TW202214294A - 具有hyaC及nanP缺失之新穎多殺性巴斯德氏菌株及疫苗 - Google Patents
具有hyaC及nanP缺失之新穎多殺性巴斯德氏菌株及疫苗 Download PDFInfo
- Publication number
- TW202214294A TW202214294A TW110136283A TW110136283A TW202214294A TW 202214294 A TW202214294 A TW 202214294A TW 110136283 A TW110136283 A TW 110136283A TW 110136283 A TW110136283 A TW 110136283A TW 202214294 A TW202214294 A TW 202214294A
- Authority
- TW
- Taiwan
- Prior art keywords
- ala
- thr
- pasteurella multocida
- vaccine
- gly
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/102—Pasteurellales, e.g. Actinobacillus, Pasteurella; Haemophilus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01022—UDP-glucose 6-dehydrogenase (1.1.1.22)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/52—Bacterial cells; Fungal cells; Protozoal cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/52—Bacterial cells; Fungal cells; Protozoal cells
- A61K2039/522—Bacterial cells; Fungal cells; Protozoal cells avirulent or attenuated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/54—Medicinal preparations containing antigens or antibodies characterised by the route of administration
- A61K2039/541—Mucosal route
- A61K2039/543—Mucosal route intranasal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/55—Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
- A61K2039/552—Veterinary vaccine
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Veterinary Medicine (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本發明提供新穎減毒多殺性巴斯德氏菌(
Pasteurella multocida)菌株,其可以活菌形式或殺滅形式使用以調配針對牛、其他哺乳動物及鳥類之多殺性巴斯德氏菌感染具有高保護性的疫苗。本發明亦鑑別出作為提供該等疫苗之關鍵的nanP與hyaC基因突變之組合。當以適當方式調配時,可將多種其他牛病原體之抗原材料與減毒活多殺性巴斯德氏菌株組合以製備有效的組合疫苗。
Description
本發明大體上係關於包含特定基因修飾之新穎減毒多殺性巴斯德氏菌(
Pasteurella multocida)細菌菌株,其作為疫苗係安全且有效的且針對由與全世界牛疾病相關之多種多殺性巴斯德氏菌株引起之牛感染提供交叉保護。本發明進一步係關於製造減毒細菌之方法以及與致病性降低相關聯之核酸變化的進一步鑑別。本發明進一步係關於具有該等特性之減毒活多殺性巴斯德氏菌,不過,相應不活化細菌亦可用於本發明之實踐中。本發明大體上係關於調配適當疫苗組合物之方法,包括適當細菌之重組組裝、其培養及提供疫苗接種組合物,該等疫苗接種組合物可包括對應於多種其他重要牛病原體之抗原。
多殺性巴斯德氏菌係巴斯德氏菌科
(Pasteurellaceae)的一種革蘭氏陰性球桿菌(coccobacillus),其係自患肺炎之牛肺提取的常見細菌分離株且為在美國導致牛呼吸道疾病(BRD)之主要原因之一(參見D. Griffin, Bovine pasteurellosis and other bacterial infections of the respiratory tract. Vet. Clin. North Am. Food Anim. Pract., 2010. 26:57-71)。多殺性巴斯德氏菌常常在來自飼育場之致命性BRD病例中分離得到且通常為乳用牛犢之地方性肺炎的一種組分(參見D. Griffin, 2010, 前述)。此等症候群中牽涉到多殺性巴斯德氏菌已得到充分證實,但該兩種疾病被認為多因素起源的,其中感染性與非感染性因素組合產生此等疾病。舉例而言,並行感染其他牛細菌及病毒呼吸道生物體以及環境應激源被認為係導致此等複雜症候群之因素(參見Yates WD. A review of infectious bovine rhinotracheitis, shipping fever pneumonia and viral-bacterial synergism in respiratory disease of cattle.
Can J Comp Med. 1982;46(3):225-263)。
多殺性巴斯德氏菌係根據莢膜血清群及體細胞(LPS)血清型分類,分別描述5種莢膜類型(A、B、D、E、F)及16種體細胞類型(參見G. Carter, Pasteurellosis:
Pasteurella multocidaand
Pasteurella hemolytica. Adv. Vet. Sci., 1967. 11:321-792;及Heddleston等人, Fowl cholera: gel diffusion precipitin test for serotyping
Pasteruella multocidafrom avian species. Avian Dis., 1972年7月-9月;16(4):925-36)。疾病具有普遍特異性,因為多殺性巴斯德氏菌莢膜A型分離株係引起BRD及地方性肺炎之主要原因。多殺性巴斯德氏菌莢膜B型及E型引起出血性敗血症,此係牛及水牛之致死性疾病(參見例如R. Verma及T. Jaiswal, Haemorrhagic septicaemia vaccines. Vaccine, 1998. 16:1184-1192)。多殺性巴斯德氏菌通常在斷奶牛犢及飼育場牛之鼻咽及齶扁桃體中長期攜帶(參見J. Allen等人, Changes in the bacterial flora of the upper and lower respiratory tracts and broncho-alveolar lavage differential cell counts in feedlot calves treated for respiratory diseases. Can. J. Vet. Res., 1992. 56:177-183),且該兩個細菌儲庫可作為傳播到下呼吸道之來源(亦參見D Griffin等人, Bacterial pathogens of the bovine respiratory tract. Vet. Clin. North Am. Food Anim. Pract., 2010. 26:381-394)。
報導的在臨床上正常之牛犢體內之分離率在20%與60%之間,而自臨床上患病之動物之鼻道分離的多殺性巴斯德氏菌甚至更多(參見D. Griffin, D., Bovine pasteurellosis and other bacterial infections of the respiratory tract. Vet. Clin. North Am. Food Anim. Pract., 2010. 26:57-71)。常常在BRD之慢性病例中觀察到多殺性巴斯德氏菌,通常還一起觀察到其他細菌,且咸信先前肺損傷有利於確定多殺性巴斯德氏菌及疾病嚴重程度。
已知的多殺性巴斯德氏菌之毒力因子包括莢膜及唾液酸併入LPS中。參見例如(1) K. Snipes等人, Fate of
Pasteurella multocidain the blood vascular system of turkeys following intravenous inoculation: comparison of an encapsulated, virulent strain with its avirulent, acapsular variant. Avian Dis., 1986. 31, 254–259;(2) J. Chung等人, Role of capsule in the pathogenesis of fowl cholera caused by
Pasteurella multocidaserogroup A. Infect. Immun., 2001年4月. 69(4):2487-92;(3) T. Fuller等人, Identification of
Pasteurella multocidavirulence genes in a septicemic mouse model using signature-tagged mutagenesis. Microb. Pathog. 2000. 29:25-38;及(4) F. Tatum等人, Sialic acid uptake is necessary for virulence of
Pasteurella multocidain turkeys. Microb. Pathog., 2009. 46:337-344。
定義血清群A莢膜之多殺性巴斯德氏菌組分的組成(結構)主要為玻尿酸,其係由D-葡糖醛酸及N-乙醯基-D-葡糖胺之交替單元組成的一種聚合物。玻尿酸生物合成所需之基因係在包含hyaE、hyaD、hyaC及hyaB之操縱子內編碼。經顯示,多殺性巴斯德氏菌血清群A莢膜在抵抗補體介導之殺滅中起到重要作用(參見K. Snipes等人, Fate of
Pasteurella multocidain the blood vascular system of turkeys following intravenous inoculation: comparison of an encapsulated, virulent strain with its avirulent, acapsular variant. Avian Dis.1986. 31, 254-259)。缺乏A型莢膜的多殺性巴斯德氏菌突變體在禽類及小鼠模型中減毒(參見J. Chung等人, Role of capsule in the pathogenesis of fowl cholera caused by
Pasteurella multocidaserogroup A. Infect Immun. 2001年4月;69(4):2487-92)。
唾液酸係神經胺酸之N取代或O取代之衍生物的通稱,其係具有九碳主鏈之單醣。用唾液酸修飾革蘭氏陰性細菌係經充分證實之毒力特徵(參見E. Vimr等人, To sialylate, or not to sialylate: that is the question. Trends Microbiol., 2002年6月, 10(6):254-7)。多種病原體及共生細菌從頭合成唾液酸或自宿主組織取得唾液酸,該等唾液酸經內化且併入LPS及莢膜中(參見S. Steenbergen等人, Sialic acid metabolism and systemic pasteurellosis. Infect. Immun., 2005年3月, 73(3):1284-94)。已知超過20種微生物病原體使用表面唾液酸化作為分子相似之一種形式。已知將唾液酸分子併入至細菌表面上將賦予能夠逃避宿主防禦機制之隱形特性(參見H. Smith等人, Sialylation of lipopolysaccharide: a major influence on pathogenicity. Microb. Path., 1995年12月, 19(6):365-77)。
先前已顯示,多殺性巴斯德氏菌A:3(P1059) ΔnanP ΔnanU突變體當在放射性標記之唾液酸存在下生長時無法自生長培養基吸收唾液酸(F. Tatum等人, Sialic acid uptake is necessary for virulence of
Pasteurella multocidain turkeys. Microb Pathog. 2009. 46:337-344)。另外,不同於親本菌株,該突變體展現沒有將放射性標記之唾液酸併入至細胞組分中,指示該突變體無法吸收外源唾液酸並用外源唾液酸修飾細胞表面分子。相較於野生型親本菌株,多殺性巴斯德氏菌ΔnanP ΔnanU突變體亦在火雞中展現明顯降低之毒力(F. Tatum等人, 2009, 前述)。
美國專利第7,763,262號描述涉及yiaO (「nanP」)基因中之突變的減毒多殺性巴斯德氏菌。然而,人們普遍認識到,提供減毒取決於兩個或多於兩個基因中之突變的細菌可提供更適當的毒力損失及額外安全性。就此而言,美國專利公開案2018/0015157揭示在hyaD及nanPU兩者中具有缺失之減毒多殺性巴斯德氏菌。
因此,有可能開發出其他經修飾之多殺性巴斯德氏菌生物體作為有效疫苗,包括與由其他病原體提供之抗原的組合。
本發明提供一種疫苗,其包含因hyaC基因突變而導致玻尿酸生物合成有缺陷且因nanP基因突變而導致表面唾液酸化有缺陷的經分離之減毒活多殺性巴斯德氏菌(
Pasteurella multocida/
P. multocida)細菌,其可用作疫苗。減毒突變係選自由以下組成之群:整個基因缺失、部分缺失、框移突變、核苷酸插入及產生置換密碼子之核苷酸置換。所得到的由hyaC基因或nanP基因表現之蛋白質無活性,或至少實質上無活性,使得生物體之毒力實質上減小。一般而言,減毒細菌較佳係由血清群A提供,但所得細菌作為減毒活疫苗亦提供針對A、B、D、E、F型莢膜生物體之保護。
在一個代表性實施例中,多殺性巴斯德氏菌細菌在修飾之前含有野生型hyaC DNA序列,該序列係SEQ ID NO: 8或與其至少80%一致之任何DNA序列;且在修飾之前,含有野生型nanP DNA序列,該序列係SEQ ID NO:1或與其至少80%一致之任何DNA序列。在一個由此得到的實施例中,減毒細菌包含由SEQ ID NO:3組成之nanP基因序列及由SEQ ID NO: 12組成之hyaC基因序列。
在一個極佳實施例中,hyaC基因之突變及/或nanP基因之突變係完全不活化突變。
使用該等疫苗之方法提供一種在牛動物體內誘導針對多殺性巴斯德氏菌血清群A之保護性免疫的方法,其包含投予一或多次劑量之疫苗,其中投予途徑係選自由以下組成之群:皮下、肌肉內、經皮、皮內、腹膜內、靜脈內、經口、口鼻、鼻內及氣管內。
在另一個較佳實施例中,該牛動物係牛犢,該方法包含投予一或多次劑量之疫苗,其中投予途徑係選自由以下組成之群:經口、口鼻、鼻內及氣管內。
根據本發明之實踐,巴斯德氏菌疫苗可與來自其他病原體之抗原共調配或共呈現,諸如藉由提供保護量之溶血性曼氏桿菌(
Mannheimia haemolytica)A-1型類白細胞毒素、莢膜抗原可溶性抗原及密度在約10e3至約10e8個細胞/毫升範圍內之不活化細胞,諸如以提供對溶血性曼氏桿菌及多殺性巴斯德氏菌有效之疫苗。
在一個較佳實施例中,實際疫苗包裝(presentation)包含有佐劑之雙瓶包裝,其中第一個瓶含有佐劑且第二個瓶中提供由活病毒或細菌組成之任何抗原,其中該第一個瓶與該第二個瓶係在即將使用之前混合。此類雙瓶包裝之較佳實例包括該額外的一或多種額外抗原係選自由以下各物之抗原組分組成之群的實施例:溶血性曼氏桿菌、牛腹瀉病毒(BVDV)、牛鼻氣管炎病毒(IBR)、副流感3病毒(PI3)及牛呼吸道融合病毒(BRSV)、索氏嗜血桿菌(Histophilus somni (somnus))、牛黴漿菌(M. bovis)、牛疱疹病毒、牛冠狀病毒及非呼吸道梭菌疫苗。
序列表
本申請案含有序列表,該序列表已以符合ASCII之文本檔案格式(.txt)經由EFS-Web提交且以全文引用之方式併入本文中。ASCII檔案係於2020年9月28日創建,於2020年9月30日最後一次修改,命名為「Sequence Listing_000337_ST25」且大小為36791位元組。此序列表係以37 C.F.R. § 1.821(c)所要求的序列表之紙質複本及37 C.F.R. § 1.821(e)所要求的呈電腦可讀形式(CRF)之序列表形式提供。不需要根據37 C.F.R. § 1.821(f)作出聲明。
聯合研究協議各方之名稱
所主張之發明係作為在Zoetis LLC與美國農業部農業研究局(the United States Department of Agriculture, Agricultural Research Service)之間之聯合研究協議的範圍內進行之活動的結果而作出。
聚核苷酸及多肽序列之簡要說明
本發明涉及之各種聚核苷酸及多肽以及其各自之指定序列識別符列於下表A中。
表A:本發明中所涉及之聚核苷酸及多肽
定義
標識符 | 內容 |
SEQ ID NO: 1 | 野生型(未修飾之)nanP核苷酸序列 |
SEQ ID NO: 2 | 野生型(未修飾之)nanP胺基酸序列 |
SEQ ID NO: 3 | ΔnanP核苷酸序列 |
SEQ ID NO: 4 | ΔnanP胺基酸序列 |
SEQ ID NO: 5 | 藉由SEQ ID NO: 13及SEQ ID NO: 14之引子擴增之片段中所包含的聚核苷酸 |
SEQ ID NO: 6 | ΔhyaC及周圍操縱子之核苷酸序列 |
SEQ ID NO: 7 | ΔnanP及周圍操縱子之核苷酸序列 |
SEQ ID NO: 8 | 野生型(未修飾之)hyaC核苷酸序列 |
SEQ ID NO: 9 | 野生型(未修飾之)hyaC胺基酸序列 |
SEQ ID NO: 10 | 野生型hyaC及周圍操縱子之核苷酸序列 |
SEQ ID NO: 11 | ΔhyaC胺基酸序列 |
SEQ ID NO: 12 | ΔhyaC核苷酸序列 |
SEQ ID NO: 13 | 引子1062 Bam-nanP-F核苷酸序列 |
SEQ ID NO: 14 | 引子1062 Sal-nanP-R核苷酸序列 |
SEQ ID NO: 15 | 引子1062 Bam-hyaC-F核苷酸序列 |
SEQ ID NO: 16 | 引子1062 Pst-hyaC-R核苷酸序列 |
SEQ ID NO: 17 | 引子1062 Pst-hyaC-F核苷酸序列 |
SEQ ID NO: 18 | 引子1062 Sal-hyaC-R核苷酸序列 |
SEQ ID NO: 19 | 在ΔnanP缺失位點周圍之核苷酸序列 |
SEQ ID NO: 20 | 在ΔnanP缺失位點周圍之胺基酸序列 |
SEQ ID NO: 21 | 在ΔhyaC缺失位點周圍之核苷酸序列 |
SEQ ID NO: 22 | 在ΔhyaC缺失位點周圍之胺基酸序列 |
除非本文中另外定義,否則結合本發明實施例使用之科學與技術術語應具有一般熟習此項技術者通常所理解之含義。此外,除非上下文另外需要,否則單數術語應包括複數且複數術語應包括單數。
如本文所使用,術語「佐劑」意思指改變其他試劑,諸如藥物或免疫原性組合物之作用的藥理學或免疫藥劑。佐劑通常包括在免疫原性組合物中以增強接受者針對所供應之抗原的免疫反應。關於佐劑之進一步描述,參見下文。
