TW202226739A - Electrostatic chuck, lower electrode element and plasma processing apparatus in which the electrostatic chuck includes a plurality of zones and a first ventilation hole provided in a protrusion part of one of the zones - Google Patents
Electrostatic chuck, lower electrode element and plasma processing apparatus in which the electrostatic chuck includes a plurality of zones and a first ventilation hole provided in a protrusion part of one of the zones Download PDFInfo
- Publication number
- TW202226739A TW202226739A TW110140346A TW110140346A TW202226739A TW 202226739 A TW202226739 A TW 202226739A TW 110140346 A TW110140346 A TW 110140346A TW 110140346 A TW110140346 A TW 110140346A TW 202226739 A TW202226739 A TW 202226739A
- Authority
- TW
- Taiwan
- Prior art keywords
- electrostatic chuck
- region
- area
- substrate
- outer region
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32715—Workpiece holder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67063—Apparatus for fluid treatment for etching
- H01L21/67069—Apparatus for fluid treatment for etching for drying etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6831—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
- H01L21/6833—Details of electrostatic chucks
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Drying Of Semiconductors (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
本發明涉及半導體處理裝置的領域,特別地涉及靜電吸盤、下電極元件及等離子體處理裝置。The present invention relates to the field of semiconductor processing devices, in particular to electrostatic chucks, lower electrode elements and plasma processing devices.
靜電吸盤(ESC)是等離子體蝕刻裝置(尤其是反應離子蝕刻(RIE)裝置)中最關鍵的元件之一。靜電吸盤通過靜電力吸附固定放置在其上的待處理晶圓,並且可以通過下方的基座調節待處理晶圓的溫度。隨著半導體技術的進步和蝕刻應用的多樣性對靜電吸盤提出了更多苛刻要求,例如要求更好的晶圓溫度均勻性和更好的中心到邊緣溫度調節功能。此外,應用環境的多樣性需要靜電吸盤在更大的溫度範圍、更高的功率、更高的電壓、更大的射頻頻率範圍內工作。這極大地增加了靜電吸盤元件(即下電極元件)中各個部分的機械應力、熱應力、化學應力和電性應力。如果對這些應力處理不當,可能會損壞靜電吸盤。當靜電吸盤損壞時,通常會成為等離子處理裝置的主要故障。結合所有這些因素對靜電吸盤的設計和製造提出了嚴峻的挑戰。Electrostatic chuck (ESC) is one of the most critical elements in plasma etching equipment, especially reactive ion etching (RIE) equipment. The electrostatic chuck absorbs and fixes the wafer to be processed placed on it by electrostatic force, and the temperature of the wafer to be processed can be adjusted through the base below. Advances in semiconductor technology and the diversity of etch applications place more stringent requirements on electrostatic chucks, such as better wafer temperature uniformity and better center-to-edge temperature regulation. In addition, the diversity of application environments requires electrostatic chucks to operate in a larger temperature range, higher power, higher voltage, and larger RF frequency range. This greatly increases the mechanical, thermal, chemical and electrical stress of the various parts in the electrostatic chuck element (ie the lower electrode element). Improper handling of these stresses can damage the electrostatic chuck. When the electrostatic chuck is damaged, it often becomes a major failure of the plasma processing unit. Combining all these factors presents serious challenges to the design and manufacture of electrostatic chucks.
第一方面,本發明提供了一種用於等離子體處理裝置的靜電吸盤,所述靜電吸盤包括:多個區域,所述多個區域中的第一區域包括朝向所述靜電吸盤的中心突出的突出部;第一通氣孔,所述第一通氣孔設置在所述突出部中。In a first aspect, the present invention provides an electrostatic chuck for a plasma processing apparatus, the electrostatic chuck comprising: a plurality of regions, a first region of the plurality of regions comprising a protrusion protruding toward the center of the electrostatic chuck part; a first ventilation hole, the first ventilation hole is provided in the protruding part.
第二方面,本發明提供了一種用於等離子體處理裝置的下電極元件,包括:上述的靜電吸盤,用於承載放置在其上的基片;基座,設置在所述靜電吸盤的下方;結合層,設置在所述靜電吸盤和所述基座之間,以結合所述靜電吸盤和所述基座。In a second aspect, the present invention provides a lower electrode element for a plasma processing device, comprising: the above-mentioned electrostatic chuck for carrying a substrate placed thereon; a base, disposed below the electrostatic chuck; A bonding layer is disposed between the electrostatic chuck and the base to bond the electrostatic chuck and the base.
協力廠商面,本發明提供了一種等離子體處理裝置,包括:反應腔;上述的下電極元件,所述下電極元件設置在所述反應腔內,待處理基片承載在所述下電極元件上;供氣裝置,向所述反應腔提供反應氣體以產生等離子體處理基片。As a third-party manufacturer, the present invention provides a plasma processing device, comprising: a reaction chamber; the above-mentioned lower electrode element, the lower electrode element is arranged in the reaction chamber, and the substrate to be processed is carried on the lower electrode element ; A gas supply device, which provides a reaction gas to the reaction chamber to generate a plasma treatment substrate.
