TW202224997A - 自動駕駛車停車偵測 - Google Patents
自動駕駛車停車偵測 Download PDFInfo
- Publication number
- TW202224997A TW202224997A TW110131406A TW110131406A TW202224997A TW 202224997 A TW202224997 A TW 202224997A TW 110131406 A TW110131406 A TW 110131406A TW 110131406 A TW110131406 A TW 110131406A TW 202224997 A TW202224997 A TW 202224997A
- Authority
- TW
- Taiwan
- Prior art keywords
- space
- available space
- autonomous vehicle
- available
- vehicle
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title abstract description 12
- 230000002265 prevention Effects 0.000 claims abstract description 52
- 238000000034 method Methods 0.000 claims abstract description 34
- 230000004044 response Effects 0.000 claims abstract description 21
- 239000003550 marker Substances 0.000 claims abstract 3
- 230000015654 memory Effects 0.000 claims description 22
- 238000005259 measurement Methods 0.000 claims description 19
- 230000001133 acceleration Effects 0.000 claims description 15
- 238000012545 processing Methods 0.000 claims description 7
- 230000004913 activation Effects 0.000 claims 3
- 230000003213 activating effect Effects 0.000 abstract description 7
- 238000004891 communication Methods 0.000 description 31
- 238000013459 approach Methods 0.000 description 7
- 230000033001 locomotion Effects 0.000 description 6
- 238000010801 machine learning Methods 0.000 description 6
- 230000003068 static effect Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 4
- 238000002379 ultrasonic velocimetry Methods 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 231100001261 hazardous Toxicity 0.000 description 2
- 230000003137 locomotive effect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 241000269400 Sirenidae Species 0.000 description 1
- 230000009118 appropriate response Effects 0.000 description 1
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000008921 facial expression Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 230000008261 resistance mechanism Effects 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 210000000106 sweat gland Anatomy 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/06—Automatic manoeuvring for parking
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/14—Traffic control systems for road vehicles indicating individual free spaces in parking areas
- G08G1/141—Traffic control systems for road vehicles indicating individual free spaces in parking areas with means giving the indication of available parking spaces
- G08G1/143—Traffic control systems for road vehicles indicating individual free spaces in parking areas with means giving the indication of available parking spaces inside the vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D15/00—Steering not otherwise provided for
- B62D15/02—Steering position indicators ; Steering position determination; Steering aids
- B62D15/027—Parking aids, e.g. instruction means
- B62D15/0285—Parking performed automatically
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
- G06V20/586—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of parking space
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/14—Traffic control systems for road vehicles indicating individual free spaces in parking areas
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/14—Traffic control systems for road vehicles indicating individual free spaces in parking areas
- G08G1/145—Traffic control systems for road vehicles indicating individual free spaces in parking areas where the indication depends on the parking areas
- G08G1/147—Traffic control systems for road vehicles indicating individual free spaces in parking areas where the indication depends on the parking areas where the parking area is within an open public zone, e.g. city centre