如本文所使用,術語「抗體(antibody/ antibodies)」意思指能夠藉助於識別抗原決定基而結合至抗原的免疫球蛋白分子。免疫球蛋白係由具有「恆定」區及「可變」區之多肽「輕鏈」及「重鏈」構成的血清蛋白且基於恆定區之組成分為數類(例如IgA、IgD、IgE、IgG及IgM)。抗體對給定抗原具有「特異性」指示,抗體可變區僅識別並結合特定抗原。抗體可為多株混合物或單株抗體。抗體可為來源於天然或重組來源之完整免疫球蛋白或可為完整免疫球蛋白之免疫反應性部分。抗體可以多種形式存在,包括Fv、Fab'、F(ab')2、Fc以及單鏈。抗體可轉化成抗原結合蛋白,其包括但不限於抗體片段。如本文所使用,術語「抗原結合蛋白」、「抗體」及其類似物可互換使用,意思指一或多種包含抗原結合位點之多肽,或其一或多個片段。術語「抗原結合蛋白」或「抗體」較佳地係指單株抗體及其片段,以及其可結合至特定蛋白質及其片段的免疫結合等效物。如本文所使用,該術語不僅涵蓋完整多株或單株抗體,而且亦涵蓋其片段。除非另外規定,否則出於本發明之目的,「抗體」及「抗原結合蛋白」亦包括抗體片段。例示性抗體片段包括全部被熟習此項技術者視為抗原結合蛋白或抗體片段的Fab、Fab'、F(ab')2、Fv、scFv、Fd、dAb、雙功能抗體、其抗原識別片段、小模組免疫藥物(small modular immunopharmaceuticals,SMIPs)奈米抗體及其類似物,及上述片段中之任一個及其以化學方式或基因操作之對應物,以及其他抗體片段及其突變體、包含抗體部分之融合蛋白及包含抗原識別位點的免疫球蛋白分子之任何其他經修飾組態。抗體及抗原結合蛋白可例如經由傳統融合瘤技術(Kohler等人, Nature 256:495 499(1975))、重組DNA方法(美國專利第4,816,567號)或使用抗體庫之噬菌體展示技術(Clackson等人, Nature 352:624 628(1991);Marks等人, J. Mol. Biol. 222:581 597(1991))製備。關於各種其他抗體產生技術,參見Antibodies: A Laboratory Manual, Harlow等人編, Cold Spring Harbor Laboratory, 1988,以及熟習此項技術者熟知之其他技術。
如本文所使用,「抗原」意思指含有一或多個抗原決定基(線性抗原決定基、構象抗原決定基或兩者)之分子,該分子當暴露於個體時,將誘導對該抗原具有特異性之免疫反應。抗原決定基係結合至T細胞受體或特異性B細胞抗體的抗原之特定位點,且典型地包含約3至約20個胺基酸殘基。術語「抗原」亦可指次單元抗原,即自在自然界中與抗原相關聯之全生物體分開及分離之抗原,以及經殺滅、減毒或不活化細菌、病毒、真菌、寄生蟲或其他微生物。術語「抗原」亦指抗體,諸如抗個體基因型抗體或其片段,及可模擬抗原或抗原決定子(抗原決定基)之合成肽模擬抗原決定基(mimotope)。術語「抗原」亦指在活體內,諸如在DNA免疫應用中表現抗原或抗原決定子之寡核苷酸或聚核苷酸。如本文所使用,術語「抗原」係能夠經抗體或抗原結合蛋白特異性結合的分子或分子之一部分。確切地說,抗體或抗原結合蛋白將結合至抗原之抗原決定基。如本文所使用,抗原決定基係指抗體或抗原結合蛋白之可變區的高變區或互補決定區所識別之抗原決定子。
如本文所使用,術語「動物」意思指易感染牛黴漿菌之任何家養及野生動物。較佳地,如本文所使用,「動物」係指牛。
如本文所使用,術語「減毒」係指這樣一種微生物株,該微生物株之致病性已降低,由此使其一般會引發免疫反應,但不會引起疾病。減毒株之毒力低於作為其來源之親本株。可在活體外或活體內篩選減毒微生物以確認其致病性低於其親本株。使用習知手段引入減毒突變,諸如活體外繼代,以及化學突變誘發。替代性減毒手段包含使用定點突變誘發產生預定突變,在此情況下,可引入一或多個突變。如本文所使用,術語「減毒程度較高」係指一個株系已經進一步修飾而超出作為其來源之減毒株。此進一步減毒可經由額外活體外繼代,或數輪額外的化學或定點突變誘發實現。為了能用作活疫苗,任何減毒生物體仍必須使宿主免疫系統引發有效免疫反應,此可能需要生物體之一定生長。
如本文所使用,術語「細菌(bacteria)」、「細菌物種」、「細菌(bacterium)」及其類似物意思指原核微生物之一個較大領域。
如本文所使用,術語「牛」意思指一組不同的中型至大型有蹄類動物,一般具有偶蹄,且至少一個性別具有真角。牛包括但不限於家養牛、野牛、非洲水牛、水牛、犛牛及四角或螺旋角羚羊。
如本文所使用,術語「化學突變誘發」意思指使用化合物使一些類型突變發生之頻率增加超過自然背景水準。所用化合物可具有不同效力,由於其在進入細胞之能力、其與核酸之反應性程度、其一般毒性及其引入核酸中之化學變化類型將經內源修復系統校正之可能性方面存在不同。
如本文所使用,術語「免疫原性組合物」或「免疫量」意思指當單獨投予或與醫藥學上可接受之載劑一起投予動物時產生有效免疫反應(亦即,具有有效及/或至少部分保護性免疫原性活性)的組合物。免疫反應可為主要由細胞毒性T細胞介導之細胞免疫反應,或主要由輔助T細胞介導之體液免疫反應,該免疫反應又活化B細胞,由此產生抗體。另外,亦可產生特異性T淋巴球或抗體以允許將來保護經免疫之宿主。
如本文所使用,術語「經分離」意思指,將所提及之材料自通常發現該材料之環境之一些組分移除。因此,經分離之生物材料可不含一些細胞組分,亦即,發現或產生該材料之細胞的組分。在核酸分子之情況下,經分離之核酸包括例如PCR產物、經分離之mRNA、cDNA或限制性片段。在另一個實施例中,經分離之核酸較佳自可發現該核酸之染色體切除,且更佳地不再接合至非調控、非編碼區,或當在染色體中發現時位於核酸分子之上游或下游的其他基因。在又另一個實施例中,經分離之核酸缺乏一或多個內含子。經分離之核酸分子包括插入質體、黏質體、人工染色體及其類似物中之序列。因此,在一個特定實施例中,重組核酸係經分離之核酸。經分離之蛋白質可與在細胞中其所締合之其他蛋白質或核酸或兩者締合,或在該蛋白質係膜締合蛋白質之情況下與細胞膜締合。經分離之細胞器、細胞或組織係自在生物體中發現其之解剖部位取出。經分離之材料可以但未必經純化。「經分離」或「經純化」之多肽或聚核苷酸,例如「經分離之多肽」或「經分離之聚核苷酸」經純化至超過其在自然界中存在之狀態的狀態。舉例而言,「經分離」或「經純化」之多肽或聚核苷酸可實質上不含來自作為蛋白質或聚核苷酸來源之細胞或組織源的細胞材料或其他污染性蛋白質,或當以化學方式合成時實質上不含化學前驅體或其他化學物質。具有小於約50%之非抗原結合蛋白(在本文中又稱為「污染性蛋白質」)或化學前驅體的抗原結合蛋白之製劑被視為「實質上不含」的。40%、30%、20%、10%且更佳地5%(以乾重計)之非抗原結合蛋白或化學前驅體被認為實質上不含的。
如本文所使用,術語「藥劑」意思指促進自感染、損傷或病痛恢復之試劑;一種藥物。
如本文所使用,術語「突變體」意思指由突變實例引起或產生之個體或生物體,該突變係在生物體之核酸或染色體內的鹼基對序列變化,且導致產生在野生型個體或生物體中未發現的新特性或性狀。
如本文所使用,術語「親本」或「親本株」意思指得到後代或子代之實體。如本文所使用,術語「子代」意思指由一或多個親本或親本株產生或得到。
如本文所使用,術語「預防(prevent/ preventing/prevention)」及其類似表述意謂抑制微生物之複製、抑制微生物之傳播或抑制微生物自身安置於其宿主中。此等術語及其類似術語亦可意謂抑制或阻止感染之一或多種徵象或症狀。
如本文所使用,術語「反向工程改造(reverse engineer)」或「反向突變誘發(reverse mutagenize)」意謂藉由遺傳手段(例如聚合酶鏈反應或PCR)再引入在微生物基因體內之一或多個特定位置處出現之原始核苷酸序列,其中該序列先前已改變。
如本文所使用,術語「連續繼代(serial passage/serial passaging)」意思指用於純化生物體,較佳地微生物以獲得純系純之群體的方法。該等術語亦可指用於使生物體、較佳地微生物減毒或減弱其毒力的技術。
如本文所使用,術語「治療有效量」(或「有效量」)意思指適當時在一定情況下,適當時以單次或多次劑量提供的當投予個體或患者時足以實現有益或所希望結果的活性成分,例如根據本發明之試劑的量,其中存在或不存在佐劑。有效量可分一或多次投予、施用或劑量來投予。根據本發明之組合物的治療有效量可容易地由一般熟習此項技術者確定,且對患者提供可量測之益處,諸如保護動物免於隨後被類似病原體攻擊。
如本文所使用,術語「治療的(therapeutic)」或「治療(treatment)」涵蓋對疾病或病症之全方位治療。舉例而言,本發明之「治療」劑可以一定方式起作用,或治療可產生防治性或預防性作用,包括併入設計成靶向可鑑別為有風險(藥物遺傳學)之動物之程序的治療;或以改善性或治癒性方式起作用;或可用於減慢所治療疾病或病症之至少一種症狀的進展速率或程度。
如本文所使用,術語「獸醫學上可接受之載劑」係指在合理醫學判斷之範圍內,適於與動物之組織接觸使用,而無異常毒性、刺激、過敏反應及其類似反應,與合理的效益/風險比相稱且對其預定用途有效的物質。
多殺性巴斯德氏菌hyaC及nanP基因之部分缺失
以下實例1-3呈現涉及hyaC及nanP之特定雙重缺失構築體的構築。熟習此項技術者將認識到,在此等基因之編碼區內的任何其他缺失應提供同等有用的本發明之實例,該任何其他缺失一般具有足夠長度,或涉及編碼蛋白質之特定結構或功能作用所涉及的特定胺基酸。因此,完全沒必要缺失整個開放閱讀框,實際上,提及生物信息學分析之標準方法將表明hyaC及nanP之多種其他等效且有效之突變。因此,以野生型hyaC DNA序列(SEQ ID NO: 8)及等效胺基酸序列(SEQ ID NO:9)開始,可鑑別出多個適當的缺失片段。類似地,就此點而言,可使用未修飾之nanP DNA序列(SEQ ID NO: 1)及相應胺基酸序列(SEQ ID NO: 2)。另外,甚至亦可提供nanP及hyaC基因之全長複本,其中特定胺基酸密碼子改變,因此,儘管提供全長編碼序列,但實際上,歸因於一或多個關鍵胺基酸突變,所得到的蛋白質不具有功能,且生物體經減毒。因此,一旦從業者意識到此類突變之總體價值,可獲得nanP/hyaC減毒作用之突變範圍就會變寬,且構築技術會發生極大變化。
在本發明之實例中,藉由自野生型nanP開放閱讀框移除708個核苷酸產生ΔnanP。可同樣有效地實現多殺性巴斯德氏菌減毒的nanP之部分截短形式的代表性實例包括移除額外核苷酸,或移除較少核苷酸,亦即,自nanP基因移除自1至984個的任何數目個核苷酸以實現多殺性巴斯德氏菌減毒。在本發明之實例中,藉由自野生型hyaC開放閱讀框移除500個核苷酸產生ΔhyaC。可同樣有效地實現多殺性巴斯德氏菌減毒的hyaC之截短形式的代表性實例包括移除額外核苷酸,或移除較少核苷酸,亦即,自hyaC基因移除自1至1,107個核苷酸之任何數目個核苷酸以實現多殺性巴斯德氏菌減毒。
亦可將點突變引入nanP及/或hyaC開放閱讀框中以實現多殺性巴斯德氏菌減毒。可引入之點突變之類型的實例係熟習此項技術者熟知的。
除hyaC、nanP基因中之突變外,視需要可使血清群A之多殺性巴斯德氏菌細菌中之其他基因突變以獲得減毒細菌。視需要突變之基因可為Fis或白細胞毒素A致病性基因中之一或多個。
關於本發明之此類等效實例且提及任何此類最終基因體序列之構築及組裝,適用以下總體定義及技術標準。
出於本發明之目的,在基於遺傳密碼之簡併性,第二聚核苷酸分子之核苷酸序列所編碼之聚胺基酸與第一聚核苷酸分子之核苷酸序列所編碼之聚胺基酸相同的情況下,或當其編碼之聚胺基酸與第一聚核苷酸分子之核苷酸序列所編碼之聚胺基酸足夠相似以便用於實踐本發明時,第二聚核苷酸分子(RNA或DNA)之核苷酸序列與第一聚核苷酸分子之核苷酸序列「同源」,或與該第一聚核苷酸分子具有「一致性」。同源聚核苷酸序列亦指有義股及反義股,且在所有情況下指任何此類股之補體。一般而言,若基於BLASTN演算法(美國國立衛生研究院(the United States National Institute of Health)之國家生物技術資訊中心(National Center for Biotechnology Information),又稱為NCBI(美國馬里蘭州貝塞斯達(Bethesda, Maryland, USA)),第二聚核苷酸分子之核苷酸序列與第一聚核苷酸分子之核苷酸序列具有至少約70%核苷酸序列一致性,則該第二聚核苷酸分子之核苷酸序列與該第一聚核苷酸分子之核苷酸序列同源。在根據本發明之實踐進行計算的一個特定實施例中,提及BLASTP 2.2.6 [Tatusova TA及TL Madden, 「BLAST 2 sequences -a new tool for comparing protein and nucleotide sequences.」, (1999) FEMS Microbiol Lett. 174:247-250.]。簡言之,使用空位開放罰分10、空位延伸罰分0.1以及Henikoff及Henikoff(Proc. Nat. Acad. Sci. USA 89:10915 10919. 1992)之「blosum62」計分矩陣來比對兩個胺基酸序列以使比對分數最佳化。接著,計算一致性百分比:一致匹配之總數×100/除以較長序列之長度+引入較長序列中以比對兩個序列之空位的數量。
較佳地,同源核苷酸序列具有至少約75%核苷酸序列一致性,甚至更佳地具有至少約80%、85%、90%、95%、96%、97%、98%及99%核苷酸序列一致性。由於遺傳密碼具有簡併性,故同源核苷酸序列可包括任何數目的「沉默」鹼基變化,亦即,仍然編碼相同胺基酸之核苷酸取代。
同源核苷酸序列可進一步含有非沉默突變,亦即,引起所編碼之聚胺基酸中之胺基酸差異的鹼基取代、缺失或添加,只要該序列與由第一核苷酸序列所編碼之聚胺基酸保持至少約70%一致性或另外可用於實踐本發明即可。就此而言,可進行一般被認為不會使總體蛋白質功能不活化的某些保守胺基酸取代,諸如關於帶正電之胺基酸(且反之亦然):離胺酸、精胺酸及組胺酸;關於帶負電之胺基酸(且反之亦然):天冬胺酸及麩胺酸;以及關於帶中性電荷之某些胺基酸群組(且在所有情況下,亦反之亦然):(1)丙胺酸及絲胺酸,(2)天冬醯胺、麩醯胺酸及組胺酸,(3)半胱胺酸及絲胺酸,(4)甘胺酸及脯胺酸,(5)異白胺酸、白胺酸及纈胺酸,(6)甲硫胺酸、白胺酸及異白胺酸,(7)苯丙胺酸、甲硫胺酸、白胺酸及酪胺酸,(8)絲胺酸及蘇胺酸,(9)色胺酸及酪胺酸,以及(10)例如酪胺酸、色胺酸及苯丙胺酸。胺基酸可根據物理特性以及對二級與三級蛋白質結構之影響來進行分類。保守取代在此項技術中公認為一個胺基酸取代具有類似特性之另一胺基酸。例示性保守取代可見於1997年3月13日公開之WO 97/09433(1996年9月6日申請之PCT/GB96/02197的第10頁。或者,保守胺基酸可如Lehninger(Biochemistry, 第二版;Worth Publishers, Inc., NY:NY (1975), 第71-77頁)中所述進行分組。額外的適合保守變化及其應用描述於下。
可藉由比較核苷酸序列,例如使用上述BLASTN進行比較來確定同源核苷酸序列。或者,可藉由在選定條件下雜交來確定同源核苷酸序列。舉例而言,若第二聚核苷酸分子之核苷酸序列與SEQ ID NO: 1之補體在中等嚴格度條件下雜交,例如在65℃下,在0.5 M NaHPO4、7%十二烷基硫酸鈉(SDS)、1 mM EDTA中與過濾器結合之DNA雜交,且在42℃下,在0.2×SSC/0.1% SDS中洗滌(參見Ausubel等人編輯, Protocols in Molecular Biology, Wiley and Sons, 1994, 第6.0.3至6.4.10頁),或在將以其他方式引起編碼如下文所定義之PRRS病毒之序列雜交的條件下雜交,則該第二聚核苷酸分子之核苷酸序列與SEQ ID NO: 1(或任何其他特定的聚核苷酸序列)同源。可憑經驗確定或基於探針之長度及鳥苷/胞嘧啶(GC)鹼基配對之百分比來精確計算雜交條件之改變。雜交條件可如Sambrook等人(編), Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press: Cold Spring Harbor, 紐約(1989), 第9.47頁至第9.51頁中所描述來計算。
在另一個實施例中,如此項技術中所知(Ausebel等人, Current Protocols in Molecular Biology, Greene Publishing and Wiley Interscience, 紐約, 1989,若第二核苷酸序列與SEQ ID NO:1之補體(或其他適當序列)在高嚴格度條件下雜交,例如在65℃下與過濾器結合之DNA在0.5 M NaHPO4、7% SDS、1 mM EDTA中雜交,且在68℃下,在0.1×SSC/0.1% SDS中洗滌,則該第二核苷酸序列與SEQ ID NO:1(或SEQ ID NO: 8或本發明之任何其他序列)同源。
還應理解,本發明的經分離之聚核苷酸分子及經分離之RNA分子包括合成分子以及經由重組技術,諸如經由活體外選殖及轉錄得到的分子。
聚核苷酸分子可使用一般熟習此項技術者已知之重組技術進行基因突變,如此項技術中所知,該等重組技術包括定點突變誘發,或隨機突變誘發,諸如藉由暴露於化學誘變劑或放射線進行之突變誘發。突變可藉由此項技術中已知之標準方法,例如所描述(例如Meulenberg等人, Adv. Exp. Med. Biol., 1998, 440:199-206)之感染性複本的定點突變誘發(參見例如Sambrook等人(1989), Molecular Cloning: A Laboratory Manual, 第2編, Cold Spring Harbor Laboratory Press, 紐約冷泉港(Cold Spring Harbor, N.Y.))進行。
本發明之疫苗組合物
本發明鑑別出涉及多殺性巴斯德氏菌減毒且可用於重組構築減毒細菌並特別適用作牛疫苗的基因及基因序列。由此等發現得到的指導亦容許篩選及分離可證實類似特性的天然菌株或藉由常規培養產生之菌株。此類減毒細菌特別適用於製備為活疫苗,其可進一步含有抗原組分(活全細菌、菌苗、抗原性個別蛋白質或其他巨分子,以及活病毒及不活化病毒)以便提供組合疫苗。就此而言,熟習此項技術者應瞭解,任何此類組合調配物可涉及多瓶包裝,以及最終稀釋、組合及混合,因為最佳儲存條件或與佐劑之組合可能引起不相容性,例如,對於熟練細菌組分有用之佐劑對於所含活病毒或細菌組分之長期儲存可能不相容。
多殺性巴斯德氏菌細菌在修飾之前含有野生型hyaC DNA序列,該序列係SEQ ID NO: 8或與其至少80%一致之任何DNA序列;且在修飾之前,含有野生型nanP DNA序列,該序列係SEQ ID NO:1或與其至少80%一致之任何DNA序列。在一個由此得到的較佳實施例中,減毒細菌包含由SEQ ID NO:3組成之nanP基因序列及由SEQ ID NO: 12組成之hyaC基因序列。
所得到的本發明之減毒多殺性巴斯德氏菌在牛體內引起針對疾病具有保護性的較強免疫反應。如上所指出,多殺性巴斯德氏菌根據莢膜血清群及體細胞(LPS)血清型分類,分別描述5種莢膜類型(A、B、D、E、F)及16種體細胞類型(參見G. Carter, Pasteurellosis:
Pasteurella multocidaand
Pasteurella hemolytica. Adv. Vet. Sci., 1967., 11:321-792。儘管本發明之減毒菌株提供針對由多種多殺性巴斯德氏菌血清群引起之疾病的保護,且針對莢膜血清型A之保護較佳。
雙組分組合物
在牛中具有重要意義的額外細菌病原體係溶血性巴斯德氏菌(溶血性曼氏桿菌)。儘管已知許多病原體可導致牛呼吸道疾病複征(BRDC),但溶血性曼氏桿菌被視為導致「飼育場牛搬運熱之嚴重形式及包括乳牛場牛犢在內之牛犢肺炎的主要因素。實際上,由於造成急性纖維素性大葉性胸膜肺炎(acute fibrinous lobar
pleuropneoumina),此病原體實際上可為與在該等疾病狀況下死亡相關聯之主要病原體。特別有效之溶血性曼氏桿菌疫苗的一個實例係由美國Zoetis製造之One Shot®,其提供針對溶血性曼氏桿菌A-1型感染之優良保護,且包含治療有效量之A-1型類白細胞毒素、莢膜抗原、可溶性抗原及不活化細胞,由此能夠以僅一次劑量即在牛體內提供保護。在此類較佳實例中,抗原組分係自菌株ATCC號55318提供,亦參見美國專利第5,855,894號。
因此,在本發明之一個較佳實施例中,提供溶血性曼氏桿菌抗原(如上文所描述)及多殺性巴斯德氏菌減毒活細菌之冷凍乾燥製劑,該製劑在疫苗即將使用之前用稀釋劑組分復原,該稀釋劑組分包含一或多種佐劑,諸如氫氧化鋁凝膠及礦物油/卵磷脂乳液。一種此類較佳之佐劑組合物係所提供之5% v/v礦物油/卵磷脂乳液佐劑「Amphigen」®,其具有12% v/v氫氧化鋁凝膠及鹽水作為佐劑/稀釋劑(關於佐劑調配物,參見下文)。此類疫苗可視需要以一次劑量、兩次劑量或多次劑量呈現投予,且以下實例根據所使用之實際抗原組成,提供關於其給藥量及時間安排的指導。
熟習此項技術者應認識到,存在許多雙劑量組合物(亦即,提供針對兩種病原體之保護),該等組合物可根據本發明之實踐直接得到。此類組合物可由一個、二個或三個獨立小瓶提供,且取決於所涉及組分之穩定性要求,在即將用於動物之前混合。因此,在一個最典型之實施例中,若菌苗膜組分可能被佐劑破壞(另外取決於所選擇的佐劑),或活細菌及活病毒抗原組分可能劣化,則該等抗原組分可由第一來源(諸如凍乾塊)提供,其中佐劑係由稀釋劑瓶提供,在即將疫苗接種之前混合。就此而言,適合的額外活或經殺滅病毒及細菌組分包括由牛腹瀉病毒(BVDV)、牛鼻氣管炎病毒(IBR)、副流感3病毒(PI3)及牛呼吸道融合病毒(BRSV)、牛冠狀病毒(BCV,牛黴漿菌、索氏嗜血桿菌(
