TW202217634A - 基於可解釋深度學習之缺陷偵測及分類 - Google Patents

基於可解釋深度學習之缺陷偵測及分類 Download PDF

Info

Publication number
TW202217634A
TW202217634A TW110134048A TW110134048A TW202217634A TW 202217634 A TW202217634 A TW 202217634A TW 110134048 A TW110134048 A TW 110134048A TW 110134048 A TW110134048 A TW 110134048A TW 202217634 A TW202217634 A TW 202217634A
Authority
TW
Taiwan
Prior art keywords
correlation
layer
deep learning
neuron
learning model
Prior art date
Application number
TW110134048A
Other languages
English (en)
Inventor
張旭
賀力
桑卡 梵卡泰若曼
Original Assignee
美商科磊股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商科磊股份有限公司 filed Critical 美商科磊股份有限公司
Publication of TW202217634A publication Critical patent/TW202217634A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/401Imaging image processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/418Imaging electron microscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • G01N2223/6116Specific applications or type of materials patterned objects; electronic devices semiconductor wafer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/646Specific applications or type of materials flaws, defects
    • G01N2223/6462Specific applications or type of materials flaws, defects microdefects

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Image Analysis (AREA)

Abstract

使用一深度學習神經網路進行之一偵測/分類演算法之一解釋闡明形成之結果且幫助一使用者識別缺陷偵測/分類模型效能問題之根本原因。基於一逐層相關性傳播演算法判定一相關性圖。判定該相關性圖與一真實數據之間的一平均交疊率評分。基於該相關性圖及該平均交疊率評分判定貢獻於使用該深度學習模型之該分類之半導體影像之一者之一部分。

