TW202211340A - 用於三維晶圓結構之分級增強缺陷偵測方法 - Google Patents
用於三維晶圓結構之分級增強缺陷偵測方法 Download PDFInfo
- Publication number
- TW202211340A TW202211340A TW110125515A TW110125515A TW202211340A TW 202211340 A TW202211340 A TW 202211340A TW 110125515 A TW110125515 A TW 110125515A TW 110125515 A TW110125515 A TW 110125515A TW 202211340 A TW202211340 A TW 202211340A
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- defects
- processor
- center
- mask
- Prior art date
Links
- 230000007547 defect Effects 0.000 title claims abstract description 78
- 238000001514 detection method Methods 0.000 title claims description 44
- 238000000034 method Methods 0.000 claims description 53
- 239000004065 semiconductor Substances 0.000 claims description 41
- 230000007704 transition Effects 0.000 claims description 9
- 238000004891 communication Methods 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 description 27
- 235000012431 wafers Nutrition 0.000 description 27
- 230000006870 function Effects 0.000 description 16
- 238000007689 inspection Methods 0.000 description 16
- 238000005286 illumination Methods 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 11
- 230000000737 periodic effect Effects 0.000 description 11
- 238000013500 data storage Methods 0.000 description 9
- 230000035945 sensitivity Effects 0.000 description 9
- 238000003384 imaging method Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 238000005314 correlation function Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 238000005311 autocorrelation function Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 235000006719 Cassia obtusifolia Nutrition 0.000 description 1
- 235000014552 Cassia tora Nutrition 0.000 description 1
- 244000201986 Cassia tora Species 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67288—Monitoring of warpage, curvature, damage, defects or the like
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70616—Monitoring the printed patterns
- G03F7/7065—Defects, e.g. optical inspection of patterned layer for defects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20068—Projection on vertical or horizontal image axis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Quality & Reliability (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Image Analysis (AREA)
Abstract
基於位置之分級可將一3D NAND結構中之不同列之通道孔上之缺陷分離至相應分級。產生一影像之一一維投影且形成一一維曲線。從該一維曲線產生一遮罩。使用該遮罩偵測該影像中之缺陷且執行基於位置之分級。
Description
本發明係關於半導體晶圓上之缺陷偵測。
半導體製造行業之演進正對良率管理且特定言之對計量及檢測系統提出更高要求。關鍵尺寸繼續縮小,但該行業需減少達成高良率、高價值生產之時間。最小化自偵測到一良率問題至解決該問題之總時間最大化半導體製造商之投資回報率。
製造半導體裝置(諸如邏輯及記憶體裝置)通常包含使用大量製造程序處理一半導體晶圓以形成該等半導體裝置之不同特徵及多個層級。例如,微影係一半導體製造程序,其涉及將一圖案自一倍縮光罩轉印至配置在一半導體晶圓上之一光阻劑。半導體製造程序之額外實例包含(但不限於)化學機械拋光(CMP)、蝕刻、沈積及離子植入。可將在一單個半導體晶圓上製造之多個半導體裝置之配置分離成個別半導體裝置。