Histophilus somni/somnus)及梭菌(Clostridials)[產氣莢膜梭菌A、B、C、D型、破傷風(Tetani)梭菌、敗血(Speticum)梭菌、索氏(Sordellii)梭菌、溶血(Haemolyticum)梭菌、諾維氏(Novyi)梭菌、氣腫疽(Chauvoi)梭菌]提供者。
多組分組合物
較佳的多組分疫苗包括使用減毒多殺性巴斯德氏菌組分與Zoetis之Bovishield Gold®的組合,該Bovishield Gold®亦提供牛腹瀉病毒(BVDV)、牛鼻氣管炎病毒(IBR)、副流感3病毒(PI3)及牛呼吸道融合病毒(BRSV),其具體病毒分離株如下。牛鼻氣管炎病毒(IBR)第C-13代,於1965年自Cutter Labs獲得,在牛腎細胞(NL-BK-1A)上繼代,在1971年被APHIS批准作為生產種源;副流感3病毒(PI3)「Reisinger」分離株,於1969年在內布拉斯加大學(University of Nebraska)獲得,在牛腎細胞(NL-BK-1A)上繼代,在1971年被APHIS批准作為生產種源;牛呼吸道融合病毒(BRSV)分離株,自愛荷華州爆發(Iowa outbreak)獲得,被愛荷華州埃姆斯(Ames, IA)之VMRD命名為「BRSV/375」且隨後在Norden Labs於NL-BK及BT細胞中繼代,且在1982年被APHIS批准作為生產種源;牛病毒性腹瀉病毒(BVDV)1A型,於1993年自Whitehall獲得且在Norden Labs再接種至NL-BK-6細胞中,重新命名為病毒株NADL MSVX+1,且在1994年被APHIS批准作為生產種源;及牛病毒性腹瀉病毒(BVDV)2型,自貴湖大學(U. of Guelph)以病毒株53637獲得,在NL-BT-2細胞中經歷空斑純化,轉移至NL-BK-6細胞中,再經歷減毒且於2002年被APHIS批准作為生產種源。
此製劑可進一步包括前述不活化溶血性曼氏桿菌,由此併入Zoetis之商業產品BOVISHIELD GOLD ONE SHOT®。
另一調配物涉及Zoetis之BOVISHIELD GOLD FP5 VL5 HB®,亦分2個小瓶提供以便一起使用。首先,將以下五種無佐劑之經改良活病毒的冷凍乾燥製劑與另一小瓶混合:牛鼻氣管炎病毒(IBR)+副流感3病毒(PI3)+牛呼吸道合胞病毒(BRSV)+牛病毒性腹瀉病毒(BVDV)(1A型及2型兩者),該另一小瓶含有六(6)種不同的經殺滅全細菌病原體之水性有佐劑組合,該等病原體包含五(5)種腎臟鉤端螺旋體(Leptospira1 interrogans)血清變種及一(1)種胎兒彎曲桿菌(Campylobacter fetus)。細菌組分中所提供之佐劑賦予針對IBR及BVDV病毒之「胎兒保護」,參見下文。其抗原組分係以下病毒之抗原組分:牛鼻氣管炎病毒(IBR)第C-13代,於1965年自Cutter Labs獲得,在牛腎細胞(NL-BK-1A)上繼代,在1971年被APHIS批准作為生產種源;副流感3病毒(PI3)「Reisinger」分離株,於1969年在內布拉斯加大學獲得,在牛腎細胞(NL-BK-1A)上繼代,在1971年被APHIS批准作為生產種源;牛呼吸道融合病毒(BRSV)分離株,自愛荷華州爆發獲得,被愛荷華州埃姆斯之VMRD命名為「BRSV/375」且隨後在Norden Labs於NL-BK及BT細胞中繼代,且在1982年被APHIS批准作為生產種源;牛病毒性腹瀉病毒(BVDV)1A型,於1993年自Whitehall獲得且在Norden Labs再接種至NL-BK-6細胞中,重新命名為病毒株NADL MSVX+1,且在1994年被APHIS批准作為生產種源;及牛病毒性腹瀉病毒(BVDV)2型,自貴湖大學以病毒株53637獲得,在NL-BT-2細胞中經歷空斑純化,轉移至NL-BK-6細胞中,再經歷減毒且於2002年被APHIS批准作為生產種源。細菌:腎臟鉤端螺旋體犬血清型(s.canicola),冷凍種源批號10003,於1974年7月確定且標為Norden L-15,在1984年之前獲APHIS批准;腎臟鉤端螺旋體感冒傷寒血清型(s.grippotyphosa),冷凍種源批號10005(Lepto grippo 1550),於1974年7月確定且在1984年之前獲APHIS批准;博格氏鉤端螺旋體(L.borgpetersenii)哈德焦血清型(s. hardjo),在1999年冷凍種源批號H.MP11(來自澳大利亞(Australia)之Bairnsdale Regional Veterinary Laboratory),在2001年被APHIS授予Biocor(一家CSL公司)批准信;腎臟鉤端螺旋體出血性黃疸血清型(s. icterohaemorrhagiae),冷凍種源批號10010,於1975年10月確定且標為Lepto ictero NADL,且在1984年之前獲APHIS批准;及腎臟鉤端螺旋體波拿那血清型(s.pomona),冷凍種源批號10002,於1974年7月確定且標為L. Pomona T262並在1984年之前獲APHIS批准;胎兒彎曲桿菌,胎兒亞種,於1965年自牛分離並命名為菌株14858,根據Dellen Laboratories許可,重命名為菌株17761且在1981年獲CVB批准。
一般使用之佐劑及賦形劑
在本發明中,疫苗及/或免疫原性組合物包含佐劑。如本文所使用,「佐劑」係指這樣一種試劑,該試劑本身不具有任何特定抗原作用,但可刺激免疫系統,從而增加針對抗原之反應。
本文所描述之組合物中使用之佐劑的濃度將取決於佐劑之性質。本文所描述之組合物中存在的佐劑之最終濃度典型地為約1-50%(v/v),且更典型地,其最終濃度為約10%、15%、20%、25%或30%(v/v)。舉例而言,在包含SP-Oil之組合物中,存在的佐劑典型地在約1%與約25%(v/v)之間,更典型地在約5%與約15%(v/v)之間,諸如為約10%(v/v)。舉例而言,在包含丙烯酸聚合物以及包含一或多種萜烯烴之可代謝油與聚氧乙烯-聚丙烯嵌段共聚物之混合物的組合物中,丙烯酸聚合物與可代謝油/聚氧乙烯-聚丙烯嵌段共聚物混合物的比率典型地為在約1:25與約1:50之間的比率且典型地,其最終濃度在約1%與約25%(v/v)之間。
在一個實施例中,生物學上可接受之佐劑包含SP-Oil。SP-Oil係一種流體化油乳液,其包括聚氧乙烯-聚氧丙烯嵌段共聚物(Pluronic® L121, BASF公司)、角鯊烷、聚氧乙烯脫水山梨糖醇單油酸酯(Tween® 80, ICI Americas)及緩衝鹽溶液。SP-Oil係一種有佐劑的有效疫苗,當投予個體時能夠誘導細胞介導之免疫反應(CMI)及體液免疫反應兩者(參見例如US 5,709,860)。
聚氧乙烯-聚氧丙烯嵌段共聚物係有助於使固體及液體組分懸浮的界面活性劑。此等界面活性劑可呈聚合物形式以商品名Pluronic®商購。較佳之界面活性劑係泊洛沙姆(poloxamer)401,其可以商品名Pluronic® L121商購。一般而言,SP-Oil乳液係一種免疫刺激性佐劑混合物,其將包含約1%至3%(體積/體積)之嵌段共聚物;約2%至6%(體積/體積)之角鯊烷,更確切地說,約3%至6%之角鯊烷;及約0.1%至0.5%(體積/體積)之聚氧乙烯脫水山梨糖醇單油酸酯,且其餘部分係緩衝鹽溶液。
在一個實施例中,存在的SP-Oil之濃度在約1%與約25% v/v之間。在一個實施例中,存在的SP-Oil之濃度在約5%與約15% v/v之間。在一個實施例中,存在的SP-Oil之濃度係約10% v/v。
在額外的有效實施例中,佐劑可包含皂素,諸如Quil A;固醇,諸如膽固醇;四級銨化合物,諸如溴化二甲基二(十八烷基)銨(DDA);聚合物,諸如聚丙烯酸(Carbopol®, Lubrizol Corporation);醣脂,諸如N-(2-脫氧-2-L-白胺醯基胺基-b-D-葡糖哌喃糖基)-N-十八烷基十二烷醯基醯胺氫乙酸鹽(hydroacetate);及免疫刺激性寡核苷酸,包括DNA型及RNA型寡核苷酸。
在一些實施例中,用於本發明之皂素係Quil A及/或其衍生物。Quil A係自南美皂皮樹(Quillaja saponaria Molina)分離的一種皂素製劑,且最先被Dalsgaard(1974), Saponin adjuvants, Archiv. für die gesamte Virusforschung, 第44卷, Springer Verlag, 第243-254頁描述為具有佐劑活性。已藉由HPLC分離出Quil A之純化片段,其保持佐劑活性,而無與Quil A相關之毒性(EP 0362278),例如QS7及QS21(又稱為QA7及QA21)。QS21係來源於皂皮樹之樹皮的天然皂素,其誘導CD8+細胞毒性T細胞(CTL)、Th1細胞及主要IgG2a抗體反應且為用於本發明之情形的皂素。用於佐劑中的其他適合皂素包括但不限於QuilA之QH-A、QH-B及QH-C亞組分、來自除皂皮樹外之物種的皂素,諸如來自人參屬(Panax)(人參)、黃芪屬(Astragalus)、牛膝屬(Achyranthes)、大豆、相思樹屬(Acacia)及黨參屬(Codonopsis)之皂素。在一些實施例中,皂素係自除皂皮樹外之物種分離。
在一些實施例中,佐劑可包含固醇。固醇共有共同的化學核,其為類固醇環結構,具有羥基(OH),該羥基通常附接至碳-3。脂肪酸取代基之烴鏈的長度通常在16至20個碳原子間變化,且可為飽和或不飽和的。固醇通常在環結構中含有一或多個雙鍵且亦含有附接至環之多個取代基。類固醇及其脂肪酸酯基本上不溶於水。鑒於此等化學相似性,因此當用於本發明之疫苗組合物中時,共有此化學核心之固醇可能會具有相似特性。適用於佐劑中之固醇包括膽固醇、β-植固醇、豆固醇、麥角固醇及麥角鈣化固醇。此等固醇係此項技術中熟知的且可商購。舉例而言,膽固醇揭示於第12版《默克索引(Merck Index)》第369頁中。適用於佐劑中之固醇的量取決於所用固醇之性質。然而,其用量一般為每劑約1微克至約5,000微克。其用量亦為每劑約1微克至約4,000微克、每劑約1微克至約3,000微克、每劑約1微克至約2,000微克及每劑約1微克至約1,000微克。其用量亦為每劑約5微克至約750微克、每劑約5微克至約500微克、每劑約5微克至約200微克、每劑約5微克至約100微克、每劑約15微克至約100微克及每劑約30微克至約75微克。
在一些實施例中,佐劑可包含四級胺化合物。此等化合物係基於銨的,具有四個烴基。實際上,烴基一般限於烷基或芳基。在一個實施例中,四級胺化合物由四個烷基鏈構成,其中兩個係C10-C20烷基,且其餘兩個係C1-C4烷基。在一個實施例中,四級胺係溴化二甲基二(十八烷基)銨(DDA)、氯化物或醫藥學上可接受之相對離子。
在一些實施例中,佐劑可包含一或多種免疫調節劑,諸如介白素、干擾素或其他細胞介素。此等材料可商購。適用於佐劑中之免疫調節劑的量取決於所用免疫調節劑之性質及個體。然而,其用量一般為每劑約1微克至約5,000微克。其用量亦為每劑約1微克至約4,000微克、每劑約1微克至約3,000微克、每劑約1微克至約2,000微克及每劑約1微克至約1,000微克。
在一些實施例中,佐劑可包含一或多種聚合物,諸如DEAE聚葡萄糖、聚乙二醇以及聚丙烯酸及聚甲基丙烯酸(例如CARBOPOL®)。該等材料可商購。適用於佐劑中之聚合物的量取決於所用聚合物之性質。然而,其用量一般為約0.0001% v/v(體積/體積)至約75% v/v。在其他實施例中,其用量為約0.001% v/v至約50% v/v、約0.005% v/v至約25% v/v、約0.01% v/v至約10% v/v、約0.05% v/v至約2% v/v及約0.1% v/v至約0.75% v/v。在另一個實施例中,其用量為約0.02% v/v至約0.4% v/v。DEAE-聚葡萄糖可具有在50,000 Da至5,000,000 Da範圍內之分子大小,或其可在500,000 Da至2,000,000 Da範圍內。此類材料可商購或由聚葡萄糖製備。
在式I之結構中,R1係氫或具有至多20個碳原子之飽和烷基;X係-CH2-、-O-或-NH-;R2係氫或具有至多20個碳原子之飽和或不飽和烷基;R3、R4及R5獨立地為氫、-SO42-、-PO42-、-COC1-10烷基;R6為L-丙胺醯基、L-α-胺基丁基、L-精胺醯基、L-天冬醯胺醯基、L-天冬胺醯基、L-半胱胺醯基、L-麩胺醯基、L-甘胺醯基、L-組胺醯基、L-羥脯胺醯基、L-異白胺醯基、L-白胺醯基、L-離胺醯基、L-甲硫胺醯基、L-鳥胺醯基、L-苯丙胺醯基、L-脯胺醯基、L-絲胺醯基、L-蘇胺醯基、L-酪胺醯基、L-色胺醯基及L-纈胺醯基或其D-異構體。
在一個實施例中,適合醣脂係N-(2-脫氧-2-L-白胺醯基胺基-b-D-葡糖哌喃糖基)-N-十八烷基十二烷醯基醯胺或其乙酸鹽,又以商品名Bay R1005®為人所知。
在一些實施例中,佐劑可包含免疫刺激性寡核苷酸。適合免疫刺激性寡核苷酸包括ODN(DNA型)及ORN(RNA型)寡核苷酸,其可具有經修飾主鏈,包括但不限於硫代磷酸酯修飾、鹵化、烷基化(例如乙基修飾或甲基修飾)及磷酸二酯修飾。在一些實施例中,可使用聚肌苷酸-胞苷酸或其衍生物(聚I:C)。在一組實施例中,本發明之寡核苷酸含有回文序列,且更佳能夠形成包含莖及環之髮夾樣二級結構。在某些實施例中,免疫刺激性寡核苷酸係單股的,不過其可以含有回文結構且因此形成雙股結構,例如莖-環結構。此項技術中已知若干類免疫刺激性寡核苷酸。
用於佐劑中之免疫刺激性寡核苷酸的量取決於所用免疫刺激性寡核苷酸的性質及預定物種。然而,其用量一般為每劑約1微克至約20毫克。其用量亦為每劑約1微克至約10毫克、每劑約1微克至約5毫克、每劑約1微克至約4毫克、每劑約微克至約3毫克、每劑約1微克至約2毫克及每劑約1微克至約1毫克。
在一些實施例中,佐劑可包含基於鋁之組分。鋁係一種已知佐劑或佐劑調配物之一種組分,且可以諸如鋁膠(alhydrogel)(Brenntag;丹麥(Denmark))或REHYDRAGEL®(Reheis, Inc;新澤西州(New Jersey))形式購得。REHYDRAGEL®係一種結晶氫氧化鋁氧化物,在礦物學上稱為水鋁礦(boehmite)。當需要結合帶負電蛋白質時,其在疫苗中有效。Al2O3之含量取決於等級而在2%至10%範圍內,且其黏度係1000-1300 cP。一般而言,其可描述為吸附劑氫氧化鋁凝膠。
在一些實施例中,本發明包括但不限於免疫原性組合物,其包含能夠在活體外誘導產生針對多種HeV及/或NiV株系之交叉反應性中和抗血清的經分離之HeV或NiV G蛋白;以及佐劑,該佐劑包含聚氧乙烯-聚氧丙烯嵌段共聚物(PLURONIC® L121)、角鯊烷、聚氧乙烯脫水山梨糖醇單油酸酯(TWEEN® 80)及緩衝鹽溶液,例如其中該組合物含有:5 µg、50 µg、100 µg或250 µg之可溶性HeV或NiV G蛋白,及適當量之佐劑組分。
在本發明之另一個實施例中,疫苗及免疫原性組合物可為醫藥組合物之一部分。本發明之醫藥組合物可含有包含賦形劑及助劑的適合醫藥學上可接受之載劑,其有助於將活性化合物加工成可在醫藥學上使用以遞送至作用部位之製劑。
賦形劑
本發明之免疫原性組合物及疫苗組合物可進一步包含醫藥學上可接受之載劑、賦形劑及/或穩定劑(參見例如Remington: The Science and practice of Pharmacy (2005) Lippincott Williams),呈凍乾調配物或水溶液形式。可接受之載劑、賦形劑或穩定劑在該等劑量及濃度下對接受者無毒,且可包含緩衝劑,諸如磷酸鹽、檸檬酸鹽及其他有機酸;抗氧化劑,包括抗壞血酸及甲硫胺酸;防腐劑(諸如汞((鄰羧基苯基)硫基)乙基鈉鹽(THIOMERSAL)、氯化十八烷基二甲基苯甲基銨;氯化六羥季銨;苯紮氯銨(benzalkonium chloride)、苄索氯銨(benzethonium chloride);苯酚、丁醇或苯甲醇;對羥苯甲酸烷基酯,諸如對羥基苯甲酸甲酯或對羥基苯甲酸丙酯;兒茶酚;間苯二酚;環己醇;3-戊醇;及間甲酚);蛋白質,諸如血清白蛋白、明膠或免疫球蛋白;親水性聚合物,諸如聚乙烯吡咯啶酮;胺基酸,諸如甘胺酸、麩醯胺酸、天冬醯胺、組胺酸、精胺酸或離胺酸;單醣、雙醣及其他碳水化合物,包括葡萄糖、甘露糖或聚葡萄糖;螯合劑,諸如EDTA;糖,諸如蔗糖、甘露醇、海藻糖或山梨醇;成鹽相對離子,諸如鈉;金屬錯合物(例如Zn-蛋白質錯合物);及/或非離子型界面活性劑,諸如聚乙二醇(PEG)、TWEEN®或PLURONICS®。
本發明之組合物可呈懸浮於任何適當醫藥媒劑或載劑中之劑量,該醫藥媒劑或載劑之體積足以攜帶該劑量。一般而言,包括載劑、佐劑及其類似物在內之最終體積典型地將為至少1.0 ml。上限係由待投予之量的實用性決定,一般不超過約0.5 ml至約2.0 ml。
實例
對於用於實例1-3,使用多殺性巴斯德氏菌(P1062)血清群A血清型3構築含有溫度敏感性質體複製起點之突變多殺性巴斯德氏菌(參見Briggs及Tatum, Generation and molecular characterization of new
temperature-sensitive plasmids intended for genetic
engineering of Pasteurellaceae. Appl. Environ. Microbiol., 2005. 71:7187-7195),該P1062血清群A血清型3係一種充分表徵之牛分離株(Abrahante等人, Draft genome sequence of
Pasteurella multocidaisolate P1062, isolated from Bovine Respiratory Disease. Genome Announc. 2015., pii: e00058-12. doi: 10.1128/genomeA.00058-12)。藉由在編碼UDP-葡萄糖脫氫酶之hyaC中引入缺失突變來產生無莢膜突變體。接著,藉由使nanP不活化來產生另一種多殺性巴斯德氏菌突變體,nanP之基因產物係吸收環境取得之唾液酸所需的,而nanP不活化使該突變體不含唾液酸修飾。構築雙重缺失多殺性巴斯德氏菌ΔhyaC ΔnanP突變體以用作減毒活疫苗候選物,以便緩解BRD。
多殺性巴斯德氏菌株P-1062係卡特哈德斯頓(Carter Heddleston)A:3型之牛肺分離株。使多殺性巴斯德氏菌在哥倫比亞血瓊脂基礎盤(Columbia blood agar base plate)(密歇根州底特律(Detroit, MI)之Difco Lab.)上生長。使用Invitrogen™ One Shot™ Top10化學勝任型大腸桿菌(馬薩諸塞州沃爾瑟姆(Waltham, MA)之ThermoFischer Scientific)進行質體繁殖及選殖且亦在哥倫比亞血瓊脂基礎盤上對其進行培養。
所有引子均由Integrated DNA Technologies, Inc.(愛荷華州科拉爾維爾(Coralville, IA))定製合成。在PCR反應中使用完整多殺性巴斯德氏菌P-1062細胞作為模板,該等PCR反應係使用ThermoFischer Scientific之EasyStart™ PCR混合管(Mix-in-a-Tube)及製造商推薦之方案(加利福尼亞州聖地亞哥(San Diego, CA)之Molecular BioProducts)執行。使用GeneAmp 9600 PCR系統熱循環儀(康涅狄格州諾瓦克(Norwalk, CT)之Perkin Elmer Corp.)產生所有PCR擴增產物。反應條件需要根據下表1中所列各種引子對之熔融溫度,在黏接溫度下進行30個週期。下表1中列出引子名稱,且指定SEQ ID NO及相關黏接溫度(以℃為單位);隨後描述實際核苷酸序列且指定限制性識別位點加下劃線。
實例1. 多殺性巴斯德氏菌(P1062)ΔnanP之構築
使用引子1062 Bam-nanP-F(SEQ ID NO: 13)及1062 Sal-nanP-R(SEQ ID NO:14),藉由PCR合成用於在多殺性巴斯德氏菌P-1062中產生突變的ΔnanP置換臂。參見上表2。用QIAquick™離心管柱(加利福尼亞州巴倫西亞市(Valencia, CA)之Qiagen Inc.)純化所得到的SEQ ID NO:5內所包含之約2850個鹼基對的PCR片段,並使用Applied Biosystems 373型DNA定序儀(位於愛荷華州埃姆斯之愛荷華州立大學的DNA機構),藉由循環定序,用螢光終止子定序。對純化之PCR產物進行BamH1及Sal I消化,苯酚氯仿萃取及乙醇沈澱。接著,使用T7 DNA連接酶將回收之片段(包含在SEQ ID NO:5內)插入質體pBCSK(加利福尼亞州拉霍亞(LaJolla CA)之Stratagene Inc.)之相應位點中。將連接產物引入One Shot™ Top10化學勝任型大腸桿菌細胞(馬薩諸塞州沃爾瑟姆之ThermoFischer Scientific)中,接著將其塗鋪於含有34微克氯黴素(chloramphenicol)之哥倫比亞血瓊脂上並在37℃下培養隔夜。藉由PCR分析,針對所希望產物評定菌落,且使展現符合預期nanP插入物之產物的菌落在含有34微克氯黴素之哥倫比亞培養液(Columbia broth)中繁殖。使用Qiaprep™Spin Miniprep系統(馬里蘭州日耳曼敦(Germantown, MD)之Qiagen)純化重組質體pBCSKnanP。藉由用EcoR1消化,隨後用T7連接酶連接在nanP內產生框內缺失,由此產生708 bp框內缺失(圖1)。SEQ ID NO: 7係周圍具有SEQ ID NO:5中呈現之操縱子序列的ΔnanP。ΔnanP之DNA序列如SEQ ID NO:3中所示且ΔnanP之胺基酸序列如SEQ ID NO:4中所示。未修飾之nanP DNA序列如SEQ ID NO:1中所示且未修飾之胺基酸序列如SEQ ID NO:2中所示。SEQ ID NO:19及20係在缺失序列位點周圍的ΔnanP之部分DNA及胺基酸序列。