Description

基於可解釋深度學習之缺陷偵測及分類
本發明係關於用於半導體製造之程序控制。
半導體製造行業之演進正對良率管理且特定言之對計量及檢測系統提出更高要求。關鍵尺寸繼續縮小,但該行業需減少達成高良率、高價值生產之時間。最小化自偵測到一良率問題至解決該問題之總時間判定半導體製造商之投資回報率。
製造半導體裝置(諸如邏輯及記憶體裝置)通常包含使用大量製造程序處理一半導體晶圓以形成該等半導體裝置之不同特徵及多個層級。例如,微影係一半導體製造程序,其涉及將一圖案自一倍縮光罩轉印至配置在一半導體晶圓上之一光阻劑。半導體製造程序之額外實例包含(但不限於)化學機械拋光(CMP)、蝕刻、沈積及離子植入。製造於一單一半導體晶圓上之多個半導體裝置之一配置可被分成個別半導體裝置。
在半導體製造期間之各個步驟使用檢測程序以偵測晶圓上之缺陷以促進製造程序中之更高良率及因此更高利潤。檢測始終係製造半導體裝置(諸如積體電路(IC))之一重要部分。然而,隨著半導體裝置之尺寸減小,檢測對於可接受半導體裝置之成功製造變得甚至更為重要,此係因為較小缺陷可引起裝置故障。例如,隨著半導體裝置之尺寸減小,具有減小之大小之缺陷之偵測已變得必要,此係因為甚至相對小缺陷可引起半導體裝置中之非所要像差。
然而,隨著設計規則縮小,半導體製程可能更接近對程序之效能能力之限制而操作。另外,在設計規則縮小時,較小缺陷可對裝置之電參數具有影響,此驅動更敏感檢測。隨著設計規則縮小,藉由檢測偵測到之潛在良率相關缺陷群體急劇增長,且藉由檢測偵測到之擾亂點(nuisance)缺陷群體亦急劇增加。因此,可在晶圓上偵測到更多缺陷,且校正程序以消除所有缺陷可能係困難且昂貴的。判定哪些缺陷實際上對裝置之電參數及良率具有影響可容許程序控制方法聚焦於該等缺陷而大體上忽略其他缺陷。此外,在較小設計規則下,在一些情況中,程序引發之故障傾向於係系統性的。即,程序引發之故障傾向於在設計內常常重複許多次之預定設計型樣下故障。消除空間系統的、電相關之缺陷可能對良率具有影響。
深度學習模型可用於識別及分類檢測影像中之缺陷。然而,分類結果可能不會經受貫穿網路架構之逐步驗證。深度學習模型之內部工作經「隱藏」,且深度學習模型之最終決策對於網路中之各神經元係不可回溯的,且不為一使用者所知。有必要提供更多信任以便提高品質。
當前,深度學習模型效能係藉由觀測輸出度量及猜測效能問題之一潛在原因來評估。此可包含觀測一訓練損耗曲線。對於偵測,可用一偵測圖觀測接收器操作特性(ROC)以猜測為何遺漏一缺陷。對於分類,可用一混淆矩陣觀測ROC以猜測為何遺漏一分類。使用此等當前技術,一使用者僅可評估一神經網路之輸出。該使用者將不知道神經網路為何作出決策。因此,使用者需要猜測問題之根本原因,此需要廣泛領域知識。在半導體製造之背景內容中,若不解釋一神經網路為何作出其決策,則難以解決效能問題。
因此,需要新檢測及分類系統及方法。
在一第一實施例中,提供一種方法。該方法包括:使用一處理器用一深度學習模型對複數個半導體影像執行缺陷偵測及分類;使用該處理器自該深度學習模型對該等半導體影像應用一逐層相關性傳播演算法;使用該處理器基於該逐層相關性傳播演算法判定一相關性圖;使用該處理器判定該相關性圖與一真實數據之間的一平均交疊率評分;及使用該處理器基於該相關性圖及該平均交疊率評分判定貢獻於使用該深度學習模型之該分類之該等半導體影像之一者之一部分。
該相關性圖可基於一輸出層之一相關性及早期層之相關性。在一例項中,該相關性圖經正規化。可使用一方程式
Figure 02_image001
針對各層判定早期層之相關性。
Figure 02_image003
係一第一層處之一神經元
Figure 02_image005
之相關性,
Figure 02_image007
係一第二層處之神經元
Figure 02_image009
之一相關性,
Figure 02_image011
係該神經元
Figure 02_image013
之一激活,且
Figure 02_image015
係神經元
Figure 02_image017
與神經元
Figure 02_image019
之間的一權重。
方法可進一步包含使用該處理器平滑化該複數個半導體影像。
方法可進一步包含改變用於該深度學習模型之一訓練影像之一標註。
方法可進一步包含改變用於該深度學習模型之一訓練影像之一類別代碼。
方法可進一步包含用使用一電子束之一晶圓檢測工具產生該等半導體影像。
在一第二實施例中,提供一種晶圓檢測工具。該晶圓檢測工具包括:一能量束源,其產生一能量束;一載物台,其經組態以固持一晶圓;一偵測器,其接收自該晶圓返回之該能量束;及一處理器,其與該偵測器電子通信。該處理器經組態以:使用自該偵測器接收之資料產生複數個半導體影像;使用一深度學習模型對該複數個半導體影像執行缺陷偵測及分類;自該深度學習模型對該等半導體影像應用一逐層相關性傳播演算法;基於該逐層相關性傳播演算法判定一相關性圖;判定該相關性圖與一真實數據之間的一平均交疊率評分;及基於該相關性圖及該平均交疊率評分判定貢獻於使用該深度學習模型之該分類之該等半導體影像之一者之一部分。該能量束可為一電子束且該能量束源可為一電子束源。
該相關性圖可基於一輸出層之一相關性及早期層之相關性。該相關性圖可經正規化。可使用一方程式
Figure 02_image001
針對各層判定早期層之相關性。
Figure 02_image003