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/10—Accelerator pedal position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/12—Brake pedal position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/50—Barriers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/53—Road markings, e.g. lane marker or crosswalk
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/40—Dynamic objects, e.g. animals, windblown objects
- B60W2554/404—Characteristics
- B60W2554/4042—Longitudinal speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/40—Dynamic objects, e.g. animals, windblown objects
- B60W2554/404—Characteristics
- B60W2554/4043—Lateral speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/40—Dynamic objects, e.g. animals, windblown objects
- B60W2554/404—Characteristics
- B60W2554/4044—Direction of movement, e.g. backwards
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/40—Dynamic objects, e.g. animals, windblown objects
- B60W2554/404—Characteristics
- B60W2554/4045—Intention, e.g. lane change or imminent movement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/80—Spatial relation or speed relative to objects
- B60W2554/801—Lateral distance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/80—Spatial relation or speed relative to objects
- B60W2554/802—Longitudinal distance
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Traffic Control Systems (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
本文描述用於自動駕駛車停車偵測的系統和方法。該系統和方法涉及偵測可利用空間,該可利用空間包含大於該自動駕駛車的空間尺寸,偵測與該可利用空間相關聯的道路標識,並基於該道路標識及該空間尺寸,判定該可利用空間非停車空間。該系統和方法亦涉及因應判定該可利用空間不是該停車空間而導引該自動駕駛車停在該可利用空間中,並啟動遮擋預防子系統。
Description
本發明係關於自動駕駛車之停車,尤其是偵測可利用停車空間。
自動車被開發以在有限的人為介入下自動化、自適應或增強車輛駕駛能力。當停車時,自動駕駛車可操縱進入指定的停車空間、繼續行駛或返家。在人口稠密的地區,大部分路緣(curb)和小巷(side street)對於附接於自動車輛的感測器而言似乎為可利用的停車空間,但實際上由於建築物(buildings/structures)的出入口必須保持暢通無阻抑或由於停車標誌、危險區域或私有財產,因此實際上為不可利用的。這些不允許停車的區域必須保持可自由通行,以便汽車、卡車和其他移動物體進出指定區域。
及
在以下描述中,出於說明的目的,闡述了許多具體細節以提供對若干例示性實施例的徹底理解。然而,對於所屬技術領域中具有通常知識者來說能明白的是,可在沒有這些具體細節的情況下實施本發明。
隨著自動駕駛車的興起變得越來越受歡迎,自動車現在可在無需與人互動的情況下完全自行駕駛。自動駕駛車(ADV)不需要停在目的地附近,甚至根本不需要長久地停放。作為替代,ADV可尋找出免費的路邊停車、返家或巡行(繞圈)。在此建議的方案是現代化停車的想法,亦包含空巡行時間(empty cruise time)。這些解決方案不能解決ADV在搜尋(或空轉)停車空間時在各個區域巡行時的能源消耗及道路擁堵問題。
在農村和城市地區,未被官方指定為可利用停車空間之空的空間(empty space)實際上可被使用作為ADV的臨時停車空間。這些空的空間包含與車道(driveway)、走道(walkway)或小路(pathway)相交的路緣和小巷,以及亦包含被授權停車官方(parking official)、市政當局(municipality)或私有財產所有人指定為「禁止停車」的開放區域。對於與車道、走道或小路相交的路緣和小巷,當ADV停在不可利用的停車空間時會出現問題,ADV會阻擋到移動物體(例如,汽車、機車、自行車或任何其他物體)的出口或入口,由於停放的ADV擋住車道的通道,本質上限制了移動物體的流動,並阻止它們離開或進入某個區域。
在至少一範例中,提供了一種系統,該系統使ADV能夠單方面識別道路上可能可利用或不可利用的空的空間,並指示ADV停入停車空間並當移動物體接近時,駛離停車空間。舉例而言,系統使用車載感測器驗證路緣的物理尺寸、道路上的道路標識、路緣類型、停放的車輛及在空的空間之近處內的其他結構特徵,以及當空的空間已被驗證,該系統自主地將ADV停放在空的空間中,該空的空間可位於供其他車輛出入的車道前面。當ADV停在空的空間時,系統會識別另外的車輛、物體或移動物體何時接近,並立即做出反應,將ADV移出空的停車空間,以使得移動物體能夠進入或離開車道。
在另一範例中,系統可與中央管理平台應用通訊,以判定所選的區域內的哪些停車空間已被指定為可利用及/或不可利用的停車空間。該系統使用來自中央管理平台的資訊,以基於資訊,識別ADV可停車和自主地離開的位置和時間。在另一範例中,當自動駕駛車停在空的空間時,系統亦可接收來自其他車輛的請求(例如,非自動駕駛車、政府車輛或緊急車輛),以基於偵測接近車輛發出的警示燈、前燈閃爍及其他交通指示(traffic indicator),離開空的空間。
圖1係根據若干範例,自動駕駛車(automated driving vehicle,ADV)102和遮擋預防子系統108的圖示100。如圖1所示,遮擋預防子系統108包含被併入至ADV 102的感測陣列介面104、處理器106、煞車110、加速器112、中斷控制器114、記憶體116、無線通訊控制器118。ADV 102可為能夠至少部分地以自主模式操作的任何類型的車輛,例如商用車、消費者車、休旅車、汽車、卡車、機車或船。
ADV 102可在手動模式下操作,其中駕駛員通常使用踏板來操作ADV 102,包含煞車踏板和加速踏板、方向盤和其他控制。在其他時候,ADV 102可在完全自主模式下操作(例如,ADV 102在沒有使用者介入的情況下操作)。此外,車輛104可在半自主模式下操作(例如,其中車輛104控制駕駛的許多方面,但駕駛員可使用傳統方向盤及諸如語音控制的非傳統輸入來介入或影響操作)。
ADV 102包含感測陣列介面104,其可包含各種前向、側向和後向攝影機、雷達、光達(LIDAR)、超音波或類似的感測器。在本說明書中,前向用於指主要行進方向、座椅設置所面向的方向、當變速器(transmission)設定為行駛(drive)時的行進方向或諸如此類。背向(Rear-facing)或後向(rearward-facing)用於描述朝著與前向(forward)或正向(front-facing)感測器大致上相反方向的感測器。可理解地,某些正向攝影機可具有相對寬的視野,甚至達到180度。
類似地,朝著一定角度(或許偏離中心60度)用於偵測相鄰車道或在ADV 102之近處內的交通或接近車輛的背向或正向攝影機亦可具有相對較寬的視野,其與正向攝影機的視野重疊。側向感測器係從車輛側面朝外的感測器。感測器陣列中的攝影機可包含紅外線或可見光攝影機,能夠以窄的或大的視野進行遠距離或短距離對焦。
此外,ADV 102包含車載診斷系統,以記錄車輛操作及車輛性能(performance)、維護(maintenance)或狀態(status)的其他方面。ADV 102亦可包含各種其他感測器,諸如駕駛員識別感測器(例如,座椅感測器、眼球追蹤(eye tracking)和識別感測器、指紋掃描器、語音辨識模組或諸如此類)、乘員(occupant)感測器或用以偵測風速、室外溫度、氣壓計壓力(barometer pressure)、雨/溼度或諸如此類的各種環境感測器。
