TW202217238A - 焊料印刷檢查裝置 - Google Patents
焊料印刷檢查裝置 Download PDFInfo
- Publication number
- TW202217238A TW202217238A TW110131021A TW110131021A TW202217238A TW 202217238 A TW202217238 A TW 202217238A TW 110131021 A TW110131021 A TW 110131021A TW 110131021 A TW110131021 A TW 110131021A TW 202217238 A TW202217238 A TW 202217238A
- Authority
- TW
- Taiwan
- Prior art keywords
- solder paste
- predetermined
- dimensional
- data
- dimensional measurement
- Prior art date
Links
- 229910000679 solder Inorganic materials 0.000 title claims abstract description 371
- 238000007689 inspection Methods 0.000 title claims abstract description 202
- 238000007639 printing Methods 0.000 title claims abstract description 90
- 238000005259 measurement Methods 0.000 claims abstract description 112
- 238000013528 artificial neural network Methods 0.000 claims description 40
- 239000000758 substrate Substances 0.000 claims description 14
- 238000013075 data extraction Methods 0.000 claims description 8
- 239000000284 extract Substances 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 238000005286 illumination Methods 0.000 abstract description 26
- 238000005476 soldering Methods 0.000 abstract description 25
- 238000003384 imaging method Methods 0.000 abstract description 16
- 239000006071 cream Substances 0.000 abstract 4
- 238000000034 method Methods 0.000 description 106
- 230000008569 process Effects 0.000 description 86
- 238000012545 processing Methods 0.000 description 48
- 230000007547 defect Effects 0.000 description 32
- 230000007246 mechanism Effects 0.000 description 26
- 230000002950 deficient Effects 0.000 description 24
- 238000013473 artificial intelligence Methods 0.000 description 20
- 230000006870 function Effects 0.000 description 15
- 239000004973 liquid crystal related substance Substances 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 230000010363 phase shift Effects 0.000 description 10
- 238000004891 communication Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000004907 flux Effects 0.000 description 7
- 238000000691 measurement method Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000003086 colorant Substances 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/08—Monitoring manufacture of assemblages
- H05K13/081—Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
- H05K13/0817—Monitoring of soldering processes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/08—Monitoring manufacture of assemblages
- H05K13/083—Quality monitoring using results from monitoring devices, e.g. feedback loops
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30141—Printed circuit board [PCB]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30152—Solder
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/04—Mounting of components, e.g. of leadless components
- H05K13/046—Surface mounting
- H05K13/0465—Surface mounting by soldering
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Operations Research (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Quality & Reliability (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Image Analysis (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
[課題]提供一種可抑制焊接不良的發生等之焊料印刷檢查裝置。
[解決手段]焊料印刷檢查裝置13係在回焊前檢查被印刷於印刷基板1上之焊膏的印刷狀態之檢查裝置,具備有對印刷基板1照射光之照明裝置32A、32B、以及對被照射該光的印刷基板1進行拍攝之相機32D,依據所取得的影像資料取得被印刷於印刷基板1上之焊膏的三維測量資料,據此抽出和焊膏的既定高度以上的上部部分相關之上部形狀資料,藉由將其與既定的判定基準作比較,來判定和焊膏的上部部分相關之三維形狀的良否。
Description
本發明係關於檢查被印刷於印刷基板之焊膏的印刷狀態之焊料印刷檢查裝置。
一般,在印刷基板上安裝電子零件的基板生產線中,首先在印刷基板的焊盤(land)上印刷焊膏(焊料印刷工序)。接著,依據該焊膏的黏性,將電子零件暫時固定於印刷基板上(安裝工序;mount process)。其後,此印刷基板被導入回焊爐,藉由將焊膏加熱熔融來進行焊接(回焊工序)。
通常,在此種基板生產線中,設有檢查被印刷於印刷基板之焊膏的印刷狀態之焊料印刷檢查裝置。
作為焊料印刷檢查裝置之一,已知有例如對印刷於印刷基板的焊膏進行三維測量,求得印刷位置、面積、高度、體積等關於該焊膏的各種測量資料,藉由比較該測量資料和預先設定的檢查基準資料,進行焊膏之印刷狀態的良否判定(例如,參照專利文獻1)。
[先前技術文獻]
[專利文獻]
[專利文獻1]日本特開2017-75899號公報
[發明欲解決之課題]