係一第一層處之一神經元
Figure 02_image005
之相關性,
Figure 02_image007
係一第二層處之神經元
Figure 02_image009
之一相關性,
Figure 02_image011
係該神經元
Figure 02_image013
之一激活,且
Figure 02_image015
係神經元
Figure 02_image017
與神經元
Figure 02_image019
之間的一權重。
在一第三實施例中,提供一種非暫時性電腦可讀儲存媒體。該非暫時性電腦可讀儲存媒體包括用於在一或多個運算裝置上執行以下步驟之一或多個程式。該等步驟包含:使用一深度學習模型對複數個半導體影像執行缺陷偵測及分類;自該深度學習模型對該等半導體影像應用一逐層相關性傳播演算法;基於該逐層相關性傳播演算法判定一相關性圖;判定該相關性圖與一真實數據之間的一平均交疊率評分;及基於該相關性圖及該平均交疊率評分判定貢獻於使用該深度學習模型之該分類之該等半導體影像之一者之一部分。
該相關性圖可基於一輸出層之一相關性及早期層之相關性。該相關性圖可經正規化。可使用一方程式
Figure 02_image001
針對各層判定早期層之相關性。
Figure 02_image003
係一第一層處之一神經元
Figure 02_image005
之相關性,
Figure 02_image007
係一第二層處之神經元
Figure 02_image009
之一相關性,
Figure 02_image011
係該神經元
Figure 02_image013
之一激活,且
Figure 02_image015
係神經元
Figure 02_image017
與神經元
Figure 02_image019
之間的一權重。
步驟可進一步包括使用來自使用一電子束之一晶圓檢測工具之資料產生該等半導體影像。
儘管將依據特定實施例描述所主張之標的物,然其他實施例(包含未提供本文中闡述之所有益處及特徵之實施例)亦在本發明之範疇內。可在不偏離本發明之範疇之情況下進行各種結構、邏輯、程序步驟、及電子變化。因此,本發明之範疇僅參考隨附發明申請專利範圍而界定。
本文中所揭示之實施例使用一神經網路藉由一偵測/分類演算法提供結果之一解釋。此解釋可幫助使用者(諸如半導體製造商)瞭解深度學習結果及如何診斷及/或改良效能。可識別缺陷偵測/分類模型效能問題之根本原因,此可幫助一使用者改良模型之效能。可判定一LRP圖與一真實數據標註之間的一定量評分(平均交疊率(mIoU))。若該標註不正確,則此可向一使用者提供標註回饋。此亦可導引一使用者改良偵測及分類效能。結果可用於使用LRP來解釋基於深度學習之缺陷偵測及分類。
圖1展示對應例示性半導體影像,其中一SEM影像在左側,一LRP影像在中心且SEM與LRP之一疊對在右側。如SEM影像中所展示,溝槽100並未在結構中居中(以黑色輪廓展示)。在此實例中,當歸因於溝槽100之位置作出偵測一缺陷或對該缺陷進行分類之一決策時,一深度學習模型查看來自疊對影像之區域101 (以灰色展示)。區域101可引導深度學習模型偵測/分類圖1中之缺陷。本文中所揭示之實施例可幫助識別區域101以幫助一使用者理解深度學習模型之操作。
圖2係一方法200之一流程圖。方法200之一些或所有步驟可在一處理器上運行。在201,使用一深度學習模型對半導體影像執行缺陷偵測及分類。在一例項中,該深度學習模型係一卷積神經網路(CNN)。可使用(例如)使用一電子束之一晶圓檢測工具(諸如一SEM)來產生半導體影像。
可用訓練影像來訓練深度學習模型。此等訓練影像可經標註且可由類別代碼進行分類。
在202自深度學習模型對半導體影像應用一LRP演算法。LRP係用以將對一樣本(例如,一影像)運算之一神經網路之一預測分解為該樣本之單輸入維度(諸如一影像之子像素)之相關性評分的一架構。一LRP演算法係在Bach等人之「On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation」,PloS one 10 (2015)中進行揭示,其全文以引用的方式併入。
在正向傳遞期間,經訓練之神經網路將透過網路傳播輸入以在輸出層處進行一預測。輸出層之相關性係使用者選擇調查之類別(其通常係具有最大值之類別)之經預測概率。最大值係具有最大概率之一者。換言之,此意謂網路對該類別最信任。在反向傳遞期間,使用一方程式
Figure 02_image034
逐層反向運算早期層之相關性。
Figure 02_image036
係一第一層(例如,一較早層)處之一神經元
Figure 02_image038
之相關性,
Figure 02_image040
係一第二層(例如,一較遲層)處之神經元
Figure 02_image042
之一相關性,
Figure 02_image044
係該神經元
Figure 02_image038
之一激活,且
Figure 02_image046
係神經元
Figure 02_image038
與神經元
Figure 02_image042
之間的一權重。
在一例項中,神經網路可包含近似50個層。然而,可使用更多層或更少層。
在203,判定基於逐層相關性傳播演算法之一相關性圖。可自輸出層
Figure 02_image042
反向至輸入層
Figure 02_image038
計算相關性(