遮擋預防子系統108的組件可使用網路進行通訊,該網路可包含區域網路(local-area network,LAN)、廣域網路(wide-area network,WAN)、無線網路(例如,802.11或蜂巢式網路)、公用交換電話網路(Public Switched Telephone Network,PSTN)網路、ad hoc網路、個人區域網路(例如,藍牙)、基於車輛的網路(例如,控制器區域網路(Controller Area Network,CAN)匯流排(BUS))或網路協定和網路類型的其他組合(combination)或排列(permutation)。網路可包含單一區域網路(LAN)或廣域網路(WAN),或者LAN或WAN的組合,例如網際網路。耦合至網路的各種裝置可透過一個或多個有線或無線連接耦合至網路。
在運行中,ADV 102透過感測陣列介面104從前向感測器偵測感測資訊,以偵測物體、移動物體、結構特徵、交通標誌、路標、路緣類型、路緣尺寸資訊或潛在的碰撞危險。前向感測器可包含雷達、光達(LIDAR)、可見光攝影機或其組合。雷達有助於幾乎所有天氣和更遠距離的偵測,LIDAR可有助於更短距離的偵測,攝影機有助於更遠的距離,但在某些天氣狀況下(例如,下雪)通常變得不太起作用。感測器的組合可利用於在不同的操作條件下提供最大範圍的靈活性。
在一範例中,基於感測資訊,整合在遮擋預防子系統108中的處理器106包含機器學習演算法程式,其使系統能夠偵測空的空間(例如,具有路緣、大小和空間尺寸的停車空間),偵測與停車空間相關聯之道路標識,基於道路標識判定停車空間為可利用的或不可利用的,執行真實性檢查(將於下文中討論),判定是否可能發生碰撞,指示與第三方應用(例如,集中式平台)的通訊,識別和偵測接近物體。基於該判定,遮擋預防子系統108可藉由利用煞車110以及煞車110與加速器112的加速操作來起動ADV 102的煞車及/或自動導引進入停車空間。處理器106與中斷控制器114、煞車110及加速器112介接以根據遮擋預防子系統108的配置起動ADV 102的自主偵測和移動。
繼續參考圖1,中斷控制器114被配置以對來自無線通訊控制器118或前向、後向或側向攝影機視覺處理單元(camera vision processing unit)(攝影機VPU)120的中斷訊號進行操作。車輛通訊系統(例如,車輛對車輛(vehicle-to-vehicle,V2V)和基礎設施對車輛(infrastructure-to-vehicle,I2V)通訊範式(paradigm))可與整合至ADV 102中之合作式智慧運輸系統(intelligent transport system,ITS)一起使用。這些系統可擴展車輛的能見度範圍,以超出安裝之車載的昂貴感測器可能實現的範圍。可使用專用短距通訊(Dedicated Short Range Communication,DSRC)或基於蜂巢的通訊(例如,LTE)來實現合作式ITS。
因此,無線通訊控制器118可為4G或5G無線控制器或其他基於無線電的控制器以支援車輛對車輛(V2V)、車輛對基礎設施(V2I)、車輛對任何物(vehicle-to-anything,V2X),或其他類型的通訊。無線通訊控制器118可與道路上的其他車輛、集中式平台應用、基於雲端的資料庫或其他靜態設備通訊(例如,無線電塔(radio tower)、路邊監視器、智慧型交通信號燈(traffic light)或緊急人員)。
在一範例中,攝影機VPU 120用於偵測、擷取和分析從一個或多個前向、側向或後向攝影機偵測到的影像、內容、結構、物體、車輛和其他影像。當攝影機VPU 120用於偵測、擷取及/或分析空的空間、接近ADV 102的移動物體、結構特徵、道路標識、道路中的一般危險或其他潛在危險、或交通指示時,無線通訊控制器118確立一個或多個特定中斷,以傳訊指示中斷控制器114。當一個或多個中斷被確立時,處理器106讀取狀態暫存器或記憶體(例如,從記憶體116),以獲得關於中斷的進一步資訊。處理器106執行規則和常式,以決定適當的回應。
在若干範例中,回應包含但不限於將ADV 102導引至停車空間、起動具有煞車力之煞車應用、起動ADV102的加速驅動力以及朝遠離停車空間的方向導引ADV 102,警示ADV 102的駕駛員停車空間不可利用或無法提供ADV 102的停車空間尺寸。在一範例中,加速驅動力表示自動地或自主地啟動加速器112及ADV 102的其他結構組件,以在一個方向上行駛、移動、導引及加速ADV 102。在另一範例中,起動煞車應用表示套用ADV 102的停車煞車110。煞車力表示由駕駛員(如果處於手動模式)或自主地(例如,由ADV 102自主地減慢或停止車輛)施加至煞車110的力。此外,處理器106可使用無線通訊控制器118傳送訊號,以從集中式平台應用接收交通及停車空間可利用性和不可利用性資訊。
圖2A~2C係根據若干範例,ADV 102偵測接近車輛的圖示。如圖2A所示,ADV 102偵測開放的可利用空間212,其包含鄰近的路緣214和道路標識210。ADV 102藉由判定路緣214是其他車輛可活動地出入的開放式交叉路口路緣以及道路標識210指示可利用空間212由於路緣214的布局(例如,設計用於出入口)亦為不可利用的,而判定可利用空間212是不可利用的停車空間。當ADV 102停在可利用空間212中時,接近車輛(approaching vehicle)202正朝著ADV 102的方向移動,例如,接近車輛202的航向直接指向ADV 102的方向以企圖離開路緣214。ADV 102(與感測陣列介面104通訊)偵測接近車輛202與ADV 102之間的距離,偵測接近車輛202的尺寸,並偵測接近車輛202的航向。當接近車輛202移動接近ADV 102時,ADV 102透過遮擋預防子系統108起動加速驅動力並朝遠離可利用空間212的方向204,導引ADV 102。在另一範例中,遮擋預防子系統108偵測接近車輛202與ADV 102之間的距離並且判定接近車輛202(例如,移動物體)與ADV 102之間的距離超過或小於第一閾值。在若干範例中,第一閾值可為以公制單位(例如,毫米、厘米、公尺、公里)量測的任何值。閾值亦可以英寸或英尺(長度)為單位進行量測。舉例而言,第一閾值代表兩車輛的長度,例如15英尺。當接近車輛202與ADV 102之間的距離小於15英尺時,遮擋預防子系統108起動加速驅動力並朝遠離可利用空間212的方向204,導引ADV 102。在其他範例中,遮擋預防子系統108指定跟接近車輛202與ADV 102之間的距離相關聯的多個閾值。
在另一範例中,遮擋預防子系統108在啟動時偵測朝自動駕駛車之方向接近的移動物體。移動物體包含如上所述的航向。遮擋預防子系統108判定移動物體的航向指向自動駕駛車,以及移動物體與自動駕駛車之間的距離。如果移動物體與自動駕駛車之間的距離小於閾值,則遮擋預防子系統108起動自動駕駛車的加速驅動力,朝遠離可利用空間的方向,導引自動駕駛車。舉例而言,遮擋預防子系統108將車輛移出可利用空間或遠離可利用空間。
如圖2B所示,當ADV 102停在可利用空間212中時,接近車輛202正朝著ADV 102的方向移動,但從ADV 102的後方區域。舉例而言,接近車輛202的航向直接指向ADV 102的後方方向以企圖進入路緣214內。ADV 102(與感測陣列介面104通訊)偵測各種自主導引因素,例如接近車輛202的速度、接近車輛202的交通指示(例如,轉向信號、前燈、前燈閃爍序列或警示燈)、接近車輛202的車道位置或接近車輛202與ADV 102之間的距離。每個自主導引因素被指定一個閾值(例如,1=是,0=否)。一旦閾值超過預定值(例如,2或更大),遮擋預防子系統108起動加速驅動力並朝遠離可利用空間212的方向204,導引ADV 102。
在圖2C中,當ADV 102停在可利用空間212中時,接近車輛202從ADV 102的對向車道沿行駛方向208移動。舉例而言,接近車輛202正企圖左轉進入路緣214,然而,ADV 102擋住進入路緣214的通道。ADV 102(與感測陣列介面104通訊)偵測圖2C中接近車輛202的自主導引因素,例如接近車輛202的速度、接近車輛202的交通指示(例如,轉向信號、前燈或警示燈)、接近車輛202的車道位置或接近車輛202與ADV 102之間的距離。
繼續參考圖2C,每個自主導引因素被指定一個閾值(例如,1=是,0=否)。遮擋預防子系統108亦判定與接近車輛202和停在可利用空間212中的ADV 102相關聯的路廊角度軌跡(將在圖4中詳細解釋)。在一範例中,路廊角度軌跡代表接近車輛202的實際軌跡轉向圓(turning circle)的一個或多個角度以及相對於道路的主要行駛方向收斂至90度角的軌跡總長度。一旦判定一個或多個路廊角度軌跡且自主導引因素的閾值超過預定值(例如,2或更大),遮擋預防子系統108起動加速驅動力並朝遠離可利用空間212、遠離結構特徵302或遠離ADV 102所停之任何區域的方向204,導引ADV 102,其中在該區域上ADV 102停在一個接近車輛202正企圖移入、進入或離開之固定位置。
