100%且將CR/PR自4隻顯著提高至7隻小鼠。關於HPD小鼠,在第二次評估中用抗CTLA-4 Ab與卡博替尼加西達本胺-HCl鹽之組合之治療使ORR自18.1%顯著增加至45.4%。最後,針對對一線抗PD-1 Ab療法具有獲得性抗性之小鼠,用抗CTLA-4 Ab與瑞戈非尼加西達本胺-k30之組合治療亦表明在第二次評估中增加之抗癌活性,ORR為14.2%至28.5%。綜合而言,所有此等結果表明抗CTLA-4 Ab與瑞戈非尼/卡博替尼加西達本胺-HCl鹽/西達本胺-k30之組合之方案極有力地克服對一線抗PD-1 Ab治療之原發性、獲得性抗性及HPD。
1 .每3天一次用抗PD-1及抗IgG (作為陰性對照)抗體(2.5 mg/kg)之一線療法治療攜帶皮下CT26腫瘤之一百二十隻雄性Balb/c小鼠,持續3次給藥。
小鼠數量 對一線抗 PD - 1 抗體療法是否存在反應 對一線抗 PD - 1 抗體療法之抗藥性之類型
10 用抗IgG抗體治療 (作為陰性對照) N/A
18 反應 *
7 起初存在反應且隨後存在明顯腫瘤生長 獲得性抗性 **
85 原發性抗性 ***
* 反應率 ( CR % PR %) 18 / 110 16 . 4 % ** 獲得性抗性率 7 / 25 28 . 0 % *** 原發性電阻率 85 / 110 77 . 3 %
2 .在對一線抗PD-1 Ab治療具有原發性、獲得性抗性或HPD之攜帶CT26之小鼠中用不同二線方案治療之後的反應率。
抗性 方案 初始腫瘤體積 ( mm 3 ) ORR (%) PD SD PR CR ORR (%) & PD & SD & PR & CR & 存活率 (%) 復發 * 免疫性 #
  
對一線抗PD-1 Ab療法之原發性抗性 作為對照之抗IgG Ab 396    0% 4 1 0 0 0% 5 0 0 0 0% (0/5) - -
抗CTLA-4 Ab    0% 0 7 0 0 0% 2 5 0 0 0% (0/7) - -
抗CTLA-4 Ab +西達本胺-HCl鹽 +塞內昔布 37.5% 1 4 0 3 37.5% 2 3 0 3 37.5% (3/8) 0% (0/3) 100% (3/3)
抗CTLA-4 Ab+瑞戈非尼+西達本胺-k30 62.5% 0 2 1 5 87.5% 0 1 0 7 87.5% (7/8) 0% (0/6) 100% (6/6)
抗CTLA-4 Ab+卡博替尼+西達本胺-k30 57.1% 0 3 1 3 100% 0 0 3 4 71.4% (5/7) 0% (0/4) 100% (4/4)
對一線抗PD-1 Ab療法之過度進展性疾病(HPD) 抗CTLA-4 Ab+卡博替尼+西達本胺-HCl鹽 669 18.1% 0 9 0 2 45.4% 3 3 3 2 45.4% (5/11) 0% (0/2) 100% (2/2)
對一線抗PD-1 Ab療法之獲得性抗性 抗CTLA-4 Ab+瑞戈非尼+西達本胺-k30 477 14.2% 0 6 0 1 28.5% 0 5 1 1 57.1% (4/7) 0% (0/1) -
*:復發(relapse/recurrence)定義為在第一次腫瘤評估後,具有CR或PR反應之小鼠的腫瘤生長至少5倍時。&:在二線治療的最後一次投與之後10天的第二次腫瘤評估 #:對CT26再攻擊具有抗性之小鼠。 -:未測試 反應評估準則:相較於基線之腫瘤尺寸之倍數變化 PD:x ≧5;SD:1 ≦ x < 5;PR:0.5 ≦ x < 1;CR:x < 0.5
實例 2 為了研究攜帶 CT26 之小鼠中 TKI 與抗 PD - 1 Ab 之組合之抗癌作用。
若干報告指示,樂伐替尼具有可提高攜帶腫瘤之小鼠模型中之抗PD-1 Ab免疫反應率之強力免疫調變特性。吾人關注重新搜尋更有力方案以調變TME以提高免疫反應率。首先,吾人評估攜帶CT26之小鼠模型中之樂伐替尼及樂伐替尼與抗PD-1 Ab之組合。如 6 ( A )6 ( B )中所示,樂伐替尼(10 mg/kg)與或不與抗PD-1 Ab(2.5 mg/kg)之組合比單獨的抗PD-1 Ab (2.5 mg/kg)更顯著地抑制腫瘤生長。個體腫瘤評估顯示在抗PD-1 Ab組中1隻小鼠達成CR,1隻小鼠達成PR,4隻小鼠達成SD,且5隻小鼠達成PD (反應率18%)。樂伐替尼組顯示1隻小鼠達成CR,2隻小鼠達成PR,5隻小鼠達成SD,且2隻小鼠達成PD (反應率30%)。抗PD-1 Ab與樂伐替尼之組合組顯示2隻小鼠達成CR,7隻小鼠達成SD,且3隻小鼠達成PD (反應率17%)。儘管在抗PD-1 Ab與樂伐替尼之組合組中,免疫反應率似乎較低,但8隻小鼠顯示腫瘤生長之顯著抑制,如 6 ( B )中所示。相較於如 6 ( C )中所示之抗IgG或抗PD-1 Ab組,僅樂伐替尼及樂伐替尼與抗PD-1 Ab之組合治療組中之體重輕度地減少。此外,存活率如 6 ( D )中所示分析。在腫瘤植入後,當腫瘤體積達到3000 mm 3時,對攜帶CT26腫瘤之小鼠實施安樂死。與抗PD-1 Ab組相比較,抗PD-1 Ab與樂伐替尼之組合或僅樂伐替尼之方案在延長存活率方面更有力。如圖6(E)中所示,復發率顯示抗PD-1 Ab與樂伐替尼之組合具有比僅樂伐替尼或抗PD-1 Ab治療更多更強之能力以激活免疫系統以避免復發。接下來,吾人有興趣評估如 6 ( F )中所概述之再攻擊實驗中藉由不同治療刺激的免疫性。具有CR或PR之小鼠進入7天的沖洗階段(直至第34±2天),而無需任何進一步治療。隨後,藉由再將相同種類之癌細胞(CT26;5×10 6)接種於相對的側腹進行再攻擊額外7天(第41±2天),且隨後將腫瘤體積測定為基線(1倍)。使再攻擊腫瘤生長10天,且隨後評定以評估腫瘤生長(第51±2天)。當免疫滿足兩種條件時,其定義為陰性:腫瘤體積超過300 mm 3,或腫瘤尺寸相比於基線超過2倍。若免疫記憶在治療之後活化,則免疫為活性的且對具有相同抗原之癌細胞之識別具有特異性,且將抑制在再攻擊期間接種之腫瘤生長,因此免疫定義為陽性。若免疫記憶未被誘導或未完全活化,導致在再攻擊(腫瘤復發)期間接種之腫瘤生長,則免疫性將定義為陰性。如 6 ( G )中所示,在抗PD-1 Ab組中,達成PR及CR之2隻小鼠在再攻擊之後顯示0%腫瘤復發。結果表明,此等PR及CR小鼠達成100%總體免疫記憶。在樂伐替尼與抗PD-1 Ab之組合組中,達成CR之2隻小鼠在再攻擊之後顯示0%腫瘤復發。其亦表明患有CR或PR之此等小鼠中的100%總體免疫記憶。在僅樂伐替尼組中,達成CR/PR之3隻小鼠在再攻擊之後顯示33%腫瘤復發。其表明67%總體免疫記憶。再攻擊實驗用於確認該等方案是否刺激免疫系統直接或間接地活化免疫記憶的能力。
實例 3 為了研究攜帶 CT26 之小鼠中酪胺酸激酶抑制劑 ( TKI ) 與抗 PD - 1 Ab 之組合之抗癌作用。
吾人極有興趣評估在攜帶CT26之小鼠模型中與抗PD-1 Ab組合之多個TKI以提高免疫反應率。如 7 ( A )中所示,卡博替尼、依魯替尼、阿西替尼及奧拉帕尼,聚ADP-核糖聚合酶抑制劑(PARPi)與抗PD-1 Ab組合。相較於抗PD-1 Ab與依魯替尼、阿西替尼及奧拉帕尼組合之治療,卡博替尼與抗PD-1 Ab組合之方案明顯抑制腫瘤生長。如 7 ( B )中所示之個別腫瘤尺寸(倍數變化)及ORR指示抗PD-1抗體(2.5 mg/kg)組達成1 CR、1 SD及7 PD,其中ORR(客觀反應率)為11%;卡博替尼(30 mg/kg)與抗PD-1 Ab (2.5 mg/kg)之組合組達成1 CR、7 SD及1 PD,其中ORR為11%;阿西替尼(12.5 mg/kg)與抗PD-1 Ab (2.5 mg/kg)之組合組達成1 CR、2 SD及6 PD,其中ORR為11%;依魯替尼(6 mg/kg)與抗PD-1 Ab (2.5 mg/kg)之組合組達成1 CR、1 SD及7 PD,其中ORR為11%;奧拉帕尼(50 mg/kg)與抗PD-1 Ab (2.5 mg/kg)之組合組達成1 SD及8 PD,其中ORR為0%。在此研究中,卡博替尼(30 mg/kg)與抗PD-1 Ab(2.5 mg/kg)之組合達成相對於TME對照之最佳抗腫瘤作用。接下來,吾人感興趣的是評估抗PD-1 Ab與卡博替尼加COX-2抑制劑或HDAC抑制劑之組合是否可提高免疫反應率。提出添加抑制PGE2合成之COX-2抑制劑或HDAC抑制劑至與卡博替尼抗PD-1 Ab組合之方案的可能性可改良抗癌活性。如 8 ( A )中所示,抗PD-1抗體(2.5 mg/kg)與卡博替尼(30 mg/kg)加塞內昔布(50 mg/kg)或加西達本胺-k30 (50 mg/kg)組合之方案在與僅抗PD-1 Ab治療相比抑制腫瘤生長方面實現極佳作用。塞內昔布為選擇性COX-2抑制劑,且西達本胺為苯甲醯胺基HDAC抑制劑,選擇性地抑制HDAC1、HDAC2、HDAC3及HDAC10。如 8 ( B )中所示之個別腫瘤尺寸(倍數變化)及ORR指示抗PD-1抗體(2.5 mg/kg)組達成1 CR、1 PR、2 SD及4 PD,其中ORR為25%;抗PD-1 Ab (2.5 mg/kg)與卡博替尼(30 mg/kg)加塞內昔布(50 mg/kg)之組合組達成4 CR及3 SD,其中ORR為57%;抗PD-1 Ab (2.5 mg/kg)與卡博替尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組達成6 CR及1 PR,其中ORR為100%。此等資料表明,與抗PD-1 Ab(2.5 mg/kg)與卡博替尼(30 mg/kg)加塞內昔布(50 mg/kg)之組合組相比,抗PD-1 Ab (2.5 mg/kg)與卡博替尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組達成相對於TME對照之較佳ORR。此為第一次發現TKI加HDAC抑制劑與ICI之組合顯著提高免疫反應率,其可歸因於TME之調節。如 8 ( C )中所示,藉由不同方案治療,小鼠體重無顯著損失。在植入後,當腫瘤體積達到3000 mm 3時,對攜帶CT26腫瘤之小鼠實施安樂死。如 8 ( D )中所示,抗PD-1 Ab與卡博替尼加西達本胺-k30之組合方案與其他組相比在延長存活率方面極有力,在第60天達成100%存活率。此結果表明卡博替尼加西達本胺-k30可在TME中具有強力的免疫調節活性。隨後,如 8 ( E )中所示評估各組中之復發率。結果表明抗PD-1 Ab、抗PD-1 Ab與卡博替尼加西達本胺-k30或塞內昔布之組合組無復發。在再攻擊實驗中,如 6 ( F )中所概述,研究藉由用抗PD-1 Ab、抗PD-1 Ab與卡博替尼加西達本胺-k30或塞內昔布之組合組治療而活化之免疫性。如 8 ( F )中所示,在再攻擊之後無腫瘤生長發生。結果表明此等PR及CR小鼠達成100%總體免疫記憶以識別在再攻擊期間接種之CT26細胞。此顯示抗PD-1 Ab與卡博替尼加西達本胺-k30或塞內昔布之組合之方案極有效地活化免疫記憶活性以避免復發發生。
實例 4 為了研究攜帶 CT26 之小鼠中酪胺酸激酶抑制劑 ( TKI ) 與西達本胺 - k30 之組合之抗癌作用。