為使本發明的內容更加清楚易懂,以下結合說明書附圖,對本發明的內容作進一步說明。當然本發明並不局限於該具體實施例,本發明所屬技術領域中具有通常知識者所熟知的一般替換也涵蓋在本發明的保護範圍內。In order to make the content of the present invention clearer and easier to understand, the content of the present invention will be further described below with reference to the accompanying drawings. Of course, the present invention is not limited to the specific embodiment, and general replacements known to those skilled in the art in the technical field to which the present invention pertains are also covered within the protection scope of the present invention.
在等離子體處理基片過程中需要保持基片上良好的溫度均勻性。處理製程中還希望考慮調整基片中心和邊緣之間溫度的能力,以補償由處理腔內的其他處理過程或硬體條件所引起的不均勻性。現有多種方法來提高溫度均勻性和可調性。一種方法是在基座中構造多個冷卻液通道。一種替代方法是在靜電吸盤表面上構造多個區域。下面簡述一些影響基片溫度均勻性的因素以及相應的手段。It is desirable to maintain good temperature uniformity on the substrate during plasma processing of the substrate. The ability to adjust the temperature between the center and edge of the substrate to compensate for non-uniformities caused by other processing or hardware conditions within the processing chamber is also desirable during processing. Various methods exist to improve temperature uniformity and adjustability. One approach is to construct multiple coolant channels in the base. An alternative approach is to construct multiple areas on the surface of the electrostatic chuck. Some factors that affect the temperature uniformity of the substrate and the corresponding means are briefly described below.
為了控制蝕刻過程中要處理的基片的溫度,可以通過兩種主要機制從基片中導走熱量:In order to control the temperature of the substrate being processed during etching, heat can be conducted away from the substrate through two main mechanisms:
(1)在基片被靜電吸盤吸附的情況下,熱量通過固體-固體接觸從基片傳遞到靜電吸盤。基片的背面和靜電吸盤的頂面之間的物理接觸促進了熱傳導。影響此熱傳導的因素有:(1) In the case where the substrate is attracted by the electrostatic chuck, heat is transferred from the substrate to the electrostatic chuck through solid-solid contact. Physical contact between the backside of the substrate and the topside of the electrostatic chuck promotes thermal conduction. Factors that affect this heat transfer are:
(A)基片與靜電吸盤之間的區域:基片與靜電吸盤之間的重疊區域由機械接觸區域和非機械接觸區域組成。靜電吸盤的表面通常包括一個或多個密封帶以分隔基片和靜電吸盤之間的氦氣,以及為放置在靜電吸盤上的基片提供額外的機械支撐點的台部(或台部點)。當基片與靜電吸盤之間的空間充滿諸如氦氣的氣體介質時,從基片到靜電吸盤的熱傳遞可以通過機械接觸區域,也可以通過非機械接觸區域。(A) The area between the substrate and the electrostatic chuck: The overlapping area between the substrate and the electrostatic chuck consists of a mechanical contact area and a non-mechanical contact area. The surface of the electrostatic chuck typically includes one or more sealing tapes to separate the helium gas between the substrate and the electrostatic chuck, as well as a stage (or stage point) that provides an additional point of mechanical support for the substrate placed on the electrostatic chuck . When the space between the substrate and the electrostatic chuck is filled with a gaseous medium such as helium, the heat transfer from the substrate to the electrostatic chuck can be through the mechanical contact area or the non-mechanical contact area.
(B)靜電吸盤表面的粗糙度(Ra):較小的Ra,即較光滑的表面,在基片和靜電吸盤之間具有較高的導熱性。(B) Roughness (Ra) of the electrostatic chuck surface: A smaller Ra, i.e. a smoother surface, has a higher thermal conductivity between the substrate and the electrostatic chuck.
(C)基片與埋在靜電吸盤中的直流電極之間的夾持電壓,這反過來又決定基片與靜電吸盤之間的夾持力。將(B)和(C)中的兩個因素結合起來可以有效地轉化為接觸壓力的概念。(C) The clamping voltage between the substrate and the DC electrode buried in the electrostatic chuck, which in turn determines the clamping force between the substrate and the electrostatic chuck. Combining the two factors in (B) and (C) can be effectively translated into the concept of contact pressure.
(2)當基被靜電吸盤靜電吸附時,熱量通過基片的背面和靜電吸盤的頂面之間的導熱氣體經固體-氣體-固體接觸從基片傳遞到靜電吸盤。(2) When the substrate is electrostatically adsorbed by the electrostatic chuck, heat is transferred from the substrate to the electrostatic chuck through the heat-conducting gas between the backside of the substrate and the top surface of the electrostatic chuck via solid-gas-solid contact.