圖3A~3B係根據若干範例,接近車輛請求進入被自動駕駛車擋住之建築物的圖示。如圖3A所示,當ADV 102停在可利用空間212中時,接近車輛202從後方朝ADV 102停放的方向移動。舉例而言,接近車輛202的航向指向ADV 102的後方方向,以企圖進入具有結構特徵302的建築物結構。結構特徵302代表建築物的類型、建築物的大小、建築物之出口及入口的類型以及在ADV 102之近處內的其他結構環境。ADV 102(與感測陣列介面104通訊)偵測自主導引因素,例如接近車輛202的速度、接近車輛202的交通指示(例如,轉向信號、前燈或警示燈)、接近車輛202的車道位置或接近車輛202與ADV 102之間的距離。
繼續參考圖3A,接近車輛202從後方接近ADV 102時發出交通指示。ADV 102透過感測陣列介面104偵測來自接近車輛202的交通指示。在一範例中,ADV 102從接近車輛202擷取的交通指示代表閃爍的前燈、閃爍的警示燈、緊急人員閃爍的燈和警報器、喇叭或其他視覺和聽覺信號。每個交通指示(包含任何其他自主導引因素)被指定一個閾值(例如,1=是,0=否)。
如圖3B所示,遮擋預防子系統108判定每個偵測到的交通指示的閾值已超過預定值0(例如,0=沒有偵測到交通指示或自主導引因素)。如此一來,遮擋預防子系統108起動加速驅動力並朝遠離結構特徵302的左側方向304導引ADV 102,以便接近車輛202行駛進入結構特徵302。
圖4係根據若干範例,在自動駕駛車之近處內的接近車輛之有效或無效的路廊角度軌跡的圖示。當接近車輛202移動到被ADV 102擋住之結構特徵302的入口或出口的方向上時,遮擋預防子系統108產生一系列之路廊角度軌跡。該系列之路廊角度軌跡包含有效路廊角度軌跡和無效路廊角度軌跡。在一範例中,路廊角度軌跡代表接近車輛202的實際軌跡轉向圓的一個或多個角度以及相對於道路的主要行駛方向收斂至90度角的軌跡總長度。
用詞「實際軌跡」表示接近車輛202基於ADV 102的位置和接近車輛202的長度、接近車輛202的尺寸、接近車輛202的速度,可合理地用以進入停車空間、結構特徵或空的空間之角度。評估路廊角度軌跡,即車輛的接近角度相對於道路的主要行駛方向將收斂至90度,以最小化穿過馬路的時間及距離。如圖4所示,有效路廊角度軌跡404表示車輛接近角度將基於道路行駛方向收斂至90度角的角度軌跡。
在另一範例中,有效路廊角度軌跡404表示正交於與自動駕駛車相關聯之90度角的轉向直徑。一旦ADV 102判定路廊角度軌跡404有效,遮擋預防子系統108就起動ADV 102的加速驅動力。遮擋預防子系統108亦判定無效的路廊角度軌跡402。於判定無效的路廊角度軌跡402之後,遮擋預防子系統108指示ADV 102保持停車或靜止(例如,不動的)狀態。在另一範例中,在判定無效的路廊角度軌跡402之後,遮擋預防子系統108指示ADV 102以起動具有煞車力之煞車應用。
圖5係繪示根據若干範例,用於自動駕駛車偵測可利用停車空間之方法500的流程圖。雖然方法500的某些操作被描述成由某些裝置執行,但在不同的範例中,不同的裝置或裝置的組合可執行這些操作。舉例而言,下述由客戶端裝置102執行的操作亦可由伺服器端計算裝置、第三方伺服器計算裝置或整合至自動駕駛車中的計算裝置執行或與其共同執行。
該方法開始於操作502,在該操作期間,遮擋預防子系統108透過感測陣列介面104偵測停車空間,該停車空間包含路緣及空間尺寸。空間尺寸表示空間特徵,其包含停車空間的寬度、長度和深度尺寸。與停車空間一樣,亦可偵測開放區域、空的空間或諸如此類。在另一範例中,空間尺寸為大於ADV 102的區域。
在操作504中,遮擋預防子系統108偵測與停車空間相關聯的道路標識。在一範例中,道路標識為覆蓋在道路上的視覺布局,其表示指示可利用和非可利用停車空間的文字、形狀或多邊形配置的組合。道路標識(roadway marker)亦可包含與允許的停車空間相關聯的路標(road marking)、一系列的標誌以及所偵測到的停車空間之鄰近處的各種形式之標誌。在操作506中,遮擋預防子系統108基於道路標識和空間尺寸判定停車空間為可利用的。
感測陣列介面104藉由識別停車空間的尺寸、在停車空間之緊鄰的近處內的停放車輛、停車空間周圍的走道(walkway)及小路(pathway)、路緣(curb)類型以及接近所偵測到的停車空間之近處或區域內的其他結構特徵,來驗證空的停車空間或區域用於停車的適合性。因應基於道路標識和空間尺寸判定停車空間為可利用的,遮擋預防子系統108繼續執行操作508,其中遮擋預防子系統108導引自動駕駛車進入停車空間並起動具有煞車力之煞車應用(例如,將汽車停入停車空間)。
在若干範例中,遮擋預防子系統108與計算裝置通訊,並擷取停車空間特徵並將其傳送至計算裝置。計算裝置包含整合至自動駕駛車中的第三方伺服器或客戶端計算裝置。在一範例中,遮擋預防子系統108與集中式管理平台應用(例如,MOOVIT®)通訊,以提取空間可利用性資訊和停車空間佔有資料,其表示非自動車(或自動車)禁止使用的停車空間或空的空間之指定區域、時間及位置。舉例而言,停放的車輛或房屋的所有人可向平台輸入他的車輛或車庫入口通常從上午9點20分至下午4點30分不會使用。然後,自動車可使用此服務來確認他們可停車的位置及時間,並在需要時(停在車庫前或並排停車)自主地離開。遮擋預防子系統108基於停車空間特徵從計算裝置接收停車空間佔有資料並基於停車空間佔有資料判定停車空間為不可利用的。因應判定停車空間為不可利用的,遮擋預防子系統108朝遠離停車空間的方向,導引自動駕駛車。
圖6係繪示根據若干範例,用於自動駕駛車偵測停車空間並離開停車空間之方法600的流程圖。處理器106整合在遮擋預防子系統108中並包含機器學習演算法程式,其使系統能夠執行方法600中所說明的操作。在一範例中,處理器106指示感測陣列介面104為自動車(例如,ADV 102)偵測及選擇的可利用停車空間(方塊604),並擷取停車空間佔有資料(方塊606)。
在另一範例中,在偵測到可利用停車空間之後,處理器106在接收到使用者輸入之後,向儲存在第三方計算裝置(例如,MOOVIT®)上的第三方應用傳送並登記停車空間佔有資料以及關於可利用停車空間的空間登記資訊(space registration information)。在一範例中,空間登記資訊表示禁止或允許非自動車(或自動車)使用的停車空間或空的空間的指定區域、時間、尺寸和位置。
處理器106透過感測陣列介面104判定偵測到的停車空間是否被另一車輛或物體佔據(方塊608)。如果偵測到的空間被佔據,則處理器106透過加速器112及煞車110指示ADV 102離去(方塊610)(例如,導引離開或駛離被佔據的空間)。如果處理器106透過感測陣列介面104或基於從第三方應用程式接收停車空間佔有資料,判定停車空間(方塊608)未被佔據(方塊612),則處理器106判斷該空間是否為長久地不可利用(方塊614)。
進一步如圖6所示,如果停車空間長久地不可利用,則處理器106指示ADV 102放棄停車空間(方塊616)。方法600繼續執行以判定相同的停車空間可利用或不可利用(方塊618)。在一範例中,第二計算裝置的第二使用者可向第三方應用傳送訊號以請求更新、修改或登記關於特定區域內選定或非選定的停車空間的可利用空間佔有資訊。如果停車空間的可利用性狀態已變成「可利用」,則處理器指示擷取停車空間佔有資料(方塊606)並重新啟動方法600。
圖7係繪示根據若干範例,用於自動駕駛車使用柏油碎石路面標誌(tarmac signage)和真實性檢查來偵測停車空間並離開停車空間之方法700的流程圖。處理器106整合至遮擋預防子系統108中並包含機器學習演算法程式,其使系統能夠執行方法700中所說明的操作。在如圖7所示的一範例中,方法700開始於決策方塊(decision block)702。處理器指示ADV 102透過感測陣列介面104偵測停車空間(方塊704)。
在偵測到停車空間(方塊704)後,處理器判斷標誌(方塊706)、道路標識(方塊708)及停車空間可利用性(方塊710)。在一範例中,道路標識為覆蓋在道路上的視覺布局,其表示指示可利用和非可利用停車空間的文字、形狀或多邊形配置的組合。道路標識(roadway marker)亦可包含與允許的停車空間相關聯的路標(road marking)、一系列的標誌以及所偵測到的停車空間之鄰近處的各種形式之標誌。標誌代表指示可利用或不可利用停車空間、危險或道路狀況的交通標誌、橫幅(banner)、圖示或交通影像(imagery)。道路標識亦包含指示ADV 102可自主地離開的唯一符號、機器可讀碼(例如,條碼或QR影像)或針對如何接近並傳訊指示ADV 102移入可利用停車空間的明文指令。
