TW202224489A - 針對在時域中帶有不同目標雷達信號密度的目標雷達信號的傳輸組態 - Google Patents

針對在時域中帶有不同目標雷達信號密度的目標雷達信號的傳輸組態 Download PDF

Info

Publication number
TW202224489A
TW202224489A TW110139935A TW110139935A TW202224489A TW 202224489 A TW202224489 A TW 202224489A TW 110139935 A TW110139935 A TW 110139935A TW 110139935 A TW110139935 A TW 110139935A TW 202224489 A TW202224489 A TW 202224489A
Authority
TW
Taiwan
Prior art keywords
time domain
wireless communication
transmission configuration
domain portion
communication device
Prior art date
Application number
TW110139935A
Other languages
English (en)
Inventor
亞力山德羅斯 瑪諾拉寇斯
段衛民
朴世勇
倫坤 王
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202224489A publication Critical patent/TW202224489A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

在一態樣中,一種雷達控制器決定針對從第一無線通信裝置到第二無線通信裝置的目標雷達信號的傳輸組態,目標雷達信號用於感測至少一個目標,至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態。雷達控制器向第一無線通信裝置及第二無線通信裝置傳送傳輸組態。第一無線通信裝置根據傳輸組態向第二無線通信裝置傳送目標雷達信號。