接著,吾人有興趣研究在攜帶CT26腫瘤之小鼠模型中,TKI加西達本胺之方案是否具有TME之強力調節及免疫反應之顯著提高。如 9 ( A )中所示,將若干TKI與西達本胺-k30組合以測試其抑制腫瘤生長之能力。西達本胺-k30與樂伐替尼或阿西替尼組合之方案比僅樂伐替尼、阿西替尼及西達本胺-k30治療更有效地抑制腫瘤生長。如 9 ( B )中所示之個別腫瘤尺寸(倍數變化)及ORR指示西達本胺-k30 (50 mg/kg)組達成2 CR、4 SD及2 PD,其中ORR為25%;樂伐替尼(10 mg/kg)組達成1 PR、5 SD及2 PD,其中ORR為12.5%;阿西替尼(30 mg/kg)組達成3 CR、1 SD及4 PD,其中ORR為37.5%;樂伐替尼(10 mg/kg)與西達本胺-k30(50 mg/kg)之組合組達成3 CR、3 SD及2 PD,其中ORR為37.5%;阿西替尼(30 mg/kg)與西達本胺-k30 (50 mg/kg)之組合組達成4 CR、3 SD及1 PD,其中ORR為50%。似乎西達本胺-k30與樂伐替尼或阿西替尼之組合對TME之調節具有累加作用,TME之調節表明於攜帶CT26腫瘤之小鼠之免疫反應率中。如 9 ( C )中所示,在不同治療中,小鼠體重無顯著損失。在植入後,當腫瘤體積達到3000 mm 3時,對攜帶CT26腫瘤之小鼠實施安樂死。如 9 ( D )中所示,西達本胺-k30與阿西替尼或樂伐替尼之組合與與僅樂伐替尼或西達本胺-k30治療相比,顯示存活率提高。亦如 9 ( E )中所示評估復發率。結果表明TKI與西達本胺-k30之組合可具有更強力活性以活化免疫系統來避免復發。為進一步證明理論,吾人已研究在攜帶CT26腫瘤之小鼠模型中與西達本胺-k30組合之其他TKI。瑞戈非尼及卡博替尼為兩種所測試之強效經口多激酶抑制劑。卡博替尼為一種用於抑制c-MET、VEGFR1、VEGFR2、VEGFR3、AXL及RET之強效多酪胺酸激酶抑制劑。瑞戈非尼為用於抑制VEGFR1、VEGFR2、VEGFR3、TIE-2、RET、KIT及PDGFR之經口多激酶抑制劑。如 9 ( F )中所示,西達本胺-k30與瑞戈非尼或卡博替尼之組合與僅西達本胺-k30、瑞戈非尼及卡博替尼治療相比,極有效地抑制腫瘤生長。如圖9(G)中所示之個別腫瘤尺寸(倍數變化)及ORR指示西達本胺-k30 (50 mg/kg)組達成2 CR、4 SD及2 PD,其中ORR為25%;瑞戈非尼(30 mg/kg)組達成2 PR、4 SD及2 PD,其中ORR為25%;卡博替尼(30 mg/kg)組達成3 CR、2 SD及2 PD,其中ORR為43%;瑞戈非尼(30 mg/kg)與西達本胺-k30(50 mg/kg)之組合組達成7 CR及1 SD,其中ORR為87.5%;卡博替尼(30 mg/kg)與西達本胺-k30 (50 mg/kg)之組合組達成5 CR、1 PR及2 SD,其中ORR為75%。似乎西達本胺-k30與瑞戈非尼之組合與西達本胺-k30與卡博替尼之組合相比,對攜帶CT26腫瘤小鼠中的TME之調節具有較有效之協同效應,且因此提高免疫反應率。綜合而言,此等資料表明西達本胺-k30與瑞戈非尼或卡博替尼之組合相對於西達本胺-k30與阿西替尼或樂伐替尼之組合治療,在攜帶CT26腫瘤之小鼠中在調節TME中更有效且顯著增強免疫反應率。如 9 ( H )中所示,小鼠體重未顯著變化。評估西達本胺-k30與瑞戈非尼或卡博替尼之組合組之存活率。如 9 ( I )中所示,西達本胺-k30與瑞戈非尼之組合相對於西達本胺-k30與卡博替尼之組合,在延長存活期方面極有效。資料揭露西達本胺-k30與瑞戈非尼或卡博替尼之組合的方案提高免疫反應率及存活率,而不與ICI組合。此提高西達本胺-k30與瑞戈非尼或卡博替尼之組合之方案具有足以活化CTL或NK細胞以殺死腫瘤細胞之獨特TME調節特性的可能性,而沒有與ICI之任何組合。為進一步證實此等兩種組合之抗癌效能,監測復發。如 9 ( J )中所示,基於在達成CR之7隻小鼠中未發生復發之觀測,西達本胺-k30與瑞戈非尼之組合在活化免疫系統/抗癌活性方面極有效;然而在西達本胺-k30與卡博替尼之組合組及單一療法組中,達成CR之一些小鼠具有復發。再攻擊實驗(如 6 ( F )中所示而概述)指示西達本胺-k30與卡博替尼之組合的方案與西達本胺-k30與瑞戈非尼之組合的方案相比,可更有效地誘導記憶T細胞之產生,如 9 ( K )中所示。基於復發及再攻擊實驗之結果,似乎極有可能在用西達本胺-k30與瑞戈非尼之組合治療之後達成CR之7隻小鼠由於完全腫瘤輻射而未復發,然而,之後一些小鼠(2/7)未成功地發展或僅部分活化免疫記憶,導致在再攻擊期間接種之腫瘤生長。
實例 5 為了研究攜帶 CT26 之小鼠中抗 PD - 1 Ab 與卡博替尼或瑞戈非尼加西達本胺 - k30 之組合之抗癌活性。
9中,吾人之結果表明西達本胺-k30與卡博替尼或瑞戈非尼之組合對腫瘤生長活性具有極有效抑制。接著,吾人感興趣的係研究在攜帶CT26腫瘤之小鼠模型中添加抗PD-1 Ab至與卡博替尼或瑞戈非尼加西達本胺-k30之組合的方案。如 10 ( A )中所示,抗PD-1 Ab與卡博替尼加西達本胺-k30之組合的方案與作為陽性對照之抗PD-1 Ab與卡博替尼之組合的方案或抗PD-1 Ab與西達本胺-k30加塞內昔布之組合的方案相比,在抑制腫瘤生長方面更有效(該陽性對照先前已顯示為用於免疫療法之治療之極具前景的組合)。此結果表明,卡博替尼可為比三重組合中之塞內昔布更有效的藥物。根據資料,表明卡博替尼可比塞內昔布更充分地控制TME。如圖10(B)中所示之個別腫瘤尺寸(倍數變化)及ORR指示抗PD-1 Ab (2.5 mg/kg)組達成1 CR、3 SD及5 PD,其中ORR為11%;抗PD-1 Ab (2.5 mg/kg)與西達本胺-k30 (50 mg/kg)加塞內昔布(50 mg/kg)之組合組(作為陽性對照)達成5 CR、1 SD及3 PD,其中ORR為56%;抗PD-1 Ab (2.5 mg/kg)與卡博替尼(30 mg/kg)之組合組達成3 CR、1 PR、3 SD及2 PD,其中ORR為44.0%;抗PD-1 Ab (2.5 mg/kg)與卡博替尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組達成5 CR及4 SD,其中ORR為56%。似乎兩組抗PD-1 Ab與卡博替尼加西達本胺-k30之組合組及陽性對照組達成56%之ORR。然而,似乎,相較於用抗PD-1 Ab與西達本胺-k30加塞內昔布之組合治療之小鼠的腫瘤,用抗PD-1 Ab與卡博替尼加西達本胺-k30之組合治療各小鼠之腫瘤更顯著地抑制生長(未抑制三個小鼠中之腫瘤,如 10 ( B )中所示)。如 10 ( C )中所示,用抗PD-1 Ab與卡博替尼加西達本胺-k30之組合治療最初引起重量下降,但最終小鼠體重在連續治療之後恢復。評估抗PD-1 Ab與卡博替尼加西達本胺-k30之組合組相較於抗PD-1 Ab與卡博替尼之組合組的存活率。如 10 ( D )中所示,抗PD-1 Ab與卡博替尼加西達本胺-k30之組合的方案比抗PD-1 Ab與卡博替尼之組合的方案在延長存活期方面更有效。在植入後,當腫瘤體積達到3000 mm 3時,對攜帶CT26腫瘤之小鼠實施安樂死。此結果亦表明西達本胺為改善抗PD-1 Ab與卡博替尼之組合的方案以顯著提高攜帶CT26腫瘤之小鼠中之ORR及存活率的極重要組分。亦基於如 10 ( E )中所示之復發率之評估,抗PD-1 Ab與卡博替尼加西達本胺-k30之組合的方案與抗PD-1 Ab與卡博替尼之組合的方案相比,在避免復發方面更有效。此結果亦表明抗PD-1 Ab與卡博替尼加西達本胺-k30之組合組完全活化免疫系統以監測癌細胞且避免復發。接下來,吾人感興趣的係評估抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合之三重組合方案。如 10 ( F )中所示,抗PD-1 Ab (2.5 mg/kg)與瑞戈非尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合的方案與抗PD-1 Ab (2.5 mg/kg)與瑞戈非尼(30 mg/kg)之組合的方案相比,在抑制腫瘤生長方面更有效。將抗PD-1 Ab (2.5 mg/kg)與西達本胺-k30 (50 mg/kg)加塞內昔布 (50 mg/kg)之組組合作為陽性對照。此結果亦表明西達本胺為改善抗PD-1 Ab與瑞戈非尼之組合的方案以顯著提高用於抑制腫瘤生長之免疫反應率的關鍵組分。如 10 ( G )中所示之個別腫瘤尺寸(倍數變化)及ORR指示抗PD-1 Ab (2.5 mg/kg)組達成1 CR、3 SD及5 PD,其中ORR為11%;抗PD-1 Ab (2.5 mg/kg)與西達本胺-k30 (50 mg/kg)加塞內昔布(50 mg/kg)之組合組(作為陽性對照)達成5 CR、1 SD及3 PD,其中ORR為56%;抗PD-1 Ab (2.5 mg/kg)與卡博替尼(30 mg/kg)之組合組達成5 SD及4 PD,其中ORR為0%;抗PD-1 Ab (2.5 mg/kg)與瑞戈非尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組達成3 CR及6 SD,其中ORR為33%。儘管抗PD-1 Ab (2.5 mg/kg)與瑞戈非尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組中之ORR比抗PD-1 Ab與西達本胺-k30加塞內昔布陽性對照之組合組的ORR低,但與其中三個小鼠中之腫瘤未經抑制之陽性對照組相比,各小鼠中之腫瘤生長受到顯著抑制,如 10(G)中所示。如圖10(H)中所示,抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合之治療最初引起重量減輕,但最終小鼠體重在連續治療之後恢復。評估抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合組相較於抗PD-1 Ab與瑞戈非尼之組合組的存活率。如 10 ( I )中所示,抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合的方案比抗PD-1 Ab與瑞戈非尼之組合的方案在延長存活期方面更有效。此結果再次證明西達本胺為對抗PD-1 Ab與瑞戈非尼之組合的方案有貢獻的極重要組分,以顯著提高攜帶CT26腫瘤之小鼠中之存活率。吾人驚訝的係抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合的方案的ORR僅為33%,但總存活率高達77%。顯然,方案對腫瘤免疫活性具有極強調變,且儘管停止給與藥物,但其繼續縮小腫瘤。可在對使用抗PD-1 Ab之一線療法具有抗藥性之小鼠中發現類似結果,該等小鼠隨後用抗PD-1 Ab與瑞戈非尼/卡博替尼加西達本胺-k30之組合的二線療法治療,如 4 5 ( D )中所示。如圖10 (J)中所示評估復發率。在抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合組中,小鼠均無一者經歷復發。進行再挑戰實驗且結果示於 10 ( K )中。抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合組與抗PD-1 Ab與卡博替尼加西達本胺-k30之組合組兩者具有極有效的免疫活化以防止藉由再攻擊過程接種之腫瘤生長。此外,吾人亦發現在用抗PD-1 Ab與卡博替尼之組合組治療之後,具有CR或PR之小鼠中之總體免疫率較低。基於免疫力活化之結果,提出抗PD-1 Ab與多激酶抑制劑(諸如瑞戈非尼或卡博替尼加西達本胺-k30)之組合的方案活化特異性免疫記憶,且因此進行強抗癌活性。控制TME以提高腫瘤免疫反應率及避免復發係有益的。西達本胺,次型選擇性HDAC1、HDAC2、HDAC3及HDAC10抑制劑及強效表觀遺傳免疫調節劑,已批准用於R/R PTCL (復發性/難治性外周T細胞淋巴瘤)及由中國NMPA進行之ER +/Her-2 -乳癌治療。
實例 6 為了研究在攜帶 CT26 之小鼠中 ICI 與酪胺酸激酶抑制劑 ( TKI ) 加組蛋白去乙醯酶抑制劑 ( HDACi ) 之組合的抗癌活性。