氬氣通常用於物理氣相沉積(PVD)應用中,而氦氣通常用於蝕刻應用。在蝕刻應用中使用氦氣的原因有:Argon is typically used in physical vapor deposition (PVD) applications, while helium is typically used in etching applications. Reasons to use helium in etching applications are:
(I)在除氫氣之外的所有氣體中,氦氣的導熱係數最高(請參見表1)。出於安全考慮,通常避免使用氫氣,除非使用氫氣的好處超過了其潛在的風險。此外,氫可能會在蝕刻製程中產生有害的化學反應。由於氫的原子品質較小,因此用渦輪泵也更難以抽出氫氣,因此會對壓力和處理中的化學物質等產生更大的影響。(I) Among all gases except hydrogen, helium has the highest thermal conductivity (see Table 1). For safety reasons, the use of hydrogen is generally avoided unless the benefits of using hydrogen outweigh its potential risks. In addition, hydrogen can cause harmful chemical reactions during the etching process. Due to its smaller atomic mass, hydrogen is also more difficult to pump out with a turbo pump and therefore has a greater effect on things like pressure and chemicals in the process.
(II)氦氣是惰性氣體,通常對蝕刻製程的影響很小。儘管氬氣也是一種惰性氣體,但它的原子品質比氦氣大得多,因此會在蝕刻製程中對輔助離子產生更大的影響。
一些因素會影響固體-氣體-固體的導熱係數,製程工程師可以在蝕刻過程中控制這些因素,而設計工程師在設計靜電吸盤功能時可以利用這些參數。這些因素是:Several factors affect solid-gas-solid thermal conductivity, which process engineers can control during etching and which design engineers can leverage when designing electrostatic chuck functions. These factors are:
(A)基片和靜電吸盤之間的重疊區域。(A) The overlapping area between the substrate and the electrostatic chuck.
(B)基片和靜電吸盤之間的氦氣密度:可以通過設置特定的氣體壓力,將氣體密度控制在所需值。 (氣體密度與氣體壓力成正比:PV=nRT,其中P、V、T分別為氣體壓力、體積和溫度;n為氣體密度;R為理想氣體常數。) (B) Helium density between the substrate and the electrostatic chuck: The gas density can be controlled to a desired value by setting a specific gas pressure. (Gas density is proportional to gas pressure: PV=nRT, where P, V, T are gas pressure, volume, and temperature, respectively; n is gas density; R is ideal gas constant.)
(C)氣體的平均自由程:當氣體的平均自由程大於或等於基片與靜電吸盤表面之間的間隙時,氣體密度因數對導熱係數有效。否則,在到達一定的氣體壓力後通過氣體介質的熱導會達到飽和,該一定的氣體壓力與上述氣體密度有關。(C) Mean free path of the gas: When the mean free path of the gas is greater than or equal to the gap between the substrate and the surface of the electrostatic chuck, the gas density factor is effective for thermal conductivity. Otherwise, the thermal conductivity through the gas medium will reach saturation after reaching a certain gas pressure, which is related to the above-mentioned gas density.
圖1示出了根據本發明的一個實施例的用於等離子體處理裝置的下電極元件的示意圖。該下電極元件100主要由靜電吸盤101和基座102組成,該靜電吸盤101通過結合層103結合到下電極的基座102上。靜電吸盤101上方承載待處理的基片200。靜電吸盤101通常由半導體或絕緣陶瓷材料製成,例如氧化鋁或氮化鋁。基座102通常由導電金屬材料製成,例如鋁、不銹鋼或鈦。通常,將射頻(RF)功率通過射頻電源250輸送到基座102以激發等離子體。FIG. 1 shows a schematic diagram of a lower electrode element for a plasma processing apparatus according to one embodiment of the present invention. The
基座102可包括一個或更多個嵌入式加熱元件以及冷卻液的管道105,以控制基座102的橫向溫度分佈。管道105可以流體耦接到流體源,流體源使調節溫度的流體循環通過管道105。可藉由加熱器電源調節一個或更多個嵌入式加熱元件。在一個實施方式中,可以利用管道105和一個或更多個嵌入式加熱元件來控制基座102的溫度,從而加熱和/或冷卻靜電吸盤101和被處理的基片200。可以使用多個溫度感測器來監控靜電吸盤和傳熱基座102的溫度,溫度感測器可以使用控制器監控。The
在下電極元件100中設置有連接到外部氣體源的一個或多個第一氣體通道106,該第一氣體通道106與貫穿靜電吸盤101的一個或多個第二氣體通道104對應連接組成氣體管路。在基片200處理時,可在受控的壓力下提供背側氣體(例如氦氣)到該氣體管路中,以增強靜電吸盤101與基片200中間的傳熱。影響基片200的背面與靜電吸盤101之間的傳熱因素已在上文論述。One or more
圖2示出了根據一個實施例的在半導體處理過程中的矽片溫度分佈圖。通常,基片的邊緣的溫度高於基片的中心的溫度。在該實施例中,處於基片的中心區域和邊緣區域之間的中間區域溫度最低。實際中,期望降低基片的邊緣的溫度以改善基片的溫度的均勻性。更有利的是,能具備將基片的邊緣的溫度調整到高於、等於或低於基片的中心溫度的溫控調節能力。FIG. 2 illustrates a temperature profile of a silicon wafer during semiconductor processing, according to one embodiment. Typically, the edge of the substrate is at a higher temperature than the center of the substrate. In this embodiment, the temperature is lowest in the middle region between the central region and the edge region of the substrate. In practice, it is desirable to reduce the temperature of the edge of the substrate to improve the uniformity of the temperature of the substrate. More advantageously, it has the ability to adjust the temperature of the edge of the substrate to be higher, equal to or lower than the temperature of the center of the substrate.
