TW202224466A - 無線傳輸/接收單元及由其實施的方法 - Google Patents

無線傳輸/接收單元及由其實施的方法 Download PDF

Info

Publication number
TW202224466A
TW202224466A TW110143427A TW110143427A TW202224466A TW 202224466 A TW202224466 A TW 202224466A TW 110143427 A TW110143427 A TW 110143427A TW 110143427 A TW110143427 A TW 110143427A TW 202224466 A TW202224466 A TW 202224466A
Authority
TW
Taiwan
Prior art keywords
wtru
uplink transmission
transmission
dci
parameters
Prior art date
Application number
TW110143427A
Other languages
English (en)
Other versions
TWI798953B (zh
Inventor
馬提諾 法瑞達
保羅 馬里內爾
基斯蘭 佩勒特爾
伯努瓦 佩勒特爾
Original Assignee
美商Idac控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Idac控股公司 filed Critical 美商Idac控股公司
Publication of TW202224466A publication Critical patent/TW202224466A/zh
Application granted granted Critical
Publication of TWI798953B publication Critical patent/TWI798953B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

揭露了用於例如5G靈活無線電存取技術(RAT)(5gFLEX)之類的無線系統中的低潛時媒體存取控制(MAC)協定資料單元(PDU)組合的系統、方法以及措施(例如無線傳輸/接收單元(WTRU)及/或網路層L1、L2、L3中的實體、介面以及程序的方面)。例如可以藉由在傳輸許可之前WTRU確定網路傳輸參數以及傳訊來降低潛時。WTRU可以例如針對未來許可中的使用在許可之前接收調變及編碼方案(MCS)、資源範圍等。在許可之前,可以遞增地創建/編碼資料塊。可以例如基於允許在許可之前MAC以及無線電鏈路控制(RLC)處理的資料塊大小來分段、組合以及多工資料單元。可以為在許可之前的早期產生傳輸塊提供靈活的許可大小。可以傳訊最小保證傳輸塊大小(TBS)以允許早期產生MAC PDU。可以例如使用盲解碼或DCI接收程序在許可之前選擇傳輸參數。