然而,以往,在焊料印刷檢查階段中,即便焊膏的印刷位置或面積、高度、體積等各種測量資料滿足檢查基準,在回焊後,如圖10(a)、(b)所示,會有發現在印刷基板1上的焊盤3側部等附著微小的焊料碎片(以下,稱為「焊球」。)205,會在電子零件的電極25a與焊盤3的焊料接合部(熔融固化的焊膏)202內形成空洞206等之焊接不良(接合不良)的情況。若電子零件的焊接未適當地進行,則恐有不良品的發生率變高之虞。
關於在此種回焊後發現之焊接不良的發生要因,認為有各種要因,而其要因之一,認為係在回焊前的焊料印刷工序中,因印刷於焊盤上之焊膏的三維形狀的好壞所致。
在焊膏被加熱熔融的回焊工序中,包含於焊膏的助熔劑(flux)會氣化。又,回焊工序中之焊膏的熔融,係從與高溫外部空氣接觸之焊膏的外側開始朝內側進行。
因此,例如圖9(a)所示,在印刷於焊盤3上之焊膏5的頂部存在凹坑5c,如圖9(b)所示,當在該凹坑5c上載置了電子零件的電極25a之情況,因為稱為所謂「熔融焊料的壁」等在回焊工序的初期階段中先熔融之焊膏5的露出部分5d、或載置於焊膏5上之電子零件的電極25a等的關係,會成為內部的未熔融焊膏5所含之助熔劑及其氣化氣體朝外部的流出路徑(散逸路)被堵塞的狀態,會有該等積留在凹坑5c的內部之情況。
之後,若積留在凹坑5c內的助熔劑氣化氣體突破露出部分5d(熔融焊料的壁)而猛烈噴出時,會擠壓熔融的焊膏5(或未熔融的焊膏5)而形成焊球205。
反之,若積留在凹坑5c內的助熔劑氣化氣體沒有漏洩掉而維持原樣導致焊膏5熔融固化時,便會在焊料接合部202內形成空洞206。
此外,回焊後可能成為上述之焊接不良的焊膏5的三維形狀並不限於形成有如圖9(a)等所示之凹坑5c的形狀。例如,即便在印刷於焊盤3上之焊膏5的形狀變形,其厚度有偏差不均的情況亦是,助熔劑氣化氣體從變厚的部分之漏洩變差,會有發生同樣的不良情況之虞。
本發明係有鑑於上述情事而開發者,其目的在提供一種可抑制焊接不良的發生等之焊料印刷檢查裝置。
[用以解決課題之手段]
以下,針對適合於解決上述課題的各手段,分項進行說明。此外,依需要,在對應的手段附記特有的作用效果。
手段1.一種焊料印刷檢查裝置,係在回焊前(回焊工序的前階段、零件搭載前)檢查被印刷於印刷基板上之焊膏的印刷狀態,
其特徵為具備:
照射手段,可對前述印刷基板照射既定光;
拍攝手段,可對被照射前述既定光的前述印刷基板進行拍攝;
三維測量手段,依據藉前述拍攝手段所取得的影像資料,可取得被印刷於前述印刷基板上之既定(既定位置)焊膏的三維測量資料;
上部形狀資料抽出手段,依據藉前述三維測量手段所取得之前述既定焊膏的三維測量資料,可抽出和該焊膏的既定高度以上的上部部分相關之上部形狀資料;以及
上部形狀良否判定手段,將和前述既定焊膏相關的上部形狀資料與既定的判定基準相比較,藉此可判定至少和前述既定焊膏的上部部分相關之三維形狀的良否。
此外,在以下的手段中亦相同,而作為上述「既定高度」,可設定既定的高度基準面(測量基準面)除外之任意的高度位置。例如,可設定從被印刷有焊膏的焊盤上面或其周邊的阻劑上面等既定的高度基準面的高度位置僅隔既定距離之上方的高度位置、或從所測量到之焊膏的頂部的高度位置僅隔既定距離之下方的高度位置等。
根據上述手段1,首先依據對印刷於印刷基板上的既定焊膏拍攝所得的影像資料,取得該焊膏的三維測量資料。接著,依據此既定焊膏的三維測量資料,抽出和該焊膏的既定高度以上的上部部分相關的上部形狀資料。然後,將此上部形狀資料與既定的判定基準作比較,藉以判定既定焊膏之上部部分的三維形狀的良否。
作為一例,可舉出:對被印刷在作為檢查對象之既定位置的焊盤上之既定焊膏的上部部分相關的三維形狀(上部形狀資料)、和預先設定作為既定的判定基準之既定的三維形狀(上部形狀資料)作比較,藉由其差是否在容許範圍內來進行良否判定之構成等。
在此,作為預先設定之「既定的判定基準(既定的三維形狀)」,可採用例如作業者視為良品之具有既定三維形狀之焊膏的上部部分相關的上部形狀資料、或印刷在回焊後沒看到焊接不良之既定位置(與檢查對象同一位置)的焊盤上之回焊前的焊膏的上部部分相關的上部形狀資料等。
根據本手段,如習知,僅藉由對印刷於印刷基板上之焊膏的面積和高度、體積等進行比較判定的檢查難以檢測之可能成為回焊後發現焊接不良(焊球或空洞等)的原因之焊膏的形狀不良處(凹坑等),係可在回焊前的焊料印刷檢查工序中事先檢測。結果,可抑制回焊後的焊接不良的發生。
此外,本手段中,由於係構成為不是對印刷於印刷基板上的既定位置之焊膏的三維形狀整體進行良否判定,而是僅對該焊膏的上部部分相關的三維形狀(上部形狀資料)進行良否判定,所以與對該焊膏整體進行良否判定之情況相比,可謀求減輕處理負擔。
如圖8(a)所示,印刷於印刷基板1的焊盤3上之焊膏5,其剖面形狀呈大致矩形是理想的,但現實上,如圖8(b)所示,因為印刷時焊膏5從網遮罩開口部周緣滲入、或印刷後焊料粒子從焊膏5側面崩塌等的關係,會在與焊膏5下部的焊盤3之根部,形成緩緩傾斜而變廣的緩坡部5a。
如此形成的焊料緩坡部5a,當然其形狀不穩定,形狀會依各焊膏5而不同。因此,假設在以包含焊料緩坡部5a之焊膏5整體的三維形狀作為比較檢查對象的情況,不得不將判定基準的容許範圍設得較大,會有檢查精度降低之虞。又,處理負擔也明顯增大。
因包含焊料緩坡部5a之焊膏5的下部部分相關的形狀不良而可能產生的問題,主要可依據面積不良、位置偏移、或跨越複數個焊盤間而存在且使印刷基板上的電路短路之焊橋的有無等、焊膏5的二維形狀等,來進行良否判定,未必需要進行三維形狀的良否判定。
亦即,根據本手段,藉由排除焊膏的下部部分(緩坡部)相關的三維形狀檢查,可實現以往實際上難以達成高檢查效率及高檢查精度之焊膏的三維形狀檢查。
手段2.如手段1之焊料印刷檢查裝置,其具備識別手段(生成模型),係使神經網路僅將和良品的前述焊膏相關的前述上部形狀資料作為學習資料學習所生成,該神經網路具有從輸入的形狀資料抽出特徵量之編碼部(encoder)、以及從該特徵量重建形狀資料之解碼部(decoder),
前述上部形狀良否判定手段具備:
重建形狀資料取得手段,可取得關於前述既定焊膏的前述上部形狀資料作為重建上部形狀資料,前述上部形狀資料係將以藉前述上部形狀資料抽出手段抽出之和前述既定焊膏相關的前述上部形狀資料作為原上部形狀資料並朝前述識別手段輸入所重建而得;及
比較手段,可比較前述原上部形狀資料和前述重建上部形狀資料,
構成為依據藉前述比較手段的比較結果,可判定關於前述既定焊膏的上部部分之三維形狀的良否。
以下的手段中亦同樣,作為上述「學習資料」使用之「良品的前述焊膏相關的前述上部形狀資料」,可使用目前為止的焊料印刷檢查中所儲存的形狀資料。例如,可利用印刷在回焊後沒看到焊接不良之印刷基板的焊盤上之回焊前的良品的焊膏的上部部分相關之部形狀資料等。不限定於此,亦可利用在印刷焊膏後作業者透過目視所篩選之沒有凹陷或偏倚等的形狀不良之良品的焊膏的上部部分相關之上部形狀資料等。
又,上述「神經網路」係包含例如具有複數個卷積層之卷積神經網路等。上述「學習」係包含例如深層學習(deep learning)等。上述「識別手段(生成模型)」係包含例如自編碼器(autoencoder)、或卷積自編碼器(Convolutional Auto-Encoder)等。
此外,回焊後可能成為產生焊球或空洞等焊接不良的原因之焊膏的不良處的形狀,係與良品的形狀不同,有各式各樣。因此,如上述手段1所示,即便作成將焊膏的下部部分(緩坡部)相關的三維形狀檢查排除,僅對焊膏的上部部分相關的三維形狀(上部形狀資料)進行良否判定之構成,但實質上也無法記憶全部的不良形狀的圖案,藉由圖案匹配等,來檢測出成為檢查對象之焊膏的不良形狀。
又,焊膏係將約30μm左右的微小焊料粒子以助熔劑混練而形成者,所以容易崩塌,即便在同一印刷基板上,印刷在各焊盤上的形狀也有各式各樣。因此,即便想要作成以既定的良品形狀作為判定基準來記憶,將偏離該容許範圍的形狀判定為不良之構成,設定判定基準本身有其困難性,恐有非常難以作成用以檢測焊膏的形狀不良處的算法(algorithm)之虞。
對此,根據上述手段2,使用學習神經網路而建構成的自編碼器等的識別手段(生成模型),判定被印刷在印刷基板的焊盤上之焊膏的上部部分是否有可能成為於回焊後產生焊球或空洞等焊接不良的原因之形狀不良處。藉此,可將以往難以檢測之焊膏的形狀不良處以良好精度進行檢測。
再者,本手段中,由於係針對將作為檢查對象之既定焊膏進行三維測量所得的原上部形狀資料(原來的上部形狀資料)、與依據該原上部形狀資料重建所得的重建上部形狀資料(經重建的上部形狀資料)作比較,所以在比較的兩形狀資料中,不會有基於屬於檢查對象物之印刷基板側的拍攝條件(例如印刷基板的配置位置、配置角度或撓曲等)、或檢查裝置側的拍攝條件(例如照明狀態或相機的視角等)之不同所產生的影響,可更正確地檢測形狀不良處。
又,若在對印刷於印刷基板上之既定位置的焊盤之焊膏進行三維形狀檢查時,在作為良否判定基準必須有關於作為檢查對象之既定位置的焊盤及印刷於此之焊膏的印刷設定資訊(位置資料、尺寸資料或形狀資料等)之構成中,預先記憶Gerber(二維向量圖檔格式)資料等基板設計資訊,每次取得作為檢查對象之既定位置的焊盤及印刷於此之焊膏相關的印刷設定資訊,一邊與該印刷設定資訊作比較一邊進行被印刷在作為檢查對象之既定位置的焊盤之焊膏的三維形狀的良否判定,所以會有檢查效率顯著降低之虞。又,必須正確地進行對印刷基板的檢查位置之定位。