在半導體製造期間之各個步驟使用檢測程序以偵測晶圓上之缺陷以在製造程序中促進更高良率且因此促進更高利潤。檢測始終係製造諸如積體電路(IC)之半導體裝置之重要部分。然而,隨著半導體裝置之尺寸減小,檢測對於可接受半導體裝置之成功製造變得甚至更加重要,此係因為較小缺陷可引起裝置故障。例如,隨著半導體裝置之尺寸減小,偵測減小尺寸之缺陷已變得必要,此係因為甚至相對較小缺陷可在半導體裝置中引起非所要的像差。
隨著對較小半導體裝置之需求持續增加,歸因於與微影相關聯之快速增加成本及與節距分割技術相關聯之多個程序步驟,縮小半導體裝置(諸如記憶體)已變得更加困難。垂直記憶體(諸如3D NAND記憶體)似乎係增加記憶體密度之一有前景之方向。3D NAND之實施方案包含垂直構建電晶體(位元),而非以平面方式定向記憶體結構。與平面方法相比,可用較少程序步驟、寬鬆微影大小及較低製造成本,達成增加位元數。
3D NAND具有帶孔之層。半導體製造商通常關注此等通道孔之哪一列包含一缺陷。較靠近一通道之一孔處之一缺陷可更成問題。許多檢測系統缺乏用以判定該缺陷定位於何處之解析度。需要用垂直半導體裝置(諸如3D NAND記憶體或其他垂直堆疊)實施之經改良半導體晶圓檢測系統。先前方法(諸如基於影像之超級單元(IBS))用於在3D NAND結構上查找缺陷。但是,IBS通常無法處置局部及全域灰度(GL)變化,此引入分離誤差。雜訊可影響結果。
因此,需要用於缺陷偵測之經改良方法及系統。
在一第一實施例中提供一種方法。該方法包含在一處理器處接收一影像。該影像係一半導體晶圓之一三維結構,且可藉由一寬頻電漿檢測系統產生。使用該處理器產生該影像之一一維投影,藉此形成一一維曲線。使用該處理器自該影像之該一維曲線產生一遮罩。使用該處理器用該遮罩在該影像上偵測缺陷。使用該處理器執行該等缺陷之基於位置之分級。
該三維結構可為一三維NAND結構。
產生該遮罩可包含使用該處理器執行該一維曲線之一自相關,藉此判定一週期;且使用該處理器執行該週期之自捲積及仲裁,藉此判定一溝槽中心。該溝槽中心可被用作一參考。使用該處理器在該遮罩影像中可判定溝槽、邊緣孔、過渡孔及中心孔區域。
可在該遮罩之一區域中之像素當中偵測該等缺陷。偵測該等缺陷進一步可包含提取該等缺陷之一者之一位置周圍之一區塊(patch)。該方法可進一步包含使用該處理器判定至一相鄰溝槽中心之一距離。該基於位置之分級可為一至溝槽中心之距離。
該基於位置之分級可將不同列之通道孔上之該等缺陷分離至相應之分級。
一種非暫時性電腦可讀媒體可儲存一程式,該程式經組態以指示一處理器執行第一實施例之方法。
在一第二實施例中提供一種系統。該系統包含:一載物台,其經組態以固持一半導體晶圓;一光源,其經組態以將一光束引導於該載物台上之該半導體晶圓處;一偵測器,其經組態以接收來自該載物台上之該半導體晶圓之反射光;及一處理器,其與該偵測器電子通信。該光源可為一寬頻電漿源。該偵測器經組態以接收該半導體晶圓之一影像;產生該影像之一一維投影,藉此形成一一維曲線;從該影像之該一維曲線產生一遮罩;用該遮罩偵測該影像上之缺陷;且執行該等缺陷之基於位置之分級。
產生該遮罩可包含執行該一維曲線之一自相關,藉此判定一週期;且執行該週期之自捲積及仲裁,藉此判定一溝槽中心。
該溝槽中心可被用作一參考。可在該遮罩影像中判定溝槽、邊緣孔、過渡孔及中心孔區域。
可在該遮罩之一區域中之像素當中偵測該等缺陷。偵測該等缺陷可進一步包含提取該等缺陷之一者之一位置周圍之一區塊。該方法可進一步包含判定至一相鄰溝槽中心之一距離。該基於位置之分級可為一至溝槽中心之距離。
該基於位置之分級可將不同列之通道孔上之該等缺陷分離至相應之分級。
相關申請案之交叉參考
本申請案主張2020年9月4日申請且讓與美國申請案第63/074,487號之臨時專利申請案之優先權,該案之揭示內容特此以引用的方式併入。
儘管將依據特定實施例描述所主張之標的物,然其他實施例(包含未提供本文中闡述之所有益處及特徵之實施例)亦在本發明之範疇內。可在不偏離本發明之範疇之情況下進行各種結構、邏輯、程序步驟、及電子變化。因此,本發明之範疇僅參考隨附發明申請專利範圍而界定。
一寬頻電漿(BBP)檢測系統、雷射檢測系統或其他光學檢測系統可用於3D NAND缺陷偵測。為改良靈敏度,半導體製造商可需要區分定位於溝槽及不同列之通道孔上之缺陷,而非僅僅報告同一區域中之所有缺陷。缺失一溝槽附近之一孔通常比溝槽上之粒子具有一更大之影響,而中心孔係暫置孔(dummy hole),且與其他孔相比通常較不關鍵。
本文中揭示之實施例使用一先驗資訊(例如,週期性、對稱性等)以克服GL變化及自動聚焦問題之影響。一仲裁方法可經實施以校正溝槽位置識別。跨圖框借用邏輯可用於容忍全域GL變化。影像像素可基於其等至溝槽中心之距離分段。個別靈敏度可應用至各分段用於缺陷偵測。從缺陷位置至溝槽中心之距離可經計算用於該配方中之偵測分級。相較於IBS,本文中揭示之實施例對晶圓程序變化及雜訊係穩健的,且亦可容忍一些自動聚焦問題。分離純度亦可優於IBS。IBS基於相鄰像素分離影像且局部灰度變化將影響分級效能。本文中揭示之實施例使用來自該整個關照區域之像素,此更穩健以容忍局部變化。
在圖1中展示具有各種特徵之一例示性3D NAND結構影像。繪示為分級,其中Bin 0代表背景。各列孔之高度可為100 nm至200 nm。如圖2A中之圖框影像中所展示,3D NAND影像通常接近於水平均勻,同時為垂直週期性且對稱的。可藉由一BBP檢測系統或其他檢測系統提供圖2A中之影像。圖2A中之影像之水平投影可用於產生如圖2B中所展示之一週期性及對稱曲線,此產生圖2C之遮罩影像。此結構可增加缺陷偵測之複雜度。使用本文中揭示之實施例,交叉相關可有助於識別節距及溝槽中心。影像像素可基於其等至溝槽中心之距離分段。個別靈敏度可應用至各分段用於缺陷偵測。從缺陷位置至溝槽中心之距離可經計算用於定量缺陷分級。
圖3係一方法100之一流程圖。該方法100之部分或全部步驟可使用一處理器。
在方法100中使用一影像101。該影像101係一半導體晶圓之一三維結構,諸如一3D NAND結構。例示性影像(諸如圖1中所展示)可來自電子束檢測系統或另一類型之檢測系統。
在102,產生該影像之一一維投影,諸如圖2A中所展示,藉此形成一一維曲線,諸如圖2B中所展示。該一維投影沿一個維度累積所有像素以判定一灰度分佈。該一維曲線表示該一維投影之灰度。