Figure 02_image040
)。可執行迭代直至到達影像層。相關性圖可基於輸出層之一相關性及早期層之相關性。相關性圖可經正規化,諸如正規化至[0, 255]之間。例如,在圖3中展示一例示性相關性圖。
返回參考圖2,在204判定相關性圖與一真實數據之間的一平均交疊率(mIoU)評分。交疊率係重疊面積除以聯集面積。因此,真陽性可除以真陽性、偽陽性及偽陰性之一總和。mIoU可判定網路預測與真實數據之間的重疊。mIoU判定可用於找出哪一訓練影像或標註在引起使用者之結果。
對於一正確訓練影像,運行LRP應提供高mIoU與其影像標記,而不正確訓練影像應提供低mIoU。經突顯部分係相關性評分之一部分。mIoU係使用具有影像之原始標記之相關性圖判定之一數字。
在205,基於相關性圖及mIoU評分判定貢獻於使用深度學習模型之分類之半導體影像之一者之一部分。可在經運行之所有影像上設定mIoU之一臨限值,並找出具有小於一臨限值之一mIoU之實例以判定有問題的SEM影像(其具有錯誤的標註)。
例如,圖1展示例示性半導體影像。如區域101所展示,一相關性圖上之一視覺顯示可提供關於由神經網路使用之影像之部分之資訊。使用LRP相關性圖及mIoU評分,可顯示貢獻於神經網路決策之輸入影像之部分。臨限值mIoU在原始SEM影像上之疊對可用於突顯影像之貢獻部分。由神經網路使用之真實數據可經定量量測。一使用者可接收關於後續步驟或如何修復神經網路之效能問題之導引。此區域101可在判定為何對一影像進行分類或不對一影像進行分類時導引一使用者。
在一例項中,在作出一判定之前,使用一高斯核或其他技術來平滑化一影像。預處理影像以移除雜訊改良mIoU效能。
方法200可進一步包含改變一訓練影像之一標註或一訓練影像之一類別代碼。例如,圖1中之區域101可用作改變一標註或類別代碼之一基礎。若一非缺陷區域貢獻於偵測,則可改變一標註。若一影像貢獻於一不正確類別代碼,則可改變一類別代碼。若將改良缺陷偵測或分類,則亦可將更多訓練影像用於一特定結構或缺陷類別。例如,若神經網路未使用一結構或若相關性圖值低至無,則可將該結構之更多訓練影像提供至神經網路。
在一例項中,類別A與類別B之間的誤分類係由訓練影像中之類別C之標註引起。自一LRP相關性圖,可判定可貢獻於類別C之影像之部分。
雖然揭示LRP,但其他深度學習視覺化方法可使用本文中所揭示之實施例。因此,GradCam、去卷積及Guided-BP全部可受益於本文中所揭示之實施例。LRP展現改良之聚焦且傾向於擷取有用資訊。如圖3中所展示,與GradCam相比,LRP擷取可貢獻於結果之更多詳細資訊。在圖3中,Diff係在Zintraf等人之「Visualizing Deep Neural Network Decisions: Prediction Difference Analysis」 (2017) (其全文以引用的方式併入)中所描述之預測差異分析。LRP相較於Diff提供改良之結果。與Guided Bp相比,LRP展示更連續的相關性圖,而Guided Bp歸因於不連續梯度而具有中斷。
圖4繪示一使用者介面之一流程圖。一使用者可在智慧型實例標註(SEA)中檢視分類(cls)及偵測(detect)結果。一使用者可開始LRP。SMARTS訓練站(STS)運行逐層相關性傳播。SEA可顯示疊對或相關性影像。使用者可判定相關性是否看上去可接受。若是,則補片(patch)可在其經檢視時保存。若否,則mIoU評分可用於判定任何有問題的標註。
對於偵測,藉由LRP演算法給出之相關性圖可用於藉由運算標註與藉由LRP給出之相關性之間的相似性來搜尋影像中之可能錯誤標註。例如,如圖5中所展示,影像被不正確地分類。圖5之經突顯部分表示由神經網路用於偵測及分類之影像之區段。存在與高mIoU之高重疊。可預處理LRP影像且可判定LRP之mIoU及標註。在此情況中,根本原因包含被不正確地標註為扭曲缺陷之具有偏移之一些左缺陷。
此外,如圖6中所展示,若模型執行良好,則具有正確標註之該位點之IoU高於具有其他標註之位點之IoU。圖6之經突顯部分表示由神經網路用於偵測及分類之影像之區段。
當前,在配方設置期間,難以解釋深度學習結果以導引後續步驟。使用者可使用試誤法進行效能問題除錯,此增加配方之時間(TTR)。本文中所揭示之實施例可提供關於效能診斷之明確導引,此可減小TTR。例如,TTR可減小達近似20%。本文中所揭示之實施例亦改良易用性且減少一製造設施處之必要支援。直接憑藉一神經網路內部之回饋,基於深度學習之偵測及分類將更容易使用。製造設施可更直觀地使用基於深度學習之偵測及分類。
圖7係一系統300之一實施例之一方塊圖。系統300包含經組態以產生一晶圓304之影像之一晶圓檢測工具(其包含電子柱301)。
晶圓檢測工具包含一輸出擷取子系統,該輸出擷取子系統包含至少一能量源及一偵測器。輸出擷取子系統可為一基於電子束之輸出擷取子系統。例如,在一項實施例中,引導至晶圓304之能量包含電子,且自晶圓304偵測之能量包含電子。以此方式,能量源可為一電子束源。在圖7中展示之一項此實施例中,輸出擷取子系統包含耦合至電腦子系統302之電子柱301。一載物台310可固持晶圓304。
亦如圖7中所展示,電子柱301包含一電子束源303,該電子束源303經組態以產生藉由一或多個元件305聚焦至晶圓304之電子。電子束源303可包含(例如)一陰極源極或射極尖端。一或多個元件305可包含(例如)一槍透鏡、一陽極、一光束限制孔徑、一閘閥、一光束電流選擇孔徑、一物鏡及一掃描子系統,其等全部可包含此項技術中已知之任何此等合適元件。