將具有BamHI及SalI識別序列之連接產物(包含在SEQ ID NO: 7內)轉型至Invitrogen™ One Shot™ Top10化學勝任型大腸桿菌(馬薩諸塞州沃爾瑟姆之
ThermoFischer Scientific)中並使其在含有34微克氯黴素之哥倫比亞瓊脂盤上繁殖。如下文所描述來回收並純化質體pBC+ΔnanP,接著用BamHI消化並與Tn903卡那黴素抗性元件連接以產生質體pBC+ΔnanP+kan。如Briggs及Tatum (2005)中所描述,使用來自pCT109GA189之溫度敏感性質體複製起點產生多殺性巴斯德氏菌P1062(牛,血清群A:3)之基因置換突變體。藉由接合BssHII消化之質體pBC+ ΔnanP+kan及pBC TSori(含有來自pCT109GA189之溫度敏感性複製起點的pBC),產生置換質體pTS+Kan+ΔnanP。置換質體pTS+Kan+ΔnanP之組裝示於圖2中。
接著,使用pTS+Kan+ΔnanP,使用逐步程序產生多殺性巴斯德氏菌ΔnanP突變體。最初,將置換質體pTS+Kan+ΔnanP經電穿孔放入多殺性巴斯德氏菌P-1062中。藉由在37℃下,在平緩振盪下,使細胞於100 ml哥倫比亞培養液中生長至對數期來使其成為電勝任細胞。藉由以5000× G離心使多殺性巴斯德氏菌沈澱,並在0℃下,在100 ml之272 mM蔗糖中洗滌。在0℃下,使沈澱物懸浮於等體積的272 mM蔗糖中。將勝任型多殺性巴斯德氏菌(100微升)置放於0.1 cm電穿孔比色管中並將其與100 ng置換質體DNA混合。以18,000 V/cm及800歐姆對細胞進行電穿孔(Gene Pulser, BioRad;加利福尼亞州里奇蒙(Richmond, CA)),得到在11-12 msec範圍內之時間常數。在電穿孔之後,立即使多殺性巴斯德氏菌細胞在0℃下再懸浮於1.0 ml哥倫比亞培養液中。在30℃下回收,保持2小時。將懸浮液鋪展(100微升/盤)至含有25微克/毫升卡那黴素之哥倫比亞瓊脂盤上。經轉型之多殺性巴斯德氏菌菌落出現在選擇盤上,在容許自主質體複製之溫度(30℃)下培育該等選擇盤。在30℃下,在選擇性培養液(25微克/毫升卡那黴素)個別地擴增菌落,接著將生長物(growth)鋪展至選擇盤上並在40℃下培育,該培育溫度係不容許自主溫度敏感性質體複製之溫度。由於質體在此溫度下複製不良,故其必須整合至細菌染色體中來存活並使細菌對卡那黴素具有抗性。當在高溫(40℃)下培養細胞時,主要藉助於同源重組產生單交叉突變菌落。參見圖3。
接著,將隨機選擇的推定之單交叉突變菌落轉移至無抗生素選擇之培養液中,並在容許自主質體複製之溫度(30℃)下培育。在容許溫度(30℃)下於2 ml培養液中連續繼代三次之後,將一圈培養物鋪展至哥倫比亞血瓊脂盤上並在37℃下培育。發現在單交叉突變體連續繼代之後產生的大多數菌落不含質體。在此步驟期間,由染色體上所包含之活性質體來源引起的不穩定性使染色體中置換質體之解析度增加,且取決於同源重組發生之位置,產生野生型或ΔnanP突變體子代。參見圖4。
接著,使用PCR鑑別多殺性巴斯德氏菌ΔnanP缺失突變體,如圖5A中所示。簡言之,使用對nanP具有特異性之引子擴增來自預期會表現ΔnanP;ΔhyaCΔnanP;或野生型nanP之菌落的DNA。在圖5A中,泳道1及2係來自表現ΔnanP之菌落的PCR產物;泳道3及4係來自表現ΔhyaCΔnanP之菌落;且泳道5及6係來自表現野生型nanP之菌落。PCR分析顯示,所選擇的具有ΔnanP之純系亦不含Tn903卡那黴素抗性元件及TS複製起點。使用QuantiChrom™唾液酸分析套組(加利福尼亞州海沃德(Hayward, CA)之BioAssay Systems),針對唾液酸吸收評定假定的多殺性巴斯德氏菌ΔnanP突變體,且不同於親本,具有ΔnanP突變之純系無法自生長培養基吸收唾液酸。在親本多殺性巴斯德氏菌之培養物中游離唾液酸之吸收很快且接近完全,而在突變體中未偵測到唾液酸之吸收,指示nanP基因產物係游離唾液酸之吸收所需的。
實例2. 多殺性巴斯德氏菌(P1062)ΔhyaC之構築
野生型hyaC DNA序列顯示於SEQ ID NO: 8中;且胺基酸序列顯示於SEQ ID NO: 9中。使用兩個引子集,即(i)1062 Bam-hyaC-F(SEQ ID NO:15)及1062 Pst-hyaC-R(SEQ ID NO:16),以及(ii) 1062 Pst-hyaC-F(SEQ ID NO:17)及1062 Sal-hyaC-R(SEQ ID NO:18),藉由PCR合成用於在多殺性巴斯德氏菌P-1062中產生hyaC突變之ΔhyaC置換臂。參見上表1。對於5'臂引子對,引子1062 Bam-hyaC-F結合至SEQ ID NO: 10之核苷酸41-64,且引子1062 Pst-hyaC-R結合至SEQ ID NO: 10之核苷酸1019-1035。對於3'引子對,引子1062 Pst-hyaC-F結合至SEQ ID NO: 10之核苷酸1523-1540,且引子1062 Sal-hyaC-R結合至SEQ ID NO: 10之核苷酸2294-2314。SEQ ID NO: 10含有野生型hyaC DNA序列以及hyaC上游約786 bp及hyaC下游約544 bp。將每個引子對集個別地與多殺性巴斯德氏菌DNA雜交,並執行PCR以產生兩個擴增子、一個上游臂及一個下游臂。用QIAquick™離心管柱(加利福尼亞州巴倫西亞市之Qiagen Inc.)純化擴增子並使用Applied Biosystems 373型DNA定序儀(位於愛荷華州埃姆斯之愛荷華州立大學的DNA機構),藉由循環定序,利用螢光終止子進行定序。對純化之上游臂擴增子進行BamH1及Pst I雙重消化,且對下游臂擴增子進行PstI及SalI雙重消化。在苯酚氯仿萃取及乙醇沈澱之後,使用T7 DNA連接酶將回收之擴增子依序插入質體pBCSK(加利福尼亞州拉霍亞之Stratagene Inc.)之相應位點(BamH1及SalI)中,並將擴增子之開放端在其PstI位點處連接在一起;產生pBC+ΔhyaC。突變之hyaC含有487 bp缺失,且在兩個置換臂擴增子之接合點處形成PstI識別位點。缺失亦引起編碼序列之框移。SEQ ID NO: 12係ΔhyaC之核苷酸序列,當轉錄時,ΔhyaC編碼具有SEQ ID NO: 11之胺基酸序列的非功能性蛋白質。SEQ ID NO: 6係ΔhyaC及周圍核苷酸之DNA。SEQ ID NO:21及22係在ΔhyaC中缺失位點周圍之DNA及胺基酸序列。參見圖6。
將每種連接產物引入Invitrogen™ One Shot™ Top10化學勝任型大腸桿菌(馬薩諸塞州沃爾瑟姆之ThermoFischer Scientific)中,將其塗鋪於含有34微克氯黴素之哥倫比亞血瓊脂上,並在37℃下培養隔夜。藉由PCR分析,針對所希望產物評定菌落,並使具有hyaC上游臂擴增子及下游臂擴增子之菌落在含有34微克氯黴素之哥倫比亞培養液中繁殖。使用Qiaprep™ Spin Miniprep系統(馬里蘭州日耳曼敦之Qiagen)純化重組質體pBC+ΔhyaC且接著,如先前所描述進行定序。
接下來,用BamHI消化pBC+ΔhyaC,用蝦鹼性磷酸酶(馬薩諸塞州伊普斯維奇(Ipswich, MA)之New England BioLabs Inc.)處理,用苯酚氯仿萃取並用乙醇沈澱。將回收的經BamHI消化之質體與亦具有BamHI突出端之Tn903卡那黴素抗性元件連接在一起,產生pBC+ΔhyaC+ kan。藉由接合經BssHII消化之質體pBC+ΔhyaC+kan及pBC TSori(含有來自pCT109GA189之溫度敏感性複製起點的pBCSK)來構築用於產生多殺性巴斯德氏菌ΔhyaC突變體之置換質體pTS+Kan+ΔhyaC。亦參見圖2。
使用以上實例1中所述之方案,經由逐步程序,使用pTS+Kan+ΔhyaC產生多殺性巴斯德氏菌ΔhyaC突變體。亦參見圖3及4。如圖5B中所示,使用PCR分析鑑別多殺性巴斯德氏菌ΔhyaC缺失突變體。簡言之,使用對hyaC具有特異性之引子擴增來自預期會表現ΔhyaC;ΔhyaCΔnanP;或野生型hyaC之菌落的DNA。在圖5B中,泳道1及2係來自表現野生型hyaC之菌落的PCR產物;泳道3及4係來自表現ΔhyaC之菌落;且泳道5及6係來自表現ΔhyaCΔnanP之菌落。PCR分析亦顯示,所選擇的具有ΔhyaC之純系亦不含Tn903卡那黴素抗性元件及溫度敏感性複製起點。多殺性巴斯德氏菌ΔhyaC菌落不產生莢膜且其表型與野生型親本明顯不同。無莢膜突變體在視覺上易於與野生型親本相區分,且不同於親本,該等突變體係非黏液狀的且當用白光觀察時無虹彩。
實例3. 多殺性巴斯德氏菌(P1062)ΔnanP ΔhyaC雙重突變體之構築
使用前述方案,藉由將pTS+Kan+ΔhyaC轉型至前述多殺性巴斯德氏菌(P1062)ΔnanP突變體中來構築多殺性巴斯德氏菌(P1062)ΔnanPΔhyaC雙重突變體。此構築多殺性巴斯德氏菌ΔnanPΔhyaC雙重突變體之次序主要係因為ΔhyaC突變體沒有莢膜,可在培養盤上藉助於表型鑑別。
實例4. 評估當經鼻內投予14天齡之牛犢時ΔhyaC/nanP多殺性巴斯德氏菌疫苗的安全性
研究目標係評估當經鼻內(一個鼻孔)投予14天齡之牛犢時兩種劑量之ΔhyaC/ΔnanP多殺性巴斯德氏菌(「PM」)之安全性。將三十六頭雄性荷斯坦牛犢(Holstein calves)隨機地分配至兩個治療組(T01及T02)或兩個NT組(NT1-NT2;無治療)之一中。
T01係以凍乾之ΔhyaC/ΔnanP PM形式提供,其目標為每劑1×10
9CFU,在開始時實際劑量:每劑1.1× 10
9CFU,結束時之實際劑量:每劑1.1×10
9CFU。類似地,T02係以凍乾之ΔhyaC/nanP PM形式提供,其目標為目標量:每劑1×10
5CFU,在開始時實際劑量:每劑1.7×10
5CFU,結束時之實際劑量:每劑1.7×10
5CFU)。動物圈養於個別圍欄中,其中治療組T01及NT1圈養在一起,且T02及NT2圈養在一起。在第3天、第7天或第14天,指定T01及T02中各五頭牛犢進行屍體剖檢。在第14天,對所有NT動物實施安樂死。在第-2天收集直腸溫度,並在第-1天至第14天記錄兩者之臨床觀察結果。在第-1天、第1-5天、第8天、第11天及第14天收集鼻拭子。在屍體剖檢時,針對病變百分比對肺評分,且自肺、氣管以及左內耳及右內耳收集拭子。亦收集關節液及支氣管-肺泡灌洗液(BAL)樣品。
根據本研究,確定ΔhyaC/ΔnanP多殺性巴斯德氏菌突變體在經鼻內投予小牛犢時係安全的。此係藉由沒有持久臨床徵象以及未自任何屍體剖檢拭子提取到多殺性巴斯德氏菌證實。在本研究期間未觀察到「耳下垂」或陽性耳培養物,而耳下垂或陽性耳培養物係利用先前測試之分離株時一直存在的安全問題。如下文所示,任何肺或支氣管-肺泡灌洗液(BAL)樣品均未提取到多殺性巴斯德氏菌,參見表2及3。
實例5 研究在牛犢中皮下投予經修飾之活多殺性巴斯德氏菌hyaC/nanP之脫落及擴散情況
本研究旨在展示根據獸醫服務備忘錄
(Veterinary Service Memorandum)800.201,經修飾之活缺失突變型多殺性巴斯德氏菌種源細菌(Master Seed Bacteria,MSB)在皮下投予且可能擴散至易感牛犢之後的鼻脫落情況。為保存MSB,另製備一代多殺性巴斯德氏菌1062:hyaC/nanP MSB用於本研究。
將十四頭對多殺性巴斯德氏菌呈血清反應陰性且在鼻道中無多殺性巴斯德氏菌菌落形成的五週齡荷斯坦公牛犢隨機分至治療組T01(n=7;皮下投予;多殺性巴斯德氏菌hyaC/nanP)或NT1(n=7;無治療對照)。在研究持續時間內,將動物共混於一個2級生物安全室中。在第-5天及第0天收集血液樣品,並在第-5天及第0天至第21天收集鼻拭子及鼻咽拭子。在第-2天至第21天,記錄下直腸溫度及臨床觀察結果。
在研究期間,從未自任一治療組之鼻或鼻咽拭子分離出多殺性巴斯德氏菌。五隻T01動物及五隻NT1動物在第8天與第17天之間有至少一天溫度升高(≥104℉),且一隻T01動物及一隻NT1動物在第2天溫度≥104℉。在研究持續時間內,所有動物關於鼻涕及耳下垂均評為正常。極少數牛犢評為性情溫馴、咳嗽、跛行及呼吸努力(respiratory effort)。有兩頭NT1牛犢評為性情溫馴,且一頭NT1牛犢評為輕度咳嗽及呼吸努力。在T01組中,有兩頭牛犢評為輕度或中度跛行,且一頭T01牛犢評為輕度呼吸努力。經接種牛犢無多殺性巴斯德氏菌hyaC/nanP脫落,且未擴散至未接種之接觸對照動物(例如參見表4及5)。亦在5週齡牛犢中展示多殺性巴斯德氏菌hyaC/nanP之安全性。
實例6. 經修飾之活多殺性巴斯德氏菌hyaC/nanP於牛犢中之毒力回復評估
如先前所描述,本發明之一個較佳實施例係將經修飾之活多殺性巴斯德氏菌ΔhyaC/ΔnanP缺失突變體添加至來自Zoetis之Bovishield Gold-One Shot®(牛鼻氣管炎-病毒性腹瀉-副流感3-呼吸道融合病毒疫苗,經修飾之活病毒-溶血性曼氏桿菌類毒素)中。重組經修飾之活多殺性巴斯德氏菌hyaC/nanP含有hyaC及nanP基因之缺失。獸醫生物製劑檢驗中心(Center for Veterinary Biologics,CVB)獸醫服務備忘錄800.201需要毒力回復研究來評估新穎經改良活疫苗之安全性及穩定性。因此,此研究旨在展示在連續回歸繼代(backpassage)之後在易感牛犢中沒有發生經修飾之活多殺性巴斯德氏菌1062:ΔhyaC/ΔnanP細菌之毒力回復。
評估多殺性巴斯德氏菌1062:ΔhyaC/ΔnanP種源細菌+1(MSB+1)在五次回歸繼代中於易感牛犢中之安全性。研究時入選的所有動物在第0天係健康的五週齡荷斯坦牛犢,其鼻咽拭子針對多殺性巴斯德氏菌呈陰性且關於針對多殺性巴斯德氏菌外膜蛋白質(OMP;血清S/P比率<0.8)之抗體呈血清反應陰性。在研究持續時間內,將牛犢圈養於個別圍欄中。在第-2天至第21天,每天觀察動物之性情、咳嗽、耳下垂、跛行、鼻涕及呼吸努力之類臨床徵象;亦每天收集直腸溫度。在第-5天及第0天收集血清;在第-5天及第0天至第21天收集鼻咽拭子。在回歸繼代#5期間,觀察兩隻動物(一隻經接種且一隻為未接種對照)的臨床觀察結果及直腸溫度直至第27天,且在第22天至第25天收集鼻咽拭子以確定脫落何時停止。
在初始回歸繼代中,對七頭牛犢鼻內接種2 mL濃度為每劑2.56×10
9CFU的多殺性巴斯德氏菌1062:ΔhyaC/ΔnanP MSB+1。三頭牛犢用作未接種對照。對後續回歸繼代(#2至#5)中之動物接種2 mL(每個鼻孔1 mL)自前一回歸繼代彙集之鼻分泌物。對回歸繼代#2中之七隻動物接種,其中兩隻動物用作未接種對照。對回歸繼代#3至#5中之十隻動物接種;且二至三隻動物用作未接種對照動物。由於在對回歸繼代#4中之唯一陽性樣品進行PCR分析期間鑑別出野生型多殺性巴斯德氏菌,故使用來自回歸繼代#3之鼻分泌物的其餘等分試樣重複此回歸繼代。隨後,經由全基因體序列(WGS)確定野生型多殺性巴斯德氏菌為疫苗親本菌株(多殺性巴斯德氏菌1062),該菌株在PCR分析中用作陽性對照;其存在係由選擇菌落進行PCR分析期間發生之實驗室污染所致。至少一隻經接種動物在每次回歸繼代期間具有多殺性巴斯德氏菌1062:ΔhyaC/ ΔnanP陽性鼻咽拭子。在回歸繼代#1期間的7隻經接種動物中有4隻;回歸繼代#2中的7隻經接種動物中有1隻;回歸繼代#3中的10隻經接種動物中有6隻;以及回歸繼代#4(原始)、回歸繼代#4(重複)及回歸繼代#5中的10隻動物中有1隻具有陽性鼻咽拭子。多殺性巴斯德氏菌1062:ΔhyaC/ ΔnanP接種物計數自初始回歸繼代中之每劑2.56×10
9CFU減少至最終回歸繼代中之每劑4.20×10
3CFU。
在研究期間,在任何動物中均未觀察到中度或重度臨床徵象(分數=2或更高)。在所有回歸繼代中的至少一頭牛犢中觀察到輕度異常臨床徵象(分數=1)及超過104.0℉之溫度;未接種動物及/或經接種動物所受影響取決於該回歸繼代。觀察到的異常臨床徵象在禁食初乳之五週齡牛犢中並不少見。藉由經PCR評估來自第一天及最後一天陽性多殺性巴斯德氏菌樣品的菌落來確認hyaC及nanP缺失之穩定性,該等樣品來自每一回歸繼代中之每頭陽性牛犢;所有陽性樣品均確認為疫苗菌株。極少數具有異常臨床徵象及發熱之動物,以及基因缺失之穩定性展示多殺性巴斯德氏菌1062:ΔhyaC/ΔnanP MSB+1之安全性及無多殺性巴斯德氏菌1062:ΔhyaC/ΔnanP種源細菌之毒力回復。
實例7 關於ΔhyaC/ΔnanP多殺性巴斯德氏菌於牛犢中之毒力回復評估之額外研究
本研究係根據獸醫服務備忘錄800.201及VICH指導原則41進行,旨在展示經修飾之活ΔhyaC/ΔnanP多殺性巴斯德氏菌在連續回歸繼代之後於禁食初乳之6至7天齡牛犢中沒有發生毒力回復。評估在總計四次回歸繼代中ΔhyaC/ΔnanP多殺性巴斯德氏菌種源+1在易感牛犢中之安全性。研究中入選之所有動物均為禁食初乳之6至7天齡荷斯坦牛犢,其對多殺性巴斯德氏菌外膜蛋白質(OMP)呈血清反應陰性且其鼻分泌物對多殺性巴斯德氏菌呈陰性。在研究持續時間內,將牛犢圈養於個別圍欄中。觀察動物之性情、鼻涕、呼吸努力、跛行、咳嗽及耳下垂之類臨床徵象,且對於每一回歸繼代,收集自第-4天至第21天之直腸溫度。在第-5天及第0天收集血清;在第-5天及第0天至第21天收集鼻咽拭子並進行多殺性巴斯德氏菌之定量計數。藉由PCR確認所分離之任何多殺性巴斯德氏菌中ΔhyaC/ΔnanP基因缺失之存在。
在初始回歸繼代中,對七頭牛犢的一個鼻孔鼻內接種2 mL濃度為每劑2.4×10
9至2.6×10
9CFU(分別為接種開始及結束時之計數)的ΔhyaC/ΔnanP多殺性巴斯德氏菌。對後續數代接種2 mL自前一回歸繼代彙集之鼻分泌物。回歸繼代#1、#3及#4中有七隻動物經接種;回歸繼代#2中有10隻動物經接種。對於每一回歸繼代,三隻動物用作未接種(NT)對照。在回歸繼代#4期間,觀察到兩頭經接種(T04)牛犢在接種後具有溫馴性情及耳下垂。動物5460在第4天評為溫馴性情且在第5-7天及第9-11天評為耳下垂,且動物5463在第9天、第10天及第11天對性情評分,且在第11天評為耳下垂。先前利用其他鼻內投予之多殺性巴斯德氏菌疫苗候選物進行之安全性研究指示,耳下垂可提示可能有安全問題,因為疫苗菌株能夠在內耳/中耳腔形成菌落。生產商在牧場中亦不利地觀察到耳下垂。在第11天對兩隻動物實施安樂死並進行屍體剖檢,且發現自兩隻動物之一(5463)獲取的左內耳拭子之後續細菌培養物含有多殺性巴斯德氏菌。經由PCR確認自內耳分離之多殺性巴斯德氏菌係ΔhyaC/ΔnanP疫苗菌株。歸因於此潛在安全性問題,較佳將本發明之疫苗用於除鼻內投予疫苗外之投予途徑。
實例8 評估當經鼻內投予小牛犢時ΔhyaC/nanP多殺性巴斯德氏菌疫苗之功效
本研究之目標係確定當經鼻內投予約14天齡之牛犢時兩種劑量之凍乾、醱酵罐生長之疫苗抗原,即ΔhyaC/ΔnanP多殺性巴斯德氏菌之功效。
將荷斯坦公牛犢隨機分配至以下治療組之一中:
T01(鹽水,鼻內;n=13);
T02(ΔhyaC/ΔnanP多殺性巴斯德氏菌,疫苗接種前:每劑1.13×10
9CFU;疫苗接種後:每劑1.14×10
9CFU,鼻內,n=20);
T03(ΔhyaC/ΔnanP多殺性巴斯德氏菌,疫苗接種前:每劑0.87×10
9CFU;疫苗接種後:每劑0.80×10
9CFU,皮下,n=20);
T04(ΔyiaO多殺性巴斯德氏菌,每劑1×10
9CFU,皮下,n=13);(yiaO係與nanP相同之基因,但在此情況下僅存在一個缺失)。
第0天,利用分配之治療對牛犢進行疫苗接種。在第29-36天,收集T01-T04組中所有牛犢之臨床觀察結果及直腸溫度。在第30天攻擊T01-T04組,並在第36天以人道方式實施安樂死並進行屍體剖檢。在屍體剖檢時,收集肺拭子,並針對具有病變之肺的百分比對肺進行評分。
當與鹽水對照(T01)相比較時,所有疫苗接種組(T02、T03及T04)中之死亡率明顯降低。鼻內疫苗接種組(T02)在用ΔhyaC/ΔnanP多殺性巴斯德氏菌進行疫苗接種之兩個組中具有最大的死亡率降低。各治療組之肺病變不存在統計顯著差異,不過,相較於T01組,T02、T03及T04組中之病變在數值上較低。此等結果指示,死亡率可為此模型/疫苗之功效的較佳指標。因為在疫苗接種後僅觀察到極少且偶發之臨床徵象,所以確認該分離株之安全性。