在一例項中,該演算法可取影像中與溝槽平行之所有像素之灰度之平均值以產生該一維投影。可藉由使用一平均值輸出,將該一維投影轉換為該一維曲線。各列具有一個平均值輸出。來自所有列之值可形成該一維曲線。
在103,執行該一維曲線之一自相關,藉此判定一週期。該自相關函數之一實例係在方程式6中。一維曲線之自相關可判定唯一溝槽-孔節距之週期長度。一維曲線之自相關亦可提供溝槽中心候選者。
在一例項中,自相關判定從一原始輪廓至一偏移輪廓之一節距。該原始輪廓可為一維投影輪廓。該偏移輪廓可為輪廓Rx
[k]。可檢查一峰值且判定一峰間值。此可包含正規化交叉相關(NCC)。
在104,執行週期之自捲積及仲裁,藉此判定一溝槽中心。仲裁方法可用於判定候選者是否係溝槽中心或中心孔列。例如,在自捲積期間,輪廓可經翻轉以找到一溝槽中心。仲裁可使用暗峰或亮峰作為一中心,此可係基於來自半導體製造商之資訊。例如,一使用者可在一使用者介面中選擇一暗峰或亮峰。
提供自相關103及自捲積104之一實例。若存在正整數T,則實值離散信號x[n]係T週期性的,使得對於每個n∈Z,x[n]=x[n+T]。若存在整數M,則信號x[n]係M對稱的,使得對於每個n∈Z,x[n]=x[M−n],在此情況下,M/2係對稱中心之一者,且不一定係唯一的。
若一信號係同時T週期性及M對稱的,則其亦係(M+jT)對稱的,其中j係一任意整數。對於一固定整數j,針對所有n∈Z,x[n]=x[M−n]=x[M+jT−n]。因此,x[n]亦係(M+jT)對稱的。此意味一週期性及對稱信號含有具有半循環間隔之一系列對稱中心。
針對一離散信號x[n]之滯後k下之自相關函數可定義為。針對一離散信號x[n]之滯後k下之自捲積函數可定義為,其可被視為x[n]與其反轉x[-n]之交叉相關。因此,以下方程式適用。
(方程式1)
(方程式2)
若x[n]係M對稱的,則Vx[k]在k=M達成全域最大值。使用方程式3
(方程式3)
則對於任何k
,Vx
[k]
無法超過Vx
[M]
。此在方程式4中展示。(方程式4)
因此,信號之對稱中心可自其自捲積函數之峰值判定。
若x[n]係同時T-週期性及M對稱的,則對於每個j∈Z,自捲積函數Vx[k]在k=M+jT達成全域最大值。此可用於一三維結構之節距偵測。
在識別週期及溝槽中心之情況下,在106自影像之一維曲線產生一遮罩影像,諸如圖2C中。該遮罩影像可係基於溝槽區域及各孔區域之預定義寬度。因此,該溝槽中心可用作一參考。如圖1中所展示,可在該遮罩影像中判定溝槽、邊緣孔、過渡孔及中心孔區域。過渡孔及中心孔在圖1中用虛線勾勒。邊緣孔係最靠近該溝槽之一群組之孔之一外側列,中心孔位於一群組之孔之中心,且過渡孔位於邊緣孔與中心孔之間。在一例項中,在判定一溝槽中心之後,在一週期內,基於靈敏度臨限值將該溝槽中心分段為子區域以產生該遮罩影像。
在一例項中,該半導體製造商可基於半導體結構或其他設計來指定遮罩之不同區域中之靈敏度。因此,該遮罩可指示具有特定靈敏度之一像素區域。一半導體製造商可針對各子區域在一BBP檢測系統上設定一靈敏度,使得各子區域可使用一獨立臨限值。
可基於來自106之遮罩將來自101之影像之像素分段,以用於偵測個別分段。
在107用遮罩偵測影像上之缺陷。例如,可在具有所要靈敏度之一遮罩區域中之像素當中偵測缺陷。偵測缺陷可包含提取該等缺陷之一者之一位置周圍之一區塊。在一實例中,針對一BBP檢測系統,區塊大小為32x32像素。可判定一缺陷至一相鄰溝槽中心之間之一距離。在計算出溝槽中心後,且對於各缺陷,亦可找到缺陷峰值位置。該距離係此兩個值之間之差。此距離可用於缺陷分級。在一例項中,一區塊差異影像中之一局部最大值可代表一缺陷。
在108可計算缺陷位置。可在109基於一分佈執行基於位置之分級。基於位置之分級之結果可轉化為一直方圖,諸如圖3中所展示。在一實例中,關於至溝槽中心之距離之缺陷分佈係最終分級結果。此可用於判定受關注缺陷之位置。
操作在以下實例中進一步描述。設x[n]
為一實值離散信號。若針對每個,存在一正整數s.t.,則此為週期性的且若針對每個,存在一整數s.t.,則此為對稱的。在此情況下,M/2係對稱中心之一者(不一定係唯一的)。若一信號同時係週期性且對稱的,則其可被驗證。對於每個其亦為對稱的。因此,一週期性且對稱信號含有具有半週期間隔之一系列對稱中心。
對於自相關及自捲積,可使用交叉相關函數來偵測週期性及對稱性。應注意,一週期性及對稱信號將按每多個週期與其自身重疊。因此,信號與其自身之交叉相關函數將在具有一個週期間隔之一系列點處達成最大值。此類型之交叉相關函數被稱為自相關函數。此外,該信號亦將按每多個週期與其反轉重疊。因此,信號與其反轉之交叉相關函數將含有一系列峰值,該等峰值之各者對應該原始信號之一對稱中心。此類型之交叉相關函數被定義為自捲積函數。總之,週期性及對稱性可分別自相關及自捲積函數判定。
術語自相關及自捲積可表示正規化版本。
週期性及對稱性可自自相關及自捲積函數推斷。可首先找到高於一給定臨限值之所有峰值。隨後,可將節距識別為該等峰值之平均間隔。
如3D NAND影像中所展示,半節距高模糊度可存在於溝槽中心上,在亮中心或暗中心。可需要一仲裁來判定正確溝槽中心。單從投影資料可能難以判定溝槽極性。存在至少三種仲裁方式。第一種係使用來自觀察之亮度。第二種係使用水平變異數,此係因為一孔區域通常具有較多晶圓雜訊。第三種係預定義一模板以匹配晶圓圖案。由於可存在層間、晶圓間及晶粒間變化,故仲裁方法之經驗選擇可應用至各特定層。
所獲得溝槽中心可用作參考。溝槽、邊緣孔、過渡孔及中心孔區域可在該遮罩影像中重複地用相應之百分比逐個填充。使用遮罩影像,執行分段多晶粒自動定限(MDAT)偵測以針對各分段偵測缺陷。
當存在全域GL變化時,一些圖框可能遭受錯誤節距及溝槽中心。可實施一借用邏輯以從其他圖框獲得節距及溝槽中心值。因此,可從相鄰圖框借用週期及溝槽中心值。在借用期間可考慮圖框間偏移。
在一實驗中,使用一BBP檢測系統在一晶圓上測試方法100。將效能與IBS比較。如圖4中所展示,晶圓上存在程式化孔缺失缺陷。圖4中之各點係一通道孔。列1至列5中存在缺失缺陷,其等在圖4中用空心圓展示。目的係區分來自相異列之缺陷。
缺陷至溝槽中心之距離經計算為用於在原型開發中分級之缺陷屬性。圖5中之直方圖展示本文中揭示之實施例(「新分級演算法」)可找到清晰切割線來分離兩種不同類型之缺陷,同時藉由使用IBS之兩種類型之缺陷之分佈之間存在一大重疊。歸因於直方圖上之清晰切割線,使用本文中揭示之實施例來改良整體分級精度。