自晶圓304返回之電子(例如,二次電子)可藉由一或多個元件306聚焦至偵測器307。一或多個元件306可包含(例如)一掃描子系統,該掃描子系統可為包含於(若干)元件305中之相同掃描子系統。
電子柱301亦可包含此項技術中已知之任何其他合適元件。
儘管圖7中將電子柱301展示為經組態使得電子依一傾斜入射角被引導至晶圓304且依另一傾斜角自晶圓304散射,但電子束可依任何合適角度被引導至晶圓304及自晶圓304散射。另外,基於電子束之輸出擷取子系統可經組態以使用多個模式來產生晶圓304之影像(例如,運用不同照明角、收集角等)。基於電子束之輸出擷取子系統之多個模式可在輸出擷取子系統之任何影像產生參數方面不同。
電腦子系統302可如上文描述般耦合至偵測器307。偵測器307可偵測自晶圓304之表面返回之電子,藉此形成晶圓304之電子束影像。電子束影像可包含任何合適電子束影像。電腦子系統302可經組態以使用偵測器307之輸出及/或電子束影像來執行本文中所描述之功能之任一者。電腦子系統302可經組態以執行本文中所描述之(若干)任何額外步驟。包含圖7中所展示之輸出擷取子系統之一系統300可如本文中描述般進一步組態。
應注意,本文中提供圖7以大體上繪示可用於本文中所描述之實施例中之一基於電子束之輸出擷取子系統之一組態。可變更本文中所描述之基於電子束之輸出擷取子系統組態以最佳化輸出擷取子系統之效能,如通常在設計一商業輸出擷取系統時所執行般。另外,可使用一現有系統(例如,藉由將本文中所描述之功能性添加至一現有系統)來實施本文中所描述之系統。對於一些此等系統,可將本文中所描述之方法提供為系統之選用功能性(例如,除了系統之其他功能性之外)。替代性地,可將本文中所描述之系統設計為一全新系統。
儘管上文將輸出擷取子系統描述為一基於電子束之輸出擷取子系統,然輸出擷取子系統可為一基於離子束之輸出擷取子系統。此一輸出擷取子系統可如圖7中所展示般組態,惟電子束源可用此項技術中已知之任何合適離子束源取代除外。另外,輸出擷取子系統可為任何其他合適基於離子束之輸出擷取子系統,諸如包含於市售聚焦離子束(FIB)系統、氦離子顯微鏡(HIM)系統及二次離子質譜儀(SIMS)系統中之輸出擷取子系統。
電腦子系統302包含一處理器308及一電子資料儲存單元309。處理器308可包含一微處理器、一微控制器或其他裝置。
電腦子系統302可以任何合適方式(例如,經由可包含有線及/或無線傳輸媒體之一或多個傳輸媒體)耦合至系統300之組件,使得處理器308可接收輸出。處理器308可經組態以使用輸出執行若干功能。晶圓檢測工具可自處理器308接收指令或其他資訊。處理器308及/或電子資料儲存單元309可視需要與另一晶圓檢測工具、一晶圓計量工具或一晶圓檢視工具(未繪示)電子通信以接收額外資訊或發送指令。
處理器308係與晶圓檢測工具(諸如偵測器307)電子通信。處理器308可經組態以處理使用來自偵測器307之量測產生之影像。例如,處理器可執行方法200之實施例。
本文中所描述之電腦子系統302、(若干)其他系統或(若干)其他子系統可為各種系統(包含一個人電腦系統、影像電腦、大型電腦系統、工作站、網路器具、網際網路器具或其他裝置)之部分。該(等)子系統或系統亦可包含此項技術中已知之任何合適處理器,諸如一平行處理器。另外,該(等)子系統或系統可包含具有高速處理及軟體之一平台作為一獨立或一網路化工具。
處理器308及電子資料儲存單元309可安置於系統300或另一裝置中或以其他方式作為系統300或另一裝置之部分。在一實例中,處理器308及電子資料儲存單元309可為一獨立控制單元之部分或在一集中式品質控制單元中。可使用多個處理器308或電子資料儲存單元309。
處理器308可在實踐中藉由硬體、軟體及韌體之任何組合實施。又,如本文中所描述之其功能可藉由一個單元執行,或在不同組件(其等之各者可繼而藉由硬體、軟體及韌體之任何組合實施)之間劃分。供處理器308實施各種方法及功能之程式碼或指令可儲存於可讀儲存媒體(諸如在電子資料儲存單元309中之一記憶體或其他記憶體)中。
若系統300包含多於一個電腦子系統302,則不同子系統可彼此耦合,使得可在該等子系統之間發送影像、資料、資訊、指令等。例如,一個子系統可藉由任何合適傳輸媒體耦合至(若干)額外子系統,該等傳輸媒體可包含此項技術中已知之任何合適有線及/或無線傳輸媒體。此等子系統之兩者或更多者亦可藉由一共用電腦可讀儲存媒體(未展示)有效耦合。
處理器308可經組態以使用系統300之輸出或其他輸出來執行若干功能。例如,處理器308可經組態以將輸出發送至一電子資料儲存單元309或另一儲存媒體。處理器308可如本文中所描述般進一步組態。
處理器308或電腦子系統302可為一缺陷檢視系統、一檢測系統、一計量系統或某一其他類型系統之部分。因此,本文中所揭示之實施例描述可以若干方式針對具有或多或少適於不同應用之不同能力之系統定製之一些組態。
處理器308可以此項技術中已知之任何方式通信地耦合至系統300之各種組件或子系統之任一者。此外,處理器308可經組態以藉由可包含有線及/或無線部分之一傳輸媒體自其他系統接收及/或擷取資料或資訊(例如,來自諸如一檢視工具之一檢測系統之檢測結果、包含設計資料之一遠端資料庫及類似者)。以此方式,該傳輸媒體可用作處理器308與系統300之其他子系統,或系統300外部之系統之間的一資料鏈路。