對此,根據本手段,由於係成為利用自編碼器等的識別手段,進行被印刷於各焊盤之焊膏的三維形狀檢查之構成,所以也不需要預先記憶存在於印刷基板上的多數個焊盤及分別印刷於此等焊盤之焊膏各自的印刷設定資訊,也不需要在三維形狀檢查時參照該資訊,因此可謀求提升檢查效率。
再者,如將作為檢查對象之經三維測量之既定位置的焊膏的上部部分相關的上部形狀資料、與對應於該既定位置而預先設定之既定的判定基準(良品的上部形狀資料)加以比較的情況等所示,不需要進行檢查對象和判定基準的對位、或配合檢查對象使判定基準的朝向(姿勢)旋轉等的調整,所以可謀求三維形狀檢查的高速化。結果,關於一個焊膏的三維形狀檢查之處理數格外地減少,可格外地加速檢查處理速度。
手段3.如手段1或2之焊料印刷檢查裝置,其中
前述上部形狀資料抽出手段係構成為從藉前述三維測量手段所取得之前述既定焊膏的三維測量資料,至少切掉小於包含前述既定焊膏的緩坡部之該焊膏的既定高度的下部部分相關的下部形狀資料,藉此可抽出前述上部形狀資料。
此外,如上述,上述「既定高度」,除了既定的高度基準面(測量基準面)以外,可任意地設定。例如,亦可將「既定高度」設為(1)與焊盤上面或阻劑膜上面等既定的高度基準面相距「一個焊料的粒徑份量的高度」,亦可設為(2)與既定的高度基準面相距「20~40μm的高度」,亦可設為(3)「成為良品之焊膏的印刷高度的1/3的高度」,亦可設為(4)「使用於焊料印刷時之網遮罩的厚度的1/3的高度」。
手段4.如手段1至3中任一手段之焊料印刷檢查裝置,其中
前述照射手段係構成為可照射作為前述既定光的三維測量用光(例如具有條紋狀光強度分布的圖案光),
前述三維測量手段係構成為依據照射前述三維測量用光且藉前述拍攝手段所取得的影像資料,可取得前述既定焊膏的三維測量資料。
根據上述手段4,例如,藉由利用既定的三維測量法,取得焊膏的三維測量資料,可以更佳的精度掌握包含形狀不良處之焊膏的三維形狀。其結果,可謀求提升檢查精度。
此外,作為上述「三維測量法」的一例,可舉出:依據在不同相位的複數種圖案光下所取得之複數種影像資料,取得三維測量資料之相移法等。
手段5.如手段1至4中任一手段之焊料印刷檢查裝置,其具備有三維良否判定手段,其依據藉前述三維測量手段所取得之前述既定焊膏的三維測量資料,可針對關於該既定焊膏之既定的三維資訊(例如體積或高度等)進行良否判定。
根據上述手段5,除了關於上述手段1等的構成外,藉由對焊膏相關的既定的三維資訊(體積或高度等)進行良否判定,可謀求進一步提升檢查精度。
手段6.如手段1至5中任一手段之焊料印刷檢查裝置,其具備有二維良否判定手段,其依據藉前述三維測量手段所取得之前述既定焊膏的三維測量資料,可對關於該既定焊膏之既定的二維資訊(例如面積、位置、二維形狀或焊橋等)進行良否判定。
根據上述手段6,除了上述手段1等相關的構成外,藉由進行焊膏的二維檢查,可謀求進一步提升檢查精度。此外,藉由如本手段所示進行二維檢查,可將關於上述手段1等的三維形狀檢查中關於已被排除之焊膏的下部部分(包含形狀不穩定的緩坡部)的實質檢查,在不增加太多的負荷的情況下進行。
手段7.如手段1至5中任一手段之焊料印刷檢查裝置,其中前述照射手段係構成為可照射作為前述既定光的二維測量用光(例如均一光),
具備有:
二維測量手段,依據照射前述二維測量用光且藉前述拍攝手段所取得的影像資料,可取得前述既定焊膏的二維測量資料;及
二維良否判定手段,依據藉前述二維測量手段所取得之前述既定焊膏的二維測量資料,可對關於該既定焊膏之既定的二維資訊(例如面積、位置、二維形狀或焊橋等)進行良否判定。
根據上述手段7,可發揮與上述手段6同樣的作用效果。
[用以實施發明的形態]
以下,就焊料印刷檢查裝置的一實施形態進行說明。首先,就成為焊料印刷檢查裝置的檢查對象之印刷基板的構成進行說明。圖1係放大印刷基板的一部分之部分放大平面圖。
如圖1所示,印刷基板1係在玻璃環氧樹脂等構成的平板狀基底基板2的表面,形成有由銅箔構成的配線圖案(省略圖示)、複數個焊盤3。又,在基底基板2的表面,於焊盤3除外的部分塗佈阻劑膜4。然後,在焊盤3上,印刷會成為測量對象的焊膏5。此外,圖1中,權宜上,在顯示焊膏5的部分附加散佈點狀圖樣。
接著,就製造印刷基板1的生產線(製造工序),參照圖2來作說明。圖2係顯示印刷基板1的生產線10的構成之方塊圖。在本實施形態的生產線10中,由其正面側觀看,設定成從左朝右搬送印刷基板1。
如圖2所示,在生產線10上,從其上游側(圖2左側)依序設置有焊料印刷機12、焊料印刷檢查裝置13、零件安裝機14、回焊裝置15、及回焊後檢查裝置16。
焊料印刷機12係進行在印刷基板1的各焊盤3上印刷焊膏5之焊料印刷工序。本實施形態中,藉由網版印刷進行焊膏5的印刷。具體而言,在網版印刷中,首先與印刷基板1上的各焊盤3對應地使形成有複數個開口部的網遮罩(screen mask)的下面抵接於印刷基板1。其後,藉由在該網遮罩上供給焊膏5以使刮板滑動,將焊膏5充填於開口部內。接著,藉由從網遮罩的下面撥開印刷基板1,在印刷基板1的各焊盤3上印刷既定形狀的焊膏5。
此外,如圖8(a)所示,印刷於印刷基板1的焊盤3上之焊膏5,其剖面形狀呈大致矩形是理想的,但現實上,如圖8(b)所示,因為印刷時焊膏5從網遮罩開口部周緣的滲入、或印刷後焊料粒子從焊膏5側面崩塌等的關係,會變成在與焊膏5下部的焊盤3之根部,形成緩緩傾斜而變廣的緩坡部5a。
焊料印刷檢查裝置13係進行焊料印刷檢查工序,其用來檢查印刷於焊盤3上之焊膏5的狀態。關於焊料印刷檢查裝置13的詳情,將於後闡述。
零件安裝機14係進行在印刷有焊膏5的焊盤3上搭載電子零件25(參照圖1)之零件安裝工序(mount process)。電子零件25具有複數個電極25a(參照圖9等),該電極25a分別暫時固定於既定焊膏5。
回焊裝置15係進行使焊膏5加熱熔融,將焊盤3和電子零件25的電極25a進行焊料接合(焊接)之回焊工序。
回焊後檢查裝置16係進行回焊後檢查工序,該回焊後檢查工序係針對在回焊工序中是否已適當地進行焊料接合等進行檢查。例如使用亮度影像資料等檢查電子零件25的位置偏移或焊球205〔參照圖10(a)、(b)〕的有無等,或使用X線透射影像資料等以檢查焊料接合部202內有無空洞206〔參照圖10(a)、(b)〕等。
亦即,在生產線10中,一邊依序搬送印刷基板1,一邊進行焊料印刷工序→焊料印刷檢查工序→零件安裝工序(mount process)→回焊工序→回焊後檢查工序。
此外,在生產線10上,於焊料印刷機12和焊料印刷檢查裝置13之間等,在上述各裝置間設有用以移送印刷基板1的輸送機(conveyor)等,但省略了圖示。又,在焊料印刷檢查裝置13與零件安裝機14之間或在回焊後檢查裝置16的下游側,設有分歧裝置。且,經焊料印刷檢查裝置13或回焊後檢查裝置16判定為良品的印刷基板1,係原樣地朝下游側被引導,另一方面,經判定為不良品的印刷基板1則透過分歧裝置朝不良品貯留部排出。
在此,針對焊料印刷檢查裝置13的構成,參照圖3、4詳細說明。圖3係示意顯示焊料印刷檢查裝置13之概略構成圖。圖4係顯示焊料印刷檢查裝置13的功能構成之方塊圖。
焊料印刷檢查裝置13具備有:搬送機構31,進行印刷基板1的搬送或定位等;檢查單元32,用以進行印刷基板1的檢查;及控制裝置33,以搬送機構31或檢查單元32的驅動控制為首,執行焊料印刷檢查裝置13內之各種控制、影像處理或演算處理(參照圖4)。
搬送機構31係具備沿著印刷基板1的搬入搬出方向配置之一對搬送軌道31a、以可對各搬送軌道31a旋轉的方式配設之環狀輸送帶31b、驅動該輸送帶31b之馬達等的驅動手段(省略圖示)、以及用以將印刷基板1定位於既定位置之夾持機構(省略圖示),且藉由控制裝置33(後述的搬送機構控制部79)進行驅動控制。
在上述構成下,被搬入焊料印刷檢查裝置13的印刷基板1,其與搬入搬出方向正交之寬度方向的兩側緣部係分別被插入搬送軌道31a,並載置於輸送帶31b上。接著,輸送帶31b開始動作,印刷基板1被搬送到既定的檢查位置為止。當印刷基板1到達檢查位置時,輸送帶31b便停止,同時夾持機構作動。藉由此挾持機構的動作,輸送帶31b被往上推,成為藉由輸送帶31b與搬送軌道31a的上邊部而挾持印刷基板1的兩側緣部之狀態。藉此,印刷基板1被定位固定於檢查位置。當檢查結束時,便解除藉由挾持機構之固定,並且輸送帶31b開始動作。藉此,印刷基板1從焊料印刷檢查裝置13被搬出。當然,搬送機構31的構成並不限定於上述形態,亦可採用其他構成。
檢查單元32係配設於搬送軌道31a(印刷基板1的搬送路)的上方。檢查單元32係具備屬於三維測量用照射手段之第1照明裝置32A及第2照明裝置32B、屬於二維測量用照射手段之第3照明裝置32C、將印刷基板1上的既定檢查範圍從正上方進行拍攝之作為拍攝手段的相機32D、可朝X軸方向(圖3左右方向)移動之X軸移動機構32E(參照圖4)、和可朝Y軸方向(圖3前後方向)移動之Y軸移動機構32F(參照圖4),並藉由控制裝置33(後述的移動機構控制部76)進行驅動控制。