Description

無線傳輸/接收單元及由其實施的方法
相關申請案的交叉引用
本申請案要求2016年5月11日申請的美國臨時申請案序號62/334,529的優先權以及權益,其藉由引用的方式結合於此。
行動通信繼續在演進。第五代可以稱為5G。之前(舊有)代的行動通信可以是例如第四代(4G)長期演進(LTE)。
揭露了用於在無線系統(例如5G靈活無線電存取技術(RAT)(5gFLEX))中低潛時媒體存取控制(MAC)協定資料單元(PDU)組合的系統、方法以及措施(例如無線傳輸/接收單元(WTRU)及/或網路層L1、L2、L3中的實體、介面以及程序的方面)。潛時可以例如藉由在傳輸許可之前WTRU確定網路傳輸參數以及傳訊而被降低。WTRU可以在許可之前接收調變及編碼方案(MCS)、資源範圍等,例如以用於未來的許可。可以在許可之前遞增創建/編碼資料塊。可以例如基於允許在許可之前MAC以及無線電鏈路控制(RLC)處理的資料塊尺寸分段、組合以及多工資料單元。靈活許可尺寸可以被提供用於前代的許可前傳輸塊。最小保證傳輸 塊尺寸(TBS)可以被傳訊以允許前代的MAC PDU。可以例如使用盲解碼或DCI接收程序在許可之前選擇傳輸參數。
無線傳輸/接收單元(WTRU)可以包括處理器,被配置為(例如使用儲存在記憶體中的可執行指令)執行以下的一者或多者:(i)在至少下鏈控制通道的資源上監視下鏈控制資訊(DCI);(ii)識別下鏈控制通道的資源;(iii)解碼下鏈控制通道上的至少第一DCI,該第一DCI包括對應於下鏈傳輸或上鏈傳輸中的一者的至少一個資料傳輸的排程資訊;(iv)確定用於解碼第一DCI的至少一個解碼參數;以及(v)基於用於解碼第一DCI的至少一個解碼參數確定用於至少一個資料傳輸的一或多個傳輸或接收參數。
用於解碼第一DCI的至少一個解碼參數可以包括循環冗餘檢查長度以及聚合等級中的一者或多者。下鏈控制通道的資源可以包括實體資源塊的集合。至少一個解碼參數可以表明至少一個資料傳輸是否與高可靠資料、低潛時資料或最佳工作量資料中的一者或多者相關聯。
WTRU處理器可以被配置為經由與解碼的下鏈控制通道指示的確定的解碼參數相關聯的資源以傳輸HARQ-ACK回饋。
解碼可以包括盲解碼。解碼參數可以包括在執行盲解碼時已用於解碼第一DCI的資源的子集合。資源的子集合可以包括一或多個控制通道元素(CCE)且一或多個CCE的識別碼可以對應於至少一個解碼參數。
至少一個解碼參數可以包括與第一DCI相關聯的強健性等級。用於第一DCI的較高強健性等級可以表明用於資料傳輸的較高強健性等級,以及用於第一DCI的較低強健性等級可以表明用於資料傳輸的較低強健性等級。
用於至少一個資料傳輸的一或多個傳輸或接收參數可以包括與至少一個資料傳輸相關聯的服務品質(QoS)等級或與至少一個資料傳輸相關聯的頻譜操作模式(SOM)中的一者或多者。用於至少一個資料傳輸的一或多個傳輸或接收參數可以包括與至少一個資料傳輸相關聯的混合自動重複請求(HARQ)回饋參數。HARQ回饋參數可以包括用於HARQ回饋的傳輸或接收的時序資訊。
WTRU處理器可以被配置為從網路實體接收配置。該配置可以表明一或多個解碼參數與用於至少一個資料傳輸的一或多個傳輸或接收參數之間的映射。至少一個解碼參數可以包括DCI格式。
用於資料傳輸的一或多個傳輸或接收參數可以包括以下中的一者或多者:調變及編碼方案(MCS)、與至少一個資料傳輸相關聯的實體資源塊的集合、與至少一個資料傳輸相關聯的功率資訊、用於至少一個資料傳輸的傳輸時序資訊、或與至少一個資料傳輸相關聯的傳輸計時器間隔(TTI)持續時間。
使用WTRU的方法可以包括以下中的一者或多者:(i)在下鏈控制通道的至少資源上監視下鏈控制資訊(DCI);(ii)識別下鏈控制通道的資源;(iii)在下鏈控制通道上解碼至少第一DCI,其包括用於對應於下鏈傳輸或上鏈傳輸中的一者的至少一個資料傳輸的排程資訊;(iv)確定用於解碼第一DCI的至少一個解碼參數;以及(v)基於用於解碼第一DCI的至少一個解碼參數,確定用於至少一個資料傳輸的一或多個傳輸或接收參數。
使用WTRU的方法可以包括:(i)經由與解碼的下鏈控制通道指示的確定的解碼參數相關聯的資源以傳輸HARQ-ACK回饋,及/或(ii)從 網路實體接收配置,其中該配置表明一或多個解碼參數與用於至少一個資料傳輸的一或多個傳輸或接收參數之間的映射。
BTI:基礎時間間隔
DCI:下鏈控制資訊
DL:下鏈
DL TRx:下鏈資料傳輸
fDL:下鏈載波頻率
fUL:上鏈載波頻率
Iub、IuCS、IuPS、iur、S1、X2:介面
R1、R3、R6、R8:參考點
swg:切換間隙
TTI:傳輸時間間隔
UEx、UEy:通道頻寬
UL:上鏈
100:通信系統
102、102a、102b、102c、102d:無線傳輸/接收單元(WTRU)
103、104、105:無線電存取網路(RAN)
106、107、109:核心網路
108:公共交換電話網路(PSTN)
110:網際網路
112:其他網路
114a、114b、180a、180b、180c:基地台
115、116、117:空中介面
118:處理器
120:收發器
122:傳輸/接收元件
124:揚聲器/麥克風
126:小鍵盤
128:顯示器/觸控板
130:非可移記憶體
132:可移記憶體
134:電源
136:全球定位系統(GPS)晶片組
138:週邊設備
140a、140b、140c:節點B
142a、142b:無線電網路控制器(RNC)
144:媒體閘道(MGW)
146:行動交換中心(MSC)
148:服務GPRS支援節點(SGSN)
150:閘道GPRS支援節點(GGSN)
160a、160b、160c:e節點B
162:行動性管理閘道(MME)
164:服務閘道
166:封包資料網路(PDN)閘道
182:存取服務網路(ASN)閘道
184:行動IP本地代理(MIP-HA)
186:驗證、授權、記帳(AAA)伺服器
188:閘道
第1A圖是可以實施一或多個揭露的實施方式的範例通信系統的系統圖;
第1B圖是可以在第1A圖中示出的通信系統中使用的範例WTRU的系統圖;
第1C圖是可以在第1A圖中示出的通信系統中使用的範例無線電存取網以及範例核心網路的系統圖;
第1D圖是可以在第1A圖中示出的通信系統中使用的另一範例無線電存取網路以及另一範例核心網路的系統圖;
第1E圖是可以在第1A圖中示出的通信系統中使用的另一範例無線電存取網路以及另一範例核心網路的系統圖;
第2圖是傳輸頻寬的範例;
第3圖是靈活頻譜分配的範例;
第4圖是用於TDD雙工的時序關係的範例;
第5圖是用於FDD雙工的時序關係的範例。
現在參考附圖描述範例性實施方式的詳細描述。雖然該描述提供了可能實施的詳細範例,但是應當注意這些細節只是示意性的且絕不限制本申請的範圍。
第1A圖是可以實施所揭露的一或多個實施方式的例通信系統100的圖式。通信系統100可以是為多個無線使用者提供例如語音、資料、視訊、 訊息傳遞、廣播等內容的多重存取系統。該通信系統100經由共用包括無線頻寬的系統資源來允許多個無線使用者存取此類內容。作為範例,通信系統100可以使用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)等等。
如第1A圖所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c及/或102d(其通常或總體被統稱為WTRU 102)、無線電存取網路(RAN)103/104/105、核心網路106/107/109、公共交換電話網路(PSTN)108、網際網路110以及其他網路112,但是應該瞭解,所揭露的實施方式設想了任何數量的WTRU、基地台、網路及/或網路元件。每一個WTRU 102a、102b、102c、102d可以是被配置為在無線環境中操作及/或通信的任何類型的裝置。例如,WTRU 102a、102b、102c、102d可以被配置為傳輸及/或接收無線信號、並且可以包括使用者設備(UE)、行動站、固定或行動用戶單元、呼叫器、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、消費類電子裝置等等。
通信系統100還可以包括基地台114a以及基地台114b。每一個基地台114a、114b可以是被配置為經由與WTRU 102a、102b、102c、102d中的至少一個無線介接來促使存取一或多個通信網路的任何類型的裝置,該網路則可以是核心網路106/107/109、網際網路110及/或網路112。作為範例,基地台114a、114b可以是基地收發站(BTS)、節點B、e節點B、本地節點B、本地e節點B、網站控制器、存取點(AP)、無線路由器等等。雖然每一個基地台114a、114b都被描述為是單一元件,但是應該瞭解,基地台114a、114b可以包括任何數量的互連基地台及/或網路元件。
基地台114a可以是RAN 103/104/105的一部分,並且該RAN103/104/105還可以包括其他基地台及/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a及/或基地台114b可以被配置為在名為胞元(未顯示)的特定地理區域內部傳輸及/或接收無線信號。胞元可被進一步劃分為胞元扇區。例如,與基地台114a關聯的胞元可分為三個扇區。由此,在一個實施方式中,基地台114a可以包括三個收發器,也就是說,每一個收發器對應於胞元的一個扇區。在另一個實施方式中,基地台114a可以使用多輸入多輸出(MIMO)技術,由此可以為胞元的每個扇區使用多個收發器。
基地台114a、114b可以經由空中介面115/116/117以與一或多個WTRU 102a、102b、102c、102d進行通信,該空中介面115/116/117可以是任何適當的無線通訊鏈路(例如射頻(RF)、微波、紅外線(IR)、紫外線(UV)、可見光等等)。可以使用任何合適的無線電存取技術來建立空中介面115/116/117。
更具體地說,如上所述,通信系統100可以是多重存取系統、並且可以使用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等等。舉例來說,RAN 103/104/105中的基地台114a與WTRU 102a、102b、102c可以實施例如通用行動電信系統(UMTS)陸地無線電存取(UTRA)之類的無線電技術,並且該技術可以使用寬頻CDMA(WCDMA)來建立空中介面115/116/117。WCDMA可以包括例如高速封包存取(HSPA)及/或演進型HSPA(HSPA+)之類的通信協定。HSPA則可以包括高速下鏈封包存取(HSDPA)及/或高速上鏈封包存取(HSUPA)。
在另一個實施方式中,基地台114a與WTRU 102a、102b、102c可以實施演進型UMTS陸地無線電存取(E-UTRA)之類的無線電技術,該技術可以使用長期演進(LTE)及/或先進LTE(LTE-A)來建立空中介面115/116/117。
在其他實施方式中,基地台114a與WTRU 102a、102b、102c可以實施例如IEEE 802.16(全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球行動通信系統(GSM)、用於GSM增強資料速率演進(EDGE)、GSM EDGE(GERAN)等無線電存取技術。
作為範例,第1A圖中的基地台114b可以是無線路由器、本地節點B、本地e節點B或存取點、並且可以使用任何適當的RAT來促成例如營業場所、住宅、交通工具、校園等等的局部區域中的無線連接。在一些實施方式中,基地台114b與WTRU 102c、102d可以實施例如IEEE 802.11之類的無線電技術來建立無線區域網路(WLAN)。在另一個實施方式中,基地台114b與WTRU 102c、102d可以實施例如IEEE 802.15之類的無線電技術來建立無線個人區域網路(WPAN)。在再一個實施方式中,基地台114b以及WTRU 102c、102d可以使用基於蜂巢的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A等等)來建立微微胞元或毫微微胞元。如第1A圖所示,基地台114b可以直接連接到網際網路110。由此,基地台114b未必需要經由核心網路106/107/109來存取網際網路110。
RAN 103/104/105可以與核心網路106/107/109通信,該核心網路可以是被配置為向一或多個WTRU 102a、102b、102c、102d提供語音、資料、應用及/或經由網際網路協定的語音(VoIP)服務的任何類型的網路。例如, 核心網路106/107/109可以提供呼叫控制、記帳服務、基於移動位置的服務、預付費呼叫、網際網路連接、視訊分發等等,及/或執行用戶驗證之類的高級安全功能。雖然在第1A圖中沒有顯示,但是應該瞭解,RAN 103/104/105及/或核心網路106/107/109可以直接或間接地以及其他那些與RAN 103/104/105使用相同RAT或不同RAT的RAN進行通信。例如,除了與使用E-UTRA無線電技術的RAN 103/104/105連接之外,核心網路106/107/109還可以與別的使用GSM無線電技術的RAN(未顯示)通信。
核心網路106/107/109還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110及/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用公共通信協定的全球性互聯電腦網路裝置系統,該協定可以是TCP/IP互連網協定族中的傳輸控制協定(TCP)、使用者資料報協定(UDP)以及網際網路協定(IP)。網路112可以包括由其他服務供應者擁有及/或操作的有線或無線通訊網路。例如,網路112可以包括與一或多個RAN相連的另一個核心網路,該一或多個RAN可以與RAN 103/104/105使用相同RAT或不同RAT。
通信系統100中一些或所有WTRU 102a、102b、102c、102d可以包括多模能力,換言之,WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上與不同無線網路通信的多個收發器。例如,第1A圖所示的WTRU 102c可以被配置為與使用基於蜂巢的無線電技術的基地台114a通信、以及與可以使用IEEE 802無線電技術的基地台114b通信。
第1B圖是範例性WTRU 102的系統圖。如第1B圖所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源 134、全球定位系統(GPS)晶片組136以及其他週邊設備138。應該瞭解的是,在保持符合實施方式的同時,WTRU 102還可以包括前述元件的任何子組合。這裡的實施方式還設想基地台114a以及114b、及/或基地台114a以及114b所代表的節點可以包括在第1B圖中描繪以及在這裡描述的一些或所有元件,特別地,基地台114a以及114b所代表的節點可以是收發站(BTS)、節點B、網站控制器、存取點(AP)、本地節點B、演進型本地節點B(e節點B)、本地演進型節點B(HeNB或He節點B)、本地演進型節點B閘道以及代理節點,但其並不限於此。
處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心關聯的一或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)電路、其他任何類型的積體電路(IC)、狀態機等等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理及/或其他任何能使WTRU 102在無線環境中操作的功能。處理器118可以耦合至收發器120,收發器120可以耦合至傳輸/接收元件122。雖然第1B圖將處理器118以及收發器120描述為是獨立元件,但是應該瞭解,處理器118以及收發器120可以集成在一個電子元件或晶片中。
傳輸/接收元件122可以被配置為經由空中介面115/116/117來傳輸信號至基地台(例如基地台114a)或從基地台(例如基地台114a)接收信號。舉個例子,在一個實施方式中,傳輸/接收元件122可以是被配置為傳輸及/或接收RF信號的天線。在另一個實施方式中,作為範例,傳輸/接收元件122可以是被配置為傳輸及/或接收IR、UV或可見光信號的放射器/偵測器。在再一個實施方式中,傳輸/接收元件122可以被配置為傳輸以及接收 RF以及光信號。應該瞭解的是,傳輸/接收元件122可以被配置為傳輸及/或接收無線信號的任何組合。
此外,雖然在第1B圖中將傳輸/接收元件122描述為是單一元件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地說,WTRU 102可以使用MIMO技術。因此,在一個實施方式中,WTRU 102可以包括經由空中介面115/116/117以傳輸以及接收無線電信號的兩個或多個傳輸/接收元件122(例如多個天線)。
收發器120可以被配置為對傳輸/接收元件122將要傳輸的信號進行調變、以及對傳輸/接收元件122接收的信號進行解調。如上所述,WTRU 102可以具有多模能力。因此,收發器120可以包括允許WTRU 102經由例如UTRA以及IEEE 802.11之類的多種RAT來進行通信的多個收發器。
WTRU 102的處理器118可以耦合至揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)、並且可以接收來自這些元件的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以從任何適當的記憶體、例如非可移記憶體130及/或可移記憶體132中存取資訊、以及將訊號存入這些記憶體。該非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任何類型的記憶儲存裝置。可移記憶體132可以包括用戶身份模組(SIM)卡、記憶條、安全數位(SD)記憶卡等等。在其他實施方式中,處理器118可以從那些並非實際位於WTRU 102的記憶體存取資訊、以及將資料存入這些記憶體,其中舉例來說,該記憶體可以位於伺服器或家用電腦(未顯示)。
處理器118可以接收來自電源134的電力、並且可以被配置分配及/或控制用於WTRU 102中的其他元件的電力。電源134可以是為WTRU 102供電的任何適當的裝置。舉例來說,電源134可以包括一或多個乾電池(如鎳鎘(Ni-Cd)、鎳鋅(Ni-Zn)、鎳氫(NiMH)、鋰離子(Li-ion)等等)、太陽能電池、燃料電池等等。
處理器118還可以與GPS晶片組136耦合,該晶片組可以被配置為提供與WTRU 102的目前位置相關的位置資訊(例如經度以及緯度)。作為來自GPS晶片組136的資訊的補充或替代,WTRU 102可以經由空中介面115/116/117接收來自基地台(例如基地台114a、114b)的位置資訊、及/或根據從兩個或多個附近基地台接收的信號時序來確定其位置。應該瞭解的是,在保持符合實施方式的同時,WTRU 102可以用任何適當的定位方法來獲取位置資訊。
處理器118還可以耦合到其他週邊設備138,其可以包括提供附加特徵、功能及/或有線或無線連接的一或多個軟體及/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片以及視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、藍牙®模組、調頻(FM)無線電單元、數位音樂播放器、視訊遊戲器模組、網際網路瀏覽器等等。