進一步在攜帶CT26腫瘤之小鼠中研究抗PD-1 Ab與TKI加HDAC之組合的效能及抗癌機制。如 11 ( A )中所示,吾等評估抗PD-1 Ab與瑞戈非尼加不同HDAC抑制劑(諸如西達本胺(抑制HDAC1、HDAC2、HDAC3及HDAC10)、伏立諾他(SAHA、泛HDAC抑制劑)及恩替諾特(抑制HDAC1、HDAC2及HDAC3)之組合。結果表明抗PD-1 Ab (2.5 mg/kg)與瑞戈非尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合與抗PD-1 Ab與伏立諾他或恩替諾特之組合相比,對腫瘤生長具有更強效抑制。如圖11(B)中所示之個別腫瘤尺寸(倍數變化)及ORR指示抗PD-1 Ab (2.5 mg/kg)組達成4 SD及6 PD,其中ORR(客觀反應率)為0%;抗PD-1 Ab (2.5 mg/kg)與瑞戈非尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組達成2 CR、1 PR及7 PD,其中ORR為30%;抗PD-1 Ab (2.5 mg/kg)與瑞戈非尼(30 mg/kg)加伏立諾他(150 mg/kg)之組合組達成3 CR、1 PR、2 SD及4 PD,其中ORR為40%;抗PD-1 Ab (2.5 mg/kg)與瑞戈非尼(30 mg/kg)加恩替諾特(20 mg/kg)之組合組達成3 CR、1 PR、1 SD及5 PD,其中ORR為40%。儘管抗PD-1 Ab (2.5 mg/kg)與瑞戈非尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組的ORR比抗PD-1 Ab與瑞戈羅非加伏立諾他(ORR為40%)或恩替諾特(ORR為40%)之組合組的ORR更低(ORR為30%),但與抗PD-1 Ab與瑞戈非尼加伏立諾他或恩替諾特之組合組(分別為4 PD及5 PD)相比,在抗PD-1 Ab (2.5 mg/kg)與瑞戈非尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組中在各小鼠中顯著抑制腫瘤生長(無一小鼠得到PD,如 11 ( B )中所示)。如 11 ( C )中所示,抗PD-1 Ab與瑞戈非尼加西達本胺-k30或恩替諾特之組合組最初降低了體重,但接著小鼠體重最終恢復。如 11 ( D )中所示,總存活率如下所示:抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合組>抗PD-1 Ab與瑞戈非尼加恩替諾特之組合組>抗PD-1 Ab與瑞戈非尼加伏立諾他之組合組>抗PD-1 Ab組。值得注意地,發現獲得ORR之小鼠均無復發( 11 ( D )之右側圖)。接下來,測試與卡博替尼之三重組合。如 11 ( E )中所示,卡博替尼(30 mg/kg)與西達本胺-k30 (50 mg/kg)之組合組作為對照(亦在圖9中研究)顯示比抗PD-1 Ab (2.5 mg/kg)與卡博替尼 (30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組更有效的腫瘤生長抑制。然而,抗PD-1 Ab(2.5 mg/kg)與卡博替尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)或恩替諾特(20 mg/kg)之組合的方案與抗PD-1 Ab (2.5 mg/kg)與卡博替尼(30 mg/kg)加伏立諾他(150 mg/kg)之組合的方案或僅抗PD-1 Ab (2.5 mg/kg)治療相比,在抑制腫瘤生長方面更有效。如 11 ( F )中所示之個別腫瘤尺寸(倍數變化)及ORR指示抗PD-1 Ab (2.5 mg/kg)組達成4 SD及6 PD,其中ORR(客觀反應率)為0%;抗PD-1 Ab (2.5 mg/kg)與卡博替尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組達成4 CR、5 SD及1 PD,其中ORR為40%;抗PD-1 Ab (2.5 mg/kg)與卡博替尼(30 mg/kg)加伏立諾他(150 mg/kg)之組合組達成1 CR、2 PR、4 SD及3 PD,其中ORR為30%;抗PD-1 Ab (2.5 mg/kg)與卡博替尼(30 mg/kg)加恩替諾特(20 mg/kg)之組合組達成3 CR、2 PR、3 SD及1 PD,其中ORR為56%。卡博替尼(30 mg/kg)與西達本胺-k30 (50 mg/kg)之組合組達成6 CR、3 SD及1 PD,其中ORR為60%,其與 9 ( G )相比顯示類似結果。儘管抗PD-1 Ab (2.5 mg/kg)與卡博替尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組的ORR比抗PD-1 Ab與卡博替尼加恩替諾特(ORR為56%)之組合組的ORR更低(ORR為40%),但與抗PD-1 Ab與卡博替尼加伏立諾他之組合組或僅抗PD-1 Ab治療(分別為3 PD及6 PD)相比,在抗PD-1 Ab (2.5 mg/kg)與卡博替尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)或恩替諾特(20 mg/kg)之組合組中在各小鼠中顯著抑制腫瘤生長(僅一隻小鼠得到PD,如 11 ( F )中所示)。如 11 ( G )中所示,僅卡博替尼與西達本胺-k30之組合組最初降低了體重,但最終小鼠體重恢復。如圖11(H)中所示,總存活率如下所示:抗PD-1 Ab與卡博替尼加西達本胺-k30之組合組>抗PD-1 Ab與卡博替尼加恩替諾特之組合組>抗PD-1 Ab與卡博替尼加伏立諾他之組合組>抗PD-1 Ab組。儘管具有較高ORR,卡博替尼(30 mg/kg)與西達本胺-k30 (50 mg/kg)之組合組與抗PD-1 Ab與卡博替尼加西達本胺-k30之組合組具有相同存活率。此結果再次表明儘管已停止給予藥物,抗PD-1 Ab與卡博替尼加西達本胺-k30之組合組具有極有效之免疫調節活性。在抗PD-1 Ab與卡博替尼加西達本胺-k30之組合組及卡博替尼(30 mg/kg)與西達本胺-k30(50 mg/kg)之組合組中無復發。接下來,吾人感興趣的係在攜帶CT26腫瘤之小鼠中評估腫瘤生長抑制與不同ICI組合之活性,諸如抗PD-1/抗PD-L1/抗CTLA-4 Ab與瑞戈非尼/卡博替尼加西達本胺-k30之組合的方案。如 11 ( I )中所示,抗PD-L1 Ab (2.5 mg/kg)與瑞戈非尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合的方案與抗CTLA-4 Ab (2.5 mg/kg)或抗-PD-1 Ab (2.5 mg/kg)與瑞戈非尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合的方案相比,在抑制腫瘤生長方面更有效。如 11 ( J )中所示之個別腫瘤尺寸(倍數變化)及ORR指示抗PD-1 Ab (2.5 mg/kg)組達成4 SD及6 PD,其中ORR為0%;抗PD-1 Ab (2.5 mg/kg)與瑞戈非尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組達成2 CR、1 PR及7 PD,其中ORR為30%;抗PD-L1 Ab (2.5 mg/kg)與瑞戈非尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組達成5 CR、3 PR及1 SD,其中ORR為89%;抗CTLA-4 Ab (2.5 mg/kg)與瑞戈非尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組達成4 CR、2 PR及4 SD,其中ORR為60%。抑制腫瘤生長之活性如下:抗PD-L1 Ab與瑞戈非尼加西達本胺-k30之組合>抗CTLA-4 Ab與瑞戈非尼加西達本胺-k30之組合>方案>抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合的方案>抗PD-1 Ab方案。如 11 ( K )中所示,抗PD-L1 Ab與瑞戈非尼加西達本胺-k30之組合組最初嚴重降低了體重,但接著小鼠體重最終恢復。抗CTLA-4/抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合組最初體重發生輕微降低且最終小鼠體重亦恢復。此等結果表明,抗PD-L1 Ab與瑞戈非尼加西達本胺-k30之組合的方案具有更有效的腫瘤生長抑制活性,但可具有更強的毒性存在且可需要進一步評估其他治療方案。如 11 ( L )中所示,吾人確認不同ICI與瑞戈非尼加西達本胺-k30之組合組是否具有不同總存活率。總存活率如下所示:抗CTLA-4 Ab與瑞戈非尼加西達本胺-k30之組合組>抗PD-L1 Ab與瑞戈非尼加西達本胺-k30之組合組>抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合組>抗PD-1 Ab組。兩種藥物組合(抗CTLA-4 Ab與瑞戈非尼加西達本胺-k30之組合以及抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合)之ORR低於總存活率可能與此類方案在有效調節TME中之抗癌機制相關。然而,僅一隻小鼠在抗PD-L1 Ab與瑞戈非尼加西達本胺-k30之組合組中具有復發。此亦表明此等方案極有效地活化免疫系統以避免復發。如 11 ( M )中所示,抗CTLA-4 Ab (2.5 mg/kg)與卡博替尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合比其他方案治療更有效地抑制腫瘤生長。如 11 ( N )中所示之個別腫瘤尺寸(倍數變化)及ORR指示抗PD-1 Ab (2.5 mg/kg)之組合組達成4 SD及6 PD,其中ORR為0%;卡博替尼(30 mg/kg)與西達本胺-k30 (50 mg/kg)之組合組達成6 CR、3 SD及1 PD,其中ORR為60%;抗PD-1 Ab (2.5 mg/kg)與卡博替尼 (30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組達成4 CR、5 SD及1 PD,其中ORR為40%;抗PD-L1 Ab (2.5 mg/kg)與卡博替尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組達成3 CR、3 PR及4 SD,其中ORR為60%;抗CTLA-4 Ab (2.5 mg/kg)與卡博替尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組達成8 CR、1 PR及1 SD,其中ORR為90%。抑制腫瘤生長之活性如下:抗CTLA-4 Ab與卡博替尼加西達本胺-k30之組合>卡博替尼與西達本胺-k30之組合的方案>抗PD-L1 Ab與卡博替尼加西達本胺-k30之組合的方案>抗PD-1 Ab與卡博替尼加西達本胺-k30之組合的方案。如 11 ( O )中所示,僅抗PD-1 Ab與卡博替尼加西達本胺-k30之組合組通常維持體重。然而,抗PD-L1/抗CTLA-4 Ab與卡博替尼加西達本胺-k30之組合組或卡博替尼與西達本胺-k30之組合組最初體重嚴重降低,但接著最終小鼠體重恢復。如 11 ( P )中所示,總存活率如下所示:抗CTLA-4 Ab與卡博替尼加西達本胺-k30之組合組>抗PD-1 Ab與卡博替尼加西達本胺-k30之組合組=抗PD-L1 Ab與卡博替尼加西達本胺-k30之組合組=卡博替尼加西達本胺-k30之組合組>抗PD-1 Ab組。僅一隻小鼠在抗PD-L1 Ab與卡博替尼加西達本胺之組合組中具有復發。此結果亦表明此等方案極有效地活化免疫系統以避免復發。接著,吾人感興趣的係比較抗PD-1 Ab與不同TKI加西達本胺-k30之組合的方案。如 11 ( Q )中所示,抗PD-1 Ab與瑞戈非尼或卡博替尼加西達本胺-k30之組合的方案比其他方案更有效地抑制腫瘤生長。