此外,印刷基板1的「檢查範圍」,係以相機32D的拍攝視野(拍攝範圍)的大小作為1單位而預先設定於印刷基板1之複數個區域中的一個區域。
控制裝置33(移動機構控制部76),係可藉由驅動控制X軸移動機構32E及Y軸移動機構32F,而將檢查單元32朝定位固定於檢查位置之印刷基板1的任意檢查範圍的上方位置移動。並且,構成為藉由一邊使檢查單元32依序移動到設定於印刷基板1的複數個檢查範圍,一邊執行該檢查範圍的檢查,來執行印刷基板1全部區域的檢查。
第1照明裝置32A及第2照明裝置32B係具有在進行焊膏5的三維測量時,分別對印刷基板1上的既定檢查範圍從斜上方照射三維測量用的既定光(具有條紋狀光強度分布的圖案光)之功能。
具體而言,第1照明裝置32A係具備發出既定光的第1光源32Aa、和將由該第1光源32Aa發出的光轉換成具有條紋狀光強度分布的第1圖案光之形成第1格子的第1液晶光閘32Ab,並藉控制裝置33(後述的照明控制部72)驅動控制。
第2照明裝置32B係具備發出既定光的第2光源32Ba、和將由該第2光源32Ba發出的光轉換成具有條紋狀光強度分布的第2圖案光之形成第2格子的第2液晶光閘32Bb,並藉由控制裝置33(後述的照明控制部72)驅動控制。
在上述構成下,由各光源32Aa、32Ba發出的光係分別導引到聚光透鏡(省略圖示),於此形成平行光後,透過液晶光閘32Ab、32Bb導引到投影透鏡(省略圖示),並以圖案光的形式投影到印刷基板1。又,在本實施形態中,以各圖案光的相位分別各位移四分之一間距的方式,進行液晶光閘32Ab、32Bb的切換控制。
此外,藉由以液晶光閘32Ab、32Bb作為格子使用,可照射接近理想的正弦波之圖案光。藉此,三維測量的測量解析度得以提升。又,可電性地進行圖案光的相移控制,達成裝置的小型緊密化。
第3照明裝置32C係以在進行用以抽出印刷基板1上的焊盤3或焊膏5等各種領域的二維測量時,對印刷基板1上的既定檢查範圍照射二維測量用的既定光(例如均一光)之方式構成。
具體而言,第3照明裝置32C具備有:可照射藍色光之環形燈具(ring light)、可照射綠色光之環形燈具、及可照射紅色光之環形燈具。此外,第3照明裝置32C由於係與週知技術同樣的構成,故省略關於其詳細的說明。
相機32D係以具有CCD(Charge Coupled Device,電荷耦合元件)型影像感測器或CMOS(Complementary Metal Oxide Semiconductor,互補金氧半導體)型影像感測器等的拍攝元件、和對該拍攝元件使印刷基板1的影像成像之光學系(透鏡單元或光闌等),且其光軸沿著上下方向(Z軸方向)之方式配置。當然,拍攝元件並不限定於此等,亦可採用其他的拍攝元件。
相機32D係藉由控制裝置33(後述的相機控制部73)驅動控制。更詳言之,控制裝置33係一邊與利用各照明裝置32A、32B、32C所進行的照射處理同步,一邊執行利用相機32D的拍攝處理。藉此,從照明裝置32A、32B、32C的任一者照射的光中之在印刷基板1反射的光係藉由相機32D拍攝,而生成影像資料。
此外,本實施形態中的相機32D係由彩色相機(color camera)構成。藉此,可從第3照明裝置32C的各色環形燈具同時照射,將反射到印刷基板1的各色光一次拍攝。
如此藉相機32D拍攝且生成的影像資料,係在該相機32D的內部轉換成數位信號後,以數位信號的形式傳送到控制裝置33(後述的影像取得部74)並記憶。接著,控制裝置33(後述的資料處理部75等)係依據該影像資料,實施後述的各種影像處理或演算處理等。
控制裝置33係由包含執行既定的演算處理之CPU(Central Processing Unit,中央處理單元)、記憶各種程式或固定值資料等的ROM(Read Only Memory,唯讀記憶體)、在各種演算處理的執行時暫時記憶各種資料之RAM(Random Access Memory,隨機存取記憶體)及此等的周邊電路等之電腦所構成。
且,控制裝置33係藉由CPU根據各種程式動作,而發揮作為後述之主控制部71、照明控制部72、相機控制部73、影像取得部74、資料處理部75、移動機構控制部76、學習部77、檢查部78、搬送機構控制部79等的各種功能部之功能。
其中,上述各種功能部係藉由上述CPU、ROM、RAM等各種硬體協同作用而實現,不需要明確地區別以硬體或軟體實現的功能,此等功能的一部分或全部亦可藉由IC等硬體電路實現。
再者,於控制裝置33設有:由鍵盤、滑鼠或觸控面板等所構成的輸入部55;具有液晶顯示器等的顯示畫面之顯示部56;可記憶各種資料、程式、演算結果或檢查結果等的記憶部57;以及可與外部收發各種資料之通訊部58等。
在此,針對構成控制裝置33之上述各種功能部詳細地說明。主控制部71係掌管焊料印刷檢查裝置13整體的控制之功能部,構成為可與照明控制部72或相機控制部73等其他功能部收發各種信號。
照明控制部72係驅動控制照明裝置32A、32B、32C的功能部,依據來自主控制部71的指令信號,進行照射光的切換控制等。
相機控制部73係驅動控制相機32D之功能部,依據來自主控制部71的指令信號控制拍攝時間點等。
影像取得部74係用以取入藉相機32D所拍攝並取得的影像資料之功能部。
資料處理部75係對藉由影像取得部74取入的影像資料實施既定的影像處理,或使用該影像資料進行二維測量處理或三維測量處理等之功能部。例如,在後述的學習處理中,生成學習用形狀資料(學習用上部形狀資料),其會成為使用於深度神經網路90(以下,簡稱為「神經網路90」。參照圖5。)的學習之學習資料。又,在後述的檢查處理中,生成上部檢查用形狀資料(檢查用的上部形狀資料)。
移動機構控制部76係對X軸移動機構32E及Y軸移動機構32F進行驅動控制之功能部,依據來自主控制部71的指令信號,控制檢查單元32的位置。
學習部77係使用學習資料等進行神經網路90的學習,建構作為識別手段的AI(Artificial Intelligence,人工智慧)模型100之功能部。
此外,本實施形態中的AI模型(AI model)100係如後述具有所謂的自編碼器(Auto-Encoder)的構造,其係僅以回焊後沒看到異常(焊接不良)之良品的印刷基板1的焊料印刷檢查時所測量到之焊膏5的上部形狀資料作為學習資料,使神經網路90深層學習(deep learning)而建構成的生成模型。
在此,參照圖5,說明關於神經網路90的構造。圖5係概念地顯示神經網路90的構造之模式圖。如圖5所示,神經網路90具有卷積自編碼器(CAE:Convolutional Auto-Encoder)的構造,其具有:從輸入的形狀資料GA抽出特徵量(潛在變數)TA之作為編碼部的編碼器部91、和從該特徵量TA重建形狀資料GB之作為解碼部的解碼器部92。
由於卷積自編碼器的構造係為週知,故省略詳細的說明,而編碼器部91具有複數個卷積層(Convolution Layer)93,各卷積層93中,對輸入資料進行使用複數個過濾器(核心(kernel))94之卷積演算的結果係被作為下一層的輸入資料而輸出。同樣地,解碼器部92具有複數個反卷積層(Deconvolution Layer)95,各反卷積層95中,對輸入資料進行使用複數個過濾器(核心)96之反卷積演算的結果係被作為下一層的輸入資料而輸出。接著,在後述的學習處理中,更新各過濾器94、96的加權(參數)。
檢查部78係針對印刷於印刷基板1之焊膏5的印刷狀態進行檢查之功能部。例如在本實施形態中,針對在印刷於焊盤3上的焊膏5是否有凹坑5c〔參照圖9(a)、(b)〕等的形狀不良處進行三維形狀檢查。
搬送機構控制部79係對搬送機構31進行驅動控制之功能部,依據來自主控制部71的指令信號,控制印刷基板1的位置。
記憶部57係由HDD(Hard Disk Drive,硬碟機)或SSD(Solid State Drive,固態硬碟)等所構成,例如具有記憶AI模型100(神經網路90及藉由其學習獲得之學習資訊)之既定的記憶區域。
通訊部58係以具備例如基於有線LAN(Local Area Network,區域網路)或無線LAN等通訊規格之無線通訊介面等,可與外部收發各種資料之方式構成。例如藉檢查部78進行之檢查的結果等經由通訊部58被輸出到外部,藉回焊後檢查裝置16進行之檢查的結果經由通訊部58被輸入。
接著,參照圖6的流程圖,說明關於藉由焊料印刷檢查裝置13所進行之神經網路90的學習處理。
當依據既定的學習程式的執行,開始學習處理時,主控制部71最初在步驟S101中,執行用以進行神經網路90的學習之前處理。
在此前處理中,首先經由通訊部58取得儲存於回焊後檢查裝置16之多數印刷基板1的檢查資訊。接著,依據該檢查資訊,從記憶部57取得與在回焊後檢查合格之無焊接不良之良品的印刷基板1相關的三維測量資料(焊料印刷檢查時所測量到的多數焊膏5的三維測量資料)。此處理係進行到取得作為學習資料之必要數量的焊膏5的三維測量資料為止。