第1C圖是根據一個實施方式的RAN 103以及核心網路106的系統圖。如上所述,RAN 103可以使用E-UTRA無線電技術並經由空中介面115來與WTRU 102a、102b、102c進行通信。並且RAN103還可以與核心網路106通信。如第1C圖所示,RAN 103可以包括節點B 140a、140b、140c,其中每一個節點B都可以包括經由空中介面115以與WTRU 102a、102b、102c通信的一或多個收發器。節點B 140a、140b、140c中的每一個都可以關聯 於RAN 103內部的特定胞元(未顯示)。RAN 103還可以包括RNC 142a、142b。應該瞭解的是,在保持與實施方式相符的同時,RAN 103可以包括任何數量的節點B以及RNC。
如第1C圖所示,節點B 140a、140b可以與RNC 142a進行通信。此外,節點B 140c還可以與RNC 142b進行通信。節點B 140a、140b、140c可以經由Iub介面以與各自的RNC 142a、142b進行通信。RNC 142a、142b可以經由Iur介面彼此進行通信。每一個RNC 142a、142b都可以被配置為控制與其相連的各自的節點B 140a、140b、140c。另外,每一個RNC 142a、142b都可被配置為執行或支援其他功能,例如外環功率控制、負載控制、許可控制、封包排程、切換控制、巨集分集、安全功能、資料加密等等。
第1C圖所示的核心網路106可以包括媒體閘道(MGW)144、行動交換中心(MSC)146、服務GPRS支援節點(SGSN)148、及/或閘道GPRS支援節點(GGSN)150。雖然前述每個元件都被描述為是核心網路106的一部分,但是應該瞭解,核心網路操作者之外的其他實體也可以擁有及/或操作這其中的任一元件。
RAN 103中的RNC 142a可以經由IuCS介面被連接到核心網路106中的MSC 146。MSC 146可以連接到MGW 144。MSC 146以及MGW 144可以為WTRU 102a、102b、102c提供針對PSTN 108之類的電路切換式網路的存取,以便促成WTRU 102a、102b、102c與傳統陸線通信裝置間的通信。
RAN 103中的RNC 142a還可以經由IuPS介面被連接到核心網路106中的SGSN 148。該SGSN 148可以連接到GGSN 150。SGSN 148以及GGSN 150可以為WTRU 102a、102b、102c提供針對網際網路110之類的封包交換網路的存取,以便促成WTRU 102a、102b、102c與IP賦能裝置之間的通信。
如上所述,核心網路106還可以連接到網路112,該網路可以包括其他服務供應者擁有及/或操作的其他有線或無線網路。
第1D圖是根據一個實施方式的RAN 104以及核心網路107的系統圖。如上所述,RAN 104可以使用E-UTRA無線電技術以經由空中介面116而與WTRU 102a、102b、102c進行通信。此外,RAN 104還可以與核心網路107通信。
RAN 104可以包括e節點B 160a、160b、160c,但是應該瞭解,在保持與實施方式相符的同時,RAN 104可以包括任何數量的e節點B。每一個e節點B 160a、160b、160c可以包括一或多個收發器,以經由空中介面116而與WTRU 102a、102b、102c通信。在一個實施方式中,e節點B 160a、160b、160c可以實施MIMO技術。由此,舉例來說,e節點B 160a可以使用多個天線來向WTRU 102a傳輸無線信號、以及接收來自WTRU 102a的無線信號。
每一個e節點B 160a、160b、160c可以關聯於特定胞元(未顯示)、並且可以被配置為處理無線電資源管理決策、切換決策、上鏈(UL)及/或下鏈(DL)中的使用者排程等等。如第1D圖所示,e節點B 160a、160b、160c彼此可以在X2介面上進行通信。
第1D圖所示的核心網路107可以包括行動性管理閘道(MME)162、服務閘道164以及封包資料網路(PDN)閘道166。雖然上述每一個元件都被描述為是核心網路107的一部分,但是應該瞭解,核心網路操作者之外的其他實體同樣可以擁有及/或操作這其中的任一元件。
MME 162可以經由S1介面以與RAN 104中的每一個e節點B 160a、160b、160c相連、並且可以充當控制節點。例如,MME 162可以負責驗證WTRU 102a、102b、102c的使用者、啟動/停用承載,在WTRU 102a、102b、102c的初始連結期間選擇特定服務閘道等等。該MME 162還可以提供控制 平面功能,以便在RAN 104與使用了GSM或WCDMA之類的其他無線電技術的其他RAN(未顯示)之間執行切換。
服務閘道164可以經由S1介面被連接到RAN 104中的每一個e節點B 160a、160b、160c。該服務閘道164通常可以路由以及轉發去往/來自WTRU 102a、102b、102c的使用者資料封包。此外,服務閘道164還可以執行其他功能,例如在e節點B間的切換過程中錨定使用者平面、在下鏈資料可供WTRU 102a、102b、102c使用時觸發傳呼、管理以及儲存WTRU 102a、102b、102c的上下文等等。
服務閘道164還可以連接到PDN閘道166,該PDN閘道可以為WTRU 102a、102b、102c提供針對例如網際網路110之類的封包交換網路的存取,以促成WTRU 102a、102b、102c與IP賦能裝置之間的通信。
核心網路107可以促成與其他網路的通信。例如,核心網路107可以為WTRU 102a、102b、102c提供針對PSTN 108之類的電路切換式網路的存取,以促成WTRU 102a、102b、102c與傳統陸線通信裝置之間的通信。作為範例,核心網路107可以包括IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之通信,其中該IP閘道充當了核心網路107與PSTN 108之間的介面。此外,核心網路107還可以為WTRU 102a、102b、102c提供針對網路112的存取,其中該網路可以包括其他服務供應者擁有及/或操作的其他有線或無線網路。
第1E圖是根據一個實施方式的RAN 105以及核心網路109的系統圖。RAN 105可以是使用IEEE 802.16無線電技術以經由空中介面而與WTRU 102a、102b、102c通信的存取服務網路(ASN)。如以下進一步論述的那樣,WTRU 102a、102b、102c、RAN 105以及核心網路109的不同功能實體之間的通信鏈路可被定義為參考點。
如第1E圖所示,RAN 105可以包括基地台180a、180b、180c以及ASN閘道182,但是應該瞭解,在保持與實施方式相符的同時,RAN 105可以包括任何數量的基地台及ASN閘道。每一個基地台180a、180b、180c都可以關聯於RAN 105中的特定胞元(未顯示),並且每個基地台都可以包括一或多個收發器,以便經由空中介面117而與WTRU 102a、102b、102c進行通信。在一個實施方式中,基地台180a、180b、180c可以實施MIMO技術。由此,舉例來說,基地台180a可以使用多個天線以向WTRU 102a傳輸無線信號、以及接收來自WTRU 102a的無線信號。基地台180a、180b、180c還可以提供行動性管理功能,例如切換觸發、隧道建立、無線電資源管理、訊務分類、服務品質(QoS)策略實施等等。ASN閘道182可以充當訊務聚合點、並且可以負責實施傳呼、使用者設定檔快取、針對核心網路109的路由等等。
WTRU 102a、102b、102c與RAN 105之間的空中介面117可被定義為是實施IEEE 802.16規範的R1參考點。另外,每一個WTRU 102a、102b、102c都可以與核心網路109建立邏輯介面(未顯示)。WTRU 102a、102b、102c與核心網路109之間的邏輯介面可被定義為R2參考點,該參考點可以用於驗證、授權、IP主機配置管理及/或行動性管理。
每一個基地台180a、180b、180c之間的通信鏈路可被定義為R8參考點,該參考點包含了用於促成WTRU切換以及基地台之間的資料傳輸的協定。基地台180a、180b、180c與ASN閘道182之間的通信鏈路可被定義為R6參考點。該R6參考點可以包括用於促成基於與每一個WTRU 102a、102b、180c相關聯的行動性事件的行動性管理的協定。
如第1E圖所示,RAN 105可以連接到核心網路109。RAN 105與核心網路109之間的通信鏈路可以被定義為R3參考點,作為範例,該參考點包 括了用於促成資料傳輸以及行動性管理能力的協定。核心網路109可以包括行動IP本地代理(MIP-HA)184、驗證、授權、記帳(AAA)伺服器186以及閘道188。雖然前述每個元件都被描述為是核心網路109的一部分,但是應該瞭解,核心網路操作者以外的實體也可以擁有及/或操作這其中的任一元件。
MIP-HA可以負責實施IP位址管理、並且可以賦能WTRU 102a、102b、102c在不同的ASN及/或不同的核心網路之間漫遊。MIP-HA 184可以為WTRU 102a、102b、102c提供針對網際網路110之類的封包交換網路的存取,以便促成WTRU 102a、102b、102c與IP賦能裝置之間的通信。AAA伺服器186可以負責使用者驗證以及支援使用者服務。閘道188可以促成與其他網路的交互作用。例如,閘道188可以為WTRU 102a、102b、102c提供對於PSTN 108之類的電路切換式網路的存取,以便促成WTRU 102a、102b、102c與傳統陸線通信裝置之間的通信。另外,閘道188還可以為WTRU 102a、102b、102c提供針對網路112的存取,其中該網路可以包括其他服務供應者擁有及/或操作的其他有線或無線網路。
雖然在第1E圖中沒有顯示,但是應該瞭解,RAN 105可以連接到其他ASN,並且核心網路109可以連接到其他核心網路。RAN 105與其他ASN之間的通信鏈路可被定義為R4參考點,該參考點可以包括用於協調WTRU 102a、102b、102c在RAN 105與其他ASN之間的移動的協定。核心網路109與其他核心網路之間的通信鏈路可以被定義為R5參考點,該參考點可以包括用於促成本地核心網路與被訪核心網路之間交互作用的協定。
例如用於5G系統中的新無線電(NR)存取技術的空中介面可以支援各種用例,例如改善的寬頻性能(IBB)、工業控制以及通信(ICC)以 及車輛應用(V2X)以及大機器型通信(mMTC)。用例可以在空中介面(例如5G空中介面)中具有相關聯的支援。
空中介面可以支援例如超低傳輸潛時(LLC)、超可靠傳輸(URC)以及MTC操作(包括窄頻操作)。
對超低傳輸潛時(LLC)的支援可以包括例如空中介面潛時,例如1ms RTT以及100us至250us之間的TTI。可以為超低存取潛時(例如從初始系統存取直到第一使用者平面資料單元的傳輸完成的時間)提供支援。例如可以針對IC以及V2X支援低於10ms的端到端(e2e)潛時。
對超可靠傳輸(URC)的支援可以包括例如改善的傳輸可靠性,例如99.999%傳輸成功以及服務可用性。可以針對範圍在0-500km/h的移動速度提供支援。可以例如針對IC以及V2X提供低於10e-6的封包丟失率。
對MTC操作的支援可以包括例如對窄頻操作(例如使用低於200KHz)的空中介面支援、延長電池壽命(例如高達自主15年)且小以及不頻繁資料傳輸的最小通信負荷(例如範圍在1-100kbps的低資料率,其存取潛時是幾秒到幾小時)。
5gFLEX系統可以用用於上鏈及/或下鏈的OFDM及/或其他波形來實施。本文範例的描述是非限制性的。範例可適用於且可適合其他波形以及無線技術。
OFDM可以用作用於資料傳輸的信號格式,例如在LTE以及IEEE 802.11中。OFDM可以有效地將頻譜分為多個並行的正交子帶。(例如每個)子載波可以使用時域中的矩形窗被成形,這可能導致頻域中的正弦形狀的子載波。OFDMA可以依賴(例如完美的)頻率同步以及循環前綴的持續時間內的上鏈時序對準的緊密管理,例如以維持信號之間的正交性並最小化載波間干擾。例如在WTRU可以同時連接到多個存取點的系統中緊密同步 可能很難。另外的功率降低可以被應用到上鏈傳輸,例如以符合相鄰頻帶的頻譜傳輸要求。分段頻譜可以被聚合用於WTRU傳輸。
例如可以藉由實施的更嚴格的RF要求(例如,使用不需要聚合的大量連續頻譜的操作)改善OFDM(CP-OFDM)性能。基於CP的OFDM傳輸方案可以提供用於與4G系統類似的5G的下鏈實體層,其對導頻信號密度以及位置進行修改。
5gFLEX下鏈傳輸方案可以基於多載波波形,其特徵可以是高頻譜容量(例如,較低的旁瓣以及較低的OOB傳輸)。用於5G的多載波(MC)波形可以包括例如OFDM-OQAM及/或UFMC(UF-OFDM)。
多載波調變波形可以將通道分為多個子通道並可以在子通道中調變子載波上的資料符號。
在濾波頻帶多載波(FBMC)的範例中,例如OFDM-OQAM,濾波器可以在時域中每子載波被應用到OFDM信號,例如以降低OOB。OFDM-OQAM可以造成對相鄰頻帶的非常低的干擾、可以不需要大保護頻帶並可以無需循環前綴而被實施。OFDM-OQAM可以在正交性方面對多路徑效應以及高延遲擴展是敏感的,這可能使得等化以及通道估計變得複雜。
在例如UF-OFDM之類的通用濾波多載波(UFMC)的範例中,濾波器可以在時域中被應用到OFDM信號以降低OOB。可以每子頻帶應用濾波以使用頻譜分段,這可以降低複雜性並使得UF-OFDM實施起來更實用。頻帶中的未使用頻譜分段中的OOB放射可以與OFDM中的一樣高。UF-OFDM可以在經濾波的頻譜的邊緣比OFDM提供一些改善,在頻譜空穴中有些許甚至無改善。
這些波形賦能信號與非正交特性(例如不同的子載波間距)的頻率多工以及非同步信號的共存,而無需複雜干擾消除接收器。這些波形可 以促進基帶處理中的頻譜的分段頻譜的聚合,例如作為其作為RF處理的部分的實施的更低成本的替代方案。
可以考慮相同頻帶內的不同波形的共存,例如以支援mMTC窄頻操作(例如使用SCMA)。可以例如針對所有方面以及針對下鏈以及上鏈傳輸在相同頻帶中組合不同的波形,例如CP-OFDM、OFDM-OQAM以及UF-OFDM。不同波形的共存可以包括使用不同WTRU之間的不同類型的波形的傳輸、或來自相同WTRU(例如同時)的傳輸,其中在時域中存在某重疊或是連續的。
其他共存方面可以包括對混合類型的波形的支援,例如可以支援例如以下項的波形及/或傳輸:可能變化的CP持續時間(例如從一個傳輸到另一個傳輸)、CP以及低功率尾部(例如零尾部)的組合、及/或混合保護間隔的形式(例如,使用低功率CP以及適應性低功率尾部)等。波形可以支援動態變化及/或其他方面的控制,例如如何應用濾波(例如,在用於在給定載波頻率的任何傳輸的接收的頻譜邊緣、在用於與特定SOM相關聯的傳輸的接收的頻譜邊緣、每子帶或每子帶組是否應用濾波)。
上鏈傳輸方案可以使用用於下鏈傳輸的相同或不同波形。
例如可以基於FDMA以及TDMA以在相同胞元中多工至及來自不同WTRU的傳輸。
5gFLEX無線電存取的特徵可以為非常高程度的頻譜靈活性,其賦能不同特性的不同頻帶中的部署,這可以包括不同的雙工安排、不同及/或可變尺寸的可用頻譜,例如相同或不同頻帶中的連續以及不連續頻譜分配。5gFLEX無線電存取可以支援可變時序方面,例如對多TTI長度以及非同步傳輸的支援。
可以支援多雙工方案(例如TDD、FDD)。可以例如使用頻譜聚合針對FDD操作支援補充下鏈操作。FDD操作可以支援全雙工FDD以及半雙工FDD操作。例如針對TDD操作DL/UL分配可以是動態的(例如可以不基於固定的DL/UL訊框配置)。可以在每個傳輸機會設定DL或UL傳輸間隔的長度。
5G空中介面特性或能力可以在上鏈以及下鏈上賦能不同傳輸頻寬,其範圍例如在標稱系統頻寬與對應於系統頻寬的最大值之間變化。
單載波操作可以支援多種或一範圍的系統頻寬,例如5、10、20、40以及80MHz、160MHz。標稱頻寬可以具有一或多個固定值。窄頻傳輸(例如0至200KHz)可以在MTC裝置的操作頻寬內被支援。
系統頻寬可以指網路針對給定載波可以管理的頻譜的最大部分。WTRU針對胞元獲取、測量以及到網路的初始存取最小支援的載波的頻譜部分可以對應於標稱系統頻寬。WTRU可以被配置有可以在整個系統頻寬的範圍內的通道頻寬。WTRU的配置通道頻寬可以或可以不包括系統頻寬的標稱部分,例如如第2圖的範例所示。
第2圖是傳輸頻寬的範例。第2圖示出了都在不同分配的標稱系統頻寬(胞元)(例如5MHz)、UEx通道頻寬(例如10MHz)、UEy通道頻寬(例如20MHz)以及UEz通道頻寬(5MHz),其在系統頻寬(例如20MHz)內可以或可以不重疊。UE指WTRU。可以實現頻寬靈活性,例如因為(例如所有)針對頻帶中給定最大操作頻寬的RF要求的可適用集合可以被滿足而不用引入用於該操作頻帶的另外的允許通道頻寬,例如這是因為頻域波形的基帶濾波的有效支援。
針對單載波操作的WTRU的通道頻寬可以被配置、重新配置及/或動態改變。標稱系統、系統或配置的通道頻寬內的用於窄頻傳輸頻譜可以被分配。
5G空中介面實體層可以是頻帶不可知的、且可以支援授權頻帶(例如低於5GHz)以及未授權頻帶(例如在範圍5-6GHz中)中的操作。例如針對未授權頻帶中的操作可以支援類似於LTE LAA的基於LBT Cat 4的通道存取框架。
用於任意頻譜塊尺寸的胞元特定及/或WTRU特定的通道頻寬可以被縮放以及管理(例如,排程、資源定址、廣播信號、測量等)。
下鏈控制通道以及信號可以支援FDM操作。WTRU可以例如使用(例如僅使用)系統頻寬的標稱部分接收傳輸來獲取下鏈載波。例如,WTRU可以初始不接收覆蓋由網路針對所述的載波所管理的整個頻寬的傳輸。
可以在可以或可以不對應於標稱系統頻寬的頻寬上分配下鏈資料通道,例如沒有除了在WTRU的配置通道頻寬內以外的限制。例如,網路可以使用5MHz標稱頻寬操作12MHz系統頻寬的載波,允許裝置支援5MHz最大RF頻寬以獲取以及存取系統,同時潛在分配+10至-10MHz的載波頻率給支援高達值20MHz的通道頻寬的其他WTRU。
第3圖是靈活頻譜分配的範例。第3圖示出了頻譜分配的範例,其中不同的子載波可以(例如至少從概念上)被指派給不同的操作模式(之後稱為頻譜操作模式或SOM)。不同的SOM可以用於滿足不同傳輸的不同要求。SOM可以包括子載波間距、TTI長度及/或一或多個可靠性方面(例如HARQ處理方面、輔助控制通道)。SOM可以用於指(例如特定)波形、或可以與處理方面相關(例如支援在使用FDM及/或TDM的相同載波中的不 同波形的共存或在TDD頻帶中FDD操作的共存(例如以TDM方式或類似方式支援))。
WTRU可以被配置為根據一或多個SOM來執行傳輸。例如,SOM可以對應於使用以下至少一者的傳輸:特定TTI持續時間、特定初始功率等級、特定HARQ處理類型、成功HARQ接收/傳輸的特定上界、特定傳輸模式、特定實體通道(上鏈或下鏈)、特定波形類型、或甚至根據特定RAT的傳輸(例如LTE或根據5G傳輸技術)。SOM可以對應於QoS等級及/或相關方面(例如,最大/目標潛時、最大/目標BLER或類似的)。SOM可以對應於頻譜區域及/或特定控制通道或其方面(例如搜尋空間或DCI類型)。例如,WTRU可以被配置有用於URC類型服務、LLC類型服務及/或MBB類型服務的SOM。WTRU可以具有用於系統存取及/或L3控制傳訊(例如RRC)的傳輸/接收的SOM的配置,例如在與系統相關聯的頻譜的部分中,例如在標稱系統頻寬中。