Description

針對在時域中帶有不同目標雷達信號密度的目標雷達信號的傳輸組態
概括而言,本公開內容之各態樣係關於無線通信,並且更具體地,本公開內容之各態樣係關於針對在時域中帶有不同目標雷達信號密度的目標雷達信號的傳輸組態。
無線通信系統已經歷了數代的發展,包括第一代類比無線電話服務(1G)、第二代(2G)數位無線電話服務(包括臨時的2.5G及2.75G網路)、第三代(3G)高速數據、支援網際網路的無線服務及第四代(4G)服務(例如,長期演進技術(LTE)或WiMax)。當前,存在許多不同類型的無線通信系統在使用,包括蜂巢及個人通信服務(PCS)系統。已知蜂巢系統之實例包括蜂巢類比先進行動電話系統(AMPS)以及基於分碼多重存取(CDMA)、分頻多重存取(FDMA)、分時多重存取(TDMA)、全球行動通信系統(GSM)等的數位蜂巢系統。
第五代(5G)無線標準(被稱為新無線電(NR))需要更高的數據轉送速度、更大數量的連接及更好的覆蓋、以及其它改進。根據下一代行動網路聯盟,5G標準被設計為向數以萬計的用戶之每一者提供每秒數十百萬位元的數據速率,其中向一個辦公室樓層的數十名員工提供每秒1千百萬位元的數據速率。為了支援大型感測器部署,應當支援數十萬個同時連接。因此,與當前4G標準相比,應當顯著地增強5G行動通信之頻譜效率。此外,與當前標準相比,應當增強信令效率並且應當大幅度降低潛時。
5G能夠將mmW RF信號用於網路節點(諸如基地台、用戶裝備(UE)、車輛、工廠自動化機器及相似者)之間的無線通信。然而,mmW RF信號亦可以用於其它目的。例如,mmW RF信號可以用於武器系統(例如,作為坦克及飛機中的近程火控雷達)、安全掃描系統(例如,在檢測衣物下攜帶的武器及其它危險物體的掃描儀中)、醫學(例如,藉由改變細胞生長來治療疾病)及相似者。
在一些態樣中,一種操作雷達控制器的方法,包括:決定針對從第一無線通信裝置到第二無線通信裝置的目標雷達信號的至少一個傳輸組態,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及向該第一無線通信裝置及該第二無線通信裝置傳送該至少一個傳輸組態。
在一些態樣中,該第一無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該第二無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且該至少一個傳輸組態包含對該第二時域部分進行組態的第二傳輸組態。
在一些態樣中,該第一傳輸組態及該第二傳輸組態係在不同的時間處傳送。
在一些態樣中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間(intervening)的時間間隙。
在一些態樣中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
在一些態樣中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
在一些態樣中,該第一時域部分及該第二時域部分具有相同的持續時間。
在一些態樣中,該第一時域部分及該第二時域部分具有不同的持續時間。
在一些態樣中,該至少一個傳輸組態進一步對第三時域部分進行組態。
在一些態樣中,該第三時域部分係與第三時域目標雷達信號密度相關聯,該第三時域目標雷達信號密度與該第一時域目標雷達信號密度或該第二時域目標雷達信號密度相同或不同。
在一些態樣中,一種操作第一無線通信裝置的方法,包括:從雷達控制器接收針對從該第一無線通信裝置到第二無線通信裝置的目標雷達信號的至少一個傳輸組態,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及根據該至少一個傳輸組態向該第二無線通信裝置傳送該目標雷達信號。
在一些態樣中,該第一無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該第二無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且該至少一個傳輸對包含組態該第二時域部分進行組態的第二傳輸組態。
在一些態樣中,該第一傳輸組態及該第二傳輸組態係在不同的時間處接收。
在一些態樣中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間的時間間隙。
在一些態樣中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
在一些態樣中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
在一些態樣中,該第一時域部分及該第二時域部分具有相同的持續時間。
在一些態樣中,該第一時域部分及該第二時域部分具有不同的持續時間。
在一些態樣中,該至少一個傳輸組態進一步對第三時域部分進行組態。
在一些態樣中,該第三時域部分係與第三時域目標雷達信號密度相關聯,該第三時域目標雷達信號密度與該第一時域目標雷達信號密度或該第二時域目標雷達信號密度相同或不同。
在一些態樣中,一種操作第二無線通信裝置的方法,包括:從雷達控制器接收針對從第一無線通信裝置到該第二無線通信裝置的目標雷達信號的至少一個傳輸組態,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及根據該至少一個傳輸組態從該第一無線通信裝置接收該目標雷達信號。
在一些態樣中,該第一無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該第二無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且該至少一個傳輸組態包含對該第二時域部分進行組態的第二傳輸組態。
在一些態樣中,該第一傳輸組態及該第二傳輸組態係在不同的時間處接收。
在一些態樣中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間的時間間隙。
在一些態樣中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
在一些態樣中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
在一些態樣中,該第一時域部分及該第二時域部分具有相同的持續時間。
在一些態樣中,該第一時域部分及該第二時域部分具有不同的持續時間。
在一些態樣中,該至少一個傳輸組態進一步對第三時域部分進行組態。
在一些態樣中,該第三時域部分係與第三時域目標雷達信號密度相關聯,該第三時域目標雷達信號密度與該第一時域目標雷達信號密度或該第二時域目標雷達信號密度相同或不同。
在一些態樣中,一種雷達控制器,包括:記憶體;至少一個收發器;以及通信地耦合到該記憶體及該至少一個收發器的至少一個處理器,該至少一個處理器被組態以:決定針對從第一無線通信裝置到第二無線通信裝置的目標雷達信號的至少一個傳輸組態,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及向該第一無線通信裝置及該第二無線通信裝置傳送該至少一個傳輸組態。
在一些態樣中,該第一無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該第二無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且該至少一個傳輸組態包含對該第二時域部分進行組態的第二傳輸組態。
在一些態樣中,該第一傳輸組態及該第二傳輸組態係在不同的時間處傳送。
在一些態樣中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間的時間間隙。
在一些態樣中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
在一些態樣中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
在一些態樣中,該第一時域部分及該第二時域部分具有相同的持續時間。
在一些態樣中,該第一時域部分及該第二時域部分具有不同的持續時間。
在一些態樣中,該至少一個傳輸組態進一步對第三時域部分進行組態。
在一些態樣中,該第三時域部分係與第三時域目標雷達信號密度相關聯,該第三時域目標雷達信號密度與該第一時域目標雷達信號密度或該第二時域目標雷達信號密度相同或不同。
在一些態樣中,一種第一無線通信裝置,包括:記憶體;至少一個收發器;以及通信地耦合到該記憶體及該至少一個收發器的至少一個處理器,該至少一個處理器被組態以:從雷達控制器接收針對從該第一無線通信裝置到第二無線通信裝置的目標雷達信號的至少一個傳輸組態,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及根據該至少一個傳輸組態向該第二無線通信裝置傳送該目標雷達信號。
在一些態樣中,該第一無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該第二無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且該至少一個傳輸組態包含對該第二時域部分進行組態的第二傳輸組態。
在一些態樣中,該第一傳輸組態及該第二傳輸組態係在不同的時間處接收。
在一些態樣中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間的時間間隙。
在一些態樣中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
在一些態樣中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
在一些態樣中,該第一時域部分及該第二時域部分具有相同的持續時間。
在一些態樣中,該第一時域部分及該第二時域部分具有不同的持續時間。
在一些態樣中,該至少一個傳輸組態進一步對第三時域部分進行組態。
在一些態樣中,該第三時域部分係與第三時域目標雷達信號密度相關聯,該第三時域目標雷達信號密度與該第一時域目標雷達信號密度或該第二時域目標雷達信號密度相同或不同。
在一些態樣中,一種第二無線通信裝置,包括:記憶體;至少一個收發器;以及通信地耦合到該記憶體及該至少一個收發器的至少一個處理器,該至少一個處理器被組態以:從雷達控制器接收針對從第一無線通信裝置到該第二無線通信裝置的目標雷達信號的至少一個傳輸組態,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及根據該至少一個傳輸組態從該第一無線通信裝置接收該目標雷達信號。
在一些態樣中,該第一無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該第二無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且該至少一個傳輸組態包含對該第二時域部分進行組態的第二傳輸組態。
在一些態樣中,該第一傳輸組態及該第二傳輸組態係在不同的時間處接收。
在一些態樣中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間的時間間隙。
在一些態樣中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
在一些態樣中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
在一些態樣中,該第一時域部分及該第二時域部分具有相同的持續時間。
在一些態樣中,該第一時域部分及該第二時域部分具有不同的持續時間。
在一些態樣中,該至少一個傳輸組態進一步對第三時域部分進行組態。
在一些態樣中,該第三時域部分係與第三時域目標雷達信號密度相關聯,該第三時域目標雷達信號密度與該第一時域目標雷達信號密度或該第二時域目標雷達信號密度相同或不同。
在一些態樣中,一種雷達控制器,包括:用於決定針對從第一無線通信裝置到第二無線通信裝置的目標雷達信號的至少一個傳輸組態的構件,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及用於向該第一無線通信裝置及該第二無線通信裝置傳送該至少一個傳輸組態的構件。
在一些態樣中,該第一無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該第二無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且該至少一個傳輸組態包含對該第二時域部分進行組態的第二傳輸組態。
在一些態樣中,該第一傳輸組態及該第二傳輸組態係在不同的時間處傳送。
在一些態樣中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間的時間間隙。
在一些態樣中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
在一些態樣中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
在一些態樣中,該第一時域部分及該第二時域部分具有相同的持續時間。
在一些態樣中,該第一時域部分及該第二時域部分具有不同的持續時間。
在一些態樣中,該至少一個傳輸組態進一步對第三時域部分進行組態。
在一些態樣中,該第三時域部分係與第三時域目標雷達信號密度相關聯,該第三時域目標雷達信號密度與該第一時域目標雷達信號密度或該第二時域目標雷達信號密度相同或不同。
在一些態樣中,一種第一無線通信裝置,包括:用於從雷達控制器接收針對從該第一無線通信裝置到第二無線通信裝置的目標雷達信號的至少一個傳輸組態的構件,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及用於根據該至少一個傳輸組態向該第二無線通信裝置傳送該目標雷達信號的構件。
在一些態樣中,該第一無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該第二無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且該至少一個傳輸組態包含對該第二時域部分進行組態的第二傳輸組態。
在一些態樣中,該第一傳輸組態及該第二傳輸組態係在不同的時間處接收。
在一些態樣中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間的時間間隙。
在一些態樣中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
在一些態樣中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
在一些態樣中,該第一時域部分及該第二時域部分具有相同的持續時間。
在一些態樣中,該第一時域部分及該第二時域部分具有不同的持續時間。
在一些態樣中,該至少一個傳輸組態進一步對第三時域部分進行組態。
在一些態樣中,該第三時域部分係與第三時域目標雷達信號密度相關聯,該第三時域目標雷達信號密度與該第一時域目標雷達信號密度或該第二時域目標雷達信號密度相同或不同。
在一些態樣中,一種第二無線通信裝置,包括:用於從雷達控制器接收針對從第一無線通信裝置到該第二無線通信裝置的目標雷達信號的至少一個傳輸組態的構件,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及用於根據該至少一個傳輸組態從該第一無線通信裝置接收該目標雷達信號的構件。
在一些態樣中,該第一無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該第二無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且該至少一個傳輸組態包含對該第二時域部分進行組態的第二傳輸組態。
在一些態樣中,該第一傳輸組態及該第二傳輸組態係在不同的時間處接收。
在一些態樣中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間的時間間隙。
在一些態樣中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
在一些態樣中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
在一些態樣中,該第一時域部分及該第二時域部分具有相同的持續時間。
在一些態樣中,該第一時域部分及該第二時域部分具有不同的持續時間。
在一些態樣中,該至少一個傳輸組態進一步對第三時域部分進行組態。
在一些態樣中,該第三時域部分係與第三時域目標雷達信號密度相關聯,該第三時域目標雷達信號密度與該第一時域目標雷達信號密度或該第二時域目標雷達信號密度相同或不同。
在一些態樣中,一種儲存指令集合的非暫時性計算機可讀媒體包括一個或多個指令,該一個或多個指令在由雷達控制器之一個或多個處理器執行時,使得該雷達控制器進行以下操作:決定針對從第一無線通信裝置到第二無線通信裝置的目標雷達信號的至少一個傳輸組態,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及向該第一無線通信裝置及該第二無線通信裝置傳送該至少一個傳輸組態。
在一些態樣中,該第一無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該第二無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且該至少一個傳輸組態包含對該第二時域部分進行組態的第二傳輸組態。
在一些態樣中,該第一傳輸組態及該第二傳輸組態係在不同的時間處傳送。
在一些態樣中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間的時間間隙。
在一些態樣中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
在一些態樣中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
在一些態樣中,該第一時域部分及該第二時域部分具有相同的持續時間。
在一些態樣中,該第一時域部分及該第二時域部分具有不同的持續時間。
在一些態樣中,該至少一個傳輸組態進一步對第三時域部分進行組態。
在一些態樣中,該第三時域部分係與第三時域目標雷達信號密度相關聯,該第三時域目標雷達信號密度與該第一時域目標雷達信號密度或該第二時域目標雷達信號密度相同或不同。
在一些態樣中,一種儲存指令集合的非暫時性計算機可讀媒體包括一個或多個指令,該一個或多個指令在由第一無線通信裝置之一個或多個處理器執行時,使得該第一無線通信裝置進行以下操作:從雷達控制器接收針對從該第一無線通信裝置到第二無線通信裝置的目標雷達信號的至少一個傳輸組態,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及根據該至少一個傳輸組態向該第二無線通信裝置傳送該目標雷達信號。
在一些態樣中,該第一無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該第二無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且該至少一個傳輸組態包含對該第二時域部分進行組態的第二傳輸組態。
在一些態樣中,該第一傳輸組態及該第二傳輸組態係在不同的時間處接收。
在一些態樣中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間的時間間隙。
在一些態樣中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
在一些態樣中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
在一些態樣中,該第一時域部分及該第二時域部分具有相同的持續時間。
在一些態樣中,該第一時域部分及該第二時域部分具有不同的持續時間。
在一些態樣中,該至少一個傳輸組態進一步對第三時域部分進行組態。
在一些態樣中,該第三時域部分係與第三時域目標雷達信號密度相關聯,該第三時域目標雷達信號密度與該第一時域目標雷達信號密度或該第二時域目標雷達信號密度相同或不同。
在一些態樣中,一種儲存指令集合的非暫時性計算機可讀媒體包括一個或多個指令,該一個或多個指令在由第二無線通信裝置之一個或多個處理器執行時,使得該第二無線通信裝置進行以下操作:從雷達控制器接收針對從第一無線通信裝置到該第二無線通信裝置的目標雷達信號的至少一個傳輸組態,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及根據該至少一個傳輸組態從該第一無線通信裝置接收該目標雷達信號。
在一些態樣中,該第一無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該第二無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
在一些態樣中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且該至少一個傳輸組態包含對該第二時域部分進行組態的第二傳輸組態。
在一些態樣中,該第一傳輸組態及該第二傳輸組態係在不同的時間處接收。
在一些態樣中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間的時間間隙。
在一些態樣中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
在一些態樣中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
在一些態樣中,該第一時域部分及該第二時域部分具有相同的持續時間。
在一些態樣中,該第一時域部分及該第二時域部分具有不同的持續時間。
在一些態樣中,該至少一個傳輸組態進一步對第三時域部分進行組態。
在一些態樣中,該第三時域部分係與第三時域目標雷達信號密度相關聯,該第三時域目標雷達信號密度與該第一時域目標雷達信號密度或該第二時域目標雷達信號密度相同或不同。
下文給出了與本文中揭示的一個或多個態樣相關的簡要概述。因此,下文的概述不應當被認為是與全部預期態樣相關的詳盡綜述,而且下文的概述既不應當被認為識別與全部預期態樣相關的關鍵或重要元件,亦不應當被認為描繪與任何特定態樣相關聯的範疇。相應地,下文的概述的唯一目的係以簡化的形式給出與關於本文中揭示的機制的一個或多個態樣相關的某些概念,作為下文給出的實施方式的前序。
基於隨附圖式及實施方式,與本文中揭示的各態樣相關聯的其它目的及優勢對於本領域技術人員而言將顯而易見。
在涉及出於說明目的而提供的各個實例的下文描述及相關圖式中提供了本公開內容之各態樣。可在不脫離本公開內容之範疇的情況下,設計替代的各態樣。另外,本公開內容之習知元件將不進行詳細地描述或者將被省略,以避免模糊本公開內容之相關細節。
本文中使用“例示性”及/或“實例”的詞語來意指“用作實例、例項或說明”。本文中被描述為“例示性”及/或“實例”的任何態樣不必被解釋為相對於其它各態樣優選或具有優勢。同樣,術語“本公開內容之各態樣”不要求本公開內容之全部態樣包括所論述的特徵、優勢或操作模式。
本領域技術人員將認識到,下文描述的資訊及信號可使用各種各樣的不同的技術及方法之任何者來表示。例如,可能遍及下文描述所提及的數據、指令、命令、資訊、信號、位元、碼元及碼片可由電壓、電流、電磁波、磁場或粒子、光場或粒子或者其任何組合來表示,這部分地取決於特定應用,部分地取決於期望的設計,部分地取決於對應的技術,等等。
此外,許多態樣係按照要由例如計算裝置之元件履行的動作之序列來描述。將認識到,本文中描述的各個動作可以由特定電路(例如,特定應用積體電路(ASIC))、由一個或多個處理器執行的程式指令、或者由兩者之組合來履行。另外,本文中描述的該等動作之序列可以被認為係完全體現在任何形式的非暫時性計算機可讀儲存媒體中,該非暫時性計算機可讀儲存媒體具有儲存在其中的對應的計算機指令之集合,該計算機指令之集合在被執行之際將使得或指令裝置之相關聯的處理器履行本文中描述的功能性。因此,本公開內容之各個態樣可在多種不同的形式中體現,其中的全部形式被預期在所主張的技術主題之範疇內。另外,對於本文中描述的各態樣之每一者,任何如是態樣之對應形式在本文中可被描述為例如“被組態以履行所描述的動作的邏輯”。
如本文中使用的,除非另外指出,否則術語“用戶裝備”(UE)及“基地台”(BS)不旨在係特定於或以其它方式限於任何特定的無線電存取技術(RAT)。通常,UE可為被用戶用來在無線通信網路上進行通信的任何無線通信裝置(例如,行動電話、路由器、平板型計算機、膝上型計算機、追蹤裝置、可穿戴裝置(例如,智慧型手錶、眼鏡、擴增實境(AR)/虛擬實境(VR)頭戴機等)、交通工具(例如,汽車、摩托車、自行車等)、物聯網(IoT)裝置等)。UE可為行動的或者(例如,在某些時間處)可為靜止的,並且可與無線電存取網路(RAN)進行通信。如本文中使用的,術語“UE”可以可互換地被稱為“存取終端”或“AT”、“客戶端裝置”、“無線裝置”、“訂戶裝置”、“訂戶終端”、“訂戶站台”、“用戶終端”或UT、“行動裝置”“行動終端”、“行動站台”或其變型。通常,UE可以經由RAN與核心網路進行通信,並且通過核心網路UE可以與諸如網際網路的外部網路以及與其它UE連接。當然,對於UE而言,連接到核心網路及/或網際網路的其它機制亦為可能的,諸如在有線存取網路、無線區域網路(WLAN)網路(例如,基於IEEE 802.11等)上等等。
基地台在與UE的通信中可根據若干RAT之一者來進行操作,這取決於基地台部署在其中的網路,並且基地台可被替代地稱為存取點(AP)、網路節點、節點B、演進型節點B(eNB)、下一代eNB(ng-eNB)、新無線電(NR)節點B(亦被稱為gNB或gNodeB)等。基地台可主要用來支援由UE進行的無線存取,包括支援用於所支援的UE的數據、語音及/或信令連接。在一些系統中,基地台可提供純邊緣節點信令功能,而在其它系統中,其可提供另外的控制及/或網路管理功能。UE可以通過其來向基地台發送信號的通信鏈路被稱為上行鏈路(UL)信道(例如,反向訊務信道、反向控制信道、存取信道等)。基地台可以通過其來向UE發送信號的通信鏈路被稱為下行鏈路(DL)或前向鏈路信道(例如,傳呼信道、控制信道、廣播信道、前向訊務信道等)。如本文中使用的,術語訊務信道(TCH)可以指稱上行鏈路/反向訊務信道或者下行鏈路/前向訊務信道。
術語“基地台”可指稱單個實體傳送接收點(TRP),或者指稱可為共置的或可非共置的多個實體TRP。例如,在術語“基地台”指稱單個實體TRP的情況下,實體TRP可為基地台之、與基地台之小區(或若干小區扇區)相對應的天線。在術語“基地台”指稱多個共置的實體TRP的情況下,實體TRP可為基地台之天線陣列(例如,如在多輸入多輸出(MIMO)系統中或者在基地台採用波束成形的情況下)。在術語“基地台”指稱多個非共置的實體TRP的情況下,實體TRP可為分布式天線系統(DAS)(經由傳輸媒體連接到共同資源的在空間上分開的天線之網路)或遠程無線電頭端(RRH)(被連接到服務基地台的遠程基地台)。替代地,非共置的實體TRP可為從UE接收測量報告的服務基地台及UE正在測量其參考RF信號(或簡稱“參考信號”)的鄰居基地台。因為如本文中所使用的,TRP係基地台從其傳送及接收無線信號的點,所以對來自基地台的傳送或者在基地台處的接收的提及將應當被理解為指稱基地台之特定TRP。
在支援UE之定位的一些實作方式中,基地台可能不支援由UE進行的無線存取(例如,可能不支援用於UE的數據、語音及/或信令連接),但可代替地將向UE傳送參考信號以由UE測量,及/或可接收及測量由UE傳送的信號。如是基地台可被稱為定位信標(例如,當向UE傳送信號時)及/或位置測量單元(例如,當接收及測量來自UE的信號時)
“RF信號”包含通過發射器與接收器之間的空間來傳輸資訊的具有給定頻率的電磁波。如本文中使用的,發射器可向接收器傳送單個“RF信號”或多個“RF信號”。然而,由於RF信號通過多路徑信道的傳播特性,因此接收器可接收與每個所傳送的RF信號相對應的多個“RF信號”。在發射器與接收器之間的不同路徑上所傳送的相同的RF信號可被稱為“多路徑”RF信號。如本文中使用的,RF信號亦可被稱為“無線信號”或簡稱為“信號”,其中從上下文中可清楚地看出術語“信號”指稱無線信號或RF信號。
參考圖1,示出了例示性無線通信系統100。無線通信系統100(其亦可被稱為無線廣域網路(WWAN))可包括各種基地台102及各種UE 104。基地台102可包括宏小區基地台(高功率蜂巢基地台)及/或小型小區基地台(低功率蜂巢基地台)。在一態樣中,宏小區基地台可包括eNB及/或ng-eNB(其中無線通信系統100對應於LTE網路)或gNB(其中無線通信系統100對應於NR網路)或兩者之組合,以及小型小區基地台可包括毫微微小區、微微小區、微小區等。