此外,於回焊後從檢查裝置16取得檢查資訊的印刷基板1,係以與作為檢查對象之印刷基板1相同構成者較佳。惟,印刷基板1的厚度、材質、大小或配置布局等不需要有同一性,以基於各式各樣種類的學習資料來學習者在通用性方面是較佳的。
當在步驟S101中取得學習所需數量的焊膏5的三維測量資料時,便在接下來的步驟S102中,依據來自主控制部71的指令,學習部77準備未學習的神經網路90。例如,讀取預先儲存於記憶部57等的神經網路90。或者,依據儲存於記憶部57等之網路構成資訊(例如神經網路的層數或各層的節點數等),建構神經網路90。
在步驟S103中,取得作為學習資料的學習用形狀資料(學習用的上部形狀資料)。具體而言,基於來自主控制部71的指令,資料處理部75依據在步驟S101中所取得之關於印刷基板1的三維測量資料,從該三維測量資料所包含的多數個焊膏5中抽出一個焊膏5,取得與該焊膏5的既定高度H以上之上部部分5b〔參照圖8(c)〕相關的上部形狀資料作為一個學習用形狀資料。接著,將該學習用形狀資料朝學習部77輸出。亦即,只有印刷在回焊後沒看到焊接不良之良品的印刷基板1的焊盤3上之回焊前的良品的焊膏5的上部部分5b相關之上部形狀資料被用作為學習資料(學習用形狀資料)。
在步驟S104中,取得重建形狀資料。具體而言,基於來自主控制部71的指令,學習部77將在步驟S103中所取得的學習用形狀資料作為輸入資料賦予到神經網路90的輸入層,藉此取得從神經網路90的輸出層輸出之重建形狀資料。
在接下來的步驟S105中,學習部77係比較在步驟S103中所取得之學習用形狀資料、和在步驟S104中藉由神經網路90所輸出的重建形狀資料,判定其誤差是否夠小(是否在既定的閾值以下)。
在此,在其誤差夠小的情況下,將神經網路90及其學習資訊(後述的更新後的參數等)作為AI模型100儲存於記憶部57,結束本學習處理。
另一方面,在其誤差不夠小的情況下,於步驟S106中進行網路更新處理(神經網路90的學習)後,再度返回步驟S103,重複進行上述一系列的處理。
具體而言,在步驟S106的網路更新處理中,例如使用誤差反向傳播法(Backpropagation)等週知的學習演算法,以表示學習用形狀資料與重建形狀資料的差分之損失函數變得極小的方式,將神經網路90中之上述各過濾器94、96的加權(參數)更新為更適當者。此外,作為損失函數,例如可利用BCE(Binary Cross-entropy,二元交叉熵)等。
藉由反覆進行此等處理好幾次,在神經網路90中,學習用形狀資料與重建形狀資料的誤差變得極小,可輸出更正確的重建形狀資料。
接著,針對藉由焊料印刷檢查裝置13進行的焊料印刷檢查處理,參照圖7的流程圖來說明。其中,圖7所示的檢查處理係按各印刷基板1的既定檢查範圍來執行的處理。
印刷基板1一被搬入焊料印刷檢查裝置13,且定位於既定的檢查位置時,便依據既定的檢查程式的執行,開始檢查處理。
當檢查處理開始進行時,首先在步驟S301中,執行三維測量用的影像資料取得處理。本實施形態中,在與印刷基板1的各檢查範圍相關的檢查中,係在一邊使自第1照明裝置32A所照射之第1圖案光的相位改變,一邊在相位不同的第1圖案光下進行4次拍攝處理後,一邊使自第2照明裝置32B照射之第2圖案光的相位改變,一邊在相位不同的第2圖案光下進行4次拍攝處理,取得總共8種影像資料。以下,詳細地說明。
如上述,當被搬入焊料印刷檢查裝置13的印刷基板1定位固定於既定的檢查位置時,基於來自主控制部71的指令,移動機構控制部76首先對X軸移動機構32E及Y軸移動機構32F進行驅動控制以使檢查單元32移動,使相機32D的拍攝視野(拍攝範圍)對準印刷基板1的既定檢查範圍。
同時,照明控制部72係對兩照明裝置32A、32B的液晶光閘(liquid crystal shutter)32Ab、32Bb進行切換控制,將形成於該兩液晶光閘32Ab、32Bb之第1格子及第2格子的位置設定在既定的基準位置。
當第1格子及第2格子的切換設定完成時,照明控制部72便使第1照明裝置32A的第1光源32Aa發光,照射第1圖案光,並且相機控制部73驅動控制相機32D,以執行在該第1圖案光下之第一次的拍攝處理。此外,藉由拍攝處理所產生的影像資料,隨時被取入影像取得部74(以下同樣)。藉此,取得含有複數個焊盤3(焊膏5)之檢查範圍的區域影像資料。
其後,照明控制部72係在第1圖案光下之第一次的拍攝處理結束的同時,熄滅第1照明裝置32A的第1光源32Aa,並且執行第1液晶光閘32Ab的切換處理。具體而言,將形成於第1液晶光閘32Ab之第1格子的位置從前述基準位置,切換設定到第1圖案光的相位偏移四分之一間距(90°)的第2位置。
當第1格子的切換設定完成時,照明控制部72便使第1照明裝置32A的光源32Aa發光,照射第1圖案光,並且相機控制部73驅動控制相機32D,以執行在該第1圖案光下之第二次的拍攝處理。之後,反覆進行同樣的處理,取得在相位各相差90°之第1圖案光下的4種區域影像資料。
接著,照明控制部72係使第2照明裝置32B的第2光源32Ba發光,照射第2圖案光,並且相機控制部73驅動控制相機32D,以執行在該第2圖案光下之第一次的拍攝處理。
然後,照明控制部72係在第2圖案光下的第一次拍攝處理結束之同時,將第2照明裝置32B的第2光源32Ba熄滅,並且執行第2液晶光閘32Bb的切換處理。具體而言,將形成於第2液晶光閘32Bb之第2格子的位置,從前述基準位置切換設定為第2圖案光的相位偏移四分之一間距(90°)之第2位置。
當第2格子的切換設定完成時,照明控制部72便使第2照明裝置32B的光源32Ba發光,照射第2圖案光,並且相機控制部73驅動控制相機32D,執行在該第2圖案光下之第二次的拍攝處理。以後,藉由反覆進行同樣的處理,取得在相位各相差90°之第2圖案光下的四種區域影像資料。
在下一個步驟S302中,執行二維測量用影像資料取得處理。本實施形態中,基於來自主控制部71的指令,在關於印刷基板1的各檢查範圍之檢查中,照明控制部72使第3照明裝置32C發光,一邊對既定檢查範圍照射均一光,同時相機控制部73一邊驅動控制相機32D,執行在該均一光下的拍攝處理。藉此,拍攝印刷基板1上的既定檢查範圍,取得關於該檢查範圍的區域影像資料(二維測量用的影像資料)。
在下一個步驟S303中,執行三維測量資料取得處理。具體而言,基於來自主控制部71的指令,資料處理部75基於在上述步驟S301中於各圖案光下所分別拍攝到的四種區域影像資料,利用週知的相移法,進行含有複數個焊膏5之既定檢查範圍的三維形狀測量,將這樣的測量結果(三維測量資料)記憶於記憶部57。藉由執行如此的處理之功能,構成本實施形態的三維測量手段。此外,本實施形態中,由於係從2方向照射圖案光以進行三維形狀測量,所以可防止產生沒有被照射圖案光之影子的部分。
在下一個步驟S304中,執行二維測量資料取得處理。具體而言,基於來自主控制部71的指令,資料處理部75基於在上述步驟S302中於均一光下所拍攝到的區域影像資料,進行含有複數個焊膏5之既定檢查範圍的二維形狀測量,將如此的測量結果(二維測量資料)記憶於記憶部57。藉由執行如此的處理之功能,構成本實施形態的二維測量手段。
在接下來的步驟S305中,取得關於各焊膏5之上部檢查用形狀資料(檢查用的上部形狀資料)。
具體而言,首先基於來自主控制部71的指令,資料處理部75係基於在上述步驟S303中所取得之既定檢查範圍的區域測量資料,測定包含於該區域測量資料之複數個焊膏5的全部,抽出各焊膏5相關的三維測量資料。
接著,抽出各焊膏5的既定高度H以上之上部部分5b相關的上部形狀資料。藉由執行如此的處理之功能,構成本實施形態的上部形狀資料抽出手段。
具體而言,從各焊膏5的三維測量資料,切掉小於包含緩坡部5a之該焊膏5的既定高度H之下部部分相關的下部形狀資料,藉此抽出上部部分5b相關的上部形狀資料。
此外,在此,「既定高度H」,除了既定的高度基準面(測量基準面)以外,可任意地設定。例如,亦可將「既定高度H」設為(1)與焊盤3上面或阻劑膜4上面等既定的高度基準面相距一個焊料的粒徑份量的高度,亦可設為(2)與既定的高度基準面相距20~40μm的高度,亦可設為(3)成為良品之焊膏5的印刷高度的1/3的高度,亦可設為(4)使用於焊料印刷時之網遮罩的厚度的1/3的高度。當然,「既定高度H」並不限定於此等,亦可設定其他的值。
接著,以此等作為焊膏5相關的原上部形狀資料,分別編號並登錄。本處理中,取得沒有形狀不良處之焊膏5〔例如參照圖8(b)〕的上部部分5b相關的原上部形狀資料、或有凹坑5c等一些形狀不良處之焊膏5〔例如參照圖9(a)、(b)〕的上部部分5b相關的原上部形狀資料等。
步驟S306中,執行重建處理(重建形狀資料取得處理)。藉由執行本處理的功能,構成本實施形態的重建形狀資料取得手段。
具體而言,基於來自主控制部71的指令,檢查部78將在步驟S305所取得之既定號碼(例如001號)的焊膏5相關的原上部形狀資料,輸入AI模型100的輸入層。接著,將藉由AI模型100所重建且從輸出層輸出的上部形狀資料取得作為關於前述既定號碼(例如001號)的焊膏5的重建上部形狀資料,並且將該重建上部形狀資料與同一號碼的原上部形狀資料賦予關聯而記憶。依此方式,本處理中,針對在步驟S305中所編號並登錄的所有焊膏5,取得重建上部形狀資料。