可以支援頻譜聚合(例如用於單載波操作)。WTRU可以支援在(例如在相同操作頻帶內的)實體資源塊(PRB)的連續或不連續集合上的多個傳輸塊的傳輸以及接收。可以支援將單一傳輸塊映射到PRB的分開的集合。可以為與不同SOM要求相關聯的同時傳輸提供支援。
可以例如使用在相同操作頻帶內或兩個或更多操作頻帶上的連續或不連續頻譜塊來支援多載波操作。可以使用不同模式(例如FDD以及TDD)及/或不同通道存取方法(例如6GHz以下的授權以及未授權頻帶操作)為頻譜塊聚合提供支援。可以為配置、重新配置及/或動態改變WTRU的多載波聚合的程序提供支援。
下鏈(DL)以及上鏈(UL)傳輸可以被組織為無線電訊框,其特徵是多個固定方面(例如下鏈控制資訊的位置)以及多個變化方面(例如傳輸時序、支援的傳輸類型)。
可以用整數個一或多個符號來表示基礎時間間隔(BTI),符號的符號持續時間可以是可應用於時頻資源的子載波間距的函數。子載波間距(例如針對FDD)可以針對給定訊框在上鏈載波頻率fUL以及下鏈載波頻率fDL之間是不同的。
傳輸時間間隔(TTI)可以對應於在連續傳輸之間系統支援的最小時間,每個傳輸可以與針對下鏈(TTIDL)、上鏈(UL TRx)的不同傳輸塊(TB)相關聯,其可以不包含前導碼且可以包括控制資訊(例如用於下鏈的DCI或用於上鏈的UCI)。TTI可以用整數個一或多個BTI來表示。BTI可以是特定的及/或與給定SOM相關聯。
例如,支援的訊框持續時間可以包括例如100us、125us(1/8ms)、142.85us(1/7ms可以是2個nCP LTE OFDM符號)以及1ms,例如以賦能與LTE時序結構的校準。
訊框可以從固定時間持續時間tdci的下鏈控制資訊(DCI)開始,其在所考慮的載波頻率(針對TDD是fUL+DL,針對FDD是fDL)的下鏈資料傳輸(DL TRx)之前。
訊框可以(例如針對TDD雙工)包括下鏈部分(DCI以及DL TRx)以及(例如可選地)上鏈部分(UL TRx)。切換間隙(swg)可以(例如針對給定配置的訊框)在該訊框的上鏈部分(例如當存在時)之前。
訊框可以(例如針對TDD雙工)包括下鏈參考TTI以及一或多個TTI(例如針對上鏈)。可以例如使用從可以與上鏈訊框的開始重疊的下鏈參考訊框的開始被應用的偏移(toffset)來導出上鏈TTI的開始。
5gFLEX可以(例如針對TDD)支援在該訊框中的D2D/V2x/側鏈路操作,例如藉由在DCI+DL TRx部分(例如當使用各自資源的半靜態配置時)、或DL TRx部分(例如針對動態分配)中包括各自的下鏈控制以及前向傳輸並在UL TRx部分中包括各自的反向傳輸來支援。
5gFLEX可以(例如針對FDD)支援在訊框的UL TRx部分中支援D2D/V2x/側鏈路操作,例如藉由在UL TRx部分中包括各自的下鏈控制、前向以及反向傳輸來支援。可以使用各自資源的動態分配。
第4圖以及第5圖提供了訊框結構的範例。第4圖是TDD雙工的時序關係的範例。第5圖是FDD雙工的時序關係的範例。
可以在MAC層中支援排程功能。可以為例如基於網路的排程(例如在下鏈傳輸及/或上鏈傳輸的資源、時序以及傳輸參數方面的緊排程)以及基於WTRU的排程(例如在時序以及傳輸參數方面更大靈活性)之類的多個(例如兩個)排程模式提供支援。模式的排程資訊可以針對一或多個TTI是有效的。
基於網路的排程可以使得網路緊密管理指派給不同WTRU的可用無線電資源,這可以允許資源的最佳共用。可以支援動態排程。
基於WTRU的排程可以使得WTRU例如在網路(例如靜態或動態)指派的共用或專用上鏈資源的集合內依需要以最小潛時擇機存取上鏈資源。可以為同步以及不同步擇機傳輸提供支援。可以為基於爭用的傳輸以及無爭用傳輸提供支援。
可以提供對擇機傳輸(例如排程或未排程的)的支援,例如以滿足5G的超低潛時的要求以及mMTC的省電要求。
5gFLEX可以支援可用於傳輸的資料與可用於上鏈傳輸的資源之間的一種或多種形式的關聯。例如當多工不會給最嚴格QoS要求的服務帶來 負面影響且不會帶來不必要的系統資源浪費時,可以支援相同傳輸塊內不同QoS要求的資料的多工。
可以使用多種不同的編碼方法來編碼傳輸。不同編碼方法可以具有不同特性。
例如,編碼方法可以產生資訊單元序列。(例如每個)資訊單元或塊可以是自包含的。例如在第二塊是無差錯時及/或當在第二塊中發現足夠的冗餘或在成功解碼至少一部分的不同塊中發現足夠冗餘時,例如,在第一塊的傳輸中的錯誤不會損害接收器成功解碼第二塊的能力。
編碼技術的範例可以包括猛禽(raptor)/基礎代碼,例如其中傳輸可以包括N個猛禽碼的序列。一或多個代碼可以在時間上被映射到一或多個傳輸“符號”。“符號”可以對應於資訊位元的一或多個集合,例如一或多個八位元組。編碼可以用於將FEC添加到傳輸,例如其中傳輸可以使用N+1或N+2個猛禽碼或符號(例如,假定一個猛禽碼符號關係)。傳輸可以針對一個“符號”的丟失是更能復原的,例如這是由於在時間上重疊的另一傳輸的干擾或打孔(puncture)。
WTRU可以被配置為接收及/或偵測一或多個系統簽名。系統簽名可以包括使用序列的信號結構。信號可以類似於同步信號,例如類似於LTE PSS及/或SSS。簽名可以特定於(例如可以唯一識別)給定區域內的特定節點(或TRP)、或其可以對區域內的多個節點(或TRP)是共用的,其方面可以不為WTRU所知及/或與WTRU相關。WTRU可以確定及/或偵測系統簽名序列並還可以確定與該系統相關聯的一或多個參數。例如,WTRU還可以從中得到索引並可以使用該索引來擷取例如在表(例如存取表)內的相關聯的參數。例如,當WTRU確定其可以使用系統的可應用資源來存取(及/或傳輸)時,WTRU可以使用與開環功率控制的簽名相關聯的接收功率來 例如設定初始傳輸功率。例如,當WTRU確定其可以使用系統的可應用資源來存取(及/或傳輸)時,WTRU可以使用接收的簽名序列的時序來例如設定傳輸(例如PRACH資源上的前導碼)的時序。
WTRU可以被配置一或多個項的列表。列表可以稱為存取表。列表可以被編索引,例如其中(例如每個)項可以與系統簽名相關聯及/或關聯到其序列。存取表可以提供用於一或多個區域的初始存取參數。(例如每一個)項可以提供執行到系統的初始存取所必要的一或多個參數。參數可以包括以下至少一者:時間及/或頻率中的一或多個隨機存取參數的集合(例如包括可應用實體層資源,例如PRACH資源)、初始功率等級及/或用於回應的接收的實體層資源。參數可以(例如還)包括存取限制(例如PLMN識別碼及/或CSG資訊)。參數可以(例如還)包括路由相關資訊,例如一或多個可應用路由區域。項可以與系統簽名相關聯(及/或由其編索引)。這樣的項可以對多個節點(或TRP)是共用的。WTRU可以例如經由使用專用資源(例如由RRC配置)的傳輸及/或使用廣播資源的傳輸來接收存取表。在後一情況中,存取表的傳輸的週期可以相對長(例如高達10240ms),其可以比簽名的傳輸的週期(例如在100ms的範圍內)更長。
邏輯通道(LCH)可以代表資料封包及/或PDU之間的邏輯關聯。關聯可以基於資料單元與相同的承載相關聯(類似於舊有的)、及/或與相同SOM及/或片(Slice)相關聯(例如使用實體資源集合的處理路徑)。例如,關聯可以被表徵為以下至少一者:處理功能的鍊接(chaining)、可應用實體資料(及/或控制)通道(或其實例)或協定堆疊的實體化(instantiation),具有(i)特定部分被集中(例如實體層處理的部分以外的PDCP或任何事物,例如無線電前(RF)端)以及(ii)另一部分更接近 潛在由前傳介面分開的邊緣(例如TRP或RF中的MAC/PHY)。這裡使用的術語LCH可以具有與LTE系統的類似術語不同及/或更寬的含義。
WTRU可以被配置為確定不同資料單元之間的關係。關係可以基於匹配功能(例如基於對是相同邏輯關聯的部分的資料單元公共的一或多個欄位值的配置)。欄位可以對應於與資料單元相關聯的協定標頭中的欄位。例如,匹配功能可以使用資料單元的IP標頭的欄位的參數元組,例如IP源/目的地位址、傳輸協定源/目的地埠以及傳輸協定類型、IP協定版本(例如IPv4或IPv6)等。
例如,是相同邏輯關聯的部分的資料單元可以共用公共無線電承載、處理功能、SOM及/或可以(例如至少概念上)對應於相同LCH及/或LCG。
邏輯通道群組(LCG)可以包括LCH(或如上的每個定義的等同)的群組,例如其中分組可以基於一或多個標準。標準可以是例如一或多個LCH可以具有可應用於相同LCG的所有LCH的類似優先序等級或可以與相同的SOM(或其類型)、相同的片(或其類型)相關聯。例如,關聯可以表徵為以下至少一者:處理功能的連結、可應用實體資料(及/或控制)通道(或其實例)、或協定堆疊的實體化,其可以包括(i)特定部分被集中(例如PDCP或RF以外的任何事物)以及(ii)另一部分更接近潛在由前傳介面分開的邊緣(例如TRP或RF中的MAC/PHY)。這裡使用的術語LCG可以具有與LTE系統的類似術語不同及/或更寬的含義。
傳輸通道(TrCH)可以包括被用於可以影響在無線電介面上一或多個傳輸特性的資料資訊的處理步驟的特定集合及/或功能的特定集合。
LTE可以定義多種類型的TrCH,例如廣播通道(BCH)、傳呼通道(PCH)、下鏈共用通道(DL-SCH)、多播通道(MCH)、上鏈共用 通道(UL-SCH)以及隨機存取通道(其可以不攜帶使用者面資料)。用於攜帶使用者面資料的傳輸通道可以包括分別針對下鏈以及上鏈的DL-SCH以及UL-SCH。
用於5G系統的空中介面可以支援增強要求集合。可以為多個傳輸通道提供支援,例如針對使用者及/或控制平面資料、針對一或多個WTRU裝置。這裡使用的術語TrCH可以具有與LTE系統的類似術語不同的及/或更寬的含義。例如,可以為下鏈傳輸(例如,DL-URLLCH、DL-MBBCH以及DL-MTCCH)以及上鏈傳輸(例如UL-URLLCH、UL-MBBCH以及UL-MTCCH)定義用於URLLC的傳輸通道(例如URLLCH)、用於行動寬頻傳輸通道(MBBCH)及/或用於機器型通信的傳輸通道(MTCCH)。
在一個範例中,多個TrCH可以被映射到屬於相同SOM的實體資源(例如PhCH)的不同集合。這可以例如有利於支援相同SOM上具有不同要求的訊務的同時傳輸。這種的範例可以是在WTRU被配置有單一SOM時同時傳輸URLLCH以及MTCCH。
WTRU可以被配置為有與應當如何傳輸資料的特徵化相關聯的一或多個參數。特徵化可以代表可以期望WTRU滿足及/或實施的約束及/或要求。WTRU可以基於與基於特徵化的資料相關聯的狀態執行不同的操作及/或調整其行為。參數可以包括例如時間相關方面(例如,存活時間(TTL)-針對封包,其代表一時間,在該時間之前封包應當被傳輸以滿足、被應答等以滿足潛時要求)、速率相關方面以及配置相關方面(例如絕對優先序)。參數可以(例如還可以)隨封包或資料可以對於傳輸是未決的時間而改變。
5G空中介面可以支援具有不同QoS要求的多種用例,例如在可應用無線電資源以及傳輸方法之間的差異方面。例如,TTI持續時間、可靠性、應用到傳輸的分集以及最大潛時可以在多種用例中是不同的。
WTRU在處理瓶頸方面可能面臨另外的挑戰,例如這是由於輸送量增加且潛時降低(例如更短的TTI持續時間以及降低的處理次數)。
程序可以最佳化層2協定資料單元(例如MAC PDU)的創建以及組合。
RLC分段、組合、MAC層多工以及PHY層編碼可以在許可的接收之後被執行。對UL傳輸的許可的潛時可以不被改善超過這些操作的硬體以及軟體潛時。
可以為分段、組合以及多工提供過程。(例如在網路中的)排程功能可以或可以不具有與可用於WTRU緩衝器中的傳輸的資料相關聯的QoS要求的及時資訊及/或準確知識。WTRU可以實施行為以賦能具有嚴格可靠性及/或潛時要求的服務(例如針對URLLC服務)。
WTRU可以使用參數來影響如何傳輸資料以及傳輸什麼資料以及如何產生PDU。WTRU可以被配置有與應當如何傳輸資料的特徵化相關聯的一或多個參數。特徵化可以代表期望WTRU滿足及/或執行的約束及/或要求。WTRU可以例如基於與基於特徵化的資料相關聯的狀態執行不同操作及/或調整其行為。
行為可以與PDU組合以及限制有關,例如在處理時間方面。WTRU可以確定例如這裡描述的一或多個程序可以是可應用的。
這裡描述的程序可以被完整或部分使用、單獨使用或與任何其他程序組合使用,不管這裡有沒有這樣描述。這裡描述的一或多個範例程序可以在網路或WTRU上部分或完全被執行或應用。
可以為在許可之前確定PHY層參數提供程序。例如,在接收UL傳輸的許可之前,WTRU可以確定或被配置用於資料傳輸的PHY層參數。提早確定參數可以允許某PHY層處理在UL許可之前被WTRU執行,這可以有 利於允許WTRU以從某些類型的資料的UL許可的傳輸起最小的延遲來執行UL傳輸,例如以最小化與UL傳輸相關聯的潛時。提早確定PHY層參數可以(例如還)結合這裡描述的其他程序被使用。
在許可之前確定的PHY層參數可以被應用到特定邏輯通道、傳輸通道、訊務類型或SOM。在許可接收之前被配置或提供給WTRU的參數可以包括例如以下的一者或多者:將被應用到資料的調變方案、編碼方案及編碼相關參數、HARQ相關參數(例如要被使用的HARQ的特性或HARQ過程類型)、傳輸塊大小、用於將L2資料關聯到特定PHY資源(例如,PHY資源或PHY資源範圍可以用於傳輸特定資源)的規則、與最終許可相關聯的PHY資源或PHY資源的超集合。PHY層資訊可以是可以由許可本身完善的資源的超集合。
可以從網路傳訊參數。例如,WTRU可以例如經由網路的傳訊提前接收PHY層參數。WTRU可以針對某類型的資料(例如,URLLC)或某些類型的邏輯通道、傳輸通道等接收參數。參數可以可應用於(例如可僅應用於)可以用於攜帶資料的某些PHY層資源。參數可以可應用於在某資源塊集合中或在定義的頻率/時間範圍中傳輸的資料。
WTRU可以從網路接收PHY層參數。參數可以週期性被接收或回應於一或多個觸發被接收。觸發可以包括例如(i)網路偵測到或WTRU偵測到且傳訊到網路的通道特性明顯改變,(ii)經由來自WTRU的請求及/或(iii)在WTRU發起服務或邏輯通道、承載等時,這可以要求WTRU提前存取PHY層參數。
WTRU接收的PHY層參數可以是有效的或可應用的,直到例如以下的一者或多者發生:(i)WTRU接收PHY層參數的新/不同的集合,(ii)在接收到PHY層參數之後計時器終止,(iii)應當應用PHY層參數的許可 的接收及/或(iv)與特定流、邏輯通道、承載等相關聯的由WTRU進行的(例如所有)資料的傳輸(例如,當WTRU已經完成其緩衝器中的所有URLLC資料的傳輸時)。
WTRU可以(例如還)向網路表明例如上述事件中的一或多個的事件何時發生。
MCS可以被接收並用於未來的許可。在範例實現中,WTRU可以週期性接收將被用於在傳輸頻寬的一部分上傳輸資料的MCS。這可以例如限制到預定義傳輸塊的集合或類似的(例如預定義頻率範圍)。WTRU可以(例如在接收到週期性MCS傳輸時)將所傳訊的MCS應用到在相關聯的傳輸頻寬上進行的(例如所有)傳輸。WTRU可以確定(例如先驗或基於配置)將一或多個L2協定資料單元與初始所傳訊的頻寬範圍以及(因此)MCS相關聯。例如,WTRU可以確定可以為邏輯通道集合提供MCS。WTRU可以將這些邏輯通道映射到該頻寬的部分,針對該部分已經傳訊MCS。
MCS的週期性傳輸可以被遞送給WTRU,例如經由在PHY通道上的專用傳訊、經由MAC CE或類似的通信、或經由RRC傳訊來遞送。WTRU可以在該傳輸之後使用MCS,例如直到其接收到相同頻寬區域的新的或更新後的MCS值。WTRU可以接收多個不同的MCS值,例如以用於不同頻寬區域。WTRU可以接收用於(例如僅用於)某些頻寬區域的MCS。
WTRU可以接收資源子集合,許可可以(例如隨後)從其中進行選擇。例如,WTRU可以在其傳輸頻寬內接收資源範圍。資源範圍可以用於例如向WTRU表明在許可到達時需要WTRU從其中進行傳輸的資源集合。PHY層參數表明的頻率範圍可以識別在PHY層參數的有效性時間期間可用的資源塊集合、子訊框集合、TTI或在PHY層參數的有效性期間可用的符號或其組合。許可可以向WTRU表明在初始資源範圍內的特定資源。例 如,PHY層參數可以針對每個TTI選擇可以被WTRU使用的x個資源塊。UL許可可以向WTRU表明要被WTRU使用以滿足許可的這些x個資源塊中的一或多個。
這種技術的優點可以是降低與許可解碼相關聯的潛時,例如給定許可表明的資源的部分在WTRU之前接收的PHY層資訊中是已知先驗的。
WTRU可以在接收到許可之前確定其PHY層參數(例如編碼、調變、功率設定等)。可以例如使用下列的一者或多者來確定參數:(i)WTRU在DL上執行的SNR、CQI或類似的測量;(ii)在感興趣頻率範圍上做出的傳輸的ACK/NACK頻率的測量;及/或(iii)與感興趣頻率範圍上的參考信號有關的參考信號功率、SINR等的測量。
網路可以為WTRU配置(例如動態或半靜態)頻率範圍,WTRU可以(例如必須)使用該頻率範圍來定義其自己的PHY層參數集合。
WTRU可以例如基於針對頻率範圍或頻率範圍集合的測量來週期性確定其PHY層參數。WTRU可以將要被應用的PHY層參數關聯到在任何資源上進行的傳輸,WTRU可以接收針對該資源的許可。
用於WTRU確定參數的頻率範圍可以由網路動態地配置。例如,網路可以配置WTRU針對(例如僅)頻率範圍A以及B執行上述測量以及MCS的計算,其中A以及B可以是整個頻率的子集合。WTRU可以將MCS A應用到在頻率範圍A上執行的上鏈傳輸、以及可以將MCS B應用到在頻率範圍B上執行的上鏈傳輸。
網路例如經由RRC傳訊可以配置WTRU可以執行其自己的PHY層參數確定的頻率範圍的配置。配置可以被改變為更新後的配置。例如,網路可以在任何給定時間使用具有URLLC傳輸的最佳通道特性的頻率範 圍。網路可以動態重新配置頻率範圍,針對該頻率範圍WTRU可以執行其自己的PHY層參數確定。
WTRU可以傳訊PHY層參數。例如,WTRU可以向網路傳訊WTRU自發選擇的PHY層參數。WTRU可以例如在以下的一者或多者期間或回應於以下的一者或多者傳訊參數:(i)在選擇/確定參數時,(ii)在使用參數的資料的傳輸期間,在此情況中,WTRU可以在控制資訊中顯式地、及/或基於暗示使用控制參數的特定選擇的被傳輸的資料的屬性隱式地傳訊參數,(iii)在網路請求時及/或(iv)在網路提供用於可以或可以不計畫用於這些參數傳輸的資料或控制的傳輸的資源時。
WTRU可以(例如還)使用這裡討論的程序的任何組合。例如,WTRU可以組合可以提供實體參數集合的第一程序以及可以提供第二參數集合的第二程序。
WTRU可以在SR、BSR、RA或類似的上鏈傳輸中傳訊資料塊大小或TB大小。WTRU可以傳訊其可以或將用於未來傳輸的資料塊大小或TB大小。例如,WTRU可以準備資料塊集合並準備傳輸。WTRU可以(例如還)已經將資料塊組合成傳輸塊。WTRU可以在被傳輸至網路的SR、BSR或RA中提供資料塊大小及/或TB大小。
WTRU可以表明用於資料塊的進程大小或TB大小,例如以允許傳訊以較低負荷被發送。例如,可以由WTRU傳訊的TB大小的集合可以被限制到x個等級。可以用有限數量的位元發送傳訊,這可以允許WTRU傳訊x個等級中的一個。例如,WTRU可以在其希望傳輸大小為x的TB時傳訊比x大的下一個TB大小。