基地台102可共同地形成RAN以及通過回程鏈路122與核心網路170(例如,演進封包核心(EPC)或5G核心(5GC))介面介接,以及通過核心網路170介面介接到一個或多個位置伺服器172(其可為核心網路170之一部分,或者可在核心網路170外部)。除了其它功能之外,基地台102可履行與以下之一者或多者相關的功能:轉送用戶數據、無線電信道加密及解密、完整性保護、標頭壓縮、行動性控制功能(例如,切換、雙連接性)、小區間干擾協調、連接建立及釋放、負載平衡、針對非存取層(NAS)訊息的分發、NAS節點選擇、同步、RAN共用、多媒體廣播多播服務(MBMS)、訂戶及裝備追蹤、RAN資訊管理(RIM)、傳呼、定位、以及警告訊息之傳送。基地台102可通過回程鏈路134(其可為有線或無線)來直接或間接地(例如,通過EPC /5GC)相互通信。
基地台102可與UE 104無線地進行通信。基地台102之每一者可針對各別的地理覆蓋區域110提供通信覆蓋。在一態樣中,基地台102在每個地理覆蓋區域110中可支援一個或多個小區。“小區”係用於與基地台的通信(例如,在某個頻率資源(被稱為載波頻率、分量載波、載波、頻帶或相似者)上)的邏輯通信實體,並且可與用於區分經由相同或不同的載波頻率進行操作的小區的識別符(例如,實體小區識別符(PCI)、虛擬小區識別符(VCI)、小區全域識別符(CGI))相關聯。在一些情形中,不同的小區可為根據可提供針對不同類型的UE的存取的不同的協定類型(例如,機器類型通信(MTC)、窄帶IoT(NB-IoT)、增強型行動寬帶(eMBB)或其它)來組態。因為小區係由特定基地台所支援,所以術語“小區”可指稱邏輯通信實體及支援其的基地台之任一者或兩者,這取決於上下文。另外,由於TRP通常為小區之實體傳輸點,因此術語“小區”及“TRP”可以可互換地使用。在一些情形中,術語“小區”亦可指稱基地台之地理覆蓋區域(例如,扇區),其中在該範圍內,載波頻率可以被檢測到並且用於地理覆蓋區域110之某個部分內的通信。
雖然相鄰的宏小區基地台102地理覆蓋區域110可部分地重疊(例如,在切換區域中),但地理覆蓋區域110之一些者可與較大的地理覆蓋區域110大體上重疊。例如,小型小區基地台102’可具有與一個或多個宏小區基地台102之地理覆蓋區域110大體上重疊的地理覆蓋區域110’。包括小型小區基地台及宏小區基地台兩者的網路可被稱為異構網路。異構網路亦可包括家庭eNB(HeNB),其可向被稱為封閉用戶組(CSG)的受限群組提供服務。
在基地台102與UE 104之間的通信鏈路120可包括從UE 104到基地台102的上行鏈路(亦被稱為反向鏈路)傳輸及/或從基地台102到UE 104的下行鏈路(亦被稱為前向鏈路)傳輸。通信鏈路120可使用MIMO天線技術,其包括空間多工、波束成形及/或發射分集。通信鏈路120可為通過一個或多個載波頻率。對載波的分配可關於下行鏈路及上行鏈路為不對稱(例如,與針對上行鏈路相比,可針對下行鏈路分配更多或更少的載波)。
無線通信系統100可進一步包括無線區域網路(WLAN)存取點(AP)150,其在非許可頻譜(例如,5GHz)中經由通信鏈路154來與WLAN站台(STA)152相通信。當在非許可頻譜中進行通信時,WLAN STA 152及/或WLAN AP 150可在進行通信之前履行淨空信道評估(CCA)或先聽後說(LBT)過程,以便決定信道是否為可用。
小型小區基地台102’可在經許可及/或非許可頻譜中進行操作。當在非許可頻譜中進行操作時,小型小區基地台102’可採用LTE或NR技術並且使用與由WLAN AP 150所使用的5 GHz非許可頻譜相同的5 GHz非許可頻譜。採用在非許可頻譜中的LTE/5G的小型小區基地台102’可提升對存取網路的覆蓋及/或增加存取網路之容量。在非許可頻譜中的NR可被稱為NR-U。在非許可頻譜中的LTE可被稱為LTE-U、許可輔助存取(LAA)或MulteFire。
無線通信系統100可進一步包括與UE 182進行通信的毫米波(mmW)基地台180,其可在mmW頻率及/或近mmW頻率中操作。極高頻(EHF)係RF在電磁頻譜中的一部分。EHF具有30 GHz到300 GHz的範圍並且具有在1毫米到10毫米之間的波長。在此頻帶中的無線電波可被稱為毫米波。近mmW可向下延伸到3 GHz的頻率,具有100毫米的波長。超高頻(SHF)頻帶在3 GHz到30 GHz之間延伸,亦被稱為釐米波。使用mmW/近mmW射頻頻帶的通信具有高路徑損耗及相對短的距離。mmW基地台180及UE 182可利用mmW通信鏈路184上的波束成形(傳送及/或接收)來補償極高的路徑損耗及短距離。此外,將認識到,在替代組態中,一個或多個基地台102亦可使用mmW或近mmW及波束成形來進行傳送。相應地,將認識到,前述說明僅為實例並且不應當被解釋為限制本文中所揭示的各個態樣。
發射波束成形係一種用於將RF信號聚集在特定方向上的技術。傳統地,當網路節點(例如,基地台)廣播RF信號時,其在全部方向上(全向地)廣播該信號。利用發射波束成形,網路節點決定給定的目標裝置(例如,UE)位於何處(相對於發射網路節點而言)並且將較強的下行鏈路RF信號投射在該特定方向上,從而針對接收裝置提供更快(在數據速率方面)及更強的RF信號。為了在進行發射時改變RF信號的方向性,網路節點可以在廣播RF信號的一個或多個發射器之每一者處控制RF信號之相位及相對幅度。例如,網路節點可使用天線之陣列(被稱為“相控陣列”或“天線陣列”),其創建能夠被“引導”到不同方向上的點的RF波之波束,而不需要實際地移動天線。具體而言,將來自發射器的RF電流饋送至帶有正確的相位關係的個別天線,使得來自分別的天線的無線電波加在一起以在期望的方向上增加輻射,而在不期望的方向上消除以抑制輻射。
發射波束可為準共置,這意指它們在接收器(例如,UE)看來係具有相同的參數,無論網路節點之發射天線本身是否為實體地共置。在NR中,存在四種類型的準共置(QCL)關係。具體而言,給定類型的QCL關係意指關於第二波束上的第二參考RF信號的某些參數可為根據關於源波束上的源參考RF信號的資訊來推導。因此,如果源參考RF信號為QCL類型A,則接收器可以使用源參考RF信號來估計在相同信道上傳送的第二參考RF信號之都卜勒頻移、都卜勒擴展、平均延遲及延遲擴展。如果源參考RF信號為QCL類型B,則接收器可以使用源參考RF信號來估計在相同信道上傳送的第二參考RF信號之都卜勒頻移及都卜勒擴展。如果源參考RF信號為QCL類型C,則接收器可以使用源參考RF信號來估計在相同信道上傳送的第二參考RF信號之都卜勒頻移及平均延遲。如果源參考RF信號為QCL類型D,則接收器可以使用源參考RF信號來估計在相同信道上傳送的第二參考RF信號之空間接收參數。
在接收波束成形中,接收器使用接收波束來對在給定信道上檢測到的RF信號進行放大。例如,接收器可以在特定方向上增加增益設定及/或調整天線陣列之相位設定,以對從該方向接收的RF信號進行放大(例如,以增加該RF信號之增益水平)。因此,當稱接收器在某個方向進行波束成形時,其意指該方向上的波束增益相對於沿著其它方向的波束增益而言為高的,或者該方向上的波束增益與可用於接收器的全部其它接收波束在該方向上的波束增益相比為最高的。這導致從該方向接收的RF信號之較強的接收信號強度(例如,參考信號接收功率(RSRP)、參考信號接收品質(RSRQ)、信號對干擾雜訊比(SINR)等)。
接收波束可為空間上相關的。空間關聯意指針對用於第二參考信號的發射波束的參數可為根據關於用於第一參考信號的接收波束的資訊來推導。例如,UE可使用特定接收波束來從基地台接收一個或多個參考下行鏈路參考信號(例如,定位參考信號(PRS)、追蹤參考信號(TRS)、相位追蹤參考信號(PTRS)、小區特定參考信號(CRS)、信道狀態資訊參考信號(CSI-RS)、主同步信號(PSS)、輔同步信號(SSS)、同步信號塊(SSB)等)。然後,UE可以基於接收波束之參數來形成用於向該基地台發送一個或多個上行鏈路參考信號(例如,上行鏈路定位參考信號(UL-PRS)、探測參考信號(SRS)、解調參考信號(DMRS)、PTRS等)的發射波束。
要注意,“下行鏈路”波束可為發射波束或接收波束,這取決於形成其的實體。例如,如果基地台正在形成用於向UE傳送參考信號的下行鏈路波束,則下行鏈路波束為發射波束。然而,如果UE正在形成下行鏈路波束,則其為用於接收下行鏈路參考信號的接收波束。類似地,“上行鏈路”波束可為發射波束或接收波束,這取決於形成其的實體。例如,如果基地台正在形成上行鏈路波束,則其為上行鏈路接收波束,並且如果UE正在形成上行鏈路波束,則其為上行鏈路發射波束。
在5G中,無線節點(例如,基地台102/180、UE 104/182)在其中操作的頻譜被劃分成多個頻率範圍:FR1(從450到6000 MHz)、FR2(從24250到52600 MHz)、FR3(高於52600 MHz)以及FR4(在FR1與FR2之間)。在多載波系統(諸如5G)中,載波頻率之一被稱為“主載波”或“錨載波”或“主服務小區”或“PCell”,並且剩餘的載波頻率被稱為“輔載波”或“輔服務小區”或“SCell”。在載波聚合中,錨載波係在由UE 104/182利用的主頻率(例如,FR1)及UE 104/182在其中履行初始無線電資源控制(RRC)連接建立過程或發起RRC連接重建立過程的小區上操作的載波。主載波攜帶全部共同及特定於UE的控制信道,並且可為在經許可頻率中的載波(然而,並非總是此種情況)。輔載波係在第二頻率(例如,FR2)上操作的載波,其中第二頻率可為在UE 104與錨載波之間建立RRC連接時組態的,以及可用來提供另外的無線電資源。在一些情形中,輔載波可為在非許可頻率中的載波。輔載波可僅含有必要的信令資訊及信號,例如,在輔載波中可能不存在特定於UE的信令資訊及信號,因為主上行鏈路載波及主下行鏈路載波兩者通常為特定於UE。這意指小區中的不同的UE 104/182可具有不同的下行鏈路主載波。這對於上行鏈路主載波亦為成立的。網路能夠在任何時間處改變任何UE 104/182之主載波。這樣做係為了例如平衡不同載波上的負載。由於“服務小區”(無論係PCell抑或SCell)與某個基地台正在其上進行通信的載波頻率/分量載波相對應,因此術語“小區”、“服務小區”、“分量載波”、“載波頻率”及相似者可以可互換地使用。
例如,仍然參考圖1,宏小區基地台102利用的頻率之一可為錨載波(或“PCell”),以及宏小區基地台102及/或mmW基地台180利用的其它頻率可為輔載波(“SCell”)。對多個載波的同時傳送及/或接收使UE 104/182能夠顯著地增加其數據傳送及/或接收速率。例如,多載波系統中的兩個20 MHz聚合載波在理論上將帶來數據速率的兩倍增加(即,40 MHz)(與單個20 MHz載波所達到的數據速率相比)。
無線通信系統100可進一步包括UE 164,其可在通信鏈路120上與宏小區基地台102進行通信及/或在mmW通信鏈路184上與mmW基地台180進行通信。例如,宏小區基地台102可支援用於UE 164的PCell及一個或多個SCell,並且mmW基地台180可支援用於UE 164的一個或多個SCell。
無線通信系統100可進一步包括經由一個或多個裝置到裝置(D2D)對等(P2P)鏈路(被稱為“側行鏈路”)間接地連接到一個或多個通信網路的一個或多個UE(諸如UE 190)。在圖1之實例中,UE 190具有與連接到基地台102之一的UE 104之一的D2D P2P鏈路192(例如,通過D2D P2P鏈路192,UE 190可間接地獲得蜂巢連接性)及與連接到WLAN AP 150的WLAN STA 152的D2D P2P鏈路194(通過D2D P2P鏈路194,UE 190可間接地獲得基於WLAN的網際網路連接性)。在一實例中,可利用任何習知的D2D RAT(諸如LTE直連(LTE-D)、WiFi直連(WiFi-D)、藍牙®等等)來支援D2D P2P鏈路192及194。
參考圖2A,示出了例示性無線網路結構200。例如,可以在功能上將5GC 210(亦被稱為下一代核心(NGC))視為控制平面功能214(例如,UE註冊、認證、網路存取、閘道選擇等)及用戶平面功能212(例如,UE閘道功能、對數據網路的存取、IP路由等),控制平面功能214及用戶平面功能212協同操作以形成核心網路。用戶平面介面(NG-U)213及控制平面介面(NG-C)215將gNB 222連接到5GC 210,並且具體而言,連接到控制平面功能214及用戶平面功能212。在另外的組態中,亦可經由去往控制平面功能214的NG-C 215及去往用戶平面功能212的NG-U 213將ng-eNB 224連接到5GC 210。此外,ng-eNB 224可經由回程連接223直接與gNB 222進行通信。在一些組態中,新RAN 220可僅具有一個或多個gNB 222,而其它組態包括ng-eNB 224及gNB 222兩者之一者或多者。gNB 222或ng-eNB 224可與UE 204(例如,圖1中描繪的UE之任何者)進行通信。另一個可選態樣可包括位置伺服器230,其可與5GC 210相通信以針對UE 204提供位置輔助。位置伺服器230可以被實作為複數個分開的伺服器(例如,在實體上分開的伺服器、單個伺服器上的不同軟體模組、跨越多個實體伺服器分佈的不同軟體模組等),或者替代地,可各自對應於單個伺服器。位置伺服器230可以被組態以支援針對可以經由核心網路、5GC 210及/或經由網際網路(未繪示)連接到位置伺服器230的UE 204的一個或多個位置服務。此外,位置伺服器230可被整合到核心網路之組件中,或者替代地,可在核心網路外部。
參考圖2B,示出了另一例示性無線網路結構250。例如,5GC 260可以在功能上被視為由存取及行動性管理功能(AMF)264提供的控制平面功能、以及由用戶平面功能(UPF)262提供的用戶平面功能,它們協同操作以形成核心網路(即,5GC 260)。用戶平面介面263及控制平面介面265將ng-eNB 224連接到5GC 260,並且具體地分別連接到UPF 262及AMF 264。在另外的組態中,gNB 222亦可經由去往AMF 264的控制平面介面265以及去往UPF 262的用戶平面介面263被連接到5GC 260。此外,ng-eNB 224可經由回程連接223直接與gNB 222通信,無論gNB是否有去往5GC 260的直接連接。在一些組態中,新RAN 220可僅具有一個或多個gNB 222,而其它組態包括ng-eNB 224及gNB 222兩者之一者或多者。gNB 222或ng-eNB 224可與UE 204(例如,圖1中描繪的UE之任何者)進行通信。新RAN 220之基地台在N2介面上與AMF 264進行通信,並且在N3介面上與UPF 262進行通信。
AMF 264之功能包括註冊管理、連接管理、可到達性管理、行動性管理、合法截聽、在UE 204與會話管理功能(SMF)266之間傳輸會話管理(SM)訊息、用於路由SM訊息的透明代理服務、存取認證及存取授權、在UE 204與短訊息服務功能(SMSF)(未示出)之間傳送短訊息服務(SMS)訊息、以及安全性錨功能性(SEAF)。AMF 264亦與認證伺服器功能(AUSF)(未示出)及UE 204進行互動,並且接收由於UE 204認證過程而被建立的中間密鑰。在基於UMTS(通用行動電信系統)訂戶身份模組(USIM)的認證之情形中,AMF 264從AUSF取得安全性材料。AMF 264之功能亦包括安全性上下文管理(SCM)。SCM從SEAF接收密鑰,其中SCM使用該密鑰來推導特定於存取網路的密鑰。AMF 264之功能性亦包括針對管理服務的位置服務管理、在UE 204與位置管理功能(LMF)270(其充當位置伺服器230)之間傳送位置服務訊息、在新RAN 220與LMF 270之間傳送位置服務訊息、用於與演進封包系統(EPS)互通的EPS承載識別符分配、以及UE 204行動性事件通知。另外,AMF 264亦支援針對非3GPP存取網路的功能性。
UPF 262之功能包括:充當用於RAT內/RAT間行動性(在適用時)的錨點,充當互連到數據網路(未示出)的外部協定數據單元(PDU)會話點,提供封包路由及轉發、封包檢驗、用戶平面策略規則施行(例如,閘控、重定向、訊務引導)、合法截聽(用戶平面收集)、訊務利用率報告、用於用戶平面的服務品質(QoS)處置(例如,上行鏈路/下行鏈路速率施行、下行鏈路中的反映性QoS標誌)、上行鏈路訊務驗證(服務數據流(SDF)到QoS流映射)、上行鏈路及下行鏈路中的傳輸水準封包標誌、下行鏈路封包緩衝及下行鏈路數據通知觸發,以及向源RAN節點發送及轉發一個或多個“結束標誌”。UPF 262亦可支援在UE 204與位置伺服器(諸如安全用戶平面位置(SUPL)位置平臺(SLP)272)之間在用戶平面上轉送位置服務訊息。
SMF 266之功能包括會話管理、UE網際網路協定(IP)位址分配及管理、對用戶平面功能的選擇及控制、將UPF 262處的訊務引導組態以向正確的目的地路由訊務、對策略施行及QoS之部分的控制、以及下行鏈路數據通知。SMF 266在其上與AMF 264進行通信的介面被稱為N11介面。
另一可選態樣可包括LMF 270,其可與5GC 260通信,以向UE 204提供位置幫助。LMF 270能夠被實作為複數個分開的伺服器(例如,在實體上分開的伺服器、單個伺服器上的不同軟體模組、跨越多個實體伺服器分佈的不同軟體模組等),或者替代地,可各自對應於單個伺服器。LMF 270可能能夠被組態以支援用於UE 204的一個或多個位置服務,UE 204可以經由核心網路、5GC 260及/或經由網際網路(未繪示)連接到LMF 270。SLP 272可支援與LMF 270類似的功能,但儘管LMF 270可在控制平面上與AMF 264、新RAN 220及UE 204進行通信(例如,使用旨在輸送信令訊息而非語音或數據的介面及協定),SLP 272可在用戶平面上與UE 204及外部客戶端(圖2B中未示出)進行通信(例如,使用旨在攜帶語音及/或數據的協定,諸如傳輸控制協定(TCP)及/或IP)。
在一態樣中,LMF 270及/或SLP 272可整合到基地台(諸如gNB 222及/或ng-eNB 224)中。當整合到gNB 222及/或ng-eNB 224中時,LMF 270及/或SLP 272可被稱為“位置管理組件”或“LMC”。然而,如本文中所使用的,對LMF 270及SLP 272的引用包括其中LMF 270及SLP 272為核心網路(例如,5GC 260)之組件的情形以及其中LMF 270及SLP 272為基地台之組件的情形。
參考圖3A、3B及3C,示出了可併入到UE 302(其可對應於本文中描述的UE之任何者)、基地台304(其可對應於本文中描述的基地台之任何者)及網路實體306(其可對應於或體現本文中描述的網路功能之任何者,包括位置伺服器230及LMF 270)中以支援檔案傳輸操作的若干例示性組件(由對應的方塊表示)。將認識到,此等組件可在不同的實作方式中(例如,在ASIC中、在系統單晶片(SoC)中等)在不同類型的器具中實作。所繪示的組件亦可併入到通信系統中的其它器具中。例如,系統中的其它器具可包括與所描述者類似的組件,以提供類似的功能性。另外,給定器具可含有組件之一者或多者。例如,器具可包括使該器具能夠在多個載波上操作及/或經由不同技術進行通信的多個收發器組件。
UE 302及基地台304各自包括分別被組態以經由一個或多個無線通信網路(未示出)(諸如NR網路、LTE網路、GSM網路及/或相似者)進行通信的無線廣域網路(WWAN)收發器310及350。WWAN收發器310及350可分別連接到一個或多個天線316及356,以在關注的無線通信媒體(例如,特定頻譜中的某個時間/頻率資源集合)上經由至少一個指定的RAT(例如,NR、LTE、GSM等)與其它網路節點(諸如其它UE、存取點、基地台(例如,eNB、gNB)等)進行通信。WWAN收發器310及350可不同地被組態用於根據指定的RAT來分別傳送及編碼信號318及358(例如,訊息、指示、資訊等)以及相反地分別接收及解碼信號318及358(例如,訊息、指示、資訊、導頻等)。具體地,收發器310及350分別包括一個或多個發射器314及354,其分別用於傳送及編碼信號318及358,並且分別包括一個或多個接收器312及352,其分別用於接收及解碼信號318及358。
至少在一些情形中,UE 302及基地台304亦分別包括無線區域網路(WLAN)收發器320及360。WLAN收發器320及360可分別連接到用於在關注的無線通信媒體上經由至少一個指定的RAT(例如,WiFi、LTE-D、藍牙®等)與其它網路節點(諸如其它UE、存取點、基地台等)進行通信的一個或多個天線326及366。WLAN收發器320及360可不同地被組態用於根據指定的RAT來分別傳送及編碼信號328及368(例如,訊息、指示、資訊等)以及相反地分別接收及解碼信號328及368(例如,訊息、指示、資訊、導頻等)。具體地,收發器320及360分別包括一個或多個發射器324及364,其分別用於傳送及編碼信號328及368,以及分別包括一個或多個接收器322及362,其分別用於接收及解碼信號328及368。
包括至少一個發射器及至少一個接收器的收發器電路系統在一些實作方式中可包括整合裝置(例如,被體現為單個通信裝置的發射器電路及接收器電路),在一些實作方式中可包括單獨的發射器裝置及單獨的接收器裝置,或者在其它實作方式中可按其它方式體現。在一態樣中,發射器可包括或耦合到複數個天線(例如,天線316、326、356、366)(諸如天線陣列),這允許各別的器具履行發射“波束成形”,如本文中描述的。類似地,接收器可包括或耦合到複數個天線(例如,天線316、326、356、366)(諸如天線陣列),這允許各別的器具履行接收波束成形,如本文中描述的。在一態樣中,發射器及接收器可共用相同的複數個天線(例如,天線316、326、356、366),使得各別的器具在給定時間只能進行接收或傳送,而非同時進行接收或傳送。UE 302及/或基地台304之無線通信裝置(例如,收發器310及320及/或350及360之一者或兩者)亦可包含用於履行各種測量的網路監聽模組(NLM)或相似者。
至少在一些情形中,UE 302及基地台304亦包括衛星定位系統(SPS)接收器330及370。SPS接收器330及370可分別連接到分別用於接收SPS信號338及378(諸如全球定位系統(GPS)信號、全球導航衛星系統(GLONASS)信號、伽利略信號、北斗信號,印度區域導航衛星系統(NAVIC)、準天頂衛星系統(QZSS)等)的一個或多個天線336及376。SPS接收器330及370可包含分別用於接收及處理SPS信號338及378的任何合適的硬體及/或軟體。SPS接收器330及370根據需要從其它系統請求資訊及操作,並且使用藉由任何合適的SPS演算法獲得的測量來履行決定UE 302及基地台304之位置所需的計算。
基地台304及網路實體306各自包括用於與其它網路實體進行通信的至少一個網路介面380及390。例如,網路介面380及390(例如,一個或多個網路存取埠)可被組態以經由基於有線的回程連接或無線回程連接與一個或多個網路實體進行通信。在一些態樣中,網路介面380及390可被實作為收發器,其被組態以支援基於有線的信號通信或無線信號通信。此通信可涉及例如發送及接收訊息、參數及/或其它類型的資訊。
UE 302、基地台304及網路實體306亦包括可結合本文中所揭示的操作使用的其它組件。UE 302包括實作處理系統332的處理器電路系統,處理系統332用於提供與例如RF感測相關的功能性,以及用於提供其它處理功能性。基地台304包括處理系統384,處理系統384用於提供與例如本文中所揭示的RF感測相關的功能性,以及用於提供其它處理功能性。網路實體306包括處理系統394,處理系統394用於提供與例如本文中所揭示的RF感測相關的功能性,以及用於提供其它處理功能性。在一態樣中,處理系統332、384及394可包括例如一個或多個通用處理器、多核處理器、ASIC、數位信號處理器(DSP)、現場可編程閘陣列(FPGA)、或其它可編程邏輯器件或處理電路系統。
UE 302、基地台304及網路實體306分別包括實作用於維護資訊(例如,指示預留資源、臨限、參數等的資訊)的記憶體組件340、386及396(例如,各自包括記憶體裝置)的記憶體電路系統。在一些情形中,UE 302、基地台304及網路實體306可分別包括雷達組件342、388及398。雷達組件342、388及398可分別為作為處理系統332、384及394之一部分或者耦合到處理系統332、384及394的硬體電路,其在被執行時使得UE 302、基地台304及網路實體306履行本文中描述的功能性。在其它態樣中,雷達組件342、388及398可在處理系統332、384及394外部(例如,數據機處理系統之一部分,與另一處理系統整合,等等)。替代地,雷達組件342、388及398可分別為儲存在記憶體組件340、386及396中的記憶體模組(如圖3A-C所示),其在由處理系統332、384及394(或數據機處理系統、另一處理系統等)執行時,使得UE 302、基地台304及網路實體306履行本文中描述的功能性。
UE 302可包括耦合到處理系統332的一個或多個感測器344,以提供獨立於根據由WWAN收發器310、WLAN收發器320及/或SPS接收器330接收的信號推導的運動數據的運動及/或方向資訊。舉例而言,感測器344可包括加速計(例如,微電子機械系統(MEMS)裝置)、陀螺儀、地磁感測器(例如,羅盤)、高度計(例如,氣壓高度計)及/或任何其它類型的運動檢測感測器。此外,感測器344可包括複數個不同類型的裝置並且組合其輸出以便提供運動資訊。例如,感測器344可使用多軸加速計及方向感測器之組合來提供在2D及/或3D坐標系中計算位置的能力。
另外,UE 302包括用戶介面346,其用於向用戶提供指示(例如,聽覺及/或視覺指示)及/或用於接收用戶輸入(例如,在用戶啟動諸如鍵盤、觸控屏、麥克風等的感測裝置時)。儘管未示出,但基地台304及網路實體306亦可包括用戶介面。
更詳細地參考處理系統384,在下行鏈路中,來自網路實體306的IP封包可被提供給處理系統384。處理系統384可實作針對RRC層、封包數據彙聚協定(PDCP)層、無線電鏈路控制(RLC)層及媒體存取控制(MAC)層的功能性。處理系統384可提供:與以下各項相關聯的RRC層功能性:對系統資訊(例如,主資訊塊(MIB)、系統資訊塊(SIB))的廣播、RRC連接控制(例如,RRC連接傳呼、RRC連接建立、RRC連接修改、以及RRC連接釋放)、RAT間行動性、以及用於UE測量報告的測量組態;與以下各項相關聯的PDCP層功能性:標頭壓縮/解壓縮、安全性(加密、解密、完整性保護、完整性驗證)、以及切換支援功能;與以下各項相關聯的RLC層功能性:對上層封包數據單元(PDU)的轉送、通過混合重傳請求(ARQ)的糾錯、對RLC服務數據單元(SDU)的串接、分段及重組、對RLC數據PDU的重新分段、以及對RLC數據PDU的重新排序;以及與以下各項相關聯的MAC層功能性:在邏輯信道與傳輸信道之間的映射、排程資訊報告、糾錯、優先級處置、以及邏輯信道優先化。
發射器354及接收器352可實作與各種信號處理功能相關聯的層1功能性。層1(其包括實體(PHY)層)可包括在傳輸信道上的錯誤檢測、傳輸信道的前向糾錯(FEC)寫碼/解碼,交織、速率匹配、映射到實體信道上、實體信道之調變/解調、以及MIMO天線處理。發射器354處理基於各種調變方案(例如,二進制相移鍵控(BPSK)、正交相移鍵控(QPSK)、M-相移鍵控(M-PSK)、M-正交振幅調變(M-QAM))的到信號星座圖的映射。經寫碼且經調變的碼元然後可被拆分成並列的串流。每個串流然後可被映射到正交分頻多工(OFDM)子載波,與在時域及/或頻域中的參考信號(例如,導頻)多工,並且然後使用逆快速傅立葉變換(IFFT)組合到一起,以產生攜帶時域OFDM碼元串流的實體信道。OFDM碼元串流被空間預編碼以產生多個空間串流。來自信道估計器的信道估計可用來決定寫碼及調變方案,以及用於空間處理。可根據由UE 302傳送的參考信號及/或信道狀況反饋推導信道估計。然後可將每個空間串流提供給一個或多個不同的天線356。發射器354可利用各別的空間串流來對RF載波進行調變以用於傳輸。
在UE 302處,接收器312通過其各別的天線316接收信號。接收器312恢復出被調變到RF載波上的資訊,並且將該資訊提供給處理系統332。發射器314及接收器312實作與各種信號處理功能相關聯的層1功能性。接收器312可履行對該資訊的空間處理以恢復出以UE 302為目的地的任何空間串流。如果多個空間串流以UE 302為目的地,則可由接收器312將它們組合成單個OFDM碼元串流。接收器312然後使用快速傅立葉變換(FFT)將該OFDM碼元串流從時域變換到頻域。頻域信號包含針對該OFDM信號之每個子載波的單獨的OFDM碼元串流。藉由決定由基地台304傳送的最有可能的信號星座圖點來對在每個子載波上的碼元及參考信號進行恢復及解調。此等軟決策可為基於由信道估計器計算的信道估計。該軟決策然後被解碼及解交織以恢復出由基地台304最初在實體信道上傳送的數據及控制信號。然後將該數據及控制信號提供給處理系統332,其實作層3及層2功能性。
在上行鏈路中,處理系統332提供在傳輸信道與邏輯信道之間的解多工、封包重組、解密、標頭解壓縮、以及控制信號處理,以恢復出來自核心網路的IP封包。處理系統332亦負責錯誤檢測。