導致基片的邊緣的溫度更高的兩個因素是:Two factors that cause the edge of the substrate to be hotter are:
(1)基片直徑大於靜電吸盤,並且在靜電吸盤的邊緣之外懸垂約1-2mm(如圖1中的210部分)。懸垂晶片區域和靜電吸盤之間沒有物理接觸,因此熱量無法有效地從懸垂區域吸收,從而導致溫度升高。(1) The diameter of the substrate is larger than that of the electrostatic chuck, and overhangs about 1-2mm outside the edge of the electrostatic chuck (
(2)基片下方的靜電吸盤中的氣體通道中的氦氣壓強為10-80Torr,蝕刻製程期間的腔室壓強範圍為5-200mTorr。這意味著在晶片外側處的氣體壓強從10-80Torr降低到5-200mTorr。隨著氦氣壓強的降低,導熱係數降低,從基片吸熱的效率也降低,從而導致溫度升高。(2) The helium pressure in the gas channel in the electrostatic chuck under the substrate is 10-80 Torr, and the chamber pressure during the etching process is in the range of 5-200 mTorr. This means that the gas pressure at the outside of the wafer is reduced from 10-80 Torr to 5-200 mTorr. As the helium pressure decreases, the thermal conductivity decreases and the efficiency of heat absorption from the substrate decreases, resulting in an increase in temperature.
為了克服該缺點,可以在靜電吸盤的表面上構造多個氦氣區域,例如,可以在外部區域施加較高的氦氣壓強,以降低基片的邊緣的溫度,同時在內部區域施加較低的氦氣壓強。To overcome this drawback, multiple helium regions can be constructed on the surface of the electrostatic chuck, for example, a higher helium pressure can be applied in the outer regions to reduce the temperature of the edges of the substrate, while a lower helium pressure can be applied in the inner regions Helium pressure.
圖3示出了根據一個實施例的靜電吸盤的上表面的例示圖案的俯視圖。靜電吸盤300是由氮化鋁(AlN)或氧化鋁(Al
2O
3)組成。靜電吸盤300也可以替代地由氧化鈦(TiO)、氮化鈦(TiN)、碳化矽(SiC)、或類似物組成。靜電吸盤300中可以埋設直流電極以通過靜電感應吸附並固定住上方的基片。靜電吸盤300包括兩個區域:內區域310和外區域320。在該實施例中,內區域310是圓形區域且外區域320是環形區域。在內區域310中,設置有四個氣體通道315。在外區域320中,也設置有四個氣體通道325。為了說明的目的,僅圖示出8個氣體通道。然而,靜電吸盤300中也可以存在任意數量的氣體通道。氣體通道315、325中通入傳熱氣體以吸收基片的熱量,例如氦氣。內區域310對應於基片的邊緣區域,外區域320對應與基片的中心區域。
3 shows a top view of an exemplary pattern of an upper surface of an electrostatic chuck according to one embodiment. The
在內區域310、外區域320之間通過密封帶311分隔開,密封帶311的側面與內區域310、外區域320緊貼,上表面與靜電吸盤300的上表面或台部的上表面齊平,從而將基片與靜電吸盤之間的氦氣區域分隔成兩個互不連通的區域,以便能獨立調節各區域中的傳熱效率。密封帶由絕緣材料製成,諸如矽膠。在靜電吸盤的外區域320的外周還設置有外圈密封帶321,以防止外區域320的氦氣向處理腔擴散以及將氦氣限制在靜電吸盤300和基片之間的外區域內。The
在一個實施例中,靜電吸盤300對應於圖1中的靜電吸盤101。氣體通道315、325對應於圖1中的第一氣體通道104。In one embodiment,
當外區域320中的氣體通道325太靠近靜電吸盤的邊緣時,結合層103的寬度可能不足以可靠地防止氦氣的洩漏,從而使得氦氣從靜電吸盤與基座之間的縫隙洩漏到靜電吸盤的邊緣以及腔體中。對於雙氦氣區的靜電吸盤,取決於將溫度升高至基片邊緣的過渡點,將內區域與外區域分開的密封帶的位置通常在Φ200mm至Φ280mm的範圍內。對於某些配置和應用,溫度開始升高的位置更靠近靜電吸盤邊緣,這意味著外區域應設計得較窄。When the
圖4示出了根據另一個實施例的靜電吸盤的上表面的例示圖案的俯視圖。在該實施例中,靜電吸盤400包括兩個區域:內區域410和外區域420。外區域420包括環形區域以及朝向靜電吸盤400的圓心O突出的突出部450。在該實施例中,突出部450是半圓形。在其他實施例中,突出部也可以是三角形、梯形、長方形等規則或不規則形狀。氣體通道425設置在突出部450中。這使得外區域420中的氣體通道425相較圖3更遠離靜電吸盤400的邊緣,從而使得從靜電吸盤邊緣到氣體通道425之間的結合層103(結合圖1)具有足夠的寬度以提供防止氣體洩漏的密封效果。如此,氣體通道425中的氦氣不會從結合層103中洩漏到靜電吸盤400的邊緣以及腔室中。在該實施例中,外區域420中的氣體通道425到圓心O的距離大於內區域410中的氣體通道415到圓心O的距離。在其他實施例中,外區域420中的氣體通道425到圓心O的距離小於等於內區域410中的氣體通道415到圓心O的距離。4 shows a top view of an exemplary pattern of an upper surface of an electrostatic chuck according to another embodiment. In this embodiment,
如上所述,通常在等離子處理中的基片的邊緣的溫度高於中心的溫度。將靜電吸盤分隔成兩部分,每個部分對應於基片的不同區域,則可以通過調整各部分的特性以調節上方基片的溫度均勻性。As mentioned above, the edge temperature of the substrate in plasma processing is generally higher than the temperature at the center. The electrostatic chuck is divided into two parts, each part corresponds to a different area of the substrate, and the temperature uniformity of the upper substrate can be adjusted by adjusting the characteristics of each part.