可以在CRC檢查值中隱式提供傳輸塊大小。WTRU可以選擇其調變及編碼(MCS)(例如不用網路提供這個)。WTRU可以例如基於要傳 輸的可用固定大小的MAC PDU的數量以及資源許可的大小來選擇其傳輸塊大小。WTRU例如可以使用這裡描述的程序確定MCS。WTRU可以例如基於這裡描述的一或多個程序向網路傳訊其MCS(例如顯式)。WTRU使用的傳輸塊大小可以(例如隱式)被表明為例如傳輸塊內的一或多個單獨MAC PDU的CRC檢查值的部分。WTRU可以例如將填充插入到(例如每一個)固定大小的MAC PDU以得到CRC檢查值,其隱式地(例如向網路)表明使用的總傳輸塊大小或從允許的傳輸塊大小中其中之一進行選擇。在一個範例中,例如當被傳輸的第一編碼塊的CRC檢查值可被一個值整除時,CRC檢查值可以隱式地向WTRU傳訊對第一傳輸塊大小的選擇。CRC檢查值可以隱式地向WTRU傳訊對第二傳輸塊大小的選擇等,例如,在被傳輸的第一編碼塊的CRC檢查值可以被另一值整除時。
可以遞增地創建MAC PDU/傳輸塊。可以從固定資料塊大小創建TB。這可以提供比在接收許可之後的RLC分段、組合、MAC層多工以及PHY層編碼的性能要好的優點。對UL傳輸的許可的潛時可以不被改進地超過這些操作的硬體以及軟體潛時。
例如,WTRU可以經由固定大小的資料塊的組合執行傳輸塊的遞增創建。WTRU可以隨著較高層資料到達WTRU緩衝器中,立即或不需要等待來自網路的許可中的資訊,藉由在資料到達時立即創建固定大小的資料塊來執行資料塊的創建。WTRU可以例如藉由為TB分配多個資料塊以佔用該大小的許可的方式來創建TB。WTRU可以(例如還)被給予可以是固定資料塊大小的倍數的許可,例如以最小化填充。WTRU可以(例如替代地)將同樣多的資料塊適應該許可大小允許的傳輸塊。WTRU可以佔據任何其餘的資料,例如具有以下的一者或多者:(i)填充;(ii)MAC控制資訊,例如關於所需資源,要傳輸的未決MAC PDU、MAC PDU大小、具 有終止TTL的封包的指示等的資訊,及/或(iii)PHY層可以插入的另外的編碼、速率匹配等。
WTRU可以被配置為使用用於特定流、承載、邏輯通道等的一(例如一個)或有限集合特定資料塊大小。WTRU可以(例如還)被限制為使用用於(例如僅)一或多個特定流、邏輯通道、承載等的特定資料塊大小、並可以不需要被限制到用於與其他流、邏輯通道、承載或資料類型相關聯的資料的資料塊大小。例如,WTRU可能需要使用用於與URLLC相關聯的資料或具有與URLLC相關聯的QoS特性的流的特定資料塊大小,但是可以創建對其他流或資料的大小沒有限制的資料塊。
資料塊可以包括例如RLC PDU或與不同協定層(MAC、PDCP等)相關聯的PDU。
所配置的資料塊大小可以例如在WTRU中被靜態地配置或由網路傳訊。WTRU可以例如基於網路確定的通道條件的改變以例如週期或非週期地接收允許的資料塊大小的集合。可以例如經由廣播或專用傳訊(例如MAC配置中的RRC傳訊的部分)向WTRU傳訊資料塊大小。
WTRU可以接收將被應用於特定(例如第一)服務類型、流、邏輯通道等的一或多個允許的資料塊大小配置、以及用於另一集合的(例如第二)服務類型、流、邏輯通道等的允許的資料塊大小的不同集合。WTRU可以(例如此外還)經由(例如相同)傳訊接收允許的資料塊大小的配置改變。WTRU可以(例如在接收到配置改變時)改變創建的資料塊的相應大小,例如從接收到傳訊時直到接收到資料塊大小的新集合為止。
WTRU可以例如基於可以在許可之前被提供的PHY層資訊導出要被使用的固定資料塊大小。例如,WTRU可以基於PHY層參數的一或多個(例如這裡描述的參數)來計算允許的資料塊大小。例如,WTRU可以確 定資料塊大小等於作為在許可之前表明的PHY層參數的部分而被提供的編碼塊大小。
WTRU可以從要被用於(例如獨立用於)所創建的每一個資料塊的允許大小的集合中選擇一或多個資料塊大小。可以針對一種或多種原因選擇資料塊大小,例如為了適應在較高層的訊務類型,可以基於在最近時間段接收的封包大小,WTRU的緩衝能力及/或其他有關實施的方面。WTRU可以(例如替代地)從允許的大小的列表中選擇要被用於特定流、邏輯通道等的資料塊大小。WTRU可以在有限時間段繼續使用所選的資料塊大小用於相同的流、邏輯通道等。WTRU可以(例如還)在其他觸發發生時執行選擇,例如以下的一者或多者:(i)新類型資料到達,(ii)下一次接收到資料塊大小的新集合,(iii)訊框/超訊框或類似定義的邊界的結束,(iv)週期性或在計時器終止時,(v)在偵測(例如由WTRU)到通道品質或其他類似測量改變時,(vi)在從網路接收到新配置時(例如,頻率、HARQ參數、PHY配置等的改變)。
WTRU可以例如在用於相關聯的資料的傳輸的上鏈許可之前執行較高層SDU(例如IP封包或PDCP SDU)的分段/重組。可以與特定流、資料類型、邏輯通道等相關聯的一或多個封包的分段/重組可以由WTRU在任一或多個觸發下執行,觸發例如是(i)封包或SDU的到達,其可以被定標到特定流或與特定邏輯通道相關聯,(ii)當特定封包或SDU的TTL變得小於臨界值時,及/或(iii)在一或多個SDU到達時,其中可用於分段/重組的資料總量大於最小大小。例如,最小大小可以對應於允許的資料塊大小或WTRU選擇的資料塊大小。
WTRU可以在接收到較高層SUD時執行SDU的分段/重組,例如,使得得到的分段可以具有固定以及選擇的資料塊大小。例如在緩衝器中的 (例如所有)資料在資料塊創建期間被消耗並沒有佔據整數個固定大小的資料塊時,WTRU可以(例如在分段/重組期間)將填充插入到資料塊。
WTRU可以選擇資料塊大小(例如從允許的資料塊大小的列表中),例如其在大小上最接近可以被接收的較高層SDU或用於最小化插入的填充。在一個範例中,例如在與特定緩衝器或流相關聯的單一RLC封包可以是(例如是)在執行資料塊創建時存在於WTRU中時,WTRU可以(例如從允許的大小的列表中)選擇最小化填充的資料塊大小。
WTRU可以為每個固定大小資料塊創建資料塊標頭。WTRU可以(例如還)創建用於可以具有共同大小及/或一或多個其他特性的資料塊的集合的標頭,該特性例如但不限於邏輯通道、承載類型、流類型、服務類型及/或TTL。例如在決定要在給定時間傳輸的固定大小的資料塊的數量時,WTRU可以完成該標頭的處理。WTRU可以向較低層提供用於編碼的一或多個標頭,例如與資料塊一同提供。
資料塊可以或可以不包含標頭。單一標頭可以被包括在包括多個資料塊的整個傳輸塊中。標頭可以包含例如以下的一者或多者;(i)傳輸塊中的資料塊的數量,(ii)傳輸塊中的資料塊的一或多個大小,(iii)與(例如每個)資料塊相關聯的流、邏輯通道或服務、及/或(iv)傳輸塊中包括的控制資訊(例如MAC CE)的量。
WTRU可以包括(例如在目前正被傳輸的TB中)資訊,例如要被WTRU傳輸或準備傳輸的未決TB的大小。例如,該資訊可以被包括在作為正被傳輸的目前TB的部分被傳輸的MAC CE中。
WTRU可以包括(例如在目前TB中)要在未來TB中被傳輸的準備好的或未決的塊的一或多個塊大小。
例如在(例如每個)固定大小的資料塊的許可的接收之前,WTRU可以執行資料塊的PHY層處理的一部分(例如編碼)。例如在接收許可之前,WTRU可以依賴PHY層參數(例如這裡描述的參數)來執行對(例如每個)資料塊的PHY層處理的一部分。例如,在接收許可之前,WTRU可以依賴PHY層參數中提供的MCS來執行CRC插入、編碼以及調變。WTRU可以用遞增的方式創建要被傳輸的傳輸塊,例如藉由在資料到達RLC緩衝器時創建固定大小的資料塊,並在它們被接收時對這些資料塊進行編碼以及調變。
WTRU可以(例如還)例如基於接收的PHY層資訊確定要被執行的PHY層處理。例如,WTRU可以例如基於已接收到要使用的編碼方案以及編碼參數確定WTRU可以在接收許可之前執行編碼且調變可以作為許可的部分被提供。
WTRU可以(例如在接收到許可時)執行例如以下動作中的一者或多者:(i)多工以及傳輸塊創建、(ii)將填充位元插入到(例如每一個)固定大小的資料塊或整個傳輸塊、(iii)創建或更新一或多個資料塊標頭以包括隨許可到達而得到的資訊,例如TB中的資料塊的數量,(iv)資料塊標頭的創建,及/或(v)(例如每個)資料塊或整個傳輸塊的另外的PHY層處理。
可以提供MAC多工以及傳輸塊創建。WTRU可以例如在許可接收時確定在準備被傳輸的許可之前已經被建構以及處理(例如潛在具有另外的PHY層處理,例如編碼以及調變)的可用資料塊的數量。WTRU可以選擇要在許可中被傳輸的資料塊的子集合。選擇標準可以是例如基於以下的一者或多者:(i)選擇的資料塊可以包含來自在許可中表明的流、邏輯通道或服務的資料,資料塊基於許可(例如在許可允許多個流的情況中)是 可允許的、或資料塊是基於資料塊大小的先前知識創建的固定大小的資料塊;(ii)WTRU可以例如藉由在先到先服務基礎上包括資料塊來服務許可,不管是在單一流、邏輯通道、服務或在一或多個(例如所有)流、邏輯通道或服務上;及/或(iii)WTRU可以基於一些QoS相關參數服務許可。
MAC多工可以例如根據TTL發生。例如,WTRU可以以TTL的增序插入所有資料塊。
MAC多工可以例如根據邏輯通道優先序以及TTL而發生。例如,WTRU可以(例如首先)包括所有資料塊,其中資料可以與具有TTL可以低於特定臨界值的的資料的資料塊相關聯、以及(例如其次)執行針對許可中的任何另外空間的LCP。
MAC多工可以例如根據資料塊之間的關係而發生。例如,WTRU可以基於作為QoS的部分被表明的資料塊之間的預定義關係來執行資料塊的選擇。例如,可以從相同的IP或PDCP封包已形成一些資料塊。例如由於來自QoS資訊的偏好或要求的指示,WTRU可以在相同傳輸塊內包括相關的資料塊。
MAC多工可以例如根據許可中可允許的QoS的限制而發生。例如,WTRU可以藉由選擇(例如僅)與(例如僅)單一流、邏輯通道或服務、或限制的單一流、邏輯通道或服務集合相關聯的資料塊來執行資料塊的選擇。關聯可以例如基於關於PHY層參數或資料塊大小(其在許可之前被傳訊至WTRU)的許可特性而在許可中被識別或可以在WTRU中是已知先驗的。
WTRU可以(例如自發)確定URLLC許可。例如,WTRU可以自發確定許可可以(例如應當或必須)用於一或多個特定流、邏輯通道、服 務的傳輸資料。WTRU可以限制(例如僅)與要被選擇並被包括在傳輸塊中的這些流/邏輯通道/服務相關聯的資料塊。
TB大小與許可大小之間的差別可以被最小化。例如,WTRU可以選擇可用資料塊,使得許可大小與TB大小之間的差別可以被最小化。可以使用可造成產生這種差別最小化的用於傳輸的可用資料塊組合。
WTRU可以使用選擇標準,例如不管其是否創建固定大小的資料塊還是資料塊的大小是動態調整的(例如隨著許可到達)。
可以提供資料塊ACK/NACK。WTRU可以被配置為傳輸包含一或多個資料塊的傳輸塊,例如每個具有其自己的CRC,稱為資料塊CRC。傳輸塊可以攜帶其自己的CRC,其可以被稱為TB CRC。編碼器可以被配置為將更小長度的CRC插入到(例如每個)編碼塊,例如以經由早期偵測解碼失敗而實現功率節省。
傳輸塊(TB)NACK可以例如在資料塊的預先配置的比率或數量錯誤時發生。網路可以(例如正確地)無錯接收傳輸塊(例如所有相關聯的資料塊),在該情況中其可以被配置為在專用控制通道上向WTRU傳輸ACK。網路可以偵測與傳輸塊相關的錯誤(例如由於錯誤接收資料塊的一或多個)。網路可以被配置為確定是否向相關聯的TB傳輸傳輸ACK或NACK(例如,HARQ-ACK),例如這取決於傳輸塊中錯誤資料塊的數量。例如,基地台或TRP可以被配置(例如經由網路中的另一實例、或經由OAM)為在多於特定數量或比率的資料塊錯誤時傳輸NACK。例如,TRP可以被配置為在多於50%的資料塊錯誤時傳輸NACK。當(例如統計上)預計可以有HARQ組合增益時,動機可以是(例如僅)觸發HARQ重傳。否則,可以更有利地重傳(例如僅)錯誤資料塊,例如其代價是另外的回饋傳訊或另外的延遲(例如讓RLC或ARQ實體處理錯誤情況)。WTRU可以(例如還或 替代地)被配置(例如作為特殊情況)為在(例如僅)一個資料塊錯誤時傳輸HARQ-NACK。此特殊情況可以代表整個TB的ACK或NACK。
這裡描述的一或多個範例程序可以例如在網路向WTRU傳輸多個資料塊時在網路或WTRU上部分或全部被執行或應用。WTRU可以被配置有錯誤資料塊的比率或數量,高於這個比率或數量,WTRU傳輸HARQ-NACK。
可以為超低潛時重傳提供快速聚合資料塊狀態報告。例如,基地台可以被配置為提供資料塊的快速狀態報告回饋以觸發資料塊重傳,其從HARQ的角度來看可以是新傳輸。回饋的大小可以是可變的,例如考慮到資料塊的數量可以變化。可以在多個TTI聚合回饋。
聚合資料塊Ack/Nack訊息可以包括一或多個Ack/Nack欄位(例如1位元欄位)。(例如每個)欄位可以對應於相關聯的上鏈傳輸中的(例如一個)資料塊。聚合資料塊ACK/NACK訊息可以由TRP例如經由預定義專用資源傳輸。WTRU可以例如基於相關聯的上鏈許可(例如具有UL許可以及DL回饋之間的隱式時間關聯)以確定聚合資料塊Ack/Nack訊息的大小。在(例如另一個)範例中,TRP可以在與相關聯的UL傳輸的資源相關聯的資源集合上傳輸聚合資料塊Ack/Nack訊息。
在一個範例中,TRP可以隨著UL許可來排程聚合資料塊Ack/Nack訊息。例如,TRP可以指示可以在之後時間發生的聚合資料塊Ack/Nack訊息的資源。在一個範例中,在被TRP排程時,WTRU可以被配置為(例如僅)傳輸聚合資料塊Ack/Nack訊息。
在一個範例中,針對上鏈描述的類似方式可以應用於下鏈。TRP可以被配置為在傳輸在傳輸塊中的多個資料塊。WTRU可以被配置為傳輸聚合資料塊Ack/Nack訊息。WTRU可以被排程有在與相關聯傳輸相關聯的 DCI中可以用於或需要用於聚合資料塊Ack/Nack訊息的資源。WTRU可以接收聚合資料塊Ack/Nack訊息許可、並在相關聯資源上傳輸該許可。例如在DCI沒有排程時,WTRU可以被配置為不傳輸聚合資料塊Ack/Nack訊息。網路可以(例如替代地)配置專用於聚合資料塊Ack/Nack傳輸的資源集合。
在(例如另一個)範例中,WTRU可以被配置為例如在沒有資料被傳輸時在L1上傳輸聚合資料塊Ack/Nack訊息,或者(例如在有資料被傳輸時)WTRU可以被配置為傳輸在控制訊息中的聚合資料塊Ack/Nack與(例如MAC標頭中的)資料。
聚合資料塊Ack/Nack訊息的大小在TTI之間可以是可變的,儘管例如由於排程許可其大小可以是為網路所知的。WTRU可以被配置為例如在相關聯DCI之後傳輸聚合資料塊Ack/Nack訊息的合適格式。
例如在滿足在接收許可之前組合的PDU時,可以允許靈活的許可大小。例如,在許可指派之前執行MAC PDU組合的WTRU可以靈活使用所得的一或多個許可以使其合適(tailor)所組合的MACK PDU。WTRU可以(例如自發)確定許可的數量、或傳輸所組合的MAC PDU所需的每個許可的大小。
許可可以持續多個連續TTI。例如,WTRU可以被指派持續多個TTI、多個子訊框、多個頻率塊或其組合的許可。可以定義許可,例如使得在給定TTI、子訊框、頻率塊等上的許可的一部分可以是全部許可的單元(unit)部分。WTRU可以使用許可的子集合或多個單元、並可以向網路提供指示,其表明其是否且何時已經完成許可的使用,例如以允許網路確定傳輸的傳輸塊的整體大小。
在一個範例中,WTRU可以接收可以在y個連續TTI上重複發生的x個資源塊的許可。x個資源塊可以在y個連續的TTI的每一個中都是相同的。x個資源塊在一個TTI到下一個TTI之間可以(例如替代地)改變,例如,以提供頻率多樣性。x個資源塊可以例如根據以下的一者或多者在一個TTI到下一個TTI之間改變:(i)WTRU知道的固定規則(例如,[resBlock X+m]mod BW);(ii)許可本身中表明的規則;(iii)在許可之前使用廣播或專用傳訊所定義的規則及/或(iv)特定於胞元或TRP的規則,WTRU連接到該胞元或TRP,且該規則可以潛在地經由存取表或特定於系統簽名的類似系統資訊提供。
在一個範例中,可以不定義y值,且許可可以無限持續直到WTRU表明。
WTRU可以例如在接收到許可時根據許可中提供的調變以及編碼而執行準備組合的MAC PDU的PHY層編碼以及調變。WTRU可以接收要在整個許可使用的(例如單一)調變以及編碼。WTRU可以(例如替代地)接收用於與許可相關聯的每個TTI的不同編碼或調變參數。
WTRU可以例如在開始編碼過程之前在MAC PDU中插入填充或另外的冗餘控制資訊或資料,例如以確保得到的編碼以及調變後的PDU(例如完全)佔據整數個許可單元(例如M個連續TTI中所許可的資源)。
WTRU可以向網路表明傳輸塊(TB)的終止/大小。例如,WTRU可以例如在許可處理期間或之後的任何時間向網路表明其可以(例如會)使用的連續TTI的數量以及(例如因此)傳輸塊的終止,例如以向網路通知所傳輸的傳輸塊的大小。WTRU可以例如使用下列程序其中之一來向網路表明傳輸塊的終止:(i)WTRU可以使用PHY傳訊以表明用於網路的TTI數量,該PHY傳訊例如但不限於PUCCH、類SRS、類RACH或類似傳訊; (ii)WTRU可以使用作為傳輸塊的部分提供的MAC CE以表明用於網路的TTI數量;(iii)WTRU可以例如在最後的TTI的資源的部分中傳輸表明傳輸結束的特殊信號、及/或(iv)WTRU可以在PHY層執行填充或將MAC PDU細分為多個塊,使得一或多個塊CRC可以具有表明用於傳輸傳輸塊的TTI數量的CRC值。
WTRU可以決定組合分開的許可以傳輸單一TB。例如,WTRU可以選擇兩個或更多個UL許可以用於傳輸單一TB 。WTRU例如在相同子訊框或TTI中已接收到多個許可後可以決定使用這些許可組合以傳輸單一TB。
例如在已被提供具有潛在不同傳輸參數(例如MCS、編碼、功率等)的分開的許可之後,WTRU可以選擇與這些許可之一相關聯的參數集合,例如以在整個TB上執行調變以及編碼,例如假設其允許TB以在整個資源集合被傳輸。例如,WTRU可以選擇造成最少的傳輸的總資料位元的許可,例如以允許其將TB傳輸到相關聯的許可。例如,在WTRU做出選擇後得到的編碼TB沒有完全佔據整個資源組合時,WTRU可以包括控制(例如MAC CE,其可以包括緩衝狀態)、填充及/或另外的編碼。
WTRU可以不需要表明用於執行傳輸的所選傳輸參數。WTRU可以(例如替代地)使用PHY傳訊來傳訊所選傳輸參數。WTRU可以例如藉由傳輸可以指為傳輸參數所選的許可的索引以表明所選傳輸參數。表明的索引與許可之間的關聯可以例如使用靜態規則而被定義。例如,在最低頻率範圍中的許可參考資源可以與最低的頻率範圍相關聯。WTRU可以(例如替代地)在PHY層傳訊中提供與許可本身相關聯的屬性。例如,WTRU可以提供許可的調變索引,該許可的傳輸參數可以(例如將)被用於傳輸整個許可。
WTRU可以決定組合資源或初始傳輸以及重傳。例如,WTRU可以針對TB的初始傳輸以及重傳來組合被分配給WTRU的資源,例如以傳輸單一TB而不是多個TB。
例如可以顯式地或隱式地為WTRU提供用於最終重傳的資源(例如在傳輸失敗的情況下)。WTRU可以(例如在TB佔據多於為初始傳輸提供的資源時)向網路表明這個情況,例如使用這裡針對UL指示描述的一或多個程序來表明。
WTRU可以根據許可提供的調變以及編碼來編碼整個傳輸塊。WTRU可以在用於初始傳輸的資源上傳輸一傳輸塊的一部分。WTRU可以(例如在用於重傳的資源變得可用時)傳輸TB塊的資源的剩餘部分。這可以重複多次(例如針對初始UL傳輸所允許的重傳次數),直到已完全傳輸了該TB。