與結合由基地台304進行的下行鏈路傳輸所描述的功能性類似,處理系統332提供:與以下各項相關聯的RRC層功能性:系統資訊(例如,MIB、SIB)捕獲、RRC連接、以及測量報告;與以下各項相關聯的PDCP層功能性:標頭壓縮/解壓縮、以及安全性(加密、解密、完整性保護、完整性驗證);與以下各項相關聯的RLC層功能性:對上層PDU的轉送、通過ARQ的糾錯、對RLC SDU的串接、分段及重組、對RLC數據PDU的重新分段、以及對RLC數據PDU的重新排序;以及與以下各項相關聯的MAC層功能性:在邏輯信道與傳輸信道之間的映射、MAC SDU到傳輸塊(TB)上的多工、MAC SDU從TB的解多工、排程資訊報告、通過混合自動重傳請求(HARQ)的糾錯、優先級處置、以及邏輯信道優先化。
發射器314可使用由信道估計器根據由基地台304傳送的參考信號或反饋來推導出的信道估計來選擇適當的寫碼及調變方案,以及促進空間處理。可將由發射器314生成的空間串流提供給不同的天線316。發射器314可利用各別的空間串流來對RF載波進行調變,以用於傳輸。
在基地台304處,以與結合在UE 302處的接收器功能所描述者相類似的方式來處理上行鏈路傳輸。接收器352通過其各別的天線356接收信號。接收器352恢復出被調變到RF載波上的資訊並且將該資訊提供給處理系統384。
在上行鏈路中,處理系統384提供在傳輸信道與邏輯信道之間的解多工、封包重組、解密、標頭解壓縮、控制信號處理,以恢復出來自UE 302的IP封包。可將來自處理系統384的IP封包提供給核心網路。處理系統384亦負責錯誤檢測。
為了方便起見,在圖3A-C中將UE 302、基地台304及/或網路實體306示為包括可根據本文中描述的各個實例進行組態的各個組件。然而,將認識到,所繪示的方塊在不同的設計中可具有不同的功能性。
UE 302、基地台304及網路實體306之各個組件可分別在數據匯流排334、382及392上彼此進行通信。圖3A-C之組件可按各種方式來實作。在一些實作方式中,圖3A-C之組件可為在一個或多個電路中實作,諸如例如一個或多個處理器及/或一個或多個ASIC(其可包括一個或多個處理器)。此處,每個電路可使用及/或合併用於儲存由該電路用來提供此種功能性的資訊或可執行代碼的至少一個記憶體組件。例如,由方塊310至346表示的功能性之一些或全部可由UE 302之處理器及記憶體組件來實作(例如,藉由執行適當的代碼及/或藉由對處理器組件的適當組態)。類似地,由方塊350至388表示的功能性之一些或全部可由基地台304之處理器及記憶體組件來實作(例如,藉由執行適當的代碼及/或藉由對處理器組件的適當組態)。此外,由方塊390至398表示的功能性之一些或全部可以由網路實體306之處理器及記憶體組件來實作(例如,藉由執行適當的代碼及/或藉由對處理器組件的適當組態)。為了簡單起見,本文中將各個操作、動作及/或功能描述為“由UE”、“由基地台”、“由定位實體”等來履行。然而,將認識到,如是操作、動作及/或功能實際上可由UE、基地台、定位實體等之特定組件或組件之組合來履行,諸如處理系統332、384、394、收發器310、320、350及360、記憶體組件340、386及396、雷達組件342、388及398等。
圖4A係繪示根據本公開內容之各態樣的DL訊框結構之實例的圖解400。圖4B係繪示根據本公開內容之各態樣的DL訊框結構內的信道之實例的圖解430。其它無線通信技術可具有不同的訊框結構及/或不同的信道。
LTE(以及在一些情形中,NR)在下行鏈路上利用OFDM並且在上行鏈路上利用單載波分頻多工(SC-FDM)。然而,與LTE不同,NR亦具有在上行鏈路上使用OFDM的選項。OFDM及SC-FDM將系統帶寬劃分為多個(K個)正交子載波,其通常亦被稱為音調、頻段等。可利用數據來調變每個子載波。通常,在頻域中利用OFDM以及在時域中利用SC-FDM來發送調變碼元。相鄰子載波之間的間隔可為固定,並且子載波之總數(K)可取決於系統帶寬。例如,子載波之間隔可為15 kHz並且最小資源分配(資源塊)可為12個子載波(或180 kHz)。因此,針對1.25、2.5、5、10或20兆赫(MHz)的系統帶寬,標稱FFT大小可分別等於128、256、512、1024或2048。亦可將系統帶寬劃分成子帶。例如,子帶可覆蓋1.08 MHz(即,6個資源塊),並且針對1.25、2.5、5、10或20 MHz的系統帶寬,可分別存在1、2、4、8或16個子帶。
LTE支援單個數字方案(子載波間隔、碼元長度等)。相反,NR可支援多個數字方案,例如,15 KHz、30 KHz、60 KHz、120 KHz及240 KHz或更大的子載波間隔可為可用的。下表1列出了用於不同的NR數字方案的一些不同參數。
子載波間隔(kHz) 碼元/時槽 時槽/子訊框 時槽/訊框 時槽(ms) 碼元持續時間(µs) 帶有4K FFT大小的最大標稱系統BW(MHz)
15 14 1 10 1 66.7 50
30 14 2 20 0.5 33.3 100
60 14 4 40 0.25 16.7 100
120 14 8 80 0.125 8.33 400
240 14 16 160 0.0625 4.17 800
1
在圖4A及4B之實例中,使用15 kHz的數字方案。因此,在時域中,訊框(例如,10 ms)被劃分為10個大小相等的子訊框,每個子訊框為1 ms,並且每個子訊框包括一個時槽。在圖4A及4B中,時間為水平地表示(例如,在X軸上),其中時間從左到右遞增,而頻率為垂直地表示(例如,在Y軸上),其中頻率從下到上遞增(或遞減)。
資源網格可用來表示時槽,每個時槽包括頻域中的一個或多個時間並行資源塊(RB)(亦被稱為實體RB(PRB))。資源網格進一步被劃分為多個資源元件(RE)。RE可對應於時域中的一個碼元長度及頻域中的一個子載波。在圖4A及4B之數字方案中,對於普通循環前綴,RB可含有頻域中的12個連貫子載波及時域中的7個連貫碼元(對於DL,係OFDM碼元;對於UL,係SC-FDMA碼元),總共84個RE。對於延伸循環前綴,RB可含有頻域中的12個連貫子載波及時域中的6個連貫碼元,總共72個RE。每個RE所攜帶的位元數量取決於調變方案。
如圖4A所繪示,RE之一些者攜帶用於UE處的信道估計的DL參考(導頻)信號(DL-RS)。DL-RS可包括解調參考信號(DMRS)及信道狀態資訊參考信號(CSI-RS),其例示性位置在圖4A中被標記為“R”。
圖4B繪示了訊框之DL子訊框內的各個信道之實例。實體下行鏈路控制信道(PDCCH)攜帶一個或多個控制信道元件(CCE)內的DL控制資訊(DCI),每個CCE包括九個RE組(REG),每個REG包括OFDM碼元中的四個連貫RE。DCI攜帶關於UL資源分配(持久及非持久)的資訊以及關於傳送給UE的DL數據的描述。在PDCCH中可以組態多個(例如,多達8個)DCI,並且此等DCI可以具有多個格式之一。例如,對於UL排程、非MIMO DL排程、MIMO DL排程及UL功率控制,存在不同的DCI格式。
UE使用主同步信號(PSS)來決定子訊框/碼元時序及實體層身份。UE使用輔同步信號(SSS)來決定實體層小區身份組號碼及無線電訊框時序。基於實體層身份及實體層小區身份組號碼,UE可以決定PCI。基於PCI,UE可以決定前述DL-RS之位置。攜帶MIB的實體廣播信道(PBCH)可與PSS及SSS邏輯地分組以形成SSB(亦被稱為SS/PBCH)。MIB提供DL系統帶寬中的RB數量及系統訊框號碼(SFN)。實體下行鏈路共用信道(PDSCH)攜帶用戶數據、未通過PBCH傳送的廣播系統資訊(例如系統資訊塊(SIB))及傳呼訊息。在一些情形中,圖4A中所繪示的DL-RS可為定位參考信號(PRS)。
在UE與基地台之間傳送的無線通信信號(例如,被組態以攜帶OFDM碼元的RF信號)可以重用於環境感測(亦被稱為“RF感測”或“雷達”)。將無線通信信號用於環境感測可以被視為具有實現與裝置/系統的無接觸/無裝置互動等的先進檢測能力的消費者級雷達。無線通信信號可為蜂巢通信信號,諸如LTE或NR信號、WLAN信號等。作為特定實例,無線通信信號可為在LTE及NR中利用的OFDM波形。高頻通信信號(諸如mmW RF信號)特別有益於用作雷達信號,因為更高的頻率至少提供更精確的範圍(距離)檢測。
概括而言,存在不同類型的雷達,並且具體而言,單基地雷達及雙基地雷達。圖5A及5B繪示了此等各種類型的雷達之二者。具體地,圖5A係繪示單基地雷達場景的圖解500,並且圖5B係繪示雙基地雷達場景的圖解530。在圖5A中,基地台502可被組態用於全雙工操作,並且因此發射器(Tx)及接收器(Rx)為共置。例如,經傳送的無線電信號506可從目標物體(諸如建築物504)反射,並且基地台502上的接收器被組態以接收及測量反射波束508。此為針對傳統或慣用雷達的典型用例。在圖5B中,基地台505可被組態為發射器(Tx),並且UE 532可被組態為接收器(Rx)。在此實例中,發射器及接收器並非共置,亦即,它們為分開。基地台505可被組態以傳送可由UE 532接收的波束,諸如全向下行鏈路RF信號506。RF信號506之一部分可能被建築物504反射或折射,並且UE 532可接收此反射信號534。此為針對基於無線通信(例如,基於WiFi、基於LTE、基於NR)的RF感測的典型用例。注意,雖然圖5B繪示了使用下行鏈路RF信號506作為RF感測信號,但上行鏈路RF信號亦可以用作RF感測信號。在下行鏈路場景中,如圖所示,發射器為基地台505並且接收器為UE 532,而在上行鏈路場景中,發射器為UE並且接收器為基地台。
更詳細地參考圖5B,基地台505向UE 532傳送RF感測信號(例如,PRS),但RF感測信號之一些者從諸如建築物504的目標物體反射。UE 504可以測量直接從基地台接收的RF信號506之ToA、以及從目標物體(例如,建築物504)反射的反射信號534之ToA。
基地台505可被組態以向接收器(例如,UE 532)傳送單個RF信號506或多個RF信號。然而,由於RF信號通過多路徑信道的傳播特性,UE 532可接收與每個經傳送的RF信號相對應的多個RF信號。每個路徑可與一個或多個信道抽頭的叢集(cluster)相關聯。通常,接收器檢測到信道抽頭之第一叢集的時間被認為係視線(LOS)路徑(即,發射器與接收器之間的最短路徑)上的RF信號之ToA。信道抽頭之稍後的叢集被認為已經從發射器與接收器之間的物體反射,並且因此沿著發射器與接收器之間的非LOS(NLOS)路徑。
因此,返回參考圖5B,RF信號506沿著基地台505與UE 532之間的LOS路徑,以及反射信號534表示由於從建築物504(或另一目標物體)反射而沿著基地台505與UE 532之間的NLOS路徑的RF感測信號。基地台505可能已經傳送了多個RF感測信號(圖5B中未示出),其中的一些沿著LOS路徑,並且其中的另一些沿著NLOS路徑。替代地,基地台505可能已經在足夠寬的波束中傳送了單個RF感測信號,使得RF感測信號之一部分沿著LOS路徑,並且RF感測信號之一部分沿著NLOS路徑。
基於LOS路徑之ToA、NLOS路徑之ToA與光速之間的差異,UE 532可以決定到建築物504的距離。另外,如果UE 532能夠接收波束成形,則UE 532可能能夠將到建築物504的一般方向決定為反射信號534之方向,反射信號534係接收到的沿著NLOS路徑的RF感測信號。UE 532然後可以可選地將此資訊報告給傳送基地台505、與核心網路相關聯的應用伺服器、外部客戶端、第三方應用或某個其它實體。替代地,UE 532可向基地台505或其它實體報告ToA測量,並且基地台505可決定到目標物體的距離及(可選)方向。
要注意,如果RF感測信號係由UE 532傳送給基地台505的上行鏈路RF信號,則基地台505將基於上行鏈路RF信號來履行物體檢測,如同UE 532基於下行鏈路RF信號所做的那樣。
參考圖5C,示出了表示接收器處(例如,本文中描述的UE或基地台之任一者)的隨時間的RF信道響應的實例圖550。在圖5C之實例中,接收器接收信道抽頭之多(四)個叢集。每個信道抽頭表示RF信號在發射器(例如,本文中描述的UE或基地台之任一者)與接收器之間沿著的多路徑。亦即,信道抽頭表示RF信號在多路徑上的抵達。信道抽頭之每個叢集指示對應的多路徑沿著基本相同的路徑。由於RF信號係在不同的發射波束上(以及因此以不同的角度)傳送的,或由於RF信號之傳播特性(由於反射而潛在地沿著非常不同的路徑),或兩者,因此可能存在不同的叢集。
在圖5C所繪示的信道下,接收器在時間T1處在信道抽頭上接收兩個RF信號之第一叢集,在時間T2處在信道抽頭上接收五個RF信號之第二叢集,在時間T3處在信道抽頭上接收五個RF信號之第三叢集,以及在時間T4處在信道抽頭上接收四個RF信號之第四叢集。在圖5C之實例中,由於時間T1處的RF信號之第一叢集首先抵達,因此假設它為LOS數據串流(即,通過LOS或最短路徑抵達的數據串流),並且可對應於圖5B中所繪示的LOS路徑(例如,RF信號506)。時間T3處的第三叢集由最強RF信號組成,並且可對應於圖5B中所繪示的NLOS路徑(例如,反射信號534)。注意,儘管圖5C繪示了兩個到五個信道抽頭之叢集,但如將認識到的,叢集可具有比所示數量的信道抽頭更多或更少的信道抽頭。
參考圖6,示出了用於雙基地射頻感測的例示性單目標波束管理用例600。用例600包括:基地台602(諸如5G NR gNB),其被組態以沿不同的方位角及/或仰角傳送複數個波束成形信號;以及UE 610,其被組態以利用接收波束成形來基於抵達角提高信號之增益。基地台602可被組態以生成 N個不同的參考波束及各個方位角、仰角及/或波束寬度。在一實例中,由基地台602傳送的波束可為基於SS塊、CSI-RS、TRS或PRS資源集。亦可使用其它感測及追蹤參考信號。UE 610可被組態以利用移相器以及其它軟體及硬體技術來生成接收波束,諸如第一接收波束612、第二接收波束614及第三接收波束616。UE 610亦可被組態以將波束成形用於發射波束。基地台602可在目標物體(諸如建築物504)之方向上傳送可被反射的第一參考信號604,並且UE 610可利用第一接收波束612來接收反射信號606。反射信號606表示第一參考信號604到UE 610的NLOS路徑。基地台602亦在第二波束上傳送第二參考信號608。在一實例中,第二參考信號608可與第一參考信號604為準共置(QCL)。UE 610利用第二接收波束614來接收第二參考信號608。第二參考信號608為到UE 610的LOS路徑。
在操作中,UE 610可被組態以向基地台602或另一服務小區報告針對第一及第二參考信號604、608之每一者的信道響應,並且基地台602可被組態以管理用於物體感測的發射波束及接收波束對。例如,基地台602可被組態以向UE 610提供發射及接收波束識別資訊,以追蹤諸如建築物504的物體。波束識別資訊可為在DCI訊息中傳送的傳輸組態指示符(TCI),該DCI訊息包括諸如發射波束與接收波束之間的QCL關係的組態。
參考圖7,進一步參考圖6,示出了用於雙基地射頻感測的例示性多目標用例700。用例700藉由包括第二目標來延伸圖6之單目標用例600。作為實例而非限制,第二目標可為第二建築物704。目標之數量及性質可基於環境及無線電感測應用而改變。在用例700中,基地台602傳送由第二建築物704反射的第三參考信號702,並且所得的反射信號708由UE 610之第二接收波束614檢測。UE 610可報告針對第三參考信號702的信道響應,其具有關於該測量係利用第二接收波束614獲得的指示。基地台602被組態以管理與第二目標相關聯的波束對(即,第三參考信號702及第二接收波束614)。額外目標及對應的波束對亦可由基地台602管理。基地台602可被組態以追蹤目標之一者或多者,並且因此可向UE 610提供對應的波束對資訊,作為用於各別目標的QCL/TCI。
參考圖8A,示出了帶有雙基地射頻感測的例示性掃描相位800。基地台802係基地台304之實例,並且被組態以按不同的方位角、仰角及/或波束寬度傳送複數個波束成形參考信號。參考信號可為針對RF感測應用組態的SS塊、CSI-RS、TRS、PRS或感測掃描參考信號(SSRS)。UE 810係UE 302之實例,並且可被組態以沿著相對於UE 810之方向的不同方位角、仰角及/或波束寬度履行接收波束掃描。在操作中,基地台802可按順序(即,波束掃掠)傳送參考信號之一者或多者,並且UE 810被組態以波束掃掠通過不同的接收波束。掃描相位800可用來初始地經由RF感測來檢測要追蹤的潛在物體。例如,第一參考信號804可由第一物體820a反射,並且第一反射參考信號804a可由UE 810檢測。UE 810可循環通過不同的接收波束,諸如第一接收波束812、第二接收波束814及第三接收波束816。如圖8A中描繪的,第一反射參考信號804a可與第一接收波束812一起被接收。UE 810亦可利用第二接收波束814經由LOS路徑檢測第二參考信號805。基地台802上的波束掃掠可生成在第二物體820b上反射的第三參考信號806,並且UE 810在第三接收波束816上接收第三反射參考信號806a。
在一實施例中,UE 810可被組態以基於所接收的信號之RSRP來檢測目標。例如,UE 810可報告與第一參考信號804及第三參考信號806相關聯的RSRP值係高於臨限值。臨限值可為固定值,或者其可為基於諸如第二參考信號805的LOS信號之RSRP來進行縮放。UE 810被組態以向基地台802或其它網路節點報告與所接收的參考信號相關聯的一個或多個信道測量(例如,RSRP、RSRQ、SINR)。在掃描階段800期間獲得的測量可用於後續追蹤階段。
參考圖8B,進一步參考圖8A,示出了帶有雙基地射頻感測的例示性追蹤相位850。繼續圖8A之實例,基地台802(或通信系統100中的另一網路節點)可決定追蹤在掃描階段800中檢測到的物體之一者或多者。例如,基地台802可選擇追蹤第一物體820a,並且將向UE 810發送波束組態資訊以使得UE 810能夠追蹤第一物體820a。波束組態資訊可包括用於UE 810的參考信號資訊及接收波束組態資訊。基地台802可利用基於第一參考信號804的感測追蹤參考信號(STRS)來追蹤或細化與第一物體相關聯的測量。在一實例中,STRS可與對應的SSRS(即,第一參考信號804)為QCL。SS塊、CSI-RS、TRS及PRS可用作STRS。亦可開發其它參考信號並且將其用作STRS。發送給UE 810的波束組態資訊可為經由RRC、媒體存取控制元件(MAC-CE)、DCI或其它信令協定發送的。在接收到波束組態資訊之際,UE 810可例如將第一接收波束812與STRS一起用來檢測第一物體820a。
基地台802可被組態以基於基地台802可生成的參考信號之數量來追蹤多個目標。在一實施例中,基地台802可被組態以針對每個參考信號追蹤一個物體。例如,基地台802可藉由基於第三參考信號806生成第二STRS來追蹤第二物體820b。發送給UE 810的波束組態資訊可包括用於第二STRS的波束參數以及UE 810在掃描階段800期間提供的對應的接收波束資訊(例如,第三接收波束816)。因此,UE 810可被組態以追蹤第一物體820a及第二物體820b兩者。可追蹤多達由基地台802生成的參考信號之數量的額外物體。
圖9係示出雙基地雷達系統900之基本操作的簡化圖解。發射器902及接收器904用來發送及接收用於感測目標906的雷達信號。雖然示出了雙基地雷達實例,但相同的操作原理可以應用於利用多於兩個的發射器/接收器的多基地雷達。例如,多基地雷達可利用一個發射器及兩個接收器。在另一實例中,多基地雷達可利用兩個發射器及一個接收器。更多數量的發射器及/或接收器亦為可能的。
在雙基地雷達系統900中,發射器902發送傳送信號908,其穿過距離RT到達目標906。傳送信號908從目標906反射並且成為回波信號910,其穿過距離RR到達接收器904。雙基地雷達系統900服務的主要功能為感測從目標906到接收器904的範圍或距離RR。系統主要藉由感測傳送信號908及回波信號910穿過總距離
Figure 02_image001
所花費的時間量來決定範圍RR,
Figure 02_image001
為RT及RR之總和:
Figure 02_image003
(方程式1)
總距離
Figure 02_image001
定義了橢球面(亦被稱為等距離輪廓),其焦點分別位於發射器902及接收器904之位置。給定總距離
Figure 02_image001
,橢球面表示目標906之全部可能位置。雷達系統900能夠測量距離
Figure 02_image001
。例如,如果可以假設發射器902與接收器904之間的時序完全同步,則簡單地測量發射器902發送傳送信號908的時刻與接收器904接收回波信號910的時刻之間的持續時間
Figure 02_image005
將為容易的。將持續時間
Figure 02_image005
乘以信號通過自由空間的速度(例如,大約c=3*908米/秒)將產生
Figure 02_image001
。因此,可以藉由測量雙基地雷達信號之“飛行時間”
Figure 02_image005
來尋找目標906之全部可能位置之橢球面。
根據一些實施例,可以在發射器902與接收器904之間沒有緊密時間同步的情況下測量距離
Figure 02_image001
。在一個實施例中,可以從發射器902向接收器904發送視線(LOS)信號912。亦即,在發射器902朝目標906發送傳送信號908的同時,發射器902亦可朝接收器904發送LOS信號912。根據特定實施例,傳送信號908可對應於從發射器902發出的發射天線波束型樣之主瓣,而LOS信號912對應於從發射器902發出的相同發射天線波束型樣之副瓣。
接收器904接收回波信號910及LOS信號912兩者,並且可以利用接收此兩個信號的時序來測量總距離
Figure 02_image001
,使用以下表達式:
Figure 02_image007
(方程式2)
此處,TRx_echo係接收回波信號910的時間。TRxLOS係接收LOS信號912的時間。如前所述,c=3*108米/秒係信號通過自由空間的速度。L係發射器902與接收器904之間的距離。一旦找到
Figure 02_image001
,就可以使用其來計算目標範圍RR,即,目標906與接收器904之間的距離,使用以下表達式:
Figure 02_image009
(方程式3)
雙基地雷達系統900亦可以用來決定接收器904接收回波信號910的抵達角(AoA)
Figure 02_image011
。這可以按多個方式完成。一個方式為藉由使用接收器904處的天線陣列來估計
Figure 02_image011
。包含多個天線元件的天線陣列可以作為能夠感測信號被接收的角度的可編程定向天線來操作。因此,接收器904可採用天線陣列來感測回波信號910之抵達角。估計
Figure 02_image011
的另一方式涉及多點定位。多點定位指稱對表示目標之可能位置的兩個或更多個曲線或曲面之交集的決定。例如,如先前描述的,圖9所示的雙基地雷達系統900可以定義表示目標906之可能位置的第一橢球面。具有不同位置的發射器及/或接收器的第二雙基地雷達系統可以定義第二不同橢球面,其亦表示目標906之可能位置。第一橢球面及第二橢球面之交集可以縮小目標906之可能位置。在三維空間中,通常需要四個如是橢球面來將可能的位置縮小到單個點,因此識別目標906之位置。在二維空間中(例如,假設全部發射器、接收器及目標僅限於地面上的存在物),通常需要三個如是橢球面(對於二維空間,橢球面簡化為橢圓曲線),以將可能的位置縮小到單個點,因此識別目標906之位置。亦可以按類似的方式使用多基地雷達系統而非多個雙基地雷達系統來達成多點定位。
此外,雙基地雷達系統900亦可以用來決定與目標906相關聯的都卜勒頻率。都卜勒頻率表示從接收器904之視角來看目標906之相對速度–即,目標906正在接近/離開接收器904的速度。對於靜止的發射器902及靜止的接收器904,目標906之都卜勒頻率可以被計算為:
Figure 02_image013
(方程式4)
此處,
Figure 02_image015
係都卜勒頻率,
Figure 02_image017
係目標906相對於由靜止的發射器902及接收器904定義的固定參考訊框的速度。
Figure 02_image019
係目標906處的發送信號908與回波信號910之間形成的角度。
Figure 02_image021
係速度向量
Figure 02_image017
與在角
Figure 02_image019
內定義的中心射線(半角)之間的角度。
在圖9中,相對於靜止的發射器902及靜止的接收器904定義了固定參考訊框。具體地,可以在發射器902與接收器904之間繪製長度為L的基線。基線可以延長到發射器902及接收器904之外。可以繪製一條或多條垂直於基線的法線。可以相對於從發射器902之位置繪製的法線定義發射角
Figure 02_image023
。可以相對於從接收器904之位置繪製的法線來定義接收角
Figure 02_image011
,上文被稱為抵達角。
如前所述,雙基地雷達系統900可以被操作來感測二維空間或三維空間中的目標。在三維空間之情形中引入了額外的自由度。然而,同樣的基本原理適用,並且可履行類似的計算。
圖10繪示了根據本公開內容之實施例的無線通信系統中的雙基地雷達系統900之實作方式。無線通信系統可包含無線通信系統1000,如圖10所示。無線通信系統1000可包含多個傳送接收點(TRP),其提供與其它裝置的信號之傳送及/或接收。無線通信系統1000內的TRP之實例包括基地台1002及1004,它們用於針對用戶裝備(UE)(諸如車輛、無線電話、可穿戴裝置、個人存取點以及附近需要無線數據通信的大量其它類型的用戶裝置)提供無線通信。例如,基地台1002及1004可被組態以藉由向UE裝置傳送數據碼元或從UE裝置接收數據碼元來支援與UE裝置的數據通信。無線通信系統1000內的資源(諸如基地台1002及1004)因此可用來服務“雙重任務”,以不僅支援無線通信操作,而且亦支援雙基地及/或多基地雷達操作。無線通信系統900可為蜂巢通信系統。
例如,基地台1002及基地台1004可分別用作圖9所示的雙基地雷達系統900之發射器902及接收器904。基地台1002可發射傳送信號1008,其從目標906反射並且成為由基地台1004接收的回波信號1010。基地台1004亦可從基地台1002接收視線(LOS)信號1012。藉由接收LOS信號1012及回波信號1010兩者,RX基地台1004可測量與分別和接收LOS信號1012及回波信號1010相關聯的接收時間TRx_echo與TRxLOS之間的時間差相關聯的值。例如,RX基地台1004可以將所接收的LOS信號1012與所接收的回波信號1010相互關聯(例如,藉由以類比或數位形式混合兩個信號),以產生表示時間差的值(TRx_echo-TRxLOS)。該時間差可以用來尋找總距離
Figure 02_image001
。然後,總距離
Figure 02_image001
可以用來定義橢球面,該橢球面與其它資訊一起可用來使用先前關於圖9討論的一種或多種技術來尋找與目標1006相關聯的目標範圍RR、抵達角(AoA)
Figure 02_image011
及/或都卜勒頻率。
此處,目標906可為但不須為被無線通信系統1000支援的UE。在一些情況下,目標906可為UE,其被組態以使用無線通信系統1000之基地台來傳送及接收攜帶語音、文本及/或無線數據的無線信號。在其它情況下,目標906可僅為位於基地台1002及基地台1004之雙基地雷達範圍內的遠程物體,但除此之外與系統1000之無線通信功能無關。
在圖10所示的雙基地實例中,發射器被稱為TX基地台1002,並且接收器被稱為RX基地台1004。更一般地,TX基地台1002可被稱為TX TRP,並且RX基地台1004可被稱為RX TRP。此處,“TX”及“RX”僅指基地台1002用來傳送雷達傳輸信號1008以及基地台1004用來接收雷達回波信號1010的事實。在此上下文中的術語“TX”及“RX”不限制基地台1002及1004之操作以服務於其它功能,例如,在其它雙基地或多基地雷達操作中用作發射器及/或接收器(超出圖9中所繪示範圍)或者用作在無線通信系統1000之正常操作中傳送及接收數據通信的基地台。雖然圖10繪示了簡單的雙基地雷達系統,但多基地雷達系統亦可按類似方式在無線通信系統內實作。此外,雖然圖10繪示了二維空間中的簡單實例,但相同的操作可以延伸到三維空間。
根據本公開內容之實施例在無線通信系統內實作雙基地或多基地雷達系統可產生許多效益。一個特別的效益為靈活利用針對無線通信分配的帶寬。無線通信系統1000之實例為蜂巢通信系統。例如,根據一個實施例,無線通信系統1000可符合在第三代合作夥伴計劃(3GPP)規範之發行15版本中介紹的“5G”標準。被分配給當前及未來無線通信系統(包括5G及5G以外)的不斷增加的帶寬可用於雙基地及多基地雷達信號之傳輸。因此,可藉由利用可用的無線射頻(RF)頻譜資源來啟用RF感測(例如,雷達)。例如,傳送信號1008、回波信號1010及/或LOS信號1012之一者或多者可佔用被分配給用於數據通信的無線通信系統1000的射頻(RF)頻譜之一部分內的帶寬。無線通信系統1000之另一實例為長期演進技術(LTE)無線通信系統。無線通信系統1000之其它實例包括無線區域網路(WLAN)、無線廣域網路(WWAN)、基於小型小區的無線通信系統、基於毫米波(基於mm波)的通信系統以及包括TRP的其它類型的基於通信的系統。