RMC-4550為熟知有效SHP-2抑制劑且報告表明當在動物模型中與抗PD-1 Ab組合時,其在改善ORR方面有效。然而,吾等資料顯示,在與抗PD-1 Ab加西達本胺-k30組合的方案時,與攜帶CT26腫瘤之小鼠中之瑞戈非尼或卡博替尼相比,RMC-4550不具有增加抗癌活性之能力。如 11 ( R )中所示之個別腫瘤尺寸(倍數變化)及ORR指示抗PD-1 Ab (2.5 mg/kg)組達成4 SD及6 PD,其中ORR為0%;抗PD-1 Ab (2.5 mg/kg)與瑞戈非尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組達成2 CR、1 PR及7 PD,其中ORR為30%;抗PD-L1 Ab (2.5 mg/kg)與卡博替尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組達成4 CR、5 SD及1 PD,其中ORR為40%;抗PD-1 Ab (2.5 mg/kg)與RMC-4550 (30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組達成1 CR、1 PR、2 SD及6 PD,其中ORR為20%。抑制腫瘤生長之活性如下:抗PD-L1 Ab與卡博替尼加西達本胺-k30之組合的方案>抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合的方案>抗PD-1 Ab與RMC-4550加西達本胺-k30之組合的方案。小鼠體重顯示於 11 ( S )中。如 11 ( T )中所示,總存活率如下所示:抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合組=抗PD-1 Ab與卡博替尼加西達本胺-k30之組合組>抗PD-1 Ab與RMC-4550加西達本胺-k30之組合組>抗PD-1 Ab組。僅抗PD-1 Ab與RMC-4550加西達本胺-k30之組合組具有復發。如 3中所示,在最後一次藥物投與之後3天進行正常ORR評估。然而如 4中所示,出人意料地發現在停止藥物投與之後,攜帶CT26腫瘤之小鼠中之腫瘤繼續縮小,因此在給予最後一次藥物之後第10天進行第二次ORR評估。在第二次ORR評估中,抗PD-1 Ab (2.5 mg/kg)與瑞戈非尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組之ORR顯著增強30%至60%。最初達成SD之3隻小鼠持續具有腫瘤縮小且達成1 PR及2 CR,因為藥物作用持續活化小鼠免疫系統中之CTL及NK,從而在第二次評估中引起4 CR、2 PR、3 SD及1 PD之結果。類似現象亦存在於抗PD-1 Ab (2.5 mg/kg)與瑞戈非尼(30 mg/kg)加恩替諾特(20 mg/kg)之組合組中,ORR自40%增加至50%。此外,發現在抗CTLA-4 Ab (2.5 mg/kg)與瑞戈非尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組中,ORR自60%增加至80%且達成更多小鼠獲得CR。儘管抗PD-L1 Ab之ORR (2.5 mg/kg)與瑞戈非尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組未改變,但更多小鼠變為CR (5至8)。在抗PD-1 Ab (2.5 mg/kg)與卡博替尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合組中,ORR顯著增強40%至60%。儘管抗PD-1 Ab (2.5 mg/kg)與卡博替尼(30 mg/kg)加恩替諾特(20 mg/kg)之組合組之ORR無變化,但更多小鼠變為CR (3至5)。類似現象亦存在於抗PD-L1/抗CTLA-4 Ab (2.5 mg/kg)與卡博替尼(30 mg/kg)加西達本胺-k30(50 mg/kg)之組合組中,CR分別自3增加至5及8增加至9。此等資料表明,抗PD-1/抗PD-L1/抗CTLA-4 Ab與瑞戈非尼或卡博替尼加西達本胺-k30或恩替諾特之組合對CTL或NK之活化具有極有效活性。此為重要發現,攜帶CT26腫瘤之小鼠中之ICI與TKI加HDACi之組合的固有抗癌效能藉由觀測具有初始SD或PR作為加強免疫性之延遲發展的含義之小鼠中的改良之抗癌功效來揭露。最後,進一步藉由再攻擊實驗研究免疫性(如 4之右上方行中所示)。研究顯示,幾乎所有方案在免疫性刺激方面具有顯著活性且因此有效地抑制由再攻擊接種之CT26癌細胞的增殖。然而,僅兩種方案(抗PD-1 Ab與卡博替尼加恩替諾特之組合及抗PD-1 Ab與RMC-4550加西達本胺之組合)出現腫瘤生長。
3 .具有或不具有ICI之HDAC抑制劑加酪胺酸激酶抑制劑在攜帶CT26腫瘤之小鼠模型中之功效。
方案 初始腫瘤體積 ( mm 3 ) ORR (%) PD SD PR CR 存活率 (%) 復發 * (Relapse / recurrence ) 免疫 # ( 再攻擊 )
圖6                           
抗PD-1 Ab 190 18% 5 4 1 1 18% (2/11) 100% (2/2) 100% (2/2)
樂伐替尼 30% 2 5 2 1 10% (1/10) 67% (2/3) 67% (2/3)
抗PD-1 Ab+樂伐替尼 17% 3 7 0 2 25% (3/12) 0% (0/2) 100% (2/2)
圖7                           
抗PD-1 Ab 299 11% 7 1 0 1         
抗PD-1 Ab+卡博替尼 11% 1 7 0 1
抗PD-1 Ab+阿西替尼 11% 6 2 0 1
抗PD-1 Ab+依魯替尼 11% 7 1 0
Figure 02_image003
Figure 02_image004
1
抗PD-1 Ab+奧拉帕尼 0% 8 1 0 0
圖8                     
Figure 02_image005
  
抗PD-1 Ab 177 25% 4 2 1 1 38% (3/8) 0% (0/2) 100% (2/2)
抗PD-1 Ab+卡博替尼+塞內昔布 57% 0 3 0 4 71% (5/7) 0% (0/4) 100% (4/4)
抗PD-1 Ab+卡博替尼+西達本胺-k30 100% 0 0 1 6 100% (7/7) 0% (0/7) 100% (7/7)
圖9                           
西達本胺-k30 251 25% 2 4 0 2 25% (2/8) 0% (0/2)   
樂伐替尼 13% 2 5 1 0 0% (0/8) 100% (1/1)
樂伐替尼+西達本胺-k30 38% 2 3 0 3 38% (3/8) 0% (0/3)
阿西替尼 38% 4 1 0 3 38% (3/8) 0% (0/3)
阿西替尼+西達本胺-k30 50% 1 3 0 4 50% (4/8) 0% (0/4)
瑞戈非尼 25% 2 4 0 2 13% (1/8) 50% (1/2) 50% (1/2)
瑞戈非尼+西達本胺-k30 88% 0 1 0 7 88% (7/8) 0% (0/7) 71% (5/7)
卡博替尼 43% 2 2 0 3 14% (1/7) 67% (2/3) 100% (3/3)
卡博替尼+西達本胺-k30 75% 0 2 1 5 75% (6/8) 17% (1/6) 100% (6/6)
圖10                           
抗PD-1 Ab 218 11% 5 3 0 1 22% (2/9) 0% (0/1) 100% (1/1)
抗PD-1 Ab+卡博替尼 44% 2 3 1 3 33% (3/9) 50% (2/4) 67% (2/3)
抗PD-1 Ab+瑞戈非尼 0% 4 5 0 0 0% (0/9)      
抗PD-1 Ab+西達本胺-k30+塞內昔布 56% 3 1 0 5 44% (4/9) 20% (1/5) 100% (5/5)
抗PD-1 Ab+卡博替尼+西達本胺-k30 56% 0 4 0 5 56% (5/9) 0% (0/5) 100% (5/5)
抗PD-1 Ab+瑞戈非尼+西達本胺-k30 33% 0 6 0 3 78% (7/9) 0% (0/3) 100% (3/3)
*:復發(relapse/recurrence)定義為在第一次腫瘤評估後,具有CR或PR反應之小鼠的腫瘤生長至少5倍時。 #:對CT26再攻擊具有抗性之小鼠。 反應評估準則:相較於基線之腫瘤尺寸之倍數變化 PD:x≧5;SD:1≦x<5;PR:0.5≦x<1;CR:x<0.5
4 .在攜帶CT26腫瘤之小鼠模型中ICI與TKI加HDAC抑制劑之組合的抗癌活性。
方案 初始腫瘤體積 (mm 3) ORR (%) PD SD PR CR ORR (%) & PD & SD & PR & CR & 存活率 (%) 復發 * ( Relapse / recurrence ) 免疫 # ( 再攻擊 )
11A B C D                                          
抗PD-1 Ab 243 0% 6 4 0 0 0% 8 2 0 0 0% (0/10)      
抗PD-1 Ab+瑞戈非尼+西達本胺-k30 30% 0 7 1 2 60% 1 3 2 4 60% (6/10) 0% (0/3) 100% (3/3)
抗PD-1 Ab+瑞戈非尼+伏立諾他 40% 4 2 1 3 40% 4 2 0 4 40% (4/10) 0% (0/4) 100% (4/4)
抗PD-1 Ab+瑞戈非尼+恩替諾特 40% 5 1 1 3 50% 5 0 0 5 50% (5/10) 0% (0/4) 100% (4/4)
11E F G H                                       
抗PD-1 Ab 0% 6 4 0 0 0% 8 2 0 0 0% (0/10)      
卡博替尼+西達本胺-k30 60% 1 3 0 6 60% 3 1 0 6 60% (6/10) 0% (0/6) 100% (6/6)
抗PD-1 Ab+瑞戈非尼+西達本胺-k30 30% 0 7 1 2 60% 1 3 2 4 60% (6/10) 0% (0/3) 100% (3/3)
抗PD-L1 Ab+瑞戈非尼+西達本胺-k30 89% 0 1 3 5 89% 0 1 0 8 78% (7/9) 13% (1/8) 100% (8/8)
抗CTLA-4 Ab+瑞戈非尼+西達本胺-k30 60% 0 4 2 4 80% 1 1 1 7 90% (9/10) 0% (0/6) 100% (6/6)
11I J K L                                       
抗PD-1 Ab 0% 6 4 0 0 0% 8 2 0 0 0% (0/10)      
抗PD-1 Ab+卡博替尼+西達本胺-k30 40% 1 5 0 4 60% 3 1 1 5 60% (6/10) 0% (0/4) 100% (4/4)
抗PD-1 Ab+卡博替尼+伏立諾他 30% 3 4 2 1 30% 6 1 2 1 30% (3/10) 33% (1/3) 100% (3/3)
抗PD-1 Ab+卡博替尼+恩替諾特 56% 1 3 2 3 56% 2 2 0 5 33% (3/9) 40% (2/5) 60% (3/5)
11M N O P                                       
抗PD-1 Ab 0% 6 4 0 0 0% 8 2 0 0 0% (0/10)      