例如在與UL相關聯的多個資源上的TB的傳輸以及重傳失敗時,WTRU可以在網路所排程的新資源或資源集合上執行TB的重傳。例如當單一許可的大小可以合適TB大小時,WTRU可以在網路提供的該單一許可上重傳整個TB。
WTRU可以發送指示以將更多資源分配給完整的TB傳輸。例如,WTRU可以在網路提供的許可中傳輸TB的一部分、並可以向網路提供沒有傳輸完整傳輸的指示。指示可以(例如還)提供TB的剩餘大小。在網路提供許可時,WTRU可以執行TB剩餘部分的傳輸。許可可以(例如尤其)專用於解決與傳輸塊相關聯的剩餘資料。
可以早期產生傳輸塊。在一個範例中,在接收允許在特定資源中傳輸一或多個傳輸塊的傳訊之前,WTRU可以被允許產生一或多個傳輸塊 (或MAC PDU),其中該傳訊可以包括從下鏈控制資訊中接收的許可。例如在結合可變傳輸持續時間使用時,預先產生是可行的。
在一個範例中,例如在創建MAC PDU時(例如在接收許可之前)可以確定用於MAC PDU的實體層處理的一或多個可應用的傳輸參數。例如,WTRU可以例如基於在接收許可之前從實體層、MAC或RRC傳訊接收的指示來確定可應用於給定傳輸通道的預先產生的MAC PDU的編碼方案及/或編碼率。例如作為許可的部分,可以傳訊用於實體層處理的一或多個剩餘的可應用的傳輸參數。例如,WTRU可以基於從許可接收的資訊以確定調變方案(例如QPSK或16-QAM)。例如,許可可以(例如顯式地)表明調變方案。許可可以(例如替代地)表明用於傳輸的持續時間及/或頻率分配。WTRU可以隱式地導出調變方案,其可以(例如需要)被應用以適合在所表明的持續時間及/或頻率分配中的(例如所有)編碼位元。
WTRU可以例如根據下列方案的一者或多者來確定MAC PDU的大小:(i)根據顯式指示及/或(ii)根據目標持續時間及/或最近使用的傳輸參數集合。
在一個範例中,可以例如潛在地針對每個類型的服務或傳輸塊以從來自實體層、MAC或RRC傳訊的顯式指示確定大小。例如,可以向WTRU傳訊針對第一傳輸通道的MAC PDU大小為3000位元且針對第二傳輸通道的MAC PDU大小為10000位元。
在一個範例中,WTRU可以例如基於以下的一者或多者來確定MAC PDU的大小:(i)用於傳輸的目標持續時間;(ii)攜帶用於所採用的的傳輸參數集合的MAC PDU的所需傳輸持續時間,該傳輸參數例如是頻率分配、調變方案、編碼方案及/或MAC PDU映射到的空間層的數量。
所採用的傳輸參數集合中的一或多個參數可以例如基於下列中的一者或多者來確定:(i)針對對應傳輸通道的MAC PDU發生的最近或最新的傳輸、或最新的初始HARQ傳輸(例如調變以及編碼);(ii)針對MAC PDU的實體層處理的目前可應用傳輸參數(例如編碼方案及/或率)及/或(iii)來自實體層、MAC或RRC傳訊的顯式指示(例如,WTRU可以採用的子載波或資源塊的頻率分配或數量可以被傳訊)。
可以例如從來自實體層、MAC或RRC傳訊的顯式指示確定傳輸的目標持續時間。可以為每個類型的傳輸通道提供目標持續時間。WTRU可以設定MAC PDU的大小,例如使得用於MAC PDU的傳輸的持續時間可以(例如會)將目標持續時間匹配或近似匹配所採用的傳輸參數集合。這種方式可以確保MAC PDU的傳輸的(例如所需或最大)持續時間保持相對接近目標,儘管可應用於MAC PDU的傳輸的其他傳輸參數可以不同於所採用的傳輸參數的集合(例如由於無線電條件改變)。
條件可以被提供或其他方式已知以預先產生另外的MAC PDU。例如,在滿足一或多個條件時,例如下列中的一者或多者時,WTRU可以(例如僅)預先產生一或多個新MAC PDU:(i)未處理的預先產生的MAC PDU的數量沒有超過第一臨界值,其中臨界值可以例如是預先定義的或從實體層、MAC或RRC傳訊得到;(ii)未處理的預先產生的MAC PDU(其可以包括要被預先產生的一或多個新MAC PDU)中的資料量沒有超過第二臨界值。
在一個範例中,第二臨界值可以是預先定義的或從實體層、MAC或RRC傳訊得到。臨界值可以(例如替代地)基於可以在所採用的的傳輸參數集合的目標持續時間內被傳輸的資料量。所採用的傳輸參數集合可以例如根據這裡描述的一種或多種技術得到。在一個範例中,例如在傳輸(例 如所有)未處理的預先產生的MAC PDU所需的總持續時間沒有超過臨界值(例如5ms)時,WTRU可以預先產生新MAC PDU。目標持續時間可以例如是預先定義的或從實體層、MAC或RRC傳訊得到。
可以傳輸預先產生的MAC PDU。例如,WTRU可以接收允許在資源中傳輸一或多個MAC PDU的傳訊(例如,許可)。例如當WTRU在未授權頻帶中操作時,傳輸可以是有條件的,例如基於空閒通道評估條件。例如根據這裡描述的一種或多種技術,可以已預先產生一或多個MAC PDU。
WTRU可以接收一或多個傳輸參數,例如頻率分配、調變方案、編碼方案及/或空間層的速率或數量中的一者或多者。可以在允許傳輸MAC PDU的傳訊之前已經提供一或多個參數。WTRU可以確定所需的傳輸持續時間,例如使得足夠數量的資源元素可用於映射調變符號。該確定可以考慮一或多個參數及/或任一者(例如所需)參考信號及/或要與較高層資料多工的實體控制資訊。WTRU可以相應地執行傳輸。
在一個範例中,WTRU可以傳輸控制資訊以協助接收器確定傳輸持續時間。例如,WTRU可以提供被表示為在上鏈或旁鏈路控制資訊(例如在排程指派中)中所編碼的時間單元(例如符號或子訊框)的數量的持續時間的指示。在(例如另一個範例)中,WTRU可以在該傳輸的(例如最後或最後之後的)符號中提供指示,表明該傳輸不繼續。在(例如另一個)範例中,WTRU可以多工在(例如每一個)時間單元中(例如每一個子訊框中)發生的預定義資源中的控制資訊,表明該傳輸在後續的時間單元中是否繼續。
WTRU可以例如作為許可的部分或從之前的傳訊接收最大傳輸持續時間。WTRU可以例如在用於MAC PDU的傳輸持續時間可以(例如會)超過最大值時執行例如下列中的一者或多者:(i)丟棄MAC PDU;(ii) 傳輸最大傳輸持續時間對於MAC PDU的傳輸為太小的指示,其中指示可以例如被編碼為實體控制資訊、或為此目的創建的MAC PDU中的MAC傳訊、及/或(iii)修改至少一個傳輸參數,例如編碼方案、編碼率或調變方案,例如相較於所傳訊的傳輸參數來修改,例如使得整體所需持續時間不超過最大值。在一個範例中,WTRU可以使用更高階調變(例如16-QAM而不是QPSK)、更高(例如有效)編碼率(例如,3/4而不是1/3),這可以例如藉由打孔一數量的編碼位元來實施。WTRU可以例如在上鏈或旁鏈路控制資訊中傳輸是否已應用修改及/或修改的值的指示。
可以提供最小保證TBS。例如,WTRU可以被配置最小保證TBS。例如可以經由RRC或MAC CE接收配置。例如基於資料類型、邏輯關聯(例如與資料流、LCH、LCG、對應SOM、對應服務、這些的群組等相關聯),配置可以可應用於(例如特定)資料單元。WTRU可以被配置為例如允許其執行例如用於在接收下鏈控制資訊之前及/或在最終確定用於上鏈傳輸的TBS之前創建MAC PDU的一或多個處理步驟。
MAC處理可以在TBS資訊之前發生。例如,WTRU可以在最終確定(例如所有)傳輸參數(例如用於傳輸及/或用於可應用資料單元(例如MAC SDU)的TBS)之前執行多個MAC處理步驟。MAC PDU可以包括資料單元的片段(例如經由RLC分段或MAC分段)。
MAC PDU可以與單一TBS值、填充及/或序連組合。例如,WTRU可以使用所配置的最小保證TBS(TBSmin)來組合MAC PDU。可以配置單一值。WTRU可以(例如替代地)例如基於控制傳訊(DCI、MAC CE)(其可以例如基於之前報告的QoS參數(例如最小PDU大小)、基於報告的通道品質資訊等表明有效值)的接收來考慮多個值中的單一值為有效的。 WTRU可以例如根據接收到許可上鏈資源的DCI(例如後續)確定用於傳輸的TBS的最終值(TBSfinal)。
WTRU可以組合所配置的最小保證TBS(TBSmin)的每一個值(例如當有多個值時)的MAC PDU。WTRU可以例如從接收到許可上鏈資源的DCI來確定用於傳輸的TBS的最終值(TBSfinal)。
可以隨時間適應TBS。例如,WTRU可以例如從接收到下鏈控制傳訊來確定用於使用與單一傳輸塊相關聯的最小TBS保證的傳輸的最終參數集合(TBSfinal)。接收到的DCI可以顯式地表明將被用於傳輸的特定資料單元。接收到的DCI可以表明可應用於該傳輸的處理時間,例如使得WTRU可以被指示針對在時間n接收的DCI在時間n+x μsec/ms/子訊框或某其他時間單位執行傳輸。在一個範例中,WTRU可以例如基於所傳訊的MCS、PRB集合等以例如使用大於從DCI傳訊中所包括的資訊得到的TBS的最小配置TBS值來確定TB傳輸的最短持續時間。在一個範例中,WTRU可以確定在時間上匹配訊框邊界(例如匹配子訊框的DL傳輸部分的末尾)的最短持續時間,其可以適合大於從DCI傳訊中所包括的資訊得到的TBS的最小配置TBS值。例如這在概念上類似於基於隱式(例如小於最小TBS的所傳訊的TBS)或顯式(例如在DCI中表明的)表明的時間上的集束操作。在一個範例中,WTRU可以為預先組合的MAC PDU的傳輸執行多TTI TB傳輸(例如針對可應用資料單元的單一MAC PDU)或TTI集束(例如針對多個分段,例如作為可應用資料單元的分開的MAC PDU的RLC或MAC)。TTI的數量可以是基於保證/所配置的TBS值(例如,TBSmin)以及從DCI中的資訊得到的TBS值確定的整數。
WTRU可以(例如當TBSfinal的大小大於TBSmin時)將填充添加到預先組合的MAC PDU,例如使得PDU大小匹配值TBSfinal。填充可以包括 一或多個MAC CE,例如BSR或填充BSR。WTRU可以(例如替代地)將另外的資料(例如具有或不具有填充資訊)序連到預先組合的MAC PDU,使得PDU大小匹配值TBSfinal
例如在TBSfinal的大小(有或沒有多TTI傳輸)可以小於預先組合的PDU(具有TBSmin的可應用的值)時,WTRU可以選擇可以與不同(例如特定)資料單元(如果有)相關聯的預先組合的PDU。WTRU可以(例如替代地)組合新的MAC PDU,其匹配傳輸的TBS,或者WTRU可以僅執行填充的傳輸。
WTRU可以在上鏈傳輸中包括期望的TBS的指示、及/或該TBS的增加/減少指示,例如在配置的值的集合內的離散值。指示可以可應用於特定類型的資料單元及/或配置。指示可以被包括在BSR中或使用在MAC PDU標頭中的位元來提供,該位元表示對預先配置的值集合的索引。指示可以是針對處理時間增加的請求。
WTRU可以使用關於確定LCH(或其等同)的最小保證TBS的資訊,從其可以針對MAC PDU的組合提供(serve)資料。例如根據這裡描述的一或多個程序,可以考慮一或多個其他方面,例如潛時、保活時間、PBR、優先序等。
以上程序的任一者可以是可應用的,例如甚至在WTRU在許可被解碼且(例如所有)資訊已知時(例如在WTRU被配置為基於最小所配置的資料單元大小提供來自特定LCH(或等同)的資料時)執行MAC PDU的組合時。
網路(NW)可以(例如使用這裡描述的程序)配置一或多個最小TBS。WTRU可以確定填充是否被包括在接收的傳輸中,例如以確定WTRU是否執行MAC PDU及/或序連的預先組合。網路可以改變傳輸的TTI持續時 間,例如以確保最小TBS大小可以(例如一直)可用,例如甚至在無線電鏈路及/或HARQ操作點改變時。換句話說,(例如,除了基於MCS及/或頻率的適應之外)網路(還)可以執行資料單元及/或MAC SDU的WTRU傳輸在時間上的適應。例如,此適應可以在網路可以(例如需要)針對變化的鏈路適應需要及/或變化的鏈路品質而保證特定HARQ操作點的最小TBS時是有用的。在一個範例中,例如在接收到空MAC PDU(例如包含僅填充)及/或接收到目前TBS不夠的指示之後,DCI可以表明WTRU的更長處理時間。
可以例如使用盲解碼或DCI接收程序來選擇傳輸參數。
在一個範例中,WTRU可以例如基於控制通道的解碼以確定與傳輸相關聯的一或多個參數。WTRU可以例如基於用於在其結果中視為成功的解碼嘗試的參數來執行確定。WTRU可以例如基於對接收的DCI的成功CRC驗證來確定成功。DCI可以表明上鏈及/或下鏈傳輸。
一或多個參數可以對應於參數集合。WTRU可以使用程序來確定多個參數集合中的一或多個集合。集合可以是WTRU的配置方面。例如,一或多個參數(例如集合)可以對應於特徵為更高可靠性、更低潛時、最佳工作量型傳輸的傳輸或另一類型的服務,例如傳呼、系統資訊接收、廣播傳輸等。集合可以對應於SOM。
解碼控制通道可以對應於盲解碼嘗試。WTRU可以執行一或多個解碼嘗試,例如每次嘗試使用不同的解碼方面(例如參數及/或程序)的集合。解碼方面可以包括用於通道的實體資源的集合及/或量(例如控制通道元素)、聚合等級(AL)、CRC的大小(例如8位元、16位元及/或藉由使用不同多項式區分)、相關聯的搜尋空間、對應的控制通道的識別碼或這些的組合。
DCI的強健性可以表明與傳輸有關的一些東西。例如,WTRU可以根據多個強健性/可靠性等級之一確定已經成功解碼接收的DCI。WTRU可以確定與傳輸相關聯的一或多個參數的合適的值,例如使得針對該傳輸可以採用類似的可靠性等級。例如,網路可以例如基於可應用的鏈路適應性機制(例如從WTRU接收的上鏈控制資訊及/或通道狀態指示)確定要使用的顯式/隱式指示。
WTRU可以例如基於所確定的一或多個參數集合來確定可應用於傳輸的強健性的最小等級及/或QoS等級。例如,WTRU可以確定可應用的SOM。WTRU可以(例如還)基於相關聯的QoS等級確定可應用於UL傳輸的資料。
WTRU可以確定HARQ處理及/或回饋。例如,WTRU可以例如基於所確定的一或多個參數的集合來確定要應用於傳輸的HARQ處理的類型(例如在初始傳輸、上鏈或下鏈的情況中)及/或針對傳輸(例如所需)的HARQ回饋的類型。例如,WTRU可以(例如,針對DL傳輸的接收)(例如基於所識別的參數集合)使用特定傳輸程序(例如可應用的上鏈控制通道)確定在某時間間隔中(或內)預期HARQ回饋,或不應當自動產生回饋(例如僅在請求時產生)。例如,WTRU可以確定可應用的SOM且因此可以執行HARQ處理及/或回饋。
可以在許可中傳訊強健性。例如,WTRU可以在DCI中接收傳訊(例如隱式或顯式接收),用於指示可以基於與流、服務類型、SOM等相關聯的不同的參數集合執行與特定許可相關聯的傳輸。例如,WTRU可以(例如在許可中)接收以下指示:相應的傳輸可以用於URLLC資料(如果有)的傳輸且可以相應地可以修改及/或選擇傳輸參數例如以允許更強健的傳輸及/或更低的潛時。
例如,WTRU可以針對排程下鏈傳輸的DCI執行類似的確定,使得其可以合適地確定用於解碼相關聯傳輸的參數。
WTRU可以例如基於解碼DCI確定接收的許可的強健性等級。WTRU可以例如根據以下的一者或多者確定這種強健性等級:(i)致使成功的解碼嘗試的特性,例如以下的一者或多者:與成功解碼的DCI相關聯的AL、與成功解碼的DCI相關聯的CRC的大小、與成功解碼的DCI相關聯的CRC多項式、與成功解碼的DCI相關聯的CCE(或初始CCE)、與成功解碼的DCI相關聯的搜尋空間(或其開始)及/或相關聯的控制通道類型、時間/頻率資源及/或識別碼;(ii)接收的DCI格式及/或(iii)DCI格式中的欄位中的顯式指示。
WTRU可以被配置用於與強健性等級及/或參數集合的關聯。
可以從聚合等級或CRC來確定強健性等級。例如,WTRU可以基於導致成功解碼DCI的聚合等級或搜尋空間來確定強健性等級。例如,當聚合等級被確定為1、2或4(例如針對某可靠性操作點的主動AL)時,強健性等級可以被確定為第一值,以及當聚合等級被確定為8或16(例如針對更高可靠性操作點的保守AL)時,強健性等級可以被確定為第二值。
在一個範例中,WTRU可以基於CRC大小(對CRC大小,DCI的解碼成功)來確定強健性等級。例如,8位元的CRC可以表明使用普通強健性等級(例如第一傳輸參數集合)而16位元或32位元的CRC可以表明使用更高的強健性等級(例如第二傳輸參數集合)。
可以基於強健性等級來選擇傳輸參數。例如,WTRU可以依據所傳訊的強健性等級來選擇要用於與許可相關聯的UL傳輸的傳輸參數。選擇可以例如基於預先定義的規則、或可以由網路(例如在RRC傳訊)來配置。選擇可以(例如還)與其他程序組合,例如這裡描述的一或多個程序。在 一個範例中,選擇可以例如基於以下的一者或多者:(i)實體資源用於上鏈傳輸(例如當對應於該傳輸的可應用資源的集合的確定本身與該確定無關時);(ii)被傳輸的資料的類型(例如當資料選擇本身與該確定無關時);(iii)WTRU的目前狀態(例如目前功率餘量);及/或(iv)資料的目前狀態(例如資料的TTL)。
在一個範例中,WTRU可以例如基於強健性等級是表明普通還是可靠傳輸來確定不同的參數值。WTRU可以確定一或多個參數的不同值,參數例如是以下的一者或多者:(i)MCS;(ii)可應用PRB集合;(iii)確定的可應用PRB集合內的可應用PRB;(iv)HARQ過程類型;(v)用於產生及/或傳輸(例如當DCI排程DL傳輸時)或接收(例如當DCI排程UL傳輸時)HARQ回饋的可應用程序;(vi)功率提升及/或功率的優先化(例如當DCI排程UL傳輸時)及/或(vii)可應用成訊框及/或訊框結構(例如TTI持續時間)。WTRU可以根據所確定的參數的集合來執行資料的接收/傳輸。
揭露了用於例如5gFLEX的無線系統中的低潛時MAC PDU組合的系統、方法以及措施(例如WTRU及/或網路層L1、L2、L3中的實體、介面以及程序的方面)。例如可以藉由WTRU在傳輸許可之前確定網路傳輸參數以及傳訊來降低潛時。WTRU可以例如針對未來許可中的使用在許可之前接收MCS、資源範圍等。可以在許可之前遞增創建/編碼資料塊。可以例如基於允許在許可之前MAC以及RLC處理的資料塊大小來分段、組合以及多工資料單元。可以為在許可之前的早期產生傳輸塊提供靈活的許可大小。可以傳訊最小保證TBS,以允許早期產生MAC PDU。可以例如使用盲解碼或DCI接收過程在許可之前選擇傳輸參數。
這裡描述的過程以及措施可以用任何組合使用、可以應用於其他無線技術、以及用於其他服務。
WTRU可以指實體裝置的識別碼、或使用者的識別碼,例如訂閱相關識別碼,例如MSISDN、SIP URI等。WTRU可以指基於應用的識別碼,例如可以每個應用使用的用戶名稱。
這裡描述計算系統中的每一個可以具有一或多個具有記憶體的電腦處理器,其被配置有可執行指令或硬體,用於完成這裡描述的功能,該功能包括確定這裡描述的參數以及在實體(例如WTRU以及網路)之間發送以及接收訊息以實現所述功能。上述的過程可以用集成到電腦可讀媒體中用於由電腦及/或處理器執行的電腦程式、軟體及/或韌體的方式來實施。
上述的過程可在結合至電腦可讀儲存媒體中以由電腦或處理器執行的電腦程式、軟體或韌體中實現。電腦可讀媒體的範例包括但不限於電子信號(經由有線或無線連接傳輸)以及電腦可讀儲存媒體。電腦可讀儲存媒體的例子包括但不限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體儲存裝置、例如內建磁片以及抽取式磁碟的磁性媒體、磁光媒體以及光學媒體(例如CD-ROM光碟以及數位多功能光碟(DVD))。與軟體相關聯的處理器可被用於實施在WTRU、終端、基地台、RNC及/或任何主機中使用的射頻收發器。
BTI:基礎時間間隔
DCI:下鏈控制資訊
DL:下鏈
DL TRx:下鏈資料傳輸
fDL:下鏈載波頻率
fUL:上鏈載波頻率
TTI:傳輸時間間隔
UL:上鏈