使用晶圓佈局之先驗資訊(例如週期性、對稱性等)可克服GL變化及自動聚焦問題之影響。本文中揭示之實施例可將不同列之通道孔上之缺陷正確地分離至相應分級,且幫助半導體製造商達成增強的靈敏度調諧及精確的缺陷監測,以便更好地控制晶圓良率。
在圖6中展示一系統200之一項實施例。該系統200包含基於光學之子系統201。一般而言,該基於光學之子系統201經組態用於藉由將光引導至(或使光掃描遍及)一樣品202及偵測來自樣品202之光來針對樣品202產生基於光學之輸出。在一項實施例中,樣品202包含一晶圓。該晶圓可包含此項技術中已知之任何晶圓。在另一實施例中,樣品202包含倍縮光罩。該倍縮光罩可包含此項技術中已知之任何倍縮光罩。
在圖6中所展示之系統200之實施例中,基於光學之子系統201包含經組態將光引導至樣品202之一照明子系統。該照明子系統包含至少一個光源。例如,如圖6中所展示,該照明子系統包含光源203。在一項實施例中,該照明子系統經組態以按一或多個入射角(其或其等可包含一或多個傾斜角及/或一或多個法線角)將光引導至樣品202。例如,如圖6中所展示,以一傾斜入射角引導來自光源203之光穿過光學元件204且接著穿過透鏡205而至樣品202。該傾斜入射角可包含任何合適之傾斜入射角,其可取決於例如樣品202之特性而改變。
基於光學之子系統201可經組態以在不同時間按不同入射角將光引導至樣品202。例如,基於光學之子系統201可經組態以更改該照明子系統之一或多個元件之一或多個特性,使得光可按與圖6中所展示之入射角不同之一入射角被引導至樣品202。在一個此實例中,該基於光學之子系統201可經組態以移動光源203、光學元件204及透鏡205,使得光按一不同傾斜入射角或一法線(或一近法線)入射角被引導至樣品202。
在一些例項中,該基於光學之子系統201可經組態以同時按一個以上入射角將光引導至樣品202。例如,該照明子系統可包含一個以上照明通道,該等照明通道之一者可包含如圖6中所展示之光源203、光學元件204及透鏡201且該等照明通道之另一者(未顯示)可包含可不同地或相同地組態之類似元件,或可包含至少一光源及可能諸如本文中進一步描述之一或多個其他組件。若此光與另一光同時被引導至樣品,則按不同入射角被引導至樣品202之光之一或多個特性(例如,波長、偏光等)可不同,使由按不同入射角照明樣品202產生之光可在(若干)偵測器處彼此區分。
在另一例項中,該照明子系統可包含僅一個光源(例如,圖6中所展示之光源203)且來自光源之光可藉由該照明子系統之一或多個光學元件(未展示)而分離至不同光學路徑中(例如,基於波長、偏光等)。不同光學路徑之各者中之光接著可被引導至樣品202。多個照明通道可經組態以在相同時間或不同時間將光引導至樣品202(例如,當使用不同照明通道以循序照明樣品時)。在另一例項中,相同照明通道可經組態以在不同時間使用不同特性將光引導至樣品202。例如,在一些例項中,光學元件204可經組態為光譜濾波器且該光譜濾波器之性質可以多種不同方式(例如,藉由置換出該光譜濾波器)改變,使得不同波長之光可在不同時間被引導至樣品202。該照明子系統可具有此項技術中已知之用於將具有不同或相同特性之光按不同或相同入射角循序或同時引導至樣品202之任何其他合適組態。
在一項實施例中,光源203可包含一BBP源。以此方式,由光源203產生且被引導至樣品202之光可包含寬頻光。然而,光源可包含任何其他合適光源,諸如雷射。雷射可包含此項技術中已知之任何合適雷射且可經組態以產生任何合適波長或此項技術中已知之波長之光。此外,雷射經組態以產生單色或近單色之光。以此方式,雷射可為一窄頻雷射。光源203亦可包含一多色光源,該多色光源產生多個離散波長或波段之光。
來自光學元件204之光可藉由透鏡205聚焦至樣品202上。儘管透鏡205在圖6中被展示為一單一折射光學元件,但應暸解,實務上,透鏡205可包含數個折射及/或反射光學元件,其等組合地將來自該光學元件之光聚焦至該樣品。圖6中所展示及本文中描述之照明子系統可包含任何其他合適之光學元件(未展示)。此等光學元件之實例包含(但不限於)(若干)偏光組件、(若干)光譜濾波器、(若干)空間濾波器、(若干)反射光學元件、(若干)變跡器、(若干)光束分離器(諸如光束分離器213)、(若干)孔隙及類似物,其等可包含此項技術中已知之任何此等合適光學元件。此外,該基於光學之子系統201可經組態以基於照明之類型而更該該照明子系統之一或多個元件以用於產生基於光學之輸出。
基於光學之子系統201亦可包含一掃描子系統,該掃描子系統經組態以使光掃描遍及樣品202。例如,基於光學之子系統201可包含載物台206,在基於光學之輸出產生期間樣品202被安置在該載物台206上。該掃描子系統可包含任何合適機械及/或機器人總成(其包含載物台206),該總成可經組態以移動樣品202,使得光可掃描遍及樣品202。此外或替代地,基於光學之子系統201可經組態使得該基於光學之子系統201之一或多個光學元件執行光遍及樣品202之某一掃描。光可以任何合適方式(諸如以蛇形路徑或以螺旋形路徑)掃描遍及樣品202。
基於光學之子系統201進一步包含一或多個偵測通道。該一或多個偵測通道之至少一者包含一偵測器,該偵測器經組態以偵測歸因於由子系統照明樣品202而來自該樣品202之光且回應於經偵測光而產生輸出。例如,圖6中所展示之基於光學之子系統201包含兩個偵測通道,一個偵測通道藉由集光器207、元件208及偵測器209形成,且另一偵測通道藉由集光器210、元件211及偵測器212形成。如圖6中所展示,該兩個偵測通道經組態以按不同集光角度收集且偵測光。在一些例項中,兩個偵測通道經組態以偵測經散射光,且該等偵測通道經組態以偵測依不同角度自樣品202散射之光。然而,一或多個偵測通道經組態以偵測來自樣品202之另一類型之光(例如,經反射光)。
如圖6中進一步展示,兩個偵測通道經展示為定位於紙平面中且該照明子系統亦經展示定位於該紙平面中。因此,在此實施例中,兩個偵測通道經定位(例如,居中)於入射平面中。然而,一或多個偵測通道可經定位於入射平面外。例如,藉由集光器210、元件211及偵測器212形成之偵測通道可經組態以收集且偵測自入射平面散射之光。因此,此一偵測通道可被統稱為一「側」通道,且此一側通道可在實質上垂直於入射平面之一平面中居中。