在一個實施例中,外區域420的氣體通道425中通入的氦氣壓強大於內區域410的氣體通道415中通入的氦氣壓強。因為導熱係數和氣體壓強成正相關,當外區域420的氣體通道425中通入的氦氣壓強較大時,能使得基片的邊緣區域的熱量更快地傳導到靜電吸盤和基座上,起到調控基片的溫度的均勻性的效果。此外,靜電吸盤的分區域不僅僅可用於控制基片的溫度均一性,還可以通過各區域特性的獨立設置起到根據特定製程的需要調節基片的各區域溫度。例如,可以根據製程需求,使得基片的邊緣區域的溫度大於、等於或小於基片的中心區域。In one embodiment, the pressure of helium introduced into the
在一個實施例中,靜電吸盤400的上表面還包括向上突出的台部結構。靜電吸盤400的表面可以及具有數百或數千形成在其上的台部。在一些實施例中,台部的高度介於2微米-200微米之間且其尺寸(如直徑)介於0.5毫米到5毫米之間。台部的側壁可以是垂直的或傾斜的。在一個實施例中,每個台面都具有圓邊,即台面邊緣是圓形,則基片與台面邊緣弧形接觸,這可以最小化台面的碎裂並減少基片的背面的顆粒污染,圓邊也可以較少或消除基片的背面由於卡緊所造成的刮傷。台面也可以具有倒角的邊緣。In one embodiment, the upper surface of the
在內外區域之間通過密封帶411分隔開,密封帶411的側面與內外區域緊貼,上表面與靜電吸盤400的台部的上表面齊平,從而將基片與靜電吸盤之間的氦氣區域分隔成兩個互不連通的區域。密封帶由絕緣材料製成,諸如矽膠。在另一個實施例中,外圈密封帶421的上表面與靜電吸盤400的台部的上表面齊平。The inner and outer regions are separated by a sealing
台部的上表面可以根據實際需求設置成各種形狀。圖5a和圖5b示出了靜電吸盤上表面突出台部的兩種形式的示意圖。台部的上表面可以是圓形(圖5a)或六邊形(圖5b)。在一個實施例中,台部501的上表面為圓點形,其直徑為0.5mm-3mm。台部501的上表面的面積占整個靜電吸盤的上表面面積的5%-30%。在另一個實施例中,台部502的上表面為六邊形,其上表面的面積占整個靜電吸盤的上表面面積的20%-80%。台部的上表面與基片直接接觸,其接觸面積是固體-固體的傳熱面積,因此其上表面的面積占比越大,對基片的傳熱效果越佳。當需要降低基片的邊緣區域的溫度時,可以在靜電吸盤400的外區域420設置如圖5b所示的台部,在靜電吸盤400的內區域410設置如圖5a所示的台部。在其他實施例中,台部的上表面形狀是長方形、三角形、八邊形等。根據不同的製程需求,在內外區域中的台部可以設置不同的上表面的面積占比,以改變基片對靜電吸盤的傳熱係數從而控制基片的溫度。The upper surface of the table portion can be set into various shapes according to actual needs. Figures 5a and 5b show schematic views of two forms of protruding mesas from the upper surface of the electrostatic chuck. The upper surface of the mesa can be circular (Fig. 5a) or hexagonal (Fig. 5b). In one embodiment, the upper surface of the
台部的高度可以根據實際需求進行相應的設置。在一個實施例中,外區域420的台部的高度低於內區域410的台部的高度。在基片被吸附在靜電吸盤上時,基片的背面與靜電吸盤的台部緊密接觸。基片處理時,熱量從基片傳導到下電極元件,當台部高度較大時,傳熱距離較大,則溫降也較慢,從而使得基片內區域的溫降小於基片外區域的溫降。The height of the table can be set according to actual needs. In one embodiment, the height of the mesa of the
台部的上表面粗糙度也可以根據實際需求進行相應的設置。在一個實施例中,外區域420的台部的上表面的粗糙度小於內區域410的台部的上表面的粗糙度。因為在基片和靜電吸盤之間的熱傳導取決於表面粗糙度Ra,表面粗糙度越高則傳熱效果越差,所以可以根據期望的內外區域不同的導熱係數來選擇內外區域的表面粗糙度。例如,為了使得基片的邊緣區域溫度下降,設置靜電吸盤的外區域420的上表面粗糙度為小於3微英寸,而靜電吸盤的內區域410的上表面粗糙度為4-8微英寸。The roughness of the upper surface of the table can also be set according to actual needs. In one embodiment, the roughness of the upper surface of the mesa of the