Claims (20)

  1. 無線/傳輸接收方法(WTRU),該WTRU包括:
    一處理器,該處理器被配置為:
    使用與一下鏈許可相關聯的一下鏈控制資訊(DCI)來確定用於一上鏈傳輸的一強健性等級;
    確定與該強健性等級相關聯的一配置資訊;
    至少部分基於該配置資訊以確定用於該上鏈傳輸的一或多個上鏈傳輸參數;以及
    一收發器,該收發器被配置為:
    接收與該下鏈許可相關聯的該DCI;以及
    使用該一或多個上鏈傳輸參數來發送該上鏈傳輸,該一或多個上鏈傳輸參數是至少部分基於與所確定的強健性等級相關聯的該配置資訊而被確定。
  2. 如請求項1所述的無線/傳輸接收單元(WTRU),其中該DCI還表明該下鏈許可。
  3. 如請求項1所述的無線/傳輸接收單元(WTRU),其中該強健性等級表明用於該上鏈傳輸的一可靠性等級以及用於該上鏈傳輸的一服務品質(QoS)中的一者或多者。
  4. 如請求項1所述的無線/傳輸接收單元(WTRU),其中該處理器被配置為藉由下列以使用該DCI來確定用於該上鏈傳輸的該強健性等級:
    確定用於該DCI的一DCI格式;以及
    使用該DCI格式確定該強健性等級。
  5. 如請求項1所述的無線/傳輸接收單元(WTRU),其中該處理器被配置為藉由使用該DCI中的一顯式指示確定該強健性等級來使用該DCI確定用於該上鏈傳輸的該強健性等級。
  6. 如請求項1所述的無線/傳輸接收單元(WTRU),其中該一或多個上鏈傳輸參數包括下列中的一者或多者:表明用於發送一混合自動重複請求(HARQ)回饋的一實體上鏈控制通道(PUCCH)資源的一PUCCH資訊、表明一HARQ回饋類型的一HARQ資訊、表明用於產生該HARQ回饋的一方法的一HARQ回饋資訊、用於該上鏈傳輸的一功率控制參數、表明一訊框結構的一訊框資訊、以及表明一傳輸計時器間隔(TTI)持續時間的一TTI資訊。
  7. 如請求項1所述的無線/傳輸接收單元(WTRU),其中該一或多個上鏈傳輸參數包括下列中的一者或多者:表明一調變及編碼方案(MCS)的一MCS資訊、表明與該上鏈傳輸相關聯的一實體資源塊集合的一資源資訊、與該上鏈傳輸相關聯的一功率資訊、用於該上鏈傳輸的一傳輸時序資訊、以及表明與該上鏈傳輸相關聯的一傳輸計時器間隔(TTI)持續時間的一TTI資訊。
  8. 如請求項1所述的無線/傳輸接收單元(WTRU),其中該處理器更被配置為確定一最大傳輸功率超過一臨界值。
  9. 如請求項8所述的無線/傳輸接收單元(WTRU),其中該處理器更被配置為使用該強健性等級來確定用於該上鏈傳輸的一功率優先化。
  10. 如請求項9所述的無線/傳輸接收單元(WTRU),其中該收發器被配置為藉由使用用於該上鏈傳輸的該功率優先化以及該一或多個上鏈傳輸參數發送該上鏈傳輸以使用該一或多個上鏈傳輸參數來發送該上鏈傳輸。
  11. 一種由一無線/傳輸接收單元(WTRU)執行的方法,該方法包括:
    使用與一下鏈許可相關聯的一下鏈控制資訊(DCI)來確定用於一上鏈傳輸的一強健性等級;
    確定與該強健性等級相關聯的一配置資訊;
    至少部分基於該配置資訊以確定用於該上鏈傳輸的一或多個上鏈傳輸參數;
    接收與該下鏈許可相關聯的該DCI;以及
    使用該一或多個上鏈傳輸參數來發送該上鏈傳輸,該一或多個上鏈傳輸參數是至少部分基於與所確定的強健性等級相關聯的該配置資訊而被確定。
  12. 如請求項11所述的方法,其中該DCI表明該下鏈許可。
  13. 如請求項11所述的方法,其中該強健性等級表明用於該上鏈傳輸的一可靠性等級以及用於該上鏈傳輸的一服務品質(QoS)中的一者或多者。
  14. 如請求項11所述的方法,其中使用該DCI來確定用於該上鏈傳輸的該強健性等級包括:
    確定用於該DCI的一DCI格式;以及
    使用該DCI格式確定該強健性等級。
  15. 如請求項11所述的方法,其中該方法包括藉由使用該DCI中的一顯式指示確定該強健性等級來使用該DCI確定用於該上鏈傳輸的該強健性等級。
  16. 如請求項11所述的方法,其中該一或多個上鏈傳輸參數包括下列中的一者或多者:表明用於發送一混合自動重複請求(HARQ)回饋的 一實體上鏈控制通道(PUCCH)資源的一PUCCH資訊、表明一HARQ回饋類型的一HARQ資訊、表明用於產生該HARQ回饋的一方法的一HARQ回饋資訊、用於該上鏈傳輸的一功率控制參數、表明一訊框結構的一訊框資訊、以及表明一傳輸計時器間隔(TTI)持續時間的一TTI資訊。
  17. 如請求項11所述的方法,其中該一或多個上鏈傳輸參數包括下列中的一者或多者:表明一調變及編碼方案(MCS)的一MCS資訊、表明與該上鏈傳輸相關聯的一實體資源塊集合的一資源資訊、與該上鏈傳輸相關聯的一功率資訊、用於該上鏈傳輸的一傳輸時序資訊、以及表明與該上鏈傳輸相關聯的一傳輸計時器間隔(TTI)持續時間的一TTI資訊。
  18. 如請求項11所述的方法,其中該方法更包括確定一最大傳輸功率超過一臨界值。
  19. 如請求項18所述的方法,其中該方法更包括使用該強健性等級來確定用於該上鏈傳輸的一功率優先化。
  20. 如請求項19所述的方法,其中使用該一或多個上鏈傳輸參數來發送該上鏈傳輸包括使用用於該上鏈傳輸的該功率優先化以及該一或多個上鏈傳輸參數來發送該上鏈傳輸。
TW110143427A 2016-05-11 2017-05-10 無線傳輸/接收單元及由其實施的方法 TWI798953B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662334529P 2016-05-11 2016-05-11
US62/334,529 2016-05-11