處理器106包含專用電路,其包含基於機器學習演算法的柏油碎石路面標誌偵測演算法,該演算法專門地設計用於識別新的路標並偵測明確地允許停車的位置。在決策方塊712,如果偵測到道路標識,則處理器 106透過如上所述利用感測陣列介面104的處理或藉由與第三方應用程式(例如,集中式管理平台)通訊來判斷ADV 102是否被禁止停在偵測到的空間中。在決策方塊714中,如果ADV 102被禁止使用停車空間,則ADV 102將繼續行駛以搜尋另一個可利用停車空間。
如果允許ADV 102使用停車空間,則認為偵測到空閒空間(方塊716),並透過處理器106指示ADV 102減速並啟動轉向信號(方塊720)。在執行決策方塊720後,ADV 102緩慢通過並獲取停車空間尺寸(例如,停車空間的寬度、長度、深度)(方塊722)。如果ADV 102透過處理器106和感測陣列介面104判定停車空間尺寸與ADV 102的尺寸不符合,則ADV 102將繼續駕駛以搜尋另一個可利用停車空間。如果ADV 102透過處理器106和感測陣列介面104判定停車空間尺寸與ADV 102的尺寸符合,則處理器106執行真實性檢查演算法(plausibility check algorithm)。
真實性檢查演算法係基於機器學習演算法,且被設計用於判定圍繞停車空間或在停車空間之緊鄰的近處內之區域的結構特徵(方塊728)、路緣類型和大小(方塊730)以及在偵測到的停車空間之近處內停放的車輛(方塊732)。進一步利用空閒空間偵測演算法,以通過偵測到的路緣類型來偵測即將接近或離開的車輛。
在一範例中,真實性檢查機器學習演算法被設計以識別建築物、商店、學校或複合式住宅(結構特徵)的不同出口及入口的外觀。使用來自感測陣列介面104的資料的量測演算法係偵測深度量測(例如,雷達、LIDAR、立體攝影機或其組合)以辨識路緣的形狀。由真實性檢查判定的路緣類型(方塊726)對應至偵測出口路緣類型、交叉路口路緣類型或標準未定的路緣類型。出口路緣類型被指定一個強的信賴分數(例如,值),例如10。交叉路口路緣類型被指定一個中等信賴分數,例如5。標準或未定的路緣類型被指定一個低的信賴分數,例如1。
處理器106組合(方塊734)或聚合根據由真實性檢查(方塊726)產生的偵測到的路緣類型所判定之每個分配的信賴分數的結果。如果信賴分數高(方塊736)並且高於預定閾值,則ADV 102將停車(方塊738)並啟動煞車110並停止(方塊740)。預定閾值可為5或更高的信賴分數。在另一範例中,如果信賴分數為10或更大且沒有偵測到另一車輛停在ADV 102的近處內,則處理器106將指示ADV 102停車。如果信賴分數低(方塊736)且低於預定閾值,則ADV 102將繼續行駛(方塊718)。
圖8係根據若干範例,使用集中式軟體平台之自動駕駛車和遮擋預防子系統的圖示。如圖8所示,使用者802藉由將停車空間佔有資料輸入至集中式軟體中來動態管理自動駕駛車的停車空間,該集中式軟體呈現非自動車和自動車的停車空間或空的空間的指定區域、時間和位置。在圖8所示的一範例中,使用者802為一個管理ADV 102目前所停放之可利用停車空間806的屋主。屋主802輸入佔有資料,其表示可利用停車空間806(例如,車庫入口)為全天可利用的。使用者804代表市政當局(municipality)的管理員,其管理儲存在市政當局資料庫808中的佔有資料。當ADV 102透過集中式軟體平台搜尋可利用停車空間時,接近車輛202可在任何時間或預定期間預先觸發釋出(free up)可利用停車空間806的請求。市政當局資料庫808的管理員804亦可指出由城市、市鎮、州或市政當局供應及管理的可利用停車空間。
圖9係機器900的圖示,在機器900中的用於使機器900執行本文所討論的任一種或多種方法之指令910(例如,軟體、程式(program)、應用程式(application)、小型應用程式(applet)、應用軟體(app)或其他可執行碼)可被執行。舉例而言,指令910可使機器900執行本文所述的任一種或多種方法。指令910將通用的非程式化機器900轉換成特定機器900,其被程式化以實施所描述的方式執行所描述及繪示的功能。機器900可作為獨立裝置操作,或者可耦合(例如,連接網路)至其他機器。在網路部署中,機器900可在伺服器-客戶端(server-client)網路環境中以伺服器機器或客戶端機器的能力運行,或者在點對點(peer-to-peer)(或分散式(distributed))網路環境中作為對等機器(peer machine)運行。機器900可包含但不限於伺服器電腦、客戶端電腦、個人電腦(PC)、平板電腦、膝上型電腦(laptop computer)、輕省筆電(netbook)、機上盒(set-top box,STB)、PDA、娛樂媒體系統、行動電話、智慧型手機、行動裝置、穿戴式裝置(例如,智慧型手錶)、智慧型家庭裝置(例如,智慧型家電)、其他智慧型裝置、Web設備、網路路由器、網路交換器、網路橋(network bridge)或任何能夠相繼地或以其他方式執行指令910的機器,這些指令明確指出機器900要採取的動作。此外,雖然僅描繪單一機器900,但術語「機器」亦應被視為包含個別地或共同地執行指令910以執行本文所討論的任一種或多種方法之機器的集合。
機器900可包含多個處理器904、記憶體906及多個I/O組件902,其可被配置以透過匯流排940彼此通訊。在一例示性實施例中,該等處理器904(例如,中央處理單元(CPU)、精簡指令集計算(RISC)處理器、複雜指令集計算(CISC)處理器、圖形處理單元(GPU)、數位訊號處理器(DSP)、ASIC、射頻積體電路(RFIC)、另外的處理器或其任意適合的組合)可包含例如執行指令910的處理器908和處理器912。術語「處理器」旨在包含多核心處理器,其可包含兩個或更多個獨立處理器(有時稱為「核心」),其可同時執行指令。雖然圖9呈現多個處理器904,但機器900可包含具有單一核心的單一處理器、具有多核心的單一處理器(例如,多核心處理器)、多個具有單一核心的處理器、多個具有多個核心的處理器或其任何組合。
記憶體906包含主記憶體914、靜態記憶體916及儲存單元918,透過匯流排940處理器904均可存取它們。主記憶體906、靜態記憶體916及儲存單元918儲存體現本文所述的任一種或多種方法或功能的指令910。指令910在由機器900執行的期間亦可完全地或部分地常駐在主記憶體914內、靜態記憶體916內、儲存單元918內的機器可讀取媒體920內、該等處理器904至少其中之一內(例如,處理器的高速快取記憶體內)或其任何適合的組合內。
該等I/O組件902可包含各種各樣的組件,以接收輸入、提供輸出、產生輸出、傳送資訊、交換資訊、獲取量測等等。特定機器中包含的特定的多個I/O組件902會取決於機器的類型。舉例而言,諸如行動電話之類的可攜式機器可包含觸控式輸入裝置或其他此類輸入機構,而無頭伺服器機器(headless server machine)可能不包含此類觸控式輸入裝置。應當理解,該等I/O組件902可包含圖9中未繪示出的許多其他組件。在各種例示性實施例中,該等I/O組件902可包含輸出組件926及輸入組件928。輸出組件926可包含視覺組件(例如,顯示器,諸如電漿顯示器面板(plasma display panel,PDP)、發光二極體(LED)顯示器、液晶顯示器(LCD)、投影機或 陰極射線管(CRT))、聲學組件(例如,揚聲器)、觸覺組件(例如,振動馬達(vibratory motor)、阻力機構(resistance mechanism))、其他訊號產生器等。該等輸入組件928可包含文數(alphanumeric)輸入組件(例如,鍵盤、被配置以接收文數輸入的觸控螢幕、光學鍵盤(photo-optical keyboard)或其他文數輸入組件)、基於點的輸入組件(例如,滑鼠、觸控板、軌跡球、操縱桿(joystick)、運動感測器或別的指向儀器(pointing instrument))、觸覺輸入組件(例如,實體按鈕、提供位置及/或觸控力或觸控手勢的觸控螢幕,或其他觸覺輸入組件),音訊輸入組件(例如,麥克風)等。
在進一步的例示性實施例中,I/O組件902可包含生物特徵辨識組件930、運動組件932、環境組件934或定位組件936,以及許多各種不同的其他組件。舉例而言,生物特徵辨識組件930包含用於偵測表情/表現(expression)(例如,手部表現、臉部表情、聲音表現、身體姿勢或眼球追蹤)、量測生物訊號(例如,血壓、心率、體溫、汗腺分泌(perspiration)、或腦波(brain wave))、辨識人(例如,聲音辨識、視網膜辨識、臉部辨識、指紋辨識或基於腦波圖的辨識)等。運動組件932包含加速度感測器組件(例如,加速度計)、重力感測器組件、旋轉感測器組件(例如,陀螺儀)。環境組件934包含例如一個或多個攝影機、照度感測器組件(例如,光度計)、溫度感測器組件(例如,一個或多個偵測環境溫度的溫度計)、濕度感測器組件、壓力感測器組件(例如,氣壓計)、聲響感測器組件(例如,一個或多個偵測背景噪音的麥克風)、鄰近感應器(proximity sensor)組件(例如,偵測鄰近物體的紅外線感測器)、氣體感測器(例如,為了安全偵測危險氣體濃度或量測大氣中的污染物的氣體偵測感測器)或其他可提供與周圍物理環境相對應的指示、量測或訊號的組件。定位組件936包含位置感測器組件(例如,GPS接收器組件)、高度感測器組件(例如,偵測可推導出高度的氣壓的高度計或氣壓計)、定向感測器組件(例如,磁力計(magnetometer))等。