實例9. 在荷斯坦牛犢中多殺性巴斯德氏菌之攻擊模型評估
本研究之目標係評估在經皮下疫苗接種(「SQ」)之5週齡牛犢中多殺性巴斯德氏菌(菌株50940)之兩種攻擊劑量及兩種攻擊方法的嚴重程度及一致性。
將六十四頭約5週齡之荷斯坦公牛犢隨機地分配(參見表6)至以下治療組之一中進行研究:T01(鹽水,SQ,n=8);T02(每劑0.8±0.14×10
9CFU多殺性巴斯德氏菌ΔhyaC/ΔnanP,SQ,n=8);T03(鹽水,SQ,n=8);T04(每劑0.8±0.14×10
9CFU多殺性巴斯德氏菌ΔhyaC/ΔnanP,SQ,n=8);T05(鹽水,SQ,n=8);T06(每劑0.8±0.14×10
9CFU多殺性巴斯德氏菌ΔhyaC/ΔnanP,SQ,n=8);T07(鹽水,SQ,n=8);T08(每劑0.8±0.14×10
9CFU多殺性巴斯德氏菌ΔhyaC/ΔnanP,SQ,n=8)。第0天,利用分配之治療對牛犢進行疫苗接種。在第-1天、第20天及第27天收集所有牛犢之血液。在第-1天、第1-3天、第7天及第20天收集所有牛犢之注射部位反應、臨床觀察結果及直腸溫度。另外,在第0天及第22 27天收集所有牛犢之臨床觀察結果及直腸溫度。
在第21天,藉由經氣管攻擊方法攻擊T01-T08組。T01-T02組在該程序中躺臥且投予每劑6.7×10
8CFU多殺性巴斯德氏菌,即菌株50940。T03-T04組在該程序中站立且投予每劑6.7×10
8CFU多殺性巴斯德氏菌,即菌株50940。T05-T06組在該程序中躺臥且投予每劑5.6×10
9CFU多殺性巴斯德氏菌,即菌株50940。T07-T08組在該程序中站立且投予每劑5.6×10
9CFU多殺性巴斯德氏菌,即菌株50940。在第27天,以人道方式對牛犢實施安樂死並進行屍體剖檢。在屍體剖檢時,收集肺拭子,並針對具有病變之肺的百分比對肺進行評分。
相較於T03對照組,T04疫苗接種組中之肺病變明顯減少。其他治療比較(T01相對於T02、T05相對於T06,及T07相對於T08)在肺病變方面並無顯著差異。任一疫苗接種組與其各別對照之間的死亡率無顯著降低。此研究之結果指示,在5週齡牛犢中,肺病變可為比死亡率更佳之功效指標。另外,此研究中之資料亦指示,站立攻擊途徑(近似攻擊濃度為每劑6.7×10
8CFU)可在五週齡牛犢中產生最佳攻擊結果。
肺病變結果
T01-T08組之肺病變展示於表7中。在T01相對於T02、T05相對於T06或T07相對於T08組中肺病變無明顯減少;然而,對於T03相對於T04,肺病變存在顯著減少(P≤0.10;表8)。另外,就T03相對於T04而言,緩解分數為0.63,且90%信賴區間為0.188,1.000。其他治療組比較皆無大於零之90%下限(表9)。
實例10 組合IBR-BVD-PI3-BRSV-MH-PM疫苗中不同劑量之多殺性巴斯德氏菌級分在小牛犢中之功效
本研究之目標係比較IBR-BVD-PI3-BRSV-MH-PM組合疫苗中不同劑量之多殺性巴斯德氏菌級分在小牛犢中之功效。
一百三十七頭禁食初乳之荷斯坦公牛犢入選研究。在第-8天,用2 mL分配(參見表10)之治療對攻擊前組(NT1至NT4)進行皮下疫苗接種:IBR-BVD-PI3-BRSV-MH(NT1/NT3)或IBR-BVD-PI3-BRSV-MH-PM(NT2/NT4;每劑2.41 × 10
9CFU多殺性巴斯德氏菌)。第0天,用以下之一對治療組T01至T05進行皮下疫苗接種:T01(IBR-BVD-PI3-BRSV-MH,n = 24)、T02(IBR-BVD-PI3-BRSV-MH,n = 23,每劑8.27 × 10
5CFU多殺性巴斯德氏菌)、T03(IBR-BVD-PI3-BRSV-MH,n = 23,每劑8.30 × 10
6CFU多殺性巴斯德氏菌)、T04(IBR-BVD-PI3-BRSV-MH,n = 24,每劑1 × 10
8CFU多殺性巴斯德氏菌)或T05(IBR-BVD-PI3-BRSV-MH,n = 24,每劑1.51 × 10
9CFU多殺性巴斯德氏菌)。在疫苗接種前一天、疫苗接種後三天、約第7天及在攻擊前一天,收集注射部位反應。在第-2天、第21天及第28天(對於NT組為第-9天、第13天及第20天)以及在攻擊期間於實施安樂死之前自動物收集血液。記錄下第-1天、第0天及第1-3天(對於NT組為第-9天、第-8天及第-7至-4天)以及第21天至第28天(對於NT組為第13天至第20天)之臨床觀察結果及直腸溫度。在第22天(對於NT組為第14天),用有毒異源多殺性巴斯德氏菌株經氣管攻擊動物。攻擊後,針對具有病變之肺的百分比對實施安樂死或在屍體剖檢日之前死亡的任何動物進行評分且收集肺拭子。在第28天(對於NT組為第20天),以人道方式對所有其餘動物實施安樂死,對肺病變評分並收集肺拭子。
由於所有測試標準及結果標準均得到滿足,故該研究視為有效的。相較於T01對照組,T03及T05治療組中死亡率明顯降低;任一治療組之間之肺病變不存在差異。由於T01及T05組在疫苗接種後立即觀察到嚴重過敏性反應,故鑑別出潛在安全性問題。該等反應之範圍自輕度(未治療即恢復)至重度(死亡)。測試疫苗之LPS含量,且所有疫苗均在關於許可的BoviShield GOLD One-Shot產品之製造認為可接受之LPS範圍內(4×41.20;上限為每劑42 µg)。此研究確認,當給予IBR-BVD-PI3-BRSV-MH級分之完整組合時,用低至每劑1×10
7CFU之多殺性巴斯德氏菌劑量可實現功效。死亡率資料報導於表11中且肺病變資料報導於表12中。
攻擊前組(NT1-NT4)之肺病變展示於表12中,且T01-T05之肺病變展示於表13中。當藉由p值(p≤0.10;表7)或緩解分數(表14)分析時,相較於對照,所有治療組未顯示肺病變之明顯減少(表6)。
實例11 關於不同下游加工之多殺性巴斯德氏菌ΔhyaC/ ΔnanP在牛犢中之安全性評定
本研究之目標係評估用於製備多殺性巴斯德氏菌ΔhyaC/ΔnanP活細菌抗原以用於例如兩個月大之牛犢的不同下游加工方法之安全性。應注意,若無額外調配步驟,則組合多殺性巴斯德氏菌/溶血性曼氏桿菌組合物之LPS(細菌脂多醣)及內毒素負荷可能過高。基於多殺性巴斯德氏菌級分之具體加工處理,將四十五頭約兩個月大之荷斯坦公牛犢隨機分配至六個治療組之一中(表15)。
第0天,用7 mL分配之治療對動物(NTX動物除外)進行皮下疫苗接種,該7 mL治療係分成兩份3.5 mL劑量分別投予頸部兩側。在疫苗接種後30分鐘及2-4小時,觀察動物之不良反應。在第1天至第14天,收集每日注射部位反應、臨床觀察結果及直腸溫度。T03(透濾/洗滌程序;PM單價)係未觀察到疫苗接種後反應的唯一治療組。在疫苗接種後30分鐘,在T02組(離心/洗滌程序,PM單價)中僅觀察到一例不良反應(1/9);在用地塞米松(dexmethasone)治療後,根據該2-4小時檢查,此動物恢復正常。在第1天至第14天,T02及T03組動物均評為正常。T01、T04及T05組均有至少兩隻動物在第0天出現疫苗接種後反應,且至少一隻動物在第1-14天觀察到臨床徵象。此研究之結果指示,對於經修飾之活
ΔhyaC/ΔnanP多殺性巴斯德氏菌疫苗而言,目前透濾/洗滌程序係較佳的,且此程序係如下實現。
使用0.2 μm中空纖維過濾器(GE Healthcare中空纖維產品#CFP-2-E-A)將多殺性巴斯德氏菌培養物濃縮至約10-15倍並用4.5-7x含有約8.5 g/L氯化鈉、約0.55 g/L無水磷酸氫二鈉及約0.08 g/L無水磷酸二氫鉀之連續流0.063%緩衝液透濾。使用標準細菌塗鋪法檢查最終經洗滌培養物之活力並將其冷凍。
本申請案通篇所引用之所有參考文獻(包括文獻參考、頒予之專利、公開之專利申請案及同在申請中之專利申請案)的全部內容特此以全文引用之方式明確地併入。
[圖1]顯示多殺性巴斯德氏菌中ΔnanP突變之一般構築方法。
[圖2]顯示含有溫度敏感性複製起點及多殺性巴斯德氏菌中之ΔnanP突變或ΔhyaC突變之置換質體的一般構築方法。
[圖3]顯示置換質體整合至多殺性巴斯德氏菌基因體中。
[圖4]顯示自多殺性巴斯德氏菌基因體移除置換質體。
[圖5A]顯示確認ΔnanP突變之存在的凝膠。泳道1及2:ΔnanP多殺性巴斯德氏菌擴增產物;泳道2及3:ΔnanPΔhyaC多殺性巴斯德氏菌擴增產物;泳道5及6:野生型多殺性巴斯德氏菌1062擴增產物。
[圖5B]顯示確認ΔhyaC突變之存在的凝膠。泳道1及2:野生型多殺性巴斯德氏菌1062擴增產物;泳道3及4:ΔhyaC多殺性巴斯德氏菌擴增產物;泳道5及6:ΔnanP ΔhyaC多殺性巴斯德氏菌擴增產物。
[圖6]顯示多殺性巴斯德氏菌中之ΔhyaC突變的一般構築方法。
<![CDATA[<110> 美商碩騰服務公司(Zoetis Services LLC)]]> 美國聯邦農業部祕書處 (THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF AGRICULTURE) <![CDATA[<120> 具有hyaC及nanP缺失之新穎多殺性巴斯德氏菌株及疫苗]]> <![CDATA[<130> ZP000337]]> <![CDATA[<140> TW 110136283]]> <![CDATA[<141> 2021-9-29]]> <![CDATA[<160> 22 ]]> <![CDATA[<170> PatentIn version 3.5]]> <![CDATA[<210> 1]]> <![CDATA[<211> 984]]> <![CDATA[<212> DNA]]> <![CDATA[<213> 多殺性巴斯德氏菌1062P]]> <![CDATA[<220>]]> <![CDATA[<221> misc_feature]]> <![CDATA[<223> 野生型nanP]]> <![CDATA[<400> 1]]> atgaaattta aaaaactact acttgcatct ttatgtttag gtgtttcagc ttctgtattt 60 gcagcagatt acgatcttaa attcggtatg gttgcgggtc caagctcaaa cgaatataaa 120 gcagtagaat tctttgcgaa agaagtgaaa gaaaaatcca atggcaaaat tgatgtggct 180 attttcccta gctcacagtt aggtgatgac cgtgtgatga ttaaacaatt aaaagacggt 240 gcattagact ttacgttagg tgaatcagca cgtttccaaa tttacttccc agaagcagaa 300 gtatttgcgt tgccttatat gattcctaat tttgaaacct ctaaaaaagc gttgctcgac 360 acaaaatttg gtcaaggttt attgaaaaaa attgataaag agttaaacgt acaagtgtta 420 tctgtggcgt ataacggtac acgtcaaaca acttctaacc gtgcaatcaa cagcattgaa 480 gacatgaaag ggttaaaatt acgtgtacct aacgcggcaa ccaaccttgc ttatgcaaaa 540 tacgtgggtg cagcgccaac accaatggca ttctctgaag tttaccttgc gcttcaaaca 600 aactctgtgg atggtcaaga aaacccatta ccgacaatcc aagcacaaaa attctatgaa 660 gtacaaaaat acttagcgtt aactaaccac atcttaaatg accaacttta cttaatcagt 720 aacgatacgt tggcagattt accagaagat ttacaaaaag tggttaaaga tgcagcagcg 780 aaagccgctg aatatcacac taaactcttc gttgacggtg agaacagctt agttgaattc 840 ttcaaaagtc aaggtgtgac agtcacacaa ccagacttaa aaccatttaa agcagcactt 900 acaccatact atgatgaata tctcaagaaa aatggtgaag tcggtaaaat ggcgattgaa 960 gaaatttcta atctcgctaa ataa 984 <![CDATA[<210> 2]]> <![CDATA[<211> 327]]> <![CDATA[<212> PRT]]> <![CDATA[<213> 多殺性巴斯德氏菌1062]]> <![CDATA[<220>]]> <![CDATA[<221> MISC_FEATURE]]> <![CDATA[<223> nanP蛋白質]]> <![CDATA[<400> 2]]> Met Lys Phe Lys Lys Leu Leu Leu Ala Ser Leu Cys Leu Gly Val Ser 1 5 10 15 Ala Ser Val Phe Ala Ala Asp Tyr Asp Leu Lys Phe Gly Met Val Ala 20 25 30 Gly Pro Ser Ser Asn Glu Tyr Lys Ala Val Glu Phe Phe Ala Lys Glu 35 40 45 Val Lys Glu Lys Ser Asn Gly Lys Ile Asp Val Ala Ile Phe Pro Ser 50 55 60 Ser Gln Leu Gly Asp Asp Arg Val Met Ile Lys Gln Leu Lys Asp Gly 65 70 75 80 Ala Leu Asp Phe Thr Leu Gly Glu Ser Ala Arg Phe Gln Ile Tyr Phe 85 90 95 Pro Glu Ala Glu Val Phe Ala Leu Pro Tyr Met Ile Pro Asn Phe Glu 100 105 110 Thr Ser Lys Lys Ala Leu Leu Asp Thr Lys Phe Gly Gln Gly Leu Leu 115 120 125 Lys Lys Ile Asp Lys Glu Leu Asn Val Gln Val Leu Ser Val Ala Tyr 130 135 140 Asn Gly Thr Arg Gln Thr Thr Ser Asn Arg Ala Ile Asn Ser Ile Glu 145 150 155 160 Asp Met Lys Gly Leu Lys Leu Arg Val Pro Asn Ala Ala Thr Asn Leu 165 170 175 Ala Tyr Ala Lys Tyr Val Gly Ala Ala Pro Thr Pro Met Ala Phe Ser 180 185 190 Glu Val Tyr Leu Ala Leu Gln Thr Asn Ser Val Asp Gly Gln Glu Asn 195 200 205 Pro Leu Pro Thr Ile Gln Ala Gln Lys Phe Tyr Glu Val Gln Lys Tyr 210 215 220 Leu Ala Leu Thr Asn His Ile Leu Asn Asp Gln Leu Tyr Leu Ile Ser 225 230 235 240 Asn Asp Thr Leu Ala Asp Leu Pro Glu Asp Leu Gln Lys Val Val Lys 245 250 255 Asp Ala Ala Ala Lys Ala Ala Glu Tyr His Thr Lys Leu Phe Val Asp 260 265 270 Gly Glu Asn Ser Leu Val Glu Phe Phe Lys Ser Gln Gly Val Thr Val 275 280 285 Thr Gln Pro Asp Leu Lys Pro Phe Lys Ala Ala Leu Thr Pro Tyr Tyr 290 295 300 Asp Glu Tyr Leu Lys Lys Asn Gly Glu Val Gly Lys Met Ala Ile Glu 305 310 315 320 Glu Ile Ser Asn Leu Ala Lys 325 <![CDATA[<210> 3]]> <![CDATA[<211> 276]]> <![CDATA[<212> DNA]]> <![CDATA[<213> 人工]]> <![CDATA[<220>]]> <![CDATA[<223> ΔNanP]]> <![CDATA[<400> 3]]> atgaaattta aaaaactact acttgcatct ttatgtttag gtgtttcagc ttctgtattt 60 gcagcagatt acgatcttaa attcggtatg gttgcgggtc caagctcaaa cgaatataaa 120 gcagtagaat tcttcaaaag tcaaggtgtg acagtcacac aaccagactt aaaaccattt 180 aaagcagcac ttacaccata ctatgatgaa tatctcaaga aaaatggtga agtcggtaaa 240 atggcgattg aagaaatttc taatctcgct aaataa 276 <![CDATA[<210> 4]]> <![CDATA[<211> 90]]> <![CDATA[<212> PRT]]> <![CDATA[<213> 人工]]> <![CDATA[<220>]]> <![CDATA[<223> ΔNanP蛋白質]]> <![CDATA[<400> 4]]> Met Lys Phe Lys Lys Leu Leu Leu Ala Ser Leu Cys Leu Gly Val Ser 1 5 10 15 Ala Ser Val Phe Ala Ala Asp Tyr Asp Leu Lys Phe Gly Met Val Ala 20 25 30 Gly Pro Ser Ser Asn Glu Tyr Lys Ala Val Glu Phe Lys Ser Gln Gly 35 40 45 Val Thr Val Thr Gln Pro Asp Leu Lys Pro Phe Lys Ala Ala Leu Thr 50 55 60 Pro Tyr Tyr Asp Glu Tyr Leu Lys Lys Asn Gly Glu Val Gly Lys Met 65 70 75 80 Ala Ile Glu Glu Ile Ser Asn Leu Ala Lys 85 90 <![CDATA[<210> 5]]> <![CDATA[<211> 2852]]> <![CDATA[<212> DNA]]> <![CDATA[<213> 人工]]> <![CDATA[<220>]]> <![CDATA[<223> 藉由SEQ ID NO: 13及14之引子擴增之片段中所包含的nanP]]> <![CDATA[<400> 5]]> gcggatgtga tagttttgac atattaactc cagtctaaat ttatcaaaag aagattgact 60 ccaatttgca taggttaatc ttagaattaa aaaataacaa ccaaaataat aaaaatttga 120 gatctttgtc gcatatttat tcatagggaa tagacagctt aattttagtt atgatttgtc 180 aatccttgct attttttgtg tttgctggtt tgcgatacac tgttctaata ttgctttgag 240 cacttgataa ccttgctcat taaaatgtaa tccgtcggta caaaggcgta aatccagttc 300 accgttagaa tcacaaaagt atttttgtgt ttcaacgtaa gtcacgtctg acggacaatg 360 ttgttttaaa taggtattga gcctgtgaat ttgtgcgtta gtgaccgtat taatctgatt 420 gaccggtgtg gcttctaata aaaagtagtg ggacgtagga gaaatggtgt gtaggtgagt 480 cagaatgtca tttaactatc gcatgacttg cgccggtgaa tacgtttctt ccttacaaat 540 atcattgacg cctaaaaaaa gaaaaacaga ttgtccaagt tgttgaatcc gtttaggttt 600 aacgataaca tccaaatatt gtcgcgtact gacgccagaa agtcctaaat tggcgacggt 660 ttgtcccgct aattgaggtg