儘管圖6展示包含兩個偵測通道之基於光學之子系統201之一實施例,但基於光學之子系統201可包含不同數目個偵測通道(例如,僅一個偵測通道或兩個或更多個偵測通道)。在一個此例項中,藉由集光器210、元件211及偵測器212形成之偵測通道可形成如上文描述之一個側通道,且基於光學之子系統201可包含形成為定位在入射平面之相對側上之另一側通道之一額外偵測通道(未展示)。因此,基於光學之子系統201可包含偵測通道,該偵測通道包含集光器207、元件208及偵測器209且在入射平面中居中且經組態以按法向於或接近法向於樣品208表面之(若干)散射角收集並偵測光。因此,此偵測通道可被統稱為一「頂部」通道,且基於光學之子系統201亦可包含如上文描述般組態之兩個或更多個側通道。因而,基於光學之子系統201可包含至少三個通道(即,一個頂部通道及兩個側通道),且該至少三個通道之各者具有其自身的集光器,其各者經組態以按不同於其他集光器之各者之散射角收集光。
如上文進一步描述,包含於基於光學之子系統201中之偵測通道之各者可經組態以偵測散射光。因此,圖6中所展示之基於光學之子系統201可經組態用於針對樣品202之暗場(DF)輸出產生。然而,基於光學之子系統201亦可或替代性地包含經組態用於針對樣品202之明場(BF)輸出產生之(若干)偵測通道。換言之,基於光學之子系統201可包含至少一個偵測通道,該至少一個偵測通道經組態以偵測自樣品202鏡面反射之光。因此,本文中描述之基於光學之子系統201可經組態用於僅DF、僅BF或DF及BF兩者之成像。儘管該等集光器之各者在圖6中被展示為單一折射光學元件,但應暸解,該等集光器之各者可包含一或多個折射光學晶粒及/或一或多個折射光學元件。
該一或多個偵測通道可包含此項技術中已知之任何合適偵測器。例如,該等偵測器可包含光電倍增管(PMT)、電荷耦合裝置(CCD)、延時積分(TDI)攝影機及此項技術中已知之任何其他合適偵測器。該等偵測器亦可包含非成像偵測器或成像偵測器。以此方式,若該等偵測器係非成像偵測器,則該等偵測器之各者可經組態以偵測散射光之特定特性(諸如強度),但可不經組態以偵測依據成像平面內之位置而變化之此等特性。因而,藉由包含在該基於光學之子系統之該等偵測通道之各者中之該等偵測器之各者產生之輸出可為信號或資料,而非影像信號或影像資料。在此等例項中,一處理器(諸如處理器214)可經組態以產生來自偵測器之非成像輸出之樣品202之影像。然而,在其他例項中,該等偵測器可經組態為成像偵測器,其等經組態以產生影像信號或影像資料。因此,基於光學之子系統可經組態以依數種方式產生本文中描述之光學影像或其他基於光學之輸出。
應注意,本文中提供圖6以大體上繪示一基於光學之子系統201之一組態,其可被包含於本文中描述之系統實施例中或其可產生由本文中描述之系統實施例所使用之基於光學之輸出。本文中描述之基於光學之子系統201組態可經變更以最佳化基於光學之子系統201之效能,如在設計一商業輸出擷取系統時通常所執行般。此外,本文中描述之系統可使用一現有系統來實施(例如,藉由將本文中描述之功能性添加至一現有系統)。對於一些此等系統,本文中描述之方法可經提供作為系統之選用功能性(例如,除該系統之其他功能性之外)。替代性地,本文中描述之系統可被設計為一全新系統。
處理器214可以任何合適方式耦合至系統200之組件(例如,經由一或多個傳輸媒體,其或其等可包含有線及無線傳輸媒體),使得處理器214可接收輸出。處理器214可經組態以使用該輸出執行數個功能。系統200可自處理器214接收指令或其他資訊。處理器214及/或電子資料儲存單元215視情況可與一晶圓檢測工具、一晶圓計量工具或一晶圓檢視工具(未繪示)電子通信以接收額外資訊或發送指令。例如,處理器214及/或電子資料儲存單元215可與一掃描電子顯微鏡電子通信。
本文中描述之處理器214、(若干)其他系統或(若干)其他子系統可為各種系統之部分,包含一個人電腦系統、影像電腦、大型電腦系統、工作站、網路設備、網際網路設備或其他裝置。(若干)子系統或(若干)系統亦可包含此項技術中已知之任何合適處理器,諸如一平行處理器。此外,(若干)子系統或(若干)系統可包含具有高速處理之一平台及軟件(作為獨立或網路工具)。
處理器214及電子資料儲存單元215可經安置於系統200或另一裝置中或可為系統200或另一裝置之部分。在一實例中,處理器214及電子資料儲存單元215可為一獨立控制單元之部分或可在一集中式品質控制單元中。可使用多個處理器214或電子資料儲存單元215。
處理器214實務上可由硬體、軟體及韌體之任何組合實施。又,如本文中描述之其功能可藉由一個單元執行,或在不同組件當中劃分,其等之各者繼而可藉由硬體、軟體及韌體之任何組合來實施。供處理器214實施多種方法及功能之程式碼或指令可儲存於可讀儲存媒體中,諸如電子資料儲存單元215中之一記憶體或其他記憶體。
若系統200包含一個以上處理器214,則不同子系統可彼此耦合,使得影像、資料、資訊、指令等可在該等子系統之間發送。例如,一個子系統可藉由任何合適傳輸媒體耦合至(若干)額外子系統,該傳輸媒體可包含此項技術中已知之任何合適有線及/或無線傳輸媒體。此等子系統之兩者或更多者亦可藉由一共用電腦可讀儲存媒體(未展示)而有效地耦合。
處理器214可經組態以使用系統200之輸出或其他輸出執行數個功能。例如,處理器214可經組態以將該輸出發送至一電子資料儲存單元215或另一儲存媒體。處理器214可根據本文中描述之任何實施例組態。該處理器214亦可經組態以使用該系統200之輸出或使用來自其他源之影像或資料執行其他功能或額外步驟。
系統200及本文中描述之方法之各種步驟、功能及/或操作藉由以下一或多者實行:電子電路、邏輯閘、多工器、可程式化邏輯裝置、ASIC、類比或數位控制件/開關、微控制器或運算系統。實施諸如本文中描述之方法之程式指令可經由載體媒體傳輸或儲存於載體媒體上。該載體媒體可包含諸如一唯讀記憶體、一隨機存取記憶體、一磁碟或光碟、一非揮發性記憶體、一固態記憶體、一磁帶及類似物之一儲存媒體。一載體媒體可包含諸如一電線、電纜或無線傳輸鏈路之一傳輸媒體。例如,可藉由一單一處理器214或替代地多個處理器214實行貫穿本發明描述之各種步驟。此外,系統200之不同子系統可包含一或多個運算或邏輯系統。因此,上述描述不應被解釋為對本發明之限制,而僅係一圖解。