此外,雙基地及多基地雷達系統之固有效益可以藉由具有無線基地台形式的現有廣泛的定位良好的發射器及接收器之網路來實現。與單基地雷達系統相比,雙基地或多基地雷達系統藉由在實體上分開的傳送裝備及接收裝備來減輕自干擾。無線基地台(諸如圖10中所示的基地台1002及1004)已經存在並且覆蓋可能出現用戶、車輛及其它關注物體的廣大地理區域。如是無線基地台分散得很好,並且因此提供了選擇適當位置的基地台作為用於雙基地及多基地雷達操作的發射器及接收器的機會。
在開發雙基地或多基地雷達系統中提出的重大挑戰為發射器與接收器之間的協調。解決如是協調問題的各種技術與本公開內容之實施例一起給出,如下文各節中所討論。
根據某些實施例,可實作“雷達控制器”以支援在無線通信系統內實作的一個或多個雙基地及/或多基地雷達系統之操作。這裡,可將“雷達控制器”實現為駐留在無線通信網路內的硬體及/或軟體資源之組合。因此,雷達控制器可被定義為功能塊、設施或節點,其用來例如組態及/或控制在雙基地及/或多基地雷達操作中涉及的TX及RX基地台所依賴的參數。
圖11係根據本公開內容之實施例的可包括雷達控制器的無線通信系統1100之方塊圖。無線通信系統1100包含核心網路(CN)1102、無線電存取網路(RAN)1104及一個或多個用戶裝備(UE)1106。在一個實施例中,雷達控制器1108可在CN 1102內實作。CN 1102針對系統1100提供去往網際網路及應用服務的連接。CN 1102可利用各種計算資源來實作,該計算資源可包括記憶體以及執行操作系統及執行包含編程指令的應用的一個或多個處理器。在特定實施例中,雷達控制器1108可在CN 1102之計算資源內實作。
在另一實施例中,雷達控制器1110可在RAN 1104內實作。例如,RAN 1104可包含基地台1002-1004。基地台1002-1004之每一者可包含發射器及接收器硬體,諸如天線、天線元件、佈線、實體塔結構、數據機、編碼器/解碼器、網路裝備、計算資源及其它組件。與每個基地台相關聯的計算資源可包括記憶體以及執行操作系統及執行包含編程指令的應用的一個或多個處理器。在特定實施例中,雷達控制器1110可在基地台1002-1004之一者或多者之計算資源內實作。
雷達控制器1108(或1110)可在無線電存取網路(RAN)、核心網路(CN)1110或無線通信系統(例如,蜂巢通信系統1100)中的其它地方實作。雷達控制器1108(或1110)不須為專屬伺服器。例如,雷達控制器1108(或1110)可為通用伺服器、定位伺服器、輔助駕駛員伺服器、追蹤器伺服器或提供不同功能性的另一伺服器。此外,雷達控制器1108(或1110)可以但不須由網路運營商操作或擁有。雷達控制器1108(或1110)可為獨立於網路的伺服器(例如,第三方伺服器)。
無論在何處實作,雷達控制器1108(或1110)可經由一個或多個介面以通信地耦合到RAN 1104內的傳送接收點(TRP),例如,基地台1002及1004。一個或多個介面可包含點到點介面。如是點到點介面之實例為在有線網路(例如,“回程”網路)上實作網際網路協定(IP)通信協定的介面。
在某些實施例中,無線通信系統1100可符合“5G”標準。在如是情形中,CN 1102可為5G核心網路(5G CN),RAN 1104可為3GPP下一代無線電存取網路(NG RAN),並且基地台1002及1004之每一者可為“gNodeB”或“gNB”
圖12示出了根據本公開內容之實施例的雷達組態參數列表1200之實例,該雷達組態參數列表1200由雷達控制器1108(或1110)提供給TX基地台1002及RX基地台1004以用於雙基地或多基地雷達測量會話。此處,雷達測量會話可包含與獲得關於目標的範圍、都卜勒或角度估計相關聯的一個或多個雷達信號傳送/接收。如是雷達測量會話之實例可為由TX基地台傳送的調頻連續波(FMCW)雷達信號之“啁啾(chirp)”序列、以及由RX基地台接收的FMCW雷達信號之對應的回波“啁啾”序列。
如圖12所示,雷達組態參數列表1200可包括多個條目,其可包括針對諸如雷達會話ID、TX基地台ID、RX基地台ID、TX/RX時序參數、都卜勒參數、雷達波形類型、雷達信號中心頻率、雷達信號帶寬(BW)、雷達週期、雷達重複因子及線性調頻(LFM)頻率斜率的參數的值。給出此等參數係為了說明性目的,以及在無線通信系統內實作的任何給定雷達系統之組態參數列表中的條目可與圖12中所示的實例不同。
再次參考圖12,雷達會話ID識別特定的雷達測量會話。TX基地台ID將無線通信系統中的特定基地台識別為雷達傳送信號之發射器。RX基地台ID將無線通信系統中的特定基地台識別為從目標反射的雷達回波信號之接收器。圖12中所示的實例假設使用一個發射器及一個接收器的基本雙基地雷達測量會話。可針對多基地雷達測量會話包括用於額外發射器及/或接收器的ID。TX/RX時序參數可含有多個條目並且包含子列表(在後文的章節中更詳細地描述)。可向子列表提供鏈接或指標。類似地,都卜勒參數可含有多個條目並且包含子列表,可針對該子列表提供鏈接或指標。雷達波形類型指定要使用的波形之類型。不同的元組(tuple)值可對應於不同類型的波形。僅作為一個實例,可提供以下值及對應波形: “0”=FMCW “1”=位置參考信號(PRS) “2”=單邊帶調變(SSB) “3”=追蹤參考信號(TRS) “4”=解調參考信號(DMRS) “5”=信道狀態資訊參考信號(CSI-RS)
可選擇各個波形。一些波形(諸如FMCW)可具體地與雷達系統操作相關聯。然而,其它波形(諸如PRS、SSB、TRS、DMRS及CSI-RS)可與無線系統操作相關聯。因此,根據本公開內容之實施例,無線通信系統中已經存在的波形可被機會式地用作雷達信號波形。
雷達控制器1108(或1110)可指定與選定的參考信號相關的一個或多個參數。可藉由選擇波形類型(諸如上文列出的波形類型)來定義參考信號。另外,可藉由指定一個或多個其它屬性來定義參考信號。例如,雷達組態參數列表1200或其它組態參數可用來指定如是屬性。返回參考圖12,雷達信號中心頻率指定雷達傳送信號之中心頻率。僅作為實例,圖12中示出了79 GHz的中心頻率。因此,此實例中的中心頻率落在針對無線通信系統1000分配的頻譜內(例如,在範圍從300 MHz到100 GHz的5G頻譜內)。雷達回波信號之中心頻率可表現出遠離雷達中心頻率的都卜勒頻移。將在後文的章節中詳細討論如是都卜勒頻移。雷達信號帶寬(BW)指定傳送雷達信號之帶寬。僅作為實例,圖12中示出了2GHz的帶寬。預期雷達回波信號具有相同的帶寬。雷達重複因子指定在指定的雷達會話中(例如,在雷達會話12345678中)可重複雷達波形的次數。在此實例中,波形被重複10次。LFM頻率斜率指定線性調頻(LFM)雷達波形頻率之斜率或變化率。此處,斜率為100 MHz/μsec。LFM波形之一個類型為先前提到的FMCW波形。
總之,圖12中指定的雷達會話可利用形成“啁啾”的FMCW波形,該“啁啾”重複10次,總持續時間為200μsec。每個啁啾可具有20 μsec的持續時間,在此期間,連續波(CW)信號之中心頻率以100 MHz/μsec的速率線性增加,從79 GHz增加到81 GHz。即使CW信號具有非常窄的帶寬,FMCW信號之整個掃掠之有效帶寬為2GHz。參考信號(在此種情形中為FMCW參考信號)之此等特性及其它特性可被指定為由雷達控制器1108(或1110)提供的一個或多個參數。
本公開內容之實施例可以利用無線通信系統1000來估計雷達系統中的某些物理特性。例如,TX基地台1002與RX基地台1004之間的距離L係在計算目標範圍RR及其它值時可能有用的重要數字。無線通信系統1000內可用的資源可提供不同的方法來決定L。一個可能性為使用TX基地台1002及RX基地台1004之已知位置。如是位置資訊可例如在可用於無線通信系統1000內的全部基地台的經收集的物理描述之曆書中可用。另一可能性為使用來自諸如TX基地台1002及RX基地台1004的基地台的GNSS(例如,GPS)報告。通常,GNSS報告包括基地台之位置。使用可用於基地台位置的準確經度及緯度資訊,可以計算TX基地台1002與RX基地台1004之間的距離L。另一可能性為使用基地台間定位信號來獲得針對TX基地台1002及RX基地台1004的位置固定。例如,可根據新無線電/5G標準可用的定位技術來在基地台之間傳送及接收諸如位置參考信號(PRS)的定位信號。如是基地台間定位信號可用來決定針對TX基地台1002及RX基地台1004的位置固定,並且因此可以決定它們之間的距離L。
圖13示出了根據本公開內容之實施例的TX/RX時序子列表1300之實例。在一個具體實施例中,TX/RX時序子列表1300可簡單地作為額外條目併入雷達組態參數列表1200中。在另一特定實施例中,TX/RX時序子列表1300可為單獨但鏈接的子列表。
在TX/RX時序子列表1300中指定的時序參數依賴於TX基地台1002與RX基地台1004之間的某種級別的時序同步。由於許多原因,如是TX/RX時序同步為重要的。如果RX基地台1004在恰好正確的時間(即,在第一預期信號(其可為LOS信號1012或回波信號1010)抵達時(或者在如是抵達之前不久))開始“監聽”,則雷達系統之性能可以大大提高。如果RX基地台1004太早開始監聽,則系統將過早地開啟諸如中頻(IF)接收硬體的裝備,從而浪費功率及計算資源並且增加對於雷達系統的誤警機率。如果RX基地台1004太晚開始監聽,則系統可能錯過接收到LOS信號1012或回波信號1010。如果可以在TX基地台1002與RX基地台1004之間達成特定級別的時序同步,則在知道何時從TX基地台1002發送傳送信號1008的情況下,可以進行計算以預測LOS信號1012或回波信號1010在RX基地台1004處的抵達時間(帶有某種程度的可接受的不確定性)。這樣,可以控制RX基地台1004在恰好正確的時間開始“監聽”,以便減少不必要的功率及計算資源浪費並且使誤警最小化,同時確保不錯過LOS信號1012及回波信號1010。
本公開內容之各個態樣有利地利用無線通信系統1000來滿足如是雷達TX/RX時序同步要求。例如,無線通信系統1000可包含5G系統(例如,系統1100),其保證任何兩個基地台之間的時序同步誤差不超過某一時間量。例如,5G系統可利用正交分頻多工(OFDM)信號進行數據通信,並且可保證任何兩個基地台之間的時序同步誤差不超過OFDM信號之循環前綴(CP)之持續時間。CP為時間上的保護帶,其將連貫的數據碼元分開並且提供防止碼元間干擾(ISI)的保護。例如,對於60 kHz子載波信道,CP持續時間可為1.69 μsec。因此,在此種情形中,無線通信系統1000可保證任何兩個基地台之間的時序誤差將不超過1.69 μsec。在如是時間同步保證的情況下,雷達控制器1108(或1110)可能能夠更有效地控制TX基地台1002何時發送傳送信號1008以及RX基地台何時開始監聽LOS信號1012及回波信號1010之時序。
返回參考圖13,TX/RX時序子列表1300可包含雷達會話ID(先前討論的)、TX傳輸時間、預期接收時間及預期接收時間不確定性。雷達控制器1108(或1110)可向TX基地台1002及RX基地台1004提供TX/RX時序子列表1300之全部或相關部分。例如,雷達控制器1108(或1110)可向TX基地台1002提供在此實例中被指定為20000.00 μsec的TX傳輸時間。作為響應,TX基地台開始在時間20000.00 μsec處發射傳送信號1008。僅作為實例,“20000.00 μsec”之值可對應於自週期性參考事件/信號之最後的“滴答(tick)”以來經過的時間,該週期性參考事件/信號用於跨越無線通信網路1000內的實體(例如,全部基地台及其它裝備)來進行同步時序。
雷達控制器1108(或1110)亦可向RX基地台1002提供在此實例中被指定為20133.33 μsec的預期接收時間。雷達控制器1108(或1110)可能能夠以不同方式計算預期接收時間。在一個實施例中,可藉由假設LOS信號1012很可能在回波信號1010之前抵達RX基地台(這在許多情形中為有效的假設)來估計預期接收時間。給定該假設,預期接收時間可被估計為TX傳輸時間加預期LOS信號1012穿過距離L所花費的時間量: 預期接收時間 = L/c + TX傳輸時間                       (方程式5)
雷達控制器1108(或1110)亦可提供預期接收時間不確定性,其在此實例中被指定為一對值:[上限,下限]。下限可簡單地為網路同步誤差之負值。僅作為實例,網路同步誤差可為1.69 μsec。上限可包括兩個分量。上限之第一分量可對應於與可檢測目標的最大可能距離相關聯的信號傳播時間。在一個實施例中,如是最大距離L_Max可被指定為鏈路預算之一部分。因此,上限之第一分量可被表達為L_Max/c = L/c。上限之第二分量可簡單地為網路同步誤差之正值,其在該實例中被指定為1.69 μsec。因此,預期接收時間不確定性可被表達為: 預期接收時間不確定性 = [下限,上限] = [-網路同步不確定度,L_max/c - L/c + 網路同步誤差]         (方程式6)
在指定及傳送此等及其它組態參數之方式上亦可以有靈活性。例如,為了指定預期接收時間不確定性之上限,使雷達控制器1108(或1110)向RX基地台1004簡單地發送“L_max/c + 網路同步誤差”的值可能為足夠的,特別在項L/c在RX基地台1004處在本地已經已知的情況下。
作為響應,RX基地台1004可在藉由以下項指定的時間窗口中開始“監聽”,即,開始感測LOS信號1012及回波信號1010: 預期接收時間 + 預期接收時間不確定性 = 預期接收時間 + [下限,上限] = [Lc + TX傳輸時間 - 網路同步不確定性, L_max/c + TX傳輸時間 + 網路同步誤差]                   (方程式7)
上文說明了用於涉及一個TX基地台及一個RX基地台的一個雙基地雷達會話的TX/RX時序參數。實際上,許多如是雙基地雷達會話(以及多基地雷達會話)可按類似方式指定。對於每個唯一路徑L(即,唯一的TX站台及RX站台對),雷達控制器1108(或1110)可指定不同的TX/RX時序參數集合。在具有一個發射器及多個接收器的簡單多基地情形中,唯一對可共用共同TX基地台,但具有不同的RX基地台。在如是情形中,可指定一個TX傳輸時間以及多組預期接收時間及預期接收時間不確定性。
圖14示出了根據本公開內容之實施例的都卜勒子列表1400之實例。在一個特定實施例中,都卜勒子列表1400可簡單地作為額外條目合併到雷達組態參數列表1200中。在另一特定實施例中,都卜勒子列表1400可為單獨但鏈接的子列表。
為了RX基地台1004之效益,都卜勒子列表1400主要用來估計都卜勒頻移及都卜勒擴展。如圖14所示,都卜勒子列表1400可包含雷達會話ID(先前討論的)、預期都卜勒頻移值及預期都卜勒擴展值。雷達控制器1108(或1110)通常提供此等頻域參數以增強RX基地台1004之性能。目標906可能正在快速移動,其可能引入大的都卜勒頻移及/或都卜勒擴展。藉由提供都卜勒子列表1400,雷達控制器1108(或1110)可以動態地組態由RX基地台1004假設的“預期都卜勒頻移”及“預期都卜勒擴展”。
例如,在獲取模式下,都卜勒子列表1400可針對預期都卜勒頻移及預期都卜勒擴展指定較大的值。這允許RX基地台1004在更寬的都卜勒頻率範圍上接收信號,其提高了檢測率。僅作為實例,圖14示出了被指定為80,000 m/sec的預期都卜勒頻移值及被指定為10,000 m/sec的預期都卜勒擴展。
相比之下,在追蹤模式下,都卜勒子列表1400可指定更精確及更窄的值。此等值可為基於已經進行的測量之歷史。更精細的都卜勒參數集合可聚焦於特定目標。可針對被追蹤的每個目標指定都卜勒子列表1400之例項。因此,特定RX基地台1004可接收與多個目標相對應的多個都卜勒子列表1400。
為了說明性目的,描述了圖12、13及14中所示的特定參數。根據實作,可刪除或添加某些參數,並且可一起指定不同的參數。然而,根據本公開內容之實施例,用於雙基地或多基地雷達系統中的TX基地台及/或RX基地台的組態參數可由位於無線通信網路中的實體(諸如核心網路(CN)或無線電存取網路(RAN))內的雷達控制器提供。
圖15繪示了根據本公開內容之態樣的針對都卜勒估計的蜂巢參考信號資源組態1500。具體地,蜂巢參考信號資源組態1500係與跨越十六(16)個0.5 ms時槽的參考信號之觀測相關聯,時槽之一些者對應於下行鏈路“D”時槽格式,並且時槽之一些者對應於特殊“S”時槽格式。在蜂巢參考信號資源組態1500中,每14個碼元傳送一個RS。跨越X ms,都卜勒解析度可被表徵為1000/X Hz。在圖15之實例中,都卜勒解析度為125 Hz(例如,跨越16個0.5 ms時槽,X=8 ms,並且1000/8=125),並且最大可解析都卜勒為2000 Hz(例如,跨越單個0.5 ms時槽,X=0.5 ms,並且1000/0.5=2000)。
亦用作參考信號(例如,DL-PRS、CSI-RS等)的RF雷達信號之實作方式可能難以實作。例如,用於追蹤目標的雷達信號針對每個時機或例項可能要求相對長的持續時間(例如,由於去往Rx gNB的NLOS路徑上的高路徑損耗)。某些設計中的雷達信號可能只能偶爾(例如,非週期性)可用。在一些設計中,可能需要追蹤或檢測多個目標,並且延遲估計及都卜勒估計可為耦合的。
就時槽組態而言,可使用下行鏈路(DL)時槽、上行鏈路(UL)時槽或靈活(FL)時槽來傳達多基地雷達信號。在一些設計中,傳送多基地雷達信號的Tx gNB可使用DL時槽,而接收及測量多基地雷達信號的Rx gNB可使用UL時槽。
圖16繪示了根據本公開內容之實施例的無線通信系統中的干擾場景1600。圖16類似於圖10,除了進一步描繪了UE 302之外。在圖16中,由於在UL時槽上接收LOS信號1012及回波信號1010,因此有可能存在來自UE 302的並行干擾UL傳輸,如關於UL信號1605所示。在此種情形中,UL信號1605可能增加對於基地台1004處的LOS信號1012及/或回波信號1010的干擾,LOS信號1012及/或回波信號1010可能增加對於基地台1004處的UL信號1605的干擾,或兩者。在一些設計中,基地台1004可嘗試避免排程UL信號1605以減輕潛在干擾。
圖17繪示了根據本公開內容之另一實施例的無線通信系統中的干擾場景1700。圖17類似於圖10,除了進一步描繪了UE 302之外。在圖17中,由於在DL時槽上傳送LOS信號1012及回波信號1010,因此有可能存在來自基地台1002及/或1004的並行干擾DL傳輸,如關於DL信號1705-1710所示。在此種情形中,DL信號1705-1710可能增加對於UE 302處的LOS信號1012及/或回波信號1010的干擾,LOS信號1012及/或回波信號1010可能增加對於UE 302處的DL信號1705-1710的干擾,或兩者。在一些設計中,基地台1002及/或基地台1004可嘗試避免排程DL信號1705-1710以減輕潛在干擾。
TRP可使用各種各樣的傳輸排程(亦被稱為傳輸型樣)來發送DL-PRS資源,例如:
  2碼元 4碼元 6碼元 12碼元
梳齒2 {0,1} {0,1,0,1} {0,1,0,1,0,1} {0,1,0,1,0,1,0,1,0,1,0,1}
梳齒4 NA {0,2,1,3} NA {0,2,1,3,0,2,1,3,0,2,1,3}}
梳齒6 NA NA {0,3,1,4,2,5} {0,3,1,4,2,5,0,3,1,4,2,5}
梳齒12 NA NA NA {0,6,3,9,1,7,4,10,2,8,5,11}
表2:PRS資源組態實例
圖18A-18H繪示了根據本公開內容之各態樣的DL-PRS資源組態。在圖18A-18H之DL-PRS資源組態中,行表示不同的碼元,列表示不同的子載波,並且深色框表示用於TRP的經探測(sounded)的資源元件(碼元子載波組合)。未探測的資源元件可由一個或多個其它TRP探測。
圖18A示出了針對在含有14個碼元(每個碼元帶有12個子載波)的時槽中帶有三個碼元的碼元偏移的梳齒2、2碼元資源的DL-PRS資源組態1802。圖18B示出了針對梳齒4、4碼元資源的DL-PRS資源組態1804。圖18C示出了針對梳齒6、6碼元資源的DL-PRS資源組態1806。圖18D示出了針對梳齒12、12碼元資源的DL-PRS資源組態1812。圖18E示出了針對梳齒2、12碼元資源的DL-PRS資源組態1814。圖18F示出了針對梳齒4、12碼元資源的DL-PRS資源組態1816。圖18G示出了針對梳齒2、6碼元資源的DL-PRS資源組態1818。圖18H示出了針對梳齒6、12碼元資源的DL-PRS資源組態1820。圖18A-18H中的傳輸型樣之每一者在子載波之每一者中具有至少一個探測的RE,並且因此為完全交錯的傳輸型樣。如果每個DL-PRS資源組態(或型樣)對應於PRS資源,則每個PRS資源為完全交錯的資源。DL-PRS資源可被組態在時槽之任何較高層組態的DL或FL碼元中。對於給定DL-PRS資源之全部RE,可使用恒定的每資源元件能量(EPRE)。
PRS可包含PRS資源、PRS資源集或頻率層之PRS資源。DL PRS定位頻率層(或簡稱頻率層)係具有由參數DL-PRS-PositioningFrequencyLayer組態的共同參數的DL PRS資源集之集合。對於頻率層中的DL PRS資源集及DL PRS資源,每個頻率層具有相同的DL PRS子載波間隔(SCS)。對於頻率層中的DL PRS資源集及DL PRS資源,每個頻率層具有相同的DL PRS循環前綴(CP)類型。此外,DL PRS點A參數定義參考資源塊之頻率,其中屬相同DL PRS資源集的DL PRS資源具有相同的點A,以及屬相同頻率層的全部DL PRS資源集具有相同的點A。頻率層之PRS資源集亦具有相同的起始PRB(及中心頻率)及相同的梳齒大小值。
如本文中使用的,定位會話可包含複數個PRS例項,其中每個PRS例項包含PRS資源集。PRS資源集繼而包含複數個PRS資源。例如,在一些實作方式中,定位會話可橫跨約20秒,而每個PRS例項可橫跨約160 ms。可重複DL PRS資源以促進跨越不同重複的Rx波束掃掠、組合針對覆蓋延伸的增益、及/或例項內靜音。在一些設計中,PRS組態可以支援數個重複計數( PRS-ResourceRepetitionFactor)及數個時間間隙( PRS-ResourceTimeGap),如表2所示:
參數 功能性
PRS-ResourceRepetitionFactor 針對PRS資源集之單個例項重複每個PRS資源的次數 •值:1, 2, 4, 6, 8, 16, 32
PRS-ResourceTimeGap DL PRS資源集之單個例項內與相同PRS資源ID相對應的DL PRS資源之兩個重複例項之間的偏移(以時槽為單位) •值:1, 2, 4, 8, 16, 32
表2
圖19繪示了根據本公開內容之實施例的PRS資源分佈1900。PRS資源分佈1900反映了具有4個資源、PRS-ResourceRepetitionFactor為4以及PRS-ResourceTimeGap為1個時槽的DL-PRS資源集。
圖20繪示了根據本公開內容之另一實施例的PRS資源分佈2000。PRS資源分佈2000反映了具有4個資源、PRS-ResourceRepetitionFactor為4以及PRS-ResourceTimeGap為4個時槽的DL-PRS資源集。
在一些設計中,兩個不同的PRS組態可作為所謂的兩階段PRS例項之一部分來使用。例如,用於第一階段的第一PRS組態可用於粗略定位,但無混疊歧義(例如,解交錯之後的梳齒1或有效梳齒1)。例如,相對於用於第二階段的第二PRS組態,用於第一階段的第一PRS組態可具有更低的BW及更長的時段,以減少負擔(例如,在一些設計中可為基於SSB的)。例如,用於第一階段的第一PRS組態可被設計來提供足以解決與第二PRS組態相關聯的混疊歧義的定位估計。
在一些設計中,用於兩階段PRS例項之第二階段的第二PRS組態可允許混疊歧義,但仍然允許準確定位。例如,可使用基於第一PRS組態的粗糙(或更粗略)估計來解決與第二PRS組態相關聯的歧義。在一些設計中,使用兩階段PRS例項可允許重用現有波形,諸如CSI-RS或TRS。在一些設計中,使用兩階段PRS例項可隱式地指示歧義解決參數(例如,向UE指示UE期望基於第一PRS組態來解決在第二PRS組態中來自梳齒N(N>1)的歧義)。在一些設計中,PRS組態之一者中的參數可基於係在另一PRS組態中顯式地組態的參數而為隱式的或被間接地指示(例如,第二PRS組態之BW可為第一PRS組態之BW的兩倍,可假設兩個PRS組態係與相同的週期相關聯,等等)。替代地,第一PRS組態及第二PRS組態兩者可以合併為單個PRS組態(例如,M OFDM碼元PRS,其中在解交錯之後,前M1個OFDM碼元為有效梳齒1,並且剩餘的OFDM碼元為梳齒N)。
再次參考圖15,如上所述,諸如蜂巢參考信號資源組態1500的傳輸組態可用於基於多基地雷達的都卜勒估計。在一些設計中,都卜勒估計可為基於2D FFT,並且可以使用内插(interpolation)來填充任何缺失的觀測(例如,由於S個時槽等)。在蜂巢參考信號資源組態1500中,每14個碼元傳送一個RS,其在本文中可以被稱為RS密度。更高的RS密度(即,更高的目標雷達信號密度)可促進更精確地追蹤目標,但代價為更高的負擔。
在其它設計中,都卜勒估計可為基於功率延遲簡檔(PDP)的。在此種情形中,可在頻域中利用梳齒結構,其中對延遲進行線性預處理。非線性處理可僅在時域中履行以處理非週期性RS型樣。例如,將全部碼元轉換為時域,檢測LoS路徑及對於每個路徑的對應延遲,以及藉由測量隨時間的相位旋轉來估計對於每個路徑的都卜勒頻率。然而,可能難以區分具有相同距離但不同速度的兩個物體(例如,因此,可能需要多目標都卜勒估計)。
本公開內容之一個或多個態樣涉及針對在時域中帶有不同目標雷達信號密度的目標雷達信號的傳輸組態之實作方式。與圖15之蜂巢參考信號資源組態1500相比,可以在特定目標雷達信號叢發或時機之特定時域部分內定制目標雷達信號密度。如是態樣可提供各種技術優勢,例如促進在較高目標雷達信號密度時間部分中的高精度目標追蹤,同時降低較低目標雷達信號密度時間部分中的負擔(例如,而非被迫針對特定目標雷達信號叢發或時機之全部時域部分選擇一個目標雷達信號密度,其中犧牲了目標追蹤精度或負擔之一)。
圖21繪示了根據本公開內容之各個態樣的通信之例示性過程2100。在一態樣中,過程2100可由雷達控制器履行,如上所述,雷達控制器可與RAN組件(諸如BS 304)或核心網路組件或外部伺服器(諸如網路實體306)整合。在一些設計中,雷達控制器可與第一或第二無線通信裝置整合,如上所述,在這種情形中,雷達控制器與各別無線通信裝置之間的任何數據交換將對應於數據之內部轉送,而非跨越網路傳送信號。
在2110處,雷達控制器(例如,處理系統384或394、雷達組件388或389等)決定針對從第一無線通信裝置到第二無線通信裝置的目標雷達信號的至少一個傳輸組態,目標雷達信號用於感測至少一個目標,至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態。在一些設計中,第一無線通信裝置可對應於網路組件(例如,BS 304(其可被組態為中繼器)或與BS 304相關聯的特定TRP等)。在其它設計中,第一無線通信裝置可對應於UE(諸如UE 302)。在一些設計中,第二無線通信裝置可對應於網路組件(例如,BS 304(其可被組態為中繼器)或與BS 304相關聯的特定TRP等)。在其它設計中,第二無線通信裝置可對應於UE(諸如UE 302)。此外,各態樣涉及用於傳輸目標雷達信號的第一及第二無線通信裝置之裝置類型之各種排列(例如,UE到BS/TRP/中繼器、BS/TRP/中繼器到UE、BS/TRP/中繼器到另一BS/TRP/中繼器等)。在一些設計中,2110處的決定可為基於隨時間變化的目標追蹤精度要求(例如,在感測叢發之開始、中間或結束處期望的高精度等)的,由此時域目標雷達信號密度隨著跨越感測叢發的目標追蹤精度要求進行縮放。
在2120處,雷達控制器(例如,數據匯流排382、網路介面380或390等)向第一無線通信裝置及第二無線通信裝置傳送至少一個傳輸組態。
圖22繪示了根據本公開內容之各態樣的通信之例示性過程2200。在一個態樣中,過程2200可由第一無線通信裝置履行。在一些設計中,第一無線通信裝置可對應於網路組件(例如,BS 304(其可被組態為中繼器)或與BS 304相關聯的特定TRP等)。在其它設計中,無線通信裝置可對應於UE(諸如UE 302)。例如,關於圖22描述的第一無線通信裝置可對應於上文關於圖21描述的第一無線通信裝置(例如,向Rx gNB或UE傳送雷達信號的Tx gNB或UE)。在一些設計中,雷達控制器可與第一無線通信裝置整合,如上所述,在這種情形中,雷達控制器與第一無線通信裝置之間的任何數據交換將對應於數據之內部轉送,而非跨越網路傳送信號。