系統300及本文中描述之方法之各種步驟、功能及/或操作藉由以下一或多者實行:電子電路、邏輯閘、多工器、可程式化邏輯裝置、ASIC、類比或數位控制件/開關、微控制器或運算系統。實施諸如本文中描述之方法之程式指令可經由載體媒體傳輸或儲存於載體媒體上。該載體媒體可包含諸如一唯讀記憶體、一隨機存取記憶體、一磁碟或光碟、一非揮發性記憶體、一固態記憶體、一磁帶及類似物之一儲存媒體。一載體媒體可包含諸如一電線、電纜或無線傳輸鏈路之一傳輸媒體。例如,貫穿本發明所描述之各種步驟可藉由一單個處理器308 (或電腦子系統302),或替代性地,多個處理器308 (或多個電腦子系統302)實行。此外,系統300之不同子系統可包含一或多個運算或邏輯系統。因此,以上描述不應被解釋為限制本發明而僅為一圖解說明。
在一例項中,處理器308係GPU。在另一例項中,處理器308係CPU。
處理器308可執行本文中所揭示之實施例之任一者(包含圖2之實施例)。處理器308亦可經組態以使用系統300之輸出或使用來自其他源之影像或資料來執行其他功能或額外步驟。在一例項中,處理器308經組態以從自偵測器接收之資料產生複數個半導體影像。可使用處理器308使用一深度學習模型對該複數個半導體影像執行缺陷偵測及分類。處理器可自深度學習模型對半導體影像應用一LRP演算法。處理器308可基於LRP演算法判定一相關性圖。處理器308可判定該相關性圖與一真實數據之間的一平均交疊率評分。處理器308可基於相關性圖及平均交疊率評分判定貢獻於使用深度學習模型之分類之半導體影像之一者之一部分。
一額外實施例係關於儲存程式指令之一非暫時性電腦可讀儲存媒體,該等程式指令可在一控制器上執行用於執行用於判定一晶圓之一表面上之一經照明區域之一高度的一電腦實施方法,如本文中所揭示。特定言之,如圖2中所展示,電子資料儲存單元309或其他儲存媒體可含有包含可在處理器308上執行之程式指令之非暫時性電腦可讀媒體。電腦實施方法可包含本文中所描述之(若干)任何方法之(若干)任何步驟。
在一例項中,電子資料儲存單元309可包含用於在一或多個運算裝置上執行步驟之一或多個程式。該等步驟包含使用一深度學習模型對複數個半導體影像執行缺陷偵測及分類。可自該深度學習模型對半導體影像應用一LRP演算法。可基於該LRP演算法判定一相關性圖。可判定該相關性圖與一真實數據之間的一平均交疊率評分。可基於相關性圖及平均交疊率評分判定貢獻於使用深度學習模型之分類之半導體影像之一者之一部分。相關性圖可基於輸出層之一相關性及早期層之相關性。在一例項中,相關性圖經正規化。步驟亦可包含使用來自使用一電子束之一晶圓檢測工具之資料產生半導體影像或發送獲得半導體影像之指令。
雖然關於由一電子束形成之影像進行描述,但本文中所描述之實施例可使用由光子束形成之影像來執行。因此,能量束可為一電子束或一光子束。此光子束可使用一雷射或寬頻電漿源產生。晶圓可固持於光子束之路徑中之一卡盤上。一偵測器可捕獲自晶圓反射之光子束。
本文中所描述之實施例可使用可為一CNN或其他類型之應用之一深度學習模型。此類型之方法有時被稱為一端至端學習策略。例如,在一項實施例中,生成模型係一深度生成模型。在另一實施例中,生成模型係一機器學習模型。例如,生成模型可經組態以具有一深度學習架構,因為生成模型可包含執行若干演算法或變換之多個層。生成模型亦可包含一或多個編碼器側層及/或一或多個解碼器側層。生成模型之一或兩側上之層之數目可改變且通常係使用案例相依的。深度生成及機器學習模型可包含此項技術中已知之可經組態以執行本文中所描述之功能之任何此等合適模型。
在一實施例中,生成模型係一CNN。生成模型可具有此項技術中已知之任何CNN組態或架構。一般而言,各種各樣不同的CNN架構係可行的且在此項技術中已知。
方法之步驟之各者可如本文中描述般執行。方法亦可包含可藉由本文中所描述之處理器及/或(若干)電腦子系統或(若干)系統執行之(若干)任何其他步驟。步驟可藉由一或多個電腦系統執行,該一或多個電腦系統可根據本文中所描述之實施例之任一者組態。另外,上文所描述之方法可藉由本文中所描述之系統實施例之任一者執行。
儘管本發明已關於一或多項特定實施例來描述,但將暸解,本發明之其他實施例可在不偏離本發明之範疇之情況下進行。因此,本發明被視為僅受限於隨附發明申請專利範圍及其等之合理解釋。
100:溝槽 101:區域 200:方法 201:步驟 202:步驟 203:步驟 204:步驟 205:步驟 300:系統 301:電子柱 302:電腦子系統 303:電子束源 304:晶圓 305:元件 306:元件 307:偵測器 308:處理器 309:電子資料儲存單元 310:載物台
為了更全面理解本發明之性質及目標,應參考結合隨附圖式進行之以下詳細描述,其中: 圖1展示對應例示性半導體影像,其中一掃描電子顯微鏡(SEM)影像在左側,一逐層相關性傳播(LRP)影像在中心且SEM與LRP之一疊對在右側; 圖2係根據本發明之一方法實施例之一流程圖。 圖3展示視覺化方法之一比較; 圖4繪示根據本發明之一潛在使用者介面之一實施例之一流程圖; 圖5展示使用LRP來定址不正確地分類之一位點; 圖6展示使用具有基於類別之一正確標記之LRP;及 圖7係根據本發明之一系統實施例之一圖式。