圖6示出了根據另一個實施例的靜電吸盤的上表面的例示圖案的俯視圖。在該實施例中,靜電吸盤600包括三個區域:中心區域610、中間區域620和外側區域630。外側區域630包括環形區域以及朝向靜電吸盤600的圓心O突出的突出部650。在該實施例中,突出部650是半圓形。在其他實施例中,突出部也可以是三角形、梯形、長方形等規則或非規則形狀。氣體通道625設置在突出部650中。這使得外區域630中的氣體通道425更遠離靜電吸盤400的邊緣,從而使得結合層103具有足夠的寬度以提供防止氣體洩漏的密封效果。如此,氣體通道625中的氦氣不會從結合層103中洩漏到靜電吸盤400的邊緣以及腔室中。在該實施例中,外側區域630中的氣體通道635到圓心O的距離大於中間區域620中的氣體通道625到圓心O的距離。在其他實施例中,外側區域630中的氣體通道635到圓心O的距離小於等於中間區域620中的氣體通道625到圓心O的距離。在其他實施例中,中心區域610中設置有氣體通道。6 shows a top view of an exemplary pattern of an upper surface of an electrostatic chuck according to another embodiment. In this embodiment, the
在一個實施例中,靜電吸盤600的上表面還包括向上突出的台部結構。靜電吸盤600的表面可以及具有數百或數千形成在其上的台部。台部的上表面可以根據實際需求設置成各種形狀。台部的上表面可以是圓形或六邊形,也可以是長方形、三角形、八邊形等其他形狀。在一個實施例中,中間區域620的台部的上表面為圓點形,其直徑為0.5mm-3mm。該台部的上表面的面積占整個靜電吸盤的上表面面積的5%-30%。外側區域630和中心區域610的台部的上表面為六邊形,其上表面的面積占整個靜電吸盤的上表面面積的20%-80%。這樣的設置可以有效改善如圖2的矽片溫度的均勻性。In one embodiment, the upper surface of the
在一個實施例中,外側區域630的台部的上表面的粗糙度小於中間區域620的台部的上表面的粗糙度,並且中心區域610的台部的上表面的粗糙度小於中間區域620的台部的上表面的粗糙度。In one embodiment, the roughness of the upper surface of the mesa of the
台部的高度可以根據實際需求進行相應的設置。在一個實施例中,外側區域630的台部的高度低於中間區域620的台部的高度,且中心區域610的台部的高度低於中間區域620的台部的高度。The height of the table can be set according to actual needs. In one embodiment, the height of the mesa of the
需注意到,靜電吸盤的分區域不僅僅可用於控制基片的溫度均一性,還可以通過各區域特性的獨立設置起到根據特定製程的需要調節基片的各區域溫度。例如,可以根據製程需求,使得基片外側區域的溫度大於、等於或小於基片的中間區域,或者使得基片中心區域的溫度大於、等於或小於基片的中間區域。It should be noted that the sub-regions of the electrostatic chuck can not only be used to control the temperature uniformity of the substrate, but also can adjust the temperature of each region of the substrate according to the needs of a specific process by independently setting the characteristics of each region. For example, the temperature of the outer region of the substrate can be higher, equal to or lower than that of the middle region of the substrate, or the temperature of the central region of the substrate can be higher, equal to or lower than the middle region of the substrate according to process requirements.