tgcctgctac ctgttcgtcc cacatgtcaa aaagtgaatg 720 accaattaag ctgatattgg caggtttgga aaattccgcc attttgctct gatagcgttg 780 ataaatatcc tgatcactta gcatgtgtgg acctctattt tgaaataaaa cgctaagtat 840 tatataaaac ctgatatgcc ggtaaacagt aaacttatct tccgtagggg taaatattca 900 attttgtgac gaacctatca tttatgaaat aaaacttcat tttctatata aaaaatagtt 960 ttttcacttt agaatgccaa acgtgtgaaa tttatttcat catcatttta acgtaatccc 1020 aacgtaacca atagaggaga actcataatg aaatttaaaa aactactact tgcatcttta 1080 tgtttaggtg tttcagcttc tgtatttgca gcagattacg atcttaaatt cggtatggtt 1140 gcgggtccaa gctcaaacga atataaagca gtagaattct ttgcgaaaga agtgaaagaa 1200 aaatccaatg gcaaaattga tgtggctatt ttccctagct cacagttagg tgatgaccgt 1260 gtgatgatta aacaattaaa agacggtgca ttagacttta cgttaggtga atcagcacgt 1320 ttccaaattt acttcccaga agcagaagta tttgcgttgc cttatatgat tcctaatttt 1380 gaaacctcta aaaaagcgtt gctcgacaca aaatttggtc aaggtttatt gaaaaaaatt 1440 gataaagagt taaacgtaca agtgttatct gtggcgtata acggtacacg tcaaacaact 1500 tctaaccgtg caatcaacag cattgaagac atgaaagggt taaaattacg tgtacctaac 1560 gcggcaacca accttgctta tgcaaaatac gtgggtgcag cgccaacacc aatggcattc 1620 tctgaagttt accttgcgct tcaaacaaac tctgtggatg gtcaagaaaa cccattaccg 1680 acaatccaag cacaaaaatt ctatgaagta caaaaatact tagcgttaac taaccacatc 1740 ttaaatgacc aactttactt aatcagtaac gatacgttgg cagatttacc agaagattta 1800 caaaaagtgg ttaaagatgc agcagcgaaa gccgctgaat atcacactaa actcttcgtt 1860 gacggtgaga acagcttagt tgaattcttc aaaagtcaag gtgtgacagt cacacaacca 1920 gacttaaaac catttaaagc agcacttaca ccatactatg atgaatatct caagaaaaat 1980 ggtgaagtcg gtaaaatggc gattgaagaa atttctaatc tcgctaaata aatatagtaa 2040 ccttatccct gcgccttaag ggataaggtt cctttttatt gggttgtctt gaggtatcta 2100 tgaaaataat aaataaatta gaagagtgga ttggcggtgt gctattcatt ggaattttct 2160 taattctgtt agcacaaatc attgctcgtc aagtgtttca gtcaccgttt atttggagtg 2220 aagaactcgc aagattgcta tttatctatg tcgggctact tggtatcagc atgggtatcc 2280 gtagtcagca gcatgtttat attgattttt taactaactt tatgcccgag aaagtgagaa 2340 aggtgacaaa ctcctttgtt caagttctca tctttatttc catcattatt ttcattcatt 2400 taggctttaa agtttggatc gactccagtt ttaaaatgga agcgttaact gctttcgctt 2460 cagatttaat tgggcgcgag acgattgtgc ctgaaaaatg gatgtatgcg gcattgcctt 2520 ttatttcttg tttaatgtta ttccgctttt tccaagcgca agttgaaaat tatagaaata 2580 agttaagtta tattcctgtc acggcatttg tgattggtgc ggtcattatt tttgcgattt 2640 tattgattga gccagattgg tataaagtcc tccgtatttc aaattatgtg aaatttggtg 2700 gtgatgcagt gtatatcaca ttagtgattt ggcttgtcat tatgtttgtg ggaaccccgg 2760 taggttggtc attatttatt gcgacgttgc tttattttgc gatgacgcgt tggaatattg 2820 ttaactcggc atcaaccaag ctcaccgaca gt 2852 <![CDATA[<210> 6]]> <![CDATA[<211> 1793]]> <![CDATA[<212> DNA]]> <![CDATA[<213> 人工]]> <![CDATA[<220>]]> <![CDATA[<223> ΔHyC及周圍的操縱子]]> <![CDATA[<400> 6]]> atgttgataa gaatcatctt acaccagata tcaaaaaaga aatactagcc ttctatcata 60 aacatcaagt gaatatttta ctaaataatg atatctcata ttacacgagt aatagattaa 120 taaaaactga ggcgcattta agtaatatta ataaattaag tcagttaaat ctaaattgtg 180 aatacatcat ttttgataat catgacagcc tattcgttaa aaatgacagc tatgcttata 240 tgaaaaaata tgatgtcggc atgaatttct cagcattaac acatgattgg atcgagaaaa 300 tcaatgcgca tccaccattt aaaaagctca ttaaaactta ttttaatgac aatgacttaa 360 aaagtatgaa tgtgaaaggg gcatcacaag gtatgtttat gacgtatgcg ctagcgcatg 420 agcttctgac gattattaaa gaagtcatca catcttgcca gtcaattgat agtgtgccag 480 aatataacac tgaggatatt tggttccaat ttgcactttt aatcttagaa aagaaaaccg 540 gccatgtatt taataaaaca tcgaccctga cttatatgcc ttgggaacga aaattacaat 600 ggacaaatga acaaattgaa agtgcaaaaa gaggagaaaa tatacctgtt aacaagttca 660 ttattaatag tataactcta taaaacactt gcattttatt aaaaataaaa tcctataata 720 tttgcagttt aaataaagga taaaaaatga agaaaattac aattgctggg gctggctatg 780 ttggtttatc caatgcagta ttattagctc aacaccacaa tgtgatctta ttagatattg 840 atcaaaataa agttgattta attaataata aaaaatcgcc catcacagat aaagaaatcg 900 aagatttctt acaaaataaa tcactgacaa tgatggcaac aacagataaa gaagtggcat 960 taaaaaacgc agactttgtc atcatcgcaa cgccactgca gcaagtttcg gctatggcgg 1020 ttattgttta cccaaagaca ctaaacagtt actggctaac tatgctgacg tacctcaaaa 1080 tctcattgaa gccattgtca aatctaatga aaccagaaaa cgtttcatta ctcatgatgt 1140 attaaataag aaacctaaaa ctgttggtat ttatcgttta atcatgaagt caggttctga 1200 taacttcaga gcttctgcta ttctcgatat tatgccgcat ctcaaagaaa acggtgttga 1260 gattgtgatt tatgagccaa ccttaaatca acaggcattt gaggactacc ccgttattaa 1320 tcaactctct gaatttatta atcgctctga tgtcattctc gctaatcgtt ctgagccaga 1380 tttaaatcaa tgttcccata aaatctatac aagagatatt tttggcggtg atgcttaacc 1440 tgtttaaaat cataaaaaag tatgtgcata ttcaatcttt attacacaaa aaagaatatg 1500 ccttacttta tgctaaatac ataaaccagc tttctatcaa ccagcaggct tatgttattt 1560 gtcaactcaa actctatgat ctctttctga ttgatcctaa atggagccac tctgtttttt 1620 tccagttagg attaattgct cgtggacacg atcatgatag cgatgaagtg gtacgtcgtt 1680 tgatcacttg cactgatttt agcaaaaata agcagttaat cctttctcaa ttacttgctt 1740 attcacctca aattgcaaca acattatgtc cacagacata tcgttatcgt gcg 1793 <![CDATA[<210> 7]]> <![CDATA[<211> 2144]]> <![CDATA[<212> DNA]]> <![CDATA[<213> 人工]]> <![CDATA[<220>]]> <![CDATA[<223> SEQ ID NO: 5中所包含之ΔHyC及周圍的序列]]> <![CDATA[<400> 7]]> gcggatgtga tagttttgac atattaactc cagtctaaat ttatcaaaag aagattgact 60 ccaatttgca taggttaatc ttagaattaa aaaataacaa ccaaaataat aaaaatttga 120 gatctttgtc gcatatttat tcatagggaa tagacagctt aattttagtt atgatttgtc 180 aatccttgct attttttgtg tttgctggtt tgcgatacac tgttctaata ttgctttgag 240 cacttgataa ccttgctcat taaaatgtaa tccgtcggta caaaggcgta aatccagttc 300 accgttagaa tcacaaaagt atttttgtgt ttcaacgtaa gtcacgtctg acggacaatg 360 ttgttttaaa taggtattga gcctgtgaat ttgtgcgtta gtgaccgtat taatctgatt 420 gaccggtgtg gcttctaata aaaagtagtg ggacgtagga gaaatggtgt gtaggtgagt 480 cagaatgtca tttaactatc gcatgacttg cgccggtgaa tacgtttctt ccttacaaat 540 atcattgacg cctaaaaaaa gaaaaacaga ttgtccaagt tgttgaatcc gtttaggttt 600 aacgataaca tccaaatatt gtcgcgtact gacgccagaa agtcctaaat tggcgacggt 660 ttgtcccgct aattgaggtg tgcctgctac ctgttcgtcc cacatgtcaa aaagtgaatg 720 accaattaag ctgatattgg caggtttgga aaattccgcc attttgctct gatagcgttg 780 ataaatatcc tgatcactta gcatgtgtgg acctctattt tgaaataaaa cgctaagtat 840 tatataaaac ctgatatgcc ggtaaacagt aaacttatct tccgtagggg taaatattca 900 attttgtgac gaacctatca tttatgaaat aaaacttcat tttctatata aaaaatagtt 960 ttttcacttt agaatgccaa acgtgtgaaa tttatttcat catcatttta acgtaatccc 1020 aacgtaacca atagaggaga actcataatg aaatttaaaa aactactact tgcatcttta 1080 tgtttaggtg tttcagcttc tgtatttgca gcagattacg atcttaaatt cggtatggtt 1140 gcgggtccaa gctcaaacga atataaagca gtagaattct tcaaaagtca aggtgtgaca 1200 gtcacacaac cagacttaaa accatttaaa gcagcactta caccatacta tgatgaatat 1260 ctcaagaaaa atggtgaagt cggtaaaatg gcgattgaag aaatttctaa tctcgctaaa 1320 taaatatagt aaccttatcc ctgcgcctta agggataagg ttccttttta ttgggttgtc 1380 ttgaggtatc tatgaaaata ataaataaat tagaagagtg gattggcggt gtgctattca 1440 ttggaatttt cttaattctg ttagcacaaa tcattgctcg tcaagtgttt cagtcaccgt 1500 ttatttggag tgaagaactc gcaagattgc tatttatcta tgtcgggcta cttggtatca 1560 gcatgggtat ccgtagtcag cagcatgttt atattgattt tttaactaac tttatgcccg 1620 agaaagtgag aaaggtgaca aactcctttg ttcaagttct catctttatt tccatcatta 1680 ttttcattca tttaggcttt aaagtttgga tcgactccag ttttaaaatg gaagcgttaa 1740 ctgctttcgc ttcagattta attgggcgcg agacgattgt gcctgaaaaa tggatgtatg 1800 cggcattgcc ttttatttct tgtttaatgt tattccgctt tttccaagcg caagttgaaa 1860 attatagaaa taagttaagt tatattcctg tcacggcatt tgtgattggt gcggtcatta 1920 tttttgcgat tttattgatt gagccagatt ggtataaagt cctccgtatt tcaaattatg 1980 tgaaatttgg tggtgatgca gtgtatatca cattagtgat ttggcttgtc attatgtttg 2040 tgggaacccc ggtaggttgg tcattattta ttgcgacgtt gctttatttt gcgatgacgc 2100 gttggaatat tgttaactcg gcatcaacca agctcaccga cagt 2144 <![CDATA[<210> 8]]> <![CDATA[<211> 1170]]> <![CDATA[<212> PRT]]> <![CDATA[<213> 多殺性巴斯德氏菌]]> <![CDATA[<220>]]> <![CDATA[<221> MISC_FEATURE]]> <![CDATA[<223> 野生型hyaC]]> <![CDATA[<400> 8]]> Ala Thr Gly Ala Ala Gly Ala Ala Ala Ala Thr Thr Ala Cys Ala Ala 1 5 10 15 Thr Thr Gly Cys Thr Gly Gly Gly Gly Cys Thr Gly Gly Cys Thr Ala 20 25 30 Thr Gly Thr Thr Gly Gly Thr Thr Thr Ala Thr Cys Cys Ala Ala Thr 35 40 45 Gly Cys Ala Gly Thr Ala Thr Thr Ala Thr Thr Ala Gly Cys Thr Cys 50 55 60 Ala Ala Cys Ala Cys Cys Ala Cys Ala Ala Thr Gly Thr Gly Ala Thr 65 70 75 80 Cys Thr Thr Ala Thr Thr Ala Gly Ala Thr Ala Thr Thr Gly Ala Thr 85 90 95 Cys Ala Ala Ala Ala Thr Ala Ala Ala Gly Thr Thr Gly Ala Thr Thr 100 105 110 Thr Ala Ala Thr Thr Ala Ala Thr Ala Ala Thr Ala Ala Ala Ala Ala 115 120 125 Ala Thr Cys Gly Cys Cys Cys Ala Thr Cys Ala Cys Ala Gly Ala Thr 130 135 140 Ala Ala Ala Gly Ala Ala Ala Thr Cys Gly Ala Ala Gly Ala Thr Thr 145 150 155 160 Thr Cys Thr Thr Ala Cys Ala Ala Ala Ala Thr Ala Ala Ala Thr Cys 165 170 175 Ala Cys Thr Gly Ala Cys Ala Ala Thr Gly Ala Thr Gly Gly Cys Ala 180 185 190 Ala Cys Ala Ala Cys Ala Gly Ala Thr Ala Ala Ala Gly Ala Ala Gly 195 200 205 Thr Gly Gly Cys Ala Thr Thr Ala Ala Ala Ala Ala Ala Cys Gly Cys 210 215 220 Ala Gly Ala Cys Thr Thr Thr Gly Thr Cys Ala Thr Cys Ala Thr Cys 225 230 235 240 Gly Cys Ala Ala Cys Gly Cys Cys Ala Ala Cys Ala Gly Ala Cys Thr 245 250 255 Ala Thr Ala Ala Thr Ala Cys Cys Gly Ala Ala Ala Cys Ala Gly Gly 260 265 270 Thr Thr Ala Thr Thr Thr Thr Ala Ala Thr Ala Cys Ala Thr Cys Cys 275 280 285 Ala Cys Thr Gly Thr Thr Gly Ala Ala Gly Cys Thr