Publications (2)

Publication Number Publication Date
TW202224466A true TW202224466A (zh) 2022-06-16
TWI798953B TWI798953B (zh) 2023-04-11

Family

ID=58765929

Family Applications (2)

Application Number Title Priority Date Filing Date
TW106115483A TW201804835A (zh) 2016-05-11 2017-05-10 無線系統中媒體存取協定資料單元組合
TW110143427A TWI798953B (zh) 2016-05-11 2017-05-10 無線傳輸/接收單元及由其實施的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW106115483A TW201804835A (zh) 2016-05-11 2017-05-10 無線系統中媒體存取協定資料單元組合

Country Status (7)

Country Link
US (3) US11601224B2 (zh)
EP (2) EP3455982A1 (zh)
JP (4) JP2019521552A (zh)
KR (4) KR20190017742A (zh)
CN (2) CN109075952A (zh)
TW (2) TW201804835A (zh)
WO (1) WO2017196968A1 (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102469312B1 (ko) * 2015-02-26 2022-11-22 애플 인크. 무선 액세스 기술 조정을 위한 시스템, 방법 및 디바이스
US11395325B2 (en) 2016-04-01 2022-07-19 Lg Electronics Inc. Method for transmitting downlink control information for sidelink scheduling in wireless communication system and terminal using same
EP3455982A1 (en) * 2016-05-11 2019-03-20 IDAC Holdings, Inc. Medium access protocol data unit assembly in wireless systems
EP3518579A4 (en) * 2016-09-21 2020-05-27 NTT DoCoMo, Inc. USER TERMINAL AND WIRELESS COMMUNICATION METHOD
EP3320735B1 (en) * 2016-09-30 2020-11-04 Telefonaktiebolaget LM Ericsson (publ) Methods and devices for downlink control channel transmission and detection in a wireless communication system
WO2018174477A1 (en) * 2017-03-22 2018-09-27 Lg Electronics Inc. Method for transmitting a mac ce in different tti durations in wireless communication system and a device therefor
ES2880040T3 (es) * 2017-11-17 2021-11-23 Zte Corp Métodos, aparato y sistemas para determinar un tamaño de bloque de transporte en una comunicación inalámbrica
KR102527307B1 (ko) * 2017-12-06 2023-04-27 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 데이터 전송 방법과 단말 장치
US10813115B2 (en) * 2017-12-15 2020-10-20 Qualcomm Incorporated Scheduling of uplink transport blocks
US11271707B2 (en) * 2018-01-23 2022-03-08 Qualcomm Incorporated Immediate responses under time division multiplexed (TDM) access
WO2019149185A1 (en) * 2018-01-31 2019-08-08 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for status exposure in wireless communication networks
CN110167153B (zh) * 2018-02-12 2022-09-13 维沃移动通信有限公司 一种下行控制信息dci的传输方法、装置及网络设备
US11075712B2 (en) * 2018-05-17 2021-07-27 Qualcomm Incorporated MCS update in group control channel
US11956788B2 (en) * 2018-07-30 2024-04-09 Qualcomm Incorporated Expiration periods for low latency communications
US11595976B2 (en) * 2018-08-09 2023-02-28 Sierra Wireless, Inc. Method and apparatus for multi-transport block grant transmissions
US11096214B2 (en) * 2018-08-10 2021-08-17 Qualcomm Incorporated Distributed channel access mechanism using multiple access signatures for control transmissions
EP3654723B1 (en) * 2018-08-23 2021-12-29 LG Electronics Inc. Methods and device for transmitting or receiving information on size of resource unit in wireless lan system
US11540276B2 (en) 2018-09-28 2022-12-27 Apple Inc. Wideband transmission with narrowband monitoring for new radio unlicensed spectrum (NRU)
US11212829B2 (en) * 2018-10-05 2021-12-28 Qualcomm Incorporated Uplink processing techniques for reduced uplink timelines in wireless communications
US11570593B2 (en) * 2019-01-10 2023-01-31 Qualcomm Incorporated Resource allocation and segmentation in wireless systems
US11664924B2 (en) * 2019-10-01 2023-05-30 Hughes Network Systems, Llc Efficient adaptive coding and modulation
EP4038947A4 (en) 2019-10-03 2023-10-04 Sierra Wireless, Inc. METHOD AND APPARATUS FOR FACILITATION OF TRANSMISSIONS IN A WIRELESS COMMUNICATION SYSTEM
US11575472B2 (en) 2020-02-27 2023-02-07 Sierra Wireless, Inc. Methods and apparatuses for supporting multi transport block grant data transmission
CN113839739B (zh) * 2020-06-24 2023-07-28 华为技术有限公司 通信系统中数据处理方法和装置
CN113922930B (zh) * 2020-07-09 2024-05-28 中国移动通信有限公司研究院 数据传输方法及设备
WO2022027213A1 (en) * 2020-08-04 2022-02-10 Qualcomm Incorporated Network coding augmented radio link control (rlc) layer communication
EP4241408A1 (en) * 2020-11-05 2023-09-13 Nokia Technologies Oy Network coding with hybrid automatic repeat request process
US11611457B2 (en) * 2021-02-11 2023-03-21 Northeastern University Device and method for reliable classification of wireless signals
US11917723B2 (en) * 2021-03-17 2024-02-27 Nxp Usa, Inc. System and methods for transmitting protocol data units
CN113573413B (zh) * 2021-07-02 2023-10-10 中电科思仪科技股份有限公司 一种无线连接物理层协议数据单元发生装置及方法
WO2023146463A1 (en) * 2022-01-28 2023-08-03 Telefonaktiebolaget Lm Ericsson (Publ) Uplink mac scheduling signaling in a communication network
WO2023146462A1 (en) * 2022-01-28 2023-08-03 Telefonaktiebolaget Lm Ericsson (Publ) Uplink mac scheduling in a communication network
US20240049183A1 (en) * 2022-08-02 2024-02-08 Qualcomm Incorporated Sidelink preparation procedure time reduction

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1989910A2 (en) * 2006-02-03 2008-11-12 Interdigital Technology Corporation Quality of service based resource determination and allocation apparatus and procedure in high speed packet access evolution and long term evolution systems
CN101801090B (zh) * 2009-02-05 2012-09-12 电信科学技术研究院 一种配置下行物理控制信道的方法、基站和用户终端
SG175343A1 (en) * 2009-04-24 2011-11-28 Interdigital Patent Holdings Method and apparatus for generating a radio link control protocol data unit for multi-carrier operation
US8611277B2 (en) 2009-06-22 2013-12-17 Motorola Mobility Llc Reselection in a wireless communication system
EP2522096A2 (en) * 2010-01-08 2012-11-14 InterDigital Patent Holdings, Inc. Method and apparatus for channel resource mapping in carrier aggregation
RU2569666C2 (ru) 2010-01-11 2015-11-27 Конинклейке Филипс Электроникс Н.В. Способ для конфигурирования режима передачи в беспроводной сети
KR101915271B1 (ko) * 2010-03-26 2018-11-06 삼성전자 주식회사 무선 통신 시스템에서 자원 할당을 위한 하향링크 제어 지시 방법 및 장치
KR101762610B1 (ko) 2010-11-05 2017-08-04 삼성전자주식회사 이동 통신 시스템에서 역방향 스케줄링 및 그를 위한 정보 전송 방법 및 장치
WO2012074449A1 (en) * 2010-12-03 2012-06-07 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for mitigating inter -cell interference on transmission of uplink control information
EP2661819B1 (en) * 2011-01-07 2018-07-25 Interdigital Patent Holdings, Inc. Method, system and apparatus for downlink shared channel reception in cooperative multipoint transmissions
WO2013017154A1 (en) * 2011-07-29 2013-02-07 Fujitsu Limited Control channel for wireless communication
CN102932090B (zh) 2011-08-08 2016-07-13 华为技术有限公司 检测、发送信息的方法及设备
WO2013027963A2 (ko) * 2011-08-19 2013-02-28 엘지전자 주식회사 상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국
US9461779B2 (en) * 2012-02-26 2016-10-04 Lg Electronics Inc. Method for transmitting uplink data information in a wireless communication system and apparatus therefor
CN103580788A (zh) * 2012-07-27 2014-02-12 电信科学技术研究院 一种传输mcs指示信息的方法及装置
EP2888918B1 (en) 2012-08-23 2020-11-18 Interdigital Patent Holdings, Inc. Providing physical layer resources to different serving sites
US20150270931A1 (en) * 2012-11-02 2015-09-24 Feifei Sun Method for decoding control channels with multiple subframes
CN104854924B (zh) * 2012-12-14 2019-04-12 Lg电子株式会社 在无线通信系统中支持传输效率的方法和设备
EP2787670A1 (en) * 2013-04-05 2014-10-08 Panasonic Intellectual Property Corporation of America MCS table adaptation for 256-QAM
FR3008945B1 (fr) * 2013-07-25 2018-03-02 Compagnie Plastic Omnium Montant lateral pour caisse de vehicule automobile perfectionne
US9497771B2 (en) * 2014-04-18 2016-11-15 Apple Inc. Deterministic RRC connections
US10075309B2 (en) 2014-04-25 2018-09-11 Qualcomm Incorporated Modulation coding scheme (MCS) indication in LTE uplink
US9942013B2 (en) 2014-05-07 2018-04-10 Qualcomm Incorporated Non-orthogonal multiple access and interference cancellation
EP3180955B1 (en) 2014-08-15 2019-08-14 Interdigital Patent Holdings, Inc. Supporting random access and paging procedures for reduced capability wtrus in an lte system
US20170290008A1 (en) 2014-09-08 2017-10-05 Interdigital Patent Holdings, Inc. Systems and Methods of Operating with Different Transmission Time Interval (TTI) Durations
US10136420B2 (en) 2014-09-26 2018-11-20 Nokia Of America Corporation Methods and systems for signaling dynamic network assisted information to a user equipment
CN112087794A (zh) 2014-12-23 2020-12-15 Idac控股公司 通过无线发射/接收单元wtru执行的用于传达数据的方法
US11297510B2 (en) * 2015-01-19 2022-04-05 Qualcomm Incorporated Medium access for shared or unlicensed spectrum
EP3251276B1 (en) 2015-01-28 2022-10-05 Interdigital Patent Holdings, Inc. Downlink control signaling
CN113285783A (zh) * 2015-01-28 2021-08-20 交互数字专利控股公司 用于操作大量载波的上行链路反馈方法
JP2018514124A (ja) 2015-03-19 2018-05-31 華為技術有限公司Huawei Technologies Co.,Ltd. ハイブリッド自動再送要求の管理方法、装置、およびシステム
CN114978453A (zh) * 2015-08-25 2022-08-30 Idac控股公司 无线系统中的成帧、调度和同步
CN106686738A (zh) * 2015-11-05 2017-05-17 索尼公司 基站侧和用户设备侧的装置及方法、无线通信系统
US10484989B2 (en) * 2016-01-22 2019-11-19 Electronics And Telecommunications Research Institute Method and apparatus for receiving or transmitting data
KR102299810B1 (ko) * 2016-01-29 2021-09-09 주식회사 케이티 무선 통신 시스템에서 하향링크 harq를 제어하는 방법 및 그 장치
WO2017132825A1 (zh) * 2016-02-02 2017-08-10 华为技术有限公司 确定发射功率的方法、用户设备和基站
KR102628142B1 (ko) * 2016-03-30 2024-01-23 인터디지탈 패튼 홀딩스, 인크 Lte 네트워크의 물리 채널에서의 레이턴시 감소
EP3456133B1 (en) * 2016-05-10 2022-01-26 Nokia Technologies Oy Reliable or low latency network management
EP3455982A1 (en) * 2016-05-11 2019-03-20 IDAC Holdings, Inc. Medium access protocol data unit assembly in wireless systems

Also Published As

Publication number Publication date
CN113115453A (zh) 2021-07-13
JP2021002878A (ja) 2021-01-07
CN109075952A (zh) 2018-12-21
EP3455982A1 (en) 2019-03-20
JP2024029198A (ja) 2024-03-05
JP2019521552A (ja) 2019-07-25
EP3893424A1 (en) 2021-10-13
US20230188269A1 (en) 2023-06-15
TWI798953B (zh) 2023-04-11
US11863302B2 (en) 2024-01-02
US20230421305A1 (en) 2023-12-28
WO2017196968A1 (en) 2017-11-16
US20190149274A1 (en) 2019-05-16
JP7418625B2 (ja) 2024-01-19
KR20190017742A (ko) 2019-02-20
TW201804835A (zh) 2018-02-01
KR20240058954A (ko) 2024-05-07
KR20230015497A (ko) 2023-01-31
US11601224B2 (en) 2023-03-07
KR20210036997A (ko) 2021-04-05
JP2023052254A (ja) 2023-04-11

Similar Documents

Publication Publication Date Title
TWI798953B (zh) 無線傳輸/接收單元及由其實施的方法
US20220150934A1 (en) Handling user plane in wireless systems
JP7281512B2 (ja) ワイヤレス送信/受信ユニット、およびワイヤレス通信ネットワークにおけるワイヤレス送信/受信ユニットによって実行される方法
EP3437243B1 (en) Long term evolution-assisted nr flexible radio access
TWI695604B (zh) 無線傳輸/接收單元、在無線傳輸/接收單元中實施的方法以及網路節點