在2210處,第一無線通信裝置(例如,接收器312或322、網路介面380、數據匯流排382等)從雷達控制器接收針對從第一無線通信裝置到第二無線通信裝置的目標雷達信號的至少一個傳輸組態,目標雷達信號用於感測至少一個目標,至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態。在一些設計中,第二無線通信裝置可對應於網路組件(例如,BS 304(其可被組態為中繼器)或與BS 304相關聯的特定TRP等)。在其它設計中,第二無線通信裝置可對應於UE(諸如UE 302)。此外,各態樣涉及用於傳輸目標雷達信號的第一及第二無線通信裝置之裝置類型之各種排列(例如,UE到BS/TRP/中繼器、BS/TRP/中繼器到UE、BS/TRP/中繼器到另一BS/TRP/中繼器等)。
在2220處,第一無線通信裝置(例如,發射器314或314或354或364、雷達組件342或388、處理系統332或384等)根據至少一個傳輸組態向第二無線通信裝置傳送目標雷達信號。
圖23繪示了根據本公開內容之各態樣的通信之例示性過程2300。在一態樣中,過程2300可由第二無線通信裝置履行。在一些設計中,第二無線通信裝置可對應於網路組件(例如,BS 304(其可被組態為中繼器)或與BS 304相關聯的特定TRP等)。在其它設計中,第二無線通信裝置可對應於UE(諸如UE 302)。例如,關於圖23描述的第二無線通信裝置可對應於上文關於圖21描述的第二無線通信裝置(例如,從Tx gNB或UE接收雷達信號的Rx gNB或UE)。在一些設計中,雷達控制器可與第二無線通信裝置整合,如上所述,在這種情形中,雷達控制器與第二無線通信裝置之間的任何數據交換將對應於數據之內部轉送,而非跨越網路傳送信號。
在2310處,第二無線通信裝置(例如,接收器312或322、網路介面380、數據匯流排382等)從雷達控制器接收針對從第一無線通信裝置到第二無線通信裝置的目標雷達信號的至少一個傳輸組態,目標雷達信號用於感測至少一個目標,至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態。在一些設計中,第一無線通信裝置可對應於網路組件(例如,BS 304(其可被組態為中繼器)或與BS 304相關聯的特定TRP等)。在其它設計中,無線通信裝置可對應於UE(諸如UE 302)。此外,各態樣涉及用於傳輸目標雷達信號的第一及第二無線通信裝置之裝置類型之各種排列(例如,UE到BS/TRP/中繼器、BS/TRP/中繼器到UE、BS/TRP/中繼器到另一BS/TRP/中繼器等)。
在2320處,第二無線通信裝置(例如,接收器312或322或352或362、雷達組件342或388、處理系統332或384等)根據至少一個傳輸組態向第二無線通信裝置傳送目標雷達信號。
參考圖21-23,在一些設計中,目標雷達信號可具有OFDM波形。在一些設計中,可通過來自蜂巢技術或側行鏈路技術的PHY信道或信號(例如,PDSCH、PDCCH、CSIRS、DMRS、TRS、PSSCH、PSCCH)或在NR RAT內定義的新參考信號類型來傳輸目標雷達信號。
參考圖21-23,在一些設計中,至少一個傳輸組態包含對第一時域部分及第二時域部分兩者進行組態的單個傳輸組態(例如,如上文關於針對不同OFDM碼元具有不同有效梳齒的PRS組態而非單獨的兩階段PRS組態所描述)。在其它設計中,類似於上文提到的兩階段PRS組態,至少一個傳輸組態可包含對第一時域部分進行組態的第一傳輸組態及對第二時域部分進行組態的第二傳輸組態。在一些設計中,第一傳輸組態及第二傳輸組態由雷達控制器在不同時間傳送給第一無線通信裝置及第二無線通信裝置。在其它設計中,第一傳輸組態及第二傳輸組態由雷達控制器同時傳送給第一無線通信裝置及第二無線通信裝置。
參考圖21-23,在一些設計中,第一時域部分及第二時域部分彼此相鄰,而不具有居間的時間間隙。在其它設計中,時域間隙被安排在第一時域部分與第二時域部分之間。如下文將更詳細地解釋,時域間隙可根據或可不根據離散數量的OFDM碼元來定義。在一些設計中,第一時域部分及第二時域部分係與用於感測至少一個目標的相同的目標雷達信號時機(或突發)相關聯。
參考圖21-23,在一些設計中,第一時域部分及第二時域部分具有相同的持續時間。在其它設計中,第一時域部分及第二時域部分具有不同的持續時間。在一些設計中,至少一個傳輸組態進一步對第三時域部分進行組態(例如,在一些設計中亦可對任何數量的額外時域部分進行組態)。在一些設計中,第三時域部分係與第三時域目標雷達信號密度相關聯,第三時域目標雷達信號密度與第一時域目標雷達信號密度或第二時域目標雷達信號密度相同或不同。例如,第三時域目標可對應於第一時域目標雷達信號密度,同時在時域中從第一時域部分偏移。第三時域部分亦可被組態有與第一時域部分及第二時域部分之一者或兩者相同的持續時間,或者可替代地被組態有完全不同的持續時間。
圖24繪示了根據本公開內容之態樣的針對目標雷達信號時機的傳輸組態2400,該目標雷達信號時機被組態有具有不同時域目標雷達信號密度的時域部分。在圖24中,具有持續時間X1(X1=1.0 ms,或兩個0.5 ms OFDM時槽)及時域目標雷達信號密度D1(D1=每時槽4個目標雷達碼元)的第一時域部分2402之後跟隨有具有持續時間X2(X2=4.0 ms,或八個0.5 ms OFDM時槽)及時域目標雷達信號密度D2(D2=每時槽1個目標雷達碼元)的第二時域部分2404。在傳輸組態2400中,第一及第二時域部分2402-2404之間沒有時間間隙。
圖25繪示了根據本公開內容之態樣的針對目標雷達信號時機的傳輸組態2500,該目標雷達信號時機被組態有具有不同時域目標雷達信號密度的時域部分。在圖25中,具有持續時間X1(X1=1.0 ms,或兩個0.5 ms OFDM時槽)及時域目標雷達信號密度D1(D1=每時槽4個目標雷達碼元)的第一時域部分2502之後跟隨有具有持續時間X2(X2=4.0 ms,或八個0.5 ms OFDM時槽)及時域目標雷達信號密度D2(D2=每時槽1個目標雷達碼元)的第二時域部分2506。在傳輸組態2500中,時間間隙(T)2504被安排在第一及第二時域部分2502與2506之間。在圖25之實例中,時間間隙(T)2504具有1.0 ms或兩個0.5 ms OFDM碼元的持續時間。
圖26繪示了根據本公開內容之另一態樣的針對目標雷達信號時機的傳輸組態2600,該目標雷達信號時機被組態有具有不同時域目標雷達信號密度的時域部分。在圖26中,具有持續時間X1(X1=1.0 ms,或兩個0.5 ms OFDM時槽)及時域目標雷達信號密度D1(D1=每時槽4個目標雷達碼元)的第一時域部分2602之後跟隨有具有持續時間X2(X2=4.0 ms,或八個0.5 ms OFDM時槽)及時域目標雷達信號密度D2(D2=每時槽1個目標雷達碼元)的第二時域部分2606。在傳輸組態2600中,時間間隙(T)2604被安排在第一及第二時域部分2602與2606之間。在圖26之實例中,時間間隙(T)2604小於單個0.5ms OFDM碼元(即,未定義為離散數量的OFDM碼元)。在一些設計中,時間間隙(T)2604可被指定為常數(例如,在第一時域部分2602之後的下一DL時槽中開始,或者在子訊框邊界中開始,或者在訊框邊界中開始,等等)。在一些設計中,針對第一及第二時域部分2602及2606組態的資源可在相同的資源集內,或者暗示在第一及第二時域部分2602及2606中傳送的埠係相同或QCL的(例如,在空間上、都卜勒頻移、都卜勒擴展、延遲延伸、延遲偏移或組合)組態內。
圖27繪示了根據本公開內容之另一態樣的針對目標雷達信號時機的傳輸組態2700,該目標雷達信號時機被組態有具有不同時域目標雷達信號密度的時域部分。在圖27中,具有持續時間X1(X1=1.0 ms,或兩個0.5 ms OFDM時槽)及時域目標雷達信號密度D1(D1=每時槽4個目標雷達碼元)的第一時域部分2702之後跟隨有具有持續時間X2(X2=2.0 ms,或四個0.5 ms OFDM時槽)及時域目標雷達信號密度D2(D2=每時槽1個目標雷達碼元)的第二時域部分2706,第二時域部分2706之後跟隨有具有持續時間X1(X1=1.0 ms,或兩個0.5 ms OFDM時槽)及時域目標雷達信號密度D1(D1=每時槽4個目標雷達碼元)的第三時域部分2710。在傳輸組態2700中,第一時間間隙(T)2704被安排在第一及第二時域部分2702與2706之間,並且第二時間間隙(T)2708被安排在第二及第三時域部分2706與2710之間。在圖27之實例中,時間間隙(T)2704及2708各自具有1.0 ms或兩個0.5 ms OFDM碼元的持續時間。在一些設計中,時間間隙(T)2704及2708可被指定為常數(例如,在各別的時域部分之後的下一DL時槽中開始,或在子訊框邊界中開始,或在訊框邊界中開始,等等)。作為實例,根據傳輸組態2700,第二無線通信裝置可知道在跨越第一至第三時間部分中針對目標雷達信號時機的各別的組態的資源內傳送的全部導頻皆為QCL的或與相同埠相關聯。
圖28繪示了根據本公開內容之另一態樣的針對目標雷達信號時機的傳輸組態2800,該目標雷達信號時機被組態有具有不同時域目標雷達信號密度的時域部分。在圖28中,具有持續時間X1(X1=1.0 ms,或兩個0.5 ms OFDM時槽)及時域目標雷達信號密度D1(D1=每時槽4個目標雷達碼元)的第一時域部分2802之後跟隨有具有持續時間X2(X2=2.0 ms,或四個0.5 ms OFDM時槽)及時域目標雷達信號密度D2(D2=每時槽1個目標雷達碼元)的第二時域部分2806,第二時域部分2806之後跟隨有具有持續時間X1(X1=1.0 ms,或兩個0.5 ms OFDM時槽)及時域目標雷達信號密度D3(D3=每時槽2個目標雷達碼元)的第三時域部分2810。在傳輸組態2800中,第一時間間隙(T)2804被安排在第一及第二時域部分2802與2806之間,並且第二時間間隙(T)2808被安排在第二及第三時域部分2806與2810之間。在圖28之實例中,時間間隙(T)2804及2808各自具有1.0 ms或兩個0.5 ms OFDM碼元的持續時間。在一些設計中,時間間隙(T)2804及2808可被指定為常數(例如,在各別的時域部分之後的下一DL時槽中開始,或在子訊框邊界中開始,或在訊框邊界中開始,等等)。作為實例,根據傳輸組態2800,第二無線通信裝置可知道在跨越第一至第三時間部分中針對目標雷達信號時機的各別的組態的資源內傳送的全部導頻皆為QCL的或與相同埠相關聯。
如將從圖24-28中描繪的實例中認識到,根據本公開內容之各態樣,可針對各個傳輸組態之各別的時域部分實作時域目標雷達信號密度、持續時間、時間間隙等之各種組合。
在上文的實施方式中可以看出,不同的特徵在實例中被分組在一起。此種揭示方式不應被理解為實例條款具有比在每個條款中明確提及的更多特徵的意圖。而是,本公開內容之各個態樣可包括少於所揭示的個別實例條款之全部特徵。因此,以下條款據此應被視為併入到描述中,其中每個條款本身可以作為單獨的實例。儘管每個附屬條款在條款中都可以指稱與其它條款之一的特定組合,但該附屬條款之各態樣不限於特定組合。應當認識到,其它實例條款亦可以包括附屬條款態樣與任何其它附屬條款或獨立條款之技術主題之組合,或者任何特徵與其它附屬條款及獨立條款之組合。本文中揭示的各個態樣明確地包括此等組合,除非明確地表示或可以容易地推斷出特定組合並非預期的(例如,矛盾的態樣,諸如將元件定義為絕緣體及導體兩者)。此外,亦預期在任何其它獨立條款中可以包括條款之各態樣,即使該條款不直接附屬於獨立條款。
在以下經編號條款中描述了實作方式實例:
條款1。一種操作雷達控制器的方法,包含:決定針對從第一無線通信裝置到第二無線通信裝置的目標雷達信號的至少一個傳輸組態,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及向該第一無線通信裝置及該第二無線通信裝置傳送該至少一個傳輸組態。
條款2。如條款1之方法,其中,該第一無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
條款3。如條款1至2之任一者之方法,其中,該第二無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
條款4。如條款1至3之任一者之方法,其中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
條款5。如條款1至4之任一者之方法,其中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且其中,該至少一個傳輸組態包含對該第二時域部分進行組態的第二傳輸組態。
條款6。如條款5之方法,其中,該第一傳輸組態及該第二傳輸組態係在不同的時間處傳送。
條款7。如條款1至6之任一者之方法,其中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間的時間間隙。
條款8。如條款1至7之任一者之方法,其中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
條款9。如條款1至8之任一者之方法,其中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
條款10。如條款1至9之任一者之方法,其中,該第一時域部分及該第二時域部分具有相同的持續時間。
條款11。如條款1至10之任一者之方法,其中,該第一時域部分及該第二時域部分具有不同的持續時間。
條款12。如條款1至11之任一者之方法,其中,該至少一個傳輸組態進一步對第三時域部分進行組態。
條款13。如條款12之方法,其中,該第三時域部分係與第三時域目標雷達信號密度相關聯,該第三時域目標雷達信號密度與該第一時域目標雷達信號密度或該第二時域目標雷達信號密度相同或不同。
條款14。一種操作第一無線通信裝置的方法,包含:從雷達控制器接收針對從該第一無線通信裝置到第二無線通信裝置的目標雷達信號的至少一個傳輸組態,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及根據該至少一個傳輸組態向該第二無線通信裝置傳送該目標雷達信號。
條款15。如條款14之方法,其中,該第一無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
條款16。如條款14至15之任一者之方法,其中,該第二無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
條款17。如條款14至16之任一者之方法,其中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
條款18。如條款14至17之任一者之方法,其中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且其中,該至少一個傳輸組態包含對該第二時域部分進行組態的第二傳輸組態。
條款19。如條款18之方法,其中,該第一傳輸組態及該第二傳輸組態係在不同的時間處接收。
條款20。如條款14至19之任一者之方法,其中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間的時間間隙。
條款21。如條款14至20之任一者之方法,其中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
條款22。如條款14至21之任一者之方法,其中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
條款23。如條款14至22之任一者之方法,其中,該第一時域部分及該第二時域部分具有相同的持續時間。
條款24。如條款14至23之任一者之方法,其中,該第一時域部分及該第二時域部分具有不同的持續時間。
條款25。如條款14至24之任一者之方法,其中,該至少一個傳輸組態進一步對第三時域部分進行組態。
條款26。如條款25之方法,其中,該第三時域部分係與第三時域目標雷達信號密度相關聯,該第三時域目標雷達信號密度與該第一時域目標雷達信號密度或該第二時域目標雷達信號密度相同或不同。
條款27。一種操作第二無線通信裝置的方法,包含:從雷達控制器接收針對從第一無線通信裝置到該第二無線通信裝置的目標雷達信號的至少一個傳輸組態,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及根據該至少一個傳輸組態從該第一無線通信裝置接收該目標雷達信號。
條款28。如條款27之方法,其中,該第一無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
條款29。如條款27至28之任一者之方法,其中,該第二無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
條款30。如條款27至29之任一者之方法,其中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
條款31。如條款27至30之任一者之方法,其中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且其中,該至少一個傳輸組態包含對該第二時域部分進行組態的第二傳輸組態。
條款32。如條款31之方法,其中,該第一傳輸組態及該第二傳輸組態係在不同的時間處接收。
條款33。如條款27至32之任一者之方法,其中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間的時間間隙。
條款34。如條款27至33之任一者之方法,其中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
條款35。如條款27至34之任一者之方法,其中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
條款36。如條款27至35之任一者之方法,其中,該第一時域部分及該第二時域部分具有相同的持續時間。
條款37。如條款27至36之任一者之方法,其中,該第一時域部分及該第二時域部分具有不同的持續時間。
條款38。如條款27至37之任一者之方法,其中,該至少一個傳輸組態進一步對第三時域部分進行組態。
條款39。如條款38之方法,其中,該第三時域部分係與第三時域目標雷達信號密度相關聯,該第三時域目標雷達信號密度與該第一時域目標雷達信號密度或該第二時域目標雷達信號密度相同或不同。
條款40。一種器具,包含記憶體及通信地耦合到該記憶體的至少一個處理器,該記憶體及該至少一個處理器被組態以履行根據條款1至39之任一者的方法。
條款41。一種器具,包含用於履行根據條款1至39之任一者的方法的構件。
條款42。一種儲存計算機可執行指令的非暫時性計算機可讀媒體,該計算機可執行指令包含用於使得計算機或處理器履行根據條款1至39之任一者的方法的至少一個指令。
本領域技術人員將認識到,資訊及信號可使用各種各樣的不同的技術及方法之任一者來表示。例如,可能遍及上文的描述所提及的數據、指令、命令、資訊、信號、位元、碼元及碼片可由電壓、電流、電磁波、磁場或粒子、光場或粒子或者其任何組合來表示。
此外,本領域技術人員將認識到的係,結合本文中所揭示的態樣描述的各種說明性的邏輯方塊、模組、電路及演算法步驟可實作為電子硬體、計算機軟體或兩者之組合。為了清楚地說明硬體及軟體之此種可互換性,上文已經圍繞各種說明性的組件、方塊、模組、電路及步驟之功能性,對它們進行了總體描述。如是功能性係實作為硬體抑或軟體,取決於特定的應用以及施加在整個系統上的設計約束。熟練的技術人員可針對每個特定的應用,以變通的方式來實作所描述的功能性,但如是實作方式決策不應當被解釋為導致脫離本公開內容之範疇。
結合本文中揭示的各態樣所描述的各種說明性的邏輯方塊、模組及電路可利用被設計來履行本文中所描述的功能的通用處理器、DSP、ASIC、FPGA或其它可編程邏輯器件、離散閘或電晶體邏輯、離散硬體組件、或者其任何組合來實作或履行。通用處理器可為微處理器,但在替代方案中,處理器可為任何慣用處理器、控制器、微控制器或狀態機。處理器亦可實作為計算裝置之組合(例如,DSP與微處理器之組合、複數個微處理器、一個或多個微處理器結合DSP核、或任何其它如是組態)。
結合本文中揭示的各態樣描述的方法、序列及/或演算法可直接地體現在硬體中、由處理器執行的軟體模組中、或者兩者之組合中。軟體模組可位於隨機存取記憶體(RAM)、快閃記憶體、唯讀記憶體(ROM)、可抹除可編程ROM(EPROM)、電可抹除可編程ROM(EEPROM)、暫存器、硬盤、卸除式盤、CD-ROM或者本領域已知的任何其它形式的儲存媒體中。例示性儲存媒體被耦合到處理器,以使處理器可以從儲存媒體讀取資訊,以及向儲存媒體寫入資訊。在替代的方式中,儲存媒體可為處理器之組成部分。處理器及儲存媒體可位於ASIC中。ASIC可存在於用戶終端(例如,UE)中。在替代的方式中,處理器及儲存媒體可作為離散組件存在於用戶裝置中。
在一個或多個例示性態樣中,所描述的功能可在硬體、軟體、韌體或其任何組合中實作。如果在軟體中實作,則該功能可作為一個或多個指令或代碼儲存在計算機可讀媒體上或者通過其進行傳送。計算機可讀媒體可包括計算機儲存媒體及通信媒體兩者,該通信媒體包括促進計算機程式從一個地方轉送到另一個地方的任何媒體。儲存媒體可為可由計算機存取的任何可用的媒體。藉由舉例而非限制性之方式,如是計算機可讀媒體可以包含RAM、ROM、EEPROM、CD-ROM或其它光碟儲存、磁盤儲存或其它磁儲存裝置、或者可以用於以指令或數據結構之形式攜帶或儲存期望的程序代碼以及可以由計算機存取的任何其它媒體。此外,任何連接被適當地稱為計算機可讀媒體。例如,如果使用同軸纜線、光纖纜線、雙絞線、數位用戶線路(DSL)或無線技術(諸如紅外線、無線電及微波)從網站、伺服器或其它遠程源傳送軟體,則同軸纜線、光纖纜線、雙絞線、DSL或無線技術(諸如紅外線、無線電及微波)被包括在媒體之定義中。如在本文中使用的,磁盤及光碟包括緊湊光碟(CD)、雷射光碟、光碟、數位多功能光碟(DVD)、軟盤及藍光光碟,其中磁盤通常磁性地複製數據,而光碟利用雷射來光學地複製數據。上述之組合亦應當包括在計算機可讀媒體之範疇內。
雖然前文的公開內容示出了本公開內容之說明性態樣,但應當注意,在不脫離由所附申請專利範圍所限定的本公開內容之範疇的情況下,可在本文中進行各種改變及修改。根據本文中所描述的公開內容之各態樣的方法請求項之步驟及/或動作不需要以任何特定次序履行。此外,儘管可能以單數形式描述或主張本公開內容之各元件,但除非明確地聲明限於單數形式,否則複數形式為預期的。
100:無線通信系統 102:基地台 104、164、182、190:用戶裝備(UE) 110:地理覆蓋區域 120:通信鏈路 134:回程鏈路 150:無線區域網路(WLAN)存取點(AP) 152:WLAN站台(STA) 154:通信鏈路 170:核心網路 172:位置伺服器 180:毫米波(mmW)基地台 184:毫米波(mmW)通信鏈路 192、194:裝置到裝置(D2D)對等(P2P)鏈路 200、250:無線網路結構 204:用戶裝備(UE) 210、260:5G核心(5GC) 212、262:用戶平面功能 213、263:用戶平面介面(NG-U) 214:控制平面功能 215、265:控制平面介面(NG-C) 220:無線電存取網路(RAN) 222:新無線電(NR)節點B(gNB) 223:回程連接 224:演進型節點B(eNB) 230:位置伺服器 264:存取及行動性管理功能(AMF) 266:會話管理功能(SMF) 270:位置管理功能(LMF) 272:安全用戶平面位置(SUPL)定位平臺(SLP) 302:用戶裝備(UE) 304:基地台 306:網路實體 310、350:無線廣域網路(WWAN)收發器 320、360:無線區域網路(WLAN)收發器 312、322、352、362:接收器 314、324、354、364:發射器 316、326、356、366:天線 318、328、358、368:信號 330、370:衛星定位系統(SPS)接收器 332、384、394:處理系統 334、382、392:數據匯流排 336、376:天線 338、378:SPS信號 340、386、396:記憶體組件 342、388、398:雷達組件 344:感測器 346:用戶介面 380、390:網路介面 400、430:圖解 500、530:圖解 502、505:基地台 504:建築物 506:RF信號 508:反射波束 532:用戶裝備(UE) 534:反射信號 550:實例圖 600、700:用例 800:掃描相位 850:追蹤相位 602、802:基地台 604、804:第一參考信號 606:反射信號 608、805:第二參考信號 610、810:用戶裝備(UE) 612、812:第一接收波束 614、814:第二接收波束 616、816:第三接收波束 702、806:第三參考信號 704:第二建築物 708:反射信號 804a:第一反射參考信號 806a:第三反射參考信號 820a:第一物體 820b:第二物體 900:雙基地雷達系統 1000、1100:無線通信系統 902:發射器 904:接收器 1002、1004:基地台 906、1006:目標 908、1008:傳送信號 910、1010:回波信號 912、1012:視線(LOS)信號 1102:核心網路(CN) 1104:無線電存取網路(RAN) 1106:用戶裝備(UE) 1108、1110:雷達控制器 1200:雷達組態參數列表 1300:TX/RX時序子列表 1400:都卜勒子列表 1500:蜂巢參考信號資源組態 1600、1700:無線通信系統中的干擾場景 1605:UL信號 1705-1710:DL信號 1802、1804、1806、1812:DL-PRS資源組態 1814、1816、1818、1820:DL-PRS資源組態 1900、2000:PRS資源分佈 2100、2200、2300:過程 2110、2120:步驟 2210、2220:步驟 2310、2320:步驟 2400、2500、2600:傳輸組態 2700、2800:傳輸組態 2402、2502、2602:第一時域部分 2702、2802:第一時域部分 2404、2506、2606:第二時域部分 2706、2806:第二時域部分 2710、2810:第三時域部分 2504、2604:時間間隙 2704、2804:第一時間間隙 2708、2808:第二時間間隙
給出隨附圖式以輔助描述所揭示的技術主題之一個或多個態樣之實例,並且提供隨附圖式僅用於說明實例而非對其進行限制。
圖1繪示了根據本公開內容之各個態樣的例示性無線通信系統。
圖2A及2B繪示了根據本公開內容之各個態樣的例示性無線網路結構。
圖3A至3C係組件之若干例示性態樣之簡化方塊圖,組件可在無線通信節點中採用並且被組態以支援如本文中所教示的通信。
圖4A及4B係繪示根據本公開內容之各態樣的訊框結構及訊框結構內的信道之實例的圖解。
圖5A繪示了例示性單基地(monostatic)雷達系統。
圖5B繪示了例示性雙基地(bistatic)雷達系統。
圖5C係示出隨時間的射頻(RF)信道響應的實例圖。
圖6繪示了用於雙基地射頻感測的例示性單目標波束管理用例。
圖7繪示了用於雙基地射頻感測的例示性多目標波束管理用例。
圖8A繪示了帶有雙基地射頻感測的例示性掃描相位。
圖8B繪示了帶有雙基地射頻感測的例示性追蹤相位。
圖9係示出雙基地雷達系統之基本操作的簡化圖解。
圖10繪示了根據本公開內容之實施例的無線通信系統中的雙基地雷達系統的實作方式。
圖11係根據本公開內容之實施例的可包括雷達控制器的無線通信系統之方塊圖。
圖12示出了根據公開內容之實施例的雷達組態參數列表之實例,該雷達組態參數列表由雷達控制器提供給TX基地台及RX基地台以用於雙基地或多基地雷達測量會話。
圖13示出了根據本公開內容之實施例的TX/RX時序子列表之實例。
圖14示出了根據本公開內容之實施例的都卜勒子列表之實例。
圖15繪示了根據本公開內容之態樣的用於都卜勒估計的蜂巢參考信號資源組態。
圖16繪示了根據本公開內容之實施例的無線通信系統中的干擾場景。
圖17繪示了根據本公開內容之另一實施例的無線通信系統中的干擾場景。
圖18A-18H繪示了根據本公開內容之各態樣的DL-PRS資源組態。
圖19繪示了根據本公開內容之實施例的PRS資源分佈。
圖20繪示了根據本公開內容之另一實施例的PRS資源分佈。
圖21繪示了根據本公開內容之各態樣之通信的例示性過程。
圖22繪示了根據本公開內容之各態樣之無線通信的例示性過程。
圖23繪示了根據本公開內容之各態樣之無線通信的例示性過程。
圖24繪示了根據本公開內容之態樣的針對目標雷達信號時機的傳輸組態,該目標雷達信號時機被組態有具有不同時域目標雷達信號密度的時域部分。
圖25繪示了根據本公開內容之另一態樣的針對目標雷達信號時機的傳輸組態,該目標雷達信號時機被組態有具有不同時域目標雷達信號密度的時域部分。
圖26繪示了根據本公開內容之另一態樣的針對目標雷達信號時機的傳輸組態,該目標雷達信號時機被組態有具有不同時域目標雷達信號密度的時域部分。
圖27繪示了根據本公開內容之另一態樣的針對目標雷達信號時機的傳輸組態,該目標雷達信號時機被組態有具有不同時域目標雷達信號密度的時域部分。
圖28繪示了根據本公開內容之另一態樣的針對目標雷達信號時機的傳輸組態,該目標雷達信號時機被組態有具有不同時域目標雷達信號密度的時域部分。
2100:過程
2110、2120:步驟
304:基地台
306:網路實體