卡博替尼+西達本胺-k30 60% 1 3 0 6 60% 3 1 0 6 60% (6/10) 0% (0/6) 100% (6/6)
抗PD-1 Ab+卡博替尼+西達本胺-k30 40% 1 5 0 4 60% 3 1 1 5 60% (6/10) 0% (0/4) 100% (4/4)
抗PD-L1 Ab+卡博替尼+西達本胺-k30 60% 0 4 3 3 60% 2 2 1 5 60% 6/10) 17% (1/6) 100% (6/6)
抗CTLA-4 Ab+卡博替尼+西達本胺-k30 90% 0 1 1 8 90% 0 1 0 9 90% (9/10) 0% (0/9) 100% (9/9)
11Q R S T                                       
抗PD-1 Ab 0% 6 4 0 0 0% 8 2 0 0 0% (0/10)      
抗PD-1 Ab+瑞戈非尼+西達本胺-k30 30% 0 7 1 2 60% 1 3 2 4 60% (6/10) 0% (0/3) 100% (3/3)
抗PD-1 Ab+卡博替尼+西達本胺-k30 40% 1 5 0 4 60% 3 1 1 5 60% (6/10) 0% (0/4) 100% (4/4)
抗PD-1 Ab+RMC-4550+西達本胺-k30 20% 6 2 1 1 10% 7 2 0 1 10% (1/10) 50% (1/2) 50% (1/2)
*:復發(relapse/recurrence)定義為在第一次腫瘤評估後,具有CR或PR反應之小鼠的腫瘤生長至少5倍時。&:在最後一次藥物投與之後10天的第二次腫瘤評估 #:對CT26再攻擊具有抗性之小鼠。 反應評估準則:相較於基線之腫瘤尺寸之倍數變化 PD:x≧5;SD:1≦x<5;PR:0.5≦x<1;CR:x<0.5
實例 7 在攜帶 CT26 腫瘤之小鼠中與或不與西達本胺 - k30 組合之抗 PD - 1 Ab 加卡博替尼或瑞戈非尼之間的腫瘤細胞群之比較
為了測定用抗PD-1 Ab與卡博替尼/瑞戈非尼之組合或抗-PD-1 Ab與卡博替尼/瑞戈非尼加西達本胺-k30之三重組合治療是否影響腫瘤中之骨髓細胞及T細胞群,在開始治療後第9天分離腫瘤樣品,且藉由流式細胞量測術(FACS)評估免疫細胞。如 12中所示,在具有或不具有西達本胺-k30之抗PD-1 Ab與卡博替尼或瑞戈非尼之組合治療之後,CD4 +T細胞及Treg顯著改變,如 12 ( A )中所示。流式細胞量測術結果表明抗PD-1 Ab與卡博替尼或瑞戈非尼之組合對減少Treg細胞有效,其有利於回應於腫瘤擴展而活化腫瘤中之免疫性。另外,僅PD-1 Ab+瑞戈非尼+西達本胺-k30之組合的方案引起CD8 +T細胞浸潤之顯著增加。關於MDSC,已知此等骨髓衍生之不成熟細胞通常在攜帶腫瘤之宿主中升高且具有有效免疫抑制活性。與其他方案相比,抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合的治療顯著減少腫瘤中之PMN-MDSC細胞及腫瘤相關巨噬細胞(TAM),如 12 ( B )中所示,表明此三重組合更可能藉由引導免疫抑制細胞PMN-MDSC細胞及TAM消耗而引起腫瘤浸潤淋巴細胞(TIL)增加之結果。
實例 8 經由調節攜帶 CT26 腫瘤之小鼠中之 TME 中的基因表現 藉由西達本胺 - k30 與卡博替尼 / 瑞戈非尼加抗 CTLA - 4 Ab 之組合來克服對一線抗 PD - 1 Ab 治療之抗性。
13中所示,分析藉由用不同二線方案治療來調節以克服對一線抗PD-1 Ab治療之抗藥性的基因表現。如 13 ( A )中所示,結果表明,抗CTLA-4 Ab與西達本胺-k30加卡博替尼或瑞戈非尼之組合的方案與西達本胺-HCl鹽與具有或不具有抗CTLA-4 Ab療法之塞內昔布之組合及僅抗CTLA-4 Ab相比,在誘導干擾素γ相關之基因表現方面更有效。類似結果亦表明,與西達本胺-HCl鹽與具有或不具有抗CTLA-4 Ab之塞內昔布之組合的方案及僅抗CTLA-4 Ab相比,抗CTLA-4 Ab與西達本胺-k30加卡博替尼或瑞戈非尼之組合的方案顯著地增強干擾素-β相關之基因表現,如 13 ( B )中所示。分析與T細胞介導之細胞毒性相關之基因表現,如 13 ( C )中所示。抗CTLA-4 Ab與西達本胺-k30加卡博替尼或瑞戈非尼之組合的方案與西達本胺-HCl鹽與塞內昔布之組合或僅抗CTLA-4 Ab相比,在誘導T細胞介導之細胞毒性相關基因表現方面更有效。然而,血管生成活性相關之基因表現在抗CTLA-4 Ab與西達本胺-k30加瑞戈非尼之組合的方式中顯著下調,與如 13 ( D )中所示。綜合而言,上文所描述之基因表現之所有調節暗示為了有效地克服由一線抗PD-1 Ab治療所引起之抗性,TME調節涉及受包括CT26腫瘤中之免疫細胞之細胞影響的基因表現。
實例 9 西達本胺為用於顯著調節攜帶 CT26 腫瘤之小鼠之 TME 中之基因表現的抗 PD - 1 Ab 與瑞戈非尼 / 卡博替尼加西達本胺 - k30 之組合的方案中的關鍵組分。
14中所示,CT26腫瘤之基因表現分析顯示藉由西達本胺之免疫相關路徑的多血症之誘導。如 14 ( A )中所示,僅抗PD-1 Ab與抗PD-1 Ab與卡博替尼之組合的方案之比較顯示抗PD-1 Ab與卡博替尼之組合的方案在增加趨化因子活性相關基因表現位準方面更有效。此外,吾人出乎意料地發現抗PD-1 Ab與卡博替尼加西達本胺-k30之組合的方案與抗PD-1 Ab或抗PD-1 Ab與卡博替尼之組合的方案相比,在增強趨化因子活性相關基因表現方面更有效。對於抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合的方案,亦顯示類似結果。如 14 ( B )中所示分析免疫反應相關基因表現。抗PD-1 Ab與卡博替尼加西達本胺-k30之組合的方案與僅抗PD-1 Ab或抗PD-1 Ab與卡博替尼之組合的方案相比,在增加免疫反應相關基因表現方面更有效。對於抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合的方案,亦顯示類似結果。接下來,吾人分析如 14 ( C )中所示之標誌干擾素γ反應相關基因表現。抗PD-1 Ab與卡博替尼加西達本胺-k30之組合的方案與僅抗PD-1 Ab或抗PD-1 Ab與卡博替尼之組合的方案相比,在增加標誌干擾素γ反應相關基因表現方面更有效。類似結果亦顯示指示抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合的方案與僅抗PD-1 Ab或抗PD-1 Ab與瑞戈非尼之組合的方案相比,在增加標誌干擾素γ反應相關基因表現方面更有效。分析對基因表現下調之影響。如 14 ( D )中所示,與僅抗PD-1 Ab或抗PD-1 Ab與瑞戈非尼之組合組相比,跨膜受體蛋白酪胺酸激酶活性相關之基因表現在抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合組中更顯著下調。如 14 ( E )中所示,與僅抗PD-1 Ab或抗PD-1 Ab與瑞戈非尼之組合組相比,血管生成活性相關之基因表現在抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合組中顯著下調。在開始用包括西達本胺-k30之組合治療之後第9天觀測到基因表現之顯著調節,引起趨化因子活性、免疫反應及標誌干擾素γ相關基因之上調。此等結果表明,抗PD-1 Ab與瑞戈非尼/卡博替尼加西達本胺-k30之組合可補充且增加攜帶CT26腫瘤之小鼠模型中之免疫療法的功效。然而,當與僅抗PD-1 Ab或抗PD-1 Ab與瑞戈非尼之組合組相比時,與跨膜受體蛋白酪胺酸激酶活性及血管生成活性有關之基因表現之下調在抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合組中顯著。綜合而言,吾等資料表明且支持ICI與TKI加HDACi之組合的方案在TME中具有強效調節活性以增加攜帶CT26腫瘤之小鼠之免疫反應率。
實例 10 為了再次確認在攜帶 CT26 之小鼠中 ICI 與酪胺酸激酶抑制劑 ( TKI ) 加組蛋白去乙醯酶抑制劑 ( HDACi ) 之組合的抗癌活性。
進一步研究抗PD-1 Ab與不同TKI加西達本胺-k30之組合的抗癌活性,以再次確認其在攜帶CT26腫瘤之小鼠中的效力。如 15 ( A ) 至圖 15 ( D )所示,評估抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合的方案。 15 ( A )中之結果表明抗PD-1 Ab (2.5 mg/kg)與瑞戈非尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)之組合與抗PD-1 Ab與瑞戈非尼之組合相比,對腫瘤生長具有更強效抑制。如 15 ( B )中所示之個別腫瘤尺寸(倍數變化)及ORR指示抗PD-1 Ab組達成8 PD,其中ORR(客觀反應率)為0%;抗PD-1 Ab與瑞戈非尼之組合組達成5 SD及1 PD,其中ORR為0%;抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合組達成3 CR及4 SD,其中ORR為43%。資料顯示抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合的方案比抗PD-1 Ab與瑞戈非尼之組合的方案具有更有效抗腫瘤活性。如 15 ( C )中所示,抗PD-1 Ab與瑞戈非尼之組合組及抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合組最初降低了體重,但接著小鼠體重最終恢復。總存活率顯示於 15 ( D )中。抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合組>抗PD-1 Ab與瑞戈非尼之組合組>抗PD-1 Ab組。抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合組未發生復發。結果亦表明,抗PD-1 Ab與瑞戈非尼加西達本胺-k30之組合組對活化免疫系統極有效以避免復發。如 15 ( E ) 15 ( H )所示,評估抗PD-1 Ab與卡博替尼加西達本胺-k30之組合的方案。 15 ( E )中之結果表明抗PD-1 Ab與卡博替尼加西達本胺-k30之組合比抗PD-1 Ab與卡博替尼之組合具有更有效的腫瘤生長抑制。如 15 ( F )中所示之個別腫瘤尺寸(倍數變化)及ORR指示抗PD-1 Ab組達成8 PD,其中ORR(客觀反應率)為0%;抗PD-1 Ab與卡博替尼之組合組達成1 CR、6 SD及1 PD,其中ORR為13%;抗PD-1 Ab與卡博替尼加西達本胺-k30之組合組達成3 CR、1 PR及4 SD,其中ORR為50%。資料顯示抗PD-1 Ab與卡博替尼加西達本胺-k30之組合的方案比抗PD-1 Ab與卡博替尼之組合的方案具有更有效抗腫瘤活性。如 15 ( G )中所示,小鼠體重未顯著變化。如 15 ( H )中所示,與其他組相比,抗PD-1 Ab與卡博替尼加西達本胺-k30之組合的方案延長存活率,在第54天達成63%存活率。接下來,評估各組中的復發率。結果表明,抗PD-1 Ab與卡博替尼之組合組與抗PD-1 Ab與卡博替尼加西達本胺-k30之組合組中不存在復發。接著,吾人確認TKI與HDACi之組合是否具有比在ICI存在下更有效之腫瘤生長抑制活性。如 15 ( I ) 15 ( L )所示,評估不同TKI與西達本胺-k30之組合的方案。如 15 ( I )中所示,瑞戈非尼與西達本胺-k30之組合與司曲替尼與西達本胺-k30之組合的兩組顯示優良抗腫瘤活性。如 15 ( J )中所示之個別腫瘤尺寸(倍數變化)及ORR指示瑞戈非尼與西達本胺-k30之組合組達成6 CR、1 PR及1 SD,其中ORR為88%;卡博替尼與西達本胺-k30之組合組達成1 CR及7 SD,其中ORR為13%;司曲替尼與西達本胺-k30之組合組達成6 CR及1 SD,其中ORR為86%。如 15 ( K )中所示,小鼠體重未顯著變化。如圖15(L)中所示,與其他組相比,瑞戈非尼與西達本胺-k30之組合的方案顯著延長存活率,在第54天達成100%存活率。此資料表明瑞戈非尼與西達本胺-k30之組合具有有效免疫調節活性。復發率之結果表明,不同TKI與西達本胺-k30之組合組中不存在復發。第二次腫瘤評估及免疫性/免疫記憶之結果顯示於 5中,其曾經證實如 實例 46中所陳述之結論( 9 4)。在不存在抗PD-1 Ab之情況下用瑞戈非尼與西達本胺-k30之組合的方案治療顯示一些具有完全腫瘤輻射之小鼠中之不完全或部分免疫性,且在抗PD-1存在下,顯示對於在第二次腫瘤評估中所觀測到之增強之抗癌活性,免疫延遲發展。