在此,AI模型100,係在例如將如圖8(b)等所示之沒有形狀不良處的焊膏5的上部部分5b相關的原上部形狀資料輸入之情況是當然的,即便在輸入如圖9(a)等所示之有形狀不良處之焊膏5的上部部分5b相關的原上部形狀資料的情況,亦如上述般藉由學習,而輸出如類似於圖8(b)之沒有形狀不良處的焊膏5的上部部分5b相關的形狀資料,作為重建上部形狀資料。
步驟S307中,針對印刷於各焊盤3之焊膏5的印刷狀態進行良否判定處理。
本實施形態中,執行針對關於焊膏5之既定的三維資訊進行良否判定之三維良否判定處理;針對關於焊膏5之既定的二維資訊進行良否判定之二維良否判定處理;及針對焊膏5的上部部分5b的三維形狀進行良否判定之上部形狀良否判定處理。
在三維良否判定處理中,係依據在上述步驟S303的三維測量資料取得處理所取得的三維測量資料,針對關於焊膏5之既定的三維資訊進行良否判定。藉由執行如此的處理之功能,構成本實施形態的三維良否判定手段。
具體而言,檢查部78係基於來自主控制部71的指令,首先根據在上述步驟S303中所取得的三維測量資料,算出焊膏5的「體積」及「高度」。接著,將此等焊膏5的「體積」及「高度」分別與預先記憶於記憶部57的基準資料作比較,判定焊膏5的「體積」及「高度」是否分別在基準範圍內。此外,關於此等檢查項目(三維資訊)的良否判定處理,由於係可藉由週知的方法執行,所以省略詳細的說明。
在二維良否判定處理中,依據在上述步驟S304的二維測量資料取得處理中所取得的二維測量資料,針對關於焊膏5之既定的二維資訊進行良否判定。藉由執行如此的處理之功能,構成本實施形態的二維良否判定手段。
具體而言,檢查部78係基於來自主控制部71的指令,首先根據在上述步驟S304中所取得的二維測量資料,算出焊膏5的「面積」及「位置偏移量」,並且進行涵蓋焊膏5的「二維形狀」及複數個焊盤3間之「焊橋(solder bridge)」的抽出。
接著,將焊膏5的「面積」及「位置偏移」,與「二維形狀」及「焊橋」分別與記憶於記憶部57的基準資料作比較,判定此等是否分別在基準範圍內。此外,關於此等檢查項目(二維資訊)的良否判定處理,由於係可藉由週知的方法執行,故省略詳細的說明。
上部形狀良否判定處理中,基於來自主控制部71的指令,檢查部78首先比較在上述的步驟S305、S306中所取得之同一號碼的原上部形狀資料、和會成為既定的判定基準的重建上部形狀資料,抽出兩形狀資料的差分。藉由執行如此的處理之功能,構成本實施形態的比較手段。
接著,檢查部78係判定與形狀不良處相當之兩形狀資料的差分是否大於既定的閾值。在此,在兩形狀資料的差分大於既定的閾值之情況,判定為「有形狀不良」。另一方面,在兩形狀資料的差分小於既定的閾值之情況,判定為「沒有形狀不良」。
例如,如圖9(a)所示,在焊膏5的頂部存在有凹坑5c的情況,當該凹坑5c的深度、寬度超過既定的閾值時,判定為「有形狀不良」。此外,藉由上部形狀良否判定處理判定為「有形狀不良」的部位,並不限於形成有凹坑5c的部位。例如,在印刷於焊盤3上之焊膏5的形狀變形且其厚度有偏差的情況,變厚的部分等被檢測出作為兩形狀資料的差分。
在此,檢查部78係在關於既定焊膏5之「三維資訊良否判定處理」、「二維資訊良否判定處理」及「上部形狀良否判定處理」的全部中判定為「良」的情況,針對該焊膏5判定為「良」,同時將該結果記憶於記憶部57。
另一方面,在關於既定焊膏5之「三維資訊良否判定處理」、「二維資訊良否判定處理」及「上部形狀良否判定處理」的任一者中判定為「不良」的情況,針對該焊膏5判定為「不良」,並且將該結果記憶於記憶部57。
接著,檢查部78係在針對包含於區域測量資料(印刷基板1的既定檢查範圍)的所有焊膏5判定為「良」的情況,將關於該區域測量資料的檢查範圍判定「良」,同時將該結果記憶於記憶部57,結束本處理。
另一方面,在包含於區域測量資料(印刷基板1的既定檢查範圍)的複數個焊膏5中判定為「不良」的焊膏5即便存在有一個的情況,將關於該區域測量資料的檢查範圍判定為「不良」,將該結果記憶於記憶部57,結束本處理。
接著,焊料印刷檢查裝置13,係在針對印刷基板1上的所有檢查範圍進行了上述焊料印刷檢查處理之結果,針對全部檢查範圍判定為「良」的情況,判定為沒有異常的印刷基板1(合格判定),將該結果記憶於記憶部57。
另一方面,焊料印刷檢查裝置13,係在印刷基板1上的所有檢查範圍中判定為「不良」的檢查範圍即便存在有一個的情況,判定為有不良處的印刷基板1(不合格判定),將該結果記憶於記憶部57,同時透過顯示部56和通訊部58等,將其要旨通知外部。
如以上詳述,本實施形態中,首先依據對印刷於印刷基板1之既定焊膏5拍攝所得的影像資料,取得該焊膏5的三維測量資料。接著,依據此既定焊膏5的三維測量資料,抽出該焊膏5的既定高度H以上之關於上部部分5b的上部形狀資料。接著,將此上部形狀資料與既定的判定基準作比較,判定既定焊膏5的上部部分5b的三維形狀之良否。
根據本實施形態,如習知,僅以對印刷於印刷基板1上之焊膏5的面積和高度、體積等進行比較判定的檢查難以進行檢測之、可能成為回焊後可見焊接不良(焊球205或空洞206等)的原因之焊膏5的形狀不良處(凹坑5c等),係可在回焊前的焊料印刷檢查工序中事先檢測。結果,可抑制回焊後的焊接不良的發生。
此外,本實施形態中,由於係構成為不是對印刷於印刷基板1的既定焊盤3之焊膏5的三維形狀整體進行良否判定,而是僅對該焊膏5的上部部分5b相關的三維形狀(上部形狀資料)進行良否判定,所以與對該焊膏5整體進行良否判定之情況相比,可謀求減輕處理負擔。
亦即,根據本實施形態,藉由排除關於焊膏5的下部部分(緩坡部5a)之三維形狀檢查,可實現以往實際上難達成之高檢查效率及高檢查精度之焊膏5的三維形狀檢查。
此外,可能成為回焊後產生焊球205或空洞206等的焊接不良的原因之焊膏5的不良處的形狀,係不同於良品的形狀,而有各式各樣。因此,如上述,即便構成為排除關於焊膏5的下部部分(緩坡部5a)之三維形狀檢查,僅對關於焊膏5的上部部分5b的三維形狀(上部形狀資料)進行良否判定,將不良形狀的圖案全部都加以記憶,藉由圖案匹配等,來檢測作為檢查對象之焊膏5的不良形狀實質上是不可能的。
又,焊膏5係將約30μm左右的微小焊料粒子以助熔劑混練而形成者,所以容易崩塌,即便在同一印刷基板1上,印刷在各焊盤3上的形狀也有各式各樣。因此,即便想要作成以既定的良品形狀作為判定基準來記憶,將偏離該容許範圍的形狀判定為不良之構成,設定判定基準本身有其困難性,恐有非常難以作成用以檢測焊膏5的形狀不良處的算法(algorithm)之虞。
對此,根據本實施形態,使用學習神經網路90而建構成的AI模型100,判定被印刷在印刷基板1的焊盤3上之焊膏5的上部部分5b,是否有可能成為於回焊後產生焊球205或空洞206等焊接不良的原因之形狀不良處。藉此,可將以往難以檢測之焊膏5的形狀不良處以良好精度進行檢測。
再者,本實施形態中,由於係針對將作為檢查對象之既定焊膏5進行三維測量所得的原上部形狀資料、與依據該原上部形狀資料重建所得的重建上部形狀資料(經重建的上部形狀資料)作比較,所以在比較的兩形狀資料中,不會有基於屬於檢查對象物之印刷基板1側的拍攝條件(例如印刷基板1的配置位置、配置角度或撓曲等)、或焊料印刷檢查裝置13側的拍攝條件(例如照明狀態或相機32D的視角等)之不同所產生的影響,可更正確地檢測形狀不良處。
此外,即使在對印刷於印刷基板1上之既定位置的焊盤3之焊膏5進行三維形狀檢查時,作為良否判定基準,在必須有關於作為檢查對象之既定位置的焊盤3及印刷於此之焊膏5的印刷設定資訊(位置資料、尺寸資料或形狀資料等)之構成中,預先記憶Gerber(二維向量圖檔格式)資料等基板設計資訊,每次取得作為檢查對象之既定位置的焊盤3及印刷於此之焊膏5相關的印刷設定資訊,一邊與該印刷設定資訊作比較,一邊進行被印刷在作為檢查對象之既定位置的焊盤3之焊膏5的三維形狀的良否判定,所以會有檢查效率顯著降低之虞。又,必須正確地進行對印刷基板1的檢查位置之定位。
對此,根據本實施形態,由於係成為利用針對焊膏5學習的AI模型100,進行被印刷於各焊盤3之焊膏5的三維形狀檢查之構成,所以也不需要預先記憶存在於印刷基板1上的多數個焊盤3及分別印刷於此等焊盤3之焊膏5各自的印刷設定資訊,也不需要在三維形狀檢查時參照該資訊,因此可謀求提升檢查效率。
再者,如將作為檢查對象經三維測量之既定位置的焊膏5的上部部分5b的上部形狀資料、與對應於該既定位置而預先設定之既定的判定基準(良品的上部形狀資料)加以比較的情況等所示,不需要進行檢查對象和判定基準的對位、或配合檢查對象使判定基準的朝向(姿勢)旋轉等的調整,所以可謀求三維形狀檢查的高速化。結果,關於一個焊膏5的三維形狀檢查之處理數格外地減少,可格外地加速檢查處理速度。
此外,不限定於上述實施形態的記載內容,例如,亦可以如下方式實施。不言而喻,以下未例示的其他應用例、變更例當然亦可。
(a)關於焊料印刷檢查的構成,並不限定於上述實施形態,亦可採用其他的構成。