Claims (99)

  1. 一種操作雷達控制器的方法,包含: 決定針對從第一無線通信裝置到第二無線通信裝置的目標雷達信號的至少一個傳輸組態,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及 向該第一無線通信裝置及該第二無線通信裝置傳送該至少一個傳輸組態。
  2. 如請求項1之方法,其中,該第一無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
  3. 如請求項1之方法,其中,該第二無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
  4. 如請求項1之方法,其中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
  5. 如請求項1之方法, 其中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且 其中,該至少一個傳輸組態包含對該第二時域部分進行組態的第二傳輸組態。
  6. 如請求項5之方法,其中,該第一傳輸組態及該第二傳輸組態係在不同的時間處傳送。
  7. 如請求項1之方法,其中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間的時間間隙。
  8. 如請求項1之方法,其中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
  9. 如請求項1之方法,其中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
  10. 如請求項1之方法,其中,該第一時域部分及該第二時域部分具有相同的持續時間。
  11. 如請求項1之方法,其中,該第一時域部分及該第二時域部分具有不同的持續時間。
  12. 如請求項1之方法,其中,該至少一個傳輸組態進一步對第三時域部分進行組態。
  13. 如請求項12之方法,其中,該第三時域部分係與第三時域目標雷達信號密度相關聯,該第三時域目標雷達信號密度與該第一時域目標雷達信號密度或該第二時域目標雷達信號密度相同或不同。
  14. 一種操作第一無線通信裝置的方法,包含: 從雷達控制器接收針對從該第一無線通信裝置到第二無線通信裝置的目標雷達信號的至少一個傳輸組態,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及 根據該至少一個傳輸組態向該第二無線通信裝置傳送該目標雷達信號。
  15. 如請求項14之方法,其中,該第一無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
  16. 如請求項14之方法,其中,該第二無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
  17. 如請求項14之方法,其中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
  18. 如請求項14之方法, 其中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且 其中,該至少一個傳輸組態包含對該第二時域部分進行組態的第二傳輸組態。
  19. 如請求項18之方法,其中,該第一傳輸組態及該第二傳輸組態係在不同的時間處接收。
  20. 如請求項14之方法,其中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間的時間間隙。
  21. 如請求項14之方法,其中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
  22. 如請求項14之方法,其中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
  23. 如請求項14之方法,其中,該第一時域部分及該第二時域部分具有相同的持續時間。
  24. 如請求項14之方法,其中,該第一時域部分及該第二時域部分具有不同的持續時間。
  25. 如請求項14之方法,其中,該至少一個傳輸組態進一步對第三時域部分進行組態。
  26. 如請求項25之方法,其中,該第三時域部分係與第三時域目標雷達信號密度相關聯,該第三時域目標雷達信號密度與該第一時域目標雷達信號密度或該第二時域目標雷達信號密度相同或不同。
  27. 一種操作第二無線通信裝置的方法,包含: 從雷達控制器接收針對從第一無線通信裝置到該第二無線通信裝置的目標雷達信號的至少一個傳輸組態,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及 根據該至少一個傳輸組態從該第一無線通信裝置接收該目標雷達信號。
  28. 如請求項27之方法,其中,該第一無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
  29. 如請求項27之方法,其中,該第二無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
  30. 如請求項27之方法,其中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
  31. 如請求項27之方法, 其中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且 其中,該至少一個傳輸組態包含對該第二時域部分進行組態的第二傳輸組態。
  32. 如請求項31之方法,其中,該第一傳輸組態及該第二傳輸組態係在不同的時間處接收。
  33. 如請求項27之方法,其中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間的時間間隙。
  34. 如請求項27之方法,其中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
  35. 如請求項27之方法,其中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
  36. 如請求項27之方法,其中,該第一時域部分及該第二時域部分具有相同的持續時間。
  37. 如請求項27之方法,其中,該第一時域部分及該第二時域部分具有不同的持續時間。
  38. 如請求項27之方法,其中,該至少一個傳輸組態進一步對第三時域部分進行組態。
  39. 如請求項38之方法,其中,該第三時域部分係與第三時域目標雷達信號密度相關聯,該第三時域目標雷達信號密度與該第一時域目標雷達信號密度或該第二時域目標雷達信號密度相同或不同。
  40. 一種雷達控制器,包含: 記憶體; 至少一個收發器;以及 通信地耦合到該記憶體及該至少一個收發器的至少一個處理器,該至少一個處理器被組態以: 決定針對從第一無線通信裝置到第二無線通信裝置的目標雷達信號的至少一個傳輸組態,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及 向該第一無線通信裝置及該第二無線通信裝置傳送該至少一個傳輸組態。
  41. 如請求項40之雷達控制器,其中,該第一無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
  42. 如請求項40之雷達控制器,其中,該第二無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
  43. 如請求項40之雷達控制器,其中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
  44. 如請求項40之雷達控制器, 其中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且 其中,該至少一個傳輸組態包含對該第二時域部分進行組態的第二傳輸組態。
  45. 如請求項44之雷達控制器,其中,該第一傳輸組態及該第二傳輸組態係在不同的時間處傳送。
  46. 如請求項40之雷達控制器,其中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間的時間間隙。
  47. 如請求項40之雷達控制器,其中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
  48. 如請求項40之雷達控制器,其中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
  49. 如請求項40之雷達控制器,其中,該第一時域部分及該第二時域部分具有相同的持續時間。
  50. 如請求項40之雷達控制器,其中,該第一時域部分及該第二時域部分具有不同的持續時間。
  51. 如請求項40之雷達控制器,其中,該至少一個傳輸組態進一步對第三時域部分進行組態。
  52. 如請求項51之雷達控制器,其中,該第三時域部分係與第三時域目標雷達信號密度相關聯,該第三時域目標雷達信號密度與該第一時域目標雷達信號密度或該第二時域目標雷達信號密度相同或不同。
  53. 一種第一無線通信裝置,包含: 記憶體; 至少一個收發器;以及 通信地耦合到該記憶體及該至少一個收發器的至少一個處理器,該至少一個處理器被組態以: 從雷達控制器接收針對從該第一無線通信裝置到第二無線通信裝置的目標雷達信號的至少一個傳輸組態,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及 根據該至少一個傳輸組態向該第二無線通信裝置傳送該目標雷達信號。
  54. 如請求項53之第一無線通信裝置,其中,該第一無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
  55. 如請求項53之第一無線通信裝置,其中,該第二無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
  56. 如請求項53之第一無線通信裝置,其中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
  57. 如請求項53之第一無線通信裝置, 其中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且 其中,該至少一個傳輸組態包含對該第二時域部分進行組態的第二傳輸組態。
  58. 如請求項57之第一無線通信裝置,其中,該第一傳輸組態及該第二傳輸組態係在不同的時間處接收。
  59. 如請求項53之第一無線通信裝置,其中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間的時間間隙。
  60. 如請求項53之第一無線通信裝置,其中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
  61. 如請求項53之第一無線通信裝置,其中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
  62. 如請求項53之第一無線通信裝置,其中,該第一時域部分及該第二時域部分具有相同的持續時間。
  63. 如請求項53之第一無線通信裝置,其中,該第一時域部分及該第二時域部分具有不同的持續時間。
  64. 如請求項53之第一無線通信裝置,其中,該至少一個傳輸組態進一步對第三時域部分進行組態。
  65. 如請求項64之第一無線通信裝置,其中,該第三時域部分係與第三時域目標雷達信號密度相關聯,該第三時域目標雷達信號密度與該第一時域目標雷達信號密度或該第二時域目標雷達信號密度相同或不同。
  66. 一種第二無線通信裝置,包含: 記憶體; 至少一個收發器;以及 通信地耦合到該記憶體及該至少一個收發器的至少一個處理器,該至少一個處理器被組態以: 從雷達控制器接收針對從第一無線通信裝置到該第二無線通信裝置的目標雷達信號的至少一個傳輸組態,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及 根據該至少一個傳輸組態從該第一無線通信裝置接收該目標雷達信號。
  67. 如請求項66之第二無線通信裝置,其中,該第一無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
  68. 如請求項66之第二無線通信裝置,其中,該第二無線通信裝置對應於基地台、傳送接收點、中繼器、或用戶裝備(UE)。
  69. 如請求項66之第二無線通信裝置,其中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
  70. 如請求項66之第二無線通信裝置, 其中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且 其中,該至少一個傳輸組態包含對該第二時域部分進行組態的第二傳輸組態。
  71. 如請求項70之第二無線通信裝置,其中,該第一傳輸組態及該第二傳輸組態係在不同的時間處接收。
  72. 如請求項66之第二無線通信裝置,其中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間的時間間隙。
  73. 如請求項66之第二無線通信裝置,其中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
  74. 如請求項66之第二無線通信裝置,其中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
  75. 如請求項66之第二無線通信裝置,其中,該第一時域部分及該第二時域部分具有相同的持續時間。
  76. 如請求項66之第二無線通信裝置,其中,該第一時域部分及該第二時域部分具有不同的持續時間。
  77. 如請求項66之第二無線通信裝置,其中,該至少一個傳輸組態進一步對第三時域部分進行組態。
  78. 如請求項77之第二無線通信裝置,其中,該第三時域部分係與第三時域目標雷達信號密度相關聯,該第三時域目標雷達信號密度與該第一時域目標雷達信號密度或該第二時域目標雷達信號密度相同或不同。
  79. 一種雷達控制器,包含: 用於決定針對從第一無線通信裝置到第二無線通信裝置的目標雷達信號的至少一個傳輸組態的構件,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及 用於向該第一無線通信裝置及該第二無線通信裝置傳送該至少一個傳輸組態的構件。
  80. 如請求項79之雷達控制器,其中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
  81. 如請求項79之雷達控制器, 其中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且 其中,該至少一個傳輸組態包含對該第二時域部分進行組態的第二傳輸組態。
  82. 如請求項79之雷達控制器,其中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間的時間間隙。
  83. 如請求項79之雷達控制器,其中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
  84. 如請求項79之雷達控制器,其中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
  85. 一種第一無線通信裝置,包含: 用於從雷達控制器接收針對從該第一無線通信裝置到第二無線通信裝置的目標雷達信號的至少一個傳輸組態的構件,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及 用於根據該至少一個傳輸組態向該第二無線通信裝置傳送該目標雷達信號的構件。
  86. 如請求項85之第一無線通信裝置,其中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
  87. 如請求項85之第一無線通信裝置, 其中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且 其中,該至少一個傳輸組態包含對該第二時域部分進行組態的第二傳輸組態。
  88. 如請求項85之第一無線通信裝置,其中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間的時間間隙。
  89. 如請求項85之第一無線通信裝置,其中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
  90. 如請求項85之第一無線通信裝置,其中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
  91. 一種第二無線通信裝置,包含: 用於從雷達控制器接收針對從第一無線通信裝置到該第二無線通信裝置的目標雷達信號的至少一個傳輸組態的構件,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及 用於根據該至少一個傳輸組態從該第一無線通信裝置接收該目標雷達信號的構件。
  92. 如請求項91之第二無線通信裝置,其中,該至少一個傳輸組態包含對該第一時域部分及該第二時域部分兩者進行組態的單個傳輸組態。
  93. 如請求項91之第二無線通信裝置, 其中,該至少一個傳輸組態包含對該第一時域部分進行組態的第一傳輸組態,並且 其中,該至少一個傳輸組態包含對該第二時域部分進行組態的第二傳輸組態。
  94. 如請求項91之第二無線通信裝置,其中,該第一時域部分及該第二時域部分彼此相鄰,而不具有居間的時間間隙。
  95. 如請求項91之第二無線通信裝置,其中,時域間隙被安排在該第一時域部分與該第二時域部分之間。
  96. 如請求項91之第二無線通信裝置,其中,該第一時域部分及該第二時域部分係與用於感測該至少一個目標的相同的目標雷達信號時機相關聯。
  97. 一種儲存指令集合的非暫時性計算機可讀媒體,該指令集合包含一個或多個指令,該一個或多個指令在由雷達控制器之一個或多個處理器執行時,使得該雷達控制器進行以下操作: 決定針對從第一無線通信裝置到第二無線通信裝置的目標雷達信號的至少一個傳輸組態,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及 向該第一無線通信裝置及該第二無線通信裝置傳送該至少一個傳輸組態。
  98. 一種儲存指令集合的非暫時性計算機可讀媒體,該指令集合包含一個或多個指令,該一個或多個指令在由第一無線通信裝置之一個或多個處理器執行時,使得該第一無線通信裝置進行以下操作: 從雷達控制器接收針對從該第一無線通信裝置到第二無線通信裝置的目標雷達信號的至少一個傳輸組態,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及 根據該至少一個傳輸組態向該第二無線通信裝置傳送該目標雷達信號。
  99. 一種儲存指令集合的非暫時性計算機可讀媒體,該指令集合包含一個或多個指令,該一個或多個指令在由第二無線通信裝置之一個或多個處理器執行時,使得該第二無線通信裝置進行以下操作: 從雷達控制器接收針對從第一無線通信裝置到該第二無線通信裝置的目標雷達信號的至少一個傳輸組態,該目標雷達信號用於感測至少一個目標,該至少一個傳輸組態對與第一時域目標雷達信號密度相關聯的第一時域部分、以及與不同於該第一時域目標雷達信號密度的第二時域目標雷達信號密度相關聯的第二時域部分進行組態;以及 根據該至少一個傳輸組態從該第一無線通信裝置接收該目標雷達信號。
TW110139935A 2020-11-27 2021-10-27 針對在時域中帶有不同目標雷達信號密度的目標雷達信號的傳輸組態 TW202224489A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/105,814 2020-11-27
US17/105,814 US20220171016A1 (en) 2020-11-27 2020-11-27 Transmission configuration for target radar signals with different target radar signal densities in time-domain