在一例項中,處理器214與系統200通信。使用處理器214之基於位置之分級可將不同列之通道孔上之缺陷分離至相應分級。該處理器214經組態以接收該半導體晶圓之一影像;產生該影像之一一維投影,藉此形成一一維曲線;自該影像之該一維曲線產生一遮罩;用該遮罩偵測該影像上之缺陷;且執行該等缺陷之基於位置之分級。
產生該遮罩可包含執行該一維曲線之一自相關,藉此判定一週期且執行該週期之自捲積及仲裁,藉此判定一溝槽中心。該溝槽中心可作為一參考。可在該遮罩影像中判定溝槽、邊緣孔、過渡孔及中心孔區域。
可在一遮罩區域之像素當中偵測該等缺陷。偵測該等缺陷可進一步包含提取該等缺陷之一者之一位置周圍之一區塊。可針對各缺陷判定至一相鄰溝槽中心之一距離。例如,此可為從一缺陷、一區塊之一邊緣或一區塊中心至一相鄰溝槽之一距離。基於位置之分級可為一至溝槽中心之距離。
一額外實施例係關於一種非暫時性電腦可讀媒體,其儲存可在一控制器上執行以用於執行用於缺陷偵測之一電腦實施方法之程式指令,如本文中所揭示。特定言之,如圖6中所展示,電子資料儲存單元215或其他儲存媒體可含有一非暫時性電腦可讀媒體,其包含可在處理器214上執行之程式指令。電腦實施方法可包含本文中描述之(若干)任何方法(包含方法100)之(若干)任何步驟。
該等程式指令可以多種方式之任一者實施,包含基於程序之技術、基於組件之技術及/或物件導向之技術等。例如,該等程式指令可使用ActiveX控制項、C++物件、JavaBeans、微軟基礎類別(MFC)、流式SIMD擴展(SSE)或其他技術或方法論來實施。
該方法之各步驟可如本文描述般執行。該等方法亦可包含可藉由本文描述之處理器及/或(若干)電腦子系統或(若干)系統執行之(若干)任何其他步驟。該等步驟可藉由一或多個電腦系統來執行,該一或多個電腦系統可根據本文描述之任何實施例來組態。此外,上述方法可藉由本文描述之任何系統實施例來執行。
儘管本發明已關於一或多項特定實施例來描述,但將暸解,本發明之其他實施例可在不偏離本發明之範疇之情況下進行。因此,本發明被視為僅受限於隨附發明申請專利範圍及其等之合理解釋。
100:方法
101:影像
102:步驟
103:步驟
104:步驟
106:步驟
107:步驟
108:步驟
109:步驟
200:系統
201:基於光學之子系統
202:樣品
203:光源
204:光學元件
205:透鏡
206:載物台
207:集光器
208:元件
209:偵測器
210:集光器
211:元件
212:偵測器
213:光束分離器
214:處理器
215:電子資料儲存單元
為更全面地暸解本發明之性質及目標,應參考結合隨附圖式進行之以下詳細描述,其中:
圖1係一3D NAND結構之一例示性圖;
圖2A繪示一圖框影像;
圖2B繪示與圖2A相對應之一水平投影;
圖2C繪示與圖2A相對應之一遮罩影像;
圖3係根據本發明之一方法實施例之一流程圖;
圖4繪示程式化缺失缺陷之一實例;
圖5繪示比較本發明之一方法實施例與IBS之直方圖;及
圖6係根據本發明之一系統之一方塊圖。
100:方法
101:影像
102:步驟
103:步驟
104:步驟
106:步驟
107:步驟
108:步驟
109:步驟
Claims (20)
- 一種方法,其包括: 在一處理器處接收一影像,其中該影像係一半導體晶圓之一三維結構; 使用該處理器產生該影像之一一維投影,藉此形成一一維曲線; 使用該處理器從該影像之該一維曲線產生一遮罩; 使用該處理器用該遮罩偵測該影像上之缺陷;及 使用該處理器執行該等缺陷之基於位置之分級。
- 如請求項1之方法,其中該影像藉由一寬頻電漿檢測系統產生。
- 如請求項1之方法,其中該三維結構係一三維NAND結構。
- 如請求項1之方法,其中產生該遮罩包含: 使用該處理器執行該一維曲線之一自相關,藉此判定一週期;及 使用該處理器執行該週期之自捲積及仲裁,藉此判定一溝槽中心。
- 如請求項4之方法,其中該溝槽中心被用作一參考,且其中使用該處理器在該遮罩影像中判定溝槽、邊緣孔、過渡孔及中心孔區域。
- 如請求項1之方法,其中在該遮罩之一區域中之像素當中偵測該等缺陷。
- 如請求項1之方法,其中偵測該等缺陷進一步包含提取該等缺陷之一者之一位置周圍之一區塊。
- 如請求項7之方法,其中該方法進一步包含使用該處理器判定至一相鄰溝槽中心之一距離。
- 如請求項8之方法,其中該基於位置之分級係一至溝槽中心之距離。
- 如請求項1之方法,其中該基於位置之分級將不同列之通道孔上之該等缺陷分離至相應之分級。
- 一種非暫時性電腦可讀媒體,其儲存一程式,該程式經組態以指示一處理器執行人如請求項1之方法。
- 一種系統,其包括: 一載物台,其經組態以固持一半導體晶圓; 一光源,其經組態將一光束引導於該載物台上之該半導體晶圓處; 一偵測器,其經組態成接收來自該載物台上之該半導體晶圓之反射光;及 一處理器,其與該偵測器電子通信,其中該偵測器經組態以: 接收該半導體晶圓之一影像; 產生該影像之一一維投影,藉此形成一一維曲線; 從該影像之該一維曲線產生一遮罩; 用該遮罩偵測該影像上之缺陷;及 執行該等缺陷之基於位置之分級。
- 如請求項12之系統,其中該光源係一寬頻電漿源。
- 如請求項12之系統,其中產生該遮罩包含: 執行該一維曲線之一自相關,藉此判定一週期;及 執行該週期之自捲積及仲裁,藉此判定一溝槽中心。
- 如請求項14之系統,其中該溝槽中心被用作一參考,且其中在該遮罩影像中判定溝槽、邊緣孔、過渡孔及中心孔區域。
- 如請求項12之系統,其中在該遮罩之一區域中之像素當中偵測該等缺陷。
- 如請求項12之系統,其中偵測該等缺陷進一步包含提取該等缺陷之一者之一位置周圍之一區塊。
- 如請求項17之系統,其中該方法進一步包括判定至一相鄰溝槽中心之一距離。
- 如請求項18之系統,其中該基於位置之分級係一至溝槽中心之距離。
- 如請求項12之系統,其中該基於位置之分級將不同列之通道孔上之該等缺陷分離至相應之分級。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063074487P | 2020-09-04 | 2020-09-04 | |
US63/074,487 | 2020-09-04 | ||
US17/356,473 US11798828B2 (en) | 2020-09-04 | 2021-06-23 | Binning-enhanced defect detection method for three-dimensional wafer structures |