可使用各種各樣的技術來實現通訊。該等I/O組件902更包含通訊組件938,其可操作以透過各自的耦合或連接將機器900耦合至網路922或多個裝置924。舉例而言,通訊組件938可包含網路介面組件或與網路922介接的另一適合的裝置。在另外的範例中,通訊組件938可包含有線通訊組件、無線通訊組件、蜂巢通訊組件、近場通訊(NFC)組件、Bluetooth
®組件(例如,Bluetooth
®低功耗)、Wi-Fi
®組件和透過其他模式提供通訊的其他通訊組件。裝置924可為另一台機器或各種各樣的周邊裝置中任何一個(例如,透過USB耦合的周邊裝置)。
再者,通訊組件938可偵測識別符(identifier)或包含可操作以偵測識別符的組件。舉例而言,通訊組件938可包含射頻識別(RFID)標籤讀取器組件、NFC智慧型標籤偵測組件、光學讀取器組件(例如,用於偵測一維條碼(諸如通用產品代碼(Universal Product Code,UPC)條碼)、多維條碼(諸如快速響應 (QR) 碼)、Aztec碼、資料矩陣(Data Matrix)、資料字符(Data glyph)、Maxi碼、PDF417、Ultra碼、UCC RSS-2D條碼及其他光學碼的光學感測器碼)或聲音偵測組件(例如,用於辨識標記的音頻訊號的麥克風)。此外,可經由通訊組件938導出各種資訊,例如透過網際網路協定(IP)地理位置的定位、透過Wi-Fi®訊號三角量測的定位、透過偵測可指示特定位置的NFC信標訊號的定位等等。
多種記憶體(例如,主記憶體914、靜態記憶體916及/或處理器904的記憶體)及/或儲存單元918可儲存一組或多組指令和資料結構(例如,軟體),該等指令和資料結構體現本文所述的任一種或多種方法或功能或被其使用。這些指令(例如,指令910)當由處理器904執行時產生各種操作以實現所揭露的實施例。
可通過網路922、使用傳輸媒體、透過網路介面裝置(例如,包含在通訊組件938中的網路介面組件)以及使用幾種眾所周知的傳輸協定(例如,超文件傳輸協定(HTTP))中的任一者來傳送或接收指令910。類似地,可使用傳輸媒體透過耦合(例如,點對點耦合)至裝置924,以傳送或接收指令910。
附加註釋及範例:
範例1為一種自動駕駛車的系統,該系統包含:處理器;以及記憶體,儲存多個指令,當該多個指令被該處理器執行時,配置該系統以執行該自動駕駛車的多個操作,該多個操作包含:偵測可利用空間,該可利用空間包含路緣及空間尺寸;偵測與該可利用空間相關聯的道路標識;基於該道路標識及該空間尺寸,判定該可利用空間非停車空間;因應判定該可利用空間不是停車空間,導引該自動駕駛車停在該可利用空間中;以及因應導引該自動駕駛車停在該可利用空間中,啟動遮擋預防子系統。
在範例2中,範例1之標的包含,其中,因應導引該自動駕駛車進入該可利用空間中並在該可利用空間中起動具有煞車力的煞車應用,啟動遮擋預防子系統,該遮擋預防子系統被配置以執行複數個操作,該等操作包含:偵測在朝向該自動駕駛車移動的第二方向上的第二物體,該自動駕駛車包含指向與該第二方向相反的第三方向的第二航向;偵測與該第二物體相關聯的交通指示;以及基於偵測到的該交通指示,起動該自動駕駛車的加速驅動力,以及朝遠離該可利用空間的方向,導引該自動駕駛車。
在範例3中,範例1~2之標的包含,其中,該遮擋預防子系統被配置以執行複數個操作,該等操作更包含:偵測在朝向該自動駕駛車移動的第二方向上的第二物體,該自動駕駛車包含指向與該第二方向相反的第三方向的第二航向;偵測與該第二物體相關聯的交通指示;以及基於偵測到的該交通指示,起動該自動駕駛車的加速驅動力,以及朝遠離該可利用空間的方向,導引該自動駕駛車。
在範例4中,範例1~3之標的包含,其中,該交通指示包含該第二物體的預定速度、與該第二物體相關聯的轉向信號或從該第二物體發射的前燈閃爍序列至少其中之一。
在範例5中,範例1~3之標的包含,其中,該遮擋預防子系統被配置以執行複數個操作,該等操作更包含:偵測在朝向該自動駕駛車的該第二航向的前進方向上移動的第三物體;偵測與該第三物體相關聯的交通軌跡;以及基於偵測到的該交通指示,起動該自動駕駛車的該加速驅動力,並導引該自動駕駛車遠離該可利用空間。
在範例6中,範例1~5之標的包含,其中,該交通軌跡包含距第三物體及該自動駕駛車之預定距離(predetermined distance)、與該第三物體相關聯的轉向信號(turn signal)或路廊角度軌跡(corridor angle trajectory)。
在範例7中,範例1~6之標的包含,其中,該導引該自動駕駛車包含施加至該自動駕駛車的加速器踏板的第一驅動力。
在範例8中,範例1~7之標的包含,其中,該起動煞車應用包含套用該自動駕駛車的停車煞車。
在範例9中,範例1~8之標的包含,其中,該煞車力包含施加至該自動駕駛車的煞車踏板的第二驅動力。
在範例10中,範例1~9之標的包含,其中,該空間尺寸包含該可利用空間的寬度量測、深度量測和長度量測。
在範例11中,範例1~10之標的包含,其中,該道路標識包含與允許的可利用空間相關聯的路標。
在範例12中,範例1~11之標的包含,偵測路緣(curb)的形狀;基於該路緣的偵測到之該形狀,判定路緣類型;偵測在該可利用空間之鄰近處內的複數個結構特徵;判定在該等結構特徵之近處內未偵測到移動物體;以及因應判斷該路緣類型以及在該等結構特徵的該近處未偵測到該移動物體,導引該自動駕駛車停入該可利用空間。
在範例13中,範例1~12之標的包含,判定在該等結構特徵的該近處內偵測到該移動物體;以及其中,因應判定該路緣類型小於該第一信賴值,該等結構特徵小於該第二信賴值及在該等結構特徵的該近處內偵測到該移動物體,而朝遠離該可利用空間的方向,導引該自動駕駛車。
在範例14中,範例1~13之標的包含,其中,該路廊角度軌跡包含正交於與該自動駕駛車相關聯之90度角的轉向直徑。
範例15為一種用於自動駕駛車的系統,該系統包含:偵測可利用空間,該可利用空間包含可利用空間特徵;傳送該可利用空間特徵至計算裝置;基於該可利用空間特徵,從該計算裝置接收可利用空間佔有資料;基於該可利用空間佔有資料,判定該可利用空間為不可利用;因應判定該可利用空間為不可利用,朝遠離該可利用空間的方向,導引該自動駕駛車。
在範例16中,範例15之標的包含,其中,該可利用空間特徵包含該可利用空間的寬度量測、深度量測、長度量測、位置或空間可利用時段。
在範例17中,範例15~16之標的包含,其中,該空間佔有資料包含該可利用空間為不可利用的通知或可利用空間為可利用的通知。
範例18為一種自動駕駛車的方法,該方法包含:偵測可利用空間,該可利用空間包含路緣及空間尺寸;偵測與該可利用空間相關聯的道路標識;基於該道路標識及該空間尺寸,判定該可利用空間為可利用的;因應基於該道路標識及該空間尺寸,判定該可利用空間為可利用的,導引該自動駕駛車進入該可利用空間以及起動具有煞車力之煞車應用。
在範例19中,範例18之標的包含,其中,該導引該自動駕駛車包含施加至該自動駕駛車的加速器踏板的第一驅動力。
在範例20中,範例18~19之標的包含,其中,該起動煞車應用包含套用該自動駕駛車的停車煞車。
在範例21中,範例18~20之標的包含,其中,該煞車力包含施加至該自動駕駛車的煞車踏板的第二驅動力。
在範例22中,範例18~21之標的包含,其中,該空間尺寸包含該可利用空間的寬度量測、深度量測和長度量測。
在範例23中,範例18~22之標的包含,其中,該道路標識包含與允許的可利用空間相關聯的路標。
在範例24中,範例18~23之標的包含,偵測該路緣(curb)的形狀;基於該路緣的偵測到之該形狀,判定路緣類型;偵測在該可利用空間之鄰近處內的複數個結構特徵;判定在該等結構特徵之近處內未偵測到移動物體;判定該路緣類型低於第一閾值;判定該等結構特徵超過第二閾值;因應判定該路緣類型低於該第一閾值,該等結構特徵超過該第二閾值及在該等結構特徵的該近處內未偵測到該移動物體,而導引該自動駕駛車進入該可利用空間;以及在該可利用空間中起動具有煞車力之煞車應用。
範例25為一種非暫態電腦可讀取儲存媒體,該電腦可讀取儲存媒體包含複數個指令,當該等指令由電腦執行時,使該電腦執行複數個操作,該等操作包含,偵測可利用空間,該可利用空間包含路緣及空間尺寸;偵測與該可利用空間相關聯的道路標識;基於該道路標識及該空間尺寸,判定該可利用空間為可利用的;以及因應基於該道路標識及該空間尺寸,判定該可利用空間為可利用的,而導引該自動駕駛車進入該可利用空間以及起動具有煞車力之煞車應用。
100:圖示
102:自動駕駛車
104:感測陣列介面
106:處理器