(a-1)例如在上述實施形態中,係構成為藉由使用AI模型100,抽出原上部形狀資料和重建上部形狀資料的差分,來判定在焊膏5的上部部分5b是否有形狀不良處。
不限定於此,例如亦可構成為不使用AI模型100,預先記憶三維基準形狀(上部基準形狀資料)作為既定的判定基準,將被印刷在成為檢查對象之既定位置的焊盤3上之既定焊膏5的上部部分5b相關的三維形狀(上部形狀資料)、及與其對應的三維基準形狀作比較,藉由其差是否在容許範圍內,來判定在焊膏5的上部部分5b是否有形狀不良處。
在此,作為預先設定的「判定基準(三維基準形狀)」,例如亦可採用作業者視為良品之具有既定三維形狀之焊膏5的上部部分5b相關的上部形狀資料,亦可採用印刷在回焊後沒看到焊接不良之既定位置(與檢查對象同一位置)的焊盤3上之回焊前的焊膏5的上部部分5b相關的上部形狀資料等。
(a-2)上述實施形態中,構成為從焊膏5的三維測量資料,切掉小於包含緩坡部5a之該焊膏5的既定高度H之下部部分相關的下部形狀資料,藉此抽出焊膏5的上部部分5b相關的上部形狀資料。
上部形狀資料的抽出程序不限定於此,亦可採用其他的程序。例如,亦可構成為以從焊膏5的頂部的高度位置僅隔既定距離之下方的高度位置為交界,由此將上方部分抽出作為關於焊膏5的上部部分5b之上部形狀資料。
(a-3)上述實施形態中,於焊料印刷檢查處理中,構成為執行:「三維良否判定處理」,針對關於焊膏5之既定的三維資訊(「體積」及「高度」)進行良否判定;「二維良否判定處理」,針對關於焊膏5之既定的二維資訊(「面積」、「位置偏移量」、「二維形狀」及「焊橋」)進行良否判定;及「上部形狀良否判定處理」,針對焊膏5的上部部分5b的三維形狀進行良否判定。
不限定於此,亦可構成為不進行「三維良否判定處理」及/或「二維良否判定處理」。
(a-4)上述實施形態中,係構成為針對焊膏5之既定的二維資訊進行良否判定時,進行焊膏5的二維測量,但不限定於此,亦可構成為依據藉由三維測量所取得之焊膏5的三維測量資料,針對該焊膏5的二維資訊進行良否判定。
藉此,可省略二維測量用的第3照明裝置32C、二維測量用的影像資料取得處理(步驟S302)等二維測量用的構成,可謀求構成的簡化等。
(b)三維測量方法或二維測量方法等焊膏5的測量方法,並不限定於上述實施形態,亦可採用其他的構成。
(b-1)例如,在上述實施形態中,係構成為在進行利用相移法的三維測量方面,取得各圖案光的相位各相差90°的四種影像資料,但相移次數及相移量並不限定於此等。亦可採用可利用相移法進行三維測量之其他的相移次數及相移量。
例如,亦可構成為取得相位各相差120°(或90°)的三種影像資料以進行三維測量,亦可構成為取得相位各相差180°(或90°)的兩種影像資料以進行三維測量。
(b-2)上述實施形態中,係採用相移法作為三維測量法,但不限定於此,亦可採用光切斷法、疊紋法、聚焦法、空間編碼法等的其他三維測量法。
(c)作為識別手段的AI模型100(神經網路90)的構成及其學習方法,並不限定於上述實施形態。
(c-1)上述實施形態中,雖未特別提及,但亦可構成為在進行神經網路90的學習處理、或焊料印刷檢查處理的重建處理等時,依需要對各種資料進行正規化(normalization)等的處理。
(c-2)神經網路90的構造並不限定於圖5所示者,例如亦可作成在卷積層93後設有池化層之構成。當然,亦可作成神經網路90的層數、各層的節點數、各節點(node)的連接構造等不同之構成。
(c-3)上述實施形態中,AI模型100(神經網路90)係成為具有卷積自編碼器(CAE)的構造之生成模型,但不限定於此,例如亦可設成變分自編碼器(VAE:Variational Autoencoder)等具有不同類型的自編碼器的構造之生成模型。
(c-4)上述實施形態中,係構成為藉由誤差反向傳播法學習神經網路90之構成,但不限定於此,亦可構成為使用其他各種學習演算法來學習。
(c-5)神經網路90亦可由所謂的AI晶片等的AI處理專用電路所構成。於此情況,亦可設成僅參數等的學習資訊記憶於記憶部57,以AI處理專用電路進行讀取,透過設定於神經網路90,來構成AI模型100。
(c-6)上述實施形態中,係構成為具備學習部77,在控制裝置33內進行神經網路90的學習,但不限定於此,只要將至少AI模型100(已學習的神經網路90)記憶於記憶部57即可,亦可構成為省略學習部77。因此,亦可構成為在控制裝置33的外部進行神經網路90的學習,將其記憶於記憶部57。
(c-7)上述實施形態中,構成為依據回焊後儲存於檢查裝置16之多數個印刷基板1的檢查資訊,利用目前為止的焊料印刷檢查將儲存於焊料印刷檢查裝置13的形狀資料(印刷在回焊後沒看到焊接不良之良品的印刷基板1的焊盤3上之回焊前的良品的焊膏5的上部部分5b相關之上部形狀資料)作為學習資料使用。
不限定於此,例如,亦可將在焊膏5的印刷後作業者透過目視所篩選之沒有凹陷或偏倚等的形狀不良之良品的焊膏5的上部部分5b相關之上部形狀資料等利用作為學習資料。
1:印刷基板
3:焊盤
5:焊膏
5a:緩坡部
12:焊料印刷機
13:焊料印刷檢查裝置
15:回焊裝置
16:回焊後檢查裝置
25:電子零件
25a:電極
32:檢查單元
32A,32B,32C:照明裝置
32D:相機
33:控制裝置
77:學習部
78:檢查部
90:神經網路
100:AI模型
202:焊料接合部
205:焊球
206:空洞
H:既定高度
圖1係將印刷基板的一部分放大之部分放大平面圖。
圖2係顯示印刷基板之生產線的構成之方塊圖。
圖3係示意顯示焊料印刷檢查裝置的概略構成圖。
圖4係顯示焊料印刷檢查裝置的功能構成之方塊圖。
圖5係用以說明神經網路(neural network)的構造之模式圖。
圖6係顯示神經網路的學習處理的流程之流程圖。
圖7係顯示焊料印刷檢查處理的流程之流程圖。
圖8係顯示印刷於焊盤上的焊膏之印刷基板的部分放大剖面圖,(a)係顯示具有理想的剖面形狀的焊膏,(b)係顯示沒有形狀不良處的良品焊膏,(c)係說明關於焊膏的既定高度。
圖9係顯示印刷於焊盤上之形狀不良的焊膏等之印刷基板的部分放大剖面圖,(a)係顯示頂部形成有凹坑的焊膏,(b)係顯示於該凹坑上載置有電子零件的電極之狀態。
圖10係顯示形成有焊球、空洞等之回焊後的焊料接合部及其周邊之印刷基板的部分放大剖面圖,(a)係顯示從側邊觀看的焊料接合部等,(b)係顯示從上方觀看的焊料接合部等。
1:印刷基板
13:焊料印刷檢查裝置
31:搬送機構
31a:搬送軌道
31b:輸送帶
32:檢查單元
32Aa:第1光源
32Ab:第1液晶光閘
32Ba:第2光源
32Bb:第2液晶光閘
32A,32B,32C:照明裝置
32D:相機
Claims (10)
- 一種焊料印刷檢查裝置,係在回焊前檢查被印刷於印刷基板上之焊膏的印刷狀態, 其特徵為具備: 照射手段,可對前述印刷基板照射既定光; 拍攝手段,可對被照射前述既定光的前述印刷基板進行拍攝; 三維測量手段,依據藉前述拍攝手段所取得的影像資料,可取得被印刷於前述印刷基板上之既定焊膏的三維測量資料; 上部形狀資料抽出手段,依據藉前述三維測量手段所取得之前述既定焊膏的三維測量資料,可抽出和該焊膏的既定高度以上的上部部分相關之上部形狀資料;以及 上部形狀良否判定手段,藉由將和前述既定焊膏相關的上部形狀資料與既定的判定基準相比較,可判定至少和前述既定焊膏的上部部分相關之三維形狀的良否。
- 如請求項1之焊料印刷檢查裝置,其具備識別手段,係使神經網路僅將和良品的前述焊膏相關的前述上部形狀資料作為學習資料學習所生成,該神經網路具有從輸入的形狀資料抽出特徵量之編碼部、以及從該特徵量重建形狀資料之解碼部, 前述上部形狀良否判定手段具備: 重建形狀資料取得手段,可取得關於前述既定焊膏的前述上部形狀資料作為重建上部形狀資料,前述上部形狀資料係將以藉前述上部形狀資料抽出手段抽出之關於前述既定焊膏的前述上部形狀資料作為原上部形狀資料朝前述識別手段輸入而重建所得;及 比較手段,可比較前述原上部形狀資料和前述重建上部形狀資料, 構成為依據藉前述比較手段的比較結果,可判定關於前述既定焊膏的上部部分之三維形狀的良否。
- 如請求項1之焊料印刷檢查裝置,其中 前述上部形狀資料抽出手段係構成為從藉前述三維測量手段所取得之前述既定焊膏的三維測量資料,至少切掉小於包含前述既定焊膏的緩坡部之該焊膏的既定高度的下部部分相關的下部形狀資料,藉此可抽出前述上部形狀資料。
- 如請求項2之焊料印刷檢查裝置,其中 前述上部形狀資料抽出手段,係構成為從藉前述三維測量手段所取得之前述既定焊膏的三維測量資料,至少切掉小於包含前述既定焊膏的緩坡部之該焊膏的既定高度的下部部分相關的下部形狀資料,藉此可抽出前述上部形狀資料。
- 如請求項1之焊料印刷檢查裝置,其中 前述照射手段係構成為可照射作為前述既定光之三維測量用光, 前述三維測量手段係構成為依據照射前述三維測量用光且藉前述拍攝手段所取得的影像資料,可取得前述既定焊膏的三維測量資料。