Publications (1)

Publication Number Publication Date
TW202224489A true TW202224489A (zh) 2022-06-16

Family

ID=78790142

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110139935A TW202224489A (zh) 2020-11-27 2021-10-27 針對在時域中帶有不同目標雷達信號密度的目標雷達信號的傳輸組態

Country Status (7)

Country Link
US (1) US20220171016A1 (zh)
EP (1) EP4252032A1 (zh)
JP (1) JP2023552670A (zh)
KR (1) KR20230113548A (zh)
CN (1) CN116457691A (zh)
TW (1) TW202224489A (zh)
WO (1) WO2022115820A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11477754B2 (en) * 2019-04-25 2022-10-18 Qualcomm Incorporated Systems and methods for positioning reference signal staggering configuration
US20230400549A1 (en) * 2022-06-09 2023-12-14 Qualcomm Incorporated Enhanced assistance data for radio frequency sensing
WO2024020257A1 (en) * 2022-07-18 2024-01-25 Qualcomm Incorporated Tracking reference signals (trss) for joint communications and sensing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9660712B2 (en) * 2013-02-07 2017-05-23 Lg Electronics Inc. Method and apparatus for transmitting downlink data on basis of beam restricted sub-frame
CN106162922B (zh) * 2015-01-27 2021-01-26 中兴通讯股份有限公司 发现信号的处理方法及装置
WO2017207042A1 (en) * 2016-06-01 2017-12-07 Sony Mobile Communications Inc. Coexistence of radio communication and radar probing
US10109167B1 (en) * 2017-10-20 2018-10-23 Cognitive Systems Corp. Motion localization in a wireless mesh network based on motion indicator values
US11408973B2 (en) * 2018-09-27 2022-08-09 Google Llc Controlling radar transmissions within a licensed frequency band
US11032009B1 (en) * 2020-07-23 2021-06-08 Lg Electronics Inc. Method and apparatus for generating signal of user equipment and base station in wireless communication system
CN116457692A (zh) * 2020-11-18 2023-07-18 联想(新加坡)私人有限公司 无线电接入网络中的雷达感测

Also Published As

Publication number Publication date
CN116457691A (zh) 2023-07-18
EP4252032A1 (en) 2023-10-04
KR20230113548A (ko) 2023-07-31
JP2023552670A (ja) 2023-12-19
WO2022115820A1 (en) 2022-06-02
US20220171016A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
CN113366794A (zh) 用于定位的探测参考信号(srs)资源和资源集配置
CN114642062A (zh) 下行链路和上行链路定位参考信号处理和传输的公共测量和传输窗口
US11792741B2 (en) Receive configuration for radar signal on uplink resources and associated power control parameter
US20220113400A1 (en) Transmission configurations for reference radar signal and at least one target radar signal
TW202145813A (zh) 未配置量測間隙時的最小定位參考信號(prs)處理
TW202224489A (zh) 針對在時域中帶有不同目標雷達信號密度的目標雷達信號的傳輸組態
US11971500B2 (en) Slot format for reference radar signal and at least one target radar signal between base stations
US11953578B2 (en) Single sided beam management for bistatic air interface based radio frequency sensing in millimeter wave systems
US20220026550A1 (en) Beam management for bistatic air interface based radio frequency sensing in millimeter wave systems
TW202201990A (zh) 基於使用案例特定的無線通信的雷達參考信號
WO2021252778A1 (en) Wireless communications-based sensing for location detection across carriers
CN116710804A (zh) 双基地传感跟踪参考信号
CN115298562A (zh) 用于定位参考信号(prs)处理的测量周期公式化
CN116783843A (zh) 可重配智能表面辅助定位的操作调整
CN116158140A (zh) 测量时段期间的频率间用于定位的探测参考信号
CN114503734A (zh) 信道状态信息参考信号和定位参考信号资源的最大数量的联合考虑
US20240073072A1 (en) Channel stitching for cellular based radio frequency sensing
TW202349995A (zh) 蜂巢式系統中的機會rf感測
CN115715481A (zh) 频域资源的参考发送接收点和对定位参考信号的按需请求