Claims (18)

  1. 一種方法,其包括: 使用一處理器用一深度學習模型對複數個半導體影像執行缺陷偵測及分類; 使用該處理器自該深度學習模型對該等半導體影像應用一逐層相關性傳播演算法; 使用該處理器基於該逐層相關性傳播演算法判定一相關性圖; 使用該處理器判定該相關性圖與一真實數據之間的一平均交疊率評分;及 使用該處理器基於該相關性圖及該平均交疊率評分判定貢獻於使用該深度學習模型之該分類之該等半導體影像之一者之一部分。
  2. 如請求項1之方法,其中該相關性圖係基於一輸出層之一相關性及早期層之相關性。
  3. 如請求項2之方法,其中該相關性圖經正規化。
  4. 如請求項2之方法,其中使用一方程式
    Figure 03_image001
    針對各層判定該等早期層之該相關性,其中
    Figure 03_image003
    係一第一層處之一神經元
    Figure 03_image005
    之相關性,
    Figure 03_image007
    係一第二層處之神經元
    Figure 03_image009
    之一相關性,
    Figure 03_image011
    係該神經元
    Figure 03_image013
    之一激活,且
    Figure 03_image015
    係該神經元
    Figure 03_image017
    與該神經元
    Figure 03_image019
    之間的一權重。
  5. 如請求項1之方法,其進一步包括使用該處理器平滑化該複數個半導體影像。
  6. 如請求項1之方法,其進一步包括改變用於該深度學習模型之一訓練影像之一標註。
  7. 如請求項1之方法,其進一步包括改變用於該深度學習模型之一訓練影像之一類別代碼。
  8. 如請求項1之方法,其進一步包括用使用一電子束之一晶圓檢測工具產生該等半導體影像。
  9. 一種晶圓檢測工具,其包括: 一能量束源,其產生一能量束; 一載物台,其經組態以固持一晶圓; 一偵測器,其接收自該晶圓返回之該能量束;及 一處理器,其與該偵測器電子通信,其中該處理器經組態以: 使用自該偵測器接收之資料產生複數個半導體影像; 使用一深度學習模型對該複數個半導體影像執行缺陷偵測及分類; 自該深度學習模型對該等半導體影像應用一逐層相關性傳播演算法; 基於該逐層相關性傳播演算法判定一相關性圖; 判定該相關性圖與一真實數據之間的一平均交疊率評分;及 基於該相關性圖及該平均交疊率評分判定貢獻於使用該深度學習模型之該分類之該等半導體影像之一者之一部分。
  10. 如請求項9之晶圓檢測工具,其中該相關性圖係基於一輸出層之一相關性及早期層之相關性。
  11. 如請求項10之晶圓檢測工具,其中該相關性圖經正規化。
  12. 如請求項10之晶圓檢測工具,其中使用一方程式
    Figure 03_image001
    針對各層判定該等早期層之該相關性,其中
    Figure 03_image003
    係一第一層處之一神經元
    Figure 03_image005
    之相關性,
    Figure 03_image007
    係一第二層處之神經元
    Figure 03_image009
    之一相關性,
    Figure 03_image011
    係該神經元
    Figure 03_image013
    之一激活,且
    Figure 03_image015
    係該神經元
    Figure 03_image017
    與該神經元
    Figure 03_image019
    之間的一權重。
  13. 如請求項9之晶圓檢測工具,其中該能量束係一電子束且該能量束源係一電子束源。
  14. 一種非暫時性電腦可讀儲存媒體,其包括用於在一或多個運算裝置上執行以下步驟之一或多個程式: 使用一深度學習模型對複數個半導體影像執行缺陷偵測及分類; 自該深度學習模型對該等半導體影像應用一逐層相關性傳播演算法; 基於該逐層相關性傳播演算法判定一相關性圖; 判定該相關性圖與一真實數據之間的一平均交疊率評分;及 基於該相關性圖及該平均交疊率評分判定貢獻於使用該深度學習模型之該分類之該等半導體影像之一者之一部分。
  15. 如請求項14之非暫時性電腦可讀儲存媒體,其中該相關性圖係基於一輸出層之一相關性及早期層之相關性。
  16. 如請求項15之非暫時性電腦可讀儲存媒體,其中該相關性圖經正規化。
  17. 如請求項15之非暫時性電腦可讀儲存媒體,其中使用一方程式
    Figure 03_image001
    針對各層判定該等早期層之該相關性,其中
    Figure 03_image003
    係一第一層處之一神經元
    Figure 03_image005
    之相關性,
    Figure 03_image007
    係一第二層處之神經元
    Figure 03_image009
    之一相關性,
    Figure 03_image011
    係該神經元
    Figure 03_image013
    之一激活,且
    Figure 03_image015
    係該神經元
    Figure 03_image017
    與該神經元
    Figure 03_image019
    之間的一權重。
  18. 如請求項14之非暫時性電腦可讀儲存媒體,其中該等步驟進一步包括使用來自使用一電子束之一晶圓檢測工具之資料產生該等半導體影像。
TW110134048A 2020-09-27 2021-09-13 基於可解釋深度學習之缺陷偵測及分類 TW202217634A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/033,887 2020-09-27
US17/033,887 US20220101114A1 (en) 2020-09-27 2020-09-27 Interpretable deep learning-based defect detection and classification