US17/356,473 | 2021-06-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202211340A true TW202211340A (zh) | 2022-03-16 |
Family
ID=80469339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110125515A TW202211340A (zh) | 2020-09-04 | 2021-07-12 | 用於三維晶圓結構之分級增強缺陷偵測方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11798828B2 (zh) |
JP (1) | JP2023540747A (zh) |
KR (1) | KR20230061424A (zh) |
CN (1) | CN116235205A (zh) |
IL (1) | IL300705A (zh) |
TW (1) | TW202211340A (zh) |
WO (1) | WO2022051171A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117116799B (zh) * | 2023-10-17 | 2024-02-13 | 无锡京运通科技有限公司 | 硅片目视化检测方法及系统 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR970072024A (ko) * | 1996-04-09 | 1997-11-07 | 오노 시게오 | 투영노광장치 |
JP3566470B2 (ja) * | 1996-09-17 | 2004-09-15 | 株式会社日立製作所 | パターン検査方法及びその装置 |
US6456951B1 (en) * | 1999-01-06 | 2002-09-24 | Hitachi, Ltd. | Method and apparatus for processing inspection data |
US7009704B1 (en) * | 2000-10-26 | 2006-03-07 | Kla-Tencor Technologies Corporation | Overlay error detection |
US6898305B2 (en) * | 2001-02-22 | 2005-05-24 | Hitachi, Ltd. | Circuit pattern inspection method and apparatus |
US6975754B2 (en) * | 2000-10-26 | 2005-12-13 | Hitachi, Ltd. | Circuit pattern inspection method and apparatus |
US6947588B2 (en) * | 2003-07-14 | 2005-09-20 | August Technology Corp. | Edge normal process |
US7366344B2 (en) * | 2003-07-14 | 2008-04-29 | Rudolph Technologies, Inc. | Edge normal process |
AU2003300005A1 (en) * | 2003-12-19 | 2005-08-03 | International Business Machines Corporation | Differential critical dimension and overlay metrology apparatus and measurement method |
JP4528014B2 (ja) * | 2004-04-05 | 2010-08-18 | 株式会社日立ハイテクノロジーズ | 試料検査方法 |
US7599063B2 (en) * | 2007-03-29 | 2009-10-06 | Macronix International Co., Ltd. | Method for checking alignment accuracy using overlay mark |
US8775101B2 (en) * | 2009-02-13 | 2014-07-08 | Kla-Tencor Corp. | Detecting defects on a wafer |
US9053527B2 (en) * | 2013-01-02 | 2015-06-09 | Kla-Tencor Corp. | Detecting defects on a wafer |
US9310320B2 (en) | 2013-04-15 | 2016-04-12 | Kla-Tencor Corp. | Based sampling and binning for yield critical defects |
US9367103B2 (en) | 2013-08-22 | 2016-06-14 | Asia Vital Components Co., Ltd. | Heat dissipation device |
KR20160107006A (ko) | 2015-03-03 | 2016-09-13 | 삼성전자주식회사 | 3차원 영상을 이용한 웨이퍼 검사장치 |
CN106157329B (zh) * | 2015-04-20 | 2021-08-17 | 中兴通讯股份有限公司 | 一种自适应目标跟踪方法及装置 |
US10352695B2 (en) | 2015-12-11 | 2019-07-16 | Kla-Tencor Corporation | X-ray scatterometry metrology for high aspect ratio structures |
US10887580B2 (en) * | 2016-10-07 | 2021-01-05 | Kla-Tencor Corporation | Three-dimensional imaging for semiconductor wafer inspection |