108:遮擋預防子系統
110:煞車
112:加速器
114:中斷控制器
116:記憶體
118:無線通訊控制器
120:攝影機視覺處理單元
200:圖示
202:接近車輛
204:方向
206:方向
208:方向
210:道路標識
212:可利用空間
214:路緣
300:圖示
302:結構特徵
304:左側方向
400:圖示
402:路廊角度軌跡
404:路廊角度軌跡
500:方法
502:操作
504:操作
506:操作
508:操作
600:方法
602:方塊
604:方塊
606:方塊
608:方塊
610:方塊
612:方塊
614:方塊
616:方塊
618:方塊
700:方法
702:決策方塊
704:方塊
706:方塊
708:方塊
710:方塊
712:決策方塊
714:決策方塊
716:方塊
718:方塊
720:決策方塊
722:方塊
724:決策方塊
726:方塊
728:方塊
730:方塊
732:方塊
734:方塊
736:方塊
738:方塊
740:方塊
800:圖示
802:使用者
804:使用者
806:可利用停車空間
808:市政當局資料庫
900:機器
902:I/O組件
904:處理器
906:記憶體
908:處理器
910:指令
912:處理器
914:主記憶體
916:靜態記憶體
918:儲存單元
920:機器可讀取媒體
922:網路
924:裝置
926:輸出組件
928:輸入組件
930:生物特徵辨識組件
932:運動組件
934:環境組件
936:定位組件
938:通訊組件
940:匯流排
為了輕易地識別對任何特定元件或動作的討論,參考編號(reference number)中的一個或多個最高位數字係指該元件第一次引入其中的圖號。
[圖1]係根據若干範例,自動駕駛車和遮擋預防子系統的圖示。
[圖2A~2C]係根據若干範例,自動駕駛車偵測接近車輛的圖示。
[圖3A~3B]係根據若干範例,接近車輛請求進入被自動駕駛車擋住之建築物的圖示。
[圖4]係根據若干範例,在自動駕駛車之近處內的接近車輛之路廊角度軌跡的圖示。
[圖5]係繪示根據若干範例,用於自動駕駛車偵測可利用停車空間之方法500的流程圖。
[圖6]係繪示根據若干範例,用於自動駕駛車偵測停車空間並離開停車空間之方法600的流程圖。
[圖7]係繪示根據若干範例,用於自動駕駛車使用柏油碎石路面標誌(tarmac signage)和真實性檢查來偵測停車空間並離開停車空間之方法700的流程圖。
[圖8]係根據若干範例,使用集中式軟體平台之自動駕駛車和遮擋預防子系統的圖示。
[圖9]係根據若干例示性實施例,以電腦系統形式呈現之機器的圖示,在該電腦系統中可執行一組指令以使機器執行本文中討論的任一個或多個方法。
Claims (24)
- 一種用於自動駕駛車之系統,該系統包含: 處理器;以及 記憶體,儲存複數個指令,當該等指令被該處理器電路執行時,將該處理器電路配置為執行該自動駕駛車的以下操作: 偵測可利用空間,該可利用空間包含大於該自動駕駛車的空間尺寸; 偵測與該可利用空間相關聯的道路標識(road marker); 基於該道路標識及該空間尺寸,判定該可利用空間非停車空間(parking space); 因應判定該可利用車位非該停車空間,導引該自動駕駛車,以停在該可利用空間中;以及 因應導引該自動駕駛車以停在該可利用空間中,啟動遮擋預防子系統(occlusion prevention subsystem)。
- 如請求項1之系統,其中,該遮擋預防子系統的啟動更配置該處理器電路以執行以下操作: 偵測朝向該自動駕駛車之第一方向上的移動物體,該移動物體包含第一航向(heading); 判定該移動物體的該第一航向指向該自動駕駛車之該第一方向; 判定該移動物體與該自動駕駛車之間的距離; 判定該移動物體與該自動駕駛車之間的該距離小於第一閾值;以及 因應該移動物體的該第一航向指向該第一方向及判定該物體與該自動駕駛車之間的該距離小於該第一閾值,起動該自動駕駛車的加速驅動力(actuated force of acceleration),以及朝遠離該可利用空間的方向,導引該自動駕駛車。
- 如請求項2之系統,其中,該遮擋預防子系統被配置以執行以下操作: 偵測在朝向該自動駕駛車移動之第二方向上的第二移動物體,該自動駕駛車包含指向與該第二方向相反之第三方向的第二航向; 偵測與該第二移動物體相關聯的交通指示(traffic indicator);以及 基於偵測到的該交通指示,起動該自動駕駛車的加速驅動力,以及朝遠離該停車空間的方向,導引該自動駕駛車。
- 如請求項3之系統,其中,該交通指示包含該第二物體的預定速度、與該第二物體相關聯的轉向信號或從該第二物體發射的前燈閃爍序列至少其中之一。
- 如請求項3之系統,其中,該遮擋預防子系統被配置以執行以下操作: 偵測在朝向該自動駕駛車之該第二航向的前進方向上移動的第三移動物體; 偵測與該第三移動物體相關聯的交通軌跡;以及 基於偵測到的該交通指示,起動該自動駕駛車的該加速驅動力,並導引該自動駕駛車遠離該可利用空間。
- 如請求項5之系統,其中,該交通軌跡包含距第三物體及該自動駕駛車之預定距離(predetermined distance)、與該第三移動物體相關聯的轉向信號(turn signal)或路廊角度軌跡(corridor angle trajectory)至少其中之一。
- 如請求項6之系統,其中,該路廊角度軌跡包含正交於該自動駕駛車相關聯之90度角的轉向直徑。
- 如請求項1之系統,其中,該自動駕駛車的導引包含施加至該自動駕駛車的加速器踏板的第一驅動力。
- 如請求項1之系統,其中,該遮擋預防子系統被配置以執行起動煞車應用的複數個操作。
- 如請求項9之系統,其中,該煞車應用的該起動包含套用該自動駕駛車的停車煞車,或向該自動駕駛車的煞車系統施加第二驅動力。
- 如請求項1之系統,其中,該空間尺寸包含該可利用空間的寬度量測、深度量測和長度量測至少其中之一。
- 如請求項1之系統,其中,該道路標識包含與允許的可利用空間相關聯的路標(road marking)。
- 如請求項1之系統,該處理器電路更執行以下操作: 偵測路緣(curb)的形狀; 基於偵測到的該路緣的該形狀,判定路緣類型; 偵測在該可利用空間之鄰近處內的複數個結構特徵; 判定在該等結構特徵的近處未偵測到移動物體;以及 因應判斷該路緣類型以及在該等結構特徵的該近處未偵測到該移動物體,導引該自動駕駛車停入該可利用空間。
- 如請求項13之系統,該處理器電路更執行以下操作: 判定在該等結構特徵的該近處內偵測到該移動物體;以及 其中,因應判定在該等結構特徵的該近處內偵測到該移動物體,朝遠離該可利用空間的方向,導引該自動駕駛車。
- 一種用於自動駕駛車的系統,該系統包含: 處理器;以及 記憶體,儲存多個指令,當該多個指令被該處理器執行時,配置該系統以執行該自動駕駛車的多個操作,該多個操作包含: 偵測可利用空間,該可利用空間包含停車空間特徵; 傳送該停車空間特徵至計算裝置; 基於該停車空間特徵,從該計算裝置接收可利用空間佔有資料; 基於該可利用空間佔有資料,判定該可利用空間不是停車空間; 因應判定該可利用空間不是該停車空間,導引該自動駕駛車停在該可利用空間中;以及 因應導引該自動駕駛車停在該可利用空間中,啟動遮擋預防子系統。
- 如請求項15之系統,其中,該停車空間特徵包含該停車空間的寬度量測、深度量測、長度量測、位置或空間可利用時段至少其中之一。
- 如請求項15之系統,其中,該空間佔有資料包含該可利用空間為不可利用的通知或該可利用空間為可利用的通知。
- 一種用於自動駕駛車的方法,包含: 偵測可利用空間,該可利用空間包含大於該自動駕駛車的空間尺寸; 偵測與該可利用空間相關聯的道路標識; 基於該道路標識及該空間尺寸,判定該可利用空間非停車空間; 因應判定該可利用空間不是停車空間,導引該自動駕駛車停在該可利用空間中;以及 因應導引該自動駕駛車停在該可利用空間中,啟動遮擋預防子系統。
- 如請求項18之方法,其中,該導引該自動駕駛車包含施加至該自動駕駛車的加速器踏板的第一驅動力。
- 如請求項18之方法,其中,該遮擋預防子系統被配置以執行起動煞車應用的複數個操作。
- 如請求項20之方法,其中,該煞車應用的該起動包含套用該自動駕駛車的停車煞車,或向自動駕駛車的煞車系統施加第二驅動力。
- 如請求項18之方法,其中,該道路標識包含與允許的可利用空間相關聯的路標。
- 如請求項18之方法,其中因應判定該可利用空間為不可利用的, 偵測路緣(curb)的形狀; 基於該路緣的偵測到之該形狀,判定路緣類型; 偵測在該可利用空間鄰近處內的複數個結構特徵; 判定在該等結構特徵的近處內未偵測到移動物體;以及 因應判斷該路緣類型以及在該等結構特徵的該近處內未偵測到該移動物體,導引該自動駕駛車停入該可利用空間。
- 一種電腦可讀取儲存媒體,該電腦可讀取儲存媒體包含複數個指令,當該等指令由電腦的處理電路執行時,使該處理電路執行如請求項18至23中任一項的複數個操作。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/133,121 | 2020-12-23 | ||