5 .具有或不具有ICI之HDAC抑制劑加酪胺酸激酶抑制劑在攜帶CT26腫瘤之小鼠模型中之功效。
方案 初始腫瘤體積 ( mm 3 ) ORR (%) PD SD PR CR ORR (%) & PD & SD & PR & CR & 存活率 (%) 復發 * ( Relapse / recurrence ) 免疫 # ( 再攻擊 )
15A B C D    227                                       
抗PD-1 Ab 0% 8 0 0 0 0% 8 0 0 0 0%      
抗PD-1 Ab+瑞戈非尼 0% 1 5 0 0 0% 6 0 0 0 0%      
抗PD-1 Ab+瑞戈非尼+西達本胺-k30 43% 0 4 0 3 86% 1 0 1 5 86% 0% (0/3) 100% (3/3)
15E F G H                                       
抗PD-1 Ab 0% 8 0 0 0 0% 8 0 0 0 0%      
抗PD-1 Ab+卡博替尼 13% 1 6 0 1 13% 5 2 0 1 25% 0% (0/1) 100% (1/1)
抗PD-1 Ab+卡博替尼+西達本胺-k30 50% 0 4 1 3 50% 1 3 0 4 63% 0% (0/4) 100% (4/4)
11I J K L                                       
抗PD-1 Ab 0% 8 0 0 0 0% 8 0 0 0 0%      
瑞戈非尼+西達本胺-k30 88% 0 1 1 6 88% 0 1 0 7 100% 0% (0/7) 86% (6/7)
卡博替尼+西達本胺-k30 13% 0 7 0 1 25% 3 3 1 1 25% 0% (0/1) 100% (1/1)
司曲替尼+西達本胺-k30 86% 0 1 0 6 86% 1 0 0 6 86% 0% (0/6) 100% (6/6)
*:復發(relapse/recurrence)定義為在第一次腫瘤評估後,具有CR或PR反應之小鼠的腫瘤生長至少5倍時。&:在二線治療的最後一次投與之後10天的第二次腫瘤評估 #:對CT26再攻擊具有抗性之小鼠。 反應評估準則:相較於基線之腫瘤尺寸之倍數變化 PD:x≧5;SD:1≦x<5;PR:0.5≦x<1;CR:x<0.5
雖然已結合上文所闡述之特定實施例來描述本發明,但對其之許多替代方案及其修改及變化對於一般熟習此項技術者而言將顯而易見。所有此等替代方案、修改及變化被視為屬於本發明之範疇內。
圖1(A)至(C)顯示一線抗PD-1 Ab治療之連續治療時程及反應結果。帶有皮下CT26腫瘤之雄性Balb/c小鼠(1×10 6個細胞/小鼠)用抗PD-1 Ab之一線療法治療(平均腫瘤體積:當開始治療時為113 mm 3)。小鼠用2.5 mg/kg之抗PD-1 Ab或IgG腹膜內(i.p.)投與,每3天一次,持續3次給藥。當小鼠在腫瘤縮小下對抗PD-1 Ab作出反應時,再給予三次給藥。(A)連續治療時程、(B)與用抗IgG抗體治療6次之對照組相比,來自對一線抗PD-1 Ab治療起反應之小鼠的腫瘤尺寸(mm 3)、(C) (B)之腫瘤倍數變化。
圖2(A)至(C)顯示具有抗PD-1抗體原發性抗性之小鼠中之二線治療的結果。在一線抗PD-1抗體療法中,若腫瘤顯示腫瘤體積之2.5至3倍連續增加且體積<600 mm 3,則小鼠定義為具有原發性抗性。此等小鼠隨後再入選且分成二線治療中的五組以用於功效研究。在二線治療中,抗IgG抗體作為對照且抗IgG及抗CTLA-4抗體以2.5 mg/kg腹膜內(i.p.)投與,每3天一次,持續6次給藥。二線治療中之組合為:抗CTLA-4抗體(2.5 mg/kg)與西達本胺-HCl鹽(50 mg/kg)加塞內昔布(Celecoxib) (50 mg/kg)組合;抗CTLA-4抗體(2.5 mg/kg)與瑞戈非尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)組合;及抗CTLA-4抗體(2.5 mg/kg)與卡博替尼(30 mg/kg)加西達本胺-k30 (50 mg/kg)組合。經口投與組合,每天一次,持續16次。(A)腫瘤尺寸(mm 3)、(B)腫瘤倍數變化、(C)小鼠體重 3
圖3(A)至(C)顯示在抗PD-1抗體療法期間患有過度進展性疾病(HPD)腫瘤之小鼠中二線治療的結果。在投與一線抗PD-1抗體三次之後,若腫瘤體積>600 mm 3,則小鼠定義為患有過度進行性疾病(HPD)。此等小鼠隨後再入選二線治療以用於功效研究。二線治療中之組合為抗CTLA-4抗體(2.5 mg/kg)與卡博替尼(30 mg/kg)加西達本胺-HCl鹽(50 mg/kg)之組合。該組合腹膜內及經口投與。每3天一次腹膜內投與抗體持續6次給藥,且每天一次投與卡博替尼與西達本胺-HCl鹽之組合持續16天。(A)腫瘤倍數變化、(B)小鼠體重、(C)抗CTLA-4抗體與卡博替尼加西達本胺-HCl鹽之組合,實現2 CR,9 SD,其中ORR為18.1%。
圖4(A)至(F)顯示抗PD-1 Ab原發性抗性小鼠之二線治療中個別腫瘤體積之結果(如圖2及3中所示)。(A)作為對照之抗IgG抗體組,實現5 PD,其中ORR為0%。(B)抗CTLA-4抗體組,實現5 SD及2 PD,其中ORR為0%。(C)抗CTLA-4抗體與西達本胺-HCl鹽加塞內昔布組之組合,實現3 CR、4 SD及1 PD,其中ORR為37.5%。(D)抗CTLA-4抗體與瑞戈非尼加西達本胺-k30組之組合,實現5 CR及1 PR,2 SD,其中ORR為62.5%。(E)抗CTLA-4抗體與卡博替尼加西達本胺-k30組之組合,實現3 CR及1 PR,3 SD,其中ORR為57.1%。(F)在HPD小鼠中,用抗CTLA-4抗體與卡博替尼加西達本胺-HCl鹽之組合治療實現2 CR,9 SD,其中ORR為18.1%。
圖5(A)至(E)顯示針對一線抗PD-1抗體治療之獲得性抗性的二線治療的結果。小鼠用2.5 mg/kg之抗PD-1抗體之一線治療腹膜內治療,每3天一次,持續6次給藥。若腫瘤體積在2倍至3倍治療下,且隨後經由所有6次治療增加超過2倍,則小鼠定義為對抗PD-1抗體具有獲得性抗性(復發)。此等小鼠隨後用抗CTLA-4抗體與瑞戈非尼加西達本胺-k30之組合的二線治療來治療用於功效研究。(A)為了比較,顯示來自圖2(A)之不同治療中的腫瘤尺寸。(B)針對具有獲得性抗PD-1抗體抗性之一線及二線治療之小鼠的治療時程及腫瘤尺寸。(C)在用抗EGFR-4抗體與瑞戈非尼加西達本胺-k30方案之組合之二線治療後,具有獲得性抗PD-1抗體抗性之小鼠中的個別腫瘤體積。治療實現1 CR及6 SD,其中ORR為14.1%。(D)對抗PD-1抗體具有原發性抗性之小鼠在二線治療之後的總存活率。(E)對抗PD1抗體具有獲得性抗性之小鼠在二線治療後的總存活率。
圖6(A)至(G)顯示在攜帶CT26腫瘤之小鼠模型中單獨或與抗PD-1抗體組合之樂伐替尼治療的抗腫瘤作用及免疫性評估之結果。按指示用不同治療模式治療攜帶CT26腫瘤之Balb/c小鼠。抗IgG抗體,IgG對照(2.5 mg/kg);抗PD-1單株抗體,PD-1 (2.5 mg/kg);樂伐替尼(10 mg/kg);抗PD-1 Ab(2.5 mg/kg)與樂伐替尼(10 mg/kg)之組合。(A)總腫瘤體積。(B)個別腫瘤體積。(C)小鼠體重。(D)動物存活率。(E)復發率。(F)再攻擊時程之實驗設計。(G)攜帶回歸CT26腫瘤(亦即,達成CR或PR反應)之小鼠在第34天用CT26細胞再攻擊且在第51天評估復發。再攻擊誘導之復發定義為相比於第41天之腫瘤尺寸,腫瘤增加至少2倍且腫瘤體積超過300 mm 3。CT26細胞再攻擊之後的復發率示於各組中。在腫瘤植入後,按指示治療攜帶CT26腫瘤之小鼠,且在腫瘤體積為3000 mm 3時實施安樂死。資料以平均值±SEM給出;*P < 0.05,**P < 0.01,***P < 0.001,****P < 0.0001,使用Tukey檢驗之單向ANOVA。*,與IgG相比;#,與PD-1相比。
圖7(A)及(B)顯示卡博替尼、依魯替尼、阿西替尼、奧拉帕尼及西達本胺-k30與抗PD-1抗體之組合之功效比較的結果。按指示用不同治療模式治療攜帶CT26腫瘤之Balb/c小鼠。抗IgG抗體,IgG對照(2.5 mg/kg);抗PD-1單株抗體,PD-1 (2.5 mg/kg);西達本胺-k30 (50 mg/kg);塞內昔布(50 mg/kg);卡博替尼(30 mg/kg);依魯替尼(6 mg/kg);阿西替尼(12.5 mg/kg);奧拉帕尼(50 mg/kg)。(A)總腫瘤體積及小鼠體重。(B)個別腫瘤體積。在腫瘤植入後,按指示治療攜帶CT26腫瘤之小鼠,且在腫瘤體積為3000 mm 3時實施安樂死。資料以平均值±SEM給出;*P < 0.05,**P < 0.01,***P < 0.001,****P < 0.0001,使用Tukey檢驗之單向ANOVA。*,與IgG相比;#,與PD-1相比。
圖8(A)至(F)顯示攜帶CT26腫瘤之小鼠之卡博替尼加塞內昔布或西達本胺-k30與抗PD-1抗體之組合的治療反應及免疫性評估之結果。按指示用不同治療模式治療攜帶CT26腫瘤之Balb/c小鼠。抗IgG抗體,IgG對照(2.5 mg/kg);抗PD-1單株抗體,PD-1 (2.5 mg/kg);卡博替尼(30 mg/kg);西達本胺-k30 (50 mg/kg);塞內昔布(50 mg/kg)。(A)總腫瘤體積。(B)個別腫瘤體積。(C)小鼠體重。(D)動物存活率。(E)復發率。(F)攜帶回歸CT26腫瘤之小鼠用CT26細胞再攻擊且如圖6(G)中所描述評估。CT26細胞再攻擊之後的復發率示於各組中。在腫瘤植入後,按指示治療攜帶CT26腫瘤之小鼠,且在腫瘤體積為3000 mm 3時實施安樂死。資料以平均值±SEM給出;*P < 0.05,**P < 0.01,***P < 0.001,****P < 0.0001,使用Tukey檢驗之單向ANOVA。*,與IgG相比;#,與PD-1相比。
圖9(A)至(K)顯示在攜帶CT26腫瘤之小鼠中不同酪胺酸激酶抑制劑與Chidamide-k30之組合的治療反應及免疫性評估的結果。按指示用不同治療模式治療攜帶CT26腫瘤之Balb/c小鼠。媒劑,5% DMSO;樂伐替尼(10 mg/kg);阿西替尼(30 mg/kg);瑞戈非尼(30 mg/kg);卡博替尼(30 mg/kg);及西達本胺-k30 (50 mg/kg)。(A)單獨或與西達本胺-k30治療劑組合之樂伐替尼、阿西替尼之總腫瘤體積;(B)個別腫瘤體積;(C)小鼠體重;(D)動物存活率;及(E)復發率。(F)單獨或與西達本胺-k30治療劑組合之瑞戈非尼、卡博替尼之總腫瘤體積;(G)個別腫瘤體積、(H)小鼠體重、(I)動物存活率;及(J)復發率。(K)攜帶回歸CT26腫瘤之小鼠用CT26細胞再攻擊且如圖6(G)中所描述評估。CT26細胞再攻擊之後的復發率示於各組中。在腫瘤植入後,按指示治療攜帶CT26腫瘤之小鼠,且在腫瘤體積為3000 mm 3時實施安樂死。資料以平均值±SEM給出;*P < 0.05,**P < 0.01,***P < 0.001,****P < 0.0001,使用Tukey檢驗之單向ANOVA。*,與IgG相比;#,與PD-1相比。使用對數秩(Mantel-Cox)測試測定總存活率之p值,比較各組,*P<0.05,**P<0.01,***P<0.001,****P<0.0001。