Gly Thr Cys Ala 290 295 300 Thr Thr Gly Ala Ala Cys Ala Ala Ala Cys Cys Cys Thr Thr Thr Cys 305 310 315 320 Ala Ala Thr Cys Ala Ala Thr Cys Cys Ala Cys Ala Ala Gly Cys Ala 325 330 335 Ala Cys Gly Ala Thr Thr Ala Thr Thr Ala Thr Ala Ala Ala Ala Thr 340 345 350 Cys Ala Ala Cys Gly Ala Thr Thr Cys Cys Cys Gly Thr Thr Gly Gly 355 360 365 Thr Thr Thr Thr Ala Cys Cys Gly Ala Ala Ala Ala Ala Ala Thr Gly 370 375 380 Cys Gly Thr Gly Ala Gly Ala Ala Ala Thr Thr Thr Ala Ala Thr Ala 385 390 395 400 Cys Cys Cys Cys Ala Ala Ala Thr Cys Thr Thr Ala Thr Cys Thr Thr 405 410 415 Thr Thr Cys Ala Cys Cys Thr Gly Ala Ala Thr Thr Thr Cys Thr Ala 420 425 430 Ala Gly Ala Gly Ala Gly Gly Gly Ala Ala Ala Ala Gly Cys Cys Cys 435 440 445 Thr Thr Thr Ala Cys Gly Ala Thr Ala Ala Thr Thr Thr Gly Thr Ala 450 455 460 Thr Cys Cys Ala Ala Gly Cys Ala Gly Ala Ala Thr Thr Ala Thr Thr 465 470 475 480 Gly Thr Thr Gly Gly Cys Ala Gly Thr Ala Cys Thr Thr Cys Thr Thr 485 490 495 Ala Thr Cys Ala Ala Gly Cys Ala Ala Ala Ala Gly Thr Ala Thr Thr 500 505 510 Thr Gly Cys Cys Gly Ala Thr Ala Thr Gly Thr Thr Ala Ala Cys Ala 515 520 525 Cys Ala Gly Thr Gly Thr Gly Cys Cys Ala Gly Ala Ala Ala Ala Ala 530 535 540 Ala Ala Gly Ala Thr Gly Thr Ala Ala Cys Thr Gly Thr Thr Thr Thr 545 550 555 560 Ala Thr Thr Thr Ala Cys Ala Cys Ala Cys Ala Ala Thr Ala Cys Thr 565 570 575 Gly Ala Gly Gly Cys Cys Gly Ala Ala Gly Cys Thr Gly Thr Thr Ala 580 585 590 Ala Ala Thr Thr Ala Thr Thr Thr Gly Cys Ala Ala Ala Thr Ala Cys 595 600 605 Gly Thr Ala Thr Cys Thr Cys Gly Cys Ala Ala Thr Gly Cys Gly Ala 610 615 620 Gly Thr Thr Gly Cys Cys Thr Thr Thr Thr Thr Thr Ala Ala Thr Gly 625 630 635 640 Ala Ala Thr Thr Ala Gly Ala Thr Ala Cys Thr Thr Ala Thr Gly Cys 645 650 655 Gly Ala Gly Thr Cys Thr Thr Cys Ala Cys Cys Ala Thr Thr Thr Ala 660 665 670 Ala Ala Thr Ala Cys Ala Ala Ala Ala Gly Ala Cys Ala Thr Thr Ala 675 680 685 Thr Cys Ala Ala Thr Gly Gly Thr Ala Thr Thr Thr Cys Thr Ala Cys 690 695 700 Thr Gly Ala Thr Cys Cys Thr Cys Gly Cys Ala Thr Thr Gly Gly Thr 705 710 715 720 Ala Cys Ala Cys Ala Cys Thr Ala Cys Ala Ala Thr Ala Ala Cys Cys 725 730 735 Cys Ala Ala Gly Thr Thr Thr Cys Gly Gly Cys Thr Ala Thr Gly Gly 740 745 750 Cys Gly Gly Thr Thr Ala Thr Thr Gly Thr Thr Thr Ala Cys Cys Cys 755 760 765 Ala Ala Ala Gly Ala Cys Ala Cys Thr Ala Ala Ala Cys Ala Gly Thr 770 775 780 Thr Ala Cys Thr Gly Gly Cys Thr Ala Ala Cys Thr Ala Thr Gly Cys 785 790 795 800 Thr Gly Ala Cys Gly Thr Ala Cys Cys Thr Cys Ala Ala Ala Ala Thr 805 810 815 Cys Thr Cys Ala Thr Thr Gly Ala Ala Gly Cys Cys Ala Thr Thr Gly 820 825 830 Thr Cys Ala Ala Ala Thr Cys Thr Ala Ala Thr Gly Ala Ala Ala Cys 835 840 845 Cys Ala Gly Ala Ala Ala Ala Cys Gly Thr Thr Thr Cys Ala Thr Thr 850 855 860 Ala Cys Thr Cys Ala Thr Gly Ala Thr Gly Thr Ala Thr Thr Ala Ala 865 870 875 880 Ala Thr Ala Ala Gly Ala Ala Ala Cys Cys Thr Ala Ala Ala Ala Cys 885 890 895 Thr Gly Thr Thr Gly Gly Thr Ala Thr Thr Thr Ala Thr Cys Gly Thr 900 905 910 Thr Thr Ala Ala Thr Cys Ala Thr Gly Ala Ala Gly Thr Cys Ala Gly 915 920 925 Gly Thr Thr Cys Thr Gly Ala Thr Ala Ala Cys Thr Thr Cys Ala Gly 930 935 940 Ala Gly Cys Thr Thr Cys Thr Gly Cys Thr Ala Thr Thr Cys Thr Cys 945 950 955 960 Gly Ala Thr Ala Thr Thr Ala Thr Gly Cys Cys Gly Cys Ala Thr Cys 965 970 975 Thr Cys Ala Ala Ala Gly Ala Ala Ala Ala Cys Gly Gly Thr Gly Thr 980 985 990 Thr Gly Ala Gly Ala Thr Thr Gly Thr Gly Ala Thr Thr Thr Ala Thr 995 1000 1005 Gly Ala Gly Cys Cys Ala Ala Cys Cys Thr Thr Ala Ala Ala Thr 1010 1015 1020 Cys Ala Ala Cys Ala Gly Gly Cys Ala Thr Thr Thr Gly Ala Gly 1025 1030 1035 Gly Ala Cys Thr Ala Cys Cys Cys Cys Gly Thr Thr Ala Thr Thr 1040 1045 1050 Ala Ala Thr Cys Ala Ala Cys Thr Cys Thr Cys Thr Gly Ala Ala 1055 1060 1065 Thr Thr Thr Ala Thr Thr Ala Ala Thr Cys Gly Cys Thr Cys Thr 1070 1075 1080 Gly Ala Thr Gly Thr Cys Ala Thr Thr Cys Thr Cys Gly Cys Thr 1085 1090 1095 Ala Ala Thr Cys Gly Thr Thr Cys Thr Gly Ala Gly Cys Cys Ala 1100 1105 1110 Gly Ala Thr Thr Thr Ala Ala Ala Thr Cys Ala Ala Thr Gly Thr 1115 1120 1125 Thr Cys Cys Cys Ala Thr Ala Ala Ala Ala Thr Cys Thr Ala Thr 1130 1135 1140 Ala Cys Ala Ala Gly Ala Gly Ala Thr Ala Thr Thr Thr Thr Thr 1145 1150 1155 Gly Gly Cys Gly Gly Thr Gly Ala Thr Gly Cys Thr 1160 1165 1170 <![CDATA[<210> 9]]> <![CDATA[<211> 390]]> <![CDATA[<212> PRT]]> <![CDATA[<213> 多殺性巴斯德氏菌]]> <![CDATA[<220>]]> <![CDATA[<221> MISC_FEATURE]]> <![CDATA[<223> 野生型hyaC]]> <![CDATA[<400> 9]]> Met Lys Lys Ile Thr Ile Ala Gly Ala Gly Tyr Val Gly Leu Ser Asn 1 5 10 15 Ala Val Leu Leu Ala Gln His His Asn Val Ile Leu Leu Asp Ile Asp 20 25 30 Gln Asn Lys Val Asp Leu Ile Asn Asn Lys Lys Ser Pro Ile Thr Asp 35 40 45 Lys Glu Ile Glu Asp Phe Leu Gln Asn Lys Ser Leu Thr Met Met Ala 50 55 60 Thr Thr Asp Lys Glu Val Ala Leu Lys Asn Ala Asp Phe Val Ile Ile 65 70 75 80 Ala Thr Pro Thr Asp Tyr Asn Thr Glu Thr Gly Tyr Phe Asn Thr Ser 85 90 95 Thr Val Glu Ala Val Ile Glu Gln Thr Leu Ser Ile Asn Pro Gln Ala 100 105 110 Thr Ile Ile Ile Lys Ser Thr Ile Pro Val Gly Phe Thr Glu Lys Met 115 120 125 Arg Glu Lys Phe Asn Thr Pro Asn Leu Ile Phe Ser Pro Glu Phe Leu 130 135 140 Arg Glu Gly Lys Ala Leu Tyr Asp Asn Leu Tyr Pro Ser Arg Ile Ile 145 150 155 160 Val Gly Ser Thr Ser Tyr Gln Ala Lys Val Phe Ala Asp Met Leu Thr 165 170 175 Gln Cys Ala Arg Lys Lys Asp Val Thr Val Leu Phe Thr His Asn Thr 180 185 190 Glu Ala Glu Ala Val Lys Leu Phe Ala Asn Thr Tyr Leu Ala Met Arg 195 200 205 Val Ala Phe Phe Asn Glu Leu Asp Thr Tyr Ala Ser Leu His His Leu 210 215 220 Asn Thr Lys Asp Ile Ile Asn Gly Ile Ser Thr Asp Pro Arg Ile Gly 225 230 235 240 Thr His Tyr Asn Asn Pro Ser Phe Gly Tyr Gly Gly Tyr Cys Leu Pro 245 250 255 Lys Asp Thr Lys Gln Leu Leu Ala Asn Tyr Ala Asp Val Pro Gln Asn 260 265 270 Leu Ile Glu Ala Ile Val Lys Ser Asn Glu Thr Arg Lys Arg Phe Ile 275 280 285 Thr His Asp Val Leu Asn Lys Lys Pro Lys Thr Val Gly Ile Tyr Arg 290 295 300 Leu Ile Met Lys Ser Gly Ser Asp Asn Phe Arg Ala Ser Ala Ile Leu 305 310 315 320 Asp Ile Met Pro His Leu Lys Glu Asn Gly Val Glu Ile Val Ile Tyr 325 330 335 Glu Pro Thr Leu Asn Gln Gln Ala Phe Glu Asp Tyr Pro Val Ile Asn 340 345 350 Gln Leu Ser Glu Phe Ile Asn Arg Ser Asp Val Ile Leu Ala Asn Arg 355 360 365 Ser Glu Pro Asp Leu Asn Gln Cys Ser His Lys Ile Tyr Thr Arg Asp 370 375 380 Ile Phe Gly Gly Asp Ala 385 390 <![CDATA[<210> 10]]> <![CDATA[<211> 2500]]> <![CDATA[<212> DNA]]> <![CDATA[<213> 人工]]> <![CDATA[<220>]]> <![CDATA[<223> 野生型HyaC +上游744 nt及下游544 nt]]> <![CDATA[<400> 10]]> attattgaat ataataaaaa tatattcgtt attgttctac atgttgataa gaatcatctt 60 acaccagata tcaaaaaaga aatactagcc ttctatcata aacatcaagt gaatatttta 120 ctaaataatg atatctcata ttacacgagt aatagattaa taaaaactga ggcgcattta 180 agtaatatta ataaattaag tcagttaaat ctaaattgtg aatacatcat ttttgataat 240 catgacagcc tattcgttaa aaatgacagc tatgcttata tgaaaaaata tgatgtcggc 300 atgaatttct cagcattaac acatgattgg atcgagaaaa tcaatgcgca tccaccattt 360 aaaaagctca ttaaaactta ttttaatgac aatgacttaa aaagtatgaa tgtgaaaggg 420 gcatcacaag gtatgtttat gacgtatgcg ctagcgcatg agcttctgac gattattaaa 480 gaagtcatca catcttgcca gtcaattgat agtgtgccag aatataacac tgaggatatt 540 tggttccaat ttgcactttt aatcttagaa aagaaaaccg gccatgtatt taataaaaca 600 tcgaccctga cttatatgcc ttgggaacga aaattacaat ggacaaatga acaaattgaa 660 agtgcaaaaa gaggagaaaa tatacctgtt aacaagttca ttattaatag tataactcta 720 taaaacactt gcattttatt aaaaataaaa tcctataata tttgcagttt aaataaagga 780 taaaaaatga agaaaattac aattgctggg gctggctatg ttggtttatc caatgcagta 840 ttattagctc aacaccacaa tgtgatctta ttagatattg atcaaaataa agttgattta 900 attaataata aaaaatcgcc catcacagat aaagaaatcg aagatttctt acaaaataaa 960 tcactgacaa tgatggcaac aacagataaa gaagtggcat taaaaaacgc agactttgtc 1020 atcatcgcaa cgccaacaga ctataatacc gaaacaggtt attttaatac atccactgtt 1080 gaagctgtca ttgaacaaac cctttcaatc aatccacaag caacgattat tataaaatca 1140 acgattcccg ttggttttac cgaaaaaatg cgtgagaaat ttaatacccc aaatcttatc 1200 ttttcacctg aatttctaag agagggaaaa gccctttacg ataatttgta tccaagcaga 1260 attattgttg gcagtacttc ttatcaagca aaagtatttg ccgatatgtt aacacagtgt 1320 gccagaaaaa aagatgtaac tgttttattt acacacaata ctgaggccga agctgttaaa 1380 ttatttgcaa atacgtatct cgcaatgcga gttgcctttt ttaatgaatt agatacttat 1440 gcgagtcttc accatttaaa tacaaaagac attatcaatg gtatttctac tgatcctcgc 1500 attggtacac actacaataa cccaagtttc ggctatggcg gttattgttt acccaaagac 1560 actaaacagt tactggctaa ctatgctgac gtacctcaaa atctcattga agccattgtc 1620 aaatctaatg aaaccagaaa acgtttcatt actcatgatg tattaaataa gaaacctaaa 1680 actgttggta tttatcgttt aatcatgaag tcaggttctg ataacttcag agcttctgct 1740 attctcgata ttatgccgca tctcaaagaa aacggtgttg agattgtgat ttatgagcca 1800 accttaaatc aacaggcatt tgaggactac cccgttatta atcaactctc tgaatttatt 1860 aatcgctctg atgtcattct cgctaatcgt tctgagccag atttaaatca atgttcccat 1920 aaaatctata caagagatat ttttggcggt gatgcttaac ctgtttaaaa tcataaaaaa 1980 gtatgtgcat attcaatctt tattacacaa aaaagaatat gccttacttt atgctaaata 2040 cataaaccag ctttctatca accagcaggc ttatgttatt tgtcaactca aactctatga 2100 tctctttctg attgatccta aatggagcca ctctgttttt ttccagttag gattaattgc 2160 tcgtggacac gatcatgata gcgatgaagt ggtacgtcgt ttgatcactt gcactgattt 2220 tagcaaaaat aagcagttaa tcctttctca attacttgct tattcacctc aaattgcaac 2280 aacattatgt