圖7示出一種電容耦合等離子體(CCP)蝕刻設備結構示意圖,電容耦合等離子體蝕刻設備是一種由施加在極板上的射頻電源通過電容耦合的方式在反應腔內產生等離子體並用於蝕刻的設備。其包括真空反應腔700,真空反應腔700包括由金屬材料製成的大致為圓柱形的反應腔側壁701,反應腔側壁上設置一開口702用於容納基片進出。真空反應腔700內設置一氣體噴淋頭720和一與所述氣體噴淋頭720相對設置的基座710,所述氣體噴淋頭720與一氣體供應裝置725相連,用於向真空反應腔700輸送反應氣體,同時作為真空反應腔700的上電極,所述基座710上方設置一靜電吸盤712,同時作為真空反應腔700的下電極,所述上電極和所述下電極之間形成一反應區域。至少一射頻電源750通過匹配網路752施加到所述上電極或下電極之一,在所述上電極和所述下電極之間產生射頻電場,用以將反應氣體解離為等離子體,等離子體中含有大量的電子、離子、激發態的原子、分子和自由基等活性粒子,上述活性粒子可以和待處理基片的表面發生多種物理和化學反應,使得基片表面的形貌發生改變,即完成蝕刻過程。真空反應腔700的下方還設置一排氣泵740,用於將反應副產物排出真空反應腔700,維持真空反應腔700的真空環境。Figure 7 shows a schematic diagram of the structure of a capacitively coupled plasma (CCP) etching equipment. The capacitively coupled plasma etching equipment is a kind of equipment that generates plasma in a reaction chamber and is used for etching by a radio frequency power supply applied to the plate through capacitive coupling. equipment. It includes a
靜電吸盤712內部設置一靜電電極713,用於產生靜電吸力,以實現在製程過程中對待處理的基片W的支撐固定。在一個或多個實施例中,所述靜電吸盤712是圖4或圖6中的靜電吸盤400或靜電吸盤600。An
靜電吸盤712下方設置加熱裝置714,用於對製程過程中的基片溫度進行控制。環繞所述基座設置聚焦環732及邊緣環734,所述聚焦環732和邊緣環734用於調節基片W周圍的電場或溫度分佈,提高基片W處理的均勻性。環繞所述邊緣環734設置等離子體約束環735,等離子體約束環735上設有排氣通道,通過合理設置排氣通道的深寬比例,在實現將反應氣體排出的同時,將等離子體約束在上下電極之間的反應區域,避免等離子體洩露到非反應區域,造成非反應區域的部件損傷。等離子體約束環735下方設置一中接地環736,中接地環736用於為等離子體約束環735提供電場遮罩;中間接地環736下方設置一下接地環737,中接地環736和下接地環737保持電連接,以在真空反應腔700內形成一射頻接地回路。下接地環737與基座之間設置一遮罩環738,用於將施加到基座上的射頻訊號遮罩在基座內,實現基座與下接地環737的電隔離。A
在其他實施例中,還可使用其他類型的等離子蝕刻裝置,如電感耦合型等離子蝕刻裝置、電子迴旋共振型等離子蝕刻裝置等。In other embodiments, other types of plasma etching apparatuses may also be used, such as inductively coupled plasma etching apparatuses, electron cyclotron resonance type plasma etching apparatuses, and the like.
雖然本發明已以較佳實施例揭示如上,然所述諸多實施例僅為了便於說明而舉例而已,並非用以限定本發明,本發明所屬技術領域中具有通常知識者在不脫離本發明精神和範圍的前提下可作若干的改動與潤飾,本發明所主張的保護範圍應以申請專利範圍所述為準。Although the present invention has been disclosed above with preferred embodiments, the above-described embodiments are merely examples for the convenience of description and are not intended to limit the present invention. Those skilled in the art to which the present invention pertains do not depart from the spirit and Several changes and modifications can be made under the premise of the scope of the invention, and the protection scope claimed by the present invention shall be subject to the description in the scope of the patent application.
100:下電極元件
101, 300, 400, 600, 712:靜電吸盤
102, 710:基座
103:結合層
104:第二氣體通道
105:管道
106:第一氣體通道
200, W:基片
250, 750:射頻電源
310, 410:內區域
311, 411:密封帶
320, 420:外區域
321, 421:外圈密封帶
315, 325, 415, 425, 635:氣體通道
450, 650:突出部
501, 502:台部
610:中心區域
620:中間區域
630:外側區域
700:真空反應腔
701:反應腔側壁
702:開口
713:靜電電極
714:加熱裝置
720:氣體噴淋頭
725:氣體供應裝置
732:聚焦環
734:邊緣環
735:等離子體約束環
736:中接地環
737:下接地環
738:遮罩環
752:匹配網路
740:排氣泵
O:圓心
100:
圖1示出了根據本發明的一個實施例的用於等離子體處理裝置的下電極元件的示意圖。 圖2示出了根據一個實施例的在半導體處理過程中的矽片溫度分佈圖。 圖3示出了根據一個實施例的靜電吸盤的上表面的例示圖案的俯視圖。 圖4示出了根據另一個實施例的靜電吸盤的上表面的例示圖案的俯視圖。 圖5a-圖5b示出了靜電吸盤上表面突出台部的示意圖。 圖6示出了根據另一個實施例的靜電吸盤的上表面的例示圖案的俯視圖。 圖7示出了根據一個實施例的電容耦合等離子體(CCP)蝕刻設備的結構示意圖。 FIG. 1 shows a schematic diagram of a lower electrode element for a plasma processing apparatus according to one embodiment of the present invention. FIG. 2 illustrates a temperature profile of a silicon wafer during semiconductor processing, according to one embodiment. 3 shows a top view of an exemplary pattern of an upper surface of an electrostatic chuck according to one embodiment. 4 shows a top view of an exemplary pattern of an upper surface of an electrostatic chuck according to another embodiment. Figures 5a-5b show schematic diagrams of protruding mesas on the upper surface of the electrostatic chuck. 6 shows a top view of an exemplary pattern of an upper surface of an electrostatic chuck according to another embodiment. FIG. 7 shows a schematic structural diagram of a capacitively coupled plasma (CCP) etching apparatus according to one embodiment.