圖10(A)至(K)顯示攜帶CT26腫瘤之小鼠之卡博替尼及瑞戈非尼與西達本胺-k30加抗PD-1抗體之組合的治療反應及免疫性評估之結果。按指示用不同治療模式治療攜帶CT26腫瘤之Balb/c小鼠。抗IgG抗體,IgG對照(2.5 mg/kg);抗PD-1單株抗體,PD-1 (2.5 mg/kg);卡博替尼(30 mg/kg);瑞戈非尼(30 mg/kg);西達本胺-k30 (50 mg/kg)。與卡博替尼之組合以(A)總腫瘤體積、(B)個別腫瘤體積、(C)小鼠體重、(D)動物存活率及(E)復發率顯示。然而,與瑞戈非尼之組合顯示於(F)總腫瘤體積、(G)個別腫瘤體積、(H)小鼠體重、(I)動物存活率及(J)復發率中。(K)攜帶回歸CT26腫瘤之小鼠用CT26細胞再攻擊且如圖6(G)中所描述評估。CT26細胞再攻擊之後的復發率示於各組中。在腫瘤植入後,按指示治療攜帶CT26腫瘤之小鼠,且在腫瘤體積為3000 mm 3時實施安樂死。資料以平均值±SEM給出;*P < 0.05,**P < 0.01,***P < 0.001,****P < 0.0001,使用Tukey檢驗之單向ANOVA。*,與IgG相比;#,與PD-1相比。使用對數秩(Mantel-Cox)測試測定總存活率之p值,比較各兩組,*P<0.05,**P<0.01,***P<0.001,****P<0.0001。
圖11(A)至(T)顯示在攜帶CT26之小鼠中之ICI與TKI加HDAC抑制劑(HDACi)的組合之治療反應的結果。按指示用不同治療模式治療攜帶CT26腫瘤之Balb/c小鼠。IgG,抗IgG Ab作為對照(2.5 mg/kg);抗PD-1單株抗體PD-1 (2.5 mg/kg);抗PD-L1單株抗體(2.5 mg/kg)、PD-L1 (2.5 mg/kg);抗CTLA-4單株抗體(2.5 mg/kg)、CTLA-4 (2.5 mg/kg);瑞戈非尼(30 mg/kg);卡博替尼(30 mg/kg);西達本胺-k30 (50 mg/kg);伏立諾他(150 mg/kg);恩替諾特(20 mg/kg);RMC-4550 (30 mg/kg)。首先,在攜帶CT26腫瘤之小鼠中評估抗PD-1 Ab與瑞戈非尼加不同HDAC抑制劑之組合。記錄(A)總腫瘤體積、(B)個別腫瘤體積、(C)小鼠體重、(D)動物存活率及復發率。第二,在攜帶CT26之小鼠中評估抗PD-1 Ab與卡博替尼加不同HDAC抑制劑之組合。記錄(E)總腫瘤體積、(F)個別腫瘤體積、(G)小鼠體重、(H)動物存活率及復發率。第三,在攜帶CT26之小鼠中評估不同ICI與瑞戈非尼加西達本胺-k30之組合。(I)總腫瘤體積、(J)個別腫瘤體積、(K)小鼠體重、(L)動物存活率及復發率。第四,在攜帶CT26之小鼠中評估不同ICI與卡博替尼加西達本胺-k30之組合。記錄(M)總腫瘤體積、(N)個別腫瘤體積、(O)小鼠體重、(P)動物存活率及復發率。第五,在攜帶CT26之小鼠中評估抗PD-1 Ab與不同TKI加西達本胺-k30之組合。記錄(Q)總腫瘤體積、(R)個別腫瘤體積、(S)小鼠體重、(T)動物存活率及復發率。在腫瘤植入後,按指示治療攜帶CT26腫瘤之小鼠,且在腫瘤體積為3000 mm 3時實施安樂死。資料以平均值±SEM給出;*P < 0.05,**P < 0.01,***P < 0.001,****P < 0.0001,使用Tukey檢驗之單向ANOVA。*,與IgG相比;#,與PD-1相比。使用對數秩(Mantel-Cox)測試測定總存活率之 p值,比較各組,* P<0.05,** P<0.01,*** P<0.001,**** P<0.0001。
圖12(A)及(B)顯示攜帶CT26之小鼠腫瘤中淋巴球及骨髓衍生之MDSC之免疫細胞群體分析的結果。攜帶CT26腫瘤之小鼠用作為對照物之抗IgG Ab,IgG(2.5 mg/kg);抗PD-1單株抗體,PD-1 (2.5 mg/kg);卡博替尼(30 mg/kg);瑞戈非尼(30 mg/kg);西達本胺-k30 (50 mg/kg)治療。按指示用不同治療模式治療攜帶CT26腫瘤之小鼠。治療後第9天分離腫瘤樣品以分析腫瘤中之細胞群體。(A)各治療組之腫瘤尺寸及腫瘤中之CD3、CD4、CD8及Treg細胞群體之流式細胞量測術結果。結果顯示為平均值 +SD。*p<0.05對比抗IgG Ab,(n=8至12)。(B)腫瘤中骨髓衍生之CD11b、PMN-MDSC、M-MDSC及腫瘤巨噬細胞群之流式細胞量測術的結果。結果顯示為平均值 +SD。*p<0.05對比抗IgG Ab。(n=8至12)。
圖13(A)至(D)顯示經由調節攜帶CT26腫瘤之小鼠之TME中的基因表現,藉由西達本胺-HCl鹽/西達本胺-k30與卡博替尼/瑞戈非尼加抗CTLA-4 Ab之組合來克服對一線抗PD-1 Ab治療之抗性。在開始藉由RNA-seq進行基因表現之二線治療之後第13天分析腫瘤。與(A)干擾素γ、(B)干擾素β、(C)T細胞介導之細胞毒性及(D)血管生成活性相關之基因表現與評分的熱圖。NES:歸一化富集分數;FDR:錯誤發現率。依據其各別成員基因之平均log2 (TPM)計算標籤分數;P值:曼-惠特尼測試(Mann-Whitney test),雙尾。TPM,轉錄數/百萬;DGE,差異基因表現。
圖14(A)至(E)顯示在抗PD-1 Ab與瑞戈非尼/卡博替尼加西達本胺-k30之組合的方案中,西達本胺為關鍵組分,該方案顯著調節攜帶CT26腫瘤之小鼠的TME中之基因表現。在開始藉由RNA-seq進行基因表現之治療之後第9天分析腫瘤。與(A)趨化因子活性、(B)免疫反應、(C)干擾素γ、(D)跨膜受體蛋白酪胺酸激酶活性及(E)血管生成活性相關之基因表現的熱圖用評分顯示。NES:歸一化富集分數;FDR:錯誤發現率。依據其各別成員基因之平均log2 (TPM)計算標籤分數;P值:曼-惠特尼測試(Mann-Whitney test),雙尾。TPM,轉錄數/百萬;DGE,差異基因表現。
圖15(A)至(L)顯示在攜帶CT26之小鼠中,TKI加HDAC抑制劑(西達本胺-k30)與或不與抗PD-1抗體之組合的治療反應的結果。按指示用不同治療模式治療攜帶CT26腫瘤之Balb/c小鼠。IgG,抗IgG Ab作為對照(2.5 mg/kg);媒劑、5% DMSO;PD-1、抗PD-1單株抗體(2.5 mg/kg);瑞戈非尼(30 mg/kg);卡博替尼(30 mg/kg);西達本胺-k30 (50 mg/kg);司曲替尼(20 mg/kg);塞內昔布(50 mg/kg)。首先,在攜帶CT26腫瘤之小鼠中評估抗PD-1 Ab與具有或不具有西達本胺-k30之瑞戈非尼的組合。記錄(A)總腫瘤體積、(B)個別腫瘤體積、(C)小鼠體重、(D)動物存活率及復發率。第二,評估在攜帶CT26之小鼠中抗-PD-1 Ab與具有或不具有西達本胺-k30之卡博替尼的組合。記錄(E)總腫瘤體積、(F)個別腫瘤體積、(G)小鼠體重、(H)動物存活率及復發率。第三,在攜帶CT26之小鼠中評估不同TKI與西達本胺-k30之組合。(I)總腫瘤體積、(J)個別腫瘤體積、(K)小鼠體重、(L)動物存活率及復發率。在腫瘤植入後,按指示治療攜帶CT26腫瘤之小鼠,且在腫瘤體積為3000 mm 3時實施安樂死。資料以平均值±SEM給出;*P < 0.05,**P < 0.01,***P < 0.001,****P < 0.0001,使用Tukey檢驗之單向ANOVA。*,與IgG相比;#,與PD-1相比。使用對數秩(Mantel-Cox)測試測定總存活率之 p值,比較各組,* P<0.05,** P<0.01,*** P<0.001,**** P<0.0001。

Claims (20)

  1. 一種包含組蛋白去乙醯酶(HDAC)抑制劑或其藥學上可接受之鹽及酪胺酸激酶抑制劑(TKI)或其藥學上可接受之鹽的組合之用途,其用於製造用以藉由克服腫瘤微環境中之免疫抑制或刺激免疫反應來抑制或治療個體中之癌症的單一藥劑或多種藥劑,其中該HDAC抑制劑或其藥學上可接受之鹽及酪胺酸激酶抑制劑或其藥學上可接受之鹽調配為一種藥劑,或該HDAC抑制劑及酪胺酸激酶抑制劑各自調配為用於同時、分開或依序投與之單一藥劑。
  2. 一種組合在製造用於藉由克服腫瘤微環境中之免疫抑制或刺激免疫反應來抑制或治療個體中之癌症的單一藥劑或多種藥劑中之用途,其中該組合包含組蛋白去乙醯酶(HDAC)抑制劑或其藥學上可接受之鹽、酪胺酸激酶抑制劑(TKI)或其藥學上可接受之鹽與免疫檢查點抑制劑(ICI)之組合;其中該組蛋白去乙醯酶(HDAC)抑制劑或其藥學上可接受之鹽、該酪胺酸激酶抑制劑(TKI)或其藥學上可接受之鹽及該免疫檢查點抑制劑調配為一種藥劑,或該HDAC抑制劑或其藥學上可接受之鹽、酪胺酸激酶抑制劑或其藥學上可接受之鹽及免疫檢查點抑制劑中之一或兩者調配為用於同時、分開或依序投與之多種藥劑。
  3. 如請求項1或2之用途,其中該癌症為黑色素瘤、頭頸癌、梅克爾細胞癌(merkel cell carcinoma)、肝細胞癌、腎細胞癌、大腸直腸癌、子宮內膜癌、子宮頸癌、食道鱗狀細胞癌、小細胞肺癌、非小細胞肺癌、乳癌、胃癌、食管胃交界部癌、典型霍奇金氏淋巴瘤(classical Hodgkin lymphoma)、非霍奇金氏淋巴瘤(Non-Hodgkin lymphoma)、尿道上皮癌、原發性縱隔大B細胞淋巴瘤、神經膠母細胞瘤、胰臟癌、良性前列腺增生、前列腺癌、卵巢癌、慢性淋巴球性白血病、梅克爾細胞癌、急性骨髓性白血病、膽囊癌、膽管癌、膀胱癌或子宮癌。
  4. 如請求項1或2之用途,其中該癌症為免疫檢查點抑制劑抗性癌症或對癌症免疫療法不起反應之癌症。
  5. 如請求項1或2之用途,其中該個體尚未接受癌症療法。
  6. 如請求項5之用途,其中該個體已接受癌症療法但治療失敗。
  7. 如請求項1或2之用途,其中該HDAC抑制劑或其藥學上可接受之鹽為必須抑制I類HDAC之I類選擇性HDAC抑制劑或泛HDAC抑制劑。
  8. 如請求項1或2之用途,其中該HDAC抑制劑或其藥學上可接受之鹽為苯甲醯胺類HDAC抑制劑。
  9. 如請求項1或2之用途,其中該HDAC抑制劑或其藥學上可接受之鹽為西達本胺(Chidamide)、恩替諾特(Entinostat)、伏立諾他(Vorinostat)、羅米地辛(Romidepsin)、帕比司他(Panobinostat)、貝利司他(Belinostat)、丙戊酸(Valproic acid)、莫塞替諾特(Mocetinostat)、艾貝司他(Abexinostat)、普雷司他(Pracinostat)、瑞米司他(Resminostat)、吉維司他(Givinostat) 奎諾司他(Quisinostat)、度馬諾司他(Domatinostat)、奎斯司他(Quisnostat)、CUDC-101、CUDC-907、普雷司他(Pracinostat)、西他司他(Citarinostat)、卓西司他(Droxinostat)、艾貝司他(Abexinostat)、瑞考司他(Ricolinostat)、泰克地那林(Tacedinaline)、非美諾司他(Fimepinostat)、突巴辛(Tubacin)、瑞米司他、ACY-738、替諾斯汀(Tinostamustine)、土巴他汀A (Tubastatin A)、吉維司他(Givinostat)或達諾司他(Dacinostat)或其藥學上可接受之鹽。