ccacagacat atcgttatcg tgcgctatat ctctcattac tagcgaattt 2340 aaaagacttt gttcgtttaa aagaagaact caataagttg ccgtcatgtg tgttaaagaa 2400 tacacctcat tactgtttgt tacagaattt tgtcgaaaaa gaaaacagca agaaattaga 2460 gaacattaat caatttcttt acttttataa acttggagaa 2500 <![CDATA[<210> 11]]> <![CDATA[<211> 132]]> <![CDATA[<212> PRT]]> <![CDATA[<213> 人工]]> <![CDATA[<220>]]> <![CDATA[<223> ΔHyC]]> <![CDATA[<400> 11]]> Met Lys Lys Ile Thr Ile Ala Gly Ala Gly Tyr Val Gly Leu Ser Asn 1 5 10 15 Ala Val Leu Leu Ala Gln His His Asn Val Ile Leu Leu Asp Ile Asp 20 25 30 Gln Asn Lys Val Asp Leu Ile Asn Asn Lys Lys Ser Pro Ile Thr Asp 35 40 45 Lys Glu Ile Glu Asp Phe Leu Gln Asn Lys Ser Leu Thr Met Met Ala 50 55 60 Thr Thr Asp Lys Glu Val Ala Leu Lys Asn Ala Asp Phe Val Ile Ile 65 70 75 80 Ala Thr Pro Leu Gln Gln Val Ser Ala Met Ala Val Ile Val Tyr Pro 85 90 95 Lys Thr Leu Asn Ser Tyr Trp Leu Thr Met Leu Thr Tyr Leu Lys Ile 100 105 110 Ser Leu Lys Pro Leu Ser Asn Leu Met Lys Pro Glu Asn Val Ser Leu 115 120 125 Leu Met Met Tyr 130 <![CDATA[<210> 12]]> <![CDATA[<211> 683]]> <![CDATA[<212> DNA]]> <![CDATA[<213> 人工]]> <![CDATA[<220>]]> <![CDATA[<223> ΔHyC]]> <![CDATA[<400> 12]]> atgaagaaaa ttacaattgc tggggctggc tatgttggtt tatccaatgc agtattatta 60 gctcaacacc acaatgtgat cttattagat attgatcaaa ataaagttga tttaattaat 120 aataaaaaat cgcccatcac agataaagaa atcgaagatt tcttacaaaa taaatcactg 180 acaatgatgg caacaacaga taaagaagtg gcattaaaaa acgcagactt tgtcatcatc 240 gcaacgccac aagtttcggc tatggcggtt attgtttacc caaagacact aaacagttac 300 tggctaacta tgctgacgta cctcaaaatc tcattgaagc cattgtcaaa tctaatgaaa 360 ccagaaaacg tttcattact catgatgtat taaataagaa acctaaaact gttggtattt 420 atcgtttaat catgaagtca ggttctgata acttcagagc ttctgctatt ctcgatatta 480 tgccgcatct caaagaaaac ggtgttgaga ttgtgattta tgagccaacc ttaaatcaac 540 aggcatttga ggactacccc gttattaatc aactctctga atttattaat cgctctgatg 600 tcattctcgc taatcgttct gagccagatt taaatcaatg ttcccataaa atctatacaa 660 gagatatttt tggcggtgat gct 683 <![CDATA[<210> 13]]> <![CDATA[<211> 31]]> <![CDATA[<212> DNA]]> <![CDATA[<213> 人工]]> <![CDATA[<220>]]> <![CDATA[<223> 引子1062 Bam-nanP-F]]> <![CDATA[<400> 13]]> aaaggatccg cggatgtgat agttttgaca t 31 <![CDATA[<210> 14]]> <![CDATA[<211> 25]]> <![CDATA[<212> DNA]]> <![CDATA[<213> 人工]]> <![CDATA[<220>]]> <![CDATA[<223> 引子1062 Sal-nanP-R]]> <![CDATA[<400> 14]]> aaagtcgaca ctgtcggtga ccttg 25 <![CDATA[<210> 15]]> <![CDATA[<211> 33]]> <![CDATA[<212> DNA]]> <![CDATA[<213> 人工]]> <![CDATA[<220>]]> <![CDATA[<223> 引子1062 Bam-hyaC-F]]> <![CDATA[<400> 15]]> aaaggatcca tgttgataag aatcatctta cac 33 <![CDATA[<210> 16]]> <![CDATA[<211> 26]]> <![CDATA[<212> DNA]]> <![CDATA[<213> 人工]]> <![CDATA[<220>]]> <![CDATA[<223> 引子1062 Pst-hyaC-R]]> <![CDATA[<400> 16]]> aaactgcagt ggcgttgcga tgatga 26 <![CDATA[<210> 17]]> <![CDATA[<211> 27]]> <![CDATA[<212> DNA]]> <![CDATA[<213> 人工]]> <![CDATA[<220>]]> <![CDATA[<223> 引子1062 Pst-hyaC-F]]> <![CDATA[<400> 17]]> aaactgcagc aagtttcggc tatggcg 27 <![CDATA[<210> 18]]> <![CDATA[<211> 30]]> <![CDATA[<212> DNA]]> <![CDATA[<213> 人工]]> <![CDATA[<220>]]> <![CDATA[<223> 引子1062 Sal-hyaC-R]]> <![CDATA[<400> 18]]> aaagctgacc gcacgataac gatatgtctg 30 <![CDATA[<210> 19]]> <![CDATA[<211> 24]]> <![CDATA[<212> DNA]]> <![CDATA[<213> 人工]]> <![CDATA[<220>]]> <![CDATA[<223> 在ΔnanP缺失位點周圍之部分序列]]> <![CDATA[<400> 19]]> aaagcagtag aattcttcaa aagt 24 <![CDATA[<210> 20]]> <![CDATA[<211> 8]]> <![CDATA[<212> PRT]]> <![CDATA[<213> 人工]]> <![CDATA[<220>]]> <![CDATA[<223> 在ΔnanP缺失位點周圍之部分序列]]> <![CDATA[<400> 20]]> Lys Ala Val Glu Phe Phe Lys Ser 1 5 <![CDATA[<210> 21]]> <![CDATA[<211> 18]]> <![CDATA[<212> DNA]]> <![CDATA[<213> 人工]]> <![CDATA[<220>]]> <![CDATA[<223> 在ΔhyaC缺失位點周圍之部分序列]]> <![CDATA[<400> 21]]> acgccactgc agcaagtt 18 <![CDATA[<210> 22]]> <![CDATA[<211> 6]]> <![CDATA[<212> PRT]]> <![CDATA[<213> 人工]]> <![CDATA[<220>]]> <![CDATA[<223> 在ΔhyaC缺失位點周圍之部分序列]]> <![CDATA[<400> 22]]> Thr Pro Leu Gln Gln Val 1 5
Claims (22)
- 一種用於在牛體內誘導針對多殺性巴斯德氏菌( P. multocida)血清群A之保護性免疫之疫苗,其包含因hyaC基因突變而導致玻尿酸生物合成有缺陷且因nanP基因突變而導致表面唾液酸化有缺陷的經分離之減毒活多殺性巴斯德氏菌( P. multocida)細菌。
- 如請求項1之疫苗,其中該hyaC基因及該nanP基因之減毒突變係選自由以下組成之群:整個基因缺失、部分缺失、框移突變、核苷酸插入及產生置換密碼子之核苷酸置換。
- 如請求項1或請求項2之疫苗,其中由該hyaC基因或該nanP基因表現之任何蛋白質係無活性的。
- 如請求項1至3中任一項之疫苗,該疫苗係指定為選自血清群A、B、D、E、F之血清群。
- 如請求項1至4中任一項之疫苗,其中經修飾之野生型hyaC DNA序列包含SEQ ID NO: 8或與其至少80%一致之任何DNA序列;且經修飾之野生型nanP DNA序列包含SEQ ID NO:1或與其至少80%一致之任何DNA序列。
- 如請求項1至5中任一項之疫苗,其中該nanP基因序列由SEQ ID NO:3組成且該hyaC基因序列由SEQ ID NO: 12組成。
- 如請求項1至4中任一項之疫苗,其中由該nanP基因序列表現之nanP基因產物係SEQ ID NO:4或比SEQ ID NO:4短的任何多肽,其中該多肽之胺基酸序列在與該多肽共有的SEQ ID NO:4之長度內與SEQ ID NO:4之胺基酸序列至少80%一致。
- 如請求項1至4中任一項之疫苗,其中由該hyaC基因序列表現之hyaC基因產物係SEQ ID NO: 11或比SEQ ID NO: 11短之任何多肽,其中該多肽之胺基酸序列在與該多肽共有的SEQ ID NO: 11之長度內與SEQ ID NO: 11之胺基酸序列至少80%一致。
- 如請求項1至4中任一項之疫苗,其中該hyaC基因之突變及/或該nanP基因之突變係完全不活化。
- 如請求項1至9中任一項之疫苗,其進一步包含佐劑。
- 一種在牛動物體內誘導針對多殺性巴斯德氏菌血清群A之保護性免疫之方法,其包含投予一或多次劑量的如請求項10之疫苗,其中投予途徑係選自由以下組成之群:皮下、肌肉內、經皮、皮內、腹膜內、靜脈內、經口、口鼻、鼻內及氣管內。
- 一種用於在牛犢體內誘導針對多殺性巴斯德氏菌血清群A之保護性免疫之疫苗,其包含血清群A之活多殺性巴斯德氏菌細菌,其中野生型hyaC、nanP以及視需要存在的Fis或其白細胞毒素A致病性基因中之一或多個經修飾以使該細菌減毒。
- 如請求項12之用於在牛犢體內誘導針對多殺性巴斯德氏菌血清群A之保護性免疫之疫苗,其進一步包含佐劑。
- 一種在牛犢體內誘導針對多殺性巴斯德氏菌血清群A之保護性免疫之方法,其包含投予一或多次劑量的如請求項13之疫苗,其中投予途徑係選自由以下組成之群:經口、口鼻、鼻內及氣管內。
- 一種減毒多殺性巴斯德氏菌株在製造能夠在牛體內提供針對由多殺性巴斯德氏菌血清群A引起之疾病的安全且有效之免疫反應的免疫組合物中之用途,其中該菌株相對於其有毒的多殺性巴斯德氏菌親本菌株,包含其hyaC及nanP基因兩者、或其同源物或異種同源物之缺失。
- 一種對溶血性曼氏桿菌( Mannheimia haemolytica)及多殺性巴斯德氏菌有效之疫苗,其包含如請求項1之疫苗,及治療有效量之溶血性曼氏桿菌A-1型類白細胞毒素、莢膜抗原可溶性抗原及密度在約10e3至約10e8個細胞/毫升範圍內之不活化細胞。
- 如請求項16之疫苗,其中該不活化之巴斯德氏菌組分係由菌株ATCC第55318號提供。
- 如請求項16或請求項17之疫苗,其進一步包含雙瓶包裝,其中該曼氏桿菌組分含有佐劑。
- 如請求項18之疫苗,其中該佐劑係氫氧化鋁凝膠及礦物油/卵磷脂乳液。
- 如請求項1至19中任一項之疫苗,其進一步包含能夠在牛體內引起針對一或多種額外牛病原體之保護性免疫反應的一或多種額外抗原。
- 如請求項20之疫苗,其進一步包含有佐劑之雙瓶包裝,其中第一個瓶含有佐劑且第二個瓶中提供由活病毒或細菌組成之任何抗原,其中該第一個瓶與該第二個瓶係在即將使用之前混合。
- 如請求項20或請求項21之疫苗,其中該額外的一或多種額外抗原係選自由以下各物之抗原組分組成之群:溶血性曼氏桿菌、牛腹瀉病毒(BVDV)、牛鼻氣管炎病毒(IBR)、副流感3病毒(PI3)及牛呼吸道融合病毒(BRSV)、牛冠狀病毒(BCV,牛黴漿菌( Mycoplasma bovis)、索氏嗜血桿菌( Histophilus somni( somnus))及梭菌(Clostridials)[產氣莢膜梭菌A、B、C、D型、破傷風梭菌、敗血梭菌、索氏(Sordellii)梭菌、溶血梭菌、諾維氏(Novyi)梭菌、氣腫疽(Chauvoi)梭菌]。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063085397P | 2020-09-30 | 2020-09-30 | |
US63/085,397 | 2020-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202214294A true TW202214294A (zh) | 2022-04-16 |
Family
ID=78500698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110136283A TW202214294A (zh) | 2020-09-30 | 2021-09-29 | 具有hyaC及nanP缺失之新穎多殺性巴斯德氏菌株及疫苗 |
Country Status (3)
Country | Link |
---|---|
AR (1) | AR123664A1 (zh) |
TW (1) | TW202214294A (zh) |
WO (1) | WO2022072431A1 (zh) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
JP2851288B2 (ja) | 1987-06-05 | 1999-01-27 | アメリカ合衆国 | 癌診断および管理における自己分泌運動性因子 |
US5709860A (en) | 1991-07-25 | 1998-01-20 | Idec Pharmaceuticals Corporation | Induction of cytotoxic T-lymphocyte responses |
MX9301736A (es) * | 1992-03-30 | 1994-01-31 | Smithkline Beecham Corp | Vacuna de bacterina-toxoide de pasteurella haemolytica tipo a-1. |
US5855894A (en) | 1992-03-30 | 1999-01-05 | Pfizer Inc. | Pasteurella haemolytica type A-1 bacterin-toxoid vaccine |
GB9518220D0 (en) | 1995-09-06 | 1995-11-08 | Medical Res Council | Checkpoint gene |
EP1860117A3 (en) | 1999-04-09 | 2008-09-03 | Pharmacia & Upjohn Company LLC | Anti-bacterial vaccine compositions |
US7449178B2 (en) * | 2002-04-05 | 2008-11-11 | Merial Limited | Attenuated gram negative bacteria |
BRPI0706709B8 (pt) | 2006-01-26 | 2021-05-25 | Pah Usa 15 Llc | composição e processo para preparar a composição |
ES2824402T3 (es) | 2013-11-01 | 2021-05-12 | Boehringer Ingelheim Animal Health Usa Inc | Vacunas atenuadas contra Pasteurella multocida y procedimientos de fabricación y uso de las mismas |
-
2021
- 2021-09-29 WO PCT/US2021/052558 patent/WO2022072431A1/en active Application Filing
- 2021-09-29 TW TW110136283A patent/TW202214294A/zh unknown
- 2021-09-30 AR ARP210102730A patent/AR123664A1/es unknown
Also Published As
Publication number | Publication date |
---|---|
AR123664A1 (es) | 2022-12-28 |
WO2022072431A1 (en) | 2022-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101747507B1 (ko) | 마이코플라즈마 하이요뉴모니아 백신 | |
KR101808903B1 (ko) | Pcv/마이코플라즈마 하이요뉴모니아/prrs 조합 백신 | |
KR102003620B1 (ko) | Pcv/마이코플라즈마 하이요뉴모니아 조합 백신 | |
CA2957472C (en) | Attenuated bovine coronavirus and related vaccines | |
EP0453024B1 (en) | Actinobacillus pleuropneumoniae subunit vaccine | |
JP2011506433A (ja) | 改変された免疫組成物 | |
US20170246286A1 (en) | Attenuated Mannheimia haemolytica Vaccines and Methods of Making and Use | |
US20210275648A1 (en) | Southern cattle tick vaccine product | |
JP2023503058A (ja) | ヘモフィルス・パラスイスに対する新規ワクチン | |
JP2023503057A (ja) | ヘモフィルス・パラスイスに対する新規ワクチン | |
US12071636B2 (en) | Pasteurella multocida strains and vaccines having hyaC and nanP deletions | |
TW202214294A (zh) | 具有hyaC及nanP缺失之新穎多殺性巴斯德氏菌株及疫苗 | |
JP2023517684A (ja) | ストレプトコッカス・スイス血清型9、配列型16に対する防御のためのワクチン | |
JP2018523708A (ja) | マイコプラズマ・ボビス組成物 | |
RU2822516C1 (ru) | Новая вакцина против haemophilus parasuis | |
JP2024527138A (ja) | 様々な血清型のストレプトコッカス・スイスに対して保護するためのワクチン | |
CN117794565A (zh) | 用于保护以对抗多种血清型的猪链球菌的疫苗 | |
JP2024528169A (ja) | 様々な血清型のストレプトコッカス・スイスに対する防御のためのワクチン | |
JP2020522471A (ja) | クロストリジウム類毒素を含むワクチン | |
Adams | Analysis of P97 and P102 paralogs of Mycoplasma hyopneumoniae |