- 如請求項2之焊料印刷檢查裝置,其中 前述照射手段係構成為可照射作為前述既定光的三維測量用光, 前述三維測量手段係構成為依據照射前述三維測量用光且藉前述拍攝手段所取得的影像資料,可取得前述既定焊膏的三維測量資料。
- 如請求項1之焊料印刷檢查裝置,其具備有三維良否判定手段,其依據藉前述三維測量手段所取得之前述既定焊膏的三維測量資料,可對關於該既定焊膏之既定的三維資訊進行良否判定。
- 如請求項2之焊料印刷檢查裝置,其具備有三維良否判定手段,其依據藉前述三維測量手段所取得之前述既定焊膏的三維測量資料,可對關於該既定焊膏之既定的三維資訊進行良否判定。
- 如請求項1至8中任一項之焊料印刷檢查裝置,其具備有二維良否判定手段,其依據藉前述三維測量手段所取得之前述既定焊膏的三維測量資料,可對關於該既定焊膏之既定的二維資訊進行良否判定。
- 如請求項1至8中任一項之焊料印刷檢查裝置,其中 前述照射手段係構成為可照射作為前述既定光的二維測量用光, 具備有: 二維測量手段,依據照射前述二維測量用光且藉前述拍攝手段所取得的影像資料,可取得前述既定焊膏的二維測量資料;及 二維良否判定手段,依據藉前述二維測量手段所取得之前述既定焊膏的二維測量資料,可對關於該既定焊膏之既定的二維資訊進行良否判定。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-169513 | 2020-10-07 | ||
JP2020169513A JP7157112B2 (ja) | 2020-10-07 | 2020-10-07 | 半田印刷検査装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202217238A true TW202217238A (zh) | 2022-05-01 |
TWI807397B TWI807397B (zh) | 2023-07-01 |
Family
ID=81126427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110131021A TWI807397B (zh) | 2020-10-07 | 2021-08-23 | 焊料印刷檢查裝置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20230232603A1 (zh) |
JP (1) | JP7157112B2 (zh) |
CN (1) | CN116134290A (zh) |
DE (1) | DE112021005275T5 (zh) |
MX (1) | MX2023002536A (zh) |
TW (1) | TWI807397B (zh) |
WO (1) | WO2022074897A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117330576B (zh) * | 2023-11-01 | 2024-05-03 | 融韵光电科技(苏州)有限公司 | 接线盒汇流条焊接不良检测设备及检测方法 |
CN117968546B (zh) * | 2024-03-29 | 2024-06-04 | 德中(深圳)激光智能科技有限公司 | 一种多维度锡膏厚度检测系统 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3872007B2 (ja) * | 2002-12-16 | 2007-01-24 | シーケーディ株式会社 | 計測装置及び検査装置 |
JP5564348B2 (ja) * | 2010-07-15 | 2014-07-30 | 株式会社キーエンス | 画像処理装置及び外観検査方法 |
JP5820424B2 (ja) * | 2013-04-16 | 2015-11-24 | Ckd株式会社 | 半田印刷検査装置 |
JP6506914B2 (ja) * | 2013-07-16 | 2019-04-24 | 株式会社キーエンス | 三次元画像処理装置、三次元画像処理方法及び三次元画像処理プログラム並びにコンピュータで読み取り可能な記録媒体及び記録した機器 |
JP6566832B2 (ja) | 2015-10-16 | 2019-08-28 | Ckd株式会社 | 三次元計測装置 |
JPWO2020031984A1 (ja) * | 2018-08-08 | 2021-08-10 | Blue Tag株式会社 | 部品の検査方法及び検査システム |
TWI731492B (zh) * | 2018-12-10 | 2021-06-21 | 日商新川股份有限公司 | 封裝裝置 |
-
2020
- 2020-10-07 JP JP2020169513A patent/JP7157112B2/ja active Active
-
2021
- 2021-07-21 MX MX2023002536A patent/MX2023002536A/es unknown
- 2021-07-21 DE DE112021005275.6T patent/DE112021005275T5/de active Pending
- 2021-07-21 WO PCT/JP2021/027300 patent/WO2022074897A1/ja active Application Filing
- 2021-07-21 CN CN202180060134.0A patent/CN116134290A/zh active Pending
- 2021-08-23 TW TW110131021A patent/TWI807397B/zh active
-
2023
- 2023-03-28 US US18/190,996 patent/US20230232603A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
MX2023002536A (es) | 2023-09-22 |
JP7157112B2 (ja) | 2022-10-19 |
JP2022061546A (ja) | 2022-04-19 |
DE112021005275T5 (de) | 2023-08-10 |
WO2022074897A1 (ja) | 2022-04-14 |
CN116134290A (zh) | 2023-05-16 |
US20230232603A1 (en) | 2023-07-20 |
TWI807397B (zh) | 2023-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI228023B (en) | Measure device | |
TW202217238A (zh) | 焊料印刷檢查裝置 | |
JP2011133306A (ja) | 検査装置および検査方法 | |
US20240193751A1 (en) | Apparatus for hair inspection on substrate and method for hair inspection on substrate | |
KR101144749B1 (ko) | 소자의 불량 검사방법 | |
KR101622628B1 (ko) | 부품이 실장된 기판 검사방법 및 검사장치 | |
CN109564087B (zh) | 焊料印刷检查装置 | |
US20230186458A1 (en) | Substrate foreign matter inspection device and substrate foreign matter inspection method | |
TWI792296B (zh) | 網遮罩檢查方法及網遮罩檢查裝置 | |
KR20110063966A (ko) | 3차원 검사방법 및 이를 이용한 3차원 검사장치 | |
JP4034325B2 (ja) | 三次元計測装置及び検査装置 | |
TWI797617B (zh) | 網遮罩檢查裝置 | |
JP2004301621A (ja) | 三次元計測装置及び検査装置 | |
TWI834338B (zh) | 基板檢查裝置及基板檢查方法 | |
JP2004317291A (ja) | 半田外観検査装置 | |
JP3730222B2 (ja) | 三次元計測装置及び検査装置 | |
US20240201106A1 (en) | Board testing apparatus and board testing method | |
JP2003303841A (ja) | 半導体装置の製造方法 | |
KR101447968B1 (ko) | 기판 검사를 위한 기준평면 설정방법 및 기준평면을 이용한 기판 검사방법 | |
JP2004325256A (ja) | 外観検査装置 | |
KR20110097748A (ko) | 터미널 검사방법 |