  10. 如請求項1或2之用途,其中該TKI或其藥學上可接受之鹽為受體酪胺酸激酶之抑制劑。
  11. 如請求項1或2之用途,其中該TKI或其藥學上可接受之鹽為血管內皮生長因子受體(VEGFR)之抑制劑。
  12. 如請求項1或2之用途,其中該TKI或其藥學上可接受之鹽為卡博替尼(Cabozantinib)、瑞戈非尼(Regorafenib)、阿西替尼(Axitinib)、阿法替尼(Afatinib)、尼達尼布(Nintedanib)、克唑替尼(Crizotinib)、阿來替尼(Alectinib)、曲美替尼(Trametinib)、達拉非尼(Dabrafenib)、舒尼替尼(Sunitinib)、魯索利替尼(Ruxolitinib)、維羅非尼(Vemurafenib)、索拉非尼(Sorafenib)、普納替尼(Ponatinib)、康奈非尼(Encorafenib)、布加替尼(Brigatinib)、帕唑帕尼(Pazopanib)、達沙替尼(Dasatinib)、伊馬替尼(Imatinib)、樂伐替尼(Lenvatinib)、凡德他尼(Vandetanib)、索凡替尼(surufatinib)或司曲替尼(Sitravatinib)或其藥學上可接受之鹽。
  13. 如請求項2之用途,其中該免疫檢查點抑制劑為抗細胞毒性T-淋巴球抗原4 (CTLA-4)抗體、抗程式化細胞死亡蛋白1 (PD-1)抗體、抗程式化死亡-配位體1 (PD-L1)抗體、抗T細胞免疫球蛋白及黏蛋白域3 (TIM-3)抗體、抗B淋巴球及T淋巴球衰減因子(BTLA)抗體、抗含V域Ig之T細胞活化抑制因子(VISTA)抗體、抗淋巴球活化基因3 (LAG-3)抗體、A2AR (腺苷A2A受體)抑制劑、CD276 (B7同系物3)抑制劑或抗體、VCTN1抑制劑或抗體、KIR (殺傷細胞免疫球蛋白樣受體)抑制劑或抗體。
  14. 如請求項2之用途,其中該免疫檢查點抑制劑為派姆單抗(pembrolizumab)、蘭利珠單抗(lambrolizumab)、皮立珠單抗(pidilizumab)、納武單抗(nivolumab)、度伐利尤單抗(durvalumab)、阿維魯單抗(avelumab)或阿特珠單抗(atezolizumab)。
  15. 如請求項1或2之用途,其中該組合中該HDAC抑制劑及該TKI之量分別在約10% (w/w)至約70% (w/w)及約10% (w/w)至約70% (w/w)的範圍內。
  16. 如請求項2之用途,其中該組合中免疫檢查點抑制劑之量在約0.5% (w/w)至約20% (w/w)的範圍內。
  17. 如請求項1或2之用途,其中該組合進一步包含一或多種額外抗癌劑。
  18. 一種藥物組合,其包含如下藥物組合,該藥物組合包含組蛋白去乙醯酶(HDAC)抑制劑或其藥學上可接受之鹽及酪胺酸激酶抑制劑(TKI)或其藥學上可接受之鹽;其中該HDAC抑制劑或其藥學上可接受之鹽及酪胺酸激酶抑制劑或其藥學上可接受之鹽調配為一種藥劑,或該HDAC抑制劑及酪胺酸激酶抑制劑各自調配為用於同時、分開或依序投與之單一藥劑;其中該藥物組合中該HDAC抑制劑及該TKI之量分別在約10% (w/w)至約70% (w/w)及約10% (w/w)至約70% (w/w)的範圍內。
  19. 如請求項18之藥物組合,其中該藥物組合進一步包含免疫檢查點抑制劑。
  20. 如請求項19之藥物組合,其中該藥物組合中之該免疫檢查點抑制劑在約0.5% (w/w)至約20% (w/w)的範圍內。
TW110116080A 2021-02-10 2021-05-04 一種用於克服免疫抑制或刺激抗癌免疫反應的藥物組合和方法 TW202231275A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/CN2021/076503 2021-02-10
PCT/CN2021/076503 WO2022170557A1 (en) 2021-02-10 2021-02-10 A pharmaceutical combination and method for overcoming immune suppression or stimulating immune response against cancer

Publications (1)

Publication Number Publication Date
TW202231275A true TW202231275A (zh) 2022-08-16

Family

ID=82837439

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110116080A TW202231275A (zh) 2021-02-10 2021-05-04 一種用於克服免疫抑制或刺激抗癌免疫反應的藥物組合和方法

Country Status (5)

Country Link
EP (1) EP4291238A1 (zh)
JP (1) JP2024508395A (zh)
CN (1) CN116887864A (zh)
TW (1) TW202231275A (zh)
WO (1) WO2022170557A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116994770B (zh) * 2023-09-27 2024-01-02 四川省医学科学院·四川省人民医院 一种基于多维度分析的免疫人群确定方法和系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107735104B (zh) * 2015-06-25 2022-05-03 免疫医疗公司 组合抗hla-dr抗体或抗trop-2抗体与微管抑制剂、parp抑制剂、布鲁顿激酶抑制剂或磷酸肌醇3-激酶抑制剂使癌症治疗结果显著改善
WO2017160717A2 (en) * 2016-03-15 2017-09-21 Memorial Sloan Kettering Cancer Center Method of treating diseases using kinase modulators
EP3829637A1 (en) * 2018-08-05 2021-06-09 Da Volterra Method for improving anticancer agent efficacy
MX2021005240A (es) * 2018-11-08 2021-06-18 Aurigene Discovery Tech Ltd Combinacion de inhibidores de peque?as moleculas cd-47 con otros agentes anticancer.
CN111973747A (zh) * 2019-05-23 2020-11-24 正大天晴药业集团股份有限公司 用于联合治疗卵巢癌的喹啉衍生物
CN112043702A (zh) * 2019-06-05 2020-12-08 正大天晴药业集团股份有限公司 用于联合治疗结直肠癌的喹啉类化合物

Also Published As

Publication number Publication date
EP4291238A1 (en) 2023-12-20
CN116887864A (zh) 2023-10-13
JP2024508395A (ja) 2024-02-27
WO2022170557A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
Martin-Orozco et al. WNT signaling in tumors: the way to evade drugs and immunity
RU2738566C2 (ru) Способ и фармацевтическая комбинация для устранения иммуносупрессии в микроокружении опухоли или стимуляции активности иммунной системы против раковых клеток
US20200253979A1 (en) Therapeutic methods relating to hsp90 inhibitors
RU2745678C2 (ru) Способы лечения рака
CN110996952A (zh) 用于治疗癌症的方法
US20180319886A1 (en) Use of pentoxifylline with immune checkpoint-blockade therapies for the treatment of melanoma
CA3186504A1 (en) Bicycle conjugates specific for nectin-4 and uses thereof
CA3107023A1 (en) Ep4 inhibitors and synthesis thereof
Ortega-Franco et al. First-line immune checkpoint inhibitors for extensive stage small-cell lung cancer: clinical developments and future directions
Yang et al. Targeting RAS mutants in malignancies: successes, failures, and reasons for hope
TW202231275A (zh) 一種用於克服免疫抑制或刺激抗癌免疫反應的藥物組合和方法
US20220251218A1 (en) Pharmaceutical combination and method for overcoming immune suppression or stimulating immune response against cancer
US10457740B1 (en) Methods and compositions for treating cancer using P2RX2 inhibitors
US20220016142A1 (en) Combination therapy for treatment of cancer
US20240240255A1 (en) Bicycle conjugates specific for nectin-4 and uses thereof
WO2023053142A1 (en) Novel combination of serotonin receptor (5-htr2b) antagonist and an immunomodulator and chemotherapeutic drugs for inhibition of cancer
Dachs et al. OPEN ACCESS EDITED BY
Huang Exploring Novel Strategies to Sensitize Melanoma to Immunotherapy and Targeted Therapies
del Rincóna et al. Translation of cancer immunotherapy from the bench to the bedside
DeVito et al. Immune Checkpoint Combinations with Inflammatory Pathway Modulators
Tsai Identification and Characterization of Regorafenib and NU7441 as Targeted Immunotherapies for Melanoma