US17/133,121 US20210114586A1 (en) | 2020-12-23 | 2020-12-23 | Autonomous driving vehicle parking detection |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202224997A true TW202224997A (zh) | 2022-07-01 |
TWI802975B TWI802975B (zh) | 2023-05-21 |
Family
ID=75492569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110131406A TWI802975B (zh) | 2020-12-23 | 2021-08-25 | 自動駕駛車停車偵測 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20210114586A1 (zh) |
TW (1) | TWI802975B (zh) |
WO (1) | WO2022139926A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110533950A (zh) * | 2018-05-25 | 2019-12-03 | 杭州海康威视数字技术股份有限公司 | 车位使用状况的检测方法、装置、电子设备及存储介质 |
US20210114586A1 (en) * | 2020-12-23 | 2021-04-22 | Ralf Graefe | Autonomous driving vehicle parking detection |
JP7408714B2 (ja) * | 2022-03-30 | 2024-01-05 | 本田技研工業株式会社 | 制御装置、制御方法、及び制御プログラム |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170253237A1 (en) * | 2016-03-02 | 2017-09-07 | Magna Electronics Inc. | Vehicle vision system with automatic parking function |
US20170267233A1 (en) * | 2016-03-15 | 2017-09-21 | Cruise Automation, Inc. | Method for autonomous vehicle parking |
US9884621B2 (en) * | 2016-06-17 | 2018-02-06 | Toyota Motor Engineering & Manufacturing North America, Inc. | Autonomous parking controller and method based on ambient conditions relating to a vehicle parking location |
KR101965834B1 (ko) * | 2016-10-12 | 2019-08-13 | 엘지전자 주식회사 | 자동주차 보조장치 및 이를 포함하는 차량 |
US10628688B1 (en) * | 2019-01-30 | 2020-04-21 | Stadvision, Inc. | Learning method and learning device, and testing method and testing device for detecting parking spaces by using point regression results and relationship between points to thereby provide an auto-parking system |
US20200307554A1 (en) * | 2019-03-26 | 2020-10-01 | Denso International America, Inc. | Systems and methods for parking a vehicle |
US20210114586A1 (en) * | 2020-12-23 | 2021-04-22 | Ralf Graefe | Autonomous driving vehicle parking detection |
-
2020
- 2020-12-23 US US17/133,121 patent/US20210114586A1/en active Pending
-
2021
- 2021-08-25 TW TW110131406A patent/TWI802975B/zh active
- 2021-09-24 WO PCT/US2021/051951 patent/WO2022139926A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2022139926A1 (en) | 2022-06-30 |
TWI802975B (zh) | 2023-05-21 |
US20210114586A1 (en) | 2021-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11709490B1 (en) | Behavior and intent estimations of road users for autonomous vehicles | |
JP6506805B2 (ja) | 自律走行車の決定の評価フレームワーク | |
US10691131B2 (en) | Dynamic routing for autonomous vehicles | |
TWI802975B (zh) | 自動駕駛車停車偵測 | |
AU2021203701B2 (en) | Recognizing assigned passengers for autonomous vehicles | |
KR102274273B1 (ko) | 자율 차량을 위한 정지 위치 계획 | |
US9933784B1 (en) | Augmented trajectories for autonomous vehicles | |
US8954252B1 (en) | Pedestrian notifications | |
US8849494B1 (en) | Data selection by an autonomous vehicle for trajectory modification | |
US8996224B1 (en) | Detecting that an autonomous vehicle is in a stuck condition | |
CN105324286B (zh) | 用于运行车辆的方法和设备 | |
CN110782657A (zh) | 使用自动驾驶车辆的子系统进行警车巡逻 | |
US10220776B1 (en) | Scenario based audible warnings for autonomous vehicles | |
JP2019184603A (ja) | 自動運転車と警告サービスの操作方法、システム及び機械可読メディア | |
WO2020057105A1 (zh) | 用于控制车辆的自动驾驶的方法、设备、介质和系统 | |
WO2019246050A1 (en) | Method and system for vehicle location | |
JP7176098B2 (ja) | 自律型車両のための行列の検出および行列に対する応答 | |
US20230111327A1 (en) | Techniques for finding and accessing vehicles | |
JP7202208B2 (ja) | 自動運転システム | |
CN111275997A (zh) | 用于提供地图数据的方法、机动车和中央数据处理设备 | |
GB2606801A (en) | Passenger authentication and entry for autonomous vehicles | |
CN117341695A (zh) | 辅助驾驶引导方法、增强现实设备及可读存储介质 | |
CN114207685B (zh) | 自主车辆交互系统 | |
CN115384545A (zh) | 控制方法和装置 | |
KR102366042B1 (ko) | 인공 지능 기반 교통 안전 시스템을 위한 장치 및 그 동작 방법 |