Publications (1)

Publication Number Publication Date
TW202217634A true TW202217634A (zh) 2022-05-01

Family

ID=80821274

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110134048A TW202217634A (zh) 2020-09-27 2021-09-13 基於可解釋深度學習之缺陷偵測及分類

Country Status (7)

Country Link
US (1) US20220101114A1 (zh)
EP (1) EP4222482A1 (zh)
JP (1) JP2023544502A (zh)
KR (1) KR20230075434A (zh)
CN (1) CN116209895A (zh)
TW (1) TW202217634A (zh)
WO (1) WO2022066489A1 (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9171364B2 (en) * 2013-06-21 2015-10-27 Kla-Tencor Corp. Wafer inspection using free-form care areas
US9816939B2 (en) * 2014-07-22 2017-11-14 Kla-Tencor Corp. Virtual inspection systems with multiple modes
US11580398B2 (en) * 2016-10-14 2023-02-14 KLA-Tenor Corp. Diagnostic systems and methods for deep learning models configured for semiconductor applications
US10825650B2 (en) * 2018-09-28 2020-11-03 Taiwan Semiconductor Manufacturing Co., Ltd. Machine learning on wafer defect review
US10672588B1 (en) * 2018-11-15 2020-06-02 Kla-Tencor Corporation Using deep learning based defect detection and classification schemes for pixel level image quantification
JP2020123329A (ja) * 2020-01-10 2020-08-13 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 人工ニューラルネットワークの関連性スコア割当て
US11379972B2 (en) * 2020-06-03 2022-07-05 Applied Materials Israel Ltd. Detecting defects in semiconductor specimens using weak labeling

Also Published As

Publication number Publication date
WO2022066489A1 (en) 2022-03-31
EP4222482A1 (en) 2023-08-09
KR20230075434A (ko) 2023-05-31
JP2023544502A (ja) 2023-10-24
CN116209895A (zh) 2023-06-02
US20220101114A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
KR102466582B1 (ko) 결함 분류기 트레이닝을 위한 능동적 학습
US10789703B2 (en) Semi-supervised anomaly detection in scanning electron microscope images
JP7216822B2 (ja) 画素レベル画像定量のための深層学習式欠陥検出及び分類方式の使用
TWI769371B (zh) 用於半導體裝置之檢測方法及系統,以及其非暫時性電腦可讀媒體
CN110770886B (zh) 用于使用半导体制造工艺中的深度学习预测缺陷及临界尺寸的系统及方法
TWI782229B (zh) 在半導體製造中使用隨機失效指標
JP2019537839A (ja) 半導体用途向けに構成された深層学習モデルのための診断システムおよび方法
TW201921542A (zh) 識別在一晶圓上偵測到之缺陷中之損害及所關注缺陷
KR20210135416A (ko) 시편의 검사를 위한 알고리즘 모듈들의 자동 선택
CN110582842A (zh) 依据光学检验结果进行计量导引检验样品成形
TW202217634A (zh) 基於可解釋深度學習之缺陷偵測及分類
CN110741466B (zh) 基于扰乱点图的宽带等离子检验