US10964013B2 (en) * | 2017-01-10 | 2021-03-30 | Kla-Tencor Corporation | System, method for training and applying defect classifiers in wafers having deeply stacked layers |
US11270430B2 (en) * | 2017-05-23 | 2022-03-08 | Kla-Tencor Corporation | Wafer inspection using difference images |
WO2019173170A1 (en) | 2018-03-05 | 2019-09-12 | Kla-Tencor Corporation | Visualization of three-dimensional semiconductor structures |
US10615067B2 (en) * | 2018-05-18 | 2020-04-07 | Kla-Tencor Corporation | Phase filter for enhanced defect detection in multilayer structure |
US20220277439A1 (en) * | 2019-07-18 | 2022-09-01 | Mitsubishi Electric Corporation | Inspection device, inspection method, and recording medium |
US11356594B1 (en) * | 2019-08-29 | 2022-06-07 | Kla Corporation | Tilted slit confocal system configured for automated focus detection and tracking |
CN110876279B (zh) * | 2019-10-12 | 2021-03-12 | 长江存储科技有限责任公司 | 用于利用激光增强电子隧穿效应检测深度特征中的缺陷的方法 |
-
2021
- 2021-06-23 US US17/356,473 patent/US11798828B2/en active Active
- 2021-07-12 TW TW110125515A patent/TW202211340A/zh unknown
- 2021-08-27 WO PCT/US2021/047831 patent/WO2022051171A1/en active Application Filing
- 2021-08-27 KR KR1020237010414A patent/KR20230061424A/ko active Search and Examination
- 2021-08-27 CN CN202180053902.XA patent/CN116235205A/zh active Pending
- 2021-08-27 JP JP2023514952A patent/JP2023540747A/ja active Pending
- 2021-08-27 IL IL300705A patent/IL300705A/en unknown
Also Published As
Publication number | Publication date |
---|---|
CN116235205A (zh) | 2023-06-06 |
WO2022051171A1 (en) | 2022-03-10 |
KR20230061424A (ko) | 2023-05-08 |
JP2023540747A (ja) | 2023-09-26 |
IL300705A (en) | 2023-04-01 |
US11798828B2 (en) | 2023-10-24 |
US20220076973A1 (en) | 2022-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113302728B (zh) | 利用自动产生缺陷特征检验半导体结构的方法及系统 | |
KR102235581B1 (ko) | 이미지 합성을 위한 컨볼루션 신경망 기반의 모드 선택 및 결함 분류 | |
TWI778264B (zh) | 設計為基礎之對準之效能監控 | |
TWI778258B (zh) | 缺陷偵測之方法、系統及非暫時性電腦可讀媒體 | |
US11644756B2 (en) | 3D structure inspection or metrology using deep learning | |
US11783470B2 (en) | Design-assisted inspection for DRAM and 3D NAND devices | |
KR20220070490A (ko) | 웨이퍼 결함 검출을 위한 변형 기반 분할 | |
TW202206805A (zh) | 用於光學目標檢索之光學影像對比度量 | |
TW202211340A (zh) | 用於三維晶圓結構之分級增強缺陷偵測方法 | |
TWI829980B (zh) | 半導體晶圓檢測之方法及系統,以及非暫時性電腦可讀媒體 | |
TW202225675A (zh) | 雜訊圖案化特徵之檢測 | |
TWI851864B (zh) | 用於半導體晶圓檢驗之系統及方法以及相關的非暫時性電腦可讀儲存媒體 | |
TW202301191A (zh) | 用於導出及改善成像條件之影像對比度量 | |
TW202312303A (zh) | 通過基於影像投影之修補對設計對準之晶圓對準改良 | |
KR20220125324A (ko) | 웨이퍼 결함 검출을 위한 투영 및 거리 분할 알고리즘 | |
TW202228220A (zh) | 使用影像雜湊之非監督樣式等同偵測 | |
TW202300900A (zh) | 以經呈現設計影像之設計照護區域之分段 | |
JP2024537955A (ja) | レーザアニールパターンの抑制 |