400:靜電吸盤 400: Electrostatic chuck
410:內區域 410: Inner Zone
411:密封帶 411: sealing tape
420:外區域 420: Outer Zone
421:外圈密封帶 421: Outer ring sealing belt
415,425:氣體通道 415, 425: Gas channel
450:突出部 450: Protrusion
O:圓心 O: center of circle
Claims (18)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011597601.7 | 2020-12-29 | ||
CN202011597601.7A CN114695047A (en) | 2020-12-29 | 2020-12-29 | Electrostatic chuck, lower electrode assembly and plasma processing device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202226739A true TW202226739A (en) | 2022-07-01 |
TWI849353B TWI849353B (en) | 2024-07-21 |
Family
ID=82132714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110140346A TWI849353B (en) | 2020-12-29 | 2021-10-29 | Electrostatic chuck, lower electrode element and plasma processing device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114695047A (en) |
TW (1) | TWI849353B (en) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006001425A1 (en) * | 2004-06-28 | 2006-01-05 | Kyocera Corporation | Electrostatic chuck |
KR100787384B1 (en) * | 2006-04-06 | 2007-12-24 | 이재익 | Electronic static chuck |
JP2010021510A (en) * | 2008-06-13 | 2010-01-28 | Canon Anelva Corp | Substrate support device and plasma processing apparatus |
US10332772B2 (en) * | 2013-03-13 | 2019-06-25 | Applied Materials, Inc. | Multi-zone heated ESC with independent edge zones |
US20150060013A1 (en) * | 2013-09-05 | 2015-03-05 | Applied Materials, Inc. | Tunable temperature controlled electrostatic chuck assembly |
JP6435247B2 (en) * | 2015-09-03 | 2018-12-05 | 新光電気工業株式会社 | Electrostatic chuck device and method of manufacturing electrostatic chuck device |
WO2018183557A1 (en) * | 2017-03-31 | 2018-10-04 | Lam Research Corporation | Electrostatic chuck with flexible wafer temperature control |
CN111354672B (en) * | 2018-12-21 | 2023-05-09 | 夏泰鑫半导体(青岛)有限公司 | Electrostatic chuck and plasma processing apparatus |
JP7333712B2 (en) * | 2019-06-05 | 2023-08-25 | 東京エレクトロン株式会社 | Electrostatic chuck, support table and plasma processing equipment |
-
2020
- 2020-12-29 CN CN202011597601.7A patent/CN114695047A/en active Pending
-
2021
- 2021-10-29 TW TW110140346A patent/TWI849353B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI849353B (en) | 2024-07-21 |
CN114695047A (en) | 2022-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102594442B1 (en) | Plasma processing apparatus | |
TWI574345B (en) | Electrostatic chuck | |
US8826855B2 (en) | C-shaped confinement ring for a plasma processing chamber | |
JP7551765B2 (en) | Sheath and temperature control of a process kit in a substrate processing chamber - Patents.com | |
JP5357639B2 (en) | Plasma processing apparatus and plasma processing method | |
JP6423706B2 (en) | Plasma processing equipment | |
KR100735937B1 (en) | Substrate supporting member and substrate processing apparatus | |
KR20080114612A (en) | Substrate processing apparatus and shower head | |
KR20210122209A (en) | Substrate processing apparatus and substrate processing method | |
WO2015178229A1 (en) | Substrate treatment device | |
KR20170028849A (en) | Focus ring and substrate processing apparatus | |
JP2022542090A (en) | Process kit sheath and temperature control | |
KR20110131157A (en) | Substrate processing apparatus | |
KR20190072383A (en) | Plasma processing apparatus | |
JP2021141277A (en) | Mounting table and plasma processing device | |
CN112992642A (en) | Edge ring and substrate processing apparatus | |
TW202226739A (en) | Electrostatic chuck, lower electrode element and plasma processing apparatus in which the electrostatic chuck includes a plurality of zones and a first ventilation hole provided in a protrusion part of one of the zones | |
JP7145625B2 (en) | Substrate mounting structure and plasma processing apparatus | |
KR101117922B1 (en) | Electrode structure and substrate processing apparatus | |
TWI827991B (en) | Lower electrode element and plasma processing apparatus including lower electrode element | |
KR102421346B1 (en) | Plasma apparatus | |
TW202341224A (en) | Wafer to baseplate arc prevention using textured dielectric | |
US20220293397A1 (en) | Substrate edge ring that extends process environment beyond substrate diameter | |
JP4417731B2 (en) | Plasma processing apparatus and electrostatic adsorption electrode | |
KR20230092684A (en) | Ring assembly and substrate processing apparatus including same |